
USING SECURE REAL-TIME PADDING PROTOCOL

TO SECURE VOICE-OVER-IP FROM TRAFFIC ANALYSIS ATTACKS

A Thesis

by

SASWAT MOHANTY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2011

Major Subject: Computer Science

USING SECURE REAL-TIME PADDING PROTOCOL

TO SECURE VOICE-OVER-IP FROM TRAFFIC ANALYSIS ATTACKS

A Thesis

by

SASWAT MOHANTY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Riccardo Bettati
Committee Members, Dmitri Loguinov

Narasimha Annapareddy
Head of Department, Valerie Taylor

May 2011

Major Subject: Computer Science

iii

ABSTRACT

Using Secure Real-time Padding Protocol

to Secure Voice-over-IP from Traffic Analysis Attacks. (May 2011)

Saswat Mohanty, B.Tech., National Institute of Technology Silchar

Chair of Advisory Committee: Dr. Riccardo Bettati

Voice Over IP (VoIP) systems and transmission technologies have now become

the norm for many communications applications. However, whether they are used

for personal communication or priority business conferences and talks, privacy and

confidentiality of the communication is of utmost priority. The present industry

standard is to encrypt VoIP calls using Secure Real-time Transport Protocol (SRTP),

aided by ZRTP, but this methodology remains vulnerable to traffic analysis attacks,

some of which utilize the length of the encrypted packets to infer the language and

spoken phrases of the conversation.

Secure Real-time Padding Protocol (SRPP) is a new RTP profile which pads all

VoIP sessions in a unique way to thwart traffic analysis attacks on encrypted calls. It

pads every RTP or SRTP packet to a predefined packet size, adds dummy packets at

the end of every burst in a controllable way, adds dummy bursts to hide silence spurts,

and hides information about the packet inter-arrival timings. This thesis discusses

a few practical approaches and a theoretical optimization approach to packet size

padding. SRPP has been implemented in the form of a library, libSRPP, for VoIP

application developers and as an application, SQRKal, for regular users. SQRKal

also serves as an extensive platform for implementation and verification of new packet

padding techniques.

iv

To my Parents, Ups and Chiku

v

ACKNOWLEDGMENTS

I sincerely thank my graduate advisor Dr. Riccardo Bettati for his guidance

and support through all the difficult times in the project. I thank Dr. Narasimha

Reddy, Dr. Dmitri Loguinov and Dr. Srinivas Shakkotai for their help and under-

standing. I thank my friends Tarun Jain, Bryan Graham, Blake Dworaczyk, Sandeep

Yadav and Vinod Ramaswamy for their valuable input at crucial junctures. And spe-

cial thanks to Upanita Goswami for giving me moral, intellectual and motivational

support throughout my thesis studies.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II COUNTERMEASURES AGAINST VOIP TRAFFIC ANALYSIS 4

A. Padding Mechanisms . 6

III RELATED WORK . 10

IV SECURE REAL-TIME PADDING PROTOCOL 12

A. Architecture of VoIP Systems 12

B. SRPP Design Details . 15

1. Analysis of SRPP Design Types 15

2. Packet Format . 21

3. Sender and Receiver Algorithms 23

4. Conference Call and PC-to-phone Scenarios 26

V SYSTEM IMPLEMENTATION 29

A. Implementation Details . 29

1. Implementation of libSRPP 29

2. Padding Algorithms 31

3. Bump-in-the-wire Implementation or SQRKal 33

VI EVALUATION . 36

A. Results from the Bump-in-the-wire Implementation 36

1. Operation . 36

2. Effectiveness . 38

3. Efficiency . 39

B. Determination of Output Packet Size Distribution 46

C. Optimization of Relative Entropy 47

1. Minimize the Difference between Output Packet

Size and Input Packet Size 49

2. Minimize the Square Distance between the Aver-

age Size of Output and Input 51

3. Specifying a Bandwidth Threshold 54

vii

CHAPTER Page

4. Results Using Matlab Optimization Toolbox 54

VII FUTURE WORK AND CONCLUSION 55

A. Future Work . 55

B. Conclusion . 55

REFERENCES . 57

APPENDIX A . 60

APPENDIX B . 64

APPENDIX C . 70

VITA . 74

viii

LIST OF TABLES

TABLE Page

I Mean Opinion Score . 44

ix

LIST OF FIGURES

FIGURE Page

1 Packet-size Padding (PSP) . 7

2 Current-burst Padding (CBP) . 7

3 Extra-burst Padding (EBP) . 8

4 Variable Inter-arrival Time Padding (VITP) 9

5 Data Flow Diagram for Media Transfer Phase of a General VoIP

call . 13

6 Types of Design of SRPP . 16

7 Data Flow Diagram for SRPP Implementation 19

8 In-band Signaling . 21

9 SRPP Packet Format . 22

10 Flowchart for Sender-side Operations 24

11 Flowchart for Receiver-side Operations 26

12 Conference Call Scenario with No SRPP Support 27

13 Conference Call Scenario with SRPP Support at the Mixer 27

14 PC-to-phone Call Scenario When [a] SRPP is Not Supported and

[b] SRPP is Supported . 28

15 Data Flow in SQRKal . 34

16 Screenshot of SQRKal Application 35

17 Effectiveness of SRPP for RTP Packets 38

18 Effectiveness of SRPP for SRTP Packets 39

x

FIGURE Page

19 Mean Jitter for Different Padding Techniques 40

20 Average Increase in Packet Size per Packet 41

21 CPU Load for RTP, with and without SQRKal 42

22 CPU Load for SRTP, with and without SQRKal 42

23 Network Load for RTP, with and without SQRKal 43

24 Network Load for SRTP, with and without SQRKal 43

25 Mutual Information for RTP and SRTP with SQRKal 44

26 C.D.F. of Relative Entropy for RTP and SRTP, with SQRKal 46

27 Observations for Discrete Distributions (Run 1) 65

28 Observations for Discrete Distributions (Run 2) 66

29 Discrete Case for Uniform Distribution 67

30 Discrete Case for Binomial Distribution 67

31 Discrete Case for Poisson Distribution 68

32 Discrete Case for Geometric Distribution 68

33 Wireshark Trace for non-SRPP supporting endpoint 70

34 Wireshark Trace for RTP max-random mode 71

35 Wireshark Trace for RTP full-bandwidth mode 71

36 Wireshark Trace for RTP Gradual Ascent Padding Algorithm 72

37 Wireshark Trace for RTP Slight Perturbation Algorithm 72

38 Wireshark Trace for RTP with Dummy Bursts 73

1

CHAPTER I

INTRODUCTION

Voice Over IP (VoIP) systems and applications have now become the norm of low-cost

and business communications, and are used extensively for both personal and priority

business conferences and talks. Privacy and confidentiality of the communication is

of utmost priority, and the present industry standard is to encrypt VoIP calls using

Secure Real-time Transport Protocol (SRTP) [4], aided by ZRTP [5, 7].

However, encrypted VoIP traffic remains vulnerable to traffic analysis attacks.

For example, Variable Bit Rate (VBR) codecs like Speex [13] encode the VoIP con-

versation in a way that the size of each packet formed is directly dependent on the

sound or phoneme it encodes. This information is carried over even when SRTP is

used to encrypt the packets, and an intelligent adversary can use the packet size dis-

tributions to accurately infer information about the conversation. Wright et al. [1]

describe techniques to monitor packet sizes and safely deduce the phrases spoken in a

VBR-encoded conversation by an average of 50% and sometimes by as much as 90%.

Similarly, the same team reports that the language spoken in such an encrypted VoIP

call can also be determined by an accuracy of as much as 90% [2].

Unlike VBR codecs, Constant Bit Rate (CBR) codecs encode all the phonemes

in a VoIP conversation at a constant bit rate, and all the VoIP packets are of similar

sizes. So packet sizes of CBR-encoded conversation do not leak any extra information.

However, it is still possible to infer information from such voice streams. For example,

Lella and Bettati [12] utilize silence suppression packets, which are of smaller size and

higher inter-arrival times than the regular packets, to identify talk spurt boundaries

The journal model is IEEE Transactions on Automatic Control.

2

in a Google Talk conversation. A simple context-unaware Bayesian classifier and

a context-aware Hidden Markov Model (HMM) classifier are used to classify these

isolated talk spurts, and both these classifiers can effectively determine the spoken

phrases in a conversation, if the accurate talk spurt lengths are known.

There is no single effective approach to thwart all the traffic analysis attack

techniques, because each technique utilizes a specific property of the network packet

or the packet stream to extract information. For example, Wright et al. [1, 2] describe

how the effectiveness of their attack methods can be reduced by appropriately padding

the size of individual packets. Zimmermann et al. [5] point out that the use of

techniques like variable VAD (Voice Activity Detection) hangover in VBR (Variable

Bit Rate) codecs can help in mitigating such attacks. The silence-suppression based

approach against CBR-encoded traffic [12] can be thwarted by intelligently adding

extra dummy packets in the current talk spurt and extra bursts of packets in the

silence period.

In this thesis, we design a framework for incorporating traffic padding into real-

time multimedia streams. As an implementation venue, we design and develop Secure

Real-time Padding Protocol (SRPP), a new Real-time Transport Protocol (RTP) [3]

profile that incorporates the above suggestions and pads all VoIP sessions in a unique

way to thwart traffic analysis attacks on encrypted calls. SRPP pads every RTP

packet to a predefined packet size, adds dummy packets at the end of every burst in

a controllable way, adds dummy bursts to hide silence spurts, and hides information

about the packet inter-arrival timings. Importantly, SRPP will serve as an extensible

platform, where one can add different padding techniques to mask any property used

in a new traffic analysis attack, in order to reduce the effectiveness of the attack. We

have implemented SRPP in the form of a library libSRPP and a standalone software

3

application SQRKal. VoIP application developers can use libSRPP to incorporate

the SRPP profile in their applications and SQRKal can be used by regular users to

secure their voice calls.

