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ABSTRACT 

 

Basic Integrative Models for Offshore Wind Turbine Systems.  (May 2011) 

Fares Aljeeran, B.S., Kuwait University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John M. Niedzwecki 

 

 

This research study developed basic dynamic models that can be used to accurately 

predict the response behavior of a near-shore wind turbine structure with monopile, 

suction caisson, or gravity-based foundation systems. The marine soil conditions were 

modeled using apparent fixity level, Randolph elastic continuum, and modified cone 

models. The offshore wind turbine structures were developed using a finite element 

formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity 

wind turbine were studied using a variety of design load, and soil conditions scenarios. 

Aerodynamic thrust loads were estimated using the FAST Software developed by the U.S 

Department of Energy’s National Renewable Energy Laboratory (NREL). Hydrodynamic 

loads were estimated using Morison’s equation and the more recent Faltinsen Newman 

Vinje (FNV) theory. This research study addressed two of the important design 

constraints, specifically, the angle of the support structure at seafloor and the horizontal 

displacement at the hub elevation during dynamic loading. The simulation results show 

that the modified cone model is stiffer than the apparent fixity level and Randolph elastic 

continuum models. The effect of the blade pitch failure on the offshore wind turbine 

structure decreases with increasing water depth, but increases with increasing hub height 

of the offshore wind turbine structure. 
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1. INTRODUCTION

 

Energy is at the core of global economics and reaches down into everyday life. 

Energy can be categorized as being derived from either renewable or non-renewable 

sources. Renewable green energy sources, sometimes referred to as green energy sources, 

include energy derived from wind, hydrokinetic, geothermal, and biomass. In contrast, 

non-renewable sources of energy include hydrocarbon (oil & gas) and coal. Consumption 

of nonrenewable energy is increasing rapidly as the world’s population continues to 

grow, and there is great concern about the prospect of its depletion and the pollutants 

produced as a byproduct of its consumption. From an environmental perspective, 

nonrenewable energy sources continue to contribute significantly to pollution of the 

atmosphere through 2CO  production and are considered to be the major force driving 

global warming. 

In an effort to address these problems, many countries have been aggressively 

targeting goals for inclusion of renewable energy sources to be consequently, a major 

component of their future energy consumption. Because of its potential globally, wind 

power is receiving more attention than any other source of renewable energy because 

wind farms can be located on land or off the coast at offshore sites and much of the 

onshore technology is proven and available. Energy derived from the conversion of wind 

creates almost no pollution, although closeness to population center intermittency and 

storage of energy are topics for current research. Because of its intermittent nature it is 

seen to be a complementary energy source to more conventional sources of electrical 

energy. Most analysts expect that this technology sector will grow very rapidly especially  

                                                
The dissertation follows the style and format of Ocean Engineering. 
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offshore in the near future.  

The basic concept of wind power technology is to deploy a device that converts wind 

speed directly into usable electricity that could be used immediately on the grid or 

perhaps be stored for later use. The blades on a wind turbine rotate about a hub and 

harvest the wind’s kinetic energy by turning an electric generator via a drive shaft and 

gearbox. Using wind energy technology, an individual home or small business can 

potentially generate sufficient electricity for its needs through use of a single wind 

turbine rated between 2.5 kW to 12 kW. Further, “wind farms” that are comprised of a 

number of wind turbines can be used to power private or commercial enterprises. The 

potential to create more energy for consumption from wind farms sited at locations near 

population centers is a critical issue for the public and investors. This dissertation 

research will focus on the engineering aspects of modeling the dynamic response 

behavior of fixed wind turbine tower and foundation design for near-shore coastal 

regions. 

Recently, the number of offshore wind farms that have been built, the number of units 

that have been installed for offshore wind farms, and the total power of offshore wind 

farms that have been built have been rapidly increasing, as demonstrated in Fig. 1, Fig. 

2., and Fig. 3. The data shows the recent trend towards more offshore wind farm 

development and towards larger wind farms. There are important advantages for locating 

wind farms at offshore sites as there are higher wind speeds (see Fig. 4) and the potential 

for more constant wind speed than at onshore sites. In addition, offshore sites can be 

selected to minimize the visual and noise pollution that generally accompanies land- 

based sitting of wind farms, and the use of offshore sites provides for the possibility of  



 3 

 Fig. 1. The Number of Offshore Wind Farms that Have Been Built Worldwide 

 Since 1991 (Appendix-A) 

 

 

 

 
Fig. 2. The Number of Units that Have Been Installed for Offshore Wind Farms  

Worldwide Since 1991 (Appendix-A) 
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Fig. 3. The Total Power of Offshore Wind Farms that Have Been Built 

Worldwide Since 1991 (Appendix-A) 

 

 

 

 

 

 
Fig. 4. A Generic Comparison of the Mean Annual Wind Speed Profiles for     

Onshore and Offshore Location as Related to the Hub Elevation of a Wind  

Turbine (Hau 2005) 
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installing larger wind farms. A major concern when developing offshore wind farms is 

the cost of the foundations, which can be on the order of 25% to 35% of the total cost 

(Byrne & Houlsby, 2003). It is therefore important to consider a variety of options when 

selecting the foundation type (gravity-based foundation, monopile foundation, or suction 

caisson foundation) as an integral part design of individual tower systems as the dynamic 

response behavior of each tower can vary within the wind farm. Thus, an integration 

model allowing for these type of modeling issues will be developed. 

1.1 Wind Energy Resource 

One of the first steps to constructing a wind farm is to evaluate the wind resource 

areas and estimate the wind energy in those areas. It is crucial that any wind energy 

project obtain a correct estimation; otherwise, the entire project may fail. In September 

2010, the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory 

(NREL) reported the wind resource in the 48 contiguous states, except for Alabama, 

Florida, and Mississippi (see Fig. 5). The wind resource map shows the land-based and 

offshore wind resources at 50 m above the surface. Apparently, the map reveals a 

significant advantage in the offshore wind area over the land-based wind area, which 

means that the development wind projects will focus more on the offshore areas. 

However, challenges may occur regarding regulations, site restrictions, and public 

concerns. Until now, all wind energy projects in the United States are land-based 

projects; no offshore wind energy projects exist to date. The mapping status of the in-

progress, planned, and future offshore projects are shown in Fig. 6. The NREL estimates 

that the United States could feasibly build 54 GW of offshore wind power by 2030, 

which means 20% of its electricity will come from wind power. One way to achieve this  
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 Fig. 5. The Annual Average Wind Power Estimates at 50 m Above the Surface 

 (Musial and Ram 2010)   

 

 

 
 Fig. 6.  The in Progress, Planned, and Future Offshore Projects in the U.S. (Elliott 

 and Schwartz 2006) 
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goal is by developing more offshore wind energy projects in the near future. 

Europe started the first offshore wind farm in 1991 and has held the lead since then in 

offshore wind power capacity. European Environment Agency (EEA) presents a map that 

shows the land-based and offshore wind resources (see Fig. 7). From the map, it can be 

seen that the average wind velocity offshore is higher than the land-based average wind 

velocity, which means there is more wind energy power offshore than onshore. More 

offshore wind projects have been built since 1991, and Fig. 8 depicts the operational 

offshore wind farms in Europe until 2009. The European Wind Energy Association 

(EWEA) has reported that the estimation of the wind energy by 2030 will cover between 

21% and 28% of Europe electricity demand, and half of it will come from the offshore 

wind power projects. 

