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ABSTRACT 

 

Investigation of Anion-pi Interactions in Inorganic, Organic and Biological Systems. 

(May 2011) 

Edward Sterling Funck, B.S., Grove City College 

Chair of Advisory Committee: Dr. Kim R. Dunbar 

 

 Despite an ever growing number of reports concerning the anion-π interaction, 

controversy surrounding the nature of these weak supramolecular interactions continues.  

In an effort to further explore the nature and properties of anion-π interactions, 

experimental and computational methods were employed to study their occurrence in 

inorganic, organic and biological systems. 

 As part of ongoing research in the Dunbar group on the topic of anion-π based 

supramolecular interactions, the ligand 3,6-bis(2′-pyrimidyl)-1,2,4,5-tetrazine (bmtz) 

was synthesized and reacted with [Cu(NCMe)4][BF4] to form the octanuclear complex 

[Cu8(bmtz)6][BF6]6·6MeCN.  Crystallographic evidence indicates an in situ reduction of 

two of the complexed bmtz ligands to radical anions.  A second blue compound has also 

been observed in this reaction, and recent work has resulted in a direct synthesis of this 

compound.  Preliminary results indicate that this second compound contains Cu(II) 

centers, as expected.  Further work is necessary to identify the second blue compound. 

 In an effort to explore the fundamental question of whether or not anion-π 

interactions can occur between complex anions and olefins a series of Density 
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Functional Theory and ab initio computations have been preformed for the 

tetracyanoethylene, 7,7,8,8-tetracyanoquinodimethane, 7,7,8,8-tetracyano-1,2,4,5-

tetrafluoroquinodimethane and octacyanoquinodimethane molecules with the anions 

tetrafluoroborate and hexaflurophosphate.  These optimizations indicate favorable 

interactions for all cases and are further supported by critical point analysis, performed 

using the Atoms in Molecules theory, and Natural Bond Orbitals analysis. 

 DFT and NBO computations were also employed to explore the simultaneous 

anion-π and π-type charge transfer interactions observed between 1,4,5,8,9,12-

hexaazatriphenylene-hexacarbonitrile and the chloride, bromide and iodide anions, as 

observed previously by the Dunbar group.  Computations involving chloride and 

bromide anions are in full agreement with the previously reported spectroscopic and 

crystallographic evidence. 

 Finally, the question of whether or not anion-π interactions occur in proteins was 

investigated by searching the Protein Data Bank for interactions between chloride or 

iodide anion and the aromatic moieties of the phenylalanine, tyrosine and tryptophan 

residues.  Computer scripts were specifically written for this search and revealed 

promising interactions between chloride anions and all three amino acids.  Procedural 

and statistical considerations preclude these examples from being definitive. 
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CHAPTER I 

INTRODUCTION AND GENERAL REVIEW OF ANION-PI INTERACTIONS 

 

Introduction to Supramolecular Chemistry 

 To arrive at a precise definition of supramolecular chemistry is a challenging 

task.  At its simplest, supramolecular chemistry can be defined as “chemistry beyond the 

molecule”.1  While this concise definition is widely quoted, it is quite vague.  Generally, 

this simple definition is taken to mean that supramolecular interactions are noncovalent.  

Supramolecular chemistry can also refer to the chemistry of molecules or complexes that 

are comprised of separate components, either molecules or moieties, which collectively 

contribute unique properties to the final assembled product.2  This definition is used 

specifically by supramolecular photochemists to describe compounds possessing 

multiple active centers separated by spacers.2  Unlike the first definition, this second 

definition does not discount covalent bonding as a possible supramolecular interaction.  

Instead of defining the compound as supramolecular or molecular simply by structure, 

the second definition focuses on the segregation of distinct chemical properties within a 

given compound allowing for overlap between supramolecular and molecular chemistry.  

For the purposes of this thesis, supramolecular chemistry will be defined as the 

chemistry of noncovalent interactions between discrete molecules and atoms.  Given the 

fact that so much science revolves around weak interactions and the self-assembly of 

molecules that can mimic nature, supramolecular chemistry continues to be an active and  

____________ 
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growing field of interest for many researchers. 

 There are many types of reported supramolecular interactions in the literature 

involving both neutral and charged species.  Electrostatic, hydrogen bonding (H-

bonding), π-π and cation coordination including cation-π, interactions are widely 

accepted supramolecular interactions.  Less common are the anion coordination3-4 and 

the anion-π interaction,5-7 which will be the focus of this thesis.  More exotic 

interactions, namely lone pair-π8-16 (L.P.-π) and hydrogen-π (H-π) interactions,13,17-28 

have also been reported in recent years. 

 

Introduction to Anion-π Interactions 

 Katapinates (Scheme 1.1), the first host molecules to encapsulate an anionic 

guest, were developed by Park and Simmons at DuPont in 1968.29  Also at DuPont, 

Pederson reported the development of crown ethers in 1967;30 a seminal event in the 

field of cation coordination.  While the complexation of metal cations by crown ethers 

received much attention, anion coordination remained a dormant field of study until 

Jean-Marie Lehn revitalized it during the 1970s.4 

 Reports by Schneider, et al. in the early 1990s, marked the first appearance of the 

term “anion-π”,31-32 but it would take another ten years and almost simultaneous reports 

by Alkorta, et al.,33 Mascal, et al.34 and Quiñonero, et al.35 in 2002, before any 

significant attention was given to the anion-π interaction.  Since these early reports, the 

interest in anion-π interactions has grown dramatically (Figure 1.1).  
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k l m 
7 7 7 
8 8 8 
9 9 9 
10 10 10 

 
Scheme 1.1.  Schematic representation of the katapinate molecules.  k, l and m values 
are for those molecules that coordinate chloride anion.29,36 
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Figure 1.1.  Histogram showing the number of publications on the topic of anion-π 
interactions.  The information was obtained by searching the term “anion-pi” in Web of 
Science on September 27, 2010.  While the values are not entirely accurate, as far as 
number of publications, the general trend is apparent. 
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 Despite ongoing research the true nature of anion-π interactions still remains 

controversial.  The first concise definition was provided by Garau, et al. in 2004 and 

described anion-π interactions as being the noncovalent interaction between an anion and 

an electron deficient aromatic ring.37  Under this model, the interaction is governed by 

electrostatics, specifically the quadrupole moment, Qzz and molecular polarizability in 

the direction perpendicular to the plane of the ring, α║, of the aromatic ring.37  In other 

words, π-acidic (electron deficient) aromatic rings, rings possessing a positive 

quadrupole moment, could interact electrostatically with an anion.  If the Qzz value is 

small, then a sufficiently large molecular polarizability can allow for an anion-π 

interaction to be induced, by the anion, in non-electron deficient aromatic rings.  Recent 

work published by the Houk group however, makes the point, that for the case of 

fluorinated benzene, the apparent electron-deficient character of the ring and the 

purported anion-π interactions are actually not due to an electron-deficient π-system as 

had been previously proposed.38  Houk and Wheeler maintain that the attraction between 

the benzene ring and the anion is actually due to the C-F dipoles along the C-F σ bonds.  

In this analysis, it is concluded that the electron withdrawing effect is on the carbon 

atoms as result of σ bonding and the π-system itself retains its electron rich character 

which is actually repulsive with respect to an anion. 

 Other authors have also tried to deconstruct the exact interaction(s) between an 

anion and an aromatic ring.  One of the earliest reports regarding anion···arene 

interactions was published in 1968 by Buncel, et al.39  While this report predates the 

concept of  anion-π interactions,  the authors do  report spectroscopic  evidence for  what  
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Figure 1.2.  Computational results of Berryman, et al. depicting the σ-type charge-
transfer (a), π-type charge-transfer (b) and anion-π (c) interactions.  (Adapted with 
permission from Berryman, et al.40). 
  

[F]- 
[Br]- 

[Cl]- 
a 

b c 
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they refer to as a π-complex, a term used to describe a charge-transfer interaction 

between an anion (or some other electron rich molecule) and a π-electron deficient 

nucleus of an aromatic ring.  The idea of this “π-complex” was also discussed in a more 

recent report.  It was reported by Berryman, et al. that there are three different 

interactions that could occur between an anion and the face of an aromatic ring (Figure 

1.2).40  The authors define the anion-π as being an electrostatic interaction, with 

negligible (ideally no) charge-transfer, in which the anion is positioned directly over or 

near the centroid of the aromatic ring (Figure 1.2c).  The authors also identify two 

different charge transfer interactions, σ- and π-type charge-transfer (CT) (the latter 

sounding much like the π-complex described by Buncel, et al.)  Both types of CT 

interactions feature a structure in which the anion has moved away from the centroid of 

the aromatic ring and is positioned over the periphery of the molecule (Figure 1.2a,b).  

The only real difference between the two is the degree of CT.  The π-type CT interaction 

features a smaller degree of CT and larger distances between the ring atoms and the 

anion than the σ-type (also known as a Meisenheimer complex).  Deformation of the 

aromatic ring is expected in the σ-type CT (Figure 1.2a).  It should be noted that in the 

computational studies and Cambridge Structural Database (CSD) search performed by 

Berryman, et al., the charge-transfer motifs were the most common.40 

 It is generally accepted that anion-π interactions can be characterized by anion to 

ring distances less than the sum of the van der Waals radii of the participating atoms and 

at such a position that the anion – ring centroid vector is perpendicular to the plane of the 

aromatic ring (the structure described by Berryman, et al. in Figure 1.2c).7,40  While 
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certainly this is the ideal structure of an anion-π interaction, not all researchers agree that 

this rigid definition (i.e. the anion must be positioned over the centroid of the aromatic 

ring and the interaction must be electrostatic40) is sufficient but rather prefer a broader 

definition.  In the Dunbar group, we use as an operative definition that any interaction 

between the anion and the π-system of an aromatic ring is an anion-π interaction, 

regardless of position (over the π-face of the ring) and with or without CT interactions. 

 One useful approach is to follow in the description of anion coordination 

structures inspired by the well established terminology of cation coordination structures.  

Structural types typically observed around cations are described for host-anionic guest 

complexes using similar terminology with the understanding that the driving force to 

adopt the structures is very different.41  Likewise, the term “anion-π” could be used to 

describe a particular structure, namely a situation in which an anion is located above the 

π-face of an aromatic ring, with the caveat that the nature of the interaction (i.e. charge–

quadrupole, charge–dipole, CT or some combination thereof) will be highly dependent 

on the identities of anion and ring as well as other environmental factors. 

 Support for the above argument can be found in a report by Hay, et al.42  The 

conclusion of Hay, et al. can be summarized as: less nucleophilic anions and arenes with 

moderate electron affinity favor the anion-π interaction.  As the nucleophilicy of the 

anion or electron affinity of the arene increases, so does the preference for a CT complex 

(particularly the σ-type).42  Since subtle changes in the properties of either the anion or 

the aromatic ring can affect the exact structure and strength of the anion···arene 

interaction, it is reasonable to conclude that these various interaction types observed by 
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Berryman, et al.40 are all related.  In fact, the σ-type CT, π-type CT and anion-π 

interactions all involve both electrostatic and CT components, although the CT 

component of the anion-π interaction is negligible to zero.  Given this case, it seems 

reasonable to use one term to describe all three types of interactions.  For the purposes of 

clarity, the nomenclature proposed by Berryman, et al. (σ-type CT, π-type CT and anion-

π) will be used in this thesis as described by the authors.40 

 While the earliest studies on anion-π interactions were computational33-35,43 and 

computations still play a large role in the ongoing research,38,44-49 there is a growing 

body of experimental support for anion-π interactions.46,50-55 

 

Applications of Anion-π Interactions 

 While anion-π interactions have been predicted to be comparable in energy to 

cation-π interactions,56 there is also evidence that anion-π interactions are in fact weaker 

than cation-π interactions.57  The only experimentally derived energies for anion-π 

interactions, that we are aware of, are enthalpies of interaction from a gas phase study in 

1987, which finds of enthalpies of 10.4 - 16.8 kcal/mol for (C6F6)n···[X]- (n=1,2, 

X=Cl,Br,I).58  In comparison, cation-π interactions have been shown to have energies 

between 1 and 19 kcal/mol (the 19 kcal/mol value refers to C6H6···K+ in the gas phase).2  

These energies support the conclusion that these two interactions are comparable in 

energy and underscore the potential utility of the anion-π interaction. 

 The most obvious application is in the area of anion detection and sequestration 

via new receptors incorporating the anion-π interaction.59-63  It has also been 
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demonstrated that anions can template supramolecular architectures through anion-π 

interactions45,55,64-65 and recent work has revealed the possibility of anion-π interactions 

being used to mediate a reaction.47  Using anion-π interactions as a source of anion 

transport has also generated a great deal of interest.66-67  In summary, anion-π 

interactions are of interest for environmental,6-7,61 crystal engineering,45,64-65 catalytic 7,68 

and biological/medicinal applications.6-7,69 

 It should be noted that several of the examples discussed below deal involve 

substituted benzene molecules as the π-system in question. While the recent report by 

Wheeler, et al.38 maintains that these interactions (between an anion and a substituted 

phenyl ring) arise from charge-dipole interactions and not charge-quadrupole 

interactions, it is clear that the interaction between the anion and the π-face of the phenyl 

ring is important in all of the example compounds. 

Anion Receptor Design 

 Mascal, et al. proposed a series of four cylindrical anion receptors based on the 

molecule [1,3,5]cyclophane (one of which is based on two triazine moieties).62  

Computational studies of these molecules have predicted that these receptors should 

show selectivity toward the fluoride anion encapsulation as opposed to chloride anion 

encapsulation.  Later experimental work confirmed this prediction when Mascal, et al. 

synthesized a cylindrophane based on two cyanuric acid moieties (Scheme 1.2a).63  It 

should be noted that this receptor incorporates anion-π, H-bonding and ion pairing 

interactions. 
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 A report by Berryman, et al. demonstrates cooperation between anion-π 

interactions and H-bonding.60  It was shown that by replacing the phenyl ring of a 

sulfonamide based halide acceptor with a pentafluorophenyl ring (Scheme 1.2b) the 

halide (chloride, bromide, iodide) association constants, as determined by 1H-NMR, 

could be increased substantially.  Hartree-Fock calculations support the conclusion that 

the increased halide binding affinity is due to the presence of the of the 

pentafluorophenyl ring.60  Similar compounds were the subject of recent work by 

Albrecht, et al.59  In this case the pentafluorophenyl substituted ammonium and 

pyridinium salts (Scheme1.2c) exhibit cooperative anion-π and carbon based hydrogen-

bonding (CH-bonding) interactions.  It is interesting to note that the position of the anion 

with respect to the aromatic ring depends on the identity of the anion (chloride, bromide, 

iodide, hexafluorophosphate) and the exact crystallization conditions.59  By borrowing 

from traditional coordination chemistry, the authors described the position of the anion 

using an ηx (x = 1,2,3,6) notation. 

 Another example of cooperation between supramolecular interactions is provided 

in a recent report by Quinonero, et al.  In this work, the authors use a triazine based 

ligand, 6R,2,4-bis(pyrazol-1-yl)triazine, to synthesize copper(II) and zinc(II) clusters 

designed to incorporate carbon based hydrogen-π (CH-π) and anion-π interactions (with 

tetrafluoroborate anion).49  The resulting structures, as well as computational studies, 

support the conclusion that the anion-π interaction is stronger than the CH-π and that the 

presence of one interaction added further stability to the other. 
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Scheme 1.2.  Schematic representations of the anion receptors synthesized by Mascal, et 
al.63 (a) Berryman, et al.60 (b) and one of the receptors syntehsized by Albrecht, et al. 
(c).59 
  

a 

b 
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Anion Templation and Crystal Engineering 

 Early reports by the Dunbar group in the publications of Campos-Fernández, et 

al.64 and Schottel, et al.65 focused the dependence of molecular geometry on anion 

identity.  As this topic is directly relevant to the results described in Chapter II, a more 

detailed discussion of these reports is provided therein.  This dependence was also 

investigated by Wan, et al. in their recent work regarding silver complexes of a new 

dipyrazinyl sulfoxide ligand.55  The two pyrazinyl groups of this ligand were shown to 

form a “pincer” around the anion (nitrate, hexafluorophosphate, perchlorate, 

trifluoroacetate) via anion-π interactions (Figure 1.3).  The different sizes of the anions 

resulted in varying angles between the two arms of the ligand and ultimately a variety of 

structures.  Similar results were also observed for zinc(II) and cadmium(II).55 

 A later report of two supramolecular assemblies consisting of magnesium 

malonate, perchlorate anion and either protonated 2-aminopyridine or protonated 2-

amino-4-picoline by Das, et al. revealed a network incorporating π-π, lone pair-π and 

anion-π interactions in the solid state.45  Computational studies were also employed to 

probe these noncovalent interactions, the results of which indicate that these interactions 

are present in this structure.  While the discovery of this structure was not an attempt at 

design, the authors underscore the importance of understanding structures incorporating 

various types of weak supramolecular- interactions as the field of crystal engineering 

advances.45 

 



 

 

 

 

 

Figure 1.3.  Depiction of the anion encapsulation observed in the structures of {[Ag(pyz2SO)][NO3]·MeCN}∞ (a), 
{[Ag(pyz2SO)][PF6]}∞ (b) and {[Ag3(pyz2SO)2][ClO4]3}∞ (c).  pyz2SO refers to dipyrazinylsulfoxide.  Silver atoms (teal), 
carbon atoms (gray), nitrogen atoms (purple), sulfur atoms (magenta), oxygen atoms (red), phosphorus atom (green), chlorine 
atom (yellow).  (Adapted with permission from Wan, et al.55). 
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Reaction Mediation 

 An investigation of the synthesis of 1,2,4-trinitrobenze from 1-fluoro-2,4-

dinitrobenzene was recently reported by Jones, et al.47  The reaction is typically 

performed in ethanol and proceeds through a nucleophilic substitution (SNAr) of the 

fluoro group by an ethanol molecule resulting in the formation of an ether intermediate.  