This thesis has been organized as follows: Chapter II discusses the criteria re-

quired for a countermeasure against VoIP traffic analysis to be effective. In Chapter

III, we discuss a few existing work related to this thesis. Chapter IV describes the

general working of a VoIP application and the design details of SRPP. In Chapter

V, we talk about the implementation of libSRPP and SQRKal. Chapter VI presents

the evaluation of effectiveness, efficiency and correct functioning of SRPP. It also

discusses a mathematical approach to find the optimal technique of padding packets.

Finally, we conclude and discuss future work for this thesis in Chapter VII.

4

CHAPTER II

COUNTERMEASURES AGAINST VOIP TRAFFIC ANALYSIS

In a regular two-party Voice-over-IP call, we have a single sender and a single receiver.

Any passive attacker will listen on the wire to capture all the media packets. If the

packet contents are encrypted, the attacker has access only to the header and the

encrypted payload. She can utilize a property of the encrypted packet, like the packet

size, or a property of the session, like burst lengths or packet inter-arrival timings, to

infer information about the VoIP call.

Timing based analysis attacks are used to identify or separate a packet flow

from the output of an anonymizer or a traffic mix. Anonymizers or mixes, originally

proposed by Chaum [15], provide anonymity by batching input packets from multiple

sources to hide the correspondence between the input packet flow and the output

packet flow. In a Timed Mix, all queued packets are forwarded after a periodic

timeout. In a threshold mix, all queued packets are forwarded when the queue size

surpasses a threshold. A continuous-time mix adds a random delay to each input

packet, and thus disturbs the timing pattern of the original packet flow.

A type of timing based analysis attacks, called Flow Detection attacks, measure

the similarity between the timing information of the input packet flow and multiple

output packet flows to determine the output path or the receiver corresponding to the

input packet flow. Similarity between the timing information of the packet flows is

measured using probabilistic measures like correlation or information theoretic mea-

sures such as mutual information. If the input and output packet timing are specified

using random variables X and Y, the correlation between X and Y gives the degree of

similarity between X and Y. Mutual information signifies the amount of information

given about X, if Y is known. Another model of timing based analysis attacks, called

5

Flow Separation attacks, uses techniques like Blind Source Separation to segregate

each unique packet flow from the output of various mixes, in order to identify multiple

call flows and the receivers. Blind Source Separation technique is a statistical signal

processing method used to recover sources of a signal from observed mixtures.

A popular countermeasure against traffic analysis attacks is link padding, where

additional packet frames are added to the original traffic at the link level of the

source network stack. This ensures the presence of a cover traffic which obfuscates

the original network traffic [9, 16]. Various link padding algorithms are available for

specific traffic patterns. Some of these techniques suffer from inefficient utilization

of the network bandwidth. Traffic morphing [8] applies convex optimization tech-

niques to determine the output packet size distributions for a given input packet size

distribution, and alter the packet size of the input packet accordingly.

In this thesis, we focus on padding the original traffic by modifying the packet

sizes, burst lengths and packet inter-arrival timings for VoIP traffic to thwart traffic

analysis attacks like timing based analysis attacks. Since these properties of the traffic

are modified at the source, the attacker on the network does not have access to the

original packet property and hence flow separation or flow detection analysis on the

network will produce inaccurate results for the attacker.

For any solution against traffic analysis attacks on VoIP traffic to be effective, it

must satisfy a number of criteria:

First, a countermeasure must be effective in padding VoIP packets, such that the

original packet size cannot be inferred from the padded packet. A possible approach

is to ensure that the mutual information between the output packet size distribution

and input packet size distribution is minimum.

Second, it must be bandwidth efficient, so that the network does not get congested.

6

Moreover, the countermeasure must ensure that it does not increase the latency of the

VoIP conversation due to the processing time required for padding and unpadding.

Next, the implementation must be easily deployable and must have an intuitive in-

terface for the user, so that it is very easy to use. Likewise, it must have an easily

interpretable API so that application developers can utilize, extend or customize it

with little effort. Portability to different platforms is also an important feature.

Finally, any implementation of such a countermeasure must be scalable with respect

to the load and network size. It must be resilient enough to perform efficiently, when

the user makes many calls at the same time or in case of a conference call with many

participants.

A. Padding Mechanisms

Any countermeasure against traffic analysis of encrypted content has to focus on

perturbing the visible aspects of the message exchange, such as packet lengths, packet

timing and talk spurt lengths. We propose a combination of the following four basic

mechanisms:

1. Packet-size Padding (PSP)

Many traffic analysis attacks exploit the packet size information. For example,

Wright et al. [1, 2] use the packet size distribution to find the phrases and lan-

guage spoken in VoIP flows. This type of attack can be mitigated by padding

packets to different packet sizes than the original size. This is done by adding

dummy information at the end of a packet. The challenge for the implementa-

tion of such a design is to obfuscate the padding information. Fig. 1 depicts

the mechanism for Packet-size Padding.

7

Fig. 1. Packet-size Padding (PSP)

2. Current-burst Padding (CBP)

Some traffic analysis attacks utilize the length of a talk spurt in a VoIP call

to estimate the spoken phrase in a VoIP conversation. So, the current burst

length must be obfuscated by adding certain number of dummy packets after

every packet burst. The number of dummy packets sent after every packet

burst should typically depend on the burst length or talk spurt length. The

longer the packet burst, the fewer the extra number of dummy packets sent.

The shorter the packet burst, the higher the probability that the packet burst

will be mapped to a corresponding phrase, and hence these packet bursts must

be padded with more dummy packets to confuse the interceptor. Fig. 2 depicts

this technique of padding current bursts.

Fig. 2. Current-burst Padding (CBP)

8

3. Extra-burst Padding (EBP)

Traffic analysis may be able to infer information from inter-burst timings as well.

It is, therefore, often beneficial to ”break” long intervals of silence with occa-

sional bursts of dummy packets, as depicted in Fig. 3. This will thwart timing

analysis attacks which utilize the silence information of a VoIP conversation.

Fig. 3. Extra-burst Padding (EBP)

4. Variable Inter-arrival Time Padding (VITP)

A large class of traffic analysis attacks exploit information about the inter-

packet timings of a flow, as described in Chapter II. Many attacks on anonymity

networks, for example, measure and correlate inter-packet time information to

infer communication exchanged [10]. In order to mask the actual inter-arrival

timing information of the RTP packets, a countermeasure has to add its own

element of stochasticity to the inter-arrival time by selectively delaying each

VoIP packet. Fig 4. depicts this mechanism.

Care must be taken to avoid addition of extra latency to the packet. If the

maximum permissible delay for a RTP packet to be sent on the network is X

ms, and the current packet was received after Y ms of the last packet, then a

random small delay of R ms can be added to the packet, where R ϵ {0, X-Y} ms.

The maximum latency of a VoIP packet is widely considered to be 150ms, which

must include the network delay. The maximum permissible delay represented

9

by X is a design parameter, whose optimal value must be empirically determined

in the evaluation phase of any new padding algorithm.

Fig. 4. Variable Inter-arrival Time Padding (VITP)

As a countermeasure, Secure Real-time Padding Protocol (SRPP) must satisfy

all the above criteria and support the application of any combination of these four

padding techniques.

10

CHAPTER III

RELATED WORK

Several papers have proposed and implemented various traffic analysis techniques

against network traffic. Some papers define countermeasures against such traffic anal-

ysis attacks. Wright et al. [8] propose a novel technique of using convex optimization

to morph a given traffic characteristic distribution into a different distribution. Given

constraints on a real traffic pattern such as packet size distribution, a desired traffic

pattern and traffic constraints, they determine an optimal morphing matrix, whose

entities represent the probability of altering a packet with a given input size to a

particular output size. For every input packet with a given size, a corresponding

output packet with a different packet size is sampled from the matrix, and the packet

is padded accordingly. They show that using this technique, they can reduce the

efficiency of their earlier classifier [1, 2] to as less as 30%. Secure Real-time Padding

Protocol (SRPP) can serve as a platform to efficiently implement and use such a

morphing or padding algorithm in real time.

Danezis [10] describes statistical traffic analysis attacks based on flow correlation

in continuous-time traffic mixes. This paper, along with several others [17, 14], shows

the importance of information-theoretic properties like entropy in traffic analysis at-

tacks on mix traffic, and motivates looking at optimal obfuscation of information-

theoretic properties to thwart traffic analysis attacks. In SRPP, we will look at using

information-theoretic techniques to optimize packet padding.

Guan et al. developed NetCamo [9] as a countermeasure against traffic analysis

with strict quality-of-service bounds. Their system provides traffic analysis resistance

by inserting padding frames at the link level and rerouting packets to confuse the at-

tacker. NetCamo provides link padding with constant time interval, link padding with

11

variable time interval and link padding using parasite flows as cover traffic to emulate

other network packet traffic. In SRPP, we pad packets at the application level, and

also give utmost importance to bandwidth efficiency as an evaluation criterion.

Wang et al. [11] present a dependent link padding algorithm which uses minimum

sending rate to provide adequate dummy traffic to thwart traffic analysis attacks.

Dummy packet frames are added at the link level depending on the input packet

flow. Every dummy packet is scheduled according to the availability of input packet

frames, such that the sending rate of the dummy traffic is as minimum as possible,

thereby utilizing less network bandwidth. This algorithm can also be used and tested

as part of SRPP. As is mentioned in the paper, this technique is not very scalable,

since the rate increases with more user flows and longer sessions, and that leads to

more dummy traffic and higher latency.