1.2 Literature Review 

There are many factors that should be taken into consideration when selecting a 

turbine size, such as site regulation, location, the budget, plan and maintenance 

requirements. Site regulations vary according to country and locality and in general, these 

regulations limit the location, height, and other characteristics of the turbine. Location 

and elevation play an especially important role in determining the potential energy 

available, based upon annual wind speed measurements. On the average, wind speed 

increases with hub elevation as was illustrated in Fig. 4. According to Gipe (2004), at a 

site with a temperature of 
o o15 C (59 F)  with a corresponding air density of 

31.225 kg/m  

the annual power density (power/swept area) in 2kW/m  can be estimated using the 

following equation: 

  
33/ 0.6125 10 1.91P A V     (1) 



 8 

 
 Fig. 7. Europe Land-Based and Offshore Wind Resources in 2008 (EEA) 

 

 

 

 
 Fig. 8. Operational Offshore Wind Farms in 2009  (http://www.ewea.org) 
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where V  is the mean wind velocity. The annual energy output (AEO) in kWh/yr  for 

single wind turbine can be estimated based upon area swept by the turbine blades and the 

efficiency of the wind turbine, using the following equation: 

 / (% ) 8,760 1,000AEO P A A efficiency      (2) 

The focus for this research investigation will be limited to horizontal axis wind turbines 

whose rotor assembly involves two or three horizontally rotating blades. Three-blade type 

wind turbine designs are more efficient, and are reported to run more smoothly than the 

two-blade version systems (Gipe 2004). Also the three-blade wind turbine generates more 

thrust force on the rotor than the two-blade rotor. Wind turbine blades are made from a 

variety of materials including fiberglass composites or wood, and must be lightweight, 

strong, and flexible. Turbine efficiency is one of the key factors that can increase the 

annual energy output of the wind turbine, but will only be considered as a parameter to be 

varied in this research study, as the energy output from a wind turbine is more sensitive 

to wind speed and swept area. According to Gape (2004), the theoretical maximum limit 

of the power efficiency of the rotor is 59.3%, also known as the Betz limit after Albert 

Betz the German aerodynamicist. In general, wind turbines can capture between 12% and 

40% of the annual energy contained in the wind, depending on the location and type of 

wind turbine. Wind turbine towers vary in design, as shown in Fig. 9. 

The American Wind Energy Association (AWEA) states that onshore wind turbine 

blades clearance needs to be at least 9.1 m (30 ft) higher than any other structures, trees, 

or bluffs within 91.44 m (300 ft) of the wind turbine tower in order to minimize the 

effects of turbulent flow. This is illustrated in Fig. 10. Wind farms incorporating more 

than one wind turbine must also take wake effects, which can decrease efficiency. Wake  
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 Fig. 9. Typical Horizontal-Axis Wind Turbine Tower Designs: a) Shell, b) 

 Stepped Shell, c) Truss (or Lattice), and d) Guyed Shell (Spera, 1994) 

 

 

 

 

 

 
 Fig. 10. Example of Suggested Tower Hub Elevations for Single-Home Wind 

 Turbines (American Wind Energy Association, 2003) 
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effects can be minimized through careful spacing of individual turbines (IEC 61400-1, 

2005). According to (Hau, 2005), the wake area can be divided into three regions, namely 

the near wake, intermediate or transition, and far wake regions. The near wake region 

includes the area behind the rotor between one to two rotor diameters (1-2D). The 

intermediate region, which covers the distance beyond the near wake region between two 

to four rotor diameters (2-4D). Finally, The area behind the rotor at five or more rotor 

diameters (5 D ) is termed the far wake region, which is the region often assumed to be 

best suited for positioning the next rotor, as it contains the least deceleration of wind 

velocity. The Danish Wind Industry Association (DWIA) recommends that the distance 

between towers be between five and nine rotor diameters (5-9D) in the dominant wind 

direction and between three and five rotor diameters (3-5D) at a 90-degree angle to the 

dominant wind direction. The Tunø Knob wind farm has two rows of five Vestas 500 kW 

wind turbines with a spacing of 5.1 rotor diameters perpendicular to the dominant wind 

direction and 10.2 rotor diameters in the dominant wind direction (Ferguson et al. 1998). 

For Vindeby wind farm, two lines of five and six Bonus 450 kW wind turbines are 

spaced at 8.6 rotor diameters in both directions. Nevertheless, it is important to take into 

account that rotor diameters vary considerably within the wide range of wind turbine 

equipment available. For instance, the very small Marlec 500 has a rotor diameter of 0.5 

m (1.7 ft), while the enormous Vestas 90-model has a rotor diameter of 90 m (295 ft) 

(Gipe 2004). The difference in potential electrical power these two models can produce is 

substantial, with the Marlec 500 capable of producing approximately 20 W of electrical 

power comparing to the V90, which can produce up to 3 MW. 

Other critical design variables include tower height, tower material (steel, concrete, or  
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wood), rotor blade type shape, and soil conditions of the foundation. Since foundations 

represent about 25% to 35% of the cost of wind farm installation, selecting between pile, 

suction caisson, and gravity-type systems becomes an important design consideration. 

The selection depends upon soil characteristics, such as strength and stability. The variety 

of foundation types available for near-shore wind tower structures are pictures in Fig. 11. 

Approximate dimensions have been applied to Fig. 11 in order to provide a visual 

representation of just how large a 3MW offshore wind turbine can be. Foundation types 

are expected to vary depending upon the location of the wind farm. For example, 

according to (Byrne & Houlsby 2003), a gravity-based foundation type [see Fig. 11 (a)] 

was used at the Middelgrunden and Nysted Havmollepark wind farms in the Baltic Sea. 

Horns Rev, located in the North Sea 14 kilometers west of Denmark utilizes a monopile 

foundation type [see Fig. 11 (b)] while a trial suction caisson foundation type [see Fig. 11 

(c)] has been constructed at Frederikhavn in Denmark. The suction caisson foundation is 

particularly interesting due to its potential relative ease of installation and removal. 

An offshore wind turbine structure (OWTS) can be viewed as consisting of three 

major system components the upper section (the rotor assembly with blades), the middle 

section (the tower), and the lower section (the transition piece and the foundation). 

Offshore environmental design loads may involve a combination of wind, wave, and 

currents varies, depending upon the particular location of the offshore site. A design 

storm with a 50-year return period has been deemed appropriate for offshore wind turbine 

structures by the US Army Corps of Engineers. In the design process tower strength, 

tower stability, resonant frequencies, and fatigue loading are important design aspects. In 

particular, care must be taken that neither the rotor frequency r(f )  nor the blade passing  
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 Fig. 11. Foundation Types for Near-Shore Wind Tower: a) Gravity-Based, b) 

 Monopile, and c) Suction Caisson 
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frequency b(f )  match the fundamental natural frequency o(f )  of the overall wind turbine 

structure. Three different design solutions are possible for offshore wind turbine 

structures, depending on the ratio between o r bf , f , and f . These include stiff-stiff design, 

if b o(f f ) , soft-stiff design if r o b(f f f )  , and soft-soft design if o r(f f ) . Overtime an 

important factor that can reduce the fundamental natural frequency o(f )
 
is the presence of 

marine growth on the subsea support structure. It presence will increase the structure’s 

mass without noticeably affecting structural stiffness. Soft fouling and hard fouling 

organisms make up the two kinds of marine growth as discussed by Hallam et al. (1978) 

and they suggest using the data presented in Table 1 to estimate the mass of marine 

growth if no other information is available. Scour of the seabed around the subsea 

structure can reduce the fundamental natural frequency of an offshore wind turbine 

structure. This is particularly a concern for monopile foundations in region of sandy 

seabeds as scour changes the embedment depth. Engineering solutions to this problem 

include: 1.) preventing the scour from happening by adding layers of asphalts, concrete 

mattresses, or crushed rocks on top of the seabed, or 2.) anticipating the depth of the 

seafloor scour and accounting for this in the analysis, so that the range of the fundamental 

natural frequency of the structure does not overlap (thereby avoiding resonance 

phenomena) with the rotor frequency, the blade passing frequency, or the range of wave 

frequencies. 