It was discovered that the rate of reaction for this synthesis increases in the ionic liquid 

[Bmin][N(SO2CF3)2] (Bmin = 1-butyl-3-methylimidazolium) as compared to ethanol.  A 

combination of experimental and computational work led the authors to conclude that 

the anionic component of the ionic liquid is playing a significant role in the lowering of 

reaction barrier.  The computational data demonstrate that the anionic component of the 

liquid prefers to interact with the π-face of the benzene ring, while the cationic 

component interacts with the periphery of the ring or the substituents on the ring (Figure 

1.4) pointing to anion-π interactions, or anion···arene interactions in general, playing a 

role in the mediation of this reaction.47 

Anion Transport 

 A synthetic trans-membrane chloride anion channel utilizing anion-π interactions 

was reported by Gorteau, et al.67  This anion-π “slide” has generated significant interest66 

and will be discussed in more detail in Chapter V.  Research involving chloride 

channels is of particular import due to the role that chloride channels play in cystic 

fibrosis.67 
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Biological Relevance of Weak Supramolecular Interactions 

 Supramolecular interactions have been shown to play a significant role in 

biological systems.1  While there has been little evidence for anion-π interactions 

occurring biologically, there is still significant interest in their potential role.6-7  (This 

particular topic will be discussed in Chapter V). 

 A major reason for the interest and optimism regarding the biological role of 

anion-π interactions is the occurrence of other weak supramolecular interactions in 

biomolecules.  To clarify this definition, weak supramolecular interactions do not refer 

to electrostatic,70 H-bonding,71 π-π71 or cation-π interactions.72  (These types of 

interactions have all been shown to play a significant role in biology and give substantial 

credence to the idea that other supramolecular interactions can also play a role in 

biology.)  The term weak is meant to indicate the anion-π, lone pair (L.P.)-π10 and H-π23 

interactions.  Analysis of crystal structures of RNA and DNA, coupled with 

computational studies, lead Egli, et al. to originally propose L.P-π interactions as a 

biologically relevant supramolecular interaction.10  While examples of this interaction, in 

biological molecules, are still limited, recent experimental14 and computational9,11,14 

results provide further evidence for these interactions.  Of particular interest is the report 

of Convertino, et al. which discusses the mechanisms by which 9,10-anthroquinone and 

anthracene can inhibit amyloid aggregation, a process linked to many neurological 

disorders, including Alzheimer’s.9  The authors discuss the presence of what they refer 

to as π+δ- interactions in the 9,10-anthroquinone-β-amyloid complex (the authors used a 

heptapeptide sequence of β-amyloid for this work).  
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Figure 1.4.  Computational models of 1-fluoro-2,4-dinitrobenzene (a) and an ethanol 
substituted intermediate (b) in [Bmin][N(SO2CF3)2].  Blue regions refer to anion 
interactions and the red regions refer to cation interactions.  (Adapted with permission 
from Jones, et al.47 – Reproduced by permission of the PCCP Owner Societies, 
http://dx.doi.org/10.1039/b920131a) 
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 Egli, et al. comment on the research surrounding H-π interactions in 

biomolecules as a contrast to the counterintuitive L.P.-π interactions.10  (The same 

contrasted was noted in the early reports of anion-π interactions.43)  The more intuitive 

H-π interaction is still a topic of research as evidenced by a recent report by Plevin, et 

al.23  The authors were able to demonstrate the existence for CH-π interactions in protein 

structures through NMR spectroscopic measurements supported by a combination of 

Density Functional Theory (DFT) computations and database searching.  It is worth 

mentioning, that Plevin, et al. were focusing on the less studied CH- π interactions 

arising from methyl···arene interactions.23 

 

Exploration of Anion-π Interactions in this Thesis 

 While the field of anion-π chemistry is steadily growing, there are still many 

questions that remain unanswered.  In an effort to explore both the fundamental and 

applied facets of the anion-π interaction, a new series of experimental and computational 

studies have been performed. 

 As part of ongoing attempts to design clusters template by anion-π interactions,64-

65 a new cluster capable of engaging in anion-π interactions has been synthesized. 

 Fundamental questions regarding the potential for anion-π interactions involving 

non-aromatic molecules have been addressed by a new series of computations. 

 Further investigations into the simultaneous CT and anion-π interactions 

exhibited by the molecule 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile51,73 have 

been pursued utilizing computational methods. 
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 Finally, in an attempt to provide clear evidence for anion-π interactions in 

proteins, a series of computer scripts have been written and used to conduct systematic 

searches of the Protein Data Bank. 
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CHAPTER II 

SYNTHESIS AND CHARACTERIZATION OF A NEW OCTANUCLEAR 

COPPER(I) COMPLEX EXHIBITING ANION-PI INTERACTIONS 

 

Introduction 

 The design and synthesis of new supramolecular architectures has been an 

ongoing theme in the Dunbar group since the discovery of anion-π templated squares74 

and pentagons75 by Campos-Fernández, et al.  It was reported that the substituted 

tetrazine molecule, 3,6-bis(2′-pyridyl)-1,2,4,5-tetrazine (bptz) (Figure 2.1a) was capable 

of forming squares with fully solvated nickel(II) cations in the presence of the complex 

anion tetrafluoroborate, [Ni4(bptz)4(NCMe)8][BF4]8  (Figure 2.2a).74  Further work by 

Campos-Fernández demonstrated that the identity of the architecture can be controlled 

by the counter anion and that the pentagon [Ni5(bptz)5(NCMe)10][SbF6]10 (Figure 2.2b) 

can be prepared if hexafluoroantimonate anion is used.75  It was later demonstrated that 

the square architecture could be synthesized using [Zn(NCMe)6][BF4] or the 

corresponding perchlorate salts of both nickel(II) and zinc(II).64  An interesting property 

exhibited by the square and pentagon architectures formed with the nickel(II) salts is the 

ability to interconvert between the two structures by addition of excess amounts of the 

appropriate anion.  By taking advantage of this fact, the nickel-pentagon was used to 

synthesize the square architecture incorporating a variety of anions.64  
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Figure 2.1.  Schematic representations of the molecules 3,6-bis(2′-pyridyl)-1,2,4,5-
tetrazine (bptz) (a), 3,6-bis(2′-pyridyl)-1,2-pyridazine (bppn) (b) and 3,6-bis(2′-
pyrimidyl)-1,2,4,5-tetrazine (bmtz) (c) along with their respective electrostatic potential 
(ESP) maps.  The ESP maps for bptz (d) and bppn (e) are Adapted with permission 
Schottel, et al.65  The ESP map for bmtz (f) was generated by Cerius2 4.10 using the 
geometry optimized structure obtained through B3LYP/6-311++G(d,p).  All maps were 
made with an isodensity value of 0.02. 
  

a d 

b e 

c f 



 

 

22 

 

 

 
Figure 2.2.  Crystal structures of [Ni4(bmtz)4(NCMe)8][BF4]8 (a) and 
[Ni5(bmtz)5(NCMe)10][SbF6]10 (b).  Non-encapsulated anions are omitted for the sake of 
clarity.  Carbon atoms(gray), nitrogen atoms (blue), nickel atoms (orange), fluorine 
atoms (green), boron atom (pink), phosphorus atom (purple). 
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 The results of these studies prompted Schottel, et al. to investigate the reaction 

between bptz and silver(I) cations.65,76  It was discovered that, unlike previous reactions 

between silver(I) cations and related ligands which generally form extended structures,76 

the silver(I)-bptz reaction yielded a dinuclear paddlewheel, [Ag2(bptz)3][SbF6]2, which 

packs in a hexagonal fashion with anion-π interactions between six of the clusters and a 

single anion (Figure 2.3a,b).76  By changing the ligand from bptz, to 3,6-bis(2′-pyridyl)-

1,2-pyridazine (bppn) (Figure 2.1b) a dinuclear grid structure, [Ag4(bppn)4][SbF6]4 was 

isolated (Figure 2.3c).65  It is particularly interesting to note that the silver(I)-bptz 

structure is dominated by anion-π interactions whereas the silver(I)-bppn structure is 

dominated by π-π interactions, the anion-π interactions being less prominent.65 

 It should be noted that while bptz is capable of binding two metal ions in both the 

syn and anti configurations, both bptz and bppn are coordinated to the silver(I) ions in 

the syn configuration in these structures.   The only difference between the bptz and 

bppn molecules is the central core of the ligand (Figure 2.1a,b).  The central tetrazine 

core of bptz has been shown to be more electropositive than the central pyridazine core 

of bppn (Figure 2.1d,e).77  Given that a decrease in the electropositive nature of the 

ligand resulted in a drastic change in the produced, it is reasonable to expect that an 

increase in the electropositive nature of the ligand would have an effect on the structure 

as well.  To this end the ligand, 3,6-bis(2′-pyrimidyl)-1,2,4,5-tetrazine (bmtz) (Figure 

2.1c,f) was synthesized in order to use for the assembly of cationic architectures. 
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Figure 2.3.  Crystal structures of [Ag2(bptz)3][SbF6]2 (a) and [Ag4(bppn)4][SbF6]4 (c).  A 
portion of the packing diagram for [Ag2(bptz)3][SbF6]2 is also shown (b).  In b it can be 
seen that the hexagonal arrangement of [Ag2(bptz)3]2+ clusters is templated by the anion-
π interactions.  (Adapted with permission Schottel, et al.65)  Carbon atoms (gray), 
nitrogen atoms (blue), silver atoms (dark green or teal), fluorine atoms (light green), 
antimony atoms (purple or yellow). 
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Experimental 

Materials 

 The starting materials 2-cyanopyrimidine (Aldrich), hydrazine hydrate (Aldrich), 

hydrochloric acid (EMD), sodium nitrate (EM Science), copper(I) oxide (Fisher), 

tetrafluoroboric acid (48% in water) (Aldrich), hexafluoroantimonic acid hexahydrate 

(Aldrich), glacial acetic acid (EMD), ammonium hydroxide (EM Science), nitric acid 

(EM Science) and tetrahydrofuran (EMD) were all purchased and used without further 

purification.  The precursor salt [Cu(NCMe)4][PF6] (Aldrich) was stored under a 

nitrogen atmosphere and used without further purification.  Copper foil (Aldrich) and 

copper powder (Fisher) were used without further purification.  Diethyl ether (Aldrich), 

tetrahydrofuran (Alfa Aesar), benzene (Aldrich) and toluene (Alfa Aesar) were dried and 

deoxygenated using an MBraun Solvent Purification System.  Acetonitrile (EMD), 

dichloromethane (EMD) and nitromethane (Aldrich) were distilled, under a nitrogen 

atomosphere, over calcium hydride, diphosphorus pentoxide, and calcium hydride, 

respectively, prior to use; Acetonitrile and dichloromethane were stored over 4 Å 

molecular sieves prior to distillation. 

Syntheses 

[Cu(NCMe)4][X] (X = BF4, SbF6).  [Cu(NCMe)4][X] (X = BF4, SbF6) were prepared by 

slight modification of a literature method.78  The hexafluorophosphoric acid called for in 

the original preparation was replaced by tetrafluoroboric acid (48% in water) or 

hexafluoroantimonic acid hexahydrate to form the appropriate salt.  The 

[Cu(NCMe)4][SbF6] salt was prepared by a previous member of the Dunbar group, Dr. 
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Michael Shatruk (Department of Chemistry and Biochemistry, The Florida State 

University). 

2,5-dihydro-3,6-bis(2′-pyrimidyl)-1,2,4,5-tetrazine (H2bmtz).  H2bmtz was 

synthesized using a modified literature preparation.79-80  A sample of 2-cyanopyrimidine 

(6.0 g, 0.057 mol) was dissolved in tetrahydrofuran (THF) (80 mL) to which 

concentrated HCl (8.0 mL) was added resulting in a pale yellow solution; the solution 

was then brought to reflux.  The dropwise addition of hydrazine hydrate (4.0 mL) 

resulted in the formation of a dark red solution after a few minutes. (If the solution does 

not darken to red, the addition of another 4.0 mL of hydrazine hydrate may be required).  

Reflux continued overnight (Kaim, et al.80 only report a 4 hour reflux) after which 

distilled water (80 mL) was added to give an orange precipitate which was collected by 

suction filtration.  Rotoevaporation of the reaction solution to remove THF resulted in 

additional precipitation of an orange solid which was removed by filtration.  Additional 

crude product can be isolated by extraction from the remaining solution with 

dichloromethane (3 x 100 mL).  An orange powder is then isolated by removal of the 

dichloromethane via rotoevaporation. 

 The orange powders were recombined and purified by recrystallization from 500 

mL of boiling water.  Orange needle crystals. Yield: 5.6 g (82%).  1H-NMR spectrum in 

CDCl3 (δ, ppm): 8.85 (d), 8.52 (s), 7.40 (t).  ESI-MS: m/z 241.1 [H2bmtz+H]+. 

3,6-bis(2′-pyrmidyl)-1,2,4,5-tetrazine (bmtz).  The bmtz molecule was synthesized 

using a modified literature preparation.79-80  It should be noted that Kaim, et al. report 

that bmtz is readily reduced to H2bmtz, particularly in protic solvents.80 
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 A suspension of H2bmtz (2.4 g, 1.0 mmol) in a 3:2 glacial acetic acid:THF 

solution (225 mL) was prepared and cooled using an ice bath to 6 °C.  A concentrated 

solution of NaNO2 (4.1 g, 59 mmol) was prepared in distilled water (6.0 mL) and slowly 

added dropwise to the H2bmtz suspension taking care to maintain the temperature of the 

reaction below 10 °C.  The suspension darkened to purple and evolved brown NO gas.  

The reaction was stirred for 23 minutes and the pH was then adjusted to basic conditions 

(pH=8) with the slow addition of concentrated NH4OH (270 mL) taking care to ensure 

that the reaction temperature did rise above 20 °C.  (In general, the reaction should be 

kept as cold as possible).  The resulting purple powder was isolated by filtration from the 

remaining orange solution. 

 The product can be purified by washing with benzene (200 mL) and, if needed, 

recrystallized from boiling dicholormethane (800 mL).  Purple needle crystals.  1H-NMR 

spectrum in CDCl3 (δ, ppm): 9.17 (d), 7.63 (t).  ESI-MS: m/z 239.1 [bmtz+H]+. 

[Cu8(bmtz)6][BF4]6 · 6 MeCN (1).  This reaction was performed under nitrogen and 

under anhydrous conditions.  White [Cu(NCMe)4][BF4] (0.18 g, 0.58 mmol) and purple 

bmtz (0.069 g, 0.29 mmol) were dissolved in 50 mL of distilled acetonitrile resulting in a 

dark brown solution which was stirred overnight.  (It should be noted that this particular 

reaction was left to stand for three days under nitrogen).  Undissolved bmtz was isolated 

from the reaction via suction filtration.  Layering with diethyl ether, under nitrogen, in a 

thin tube resulted in the formation of brown block crystals after three months. 

Further attempts to react Cu0/1+ and bmtz.  Other attempts to synthesize Cu-bmtz 

complexes are summarized in Tables 2.1 and 2.2.  All of these reactions followed the 
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same basic procedure as 1 with the variations being limited to the Cu:bmtz ratio, reaction 

volume and crystallization conditions (Table 2.1).  It should be noted that these samples 

were not allowed to stand before crystallization as is the case in 1. These attempts 

generally resulted in the formation of a blue precipitate or a mixture of dark blue and 

brown precipitates.  Reactions involving [Cu(NCMe)4][X] (X = [PF6]-, [SbF6]-), were 

performed in an attempt to grow crystals of analogues of 1 while the reactions involving 

Cu0 were intended to be attempts at controlling redox chemistry in the formation of this 

complex (Table 2.2) (see Discussion).  (Glöckle, et al. were able to reduce bmtz, using 

Cu0 in the presence of triphenylphosphine.81) 

Blue precipitate (2).  It was discovered that the blue precipitate observed in many of the 

reactions of [Cu(NCMe)4][BF4] and bmtz could be synthesized exclusively by the 

following method(s).  A clear solution of [Cu(NCMe)4][BF4] (0.098 g, 0.31 mmol) in 

distilled CH2Cl2 (10 mL) and a fuchsia solution of bmtz (0.044 g, 0.18 mmol) in distilled 

CH2Cl2 were prepared under nitrogen.  Addition of the bmtz solution to the 

[Cu(NCMe)4][BF4] solution resulted in the instantaneous formation of a dark blue 

precipitate which can be isolated by vacuum filtration. 