Our work builds on these approaches and prepares a platform to implement cer-

tain traffic padding techniques to thwart certain traffic analysis attacks on encrypted

VoIP traffic. Secure Real-time Padding Protocol is designed to be extensible for ap-

plication of any new padding technique and implementable in any VoIP application.

12

CHAPTER IV

SECURE REAL-TIME PADDING PROTOCOL

A. Architecture of VoIP Systems

A general two-party VoIP call involves the following phases of a call flow:

• Signaling Phase: This phase controls the creation, modification and termina-

tion of two-party VoIP calls, and is done in the following steps:

– Connection Establishment: A call is setup using a signaling protocol

like Session Initiation Protocol (SIP) [6], H.323 or Inter-Asterisk Exchange

(IAX). This involves the sender inviting the receiver for a call and the

receiver acknowledging and accepting/rejecting the request.

– Parameter Negotiation: The sender and the receiver negotiate the

use of various parameters like supported codecs, protocols and applica-

tion/session keys, and agree upon the parameters for the ensuing call

session. Most applications use techniques such as Secure DEScriptions

(SDES) and Session Description Protocol (SDP) for parameter negotia-

tion.

• Media Transfer phase: After the signaling is complete between the source

and destination endpoints, the actual call is placed and media is transferred

continuously between them. This involves sending packetized audio data from

the sender to the receiver and vice versa. Fig 5. depicts the data flow at the

sender side of a typical VoIP application.

– Voice Encoding: At the sender side, voice input from the input device is

first encoded by an appropriate audio codec. An audio codec compresses

13

Fig. 5. Data Flow Diagram for Media Transfer Phase of a General VoIP call

and encodes digital audio data, so that it uses less storage space and band-

width required for transmission over the network. If the codec encodes at

a constant bit rate, it is called a Constant Bit Rate (CBR) codec, while a

Variable Bit Rate (VBR) codec compresses audio data with a varying bit

rate.

– Media Transport Layer: The compressed data is then packetized into

Real-time Transport Protocol (RTP) packets. RTP is used as a transport

protocol for audio and video data, and contains data fields for important

information about the call source and destination, and other media session

parameters.

– Encryption or Security Layer: RTP packets are then encrypted and

authenticated by the Secure Real-time Transport (SRTP) layer. SRTP

is a standard VoIP encryption protocol, which is part of the RTP set of

protocols or RTP profiles. It encrypts the payload of the RTP packet

using the negotiated session key, authenticates the entire packet by adding

an authentication hash to the end of the packet and then forwards these

packets to the underlying transport layer like UDP or TCP for transfer

over the network.

Likewise at the receiver end in the media transfer phase, the transport layer

14

passes SRTP packets to the SRTP layer. The authentication hash is verified

for any potential tampering of the SRTP packet, and then it is decrypted into

a RTP packet. The payload from the RTP packet is then passed on to be

decoded by the corresponding codec, and the voice output is then sent to the

output device. This is a basic working scenario of the protocols and modules

used in VoIP media stacks.

If the signaling phase is completed outside of the media phase and in a dedicated

signaling channel, the type of signaling is called out-of-band signaling. SIP, H.323 and

IAX support out-of-band signaling. If the signaling bits or packets are sent directly

from the call source to the destination in the media channel, it is called in-band or

in-media signaling. ZRTP supports in-band signaling.

It is important to note here that RTP and SIP are the most popular combination

of signaling and media protocols respectively. However, there are many more signal-

ing and media protocols which are used in VoIP applications. There are many other

assisting protocols like IAX, Real-time Streaming Protocol (RTSP), and Transport

Layer Security (TLS) etc. There are applications which implement session layer en-

cryption like Secure Sockets Layer (SSL) instead of using SRTP. Skype implements its

own proprietary encryption protocol. An unconfirmed statistics from the year 2008

pointed out that only about 17% of VoIP applications implement any kind of encryp-

tion. However, since SIP, RTP and SRTP are the most popularly used combination

of VoIP protocols for generating encrypted VoIP traffic, we have considered this for

our work.

15

B. SRPP Design Details

As a countermeasure to VoIP traffic analysis, SRPP must satisfy all the criteria and

support all the padding techniques described in Chapter II. To ensure compatibility

with existing VoIP protocols and standards, SRPP has to be implemented as a new

RTP profile, so that it can be added to the family of RTP-based protocols. In order to

be utilized by developers of VoIP applications, SRPP must be provided in the form

of a library libSRPP, which can be easily integrated in any new VoIP application

as a bump-in-the-stack module. Moreover, to ensure compatibility with legacy VoIP

systems, SRPP must be implemented as a standalone application called SQRKal to be

used by regular users. SQRKal must be able to serve as a bump-in-the-wire module,

discover any call sessions started by the legacy VoIP application and apply SRPP

padding to the media session for the entire call.

1. Analysis of SRPP Design Types

Based on the requirements, a design decision has to be made about the location of

SRPP in the VoIP protocol stack. Fig. 6 depicts the different types of implementation

designs for SRPP protocol.

• Type-I Implementation: SRPP is placed between the encoding and pack-

etization layer. In such a scenario, the voice input from the input device at

the sender endpoint is encoded by a voice codec and this encoded audio data is

padded using SRPP. Packet-Size Padding (PSP) can be implemented by adding

dummy data to the encoded audio data, Current-Burst Padding (CBP) can be

performed by adding dummy data at the end of a burst of encoded audio data

and Extra-Burst Padding (EBP) can be applied similarly by inserting dummy

encoded data when there is extended silence. These padded bytes of encoded

16

Fig. 6. Types of Design of SRPP

audio data can then be packetized, encrypted and transported over the network.

Pros

– It is easy to implement since we do not need to handle any form of encryp-

tion.

– libSRPP library package will be lightweight and easily integrable with

existing and new applications.

– Minimal signaling is required.

Cons

– The biggest issue with this design is that SQRKal cannot be implemented

using this architecture. Since it is a bump-in-the-wire implementation,

RTP packets are received from the original VoIP application and the only

way to apply SRPP padding in such a design is to extract the audio data

17

from the input RTP packet, pad this data using SRPP, form a new RTP

packet for the padded data, and send it to the destination. There is extra

overhead due to increased processing per packet.

• Type-II Implementation: SRPP is placed after the encryption layer. In

such a scenario, the voice input from the input device at the sender endpoint

is encoded by a voice codec, packetized into RTP packets and encrypted using

SRTP. After that, SRPP applies padding by encapsulating a SRTP packet with

a SRPP Header, and adding extra padding bytes for PSP in the payload of

the SRPP packet. CBP can be implemented by sending extra SRPP packets

at the end of a talk spurt. Likewise, EBP is implemented by sending dummy

SRPP packets in case of extended periods of silence. The SRPP packets are

transported over the network using a transport protocol like UDP or TCP.

Pros

– This design is perfect for a bump-in-the-wire scenario such as in SQRKal.

Cons

– The complexity of the implementation is higher since encryption and ad-

dition of new SRPP Headers with new sequence numbers needs to be han-

dled.

– In case of a bump-in-the-wire implementation, if the original VoIP applica-

tion does not support SRTP, we will receive RTP packets instead of SRTP

packets. Since RTP packets are not authenticated, there exists no need of

encapsulating the entire RTP packet, since only the RTP payload can be

sent in a new SRPP packet. Type-II design should be extended to include

different processing for RTP packets.

18

• Type-III Implementation: In type-III implementation, the voice input from

the input device at the sender endpoint is encoded by a voice codec and then

packetized into RTP packets. The RTP packets are then padded using SRPP.

The headers of the RTP packet can be stripped off, and only the RTP payload

can be encapsulated using a SRPP Header. PSP can be implemented by adding

dummy data to the payload of the new SRPP packet, while CBP and EBP

can be performed similar to type-II implementation by sending dummy SRPP

packets at the end of a current burst and in case of extended periods of silence

in the VoIP conversation.

Pros

– Encryption is not required at SRPP layer, since it is handled by SRTP

after SRPP processing is complete.

Cons

– If this design is used in a bump-in-the-wire scenario and the original VoIP

application sends SRTP packets to SQRKal, SRPP will strip off the SRTP

packet’s headers and encapsulate its payload. At the receiver end, the

SRTP packet is reconstructed from the encapsulated SRTP payload inside

the SRPP packet. Since the original SRTP packet was authenticated but

later modified by SRPP, it will be discarded at the receiver end. Thus,

type-III implementation is unfeasible for the case of bump-in-the-wire im-

plementation for SRTP packets.

From the above discussion, it is evident that all the three designs are insufficient.

We propose a modified version of type-II implementation to serve as a design for

SRPP. Fig 7 depicts the general data flow in such a design.

19

Fig. 7. Data Flow Diagram for SRPP Implementation

SRPP handles the following operations:

• Header Obfuscation

At the sender side, after the voice encoding layer of the media transfer phase

completes its function, the media transport layer packetizes the data into RTP

packets. If the original VoIP application implements the security layer, SRTP is

used to authenticate and encrypt the RTP packet. In such a scenario, the SRPP

layer receives either a RTP or SRTP packet, depending on whether encryption is

used or not. It must obfuscate all the visible properties of the packet to mitigate

traffic analysis attacks. If it receives a RTP packet, SRPP reformats it by

updating the sequence number and timestamp fields by a new sequence number

and a current timestamp. Then it appends a SRPP tag consisting of padding

bytes and a dummy flag signifying if the current SRPP packet is a dummy packet

or not. It also contains the sequence number and timestamp of the original

RTP/SRTP packet. This SRPP packet is then encrypted, authenticated and

sent forward to the destination endpoint. Likewise, if the SRPP layer receives a

SRTP packet, it simply encapsulates the SRTP packet in a new SRPP packet.