1.3 Some Innovative Wind Turbine Developments 

 

In this section, we will address some interesting information regarding wind turbine  

innovations as well as the latest updates and developments in onshore and offshore wind 

turbine technologies. Wind technology can be utilized to power highways, as Ariel  
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Table 1 The Mass of Marine Growth per Surface Area of Different Ranges of Depths 

(Hallam et al. 1978) 

Depth below mean water level Mass per surface area 2(kg/m )  

0-10 250 

10-20 200 

20-30 125 

30-50 80 

Over 50 <20 
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Schwartz discusses on inhabitat.com (see Fig. 12). Although it is still in the conceptual 

phase, the idea is to use the moving air from passing highway vehicles to generate more 

wind, thus increasing the wind speed around wind-powered highway lights. Nevertheless, 

a certain degree of uncertainty exists regarding the extent of power that can be generated 

from vehicles passing by wind-powered highway lights. Meanwhile, businessweek.com 

reports that FloDesign Wind Turbine has developed a prototype model based on features 

taken from the jet engine design (see Fig. 13). This wind turbine model will be three 

times as efficient as the typical three-bladed model, as Stanley Kowalski III, CEO of 

FloDesign Wind Turbine, claims. The new model incorporates a combination of small 

blades with special vents set up to create spinning vortexes as air passes through the vent 

slots. The main advantages of this model over the conventional model include smaller 

wind turbines, greater efficiency, and reduction in transportation costs. Ransom and 

Moore (2009) published an article exploring an alternative wind turbine concept that 

makes use of an array of small wind turbines. The idea was to replace a single turbine of 

200-meter diameter with 20 turbines, each of which possesses a diameter of 45 meters. 

With respect to the swept area, both designs are (theoretically) virtually identical in terms 

of power production. In order to prove this theory, a prototype of an array of seven wind 

turbines, depicted in Fig. 14, was designed, built, and tested to compare the wind turbine 

array model’s real performance with that of a single turbine. Different tests were 

conducted for varying amounts of space between the wind turbines. The results indicate 

that the performance of the wind turbine array is 4% less than that of a single turbine. 

 In the land-based wind turbine technology, the Strata Building also known as “The 

Razor,” in London, England, is the first building in the world to incorporate wind  
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Fig. 12. A Concept of Wind-Powered Highway Light (inhabitat.com)   

 

 

 
Fig. 13. Prototype Wind Turbine Model From FloDesign (businessweek.com) 
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Fig. 14. A Prototype of Seven-Wind Turbines Array (Ransom and Moore 2006) 
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turbines into its design, as reported in Wikipedia. The building will obtain 8% of its  

power from three nine-meter wind turbines built into the top section of the building, as             

depicted in Fig. 15. Each turbine includes five blades, rather than the standard three, to 

reduce the noise emitted from these blades. The wind turbines are rated at 19 kW each 

and are expected to produce 50MW of electricity per year, an amount that will generate 

significant savings in the long run. The Bahrain World Trade Center is another building 

that incorporates wind turbines into its design structure, which includes twin towers. Each 

tower is 240 meters high and is linked to the other via three bridges, each of which carries 

a 225KW wind turbine (see Fig. 16). Wikipedia reports that these wind turbines are 

expected to generate 11% to 15% of the total power consumption of the twin towers. The 

shape of the two towers is an interesting design feature; they were designed in such a way 

as to provide the three wind turbines with greater wind stream. An example from 

dynamic architecture is David Fisher’s rather unique design of a wind-powered, rotating 

skyscraper, which features 80 independently-rotating floors and is expected to be the 

world’s first swirling skyscrapers (see Fig. 17). Wind turbine technology is incorporated 

into his design in such a way that it is hardly visible from outside and takes full 

advantage of the available wind around the building. A wind turbine is installed between 

each level for a total of 48 turbines, which together generate approximately 12 times the 

amount of energy needed to power the entire building. This energy can be used to power 

the entire area surrounding the building or can provide the power network with surplus  

energy. According to The Times, the first two such swirling skyscrapers are to be 

constructed in Dubai and Moscow.  

One of the interesting fixed offshore wind turbine design systems  is the  
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Fig. 15. The Strata Building in London, England (e-architech.co.uk) 

 

 

 
Fig. 16. The Bahrain World Trade Center (wikipedia.com) 

 

 

 
 Fig. 17. David Fisher’s Swirling Skyscraper (gizmag.com) 
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Aerogenerator X (see Fig. 18). The British company Wind Power Limited recently 

unveiled an innovative design of a new 10MW offshore wind turbine. The 270 m (885 ft) 

wide offshore wind turbine structure spins at 20 revolutions per minute and is designed as 

a vertical axis wind turbine. It is expected to be completed by 2014. According to the 

manufacturer, the Aerogenerator X will generate twice the power with only half the 

weight of previous designs. Another attractive floating offshore design system is the 

Hywind 2.3 MW Siemens wind turbine, see (Fig. 19). The Norwegian oil and gas 

company, Statoil, has developed and installed Hywind in the North Sea of Norway; 

according to the Statoil Web site, it became the world’s first operational, full-scale, 

floating wind turbine system in the summer of 2009. Hywind is a single, floating, 

cylindrical spar buoy moored with three lines of catenary cables. It weighs 138 tons and 

has a hub height of 65 m above the sea level. Moreover, Sweden’s Hexicon has 

developed a new futuristic design solution for offshore wind farm systems that is based 

on the floating platform (see Fig. 20). The conceptual design has seven large turbines and 

can generate up to 40 MW of renewable power, as explained on the Hexicon Web site. 

1.4 Estimating Annual Energy Output 

For offshore-based wind turbines, rotor diameter typically increases in proportion to 

hub height, as can be observed in Fig. 21. With this information, the annual energy output 

with respect to the Betz limit for a single offshore-based wind turbine structure can be 

calculated given mean wind velocity and either hub elevation or rotor diameter (see Fig. 

22).  

1.5 Research Objectives 

The main objective of this research study is to develop basic dynamic models that can  
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Fig. 18. Offshore Wind Turbine, the Aerogenerator X (gizmodo.com)  

 

 

 
 Fig. 19. Siemens Hywind Floating Wind Turbine (statoil.com) 
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      Fig. 20. A Conceptual Floating Offshore Wind Farm Design (hexicon.eu)  

 

 

 

 
Fig. 21. The Relation Between Rotor Diameter and Hub Height for an Offshore-Based 

Wind Turbine Structure (Appendix-A) 

 

 



 

 

 
Fig. 22. The Annual Energy Output of a Single Offshore-Based Wind Turbine Structure with Respect to the Betz Limit 

2
4

 



25 

be used to accurately predict the response behavior of near-shore wind towers with either 

monopile, suction caisson, or gravity-based foundation systems. Initially two wind tower 

models will be investigated. The first dynamic response model to be presented addresses 

wind turbine with gravity based foundations and allows for sliding and rocking of the 

wind tower. It is based upon the earlier offshore platform model of Wilson (1984). The 

second dynamic response model to be presented addresses the modeling of layered soils 

for suction caisson foundations (Wolf and Deeks 2004). The marine hydrodynamic force 

model based upon the generalized Morison Equation modified to address wave and 

current loadings on a flexible cylindrical bottom fixed wind turbine was discussed by 

Merz, Moe and Gudmestad (2009). They focused on inline and transverse flow induced 

forces were addressed but did not include much on foundation design. In this study the 

environmental loads produced from the waves and currents incorporating their finding 

will be incorporated into the dynamic model. A refinement of the non-linear wave force 

model based upon the analysis for a slender cylinder by Faltinsen, Newman and Vinje 

(1995) will be examined. The wind loading on the slender towers will follow the usual 

drag force modeling techniques. 

Finally, along with the development of these dynamic models, parametric studies will 

be performed. Simulations using these dynamic models will help us address the two and 

three blade offshore wind turbine systems. The applied thrust force will be developed 

using the NREL computer program FAST (Jonkman and Buhl Jr. 2005); or alternatively 

using the data from the offshore wind turbine tower with a suction caisson foundation 

example in (Wolf and Deeks 2004). 
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2. ENGINEERING APPROXIMATIONS AND BASIC MODELS 

In this section, we will describe certain specific approximation techniques that can be 

used to estimate the natural vibration frequency of the offshore wind turbine structure 

(OWTS), the wake and turbulence effects, and the wave and wind forces on the structure.    

2.1 Natural Vibration Frequencies  

The fundamental natural frequency is one of the important dynamic criteria of the 

OWTS and can be estimated as (Tempel 2006): 
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where, , , , ,natural topf m L EI  are the first natural frequency, the top mass, the tower mass 

per length, the tower height, and the tower bending stiffness, respectively. The formula 

assumes that the OWTS is a uniform beam with a top mass and a fixed based. 