 Alternatively, a slow diffusion reaction can be set up in a three chambered cell 

(Scheme 2.1) by placing solutions of [Cu(NCMe)4][BF4] (0.050 g, 0.16 mmol) in 

distilled CH2Cl2 (~15 mL) and bmtz (0.025 g, 0.11 mmol) in distilled CH2Cl2 (~15 mL) 

into opposite chambers of the cell with distilled CH2Cl2 (~15 mL) in the central chamber 

 



 

 

 

 
Table 2.1.  Summary of reaction and crystallization attempts to synthesize 1.  This table does not include information reported 
for the synthesis of 2. 

[Cu(NCMe)4][BF4] (g) bmtz (g) Molar Ratio MeCN (mL) Crystallization Condition* Result† 
0.18 0.069 2 : 1 50 layered with diethyl ether 1a or 2 
0.18 0.069 2 : 1 50 layered with benzene 2 
0.18 0.069 2 : 1 50 layered with nitromethane ----- 
0.18 0.069 2 : 1 50 added diethyl ether (40 mL)c ‡ 
0.55 0.20 2 : 1 20, 80b added diethyl ether (40 mL)d ‡ 
0.18 0.069 2 : 1 50 vapor diffusion with diethyl ether 2 
0.18 0.10 4 : 3 50 layered with diethyl ether 1 
0.10 0.061 4 : 3 50 layered over toluene 2 or 1e 
0.10 0.061 4 : 3 50 layered over toluened ----- 
0.18 0.10 4 : 3 50 layered with THF 2 
0.18 0.10 4 : 3 50 added THF (95 mL)c ‡ 
0.69 0.35 3 : 2 50 mL added diethyl etherf ‡ 

 
*all crystallization attempts were performed on a small scale in thin crystallization tubes unless otherwise stated. 
†all blue precipitates observed are assumed to be 2. 
‡these attempts yielded a black precipitate: based on observations of recrystallization attempts it is possibly a mixture of 1 and 
2. 
athe information in red is a result of the synthesis reported for 1. 
bthe volumes of MeCN used to dissolve [Cu(NCMe)4][BF4] and bmtz, respectively. The [Cu(NCMe)4][BF4] solution was 
added to the bmtz solution. 
cbulk crystallization attempt that was placed in the freezer. 
dthe reaction was layered in a Schlenk tube (bulk scale). 
ea brown powder was observed, presumed to be 1. 
fprecipitating solvent was added slowly until a solid was observed. 
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Table 2.2.  Summary of reaction and crystallization attempts to synthesize clusters related to 1.  This table does not include 
information reported for the synthesis of 2. 

[Cu(NCMe)4][PF6] (g) bmtz (g) Molar Ratio MeCN (mL) Crystallization Condition Result 
0.83 0.37 3 : 2 50 mL added diethyl etherf ‡ 

      [Cu(NCMe)4][SbF6] (g) bmtz (g) Molar Ratio MeCN (mL) Crystallization Condition Result 
1.2 0.50 4 : 3 30 mL added THFf ----- 
1.2 0.50 4 : 3 40 mL added diethyl ether (40 mL)f ‡ 

      Cu0 (g)g bmtz (g) Molar Ratio CH2Cl2 (mL) Crystallization Condition Result 
0.021 (foil) 0.081 1 : 1 15 mL 

 
no reaction 

0.50 (powder) 0.079 24 : 1 35 mL 
 

no reaction 
 

‡these attempts yielded a black precipitate, based on observations of recrystallization attempts it is possibly a mixture of 1 and 
2. 
fprecipitating solvent was added slowly until a solid was observed. 
gthe copper metal was activated with nitric acid. 
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Scheme 2.1.  Schematic diagram of a three chambered cell used in a crystallization 
attempt of 2. 
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separating the other two solutions.  After several days a mixture of precipitate and 

microcrystals were observed. 

Physical Measurements 

Nuclear Magnetic Resonance (NMR) Spectroscopy.  The 1H NMR spectra were 

recorded at 20 °C on a 300 MHz Mercury spectrometer.  The 1H NMR spectra were 

referenced relative to the residual proton impurities in the deuterated solvent (CDCl3). 

Mass Spectrometry (MS).  Electrospray mass spectral data were acquired on a Sciex 

API QStar Pulsar mass spectrometer using an electrospray ionization (ESI) source.  ~1 

mg/mL solutions of the samples were used, and the data were acquired in the positive-

ion mode.  The ion spray voltage was set at ~4800 V, and the nozzle skimmer potential 

was adjusted to 10 V to minimize fragmentation.  Theoretical isotope ratio calculations 

were performed using the program IsoPro 3.0. 

Electron Paramagnetic Resonance (EPR) Spectroscopy.  X-band EPR spectra were 

recorded on a Bruker EMX spectrometer equipped with a Hewlett-Packard 5352B 

microwave frequency counter, an ER4102 ST cavity, and the Oxford Instruments ESR 

900 Crysostat.  Data were collected in the solid state at 4 K and plotted with the 

SpinCount 3.1.282 software. 

Magnetic Susceptibility Measurements.  Magnetic susceptibility measurements were 

performed on a Quantum Design SQUID MPMS-XL magnetometer.  Measurements 

were carried out in the DC mode in an applied flied of 0.1 T in the 2-300 K range. 
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Single Crystal X-ray Diffraction Studies 

 The crystal selected for study was suspended in polybutene oil (Aldrich), 

mounted on a cryoloop and placed in a N2 cold stream.  Single-crystal X-ray data were 

collected on a Bruker SMART 1000 diffractometer equipped with a CCD detector.  The 

data sets were recorded as two ω-scans of 600 frames each, at 0.3° step width, and two 

ω-scans of 400 frames each, at 0.5° step width.  The Bruker SAINT83 software package 

was used to integrate the data.  The absorption correction (SADABS84) was based on 

fitting a function to the empirical transmission surface as sampled by multiple equivalent 

measurements.  Solution and refinement of the crystal structure was carried out using the 

SHELX85 suite of programs and the graphical interface X-SEED.86  Preliminary 

indexing of the data sets established a triclinic unit cell for the compound and systematic 

extinctions indicated that they belonged to the space group P-1 (No. 2).  The structures 

were solved by direct methods, which resolved the positions of all the atoms in the 

cluster and some of the anion and solvent atoms.  The remaining non-hydrogen atoms 

were located by alternating cycles of least-squares refinements and difference Fourier 

maps.  All hydrogen atoms were placed in calculated positions.  The final refinements 

were carried out with anisotropic thermal parameters for all non-hydrogen atoms.  A 

summary of pertinent information relating to unit cell parameters, data collection and 

refinement statistics is provided in Table 2.3. 

Computational Methods 

 Geometry optimization of bmtz was performed using density functional theory 

(DFT)87 as contained in the Gaussian0388 program suite.  The Becke3 parameter hybrid 
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exchange functional89 and Lee-Yang-Parr correlation function90 (B3LYP) was also used.  

A Pople style triple-ζ basis set with an optimized p and d-polarization functions91-92 (6-

311++G(d,p)) was used.  The electrostatic potential map was generated using Cerius2 

4.1093  with an isodensity value was set at 0.02. 

 

Results 

Synthesis 

 Most reaction attempts resulted in a blue powder that is most likely 2.  This 

assignment is by no means certain, as there is no evidence other than color to support 

any conclusion.  The single largest difficulty for this reaction was the small quantities of 

solid material isolated from most reactions, and the inability to determine if the powder 

isolated is actually a pure compound (it will be shown that there are at least two separate 

compounds 1 and what is referred to as product 2 that are being formed during the 

synthesis).  This conclusion is supported by the appearance of both blue and brown 

powder in the crystallization tubes during some of the crystallization attempts reported 

in Table 2.1.  Despite these difficulties, crystals of 1 were grown on three separate 

occasions (though only a few crystals were harvested each time and only single crystal 

X-ray data was gathered each time).  The recent discovery of a direct synthesis for 2 will 

also enable identification of 2 which is proposed to be a kinetic product on the way to 1, 

the thermodynamic product.  (It should be noted that attempts to reflux the reaction 

mixture during the synthesis of 1 still yielded mixtures of 1 and 2). 
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Single Crystal X-ray Diffraction Studies 

 Single crystal X-ray studies revealed that the crystals of 1 crystallize in the space 

group P-1.  Crystallographic parameters are listed in Table 2.3.  The structure consists of 

eight copper atoms bound to six bmtz ligands forming a rectangular prism (Figure 2.4).  

Each copper atom is bound to two bmtz ligands in a pseudo-tetrahedral environment 

with N-Cu-N angles between 80.47° and 82.25° (109.5° ideal).  The four μ2-bound bmtz 

ligands are distorted to accommodate binding to the copper centers (Figure 2.5).  Two of 

the six anions are located over the tetrazine rings of the μ4-bound bmtz ligands, while the 

other four are located over the pyrimidine rings of the μ2-bound bmtz ligands (Figure 

2.6).  The six solvent molecules are located in the crystal interstices and do not appear to 

interact with the cluster.  All of the anions and solvent molecules are related by the 

inversion center located in the center of the cluster. 

 Intramolecular π-π interactions dominate the cluster and intermolecular π-π 

(Figure 2.7, Table 2.4a), anion-π (Figure 2.6, Table 2.4b) and carbon based hydrogen 

bonding (Figure 2.8, Table 2.4b) interactions regulate the crystal packing.  There are two 

distinct cases of π-π stacking occurring: one case exhibits substantial overlap (two of the 

three rings of the bmtz ligand interacting with the equivalent ligand in the next cluster 

over (Figure 2.7b)) and the second case exhibits minimal π-π interactions (only two 

atoms of a pyrimidine ring interacting with the equivalent atoms in the next cluster 

(Figure 2.7c)).  Distances observed for all of the π-π interactions observed in the 

previously reported range for metal complexed pyridine-pyridine interactions (3.4-3.8 

Å).94  
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Table 2.3.  Crystallographic data and structural refinement parameters for compound 1. 

 
 [Cu8(bmtz)6][BF4]6·6MeCN 
chemical formula C72H54N54B6F24Cu8 
asymmetric unit formula 
formula weight 

C36H27N27B3F12Cu4 
2704.78 

space group P-1 (No. 2) 
A 13.628 (2) Å 
B 15.175 (2) Å 
C 15.460 (2) Å 
Α 113.922 (2)° 
Β 115.585 (2)° 
Γ 93.858 (2)° 
Volume 2519.6 (6) Å3 
Z 2 
Temperature 110 K 
density (calc) 1.7823 g/cm3 
abs coeff (μ) 1.788 mm-1 
crystal color and habit brown block 
crystal size (mm3) 0.28 × 0.27 × 0.23 
Radiation Mo Kα, 0.71073 Å 
θ range 1.54-28.27° 
reflections collected 24047 [Rint = 0.0314] 
data/parameters/restraints 11537/742/0 
R1 0.0498 
wR2 0.1353 
GOF (F2) 1.026 
max./min. residual 

densities (e·Å-3) 
1.306, -0.620 
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Figure. 2.4.  Thermal ellipsoid plot of [Cu8(bmtz)6][BF4]6 · 6 MeCN (1) drawn at the 
50% probability level.  Hydrogen atoms are in calculated positions.  Anions and solvent 
molecules omitted for clarity.  Copper atoms (teal), carbon atoms (black), nitrogen atoms 
(blue), hydrogen atoms (gray). 



 

 

 
 

  
 

Figure 2.5.  Depiction of the structure of 1 with the μ2 bound bmtz ligands in the plane of the paper (a).  Crystal structure of 1 
with the μ4 bound bmtz ligands in the plane of the paper (b).  The red lines are added to depict the curvature of the ligand (they 
are straight lines between the respective carbon atoms).  Copper atoms (teal), carbon atoms (black), nitrogen atoms (blue). 
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Figure 2.6.  View of the structure of 1 showing the position of one of the [BF4]- anions (A) over the tetrazine rings of the μ4 
bound bmtz (a).  View of 1 showing the position of two of the [BF4]- anions (B,C) over the pyrimidine rings of the μ2 bound 
bmtz (b).  These three anions are related to the other three anions through an inversion center in the center of the cluster.  
Copper atoms (teal), carbon atoms (black), nitrogen atoms (blue), hydrogen atoms (gray), phosphorus atoms (pink), fluorine 
atoms (green). 
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Figure 2.7.  Packing diagrams demonstrating the intermolecular π-π interactions in the 
crystal structure of 1 (a).  Clusters 1′ and 1′′ (b) exhibit substantial stacking.  Clusters 1′ 
and 1′′′ (c) exhibit virtually no stacking.  Copper atoms (teal), carbon atoms (gray), 
nitrogen atoms (blue). 
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Figure 2.8.  Packing diagrams depicting the [BF4]- anions engaging in both anion-π (cluster on the right) and carbon based 
hydrogen bonding (cluster on the left).  The interactions involving anions A (a), B (b) and C (c) are shown.  Refer to Figure 2.6 
for anion labels.  Atoms engaging in hydrogen bonding interactions are shown as spheres. Copper atoms (teal), carbon atoms 
(black), nitrogen atoms (blue), hydrogen atoms (gray), phosphorus atoms (pink), fluorine atoms (yellow). 
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Table 2.4a.  Distances observed for π-π stacking interactions.  (Sum of the van der Waals 
radii for pertinent atoms: C+C: 3.40 Å, C+N: 3.25 Å, N+N: 3.10 Å.95) 
 

 
Rings Involved Distance(s) (Å) 

Intramolecular tetrazine (μ4) - tetrazine (μ4) 3.27 

 
pyrimidine (μ4) - pyrimidine (μ4) 3.44 - 3.80 

 
tetrazine (μ2) - tetrazine (μ2) 3.77 - 3.79 

 
pyrimidine (μ2) - pyrimidine (μ2) 3.48 - 3.71 

Intermolecular tetrazine (μ4) - pyrmidine (μ2)* 3.513 - 3.613 

 
pyrimidine (μ2) - pyrmidine (μ2)† 3.456 

 
*Refer to Figure 2.7b. 
†Refer to Figure 2.7c. 
 
 
Table 2.4b.  Distances observed for anion-π and carbon based hydrogen bonding 
interactions.  (Sum of the van der Waals radii for pertinent atoms: F+C: 3.05 Å, F+N: 
2.90 Å, F+H: 2.65 Å.95) 
 

 
Anion Location* Atoms† Distance (Å) 

Anion-π Interaction tetrazine (μ4) (A) F5 - C23 2.824 

  
F5 - C24 3.006 

  
F7 - C25 3.067 

 
pyrimidine (μ2) (B) F9 - C4 3.054 

  
F11 - C2 3.439 

 
pyrimidine (μ2) (C) F2 - N10 3.102 

  
F3 - N9 3.242 

  
F3 - C11 3.191 

CH – bonding tetrazine (μ4) (A) F6 - H1 2.615 

  
F6 - H2 2.691 

  
F6 - H11 2.657 

  
F8 - H2 2.459 

  
F8 - H12 2.590 

 
pyrimidine (μ2) (B) F10 - H27 2.868 

 
pyrimidine (μ2) (C) F1 - H21 2.864 

  
F1 - H30 2.877 

  
F4 - H21 2.616 

  
F4 - H30 2.470 

 
*Refer to Figure 2.6. 
†Refer to Figures 2.6 and 2.8.  
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 Four of the pyrimidine rings that do not participate in π-π interactions are in 

contact with four [BF4]- anions (B and C as shown in Figure 2.6).  The resulting anion-π 

interactions are near or slightly longer than the sum of the van der Waals radii of a 

carbon and fluorine atom (3.05 Å95) (Table 2.4b), indicating a weak interaction.  It is 

interesting to note that the anions over the tetrazine rings of the μ4-bound bmtz 

molecules (A as shown in Figure 2.6) are oriented such that the fluorine atoms of the 

tetrafluoroborate are directed towards the electropositive carbon atoms of the bmtz.  A 

similar orientation is observed in two of the anions (B) located over the peripheral 

pyrimidine rings (μ2-bound bmtz molecules), while the other two anions are oriented 

such that the fluorine atoms are oriented toward the two nitrogen atoms (C).  As 

expected, the anions in close-contact with the nitrogen atoms are further away than those 

in close-contact with the carbon atoms (Table 2.4b).  In fact the C anions are far enough 

away from the pyrimidine ring that it would be unreasonable to label them as forming an 

anion-π interaction. 

 The [BF4]- fluorine atoms that are not engaged in anion-π interactions are 

involved in weak hydrogen bonding interactions with the pyrimidine hydrogen atoms in 

the neighboring clusters.  For the anions A and C (Figure 2.8), the distances between the 

fluorine atoms and hydrogen atoms are reasonable for an H···F interaction,96-100 but 

anion B is not close enough to the next cluster to participate in hydrogen bonding.  While 

some of the distances observed between anions A and C are less than 2.65 Å (the sum of 

the van der Waals radii for H+F and a cutoff for H-bonding interactions96-97), previously 

reported CH···F interactions (2.25-2.54 Å)98 do tend to be shorter than most of the 
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distances observed in 1.  One possible explanation for this length could be the non-linear 

relationship between CH···F interaction (Figure 2.8).  The borderline distances and non-

linear relationship underscore the weakness of these H-bonding interactions.  Cluster 

1′′′, as shown in Figure 2.7, is actually interacting with cluster 1′ through both π-π 

interactions and anion C.)  (The packing diagram for the crystal, as seen along the b axis 

is depicted in Figure 2.9.) 