Since SRTP packets are generally authenticated and its alteration will result in

the receiver discarding the packet, we must encapsulate the entire SRTP packet.

This ensures that we apply Packet-Size Padding to obfuscate the original packet

size, and Extra-Burst Padding and Current-Burst Padding to obfuscate the

20

original burst lengths.

• Padding Identification

At the receiver-side SRPP module, the padding bytes and the dummy SRPP

packets need to be identified and the original RTP packet must be reconstructed.

If the dummy flag is set to 1, it signifies that the packet is a dummy packet

and must be promptly discarded. The padding bytes are stored in the SRPP

tag, and the pad count signifies the number of padding bytes added. Thus,

the original packet is obtained from the received SRPP packet by removing the

padding bytes, and updating the sequence number and timestamp fields with

the original ones present in the SRPP tag. In the case of SRTP packets, the

SRPP module simply retrieves the original SRTP packet from the payload of

the received SRPP packet, and sends it forward to the encryption layer of the

network protocol stack.

• Signaling

Signaling between the sender and receiver is necessary to negotiate the use of

SRPP and the relevant padding parameters. SRPP supports both in-band and

out-of-band signaling. In in-band signaling, signaling messages are sent at the

start of the media phase in the media channel. In case of SRPP, the SRPP

sender module sends a HELLO SRPP message to discover if the other endpoint

has a SRPP implementation. If the receiver supports SRPP, it acknowledges

it by sending a HELLOACK message. The padding parameters, if any, are

negotiated in the HELLO and HELLOACK messages. SRPP session teardown

can be achieved by BYE and BYEACK messages and can be initiated from

either side. This in-band signaling handshake, as shown in fig. 8, is perfectly

feasible for both our implementations - SQRKal and libSRPP.

21

Fig. 8. In-band Signaling

SRPP also supports out-of-band signaling through SIP/SDP for integration

with an external VoIP application. In out-of-band signaling, signaling messages

are exchanged between the participating endpoints in a dedicated signaling

channel prior to setup of the media phase. These signaling messages carry the

parameters to be negotiated between both the endpoints. SIP/SDP is a pop-

ular out-of-band signaling protocol, where parameters are expressed as SDP

attributes inside SIP messages. To support out-of-band signaling, SRPP pro-

vides SRPP-specific SDP attributes, which are easily extensible and the external

application can embed them directly in its SDP payload.

2. Packet Format

SRPP is a RTP profile and fig. 9 represents its packet format.

The design of SRPP yields the following packet structure:

• Header Obfuscation: As described earlier, this is handled by the following

22

Fig. 9. SRPP Packet Format

fields:

– Padding Bytes: Contains the dummy information added to each packet as

part of PSP.

– Pad Count: Contains the number of padding bytes inserted in the SRPP

packet.

– SRPP Sequence Number: This is a new Sequence number specific to the

SRPP layer.

– Payload: This contains the original RTP packet’s payload or the entire

original SRTP packet.

– Original Sequence Number and Timestamp: Contains the sequence num-

23

ber and timestamp of the original RTP/SRTP packet, which is required

for the reconstruction of the original packet at the receiver endpoint.

– As shown in the figure, the payload is encrypted and the whole packet is

authenticated. The authentication hash is attached as the SRPP authen-

tication tag.

• Padding Identification

– Dummy Flag: It is set to 1 if the SRPP packet is a dummy packet and 0

otherwise.

• SRPP Signaling

– RTP Extension Field for SRPP Signaling: This field is used for speci-

fying in-band signaling message types. HELLO, HELLOACK, BYE and

BYEACK SRPP signaling messages are indicated using this field.

3. Sender and Receiver Algorithms

We consider a simple two-party call between a sender and a receiver. Two SRPP

timers are used for applying certain padding techniques, namely silence timer and

packet timer. Silence timer must fire when Extra-Burst Padding (EBP) is required,

and the packet timer must fire when Current Burst Padding (CBP) needs to be

applied. In both the padding techniques, a specific number of dummy SRPP pack-

ets are sent to the destination. For every non-dummy SRPP packet, SRPP applies

Packet-Size Padding (PSP) and Variable Inter-arrival Time Padding (VITP).

The flowchart for sender-side SRPP operations is depicted by fig. 10.

24

Fig. 10. Flowchart for Sender-side Operations

For every SRPP packet to be sent to the other endpoint, the following actions

are performed:

• SRPP waits for an event to occur i.e. for any of the timers to fire or for a

RTP/SRTP packet to be received.

• If a packet is received, the packet timer and silence timer are reset. SRPP

Padding is applied on the input packet and the new SRPP packet is sent to

25

the receiver. This packet is stored in a dummy cache, which serves as a local

cache of sent/received SRPP packets. The dummy cache is used for generating

dummy packets and padding bytes for SRPP packets.

• If the packet or the silence timer fires, a number of dummy packets for CBP or

EBP respectively.

• If SRPP has not received any packet and no timers have fired, any queued

dummy SRPP packets are sent to the destination.

Fig. 11 shows a flowchart representing the receiver-side SRPP process.

For every SRPP packet received from the lower layer, the following actions are per-

formed:

1. The received packet is verified for authentication and decrypted.

2. If the packet is a dummy packet, the packet is discarded.

3. If the packet is a legitimate packet, the original RTP packet is formed by re-

placing Sequence number, Timestamp and Padding bit. It is then unpadded

and the RTP packet is sent to the upper RTP layer.

26

Fig. 11. Flowchart for Receiver-side Operations

4. Conference Call and PC-to-phone Scenarios

A conference call involves a mixer and many endpoints, each of which can be a sender

or receiver or both at any instant of time. Fig. 12 shows a RTP/SRTP mixer, a few

senders and a few receivers. The general data flow can be described as:

• The senders send RTP or SRTP packets to the mixer.

• The mixer extracts the voice data from all the senders’ packets.

• It then synchronizes all the audio data, repacks them as RTP/SRTP packets

and sends them to all the senders and receivers.

27

Fig. 12. Conference Call Scenario

with No SRPP Support

Fig. 13. Conference Call Scenario with

SRPP Support at the Mixer

SRPP is implemented at the individual senders and receivers. In order for a

conference call to be successful, these intermediate devices (mixers) need to support

SRPP as well. Thus, as shown in Fig. 13, for every channel between the senders with

SRPP support and the mixer, there is a SRPP sender module in each such sender

which pads the RTP packets and a SRPP receiver module in the mixer which unpads

the SRPP packets to get the original RTP packets. So the mixer is able to extract

the voice data, perform its usual functions and generate the final RTP packet stream

that is broadcasted to all the participants. Thus, the SRPP sender module in the

mixer pads the packets and sends it to each participant. The participants unpad the

packets and the VoIP media transfer is successful.

For senders which do not support SRPP, the mixer will still be able to receive

the RTP/SRTP packets since SRPP signaling for these sessions will inform the mixer

not to apply SRPP padding for those connections. Thus SRPP can be supported in

conference calls or multicast scenarios. The mixer needs to keep a maximum of two

28

SRPP sessions per participant-one for receiving data and another for sending data.

This increases load on the mixer and could be a possible point-of-failure in the design.

A similar scenario arises in the case of translators or Public Switch Telephone

Network (PSTN) gateways. PC-to-phone can be effectively padded using SRPP only

if there is support for SRPP at the translator or gateway. This is shown in the

following figure.

Fig. 14. PC-to-phone Call Scenario When [a] SRPP is Not Supported and [b] SRPP

is Supported

When SRPP is not supported in the gateway or translator, the call is completed

but the media is not padded using SRPP and is susceptible to traffic analysis attacks.

Fig. 14 [b] shows the case when SRPP is supported at the PC or computer and

at the PSTN gateway. In this case, the communication between the PC and the

gateway are padded successfully using SRPP. Thus, the support for SRPP at the

intermediate devices like translators and mixers is not mandatory for a successful

call, but is recommended in order to apply SRPP padding for a secure call.

29

CHAPTER V

SYSTEM IMPLEMENTATION

A. Implementation Details

The library libSRPP and the standalone application SQRKal were implemented on

the Ubuntu Linux v10.04 platform. The primary programming language used was

C++. libSRPP API and the daemon process for SQRKal are written in C++, while

the GUI for SQRKal has been designed in Java. Numerous other perl and bash scripts

were used for various purposes throughout the project. The development environment

comprised of Eclipse IDE CDT with Subeclipse and Doxygen plugins. Subversion,

through a google code repository, was used for version control.

1. Implementation of libSRPP

The library libSRPP has the following major functions:

• Convert a RTP Packet to SRPP packet and vice versa

• Convert a SRTP Packet to SRPP packet and vice versa

• Apply different padding mechanisms

• Send and receive a SRPP Message

• Perform In-Band Signaling

To perform each of these important functionalities, libSRPP was implemented

using the following major classes:

1. SRPPMessage

This class contains information about the packet format of SRPP. It imple-

30

ments all the functionalities pertaining to each SRPP Message like encrypting

or decrypting a SRPP message, converting a SRPP packet from network order

to SRPPMessage form and vice versa.

2. SRPPSession

A SRPP Session comprises primarily of information about the two VoIP end-

points, the RTP port used, Sequence Number of the packets, maximum packet

size and the negotiated key. These information are stored in an object of

SRPPSession class. It needs to be started every time a new RTP or SRTP

Session is discovered or started.

3. Signaling Functions

This class is responsible for in-band signaling in SRPP. It implements the state

machine for handling of SRPP signaling message. The major functions are

sendHello, sendHelloAck, receiveHello and receiveHelloAck. This class is also

called to receive information about the current state of SRPP Signaling.

4. Padding Functions

Padding Functions handles the basic padding functionalities like pad, unpad,

store a packet in dummy cache, prepare a dummy packet and get dummy data.