 Vugts (1996) developed a formula for the fundamental natural frequency of a 

stepped shell mono-tower that can also be used for the OWTS. The formula is determined 

by two motions (sliding motion and rotation motion) which are assumed to be 

uncorrelated. By neglecting the shear effect, the fundamental natural frequency of a 

stepped shell mono-tower can be estimated with the following equation: 
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where eqK is the equivalent value of two soil stiffnesses (rotation soil stiffness = rotK and   
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sliding soil stiffness = sliK ) and 
foundC is a factor related to the motion of the flexibility of 

the foundation. According to Vugts (1996), the 
foundC

 
value can range from 0, which is 

very stiff foundation behavior, to 0.5, a rational value for flexible foundation behavior.   

A more detailed method of estimating the first and second natural frequencies of a 

mono-tower gravity-based model from Wilson (1984) will be discussed in depth in 

Section 3.1. 

2.2 Wake and Turbulence Considerations 

Several models have been developed in an attempt to understand the behavior of 

turbine wakes in offshore environments. Jensen (1983) developed a basic mathematical 

model to calculate the energy output from multiple turbines in a wind farm. The model is 

based on the conservation of momentum and the velocity deficit of the wind speed. 
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where U is the downstream wind speed, 0U  is the free-stream wind speed, b  is the axial 

induction factor, k  is the wake entrainment factor, x  is the distance downstream, and D  

is the rotor diameter. The axial induction factor, b , is a function of turbine thrust 

coefficient TC  and can be calculated using the following formula: 
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2

TC
b

 
  (6) 

An empirical formula was developed by Frandsen (1992) to calculate the wake 

entrainment factor k , assuming that the hub height ( Hz ) and the roughness parameter of 

the water surface ( 0z ) are known. 
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Certain recommendation values of the surface roughness ( 0z ) for the offshore wind 

turbine environment exist. According to Tempel (2006), Germanischer Lloyd 

WindEnergie GmbH (GL) recommends using 0 0.002z m  in their offshore wind 

regulations. However, the Danish guidelines advise using 0 0.001z m , based on the 

research findings of Morris et al. (2003). Different values of surface roughness parameter 

for various types of terrain are presented in Table 2. The surface roughness typically 

varies between 0.0005 m for rough seas condition and 0.01 m in coastal areas with an 

onshore wind. 

The total wind speed deficit of wakes from multiple turbines can be calculated as 

follows: 
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This equation assumes that the kinetic energy loss of multiple turbines is the sum of the 

individual energy deficits, as set forth by Mosetti et al. (1994). 

Another way of estimating the deficit is by using the regression fit from the SODAR 

experiment (Barthelmie et al. 2004). A curve fit was applied from the SODAR data to 

provide the wind speed deficits 0U U as a function of the distance from the turbine in 

rotor diameters D. 

 
1.11

0 1.07U U D   (9) 

Magnusson and Smedman (1996) applied a similar method to onshore wakes, and 
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Table 2 Surface Roughness Parameter Values for Various Types of Terrain (DNV 2007) 

Terrain type Roughness parameter (m) 

Plane ice 0.00001-0.0001 

Open sea without waves 0.0001 

Open sea with waves 0.0001-0.01 

Coastal areas with onshore wind 0.001-0.01 

Snow surface 0.001-0.006 

Open country without significant buildings and vegetation 0.01 

Mown grass 0.01 

Fallow field 0.02-0.03 

Long grass, rocky ground 0.05 

Cultivated land with scattered buildings 0.05 

Pasture land 0.2 

Forests and suburbs 0.3 

City centres 1-10 
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obtained the following relationship 

 0.97

0 1.03U U D   (10) 

A comparison of SODAR measurements with Magnusson and Smedman data as well as 

the Jensen Model, utilizing two different values of thrust coefficients TC is presented in  

Fig. 23. Figs 24 (a) and 24 (b) reveal differences within the wind speed deficits among 

the recommended surface roughness values ( 0 00.005 , 0.001 , andz m z m 

0 0.002z m ) in the Jensen model for two different thrust coefficient values. As these 

figures demonstrate, the critical value in estimating wind speed deficits is the thrust 

coefficient because it varies significantly when compared with the surface roughness 

value. 

The distance between turbines plays a crucial role in calculating the loss in wind 

speed and determining the efficiency of the entire offshore wind farm. The equation for 

the total wind speed deficit of wakes from multiple turbines was used in Fig. 25 to 

demonstrate the difference in wind speed for different spacings (4D, 7D, and 10D). As 

indicated in the figure, the loss in wind speed is significantly less at a spacing of 10D as 

opposed to 4D, implying greater wind farm efficiency with 10D spacing. 

Stability is one of the most important factors in wind farms. One way to describe the 

stability requires knowledge of the turbulence intensity at the wind turbines. Turbulence 

intensity is defined by 

                                                             I
U


   (11) 

where   is the standard deviation of the wind speed in the average wind direction, and 

U  is the magnitude of the average wind speed. In order to describe the combined effect 
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 Fig. 23. Wind Speed Deficit as a Function of the Distance from the Turbine in 

 Rotor Diameters 

 

 

 

 
         (a)                        (b) 

 Fig. 24. Wind Speed Deficits Vary with Surface Roughness Values 
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 Fig. 25. The Difference in Wind Speed Loss for Different Spacing (4D, 7D, and 

 10D) 
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of the actual turbulence and wake effects, Frandsen and Thogersen (1999) developed a 

model for design turbulence, which allows one to estimate the equivalent turbulence 

(effective turbulence eff eff hubI U  ) based on the characteristics of the wind turbine 

material. The third edition of the international wind turbine design standard – IEC61400-

1 (2005) – allow one to estimate the standard deviation of the effective turbulence ( eff ), 

specifically  
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A brief description and the units of each parameter in the above formula is presented in 

Table 3. This formula is only valid when the spacing between turbines is greater than or 

equal to 3 rotor diameters and less than 10 rotor diameters. Figs 26 (a) and 26 (b) 

illustrate that the turbulence intensity decreases when the wind speed or the spacing in 

rotor diameters between wind turbines increases. 

2.3 Wave Force Models 

The design of offshore structures to date has been driven by the need to recover oil 

and gas from offshore resources located in progressively deeper water depths. The 

structural excitation of these platforms is generally dominated by wave loading which can     

be modeled using viscous slender body or inviscid large body hydrodynamic models. 

Due to the complex nature of wave behavior and the variation of different shapes and 

sizes of offshore structures comparative experimental and numerical studies remain a 
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Table 3 A Brief Description of each Parameter in the Effective Turbulence Standard 

Deviation Formula (IEC61400-1 2005) 

Parameter Description Units 

m Slope of S-N curve: 

- For blades (composites, m = 9-12) 

- For nacelle (cast iron, m = 6-8) 

- For tower (welded steel m = 3-4) 

 

N Number of neighboring turbines: 

- For two wind turbines (N = 1) 

- For one row (N = 2) 

- For two rows (N = 5) 

- For inside a wind farm with more than two rows (N = 8) 

 

wP  Fixed probability ( 0.06wP  )  

U Wind speed at hub height [m/s] 

is  Distance to neighboring turbine i normalized by rotor 

diameter 

 

a  Ambient turbulence [m/s] 

aw  Combines ambient and wake tubulence [m/s] 

eff  Effective turbulence intensity [m/s] 

 

 

 
                      (a)              (b) 

 Fig. 26. Turbulence Intensity Behavior 
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cornerstone in the design process.  

2.3.1 Morison Equation 

Morison et al. (1950) presented a method of estimating the wave force on piles, and 

this equation, which came to be referred to as the Morison equation. The hydrodynamic 

force on a slender structure, such as a mono-tower wind turbine structure, can be 

estimated using the basic Morison equation: 

 
2

4 2
M D M D

D D
dF dF dF C u dz C u udz


      (13) 

where the first term is related to the inertia force and the second term is related to the 

drag force.  is the water density, D  is the cylinder diameter of the wind turbine tower, 

u is the horizontal velocity of the fluid, u is the horizontal acceleration of the fluid, and 

MC and DC are the inertia and drag coefficients, respectively. Equation (13) was 

developed for a fixed, or stationary, structure. However, in real life, the structure moves 

with respect to the velocity and acceleration of the fluid. A modified form of Morison’s 

equation that takes relative motion with a constant current velocity into account can be 

expressed as 
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where x  is the velocity of the structure, x  is the structural acceleration, and cU  is the 

velocity of the current.  