Mass Spectrometry 

 ESI-MS for the dark powder isolated from 1 and the blue powder isolated from 2 

revealed the presence of a peak at m/z = 342.0 (Figure 2.10a) which corresponds to the 

fragment [Cu(bmtz)(NCMe)]+.  The isotopic distribution for this peak is characteristic 

for copper and along with the obvious color change in the reaction confirms the presence 

of a copper-bmtz species. 

 Interestingly, ESI-MS also reveals two other peaks in some samples at m/z = 

266.1 (Figure 2.10c) and m/z = 385.1 which correspond to the species [Fe(bmtz)2]2+ and 

[Fe(bmtz)3]2+, respectively.  The most likely source of the iron contamination is the 

metal cannula used during the original reaction.  The employment of a Teflon cannula 

eliminated these two peaks. 

Electron Paramagnetic Resonance Spectroscopy 

 EPR spectroscopy on 2 revealed a signal at g = 2.022 (Figure 2.11).  The breadth 

observed in the EPR signal could be an indication of partial delocalization of the 

unpaired electron between the copper center and the bmtz ligand.  The position of the 

signal is intermediate between the g = 2.0040 of a bmtz radical (X-band EPR)81 and the 
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previously reported values for copper(II), g
┴
= 2.057 and a g║= 2.223 (Q-band EPR).101  

Given the dark blue color of the sample, and the position of the EPR signal, it is 

reasonable to assume that the compound 2 contains a Cu(II) center.  At X-band 

frequencies these two signals for copper(II) can overlap,101 which may explain why a 

second signal is not observed for copper(II).  No separate signal was observed at g = 

2.0040 for the bmtz based radical giving further support to the idea of delocalization. 

Magnetic Susceptibility Measurements 

 Magnetic susceptibility measurements were performed on a sample of 2 (Figure 

2.12).  Positive values observed in the χgT plot demonstrate that the sample is 

paramagnetic providing further evidence that a redox reaction is taking place.  The 

actual identify of 2 has not yet been ascertained, so no definite assignments can be made. 

 

Discussion 

 The pseudo tetrahedral environment of the copper atoms in the cluster indicate 

that in 1 the copper atoms can be assigned as copper(I).95  While this assignment places 

the cluster at an 8+ charge, there are only six counter-anions in the unit cell.  The 

remaining two electrons are assigned to coordinated bmtz molecules.  Support for this 

assignment is found in the tetrazine N-N distances of the μ4-bound bmtz ligands.  These 

are similar to those reported by Glöckle, et al. for the compound 

{(bmtz)[Cu(PPh3)2]2}[BF4] which contains a bmtz radical anion (Table 2.5).81  The 

deformation  of  the  μ2-bound  bmtz  ligands  prevents  an  accurate  assessment  of their  
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Figure 2.9.  Packing diagram for 1 as viewed along the b axis.  Hydrogen atoms and 
solvent molecules were omitted for the sake of clarity.  Copper atoms (teal), carbon 
atoms (gray), nitrogen atoms (blue), phosphorus atoms (pink), fluorine atoms (yellow). 
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Figure 2.10.  Mass spectrum showing [Cu(bmtz)(NCMe)]+ (a) as observed in either a 
mixture of 1 and 2 or in samples of 2 and the corresponding calculated spectrum (b).  
The spectrum for [Fe(bmtz)2]2+ as observed in the mixture of 1 and 2 is also shown (c) 
along with the corresponding calculated spectrum (d).  The calculated images were 
generated by IsoPro 3.0, which assumes all species to carry a +1 charge. 
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Figure 2.11.  EPR spectrum for a sample of 2 performed in the solid state at 4 K. 
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Figure 2.12.  Thermal variation of the χgT product for the compound 2. 
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oxidation state by bond distances, although the N-N distances for the nitrogen atoms 

bound to the copper atoms are similar to those observed for neutral bmtz (Table 2.5).  

Since bmtz is introduced as a neutral molecule, the reduction of the ligand must occur in 

situ.  The paramagnetic response observed in the magnetic susceptibility measurement 

and the EPR spectrum indicate the presence of unpaired electron density in 2.  The initial 

reaction (for either 1 or 2) is carried out by mixing a copper(I) salt (a d10 metal ion) and 

neutral bmtz, neither of which possesses any unpaired electrons.  The intense blue color 

of compound 2 implies that Cu(II) may be present,95 and the fact that it is paramagnetic 

is clear support for the fact that a redox reaction is occurring. 

 The extensive conjugation of the bmtz molecule and possibility for Cu-bmtz dπ-

pπ interactions in 1 could lead to the delocalization of unpaired electrons throughout the 

entire cluster.  It is also possible for cluster 1 to possess several oxidation states, ranging 

from 12+ to 18+ corresponding to varying numbers of reduced bmtz ligands.   Since no 

known sample of high purity has been collected in sufficient quantities, cyclic 

voltammetry will not be reported.  It should also be noted that the samples show low 

solubility in acetonitrile and dichloromethane. 

 Cluster 1 exhibits an interesting geometry that is reminiscent of the 2x2 grid 

complexes [Ag4(bppn)4][SbF6]4 (Figure 2.3c)65 and [Cu4(bppn)4][CF3SO3]4 (Figure 

2.13).102  The rectangular prism observed in 1 can be thought of as two 2x2 grids fused 

together in an “extended” cluster taking full advantage of the four binding sites on the 

bmtz ligand (as opposed to bppn).  Exclusion of any type of capping ligand on the  

 



  

 

 
Table 2.5.  Comparison of the tetrazine N-N distances for bmtz0/-1/-2 and compound 1. 
 

Compound dN-N (Å) dCu-N (Å) Charge on bmtz 
*bmtz 1.33 ----- 0 

*{(bmtz)[Cu(PPh3)2]2}+ 1.38 1.99, 2.13 -1 
*{(H2bmtz)[Cu(PPh3)2]2}2+ 1.42, 1.43 2.07, 2.16 -2† 

[Cu8(bmtz)6]6+ 1.39, 1.40 (μ4 bmtz) 1.99 , 1.99 -1 

 
1.34, 1.34, 1.99, 1.99 (μ2 bmtz) 2.05, 2.05 N/A 

  
*Data taken from Glöckle, et al.81 
†H2bmtz is considered to be a reasonable model for [bmtz]2- 
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Figure 2.13.  Crystal structures of the [Cu4(bppn)4]4+ cation. 
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copper atoms, as opposed to the approach of Göckle, et al., allows the cluster to expand 

to nuclearity eight. 

 

Conclusions 

 An improved synthesis for the molecules H2bmtz and bmtz has been developed 

as part of our goal to investigate the molecule bmtz as a ligand capable of forming 

anion-π interactions similar to those observed in previous64-65 and ongoing investigations 

of the ligand bptz.  As a part of these investigations a new, unprecedented copper-bmtz 

complex, 1, has been synthesized.  X-ray data indicate that 1 contains two unpaired 

electrons that are associated with the bmtz ligands, but possibly delocalized across the 

entire cluster.  As expected for the bmtz ligand, anion-π interactions are observed 

between the [BF4]- anions and both the tetrazine and pyrimidine rings of the ligand.  

While 1 does not exhibit evidence for anion-π templation, in that there is no 

encapsulation of anions, further work is warranted given the possibilities for rich 

electrochemistry for this unique cluster.  A second product, a blue species referred to as 

compound 2, was also synthesized and has been shown to be paramagnetic with the EPR 

data indicating some copper(II) character; this material has not yet been identified and 

further studies will have to be performed. 
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CHAPTER III 

COMPUTATIONAL INVESTIGATION OF THE ANION-PI INTERACTIONS 

BETWEEN COMPLEX ANIONS AND OLEFINS 

 

Introduction 

 Anion-π interactions generally refer to the noncovalent interactions between an 

anion and an aromatic ring.  This description completely overlooks the potential for 

anion-π interactions in non-aromatic, conjugated structures; olefins.  There have been 

only a few reports dealing with this topic, specifically the work of Kim, et al.56 and 

Rosokha, et al.103 

 Kim, et al. reported a series of computations exploring the anion-π interactions 

between three different types of π-systems: olefinic (tetrafluoroethylene), aromatic 

(hexafluorobenzne) and heteroaromatic (1,3,5-triazine).  It was shown that these 

molecules could interact attractively not only with halides, but with cyanide, nitrate and 

carbonate anions as well.56 

 Experimental work by Rosokha, et al. demonstrated, in both solution and solid 

state, what are considered to be π-type charge-transfer (CT) complexes between a variety 

of molecules (including tetracyanoethylene (TCNE), p-chloranil and o-chloranil) and 

chloride, bromide and iodide anions.103  Of particular interest is the UV/visible 

spectroscopic evidence for the CT between the bromide anion and TCNE.  This 

interaction was also observed crystallographically.  Subsequent reports have 
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demonstrated that these type of halogen-π donor-acceptor complexes104 could be used to 

create molecular wires.105-106 

 A new series of computational studies was undertaken to explore the possibility 

of anion-π interactions between complex anions (tetrafluoroborate ([BF4]-) and 

hexafluorophosphate ([PF6]-) and a series of olefins.  The olefins selected for this study 

include the aforementioned TCNE, as well as 7,7,8,8-tetracyanoquinodimethane 

(TCNQ), 7,7,8,8-tetracyano-1,2,4,5-tetrafluoroquinodimethane (TCNQF4) and 

octacyanoquinodimethane (TCNQ(CN)4) (Scheme 3.1). 

 

Methods 

Geometry Optimizations 

 All systems studied were optimized using two different methods.  Density 

functional theory (DFT),87 as contained in the Gaussian0388 program suite, was 

employed using the Becke3 parameter hybrid exchange functional89 and the Lee-Yang-

Parr correlation function90 (B3LYP).  The second order Møller-Plesset perturbation 

theory (MP2),107-108 as contained in the Gaussian03 program suite, was also employed as 

an ab initio method.  Both methods were used with a Pople style double-ζ basis set with 

an optimized d-polarization function (6-31+G(d′)).109 

 For a given olefin-anion pair, each geometry optimization was performed three 

times beginning with three different starting geometries (Figure 3.1).  In all cases the 

anion  was  placed  outside  of  van der Waals  contact  with  the  olefin  with  one  of the  



  

 

 

      

    
 

Scheme 3.1.  Schematic representations of tetracyanoethylene (TCNE) (a), 7,7,8,8-tetracyanoquinodimethane (TCNQ) (b), 
7,7,8,8-tetracyano-1,2,4,5-tetrafluoroquindodimethane (c) and octacyanoquinodimethane (TCNQ(CN)4) (d). 
 

a b 

c d 
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Figure 3.1.  Model depicting the three different starting geometries used during both the 
DFT and MP2 geometry optimizations.  Anion A is located perpendicular to the plane of 
the molecule, anion B is located in the plane of the molecule aligned with short axis 
(perpendicular to the C=C bond in the case of TCNE) and anion C is located in the plane 
of the molecule aligned with the long axis (along the C=C bond in the case of TCNE).  
Carbon atoms (gray), nitrogen atoms (blue), boron atoms (pink), fluorine atoms (green). 
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fluorine atoms directed toward the olefin.  The lowest energy structure resulting from 

these three optimizations was used in all subsequent computations. 

 Additional geometry optimizations were performed on select systems employing 

B3LYP with a Pople style triple-ζ basis set with an optimized p and d-polarization 

functions91-92 (6-311++G(d,p)).  The olefins selected for this were TCNQ and TCNQF4 

with [BF4]- and [PF6]-.  Starting position B (Figure 3.1) was used. 

 Frequency computations were performed on the lowest energy optimization for 

each olefin-anion pair using B3LYP/6-31+G(d′). 

Electrostatic Potential Maps 

 The electrostatic potential (ESP) maps were generated using Cerius2 4.893 with 

an isodensity value was set at 0.02.  The optimized olefin structures determined by 

B3LYP/6-31+G(d′) were used. 

Atoms in Molecules Computations 

 Critical point analysis is the result of the Atoms in Molecules (AIM) theory put 

forward by R. F. W. Bader.110-111  This theory correlates the critical points in the electron 

density (i.e. maxima, minima and saddle points) to chemical structures.  Each of the four 

types of critical points (CPs) is assigned the notation (ω, σ); the rank (ω) is generally 3 

for molecules at or near energetically stable conformations; and the signature (σ) is the 

sum of the signs of the change in electron density around that point and is indicative of 

the nature of the critical point.110  Essentially, as one moves away from a given point 

along a Cartesian axis in three-dimensional space, the electron density will either 

increase (+1) or decrease (-1).  The sum of x, y, and z terms results in the rank of the 
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critical point, σ.  These ranks can be used to describe atoms (-3), bonds (-1), rings (1) 

and cages (3). 

 Critical point analysis was performed on the lowest energy structures for each 

olefin-anion pair, as determined by DFT, using the AIM 2000 program.  The 

wavefunction file determined by DFT provided the input for AIM 2000. 

Natural Bond Orbitals Computations 

 Natural Bond Orbitals (NBO) computations were performed with GenNBO 

5.0W112 for selected systems.  The input files for GenNBO 5.0W were prepared using 

the internal NBO calculation, in Guassian03, on the previously obtained optimized 

geometries.  All computations using Guassian03 were performed at the same level of 

theory as the optimizations. 

 

Results 

Geometry Optimizations 

 The geometry optimization starting in position C for the ab initio optimizations 

of TCNQ(CN)4···[BF4]-, TCNQX4···[PF6]- and TCNQ(CN)4···[PF6]- have not yet 

converged at the time of this writing (for TCNQ(CN)4···[PF6]-, all three starting 

geometries have not yet converged). 

 Both the DFT and MP2 results are similar for each system studied.  For each 

olefin, the anion moved from position A, B or C (Figure 3.1) to a position above the 

centroid of the molecule positioning itself in such a way to maximize contact between 

the olefin π-system and the anion fluorine atoms (Figures 3.2, 3.3, 3.4, 3.5).  In almost 



  

 

 
 B3LYP/6-31+G(d′) MP2/6-31+G(d′) 

     
 
 

     
Figure 3.2.  Lowest energy geometry optimized structures of TCNE···[X]- (X = BF4, PF6).  Structures optimized using 
B3LYP/6-31+G(d′) are shown on the left and structures optimized using MP2/6-31+G(d′) are shown on the right.  Carbon 
atoms (gray), nitrogen atoms (blue), boron atoms (pink), phosphorus atoms (purple), fluorine atoms (green). 
  

Top View 

Side View 
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 B3LYP/6-31+G(d′) MP2/6-31+G(d′) 

     
 

     
 
Figure 3.3.  Lowest energy geometry optimized structures of TCNQ···[X]- (X = BF4, PF6).  Structures optimized using 
B3LYP/6-31+G(d′) are shown on the left and structures optimized using MP2/6-31+G(d′) are shown on the right.  Carbon 
atoms (gray), nitrogen atoms (blue), hydrogen atoms (white), boron atoms (pink), phosphorus atoms (purple), fluorine atoms 
(green). 
  

Top View 
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 B3LYP/6-31+G(d′) MP2/6-31+G(d′) 

     
 

     
 
Figure 3.4.  Lowest energy geometry optimized structures of TCNQF4···[X]- (X = BF4, PF6).  Structures optimized using 
B3LYP/6-31+G(d′) are shown on the left and structures optimized using MP2/6-31+G(d′) are shown on the right.  Carbon 
atoms (gray), nitrogen atoms (blue), boron atoms (pink), phosphorus atoms (purple), fluorine atoms (green). 
  

Top View 

Side View 
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 B3LYP/6-31+G(d′) MP2/6-31+G(d′) 

    
 

    
 
Figure 3.5.  Lowest energy geometry optimized structures of TCNQ(CN)4···[X]- (X = BF4, PF6).  Structures optimized using 
B3LYP/6-31+G(d′) are shown on the left and structures optimized using MP2/6-31+G(d′) are shown on the right.  No data is 
presented for the MP2 optimization of TCNQ(CN)4···[PF6]-.  Carbon atoms (gray), nitrogen atoms (blue), boron atoms (pink), 
phosphorus atoms (purple), fluorine atoms (green). 
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all cases the final geometries for the three optimizations were similar in energy.  