These functions are widely used throughout libSRPP while padding a RTP or

SRTP packet to SRPP packet or vice versa.

5. Padding Algorithms

This class contains the implementations of all the padding algorithms like max-

random, full bandwidth etc. These algorithms are described in the next sec-

tion. All the padding algorithms belong to the category of Current-Burst

Padding, Packet-Size Padding, Extra-Burst Padding or Variable Inter-arrival

31

Time Padding. This class must be extended to include new padding algorithms.

6. RTPHeader and SRTPHeader

These two classes, as the name suggests, store the information about the header

structures of a RTP and SRTP packet respectively.

7. sdp srpp

This class contains the important signaling information, which are necessary to

be negotiated before SRPP padding is started. These involve basic signaling

parameters like maxpayloadsize and key. This is primarily used for out-of-band

signaling to easily integrate it in SIP/SDP offer/answer model.

8. SRPP Functions

SRPP Functions is the backbone and the most important interface of libSRPP,

since it implements all the functions which are to be mostly used by a user

of libSRPP. These include functions like rtp to srpp, srpp to rtp, srtp to srpp,

srpp to srtp, create srpp message, create and encrypt srpp message, send message

and receive message.

These classes form the library libSRPP. Any VoIP application can utilize it to

incorporate the SRPP profile in his/her application.

Major functions of the libSRPP API are listed in Appendix A.

2. Padding Algorithms

A few padding algorithms have been implemented as part of SRPP. They are described

as follows:

• Max-Random

The output packet size is a random number in the interval [input packet size,

32

maximum transmission unit]

• With Burst padding

Current and extra burst padding are applied in order to inject dummy traffic

into the stream. The number of dummy packets is a random number at this

point in time.

• Full Bandwidth

The output packet size is equal to the maximum transmission unit. All packets

are padded to the maximum possible packet size and hence the system uses the

maximum possible packet bandwidth.

• Gradual Ascent Padding (GAP)

To minimize excess bandwidth used for padding, the threshold for output packet

size must not be too high. Intuitively, it can be seen that the maximum output

packet size must be set to a low value, and increased gradually as larger input

packets are received. The maximum output packet size is always a randomly

scaled value of the maximum input packet size. In other words, the output

packet size is a random number in the interval [input packet size, r*(maximum

input packet size received so far)], where r is a random number in the interval

[0,5]. If a new packet larger than the maximum output packet size arrives, the

maximum packet size is updated to a scaled value of this input packet size. The

minor problem behind this technique is that every ascent of maximum packet

size gives out information about a large packet coming in. This might help a

passive attacker in certain scenarios.

• Slight Perturbation

This involves padding the input packets to a random size, such that the dif-

33

ference between the input and output packet size is not large. The motivation

behind this algorithm is to make sure that we pad the packets but to a very

small extent, such that the bandwidth utilization is less. This might pose a

problem where an intelligent attacker might be able to infer the original packet

size information based on the correlation between the output packet size and

the input packet size.

These algorithms have been implemented in SRPP and it can be extended to

include newer padding algorithms.

3. Bump-in-the-wire Implementation or SQRKal

SQRKal has been implemented as a bump-in-the-wire design to intercept RTP or

SRTP messages sent by a VoIP application on the local machine and pad the packet

stream. Here, Twinkle [21] has been used as the third-party open-source VoIP ap-

plication for testing purposes. SQRKal has been programmed in C++ as a daemon

process which listens for SIP or RTP messages. SQRKal has its own SIP state ma-

chine to handle incoming and outgoing SIP messages. After parsing the standard

SIP messages INVITE, 200 OK and/or ACK, it stores the information of the ensuing

RTP or SRTP session. The SRPP session is started as soon as the first RTP or SRTP

packet is sent from or received at the local machine. Throughout the SRPP Session,

every RTP or SRTP message is padded or unpadded accordingly, and then relayed to

the appropriate destination.

Fig. 15 depicts the data flow in the bump-in-the-wire implementation of SRPP.

34

Fig. 15. Data Flow in SQRKal

The following steps describe the packet flow path when SQRKal is used:

1. Twinkle sends a SIP/RTP message to the remote machine.

2. It is queued and forwarded to SQRKal.

3. SQRKal processes the packet, creates a new packet with a spoofed header and

sends it forward.

4. This new message is forwarded to the remote machine.

5. Received SIP/RTP Message is queued in the IP queue.

6. The received packet is then forwarded to SQRKal, which processes it as required.

7. The new packet is forwarded to the local machine’s SIP/RTP port.

8. Twinkle receives the RTP/SRTP packet with the original payload, and processes

it to receive the audio data.

SQRKal relies heavily on the correct functioning of Netfilter’s iptables and ip queue

library framework [24]. An implementation related to SQRKal is the fact that it can-

not function correctly if another application on the local machine is using ip queue

library. This is because it is not permissible to have more than one IP queues at the

same time in a system.

35

The GUI of SQRKal has been implemented in Java. Fig. 16 shows a screenshot

of SQRKal.

Fig. 16. Screenshot of SQRKal Application

36

CHAPTER VI

EVALUATION

SRPP has been implemented as a library libSRPP and as the application SQRKal.

SQRKal operates in a bump-in-the-wire fashion. We proceed to evaluate these deliv-

erables on the basis of evaluation criteria described earlier in Chapter II.

A. Results from the Bump-in-the-wire Implementation

The operations, effectiveness and efficiency of SQRKal as a bump-in-the-wire imple-

mentation is evaluated in this section. The implementation setup using Twinkle VoIP

application and the different padding algorithms have been described in Chapter V.

1. Operation

We analyze the functioning of SQRKal in each of the following scenarios: All the

wireshark [20] traces are shown in Appendix C.

• Session where we connect Twinkle to a public music server

This is the case where the sender has SRPP support while the receiver does not

support SRPP. A call is placed from our SIP account in Twinkle to a public

music server at music@iptel.org. The traces verify that SQRKal tries to signal

its presence to the other endpoint at the start of the media session, but it fails.

No packet-level padding is performed, and the session goes on as usual. There

is no degradation in quality.

• Session between two SQRKal supported endpoints implementing Max-Random

algorithm

From the trace, it was verified that the packets are padded to a random size

37

less than the maximum packet size i.e. 1500 bytes. It was noted that there is a

slight degradation in the quality of the received audio.

• Session between two SQRKal supported endpoints implementing Full Band-

width algorithm

From the trace, it was verified that all the packets are padded to a random size

exactly equal to 1466 bytes. Quality of the received audio degraded more than

the previous case.

• Session between two SQRKal supported endpoints implementing Gradual As-

cent Padding algorithm

From the trace, it was verified that the packets are initially padded to 150 bytes,

and then the padding size increases as the packet size becomes greater than this

threshold. The quality of received audio was satisfactory.

• Session between two SQRKal supported endpoints implementing Slight Pertur-

bation algorithm

From the trace, it was verified that the packets are padded with small number

of dummy data. The quality of received audio was satisfactory.

• Session between two SQRKal supported endpoints implementing Dummy Bursts

technique

The trace shows that the dummy packets are indistinguishable from the original

packets. It was verified that the endpoints are sending dummy packets as part

of Current Burst Padding and Extra Burst Padding, from the application logs.

The quality degraded slightly.

These sessions were repeated for the case of SRTP, with similar results.

38

2. Effectiveness

The effectiveness of SQRKal can be depicted in the following histogram. It shows

that when SQRKal is not used,the packet sizes for a stream of RTP packets range

between 50 to 80. When SQRKal is used in Gradual Ascent Padding (GAP) mode,

the packets are padded effectively and we see SRPP Packets of sizes ranging between

145 to 220. This proves the effectiveness of SQRKal, as depicted by fig. 17.

Fig. 17. Effectiveness of SRPP for RTP Packets

A similar experiment was done for a stream of SRTP packets. The following

figure shows that while the input packet sizes range from 50 to 80, they are effectively

padded to packets of size ranging from 150 to 250. Fig. 18 shows the results for SRTP

packet padding using SRPP.

39

Fig. 18. Effectiveness of SRPP for SRTP Packets

3. Efficiency

1. Jitter

Formally, jitter is defined as the statistical variance of the RTP packet inter-

arrival timings. In order to quantify the efficiency of SQRKal, we ran SQRKal

a number of times for each padding technique and collected traces for each case.

Then, the jitter of the session was calculated using the formula,

Ji = Ji−1 + (|(Ri −Ri−1)− (Si − Si−1)| − Ji−1)/16,

where Ri represents the received time of packet i, Si represents the RTP times-

tamp of the packet signifying the sent time of the packet, Ji represents the

instantaneous jitter for packet i.

If we take the jitter value of the last packet, we get the approximate mean

jitter of the session. This is the standard method of calculation of jitter for

RTP packets. We applied this formula to determine the jitter for every session

40

corresponding to each technique. The following graph depicts the average jitter

values for all the padding techniques.

Fig. 19. Mean Jitter for Different Padding Techniques

It was seen that the regular VoIP sessions using linphone [22], sip communi-

cator [23] or twinkle [21] exhibit a jitter value between 0.06ms-0.08ms. For

cases of both RTP and SRTP, it was observed that the jitter values are well

within the permissible value of 0.5ms. It was also noted that max-random mode

and full-bandwidth mode add more jitter to the stream, while GAP technique,

burst padding and slight perturbation mode have jitter ranging between 0.1ms

- 0.13ms. This satisfactory jitter suggests that SQRKal is efficient in carrying

VoIP calls without addition of extra jitter.

2. Average Increase in size per packet

Increase in bandwidth due to padding can be roughly considered as the average

increase in packet size per RTP/SRTP packet. For every trace, we calculated

41

the average increase in packet size per packet, and then took the mean of these

values for each padding technique. Fig. 20 depicts the distribution of the

increase in bandwidth.