The key to obtaining an accurate result from Morison’s equation lies in the selection   

of values of the inertia and drag coefficients. A detailed description of how these 

coefficients can be obtained from laboratory experiments is presented by Chakrabarti 

(1987). Merz, Moe and Gudmestad (2009) discussed the selection of coefficients for 
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offshore wind turbine structures, as listed in Table 4. Morison’s equation, strictly 

speaking, is only valid when the ratio of tower diameter to wavelength is less than 0.2, 

that is, when the characteristic offshore structure diameter is relatively small compared to 

the wavelength. On the other hand, if the ratio is greater than 0.2, then the inertia force is 

dominant, (see Fig. 27). In this case, it is recommended that the diffraction effects 

become important and must be considered. 

2.3.2 FNV-Theory  

A more recent wave force formulation for estimating the hydrodynamic force 

accounting for scattering and diffraction effects was developed by Faltinsen, Newman, 

and Vinje. Faltinsen et al. (1995). They developed this theory in order to improve the 

estimation of non-linear wave forces on a fixed slender cylinder. This non-linear wave 

force model assumes that the wavelength is much greater than the characteristic diameter 

of the offshore structure. More precisely this theory assumes that the wave amplitude, A, 

and the cylinder radius, R, are small values compared to the wavelength L, and that both 

values A and R are of the same order. The diffraction regime is divided into two domains, 

the inner domain and the outer domain. The outer domain, which is the domain farther 

from the cylinder, is treated with conventional linear analysis. The inner domain which is 

closest to the cylinder surface, is affected by nonlinearities, results from the diffraction 

and scattering of the incident waves. 

The general expression for the total integrated pressure force acting on the cylindrical 

body in the x-direction is: 
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Based on Equation (15), the total force acting on the cylindrical body is the sum of the  
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Table 4 Recommended Values of MC and DC for Offshore Wind Turbine Structures 

(Morris et al. 2003) 

Source Details 
Wave Only Wave Plus Current 

MC  DC  MC  DC  

API 
Recommendations for 

Design 
  1.7 1.05 

Chakrabarti 
Wave-tank test; 46/53 

mm diameter 
 1.4 

Drag 

dominated 
1 

Christchurch 

Bay 

Offshore test; 480 mm 

diameter 
1.65-1.9 0.75-0.95   

City 

University 

Horizontal cylinder; 

wave tank; 210 mm & 

500 mm diameter 

1.2 0.6-1.2 1.2 0.6-1.2 

Delta wave 

flume 

Roughened cylinders; 

216 mm & 513 mm 

diameter 

2 1.7 1.8 1.5 

DNV 
Recommendations for 

Design 
1.8 1.2   

 

 
  Fig. 27. Drag, Inertia, and Diffraction Wave Force Regimes (DNV 2007) 
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integrated forces: 

 1 2 3x H H HF F F F    (16) 

where 
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For more additional information regarding the forces of the FNV-theory see Faltinsen et 

al. (1995).  

2.4 Wind Force 

Aerodynamic loading on an OWTS can be viewed as being applied in two parts. The 

first part occurs when the wind is passing through the blades  bladesF  and the second, 

when the wind is passing by the supporting tower  towerF  which for discussion purposes 

will be assumed to be of cylindrical shape. 

The aerodynamic loads on the blade of the turbine can be calculated based upon blade 

element momentum theory, which assumes that wind flow is incompressible, 

homogeneous, and acts directly on the wind turbine rotor blades. According to Tempel 

(2006), the axial thrust force on a parked, i.e. stationary, rotor can be estimated using the 

following formula: 

 
21

2
blades air TF AV C  (17) 

where air is the air density, A is the swept area of the rotor blades (
2 4A D ), V is the 

undisturbed wind velocity, and TC is the thrust coefficient, also referred to as the drag 



39 

coefficient by some books. The thrust coefficient (drag coefficient) can be expressed as 

  4 1TC a a   (18) 

where, a  is referred to as the induction factor which is expressed as a function of two 

wind velocities: 

 0

0

diskV V
a

V


  (19) 

These wind velocities are 0V  the undisturbed free stream velocity and diskV  the wind 

velocity at the actuator disk (turbine rotor). The maximum value that the induction factor 

can reach is 1/3, which, according to Twidell and Gaudiosi (2009), makes the maximum 

value of the thrust coefficient 8/9. The blades bend to deflect out of the rotor plane 

(flapwise bending moment) and is related to the axial thrust force can be calculated by 

means of the following formula: 

 
5

8

blades
T

F
M R

B
  (20) 

where B is the number of blades (usually 2-3 blades), R is the radius of the turbine rotor, 

and 5R/8 is the center of aerodynamic pressure for the whole blade, according to Twidell 

and Gaudiosi (2009).   

The aerodynamic loading on the slender towers can be estimated by means of the 

usual drag force modeling equation: 

 
21

2
tower air DF AV C  (21) 

where, DC is the drag coefficient. The drag coefficient is a function of the Reynolds 

number (Re) and the surface roughness. For values of 6Re 10  the American Petroleum 

Institute (API) recommends a value of 0.5DC   for a cylindrical tower. Kühn et al. 
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(1998) illustrated a more detailed method of calculating the drag coefficient, if the 

slenderness ratio ( ), the Reynolds number ( ReD ), the structure surface roughness ( Tk ), 

and tower diameter ( TD ) are known: 

 0

1

2

r
D DC C

 
  (22) 

where: 
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1

242
360
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The slenderness ratio is the ratio of the height of the support structure, from mean 

seawater level to the base of the nacelle, divided by the tower diameter. 
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3. MORE DETAILED MATHEMATICAL MODELS 

3.1 Gravity Based Foundation Model (Frequency Domain) 

A gravity foundation is designed to resist rotation and sliding induced by ocean 

waves, subsea ocean currents, and wind loads. A schematic of an idealized gravity 

structure is shown in Fig. 28, and the corresponding soil-disk model is shown in Fig. 29. 

By applying Newton’s second law, F ma


   and moment equation about GM


  

GJ  , about the center of mass center of the gravity based structure, G, to formulate the 

equations of motion, one obtains the following coupled equations of motion (Wilson 

1984): 
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 (23) 

In general modeling the soil resistance is quite complicated and here the soil is assumed 

to be a homogeneous, uniform, that can be modeled as elastic half-space. (Nataraja and 

Kirk 1977). They developed the following model from which the soil stiffness of sliding (

1k ) and rotation ( 0k ) and the soil radiation damping of sliding ( 1c ) and rotation ( 0c ) can 

be calculated: 
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 (24) 

 



42 

 

 
Fig. 28. Idealizations Used to Model an Offshore Gravity-Based Platform (Wilson 1984) 

 

 

 

 

 

 

 

 

 

 
Fig. 29. Soil Foundation Models for Gravity-Based Offshore Platform (Wilson 1984) 
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where   is the fundamental disk frequency, SG  is the soil shear modulus,   is Poisson’s       

ratio, and S  is the soil mass density. As each of these coefficients is a function of 

frequency, an iterative solution is required. Wilson (1984) obtained an initial trial 

frequency by estimating the free undamped rocking frequency for the gravity platform to 

obtain the initial eigen solution, i.e. the frequencies, mode shapes. Then it is simply a 

matter of iterating until the eigenvalues converge. If desired the environmental forces 

(waves, current and wind forces) can be applied to the structure, damping can be applied 

to the system, and the response behavior can be evaluated using for example mixed time-

frequency domain methods. 