Ignoring the dipodal interaction observed in the DFT optimized geometry of 1a, the 

anion adopted a tripodal positioning in all systems.  The optimized geometry predicts, in 

almost all cases, that the anion will be positioned in such a way as to maintain a plane of 

symmetry, perpendicular to the plane of the olefin, running along either the short or long 

axis of the olefin.  Distances observed between the anion fluorine atoms and the nearest 

carbon atoms of the olefins (Table 3.1) are well within the sum of the van der Waals 

radii, 3.05 Å for fluorine and carbon.95 

 The exceptions are in the DFT optimizations of X···[BF4]- (X = TCNE, TCNQ), 

systems 1a and 2a, respectively, and the ab initio optimization of TCNQ(CN)4···[BF4]-, 

system 4a.  For 1a, the [BF4]- anion adopted a tripodal positioning (similar to the MP2 

result shown in Figure 3.2) for two of the three optimized geometries as opposed to the 

dipodal position shown for DFT in Figure 3.2.  The DFT optimized geometries for 2a 

were also very different from one another despite having very similar energies (Figure 

3.6).  This variation exhibited by the [BF4]- anion, with respect to TCNQ, suggests that 

the minimum energy structure found by the DFT optimization is more likely a shallow 

potential well than a sharp minimum; the [BF]4
- anion can potentially interact with many 

points along the planar surface of the TCNQ molecule.  The optimized geometry for 4a 

further supports this hypothesis in that the lowest energy structure contains an anion 

positioned over one of the ring bonds, with a fluorine atom interacting with a nitrile 

group (the other structure solved contains that anion aligned with the short axis as has 

been previously observed). 
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Figure 3.6.  Overlaid images of the three geometry optimized structures for 
TCNQ···[BF4]- (2a) obtained by DFT computation.  Energies of interaction for these 
three positions are given in kcal/mol.  Carbon atoms (gray), nitrogen atoms (blue), 
hydrogen atoms (white), boron atoms (pink), fluorine atoms (green). 
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Table 3.1.  Results of the DFT and ab inito geometry optimizations. 

   
DFT/B3LYP/6-31+G(d') MP2/6-31+G(d') 

System Olefin Anion dF-C (Å) Et {Ht} (kcal/mol) dF-C (Å) Et {Ht} (kcal/mol) 
1a TCNE [BF4]- 2.69 -21.31 {-20.62} 2.71 - 3.01 -25.34 
1b TCNE [PF6]- 2.86 - 2.88 -15.03 {-14.06} 2.71 - 2.90 -23.09 
2a TCNQ [BF4]- 2.94 - 3.14 -18.18 {-17.07} 2.94 - 3.15 -23.89 
2b TCNQ [PF6]- 2.93 - 3.62 -15.29 {-14.29} 2.99 – 3.13* -22.72* 
3a TCNQF4 [BF4]- 2.86 - 2.88 -25.69 {-24.38} 2.75 - 2.82 -33.18 
3b TCNQF4 [PF6]- 2.87 - 2.91 -21.80 {-20.54} 2.75 – 2.83* -30.85* 
4a TCNQ(CN)4 [BF4]- 2.83 - 3.19 -37.22 {-34.73} 2.71 – 3.02* -48.03* 
4b TCNQ(CN)4 [PF6]- 2.98 - 2.99 -32.49 {-29.47} ------ ----- 

*These values were obtained by comparing the results of the optimizations with starting geometries A and B only.  For all three 
systems, the optimization of starting position C encountered errors and had to be restarted.  As of the time of writing this 
thesis, those optimizations had not converged.  Based on the other  
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 Frequency computations do not reveal the presence of any imaginary frequencies 

indicating that the minima found by the DFT computations are correct and are not 

simply local minima.  Frequency computations were not performed on the ab initio 

results for reasons of both precedent and practicality.  These computations are simply 

too large for the resources available. 

 Energies of interaction (Et) were determined by subtracting from the total energy, 

the energies of the olefin and anion (Table 3.1).  These olefin and anion energies were 

determined by geometry optimization under B3LYP/6-31+G(d′) and MP2/6-31+G(d′).  

Frequency computations provided enthalpy correction values for the DFT results, 

allowing enthalpies of interaction (Ht) to be determined from the Et (Table 3.1).  Basis 

set superposition error (BSSE), the borrowing of one molecule’s basis set functions by a 

second non-bound molecule,113 was not corrected.  Counterpoise computations, 

traditionally employed to correct BSSE, are costly computations and are not generally 

performed with DFT results.  While it is common to employ the counterpoise technique 

with ab initio methods, such as MP2, it was decided that they would not be useful in this 

case since our purpose in determining these Et values was not to report them as absolute 

energies but to use them as a qualitative measure of the relative strengths of the 

interactions between the systems studied. 

 In order to determine if the hydrogen atoms on TCNQ would interfere with the 

formation of anion-π interactions by preferentially interacting with the anions, the DFT 

geometry optimization was repeated for 2a and 2b (see Table 3.1 for labels).  The basis 

set 6-311++G(d,p) was employed because of the addition polarization functions on the p 
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orbitals that it provides; these functions will allow for more flexibility for the orbitals on 

the hydrogen atoms.  Geometry optimization was also repeated for 3a and 3b to provide 

a point for comparison.  In all four cases, only starting geometry B was optimized as it 

positions the anion near the hydrogen atoms on TCNQ.  In all four cases, the anion again 

moved above the plane of the ring and adopted a similar position to those observed in 

Figures 3.3 and 3.4.  Energies of interaction for these optimizations were more favorable 

than those reported in the original optimization (Table 3.2) due to the more diffuse basis 

set. 

Electrostatic Potential Maps 

 ESP maps were generated for DFT geometry optimized structures of TCNE, 

TCNQ, TCNQF4 and TCNQ(CN)4 (Figure 3.7).  The ESP maps reveal that, with the 

exception of TCNE, all of the carbon atoms are equally electropositive. This uniformity 

explains the existence of multiple orientations of a single anion over an olefin (Figure 

3.6).  If none of the carbon atoms is more electropositive than any others, then no 

preferential alignment of the anion should be observed. 

Atoms in Molecules Computations 

 By using the results of the DFT optimizations, AIM analysis determined 

localized electron density between the anion fluorine atoms and olefin carbon atoms and 

identified this density as bond CP (Figure 3.8).  Ring and cage CPs are also observed 

between the anion and olefin in all cases (excluding 1a and 1b) adding further support to 

the existence of electron density between the two species.  Average values for this 

electron density are given in Table 3.3 along with average values for the electron density 
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Table 3.2.  Comparison of the energies of interaction for the DFT optimizations 
performed with 6-31+G(d′) and 6-311++G(d,p) basis sets. 

   
6-31+G(d') 6-311+G(d,p) 

System Olefin Anion Et (kcal/mol) Et (kcal/mol) 
2a TCNQ [BF4]- -18.18 -18.94 
2b TCNQ [PF6]- -15.29 -16.14 
3a TCNQF4 [BF4]- -25.69 -26.42 
3b TCNQF4 [PF6]- -21.80 -22.85 
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Figure 3.7.  Electrostatic potential (ESP) maps for TCNE (a), TCNQ (b), TCNQF4 (c) 
and TCNQ(CN)4 (d).  All energies are given in kcal/mol.  The ESP maps were generated 
by Cerius2 4.8 using the geometry optimized structure obtained through B3LYP/6-
31+G(d′).  All maps were made with an isodensity value of 0.02. 
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Figure 3.8.  Overlay of the schematic drawings of the DFT geometry optimized 
structures 1a (a), 2a (b), 3a (c) and 4a (d) with the critical points (CPs) as determined by 
AIM.  Olefin-[PF6]- results are similar.  All spheres are CPs.  CPs corresponding to 
atoms are colored appropriately: carbon atoms (gray), nitrogen atoms (blue), hydrogen 
atoms (white), boron atoms (pink), fluorine atoms (green).  Bond CPs (red), ring CPs 
(yellow), cage CPs (orange). 
  

a b 
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found in covalent bonds and in the rings of the TCNQX4 (X = H, F, CN) olefins.  The 

electron densities for the anion-π bond CPs are two orders of magnitude less than that of 

covalent bonds CPs.  One order of magnitude separates the anion-π ring CPs and the 

olefin ring CPs (Table 3.3). 

 The CPs observed between the fluorine atoms and nitrile groups in TCNQF4, and 

between the nitrile groups of TCNQ(CN)4, are explained by the close distance between 

these atoms, 2.6 Å for the TCNQF4 and 2.8 Å for the TCNQ(CN)4 molecule.  This 

distance is well within the sum of the van der Waals radii for these respective atoms.  

The presence of these CPs underscore the limitations of AIM.  Critical points only give 

information concerning the shape and magnitude of electron density at a given point.  

They do not give any information regarding the factors that give rise to that electron 

density. 

Natural Bond Orbitals Computations 

 The application of second order perturbation theory to the Fock matrix in the 

NBO basis resulted in predictions of CT interactions for all sixteen systems investigated 

(Table 3.4).  These values are very low, ranging from 1.5 to 8.8 kcal/mol, as one would 

expect for donor-acceptor interactions involving the complex anions [BF4]- and [PF6]-.  

Only energy contributions from fluorine lone pair orbitals to olefin anti-bonding orbitals 

were considered.  Donations from the lone-pair orbitals into Rydberg type orbitals or 

into boron orbitals are not included in these values. 

 Interestingly, the NBO computation treated certain B-F bonds as donor-acceptor 

interactions and not as covalent bonds (i.e. the electron density normally shared between  



  

 

Table 3.3.  Average values for ρ(r), the electron density at a given critical point between the olefin and the anion.  Average 
values for the olefins themselves are provided. 
 

System Olefin Anion Bond CP (x103 a.u.) Ring CP (x103 a.u.) Cage CP (x103 a.u.) 
1a TCNE [BF4]- 14.5 7.2 ----- 
1b TCNE [PF6]- 8.6 5.4 4.9 
2a TCNQ [BF4]- 7.7 4.3 4.1 
2b TCNQ [PF6]- 7.0 3.5 2.7 
3a TCNQF4 [BF4]- 10.3 5.1 3.5 
3b TCNQF4 [PF6]- 9.1 4.7 3.0 
4a TCNQ(CN)4 [BF4]- 10.5 5.8 4.6 
4b TCNQ(CN)4 [PF6]- 8.5 6.1 4.0 
Average for the olefins 219 18.7 ----- 
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Table 3.4.  Sum of the energies predicted by NBO for the charge transfer interactions between the fluorine lone pairs and the 
antibonding orbitals of the olefins. 
 

System Olefin Anion NBO (kcal/mol) (B3LYP) NBO (kcal/mol) (MP2) 
1a TCNE [BF4]- 5.73* 8.79 
1b TCNE [PF6]- 3.10 6.64 
2a TCNQ [BF4]- 2.28 3.32* 
2b TCNQ [PF6]- 1.52 2.89* 
3a TCNQF4 [BF4]- 3.40 5.83* 
3b TCNQF4 [PF6]- 2.22 5.19* 
4a TCNQ(CN)4 [BF4]- 6.05* 8.55* 
4b TCNQ(CN)4 [PF6]- 2.83 ----- 

*Some of the B-F bonds were treated as donor-acceptor interactions in these systems. 
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the boron and fluorine atoms is localized to a fluorine atom lone-pair and is being 

donated into an empty orbital on the boron atom.  This behavior has been previously 

observed,114 and can be taken as an indication of a weakened bond between the boron 

and fluorine atoms.  In fact, correlation between the B-F bond distance (as determined 

by geometry optimization) and donor-acceptor behavior (as determined by NBO) can be 

observed for the DFT and ab inito results (Table 3.5).  For the ab initio based 2b and 3b 

structures, NBO treated the P-F systems as donor-acceptor interactions as well, showing 

similar correlation as observed in Table 3.5.  In general, above a certain bond length, 

NBO will treat the X-F bond as a donor acceptor interaction. 

 

Discussion 

 The geometry optimized structures support the contention that anion-π 

interactions occur between the complex anions [BF4]- and [PF6]- and the olefins TCNE, 

TCNQ, TCNQF4 and TCNQ(CN)4; both the short F-C distances and favorable energies 

and enthalpies of interaction support this conclusion (Table 3.1).  Further computations 

demonstrated that the possibility of CH-bonding (through the TCNQ hydrogen atoms) 

was not a concern; the anion preferred the anion-π interaction over the CH-bond.  Since 

ab inito methods are known to overestimate interactions between non-bonded species113 

and DFT methods have been shown to underestimate the same interactions,77 we feel it 

is reasonable to assume that the energy of the interactions for these systems are between 

the values  determined by the  B3LYP and MP2 methods.   Since the order of interaction 

 



  

 

Table 3.5.  B-F bond distances observed in the geometry optimizations. 
 

System Olefin Anion dB-F (Å) (B3LYP)* NBO Treatment dB-F (Å) (MP2)* NBO Treatment 
----- ----- [BF4]- 1.420 ----- 1.422 ----- 
1a TCNE [BF4]- 1.434, 1.434 [F···BF2···F]- 1.423, 1.430, 1.430 [BF4]- 

      1.398, 1.399   1.340   
2a TCNQ [BF4]- 1.424, 1.426, 1.424 [BF4]- 1.425, 1.429, 1,429 [F,F···B···F,F]- 

      1.401   1.402   
3a TCNQF4 [BF4]- 1.425, 1.425, 1.431 [BF4]- 1.428, 1.429, 1.432 [F,F···B···F,F]- 

      1.394   1.395   
4a TCNQ(CN)4 [BF4]- 1.405, 1.436, 1.436 [F···BF2···F]- 1.420, 1.429, 1.432 [F,F···BF···F]- 

   
1.385 

 
1.389 

 *The first line of values denotes the B-F distances that correspond to those fluorine atoms interacting with the olefin.  The 
numbers in red correspond to the B-F distances that correspond to the FB interactions. 
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energies is consistent for both series of computations, the observed trend in the Et values 

should hold true experimentally. 

 For the TCNQX4 molecules (X = H, F, CN), Et (4a) > Et (4b) > Et (3a) > Et (3b) 

> Et (2b) > Et (2b), a consequence of the fact that as you add electron withdrawing 

substituents to the base ring, the energy of interaction becomes more favorable.  The 

relative large energies of interaction, particularly for 4a and 4b, are unexpected.  These 

data seem to support the conclusion of Kim, et al. that anion-π interactions should be 

energetically comparable to cation-π interactions.56  It is more likely that these are not 

simply electrostatic interactions, but that they include some element of CT, as Roskha, et 

al. demonstrated between TCNE and bromide anion.103  Another likely mechanism of 

interaction between the olefins and the complex anions is the charge-dipole interaction 

described by Wheeler, et al.38  The electron withdrawing nitrile and fluoro groups added 

to these olefins will transfer electron density along the σ-bonding framework resulting in 

dipoles with which the anion can interact.  What is not clear is whether or not the π 

orbital conjugation between the nitrile and the olefin will result in a π-acidic 

environment.  Conjugation, in this case, allows for the possibility of anion-π and π-type 

CT interactions to occur. 

 The dissociation of [BF4]- aside, NBO computations predict donor-acceptor 

interactions between the fluorine lone pair electrons and the π* orbitals on the olefins.  

These interactions, shown in Table 3.4, follow the same trends observed in the Et values 

determined by geometry optimization (Table 3.1).  In all cases, favorable energies are 

observed with the energies of the structures determined from ab inito methods being 
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more favorable than those of structures determined by DFT, interactions with [BF4]- are 

more favorable than interactions with [PF6]-, and for the series of TCNQX4 (X=H,F,CN), 

the interactions involving TCNQ(CN)4 are the most favorable and TCNQ the least.  

Parallels exits between the ordering of the energies observed by the geometry 

optimizations and NBO computations and the electron densities determined for the bond 

CPs by AIM.  The trend is not so pronounced in the ring and cage critical points.  The 

electron density of a critical point can be taken as a measure of the strength of the 

interaction. 

 

Conclusions 

 DFT and ab initio geometry optimizations provide evidence for anion-π 

interactions between the olefins TCNE, TCNQ, TCNQF4 and TCNQ(CN)4 and the 

anions [BF4]- and [PF6]-.  AIM analysis provides further evidence for electron density 

between the fluorine atoms of the anions and the nearby carbon atoms of the olefin 

molecules.  This shared electron density is most likely due to the donor-acceptor 

interactions identified by NBO computations.  The energies determined by NBO lend 

further support to trends observed in the geometry optimizations.  Further experiments, 

particularly UV/visible solution studies, will be required to determine if the interactions 

predicted by NBO are observable. 
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CHAPTER IV 

COMPUTATIONAL INVESTIGATION OF THE ANION-PI INTERACTIONS 

BETWEEN HALIDES AND 1,4,5,8,9,12-HEXAAZATRIPHENYLENE-

HEXACARBONITRILE 

 

Introduction 

 The molecule 1,4,5,8,9,12-hexaazatriphenylene (HAT) was first suggested as an 

anion-π receptor in a computational study by Garau, et al. in 2005.61  That same year, 

Furukawa, et al. reported anion-π interactions for two copper structures containing the 

HAT derivative, 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (HAT(CN)6) 

(Scheme 4.1).115  Hexafluorophosphate, the anion reported to interact with HAT(CN)6 

by Furukawa, et al.,115 was also shown to engage in anion-π interactions with another 

HAT derivative, 2,3,8,9,14,15-hexamethyldiquinoxoalino[2,3-a:2′,3′-c]phenazine 

(HATNMe6) which is a derivative of 1,6,7,12,13,18-hexaazatrinaphthylene; 

tetrafluoroborate anion was also observed to interact.116  In this case, the HATNMe6 was 

part of a titanium complex reported by Piglosiwicz, et al.116 

 It can be argued that the anion-π interactions observed by Furukawa, et al. and 

Piglosiwicz, et al. are due to the presence of three transition metal cations bound to the 

HAT based ligands and not necessarily an interaction inherent to the ligands themselves.  