Fig. 20. Average Increase in Packet Size per Packet

As expected, we have max-random and full bandwidth modes of operation

adding a huge amount of dummy data to the packets, thereby utilizing a high

bandwidth. On the contrary, since slight perturbation, dummy burst and GAP

add less amount of padding bytes, we see less increase of bandwidth for these

algorithms. This holds true for both RTP and SRTP.

3. CPU and Network Load

Experiments were run on a single-core CPU with Twinkle phone as the only

running application. In the first case, we ran Twinkle with RTP option without

running SQRKal and found that the CPU load was in the range of 35%-40%.

This can be considered as a coarse-grained CPU utilization measure. Next,

42

we ran Twinkle and SQRKal, and noticed that while SQRKal was effectively

padding the media stream, the CPU load was marginally increased to 38% to

40%. In case of SRTP, a similar observation was made. Fig. 21 and Fig. 22

depict the CPU load for RTP and SRTP packet padding respectively.

Fig. 21. CPU Load for RTP, with and without SQRKal

Fig. 22. CPU Load for SRTP, with and without SQRKal

As expected, SQRKal adds padding bytes to a packet, thereby increasing the

bandwidth usage. Fig. 23 compares the bandwidth usage for RTP when

SQRKal is not used, with the bandwidth usage when SQRKal is used with

max-random mode. It is seen that in the worst case, bandwidth usage increases

four-fold. Fig. 24 shows a similar comparison for SRTP packet padding.

43

Fig. 23. Network Load for RTP, with and without SQRKal

Fig. 24. Network Load for SRTP, with and without SQRKal

4. Mean-Opinion Score

Mean opinion score (MOS) provides a numerical indication of the perceived

quality of received media after transmission. The Mean-Opinion Score (MOS)

was calculated by asking listeners to rate the quality of a recorded audio for each

padding technique, on a scale of 1 to 5, 5 being the highest. MOS is the average

rating for each case and the results as shown in Table 1. Algorithms like GAP,

Burst Padding and Slight Perturbation have a very good MOS, suggesting that

the perceptive quality of the audio is not getting degraded.

44

Table I. Mean Opinion Score

System MOS

Without SQRKal 3.33

With Full Bandwidth 3.00

With Max-Random 2.00

With Gradient Ascent Padding 3.33

With Burst Padding 3.66

With Slight Perturbation 4.00

5. Mutual information

We also measure certain information theoretic measures for each of the padding

technique to determine the best way of padding among them. Mutual informa-

tion is determined using a MATLAB toolbox called Information Theory Toolkit

v1.0 [18]. Fig. 25 represents the average value of mutual information for all the

traces in each padding technique.

Fig. 25. Mutual Information for RTP and SRTP with SQRKal

45

It can be observed that mutual information is 0 for streams padded with full

bandwidth. Since the output packet size is constant, it can be intuitively de-

duced that inferring the input packet size from a constant output packet size

is not feasible. Likewise, it can be seen that mutual information is very less

for GAP technique, but is pretty high for slight-perturbation. It can be argued

that since we are adding small amount of stochasticity in the case of slight per-

turbation, there is high mutual dependance between the output packet size and

the input packet size.

6. Relative Entropy

Relative entropy between the input and output packet size distributions was

determined for each trace in each padding algorithm. Since the relative entropy

values varied from each other, we plot the cumulative distribution function of

Relative Entropy for each padding algorithm in fig. 26.

It can be observed that there are values of high relative entropy when we con-

sider max-random padding algorithm. The other algorithms are not appreciably

different from each other. It can be safely assumed the efficiency with respect

to Relative Entropy is not a great measure to distinguish between the given

padding algorithms.

All the results clearly favor the usage of the Gradual Ascent Padding algorithm,

because it adds less jitter to the packet stream, have considerably less mutual in-

formation between the output packet size and input packet size, have a satisfactory

increase in bandwidth usage and a satisfactory quality score.

46

Fig. 26. C.D.F. of Relative Entropy for RTP and SRTP, with SQRKal

B. Determination of Output Packet Size Distribution

Statistical traffic analysis attacks attempt to extract information about the input

packet sizes from the output packet size distribution. Our motivation is to ensure

maximum divergence between the output packet size distribution and the input packet

size distribution, such that traffic analysis provides minimum information to the at-

tacker. We consider two probability mass distribution functions to be different from

each other if there exists minimum mutual information or maximum relative entropy

among them.

Let us say that an input stream of VoIP packets is morphed into an output

stream, such that the size of the output packet OPi is greater than the input packet

size IPi. There are n distinct packet sizes, s1, s2, s3, ...sn, for both input and output

47

streams. The input packets have a packet size distribution p(S) and the output

packets have a packet size distribution q(S), where S represents the set of distinct

packet sizes.

We can ensure that it is unfeasible to infer p(S) from observations of q(S) using

the following methods:

• For every input packet size IPi, an output packet size OPi ϵ [IPi,MPS] is

generated using a pseudo-random number generator, where MPS is the maxi-

mum allowed packet size or maximum transmission unit of the datagram. Most

pseudo-random number generators provide uniformly distributed output, and

intuitively we can say that a uniform output distribution makes it harder to

infer the input distribution from it.

• For every input packet size IPi, the output packet size OPi is calculated using

a one-way function such as a cryptographic hash function. The problem of

determining IPi from OPi becomes ”unsolvable” in polynomial time.

• For every input packet size IPi, we calculate the optimum value for output

packet size OPi, such that it maximizes the relative entropy between the input

and output distributions.

C. Optimization of Relative Entropy

For the input packet size distribution p(S) and output packet size distribution q(S),

we have the relative entropy or K-L Divergence as:

D(p||q) =
n∑

S=1

p(S) log
p(S)

q(S)
(6.1)

When we receive an input packet IPi, we need to find the output packet size OPi

48

where D(q||p) is maximum. This translates to the following optimization problem.

Maximize,

D(p||q) =
n∑

S=1

p(S) log
p(S)

q(S)
(6.2)

An output distribution consisting of all output packets padded to the maximum

packet size MPS will result in the maximum relative entropy at the cost of high band-

width usage. To ensure that padding does not exceptionally increase the bandwidth

usage, we must also minimize a distance measure between the output packet size and

input packet size for all packets.

In addition, the following constraints must also hold, since p(S) and q(S) must

be probability distributions:

n∑
S=1

p(S) = 1 (6.3)

n∑
S=1

q(S) = 1 (6.4)

(6.5)

Let us approach this optimization problem as an inductive process. We can

assume that initially we start with the output distribution as uniform, and as we

receive a subsequent input packet, we can calculate the optimal output packet size,

pad the output packet to the output size and send it forward.

When we receive input packet IPi, the input packet size distribution p(S) is

already known, since we have all the input packet sizes from IP0 to IPi. So, p(S) can

be considered to be a constant. The output packet sizes till i-1 i.e. OP0 to OPi−1 are

also known, and the output packet size distribution q(S) will be dependent on OPi.

Hence, the known values are:

1. p(S) ∀S

49

2. IPj ∀jϵ(0, i)

3. OPj ∀jϵ(0, i− 1)

Equation 6.2 simplifies to,

D(p||q) =
n∑

S=1

p(S) log p(S)−
n∑

S=1

p(S) log q(S)

Since the first term
n∑

S=1

p(S) log p(S) is a constant, we must minimize the second term

n∑
S=1

p(S) log q(S) in order to maximize D(p||q).

So the problem can be simplified to,

Minimize
n∑

S=1

p(S) log q(S) and

increase in bandwidth usage.

1. Minimize the Difference between Output Packet Size and Input Packet Size

If we specify the increase in bandwidth usage as the difference between output packet

size and input packet size for every packet, we must minimize,

i∑
j=0

(OPj − IPj)

The optimization problem now becomes,

Minimize,

n∑
S=1

p(S) log q(S) + µ(
i∑

j=0

(OPj − IPj)), where µ is a weight constant (6.6)

The only constraint is:
n∑

S=1

q(S) = 0 (6.7)

Thus, after applying Lagrange Multiplier λ, the objective function can be stated as:

Λ(q(S), OPj, λ) =
n∑

S=1

p(S) log q(S) + µ(
i∑

j=0

(OPj − IPj)) + λ(
n∑

S=1

q(S)− 1) (6.8)

50

Since IPj is constant for all values of j and
i∑

j=0

OPj can be expressed as
n∑

S=1

(Sq(S)),

eq. 6.8 simplifies to:

Λ(q(S), λ) =
n∑

S=1

p(S) log q(S)+µ
n∑

S=1

(Sq(S))−k+λ(
n∑

S=1

q(S)− 1), where k =
∑i

j=0 IPj

(6.9)

The following equations need to be solved:

∂Λ

∂q(S)
= 0 (6.10)

∂Λ

∂λ
= 0 (6.11)

Solving eq. 6.9 for all values of S, we have,

∂Λ

∂q(s1)
= 0 (6.12)

∂Λ

∂q(s2)
= 0 (6.13)

∂Λ

∂q(s3)
= 0 (6.14)

...
...

∂Λ

∂q(sn)
= 0 (6.15)

The above equations can be expanded as,

p(s1) + µs1q(s1) + λq(s1) = 0 (6.16)

p(s2) + µs2q(s2) + λq(s2) = 0 (6.17)

p(s3) + µs3q(s3) + λq(s3) = 0 (6.18)

...
...

p(sn) + µsnq(sn) + λq(sn) = 0 (6.19)

51

Each of the equations 6.16-6.19 can be simplified as:

q(si) = − p(si)

µsi + λ
∀iϵ[1, n] (6.20)

Since
n∑

S=1

q(S) = 1 (from eq. 6.7 and by solving eq. 6.11), the above set of equations

simplifies to,
n∑

i=1

p(si)

µsi + λ
= 0 (6.21)

The value of λ can be determined by solving the polynomial equation eq. 6.21.