3.2 Suction Caisson Foundation Model (Frequency Domain) 

The suction caisson model is based on a theory for conical bars and beams that was 

developed to solve foundation vibration problems, specifically the dynamic analysis of 

surface foundations. Wolf and Meek (1994) extended the cone models to represent 

embedded foundations, which can be used to analyze both monopile and suction caisson 

foundations in multiple-layered half-space. In this foundation model, the horizontal, 

vertical, rocking, torsional, and coupling dynamic-stiffness coefficients 

      0 0 0 0S a K k a ia c a   of the particular offshore site are estimated. The variables 
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 0 0, , ,K k a a and  0c a  are the static-stiffness coefficient, the dimensionless spring 

coefficient, the dimensionless frequency, and the dimensionless damping coefficient, 

respectively. Wolf and Deeks (2004) used this methodology to analyze the dynamic 

response of an offshore wind turbine tower with a suction caisson foundation (see Fig. 

30). This particular model was based on a design from the Swedish Opti-OWECS project 

that utilized a two-blade wind turbine (Kühn et al. 1998). First, the net horizontal wind 

force acting on the structure and the horizontal, rocking, and coupling dynamic-stiffness 

coefficients for the site ( ( ), ( ),h rS S  and ( )hrS  ) were calculated based on wave 

propagation in cones. This was incorporated into the equations of motion: 
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The suction caisson foundation model indicated in Fig. 31 has a three-degrees-of –

freedom (3-DOF) system. The formulation and solution were carried out in the frequency 

domain. and the displacement and rotation amplitudes at different frequencies were thus 

obtained. For additional information regarding the suction caisson foundation model, see 

Wolf and Deeks (2004). 

3.3 Finite Element Model (Time Domain) 

Analytical methods are do not yield closed-form solutions for many complex 

problems and consequently discrete element methods such as the finite element method is  
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Fig. 30. Schematic of a Suction Caisson Wind Tower Model in a Layered Soil (Wolf and 

Deeks 2004) 

 

 

 

 
Fig. 31. Three-Degrees-Of- Freedom System (3-DOFS) of Wind Turbine Structure (Wolf 

and Deeks 2004) 
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used to obtain numerical solutions in many scientific and engineering applications. 

The finite element method is quite versatile and has been applied to all kinds of 

structural systems, including the analysis of wind turbines (Lavassas et al. 2003). A wind 

turbine tower can be modeled as a series multiple beam elements connected to one 

another at nodal points. Consider a two-dimensional beam element and that has a uniform 

cross-sectional moment of inertia I, material modulus of elasticity E, and length L. Each 

beam element has two nodes, and each node has two degrees of freedom, i.e. rotation and 

displacement. The stiffness and consistent mass matrices of this beam element can be 

expressed as (see for example Kwon and Bang 2000): 
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where 
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And the consistent mass matrix of the beam element can be expressed as:  
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where, 

       
0

;

L

ij i jm m x x x dx m x A     

Note that  is material mass density and A  is the cross-sectional area of the element. For 

additional information about the element stiffness coefficient and the consistent mass 

coefficient.  

Another means of defining the mass properties of the structure is to assume that the 

entire mass of the element is concentrated at the nodes. Assuming that there is no 

rotational inertia at these nodes, the inertial effect associated with any rotational degree of 

freedom is zero. Otherwise, the inertial effect should be accounted for by calculating the 

mass moment of inertia  J  of the beam element. The final form of the matrix, referred 

to as the lumped mass matrix can then be expressed as: 
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 (31) 

For additional information regarding the lumped mass matrix, see for example Paz 

(1997).  

All structures in motion dissipate energy and the rate of energy dissipation causing 

vibrational decay over time is termed damping. The energy dissipated can be a result of 

hysteresis losses within the material of the structure, viscous energy losses in the 
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surrounding water and soil, and frictions in structural joints or some combination of each. 

Therefore, it is often easier to estimate the effective damping of the structure. The 

damping coefficients ijc for the structure can be estimated using the following equation: 

      
0

L

ij i jc c x x x    (32) 

where,  c x  is the distributed viscous damping property. The damping is usually 

expressed in terms of an experimentally determined or estimated critical damping ratio 

 
 
rather than attempting to explicitly evaluating the damping property  c x . One of the 

methods of evaluating the effect of viscous damping entails assuming the damping matrix 

to be proportional to the combination of the mass and stiffness matrices (Clough and 

Penzien's, 1975). This  method is referred to as Rayleigh damping or proportional 

damping: 

      0 1C a M a K   (33) 

where 0a  and 1a  are Rayleigh damping factors and can be evaluated from the expression: 
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where 1  and 2  refer to the first and second natural frequencies. However, if the 

damping ratio is assured to be constant for each mode, i.e. 1 2    , then the Rayleigh 

damping factors may be evaluated using the simplified form: 
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For additional information on the proportional damping matrix, see for example  
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Paz (1997) or Yang et al. (2004).  

Since the foundation represents approximately 15% to 40% of the cost of an offshore 

wind turbine structure installation (Byrne and Houlsby, 2000), the selection of pile, 

suction caisson, or gravity-type system is an important design consideration and is 

dependent upon such soil characteristics as strength and stability. A simplified approach 

to address monopile-soil interaction, is to utilize the concept of the Apparent Fixity Level 

(AFL). This approach assumes that the monopile is fixed at a certain distance beneath the 

seabed, termed “effective embedment”. This model is usually used to perform a 

preliminary dynamic analysis of the structure and offers a good engineering 

approximation in the absence of detailed information on the actual soil properties. The 

AFL is estimated as a function of the soil type surrounding the monopile structure and is 

specified as a multiple of the pile diameter of the structure. Some typical values are given 

in Table 5. The Randolph elastic continuum model offers another method by which to 

describe the pile-soil interaction behavior. The model can be expressed in a stiffness 

matrix with the following equations: 
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where , , , , , and oE I D m r
 
refer to the modulus of elasticity of the pile material, the  



50 

 

 

Table 5 Suggestions for Apparent Fixity Level (Zaaijer 2002) 

Configuration Apparent Fixity Level (AFL) 

Stiff clays 3.5D – 4.5D 

Very soft silts 7D – 8.5D 

In the absence of all other data 6D 

From measurement of an offshore turbine (500 kW) 3.3D – 3.7D 
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moment of inertia of the pile cross-section, the pile diameter, the rate of change of the 

soil shear modulus, the Poisson’s ratio of the soil layer, and the outer radius of the pile, 

respectively. This linear model has no damping effect and assumes the pile to be longer 

than a critical pile length  cL : 
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 (37) 

For additional information regarding the Randolph elastic continuum model, see 

Randolph (1981).  

The natural state of the soil is rarely linearly homogeneous and usually consists of 

different layers, each of possessing different soil properties and it is therefore important 

to consider this affect in estimating the dynamic response of a wind turbine tower. The 

modified cone models can be utilized to evaluate the dynamic behavior of foundations 

consisting of multiple layers of soil. Originally, the cone model was developed to analyze 

the dynamic behavior of surface foundations under translational and rotational motions. 

Wolf and Meek (1994) extended the cone models to represent embedded foundations, 

such as monopile and suction caisson foundations in multiple-layered half-space, by 

calculating the sliding  hS , rotation  rS , and coupling  hr rhS S  dynamic-stiffness 

coefficients. In their analysis the foundation is represented by a series stack of disks and 

the dynamic-stiffness coefficients   00

gS   can be calculated by the following formula 

in matrix form: 
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where, 
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In equation (38)  AH  refers to the upper portion and  AR  to the lower portion of the 

kinematic-constraint matrix  A of the rigid foundation,  f

uS     and  fS    represent 

the dynamic-stiffness matrix of the free field in the frequency domain for horizontal and 

rocking motions, respectively, and  M  stands for the rigid-body mass matrix for 

horizontal and rocking motions (see Fig. 32). For additional information about dynamic-

stiffness coefficient formulas, see Wolf and Deeks (2004). 
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Fig. 32. Rigid-Body Mass for Horizontal and Rocking Motions (Wolf and Deeks 2004) 
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4. NUMERICAL SIMULATIONS 

4.1 Finite Element Model (Time Domain) 

A finite element model was developed that allows for the introduction of three 

different soil foundation models, wave force excitation and wind thrust excitation on a 

mono-tower. Starting first at the foundation of the structure,  the apparent fixity level 

(AFL), Randolph elastic continuum, and modified cone models are used for evaluating 

the soil stiffness effects on the dynamic response of a monopile wind turbine structure. 