This argument, however, overlooks an earlier report by Dunbar and co-workers who 

observed neutral, uncoordinated, HAT(CN)6 engaged in anion-π interactions with the 

iodide  and hexafluorophosphate  anions.73   Co-crystallization  of HAT(CN)6  molecules  
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Scheme 4.1.  Schematic representation of 1,4,5,8,9,12-hexaatatriphenylene-
hexacarbonitrile (HAT(CN)6). 
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with tetra-n-butylammonium iodide ([n-Bu4][I]) or cobaltocenium hexafluorophosphate 

resulted in the formation of {([n-Bu4N][I])3[HAT(CN)6]2}∙3C6H6 (Figure 4.1a) and 

{[CoCp2][PF6]}3[HAT(CN)6] (Figure 4.1b), respectively.  In both of these compounds 

(abbreviated HAT(CN)6[I]3 and HAT(CN)6[PF6]3), alternating layers of HAT(CN)6 and 

anions result in infinite “chains”.  In the case of HAT(CN)6[I]3, an ABCD type of 

stacking is observed (Figure 4.1a).  The three iodide anions are disordered over four 

crystallographic positions; one of the positions is located directly above the centroid of 

the HAT(CN)6 molecule (the central, or “anion-π” position) (Scheme 4.2a) while the 

other three positions are located on the opposite face of the HAT(CN)6 over the 

peripheral pyrazinyl carbon-carbon bonds (the outer, or “charge-transfer” (CT) position) 

(Scheme 4.2b).  This disorder is not observed in the HAT(CN)6[PF6]3 structure, which 

exhibits a simpler AB stacking, with the three hexafluorophosphate anions occupying 

the three outer positions.  It should be noted that the structure {([n-

Bu4N][Br])3[HAT(CN)6]2}∙3C6H6 (HAT(CN)6[Br]3) has also been determined and it is 

structurally identical to the HAT(CN)6[I]3 structure.51 

 The dark color of the crystals of the HAT(CN)6[X]3 (X=Br, I) as well as the 

unprecedented finding of two distinct anion···arene interactions with one ring (in the 

solid state), led Dunbar and Chifotides, et al. to investigate these interactions in solution 

(UV-Vis, 13C-, 35Cl-, 81Br- and 127I-NMR) and in the gas-phase (ESI-MS).51  For 

solutions of HAT(CN)6 and [n-Bu4N][X] (X = Cl, Br, I), evidence for the existence of 

the CT complex, {[HAT(CN)6]2[X]3}3- (X = Cl, Br, I), was obtained.  The spectroscopic 

data  also indicate  that the  three anions  are positioned  in  the  “outer” positions  of  the  
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Figure 4.1.  Packing diagrams for {([n-Bu4N][I])3[HAT(CN)6]2}∙3C6H6 (a) and 
{[CoCp2][PF6]}3[HAT(CN)6] (b).  All solvent molecules and cations are omitted for the 
sake of clarity.  Carbon atoms (gray), nitrogen atoms (blue), phosphorus atoms (purple), 
iodide anions and fluorine atoms (yellow). 
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Scheme 4.2.  Schematic representations of the “central” (a) and “outer” (b) positions on 
HAT(CN)6.  Gray spheres are used to denote these positions. 
  

a 

b 
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HAT(CN)6 molecules in an η2-η2 fashion as found in the HAT(CN)6[I]3 and 

HAT(CN)6[Br]3 crystal structures.  It is also worth mentioning that the interactions 

persist in the gas phase as evidenced by the observation of mass cluster peaks 

attributable to species {HAT(CN)6[X]}- (X = Cl, Br, I). 

 Computational studies were undertaken in order to further understand these 

systems in general.  More specifically the differences between the interactions at the 

“central” and “outer” positions were investigated. 

 

Methods 

Geometry Optimizations 

 All optimizations were performed using density functional theory (DFT)87 as 

contained in the Gaussian0388 program suite.  The Becke3 parameter hybrid exchange 

functional89 and Lee-Yang-Parr correlation function90 (B3LYP) was also used.  Given 

the presence of heavier atoms (beyond the second period), namely chlorine and bromine, 

a mixed basis set was employed; a Pople style double-ζ basis set with an optimized d-

polarization function (6-31+G(d′))109 was used for carbon, nitrogen and fluorine atoms.  

For the sake of convenience, electrostatic core potentials (ECPs) were employed using 

the Las Alamos National Laboratories double-ζ basis set (lanl2dz) for the chlorine and 

bromine atoms.117-118  It should be noted that all calculations were performed in the gas 

phase. 

 Prior to the geometry optimizations of any HAT(CN)6·· [X]- systems, HAT(CN)6 

itself was optimized.  This model of HAT(CN)6 was then used for all subsequent 
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optimizations.  In all cases the anion of interest was placed approximately 4 Å away 

from the plane of the HAT(CN)6 molecule.  As previously described, the structures 

HAT(CN)6[X]3 (X = Br, I) exhibit two distinctive crystallographic positions for the 

anions with respect to the HAT(CN)6 molecules (the central and outer positions as 

shown in scheme 4.2).  In order to probe the differences in the anion-π interactions of 

these two positions, a series of optimizations was carried out for each anion of interest 

(Cl-, Br-).  Two separate single anion optimizations were carried out – one optimization 

involving a single anion positioned over the central position (1a and 2a, chloride and 

bromide ion respectively) and a second one with an anion positioned over the outer 

position (1b and 2b, chloride and bromide ion respectively). 

 A symmetry constrained geometry optimization was also performed.  By using 

the same starting geometries and conditions as in 1b and 2b, the optimization was 

repeated under the constraint of Cs symmetry (1b* and 2b*, chloride and bromide ion 

respectively). 

Natural Bond Orbitals Computations 

 Natural Bond Orbitals (NBO) computations were performed with GenNBO 

5.0W112 for selected systems.  The input files for GenNBO 5.0W were prepared using 

the internal NBO calculation in Guassian03, on the previously obtained optimized 

geometries.  All computations using Guassian03 were performed at the same level of 

theory as the optimizations.  The resulting orbital diagrams were created using 

NBOView.119 
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 NBO computations were performed on systems 1a, 1b*, 2a, 2b*.  In order to 

properly account for the resonance in the HAT(CN)6 molecule, the orbital occupancy 

threshold had to be lowered from 1.90 e to 1.50 e (for 1b* and 2a) and 1.40 e (for 1a and 

2b*).  If this is not done, the resulting model has lone pairs of electrons localized to 

some of the C atoms of the central phenylene ring of HAT(CN)6. 

 

Results 

Geometry Optimizations 

 For the single anion calculations, the central anions and outer anions behaved 

similarly in both cases (Figure 4.2a,b,d,e).  The central anion remained over the centroid 

of the molecule whereas the outer anion “attacked” one of the carbon atoms in the 

pyrazinyl ring, forming the aforementioned σ-type CT complex.40  This behavior is 

reflected in the C-X distances listed in Table 4.1.  The outer position distances are much 

closer to the HAT(CN)6 molecule than the central position, possibly indicating a greater 

degree of orbital overlap at the outer position.  Since 1b and 2b did not accurately model 

the η2 behavior observed in the crystal structures HAT(CN)6[X]3 (X = Br, I), the 

computations were repeated employing a Cs symmetry constraint.  These computations, 

1b* and 2b* reproduced the η2 behavior (Figure 4.2c,f) and the distances are 

intermediate between those seen in 1&2a and 1&2b (Table 4.1), which would be 

expected for the π-type CT observed in the previous experimental work.51,73  All the 

calculated  distances  fall within  the  sum  of  the  van der Waals radii  for the respective  
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Figure 4.2.  Geometry optimized structures computed for HAT(CN)6···[X]-.  Anion 

located over the central position (a & d), anion located in the outer position, without 

symmetry constraint (b & e), anion located in the outer position, with the symmetry 

constrained to Cs (c & f).  Carbon atoms (gray), nitrogen atoms (blue), chloride anion 

(green), bromide anion (red). 

 

a b d e 

c f 

HAT(CN)6···[Cl]- HAT(CN)6···[Br]- 

top view 

side view 

top view 

side view 



  

 

Table 4.1.  Distances observed in the HAT(CN)6···[X]- DFT geometry optimizations. 

 
System Anions 

Distance 
(central) (Å) 

Distance 
(outer) (Å) 

Sum of the van der Waals radii, 
C-X (Å) 

1a 1 Cl (central) 3.06 - 3.09 ----- 3.50 
1b 1 Cl (outer) ----- 2.34  
1b* 1 Cl (outer) ----- 2.72  
2a 1 Br (central) 3.29 - 3.33 ----- 3.60 
2b 1 Br (outer) ----- 2.68  
2b* 1 Br (outer) ----- 2.94  
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atoms indicating the presence anion-π interactions between the HAT(CN)6 molecule and 

the anions. 

 Favorable energies of interaction (Et) were observed for systems 1a, 1b*, 2a and 

2b*.  Energies of interaction (Et) were determined by subtracting from the total energy, 

the energies of the HAT(CN)6 molecule and anion (Table 4.2).  The energy for 

HAT(CN)6 was determined by geometry optimization under B3LYP/6-31+G(d′) and the 

anion energies were determined by geometry optimization under B3LYP/lanl2dz using 

the appropriate ECPs. 

Natural Bond Orbitals Computations 

 While all four systems are predicted, by NBO, to exhibit some degree of charge-

transfer, 1b* and 2b* are predicted to engage in stronger charge-transfer interactions 

then 1a and 2a, respectively (Table 4.2).  This result is not surprising given the positions 

of the anions relative to the HAT(CN)6 molecule.  In 1a and 2a, the anion is positioned 

over the centroid of the molecule; a location at which one would expect minimal orbital 

density from the surrounding atoms.  In contrast, 1b* and 2b* are cases in which the 

anion is positioned directly over a C-C bond; a location of significant orbital density.  

The increased orbital overlap in 1b* and 2b*, relative to 1a and 2a is readily apparent in 

the contour plots shown in Figure 4.3.  For the purposes of this study, the only CT 

interactions considered are those between the lone pairs on the halide ions and the 

antibonding orbitals on the HAT(CN)6 (Figures 4.3 and 4.4); CT interactions into 

Rydberg type orbitals were not included.  Closer inspection of the data from the NBO   
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Table 4.2.  Sum of the energies determined by NBO for the charge transfer interactions 

between the halide lone pairs and the antibonding orbitals of HAT(CN)6 and the energies 

of interaction determined by DFT computations. 

System ΔECT (kcal/mol) (NBO) ET (kcal/mol) (DFT) 
1a 7.61 -46.08 

1b* 25.66 -37.75 
2a 12.58 -33.78 

2b* 19.97 -25.93 
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Figure 4.3.  Representative contour plots for halide pz orbital and C-N antibonding 
orbitals generated by NBOView.  Schematic of HAT(CN)6 with atoms labeled (a).  
System 1a, Cl···C24-N18 (b).  System 1b*, Cl···C11-N2 (c), System 2a, Br···C24-N18 (d).  
System 2b*, Br···C11-N2 (e). 
  

b c 

d e 

a 
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Figure 4.4.  Representative orbital diagrams for halide pz and C-N antibonding orbitals 
generated by NBOView.  System 1a, Cl···C23-N17 (a).  system 1b*, Cl···C11-N2 (b), 
system 2a, Br···C23-N17 (c), system 2b* Br···C11-N2 (d). 
  



  

 

93 

computation reveals that all four lone-pairs of the Cl- or Br- contribute some density to 

stabilization energy to the final structure.  In both computations these orbitals are NBOs 

97, 98, 99 and 100.  If we defined a Cartesian coordinate system such that the 

HAT(CN)6 molecule lies in the xy plane then NBO 97 is predominately an s orbital, 

NBOs 98 and 99 are the px and py orbitals and 100 is predominately the pz orbital.  It 

should be noted that there is some mixing of the s and pz orbitals observed in NBOs 97 

and 100, but it is miniscule in all cases.  The majority of the stabilization resulting from 

the CT interactions arise from the donation of charge from NBO 100, the pz orbital, to 

the nearby C-N antibonding orbitals on HAT(CN)6 (Table 4.3). 

 

Discussion 

 The computational data support the conclusion that anion-π interactions occur 

between chloride and bromide anions and the HAT(CN)6 molecule.  The geometry 

optimizations demonstrated that, in all cases, the distances observed between the anion 

and the closest carbon atoms is less than the sum of the van der Waals radii for the 

respective atoms (a strong indication of supramolecular interactions).   A comparison of 

the distances observed for the HAT(CN)6···[Br]- interactions in the solid state with the 

computational data demonstrates that the computational data overestimates the C-Br 

distances in both the outer and central positions by 0.2-0.3 Å (Table 4.4).  This 

overestimation may simply be due to the fact that there are two HAT(CN)6 molecules 

sandwiching Br- in the crystal structure whereas there is only one HAT(CN)6 molecule 

in the computation.    The fact that the DFT computation takes place in the gas phase can   
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Table 4.3.  Contributions to the total ΔECT from each of the individual X- NBOs. 

System NBO 97 (%) NBO 98 (%) NBO 99 (%) NBO 100 (%) 
1a 4.68 28.25 12.88 54.01 

1b* 7.17 5.07 14.89 72.88 
2a 4.69 14.71 14.94 65.66 

2b* 6.81 4.46 13.67 75.06 
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Table 4.4.  Comparison of the X-C distances observed in the HAT(CN)6···[Br]- 

interactions for the crystal structure and computational model. 

 
Central (Å) Outer (Å) 

Crystal Structure 3.53-3.64 3.24-3.38 
Computation 3.29-3.33 2.94* 

 

*This is the value of the symmetry constrained computation. 
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also lead to stronger interactions than would normally be observed.  It is possible to 

infer, from the computations, that the presence of two HAT(CN)6 molecules is necessary 

to stabilize the π-type CT interaction.  Since a σ-type CT interaction occurs without 

symmetry constraint (as opposed to the η2 behavior), it is reasonable to propose that the 

presence of the two molecules, allowing for η2-η2 behavior, stabilizes the π-type CT.  (It 

has been previously shown that numerous weaker interactions can be favored over one 

stronger interaction.120)  It should be noted that this inference is not certain given 

uncertainty in the accuracy of the computed results.  Despite the overestimation of the 

X-C distances in this system, the relative positioning of the Br- with respect to the 

HAT(CN)6 is consistent with the experimental evidence so it can be assumed that the 

orbital arrangement observed in the NBO computations is similar and that the predicted 

trends are accurate. 

 It is evident from the NBO computations that the CT interactions in the outer 

position (1b* and 2b*) are stronger than those observed for the central position (1a and 

2a).  (The presence of any CT interaction in the center position is most likely due to the 

overestimation of the interaction in the geometry optimization.)  This is in agreement 

with the solution studies, in which the anions were detected spectroscopically in the 

outer positions wheras no anion was observed to be present in the central position.51  The 

lack of evidence for a centrally located anion in solution indicates that the interaction is 

either too weak to be detected or is too weak to exist in solution.  In either case, the 

solution studies explicitly demonstrate that the π-type CT interaction is stronger than the 

anion-π interaction.  The previous studies in our laboratories also clearly demonstrated 
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that the HAT(CN)6···[Cl]- interaction is stronger than the analogous interaction with the 

bromide anion.  The computational data support this observation in both the geometry 

optimization (the C-Cl distances are shorter than the C-Br distances, Table 4.1) and the 

NBO computations (the energies of interaction are more favorable in both 1a&b* than in 

2a&b*, Table 4.2). 

 Although the Et values obtained by the DFT computations are favorable, the 

trends predicted by DFT do not agree with the NBO results (Table 4.2).  Specifically, the 

DFT computations predict that the energy of the central position (1a and 2a) is more 

favorable than the energy of the outer position (1b* and 2b*).  This is in direct contrast 

to both the NBO computations and the previously reported spectroscopic data.51  This 

difference is readily explained by the fact the Et values determined by DFT consider all 

energies whereas the energies determined by NBO are limited to the CT interaction.  The 

DFT computation indicates that other interactions, aside from those of the CT type, are 

present in the HAT(CN)6···[X]- (X = Cl, Br).  The anion-π interaction is the most likely 

explanation. 