Abel-Ruffini Theorem states that the solution of a polynomial equation of degree

equal to or greater than 5 cannot be expressed algebraically i.e. in radicals. But it

can be numerically determined using Groebner’s basis or other methods. The output

size distribution with optimal relative entropy will then be determined using eq. 6.20.

2. Minimize the Square Distance between the Average Size of Output and Input

If we specify the increase in bandwidth usage as the square distance between the

average output size and average input size, we must minimize,

(
i∑

j=0

OPj −
i∑

j=0

IPj)
2

The optimization problem now becomes,

Minimize,

n∑
S=1

p(S) log q(S) + µ(
i∑

j=0

OPj −
i∑

j=0

IPj)
2, where µ is a constant (6.22)

The only constraint here is:
n∑

S=1

q(S) = 0 (6.23)

Thus, after applying Lagrange Multiplier λ, the objective function can be stated as:

Λ(q(S), OPj, λ) =
n∑

S=1

p(S) log q(S) + µ(
i∑

j=0

OPj −
i∑

j=0

IPj)
2 + λ(

n∑
S=1

q(S)− 1) (6.24)

52

Since IPj is constant for all values of j and
i∑

j=0

OPj can be expressed as
n∑

S=1

(Sq(S)),

eq. 6.24 simplifies to:

Λ(q(S), λ) =
n∑

S=1

p(S) log q(S)+µ(
n∑

S=1

(Sq(S))−k)2+λ(
n∑

S=1

q(S)− 1), where k =
∑

IPj

(6.25)

The following equations are required to be solved:

∂Λ

∂q(S)
= 0 (6.26)

∂Λ

∂λ
= 0 (6.27)

Solving eq. 6.26 for all values of S, we have,

∂Λ

∂q(s1)
= 0 (6.28)

∂Λ

∂q(s2)
= 0 (6.29)

∂Λ

∂q(s3)
= 0 (6.30)

...
...

∂Λ

∂q(sn)
= 0 (6.31)

The above equations can be expanded as,

p(s1) + 2µs1q(s1)(
n∑

S=1

Sq(S)− k) + λq(s1) = 0 (6.32)

p(s2) + 2µs2q(s2)(
n∑

S=1

Sq(S)− k) + λq(s2) = 0 (6.33)

p(s3) + 2µs3q(s3)(
n∑

S=1

Sq(S)− k) + λq(s3) = 0 (6.34)

...
...

p(sn) + 2µsnq(sn)(
n∑

S=1

Sq(S)− k) + λq(sn) = 0 (6.35)

53

Taking X =
n∑

S=1

Sq(S)− k, the equations 6.32-6.35 simplify to:

p(s1) + 2µs1Xq(s1) + λq(s1) = 0 (6.36)

p(s2) + 2µs2Xq(s2) + λq(s2) = 0 (6.37)

p(s3) + 2µs3Xq(s3) + λq(s3) = 0 (6.38)

...
...

p(sn) + 2µsnXq(sn) + λq(sn) = 0 (6.39)

Each of the equations 6.36-6.39 can be simplified as:

q(si) = − p(si)

2µsiX + λ
∀iϵ[1, n] (6.40)

Adding the equations 6.36-6.39, we get,

n∑
S=1

p(S) + 2X(s1q(s1) + s2q(s2) ++ snq(sn)) + λ(
n∑

S=1

(q(S)) = 0 (6.41)

This equation simplifies to X =
√
−λ+1

2
.

Hence, substituting the value of X in eq. 6.40, we get,

q(si) = − p(si)

µsi
√
−2(λ+ 1) + λ

∀iϵ[1, n] (6.42)

Since
n∑

S=1

q(S) = 1 (from eq. 6.7 and by solving eq. 6.27), the above set of equations

simplifies to, ∑
siϵS

p(si)

µsi
√
−2(λ+ 1) + λ

+ 1 = 0 (6.43)

The value of λ can be determined by solving the polynomial equation eq. 6.43.

This cannot be solved algebraically but can be numerically determined using Groeb-

ner’s basis or other methods. The output size distribution with optimal relative

entropy can then be determined by eq. 6.42.

54

3. Specifying a Bandwidth Threshold

If we specify the bandwidth constraint with a specific bandwidth threshold B, then

the constraint as shown in eq. 6.44 will be also be considered.

i∑
j=1

OPj

T
< B, where B is the bandwidth threshold and T is the total time. (6.44)

This optimization problem can be solved using Karush-Kuhn-Tucker or KKT

conditions and is beyond the scope of this study.

4. Results Using Matlab Optimization Toolbox

Since all the above cases fall under the domain of non-linear minimization problem,

we used the MATLAB Optimization Toolbox to find the optimal output packet size

distribution. After specifying the respective objective function and the constraints,

we use the fmincon function to use the interior-point algorithm for non-linear min-

imization. This process is repeated for random start values and different types of

discrete distributions for the input packet size distribution p(S) and output packet

size distribution q(S).

Probability distribution fitting was applied on the generated output distributions

using the dfittool in MATLAB. 73% (24 from 30) of the optimal output distributions

were found to be uniform in nature, 33% were negative binomial distributions with

parameter r = 1 and the remaining belonged to the class of hypergeometric distri-

butions. The optimal output packet size distribution is most likely to be uniform in

nature. However, since MATLAB is unable to process input arrays of size greater than

70, this result is not entirely reliable, and this approach is not scalable in real-time.

55

CHAPTER VII

FUTURE WORK AND CONCLUSION

A. Future Work

SRPP as an application-level padding protocol can be applied, leveraged or extended

in the following few scenarios:

• Implementation of SRPP on an appliance: This will allow VoIP calls made from

IP Phones and other hardware to be padded.

• Implementing new and existing padding algorithms in libSRPP, like morphing

algorithm.

• SQRKal implementation for Windows.

• VoIP Steganography using SRPP padding: SRPP Padding provides an effective

platform to hide data and send information within the padding bytes.

• Study of approximation algorithms or further heuristic measures to reduce mu-

tual information between input and output packet size distribution.

• Threat analysis study on utilizing SRPP timers to reveal identity of dummy

packets.

The above salient points can serve as proper avenues of carrying this work forward.

B. Conclusion

In this thesis, we have designed and implemented SRPP, a new RTP profile for secur-

ing Voice-over-IP traffic from traffic analysis attacks. It pads every RTP packet to a

56

predefined packet size, adds dummy packets at the end of every burst in a control-

lable way, adds dummy bursts to hide silence spurts, and hides information about the

packet inter-arrival timings. SRPP has been implemented as a library libSRPP for

use by VoIP application designers and as a standalone application named SQRKal

for use by regular users. A few practical approaches to padding were implemented,

and a mathematical approach to optimal padding was discussed. Implementation

of SQRKal and libSRPP was found to be effective and efficient, since SRPP adds

minimum jitter within the permissible amount of 0.5 ms and does not increase the

operational load on the CPU. It does increase the network bandwidth usage, but im-

plementation of a proper padding algorithm like Gradual Ascent Padding algorithm

minimizes that overhead as well. It is hoped that with a more robust and portable

implementation of SQRKal, SRPP will be readily accepted by the VoIP community.

57

REFERENCES

[1] C.V. Wright, L. Ballard, S.E. Coull, F. Monrose, and G.M. Masson, “Spot me if

you can: Uncovering spoken phrases in encrypted VoIP conversations,” in IEEE

Symposium on Security and Privacy, pp. 35–39, May 2008.

[2] C.V. Wright, L. Ballard, F. Monrose, and G.M. Masson, “Language identification

of encrypted VoIP traffic: Alejandra y Roberto or Alice and Bob?,” in 16th Annual

USENIX Security Symposium, Boston, MA, USA, August 2007, pp. 1–12.

[3] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A

transport protocol for real-time applications,” Retrieved March 2009 from

http://www.ietf.org/rfc/rfc3550.txt.

[4] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, “The

secure real-time transport protocol (SRTP),” Retrieved March 2009 from

http://www.ietf.org/rfc/rfc3711.txt.

[5] P. Zimmermann, A. Johnston, and J. Callas, “Zrtp: Media path key agree-

ment for secure RTP,” Retrieved March 2009 from http://www.ietf.org/ietf/1id-

abstracts.txt.

[6] J. Rosenberg and H. Schulzrinne, “SIP: Session initiation protocol,” Retrieved

March 2009 from http://www.ietf.org/rfc/rfc3261.txt.

[7] “The Zfone Project,” Retrieved March 2009 from http://zfoneproject.com/.

[8] C. Wright, S. Coull and F. Monrose, “Traffic morphing: An efficient defense

against statistical traffic analysis,” in Proc. of the 14th Annual Network and Dis-

tributed Systems Symposium, San Diego, CA, USA, February 2009.

58

[9] Y. Guan, X. Fu, R. Bettati, and W. Zhao, “NetCamo: Camouflaging network

traffic for QoS guaranteed mission critical applications.,”IEEE Transactions on

Systems, Man and Cybernetics. Special Issue on Information Assurance, vol. 31,

no. 4, pp. 253–265, July 2001.

[10] G. Danezis, “The traffic analysis of continuous-time mixes,” Privacy Enhancing

Technologies, pp. 35–50, 2004.

[11] W. Wang, M. Motani and V. Srinivasan, “Dependent link padding algorithms for

low latency anonymity systems,” in Proc. of 15th ACM Conference on Computer

and Communications Security, Alexandria, VA, USA, October 2008, pp. 323-332.

[12] T. Lella, R. Bettati, “Privacy of encrypted voice-over-IP,” in Proc. of the

2007 IEEE International Conference on Systems, Man and Cybernetics, Montreal,

Canada, October 2007, pp. 3063–3068.