The use of these models allows for the variation of soil properties with depth below the 

seafloor to be more accurately addressed. In the numerical simulations the soil is initially 

assumed to be a stiff clay uniform over the depth of the foundation for each of the 

foundation models. The soil properties for the three layer model are presented in Fig. 33. 

The wave forces on mono-tower are estimated using the Morison’s wave force equation 

(Morison et al. 1950) and the newer FNV method (Faltinsen et al. 1995). The wind force 

on the slender tower is estimated using the standard drag force equation. The thrust force 

developed by the three blade configurations are obtained from NREL’s FAST Software. 

The two bladed configuration thrust force is based upon the idealized thrust signal 

presented by Wolf and Deeks (2004). The time domain integration of the wind turbine 

models was performed using Newmark-Beta Method (Newmark 1959)  and was 

implemented in MATLAB Software.   

4.2 Monopile Wind Turbine Structure (1.5 MW) Unit 

The wind turbine is assumed to be cantilevered about the AFL as depicted in Fig. 34. 

Assuming that the soil at the site is a stiff clay, then according to Table 5, the length of 

the first element is estimate to be 13 m, as shown in Fig. 34. The rest of the number of 

beam elements and their lengths can be varied but are limited here for illustrative  
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Fig. 33. Soil Properties of the Three Layers (Wolf and Deeks 2004) 

 

 

 

 
Fig. 34. Dimensions and Elements of Monopile Offshore Wind Turbine Structure (1.5           

MW) Unit for the AFL Model 
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purposes. The lumped mass matrix is used for the upper part of the structure (rotor + 

nacelle), see equation (31), and added to the last element of the matrix. The general final 

element stiffness matrix and element mass matrix forms for the AFL model are explicitly 

presented in Fig. 35. Note that the first two rows and columns of the final matrix form of 

the AFL model will be zeros because of the fixed point at the bottom of the structure.  

In the Randolph elastic continuum model, the finite element model has three elements 

(see Fig. 36). As Randolph’s model offers another method of describing the pile-soil 

interaction behavior, that is, with the model’s stiffness matrix, equation (36) is added to 

the upper part of the matrix system, as shown in Fig. 37. In addition, the lumped mass 

matrix is used for the lower part of the structure (monopile foundation) and added to the 

first element of the matrix. The rest of the elements are treated in the same way as in the 

AFL model. The general final matrix form of the Randolph’s model is shown in Fig. 37. 

The modified cone model describes the soil behavior by estimating the sliding  hS , 

rotation  rS , and coupling  hr rhS S  dynamic-stiffness coefficients. The dynamic-

stiffness coefficient is given by the following: 

      0 0 0 0S a K k a ia c a     (39) 

where 

0
0 ; S

S

S S

r G
a c

c




   

K  is the static-stiffness coefficient,  0k a  is the dimensionless spring coefficient, 0a  is 

the dimensionless frequency, 0r  is the radius of the foundation, Sc  is the shear-wave  
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Fig. 35. Element Stiffness Matrix and Element Mass Matrix Forms of the AFL Model 
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Fig. 36. Dimensions and Elements of Monopile Offshore Wind Turbine Structure (1.5           

MW) Unit for the Randolph Model 
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Fig. 37. Element Stiffness Matrix and Element Mass Matrix Forms of the Randolph 

Model 
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velocity, SG  is the soil shear modulus, S  is the soil mass density, and  0c a  is the 

dimensionless damping coefficient. The dynamic-stiffness coefficient can be interpreted 

as a spring  0K k a  and a parallel dashpot  0
0

S

r
K c a

c
 for harmonic excitation (for more 

information, see Wolf and Deeks 2004). Based on this, the three terms, the sliding, 

rotation, and coupling dynamics-stiffness coefficient terms are transferred to harmonic 

excitation forms and are added to the stiffness matrix system. The parallel dash terms are 

not included in this scenario because all the scenarios for the 1.5MW capacity unit are 

assumed to be uniform undamped soil in order to compare the AFL, Randolph, and 

modified cone models. In the modified cone model, the finite element model, the element 

stiffness matrix, and the element mass matrix are treated in the same way as the Randolph 

Model, except for the pile-soil interaction behavior, the harmonic excitation form of 

equation (39) is used instead of equation (36) in the Randolph model. Program CONAN 

(CONe ANalysis) is used to estimate the dynamic-stiffness coefficients of the modified 

cone model (see Wolf and Deeks 2004). 

The thrust force used to excite the wind tower structures used with each of the 

foundation models (AFL, Randolph, and modified cone) was developed using the FAST 

Software, (Jonkman and Buhl Jr. 2005) for the 1.5 MW capacity unit. Three different 

cases that were defined in the FAST documentation (Test 11, 12, and 13) were used in 

the response computations. The signals are depicted in Fig. 38. The difference between 

the signals is shown in Table 6. The first 15 seconds of the signal from the thrust time 

series simulations is cut because, as shown in Fig. 38, there is an unexplained transient 

fluctuation in the thrust force signal. 
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 Fig. 38. Inline Thrust Force Signals Generated Using NREL’s FAST Software 

 

 

 

 

Table 6 Three Different Thrust Force Cases for 1.5 MW (Jonkman and Buhl Jr. 2005) 

Test 

Name 

Rotor Dia. 

(m) 

Test Description 

Test 11 70 Flexible, variable speed & pitch control, pitch failure, 

turbulence 

Test 12 70 Flexible, variable speed & pitch control, ECD
1
 event 

Test 13 70 Flexible, variable speed & pitch control, turbulence 

 

 

 

 

 

 

 

 

 

                                                
1
 Extreme Coherent Gust with Direction Change 
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Two scenarios were run with the three different thrust force cases (Test 11, 12, and 

13) and repeated with each of the three different foundation models (AFL, Randolph, and 

modified cone). In the first scenario the hub height  65BH m  of the offshore wind 

turbine structure was held constant and the water depth was varied  8 , 12 , 16 ,D m m m  

20and m . The second scenario involved fixing the water depth  8D m  and changing 

the hub height elevation ( 50 , 55 , 60 , 65 )BH m m m and m . The maximum total moment 

 , .MaxM KN m  with respect to the center of rotation , maximum total top horizontal 

displacement of the structure  ,Max m , and maximum tilt at the head of the foundation 

 , deg.Max  of the two scenarios are presented in Tables 7 and 8. 

 Two dimensionless terms,  cy y  and  Max bh , are investigated for the 1.5 MW 

Unit, based on Tables 7 and 8. Where bh is the rotor hub height from the seabed level, y  

is the maximum horizontal displacement at the head of the monopile foundation, and cy  

is the horizontal displacement of soil corresponding to 50% of ultimate horizontal soil 

resistance and can be calculated by the following equation: 

 50 502.5 ; 0.007cy B    
   

for stiff clay         (40) 

where 50  is the strain at 50% strength level and B  is the diameter of the pile, based on 

Deng and Ma (2000). The dimensionless terms are depicted in Tables 9 and 10. From 

these tables, the  cy y  term has a range of 0.028 to 0.382, which means that the 

response is linear and the monopile foundation is not in the yielding zone. In addition, the 

 Max bh  term has a range of 0.0029 to 0.011.  