 

Conclusions 

 A series of DFT and NBO computations have been performed on the molecule 

HAT(CN)6 in the presence of chloride or bromide anion.  In the case of the center, or 

anion-π interaction, positioning of the anion with respect to the crystal structure is 

probed by the geometry optimization.  Accurate positioning was not accomplished, 

without symmetry constraint, for the outer, or π-type CT interaction.  Despite 
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overestimation of the interaction by DFT, the computational results are in agreement 

with the previously reported solid state73 and solution51 results.  The computational 

results provide evidence for the stabilization of the π-type CT by both interacting 

HAT(CN)6 molecules and point to the C-N π antibonding orbitals on the HAT(CN)6 

molecule as the electron density acceptors for the CT interactions. 
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CHAPTER V 

SEARCHING FOR POTENTIAL ANION-PI INTERACTIONS IN THE 

PROTEIN DATA BANK 

 

Introduction 

 One intriguing question for the anion-π community is whether anion-π 

interactions play a role in biological systems.6-7  While there are currently few reports 

addressing this question, there is experimental evidence that anion-π interactions could 

occur biologically.  The report of Garcia-Rosa, et al. demonstrates that anion-π 

interactions can occur between tetrachloromercurate(II) and tetrachlorozincate(II) anions 

and bisadenine derivatives,121 and a copper-cytosine complex reported by García, et al. 

exhibits an interaction between the aromatic ring of the cytosine and the nearby 

perchlorate anion.122  These reports support the notion that the aromatic rings in 

nucleotides can interact attractively with anions.  In light of this, albeit, limited evidence, 

researchers are beginning to consider anion-π interactions in their synthetic designs of 

derivatives123 and models.67,124 

 An ongoing example of incorporation of anion-π interactions into model 

compounds of biological systems is the previously mentioned “anion-π slide” (Figure 

5.1) first reported by Gorteau, et al.67  The slide is an artificial trans-membrane channel 

utilizing anion-π interactions to selectively transport chloride anions across a lipid 

bilayer.  Research on this compound has continued125-126 ultimately resulting in what the   



  

 

100 

 

 
Figure 5.1.  Schematic diagram of the synthetic chloride anion channel prepared by 
Matile, et al. (left) and an electrostatic potential map of the same (right).  (Adapted with 
permission Matile, et al.67) 
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authors refer to as, “…unequivocal, clear-cut, experimental evidence for the functional 

relevance of anion-π interactions…”127 

 As interesting as all of these reports are, there has yet to be any direct evidence 

for an anion-π interaction occurring in a biological system.  One simple way to ascertain 

whether or not anion-π interactions occur in proteins, for example, is to systematically 

search the Protein Data Bank (PDB).  While searches of the Cambridge Structural 

Database for anion-π interactions have been performed numerous times,33,35,40,42-43,61,128-

135 only two reports have appeared that involve searches of protein structures.57,136 

 Jackson, et al. investigated the interactions between the anionic side chains of 

aspartate (Asp) and glutamate (Glu) (Scheme 5.1) and the aromatic side chains of 

phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp) (Scheme 5.1).136  The data 

garnered from the PDB revealed that, while the anions could be positioned at all angles 

between 0° (in the plane of the ring) and 90° (above the centroid of the ring), the 

preference is clearly for what Jackson, et al. refer to as the edgewise interaction (angles 

less than 10°) with interactions at higher angles (greater than 20°) occurring less than 

would be expected (Figure 5.2).  This report indicates that anion-π interactions most 

likely do not occur for between these amino acids. 

 The results of Jackson, et al.136 can be contrasted with a report from Marsili, et 

al., wherein a PDB search was used to help determine the thermodynamic contributions 

to protein stability from arene···X interactions, where X is either an arene, anion or 

cation.57  The arene···anion interactions studied were found to be favorable, but less 

stable  than  the  arene···arene  and  arene···cation  interactions  considered.  It should be   
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Scheme 5.1.  Schematic representations of Aspartate (Asp), Glutamate (Glu), 
Phenylalanine (Phe), Tyrosine (Tyr) and Tryptophan (Trp). 



  

 

 
 
 

 
Figure 5.2.  The results of the PDB search performed by Jackson, et al.  Graphical distributions are shown for the cases of Phe 
(a), Tyr (b) and Trp (c).  Expected values refer to the statistical population of anion···arene pairs within a sphere.  (Adapted 
with permission Jackson, et al.136) 
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noted that, like Jackson, et al., Marsili, et al. only considered interactions between amino 

acids. 

 From the work of Garcia-Rosa, et al.121, García, et al.122 and Dawson, et al.127 the 

potential for anion-π interactions in biological systems is clear.  The reports of Jackson, 

et al.136 and Marsili, et al.57, while failing to show clear evidence for anion-π 

interactions, underscore that these type of supramolecular interactions are of interest in 

biologically relevant systems.  Marsili, et al. lend further support to the biological 

occurrence of anion-π interactions.  While the biological relevance of anion-π 

interactions is not yet clear, what is clear is the need for more research in this area.  All 

research to date point to anion-π interactions having a low occurrence in biological 

systems, but the role that these interactions play is still unclear and as stated above, there 

are no definitive functional examples of this interaction in a biological system.  In an 

effort to find examples of anion-π interactions in protein structures, new searches of the 

PDB were designed and carried out.  Instead of focusing on the anionic side chains of 

amino acids incorporated into the protein itself57,136, these new searches focused on the 

chloride and iodide anion. 

 

Methods 

 All data were obtained by searching the Protein Data Bank (PDB) by using both 

the internal search engine of the site and a specially written script.  The scripts were 

written in the open access language python, version 2.5.2, using the IDLE 1.2.2 graphic 

user interface. 
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Contacts-Cl.py 

 This script is a modification of one originally written by Dr. Thomas Ioerger 

(Department of Computer Science and Engineering, Texas A&M University) to search 

for close contacts between silver atoms and any other atom within a particular protein 

structure as described by a .pdb file (the file type used by the PDB).  This script was 

modified by changing the search parameter from silver atoms to chlorine atoms 

(line[12:14]==”AG” to line[12:14]==”CL”) and setting the distance constraint to 4.0 

Å (if d<4.0:print...).  This script includes functionality enabling it to retrieve the 

Cartesian coordinates for any particular atom as listed in the .pdb file, calculate the 

distance between two points given those coordinates, identify any particular chlorine 

atom within a protein structure and search for all atoms within 4.0 Å of the identified 

chlorine atom.  Atoms belonging to water molecules were excluded from this search.  

Information provided by this script included the name of the particular .pdb file, the 

identities of any substrate molecules included in the structure and the identity and 

coordinates of any chlorine atom(s) found within the structure listed with the 

corresponding close contact atoms. 

 This script was run on .pdb files downloaded from the PDB using the internal 

search engine to identify any and all protein structures possessing chlorine atoms. 

Protein-Cl_Full+.py 

 This script was written using the script Contacts-Cl.py as a base.  The primary 

reason for writing this second script was to make the search parameters specific to 

chloride ions (Contacts-Cl.py did not differentiate between atoms and ions) and the 
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aromatic rings on the amino acids phenylalanine (Phe), tryptophan (Trp) and tyrosine 

(Tyr).  The script was also written to provide more detailed information regarding the 

close contacts in the output. 

 In order to accomplish these goals, functions were written enabling the script to 

calculate the Cartesian coordinates for the centroid of a 5-membered ring, 6-membered 

ring and fused 5 and 6-membered rings (as observed in the side chain of Trp).  A 

function for the calculation of the angle formed by the line between the ring centroid and 

the chloride ion and the line between the ring centroid and a ring atom within 4.0 Å of 

the chloride ion was also written.  Given the improved specificity of this script with 

respect the original Contacts-Cl.py, the coding preventing water molecules from being 

considered as close contacts was removed.  Additional coding was added to the search 

function enabling the script to search for specified cations within 5.0 Å of the ring atoms 

belonging to aromatic rings previously identified as being within 4.0 Å of a chloride ion.  

This secondary search was facilitated by coding that allowed for the creation of a list 

containing all the aromatic rings identified as being within close contact to a chloride ion 

in a specific .pdb file.  The cations specified for this search included the alkali metal, 

magnesium, calcium, zinc, ammonium, tetraethylammonium and hexaamminecobalt 

(charge was not specified) cations.  These species were identified as cations contained in 

the .pdb files to be search using the script HETNAM_search.py. 

 Output from this script included the filename of the .pdb file, the resolution of 

the protein structure, the identities of any substrates within the protein structure and the 

identities and coordinates of all chloride ions within the structure along with the 
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identities and coordinates for any ring atoms within close-contact and the corresponding 

distances (chloride ion to ring atom and chloride ion to centroid) as well as the 

aforementioned angle.  The script would then print the identities and coordinates for any 

cations identified as being in close-contact with one of the previously identified aromatic 

rings along with the pertinent distances and angle (this section was written to mirror the 

output for the chloride ions).  At the end of the output file the script prints all identities 

and coordinates for all the atoms for each aromatic ring identified by the script for that 

protein structure. 

 This script was run on the .pdb files identified using the same search parameters 

as the Contacts-Cl.py script. 

Protein-Cl_Basic+.py 

 This script was created by modifying the Protein-Cl_Full+.py script.  The 

functionality of the Protein-Cl_Full+.py script was unchanged in the Portein-

Cl_Basic+.py script.  The “basic” script was written to provide a more simplistic output 

to facilitate reading the data.  The output from the “basic” script was limited to the 

filename, resolution, the identity of any chloride ions found with the identities of any 

aromatic ring atoms in close-contact, the ratio between the chloride anion to ring atom 

distance and the chloride atom to centroid distance, the ratio between the chloride ion to 

centroid to ring atom angle and 90° and the existence of any cations within close contact 

of the identified aromatic rings. 

 This script was used on the same files searched by the corresponding “full” 

script. 
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Protein-I_Full+.py 

 This script is identical to the Protein-Cl_Full+.py script except that it was 

modified to search for iodide ions instead of chloride ions.  This was accomplished by 

changing the code line_i[17:20]==” CL” to line_i[17:20]==”IOD” instructing the 

script to search for the atom iodine instead of chlorine.  The larger van der Waals radius 

of the iodine atom, with respect to the chloride ion was accommodated by changing the 

variable VDW from 4.0 to 4.2. 

 This script was run on .pdb files downloaded from the PDB using the internal 

search engine to identify any and all protein structures possessing iodide atoms. 

Protein-I_Basic+.py 

 This script is identical to the Protein-Cl_Basic+.py script except that it was 

modified to search for iodide ions instead of chloride ions.  This was accomplished by 

changing the code line_i[17:20]==” CL” to line_i[17:20]==”IOD” instructing the 

script to search for the atom iodine instead of chlorine.  The larger van der Waals radius 

of the iodine atom, with respect to the chloride ion was accommodated by changing the 

variable VDW from 4.0 to 4.2. 

 This script was used on the same files searched by the corresponding “full” 

script. 
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Results 

Contacts-Cl.py 

 The nonspecific nature of this script rendered the results of this particular search 

to be too general to be convenient for further analysis.  Given that analysis of any data 

collected via this script would require all [Cl]-···X interactions, where X was not a ring 

atom of PHE, TRP or TYR, to be isolated and removed before any potential anion-π 

interactions could be analyzed, it was decided to write a script containing a higher 

degree of specificity. 

Protein-Cl_Full+.py 

 On December 4, 2007, the internal search engine of the PDB was used to identify 

and download 2,517 .pdb files containing one or more chloride anions.  The script 

Protein-Cl_Full+.py was executed on these files identifying 620 protein structures 

exhibiting one or more close contacts between a chloride ion and one of the ring atoms 

in PHE, TRP or TYR; a total of 1,203 distinct chloride anion – ring pairs were identified.  

An excerpt of the results of this search is given in Figure 5.3.  (Colors given in 

parentheses refer to the highlighted areas in Figure 5.3).  Protein 1MWQ137 had a 

resolution of 0.99 Å (yellow), contained multiple substrates (green), contained two 

separate cases of close-contact between chloride ions and aromatic ring atoms (pink), 

and one close-contact between a zinc ion and an aromatic ring atom (teal).  It should be 

noted that the bulk of this information was directly taken line by line from the .pdb file 

by the script and compiled into this format adding calculated distances and angles as 

appropriate.  
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678 1MWQ.pdb 
1MWQ.pdb 
REMARK   2 RESOLUTION. 0.99 ANGSTROMS. 
HETNAM     MSE SELENOMETHIONINE 
HETNAM      ZN ZINC ION 
HETNAM      CL CHLORIDE ION 
HETNAM     CAC CACODYLATE ION 
HETNAM     1PE PENTAETHYLENE GLYCOL 
HETNAM     PEG DI(HYDROXYETHYL)ETHER 
HETATM 1712 CL    CL A 305      21.798   6.406   5.084  1.00 11.17          CL 
HETATM 1713 CL    CL A 306      20.934   9.069   7.648  1.00 13.69          CL 
CE1 PHE B  98 
 Distance to closest contacts = 3.98 
 Distance to centroid = 5.19 
 The angle of the anion-centroid axis with the plane of the ring = 23.86 
HETATM 1714 CL    CL A 307      24.198   7.520   7.579  1.00 11.36          CL 
HETATM 1715 CL    CL B 308      13.493 -11.971   5.627  1.00  8.61          CL 
HETATM 1716 CL    CL B 309       9.972 -12.751   4.463  1.00 10.40          CL 
HETATM 1717 CL    CL B 310      12.885 -14.075   2.700  1.00  9.61          CL 
CE2 TYR B  80 
 Distance to closest contacts = 3.98 
 Distance to centroid = 5.34 
 The angle of the anion-centroid axis with the plane of the ring = 10.05 
++++++++++++++++++++++++++++++++++++++++ 
CE2 TYR B  80 
HETATM 1709 ZN    ZN B 302      12.073 -13.467   4.770  1.00  8.08          ZN 
 Distance to cation = 4.80 
 Cation to centroid = 1.39 
 The angle of the cation-centroid axis with the plane of the ring = 25.93 
Cartesian coordinates for the above mentioned amino acids: 
ATOM   1557  CG  TYR B  80      15.155 -19.224   4.722  1.00  7.53           C 
ATOM   1558  CD1 TYR B  80      14.359 -20.357   4.472  1.00  8.53           C 
ATOM   1559  CD2 TYR B  80      14.653 -18.021   4.297  1.00  7.72           C 
ATOM   1560  CE1 TYR B  80      13.168 -20.279   3.820  1.00  8.79           C 
ATOM   1561  CE2 TYR B  80      13.442 -17.912   3.599  1.00  8.08           C 
ATOM   1562  CZ  TYR B  80      12.710 -19.064   3.388  1.00  8.53           C 
ATOM   1700  CG  PHE B  98      15.443   9.737   7.523  1.00  9.39           C 
ATOM   1701  CD1 PHE B  98      16.837   9.811   7.515  1.00  9.23           C 
ATOM   1702  CD2 PHE B  98      14.736  10.883   7.256  1.00 11.43           C 
ATOM   1703  CE1 PHE B  98      17.477  10.988   7.229  1.00 10.31           C 
ATOM   1704  CE2 PHE B  98      15.388  12.064   6.963  1.00 12.03           C 
ATOM   1705  CZ  PHE B  98      16.768  12.131   6.972  1.00 11.73           C 

 
Figure 5.3.  A sample of the output from the script Protein_Cl-Full+.py.  Highlighting 
was added to correspond to the lines mentioned in the Results section of Chapter V 
(page 107).  All lines beginning with “HETATM” or “ATOM” are space delimited lines 
that can be read as follows: Atom #, Atom type, Residue, Protein chain, residue number, 
Cartesian coordinate (x), (y), (z), occupancy factor, temperature factor, element.  A line 
in all capital letters is a line taken verbatim from the .pdb file).  
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Protein-Cl_Basic+.py 

 The script Protein-Cl_Basic+.py was run on the same 2,517 .pdb files that were 

searched using the script Protein-Cl_Full+.py.  As was stated previously, the “basic” 

search was written to facilitate reading with respect to the “full” search.  An example of 

the sample output for the “full” search was given using the data for protein 1MWQ137; 

sample output for the “basic” search for 1MWQ is shown in Figure 5.4.  (Colors given in 

parentheses refer to the highlighted areas in Figure 5.4).  Reported data include a 

resolution of 0.99 Å (yellow), two separate cases of close-contact between chloride ions 

and aromatic ring atoms (pink), and one close-contact between a cation and an aromatic 

ring atom (teal).  Notably absent are the detailed coordinate data for each atom, the 

particular distances and angles (replaced by the aforementioned ratios, see Methods, 

page 105) and all of the specific data pertaining to the cation close contact. 

Protein-I_Full+.py 

 On Dec. 8, 2008, the internal search engine of the PDB was used to identify and 

download 187 .pdb files containing 1 or more iodide anions.  The script Protein-

I_Full+.py was executed on these files identifying 108 protein structures exhibiting one 

or more close contacts between an iodide anion and one of the ring atoms in PHE, TRP 

or TYR; a total of 353 distinct iodide anion – ring pairs were identified.  The output 

format for this script is identical to that of the Protein-Cl_Full+.py script. 
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678 1MWQ.pdb 
======================================== 
REMARK   2 RESOLUTION. 0.99 ANGSTROMS. 
CL    CL A 306 
CE1 PHE B  98 
 Atom/Centroid Distance Ratio = 0.77 
 Atom/Centroid Angle Ratio = 0.27 
CL    CL B 310 
CE2 TYR B  80 
 Atom/Centroid Distance Ratio = 0.74 
 Atom/Centroid Angle Ratio = 0.11 
Possible cation-pi interaction- 

 
Figure 5.4.  A sample of the output from the script Protein_Cl-Basic+.py.  Highlighting 
was added to correspond to the lines mentioned in the Results section of Chapter V 
(page 109).  Any line in all capital letters is a line verbatim from the .pdb file). 
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Protein-I_Basic+.py 

 The same 187 .pdb files that were downloaded for the Protein-I_Full+.py script 

were searched using the “basic” script.  The output format for this script is identical to 

that of the Protein-Cl_Basic+.py script. 