[13] M. Valin, “The Speex codec manual,” Retrieved May 2010 from

http://www.speex.org/docs/manual/speex-manual.pdf.

[14] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On flow correlation

attacks and countermeasures in mix networks,” in Proc. of Workshop on Privacy

Enhancing Technologies, Toronto, Canada, May 2004, pp. 207–225.

[15] D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Communications of the ACM, vol. 24, no. 2, February 1981, pp.

84–88.

[16] B. W. Graham, Y. Zhu, X. Fu, and R. Bettati, “Using covert channels to eval-

uate the effectiveness of flow confidentiality measures,” in Proc. of the 11th IEEE

59

International Conference on Parallel and Distributed Systems, Washington, DC,

USA, June 2005, pp. 57–63.

[17] Y. Zhu, X. Fu, and R. Bettati, “On the effectiveness of continuous-time mixes

under flow-correlation based anonymity attacks,” in Proc. of the Fourth IEEE In-

ternational Symposium on Network Computing and Applications, Washington, DC,

USA, July 2005, pp. 215–218.

[18] J. Goi, I. Martincorena, “Information Theory Toolbox v1.0.,” Retrieved March

2010 from http://www.mathworks.com/matlabcentral/fileexchange/17993.

[19] JRTPLIB, “RTP Library in C++,” Retrieved August 2010 from

http://research.edm.uhasselt.be/ jori/page/index.php?n=CS.Jrtplib

[20] “Wireshark frequently asked questions,” Available: http://www.wireshark.org/,

2010.

[21] “Twinkle,” Retrieved August 2010 from http://www.xs4all.nl/ mfn-

boer/twinkle/

[22] S. Morlat, “Linphone, an open-source SIP video phone for Linux and Windows,”

Retrieved August 2010 from http://www.linphone.org/.

[23] “Sip-Communicator,” Retrieved August 2010 from http://sip-

communicator.org/

[24] “Netfilter IPTables and ip queue,” Retrieved August 2010 from

http://netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

[25] A. S. Mihai, “Voice over IP security a layered approach,” Available:

http://www.xmcopartners.com

60

APPENDIX A

LIBSRPP API

VoIP application developers can use libSRPP to incorporate SRPP in their appli-

cations. The major functions of the libSRPP API are present in the header file

SRPP functions.h and can be listed as:

/***-------- Processing functions: --------------***/

// To initialize SRPP

int init_SRPP();

// To verify if SRPP has been disabled or not. Returns 0, if disabled

int SRPP_Enabled();

// To create a SRPP session

SRPPSession* create_session(string address, int port,

CryptoProfile crypto);

// To start the srpp session

int start_session();

int start_session(sdp_srpp sdp);

// To stop the srpp session

int stop_session();

void stop_abnormally(int i);

61

// To start the SRPP Signaling process

int signaling();

// To convert a RTP packet to SRPP packet

SRPPMessage rtp_to_srpp(RTPMessage* rtp_msg);

SRPPMessage rtp_to_srpp(RTP_Header rtp_hdr, char* buf, int length);

// To convert a SRPP packet back to RTP packet

RTPMessage srpp_to_rtp(SRPPMessage* srpp_msg);

// To convert a SRTP packet to SRPP packet

SRPPMessage srtp_to_srpp(SRTPMessage* srtp_msg);

// To convert a SRPP packet back to SRTP packet

SRTPMessage srpp_to_srtp(SRPPMessage* srpp_msg);

int srpp_to_srtp(SRPPMessage * srpp_msg, char * buff,int length);

// To create a SRPP Message with the data and encrypt it.

SRPPMessage create_and_encrypt_srpp(string data);

// To create a SRPP Message and return it.

SRPPMessage create_srpp_message(string data);

// Only create a RTP Message and return it.

RTPMessage create_rtp_message(string data);

// Only create a SRTP Message and return it.

SRTPMessage create_srtp_message(string data);

62

// To encrypt the given SRPP packet

SRPPMessage encrypt_srpp(SRPPMessage * original_pkt);

// To decrypt the given SRPP packet

SRPPMessage decrypt_srpp(SRPPMessage * encrypted_pkt);

// To get the padding functions object used here

PaddingFunctions* get_padding_functions();

// To get the current Session object

SRPPSession * get_session();

/***------------ Utility functions: --------------***/

// SRPP Pseudo-Random number between min and max

int srpp_rand(int min,int max);

// Used by the interior functions to send or receive a SRPP message

int send_message(SRPPMessage* msg);

SRPPMessage receive_message();

SRPPMessage processReceivedData(char * buff, int bytes_read);

// To set the Process Function (callback functions) which

// handle sending and receiving of a message.

int setSendFunctor(int (*process_func)(char*,int));

int setReceiveFunctor(SRPPMessage (*process_func)());

// To parse the received message. Returns -1 if its a media packet

// and 1 if its a signaling packet.

63

int isSignalingMessage (SRPPMessage * message);

int isSignalingMessage (char * buff);

// To check or set whether the signaling is complete

int isSignalingComplete();

int setSignalingComplete();

// To check whether media session is complete

int isMediaSessionComplete();

int set_starting_sequenceno(int seq_no);

/***-------- END OF FILE --------------***/

64

APPENDIX B

MONTE CARLO SIMULATIONS FOR MINIMIZATION OF MUTUAL

INFORMATION

Monte Carlo methods (or Monte Carlo experiments) are a class of computational

algorithms that rely on repeated random sampling to compute their results. First,

we define a domain of inputs. Next, we generate inputs randomly , and perform a

computation on each input. Finally, we aggregate all the results into our final result.

Our objective is to pad the original packets of size x to a new size y, such that the

mutual information (MI) [18] between distributions of y and x is minimum.

Observations based on minimum MI for all combinations of input-output distributions:

We ran a series of Monte-Carlo experiments, with the aim to find out the combination

of probability distributions of x and y, for which we can get minimumMI. The skeleton

of this algorithm is as follows:

1. For a random number of experiments ’r’, repeat steps 2-4.

2. Generate a random maximum packet size ’m’ and a random number ’n’.

3. Generate random samples of length n from uniform, binomial, poisson and

geometric distributions for the discrete case and uniform, normal, exponential,

beta, gamma and chi-square distributions for continuous case. The parameters

to all these distributions are appropriately tuned, on the basis of ’m’. For e.x.

I generate uniform numbers in the range [1, m], and exponential numbers with

mean λ, such that λ is a random number in the range [1, m].

65

4. Calculate the mutual information between each of these samples, and find the

combination of input-output distributions which has the minimum MI in this

experiment.

5. After all the ’r’ experiments are complete, plot the combination of distributions

vs the number of experiments in which they had the minimum MI among all

the combinations.

The results, as shown in Fig. 27-28, were straightforward in the case of dis-

crete distributions. The minimum MI was found to be when both input and output

distributions were geometric in nature.

Fig. 27. Observations for Discrete Distributions (Run 1)

For continuous distributions, it was seen that beta or gamma distributions reduce

the MI when they are considered as the output distribution.

Observations based on individual input distributions: Next, we observed the optimal

distribution for specific cases of input distributions. It was observed that if the output

66

Fig. 28. Observations for Discrete Distributions (Run 2)

is geometrically distributed, it had the minimum MI compared to the other output

distributions. For example, if the input is uniformly distributed, 165 experiments

where the output distribution was geometrical had the minimum MI, and this was

higher than all such other combinations. So, it is a good idea to simply transform any

discrete input distribution to geometric distribution, in order to minimize the mutual

information, based on these Monte Carlo experiments. Fig. 29-32 show the results

for various discrete input distributions.

In the case of continuous distributions, it was observed that for most of the runs

and for various input distributions, output distributions belonging to the beta or

gamma family had minimum MI most number of times, while exponential distribution

was a close second in some cases. From these Monte Carlo experiments, we can say

that for most of the distributions, it is a good idea to transform them to gamma or

beta distributions, while for gamma input distribution, we can also safely transform

it to exponential or uniform distribution as well.

67

Fig. 29. Discrete Case for Uniform Distribution

Fig. 30. Discrete Case for Binomial Distribution

68

Fig. 31. Discrete Case for Poisson Distribution

Fig. 32. Discrete Case for Geometric Distribution

69

All these Monte-Carlo experiments do not take into account the actual relation-

ship between the input packet size x and output packet size y, and therefore are not

very conclusive. These results can be used to formulate a padding algorithm, and its

efficiency and effectiveness can be evaluated using SRPP.

70

APPENDIX C

SCREENSHOTS OF WIRESHARK TRACES

Fig. 33-38 are screenshots of wireshark traces taken for SQRKal in various modes of

operation, which were used for evaluation of operations as described in Chapter VI.

Fig. 33. Wireshark Trace for non-SRPP supporting endpoint

71

Fig. 34. Wireshark Trace for RTP max-random mode

Fig. 35. Wireshark Trace for RTP full-bandwidth mode

72

Fig. 36. Wireshark Trace for RTP Gradual Ascent Padding Algorithm

Fig. 37. Wireshark Trace for RTP Slight Perturbation Algorithm

73

Fig. 38. Wireshark Trace for RTP with Dummy Bursts

74

VITA

Name: Saswat Mohanty

Address: Department of Computer Science and Engineering, Texas A&M University,

TAMU 3312, College Station TX 77843-3112

Permanent Address: 447 Mahanadi Vihar, Cuttack, Orissa, India 753004

Email Address: smohanty@cs.tamu.edu

Education:

B. Tech., Computer Science, National Institute of Technology, Silchar, India, 2007

M.S., Computer Science, Texas A&M University, 2011

The typist for this thesis was Saswat Mohanty.