 

Discussion 

General Discussion for the PDB Search 

 As stated previously, the maximum allowed distance between any particular 

chloride anion and an aromatic ring atom was 4.0 Å.  It was decided to increase this 

cutoff distance from 3.5 Å, the sum of the van der Waals radii for a carbon atom and 

chlorine atom,95 in order to take the resolution of the protein structures, on average 2.00 

Å for this search, into account.  Another reason to increase the cutoff distance to 4.0 Å 

originates in the methodology used when solving protein crystal structures.  Manual 

displacement of non-bonding atoms in van der Waals contact within the protein crystal 

structure can occur if the contact is believed to be erroneous.138-139  Given that anion-π 

interactions are relatively new concepts in the literature and are, in general, counter-

intuitive, it is not difficult to presume that any close contacts between anions and the π 

face of an aromatic ring would be thought to be erroneous and thus “corrected”.  For 

these same reasons the 5.0 Å cutoff for potential cation-π interactions was rounded up 

from 4.4 Å, the sum of the van der Waals radii between a carbon atom and cesium 

atom.95  Using distances larger than the sum of van der Waals radii for the atoms under 

consideration is not unprecedented when dealing with weak interactions in protein 
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crystal structures.  The previously cited paper by Jackson, et al. used a cutoff of 7 Å in 

their search of the PDB,136 and in their study of cation-π interactions Gallivan, et al. use 

a cutoff of 6 Å.72 

 For each chloride anion – aromatic ring atom contact identified in the search, 

three different values were reported by the “full” script: the distance between the 

chloride anion and the aromatic ring atom (d), the distance between the chloride anion 

and ring centroid (dc), and the angle between the anion – centroid vector and the plane of 

the aromatic ring (θ) (Figure 5.5).  In order to simplify the search criteria, these values 

were normalized, giving rise to only two parameters per anion – ring atom contact 

instead of three.  This normalization was accomplished via the “basic” script.  The first 

parameter is the ratio d:dc.  In an idealized anion-π interaction, the anion is positioned 

directly above the ring centroid meaning that the dc distance will be shorter than d 

distance and the ratio d:dc will be greater than one.  The second parameter is the ratio 

θ:90°.  Again the anion would be positioned directly above the ring centroid in an 

idealized anion-π interaction, making the angle θ equal to 90°.  In this case, the θ:90° 

ratio would become equal to one. 

 A plot of the ratio θ:90° against the ratio d:dc (Figure 5.6a) demonstrates that the 

overwhelming majority of the contacts identified are not near the idealized anion-π 

interaction.  This result is not unexpected and fits with the results presented by Jackson, 

et al (Figure 5.2).136  Although the authors considered a different anion (the anionic side 

chain of Asp or Glu instead of chloride anion) and employed a different cutoff distance 

(6 Å instead of 4 Å)  than was  considered in the present search,  two useful comparisons   
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Figure 5.5.  Depiction of the parameters for the distance (d) between an anion (orange) 
and an aromatic ring atom (gray), the distance (dc) between an anion and the ring 
centroid (black), and the angle (θ) between the anion – ring centroid vector and the plane 
of the aromatic ring. 
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Figure 5.6.  Graph depicting the contacts determined by the script Protein-Cl_Basic+.py.  
Points in the regions where d:dc ≥ 1 and θ:90° ≈ 1 represent likely candidates for anion-π 
interactions (a).  Graphical distribution of the data found by the script Protein-
Cl_Basic+.py.  The expected – sphere values shown are derived from the appropriate 
volumes inside of a sphere and the expected – corrected values are derived from a sphere 
around a benzene molecule.  This graph takes into account that no anion can exist within 
the atomic radius of a carbon or hydrogen atom.  These values were determined by the 
script Expected_Distribution_2.py (b).  

a 

b 
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can be made between the two sets of results.  The first one is that in the 80-90° region 

(Figure 5.6b), the region where one would expect to see ideal anion-π interactions, the 

fraction of contacts observed is less than what is statistically expected in both cases. 

These results suggest that the anion-π interaction does not occur with any significant 

frequency in the proteins considered with the script and criteria used.  The second region 

of note is the range 30-40° (Figure 5.6b).  Whereas Jackson, et al. observe only expected 

behavior in that region for the carboxylate anions, the high frequency of contacts in this 

range indicate that this position is the preferred point of interaction for chloride anions 

with aromatic rings in protein structures. Similar results are observed for the script 

Protein-I_Basic+.py (Figure 5.7) with the notable exception that no interactions are 

observed in the 80-90° region. 

 The generally poor R-values and resolutions observed in protein structures 

(Table 5.1) can make it difficult to accurately identify single unbound atoms, or in this 

case chloride anion.  As was also previously discussed, a practice for protein 

crystallographers is to adjust the position of anions so that they are not in van der Waals 

contact with other atoms.138-139  It is also possible to misidentify chloride anions as water 

molecules and vice versa.140  In general this means the chloride anions are a challenging 

candidate for a search such as this one.  The larger iodide anion is able to avoid many of 

these problems, but as evidenced in Figure 5.7b, no iodide anion···arene interactions 

were observed in the 80°-90° range. 

 It must be made clear at this point that the data reported in Figures 5.6 and 5.7 do 

not represent the number of anion – arene contacts found by the  search,  but the  number   
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Figure 5.7.  Graph depicting the contacts determined by the script Protein-I_Basic+.py.  
Points in the regions where d:dc ≥ 1 and θ:90° ≈ 1 represent likely candidates for anion-π 
interactions (a).  Graphical distribution of the data found by the script Protein-
I_Basic+.py (b).  The expected data were determined using the same methods as in 
Figure 5.6b. 



  

 

Table 5.1.  Resolutions and R-values for all protein structures found by Protein-Cl_Basic+.py to contain angles above 60°*.  
The resolution is from the .pdb file, as reported by the script.  The R-values were retrieved from the PDB (http://www.pdb.org) 
directly on September 26, 2010. 
 

Protein Resolution (Å) R-Value Angle, θ† (°) 
 

Protein Resolution (Å) R-Value Angle, θ† (°) 
1GKZ 2.20 0.237 (obs.) 89 

 
2FPU 1.80 0.185 (obs.) 68 

2OWR 2.30 0.255 (obs.) 88 
 

1IS9 1.03 0.131 (work) 67 
1FP8 2.30 0.197 (obs.) 79 

 
1J07 2.35 0.199 (obs.) 66 

2AZT 2.70 0.239 (obs.) 76 
 

1H6G 2.20 0.193 (obs.) 65 
2IW5 2.57 0.204 (obs.) 75 

 
1HKX 2.65 0.246 (obs.) 64 

1V3Z 1.72 0.169 (obs.) 72 
 

2NRT 1.50 0.187 (obs.) 64 
2DHO 1.60 0.173 (work) 72 

 
1O1H 1.40 0.156 (obs.) 63 

2GFG 2.12 0.277 (obs.) 71 
 

2GHW 2.30 0.251 (obs.) 62 
1T6H 2.01 0.160 (obs.) 70 

 
2GO7 2.10 0.173 (obs.) 61 

1ZSV 2.30 0.197 (obs.) 70 
 

2IGA 1.95 0.185 (work) 61 
2OU3 1.85 0.163 (obs.) 69 

 
2QML 1.55 0.181 (obs.) 61 

2O79 1.80 0.150 (obs.) 68 
      

*Please note that 60° was an arbitrary cutoff. 
†The angle, θ, refers to the angle between the anion – ring centroid vector and the anion – ring atom vector.  If multiple anion – 
ring atom contacts (d < 4.0 Å) were observed for a given anion – arene pair, the average value is given here. 
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of anion – ring atom contacts.  Given this fact, a particular anion···arene interaction may 

give rise to several anion – aromatic ring atom contacts under the script used in this 

search.  It may be possible to correct this redundancy in the data by defining the angle θ 

by using the vector normal to the plane of the ring (a unique vector defining the ring) 

and the ring centroid – anion vector.  The current script uses the ring centroid – ring 

atom vector to define this angle, giving rise to a unique angle to each anion – ring atom 

contact.  It should also be possible to write a function to prevent the script from 

considering ring atoms belonging to previously identified aromatic rings. This should be 

done in the future in order to render this exercise useful for future considerations of 

where to look for anion-pi contacts in proteins. 

Specific Examples of Potential Anion-π Interactions Found by the PDB Search 

 Only three structures, 1GKZ141, 2OWR142, and 1FP8143 will be discussed, as 

these three structures are the ones exhibiting the most favorable θ values for the 

anion···arene interaction, 89°, 88° and 79°, respectively.  The next structure to consider 

would be 2AZT144 with a θ value of 76° (Table 5.1). 

 1GKZ (Figure 5.8a) is a branched-chain alpha-ketoacid dehydrogenase kinase 

complexed with ADP published by Machius, et al.141  Phe 234 A was found to be in 

close contact with Cl 502 A (Figure 5.8b) averaging 3.9 Å between the chloride anion 

and the five carbon atoms in close-contact (less than 4.0 Å) with the anion (Table 5.2).  

While the distances are further than the aforementioned 3.5 Å, the position of the 

chloride ion makes 1GKZ are good example of a potential anion-π interaction. 
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 An even better example than 1GKZ is 2OWR (Figure 5.9a).  Reported by 

Schormann, et al., 2OWR is a vaccinia virus uracil-DNA glycosylase.142  In this case 

Trp 119 C was observed to be in close-contact with Cl 600 (Figure 5.9b).  In addition to 

the well positioned chloride anion, the average distance between the anion and the eight 

close-contact ring atoms is 3.6 Å with four of the eight atoms being in van der Waals 

contact (d ≤ 3.5 Å) (Table 5.3).  These are the closest distances observed in this search 

and, as such, are extremely promising. 

 1FP8, amylomaltase from Thermus thermophilus HB8 (Figure 5.10a) reported by 

Uitdehaag, et al.143, is not as good of an example as 1GKZ or 2OWR.  In this structure 

Cl 502 was shown to be in close contact with Tyr 59 A with an average distance of 3.7 Å 

between the chloride anion and the three close contact carbon atoms (Table 5.4).  While 

the distances are comparable to those observed in 1GKZ and 2OWR, the position of the 

anion (over one of the carbon atoms as opposed to the ring centroid) makes this 

interaction more similar to a π-type charge-transfer than an anion-π.40  The remaining 

anion···arene interactions found by the search were observed at lower angles as shown 

in Figure 5.6b and Table 5.1, supporting the results of Jackson, et al.136 and Marsili, et 

al.57  As stated earlier, the number of anion – arene interactions found in this range are 

insignificant; these examples are included only to illustrate possible anion-π interactions 

in a protein structure. 
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Figure 5.8.  Protein 1GKZ (a).  Interaction between Phe 234 A and Cl 502 A (b) with the 
green lines representing the close contacts (d ≤ 4.0 Å).   Carbon atoms (gray), nitrogen 
atoms (blue), oxygen atoms (red), sulfur atoms (yellow) and chloride anions (green). 
  

a b 

CD1 

CE1 

CZ 
CE2 

CD2 
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Table 5.2.  Distances between Cl 502 A and the carbon atoms from Phe 234 A in close 
contact. 

Ring Atom C-Cl distance (Å) 
 

Ring Atom C-Cl distance (Å) 
CD1 4.0 

 
CE2 3.8 

CE1 3.9 
 

CD2 3.9 
CZ 3.8 

    
Reference Figure 5.8b.  Atom labels are standard labels used by the PDB. 
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Figure 5.9.  Protein 2OWR (a).  Interaction between Trp 119 C and Cl 600 (b) with the 
green lines representing the close contacts (d ≤ 4.0 Å).  Carbon atoms (gray), nitrogen 
atoms (blue), oxygen atoms (red), sulfur atoms (yellow) and chloride anions (green). 
  

a b 

CG 

NE1 

CD2 

CE2 

CE3 

CZ3 

CZ2 
CH2 
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Table 5.3.  Distances between Cl 600 and the carbon atoms from Trp 119 C in close 
contact. 

Ring Atom C-Cl distance (Å) 
 

Ring Atom C-Cl distance (Å) 
CG 3.9 

 
CH2 3.6 

CD2 3.2 
 

CZ2 3.6 
CE3 3.4 

 
CE2 3.3 

CZ3 3.5 
 

NE1 3.9 
 
Reference Figure 5.9b.  Atom labels are standard labels used by the PDB.  Values in red 
represent those contacts with d ≤ 3.5 Å. 
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Figure 5.10.  Protein 1FP8 (a).  Interaction between Tyr 59 A and Cl 502 (b) with the 
green lines representing the close contacts (d ≤ 4.0 Å).  Carbon atoms (gray), nitrogen 
atoms (blue), oxygen atoms (red), sulfur atoms (yellow) and chloride anions (green). 
 
  

a 
b 

CD1 

CE1 CZ 
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Table 5.4.  Distances between Cl 502 and the carbon atoms from Tyr 59 A in close 
contact. 

Ring Atom C-Cl distance (Å) 
CD1 3.8 
CE1 3.5 
CZ 3.6 

 
Reference Figure 5.10b.  Atom labels are standard labels used by the PDB. 
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Conclusions 

 Current literature is sparse on the topic of the biological occurrence of anion-π 

interactions.  The current work includes small molecules composed of biologically 

relevant species,121-122 artificial models of biological systems67,124 and previous searches 

of the PDB did not provide any evidence of potential anion-π interactions.57,136  In order 

to attempt to identify examples of anion-π interactions in protein structures, a new series 

of searches were performed focusing on the chloride and iodide anions.  At this stage, 

the results of these searches are inconclusive.  While anion-π interactions may be present 

in protein structures, they are not common occurrences for the anions thus far 

investigated. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

 Given the large number of claims about anion-π interactions in the literature, 

many unsupported, there is a compelling need for further research into this topic.  

Despite a growing body of papers on the subject, fundamental questions as to the nature 

and definition of anion-π interactions still remain.  The controversy surrounding anion-π 

interactions notwithstanding, research involving application of anion-π interactions is 

underway.47,60,67 

 As part of ongoing research regarding templation of supramolecular architectures 

using anion-π interactions, the ligand 3,6-bis(2′-pyrimidyl)-1,2,4,5-tetrazine (bmtz) was 

synthesized and reacted with [Cu(NCMe)4][BF4] to form the octanuclear complex 

[Cu8(bmtz)6][BF4]6 · 6 MeCN (1).  Although the complex itself is not templated by an 

anion, the anions residing along the outside of the cluster participate in crystal packing 

by means of an anion-π/CH-bonding bridge.  There is an in situ redox reaction during 

the formation of 1 resulting in the reduction of bmtz and the formation of a second 

paramagnetic compound only isolated as an intensely colored blue precipitate (2).  A 

direct route to the synthesis of 2 was found and preliminary characterization indicate the 

presence of the expected copper(II) species, but further work is necessary to fully 

identify characterize the material.  Additionally, the synthesis of 1 requires optimization 

so that full characterization can be performed.  A rich electrochemistry is expected for 
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the cluster 1, but sufficiently pure samples have not been isolated to perform cyclic 

voltammetry experiments. 

 Computational studies addressing the question of whether or not anion-π 

interactions can occur between the complex anions tetrafluoroborate ([BF4]-) and 

hexafluorophosphate ([PF6]-) and the olefins tetracyanoethylene (TCNE), 7,7,8,8-

tetracyanoquinodimethane (TCNQ), 7,7,8,8-tetracyano-1,2,4,5-

tetrafluoroquinodimethane (TCNQF4) and octacyanoquinodimethane (TCNQ(CN)4) 

have been completed using both Density Functional Theory (DFT) and ab initio methods 

along with critical point analysis (AIM) and Natural Bonding Orbitals (NBO) analysis.  

While the computational results clearly indicate a favorable interaction between the 

anions and olefins in all cases, solution (UV/visible spectroscopy) and solid state (single 

crystal X-ray diffraction) studies have yet to be completed. 

 Extensive research regarding the simultaneous anion-π and π-type charge-

transfer (CT) interactions that occur in the compounds {([n-Bu4N][X])3[HAT-

(CN)6]2}3C6H6 (X = Br, I) has been performed in solution and in the solid state in the 

Dunbar laboratories.51,73  DFT and NBO computations have been completed and are in 

full agreement with the experimental work previously reported.  While solution and 

computational evidence point toward the existence of a chloride anion analogue of {([n-

Bu4N][X])3[HAT-(CN)6]2}∙3C6H6, no co-crystallized structure involving chloride anions 

has been achieved.  Further work on this topic will focus on this task. 

 Systematic searches of the Protein Data Bank (PDB) have not revealed 

conclusive evidence of anion-π interactions involving proteins.  To the best of our 
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knowledge, no such evidence has been reported anywhere in the literature and the 

question of the biological relevance of anion-π interactions remains to be answered. 
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