As shown in Fig. 39 and 40,  the modified cone model exhibits a stiffer behavior and 
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Table 7 Maximum Response Behavior of a 1.5 MW Unit as a Function of Water Depth 

for Three NREL Operational Load Scenarios 

Water 

Depth 
Case 

AFL Randolph Modified Cone Model 

MaxM
 

KN.m
 

Max
 

deg
 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg
 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg
 

Max
 

m 

8m  

11 13105 0.1680 0.6510 12850 0.1401 0.6365 13980 0.0147 0.4036 

12 12543 0.1082 0.3968 12307 0.0874 0.3652 13397 0.0104 0.2575 

13 17419 0.1521 0.5746 17084 0.1245 0.5360 18584 0.0149 0.3955 

12m  

11 13649 0.1750 0.6654 13397 0.1448 0.6403 14524 0.0159 0.3996 

12 13087 0.1215 0.4290 12852 0.0979 0.3930 13938 0.0116 0.2704 

13 17965 0.1651 0.6048 17631 0.1350 0.5618 19128 0.0161 0.4072 

16m  

11 14237 0.1828 0.6854 13994 0.1517 0.6495 15106 0.0172 0.4173 

12 13673 0.1369 0.4716 13438 0.1103 0.4304 14518 0.0130 0.2898 

13 18552 0.1800 0.6437 18219 0.1471 0.5960 19710 0.0174 0.4249 

20m  

11 14854 0.1922 0.7099 14610 0.1634 0.6700 15715 0.0187 0.4415 

12 14287 0.1546 0.5245 14054 0.1245 0.4779 15124 0.0145 0.3170 

13 19167 0.1968 0.6929 18834 0.1608 0.6399 20319 0.0189 0.4501 

Note: 65m Hub Height 

 

 

 

Table 8 Maximum Response Behavior of a 1.5 MW Unit as a Function of Hub Height for 

Three NREL Operational Load Scenarios 

Hub 

Height 
Case 

AFL Randolph Modified Cone Model 

MaxM
 

KN.m
 

Max
 

deg
 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg
 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg
 

Max
 

m 

50m  

11 10461 0.1177 0.3347 10220 0.0961 0.3098 11343 0.0117 0.2263 

12 10014 0.0825 0.2243 9787 0.0661 0.2047 10885 0.0081 0.1427 

13 13873 0.1183 0.3367 13547 0.0964 0.3116 15058 0.0118 0.2272 

55m  

11 11340 0.1279 0.3976 11095 0.1046 0.3700 12214 0.0127 0.2717 

12 10852 0.0906 0.2719 10621 0.0729 0.2489 11715 0.0088 0.1735 

13 15050 0.1295 0.4042 14721 0.1055 0.3747 16229 0.0128 0.2731 

60m  

11 12211 0.1445 0.5231 11975 0.1128 0.4688 13098 0.0137 0.3257 

12 11695 0.0992 0.3289 11462 0.0800 0.3018 12551 0.0096 0.2114 

13 16232 0.1409 0.4834 15899 0.1150 0.4493 17404 0.0138 0.3287 

65m  

11 13105 0.1680 0.6510 12850 0.1401 0.6365 13980 0.0147 0.4036 

12 12543 0.1082 0.3968 12307 0.0874 0.3652 13397 0.0104 0.2575 

13 17419 0.1521 0.5746 17084 0.1245 0.5360 18584 0.0149 0.3955 

Note: 8m Water Depth 
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Table 9 Two Dimensionless Terms of a 1.5 MW Unit as a Function of Water Depth for 

Three NREL Operational Load Scenarios 

Water Depth Case 
AFL Randolph Modified Cone Model 

cy y
 Max bh

 cy y
 Max bh  cy y

 Max bh  

8m  

11 0.325 0.01 0.212 0.0098 0.049 0.0062 

12 0.211 0.006 0.136 0.0056 0.036 0.004 

13 0.296 0.009 0.191 0.008 0.051 0.006 

12m  

11 0.338 0.01 0.22 0.0099 0.054 0.006 

12 0.237 0.0066 0.152 0.006 0.039 0.004 

13 0.32 0.0093 0.207 0.0086 0.054 0.0063 

16m  

11 0.353 0.0105 0.232 0.01 0.057 0.0064 

12 0.266 0.0073 0.17 0.0066 0.044 0.0045 

13 0.35 0.0099 0.225 0.0092 0.059 0.0065 

20m  

11 0.371 0.011 0.25 0.0103 0.062 0.0068 

12 0.3 0.0081 0.193 0.0074 0.049 0.0049 

13 0.382 0.011 0.247 0.0098 0.064 0.0069 

Note: 65m Hub Height 

 

 

 

 

Table 10 Two Dimensionless Terms of a 1.5 MW Unit as a Function of Hub Height for 

Three NREL Operational Load Scenarios 

Hub Height Case 
AFL Randolph Modified Cone Model 

cy y
 Max bh

 cy y
 Max bh  cy y

 Max bh  

50m  

11 0.23 0.0067 0.15 0.0062 0.039 0.0045 

12 0.163 0.0045 0.104 0.0041 0.028 0.0029 

13 0.232 0.0067 0.15 0.0062 0.041 0.0045 

55m  

11 0.25 0.0072 0.162 0.0067 0.042 0.0049 

12 0.178 0.0049 0.114 0.0045 0.031 0.0032 

13 0.253 0.0073 0.163 0.0068 0.044 0.005 

60m  

11 0.279 0.0087 0.173 0.0078 0.046 0.0054 

12 0.194 0.0055 0.124 0.005 0.033 0.0035 

13 0.274 0.008 0.176 0.0075 0.046 0.0055 

65m  

11 0.325 0.01 0.212 0.0098 0.049 0.0062 

12 0.211 0.006 0.136 0.0056 0.036 0.004 

13 0.296 0.0088 0.191 0.0082 0.051 0.006 

Note: 8m Water Depth 
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 Fig. 39. Pile Head Angle Results of 1.5 MW Unit with Water Depth  16D m  

 and Hub Height  65BH m  

 

 

 

 
 Fig. 40. Horizontal Displacement Results of 1.5 MW Unit with Water Depth 

  16D m  and Hub Height  65BH m  

 

 

 



66 

experiencing less effects for the case of blade pitch failure when compared with the 

apparent fixity level and Randolph models. In addition, the apparent fixity level and 

Randolph models are in phase for both thrust force cases (Test 11 and Test 13). However, 

the Randolph foundation model is a little bit stiffer than apparent fixity level model, 

specifically for a modulus of elasticity of 280 /MN m  used in the Randolph model, and 

choosing 3.7D  for the apparent fixity level based upon a 3.5m  diameter for the 1.5 MW 

unit. The apparent fixity level model is easy to apply and appears to be more 

conservative, according to the results from Fig. 39 and 40. In general, the angle of the 

pile head at seabed level in Fig. 39 is small, and the total horizontal displacement is less 

but it is the same order of magnitude in Fig. 40, which reflects the flexibility of the top 

tower. 

4.3 Modified Cone Model (3.0 MW) Unit 

Wolf and Meek (1994) extended the cone models to represent an embedded 

foundation, such as the monopile, suction caisson, and gravity-based foundations in a 

multiple-layered half-space. Then using the modified cone model one can estimate the 

dynamic-stiffness coefficients for each of the three different foundation types for the 3.0 

MW capacity unit. The modified cone model is used to obtain a more in depth 

understanding of the behavior (sliding and rotation) of the offshore wind turbine structure 

with different types of foundations. The modified cone model was used in the numerical 

simulations to estimate the maximum total moment with respect to the center of rotation, 

the maximum total top horizontal displacement of the structure, and the maximum tilt at 

the head of the foundation for the offshore wind turbine 3.0 MW unit for each of the 

foundation types. As previously mentioned, two different soil conditions are used in this 
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model for each type of foundation: one uniform layer of stiff clay and the three different 

soil layers with the soil properties presented in Fig. 33.  

The two main scenarios for the modified cone model were run with two different soil 

conditions for each foundation system. Each one of these scenarios involved fixing the 

hub height elevation  80BH m  of the offshore wind turbine structure and changing the 

water depth  8 , 12 , 16 , 20D m m m and m . Then, the water depth was fixed  10D m  

and only the hub height elevation was changed  60 , 65 , 70 ,75 , 80BH m m m m and m . 

The idea behind changing the water depth and the hub height was to obtain a better 

understanding of the offshore wind turbine’s overall structural response behavior. The 

maximum total moment  , .MaxM KN m  with respect to the center of rotation, maximum 

total top horizontal displacement of the structure  ,Max m , and maximum tilt at the head 

of the foundation  , deg.Max  was calculated and the numerical results are presented in 

Tables 11, 12, 13, and 14. 

Based on the single-layer modified cone model (Tables 11 and 12), the average 

reduction of   and   are estimated for suction caisson and gravity-based foundations 

with respect to the monopile foundation. The suction caisson and gravity-based 

foundation models have an average of 12% reduction of   compared with the monopile 

foundation model. In addition, the suction caisson and gravity-based foundation models 

have an average of 62% and 58%  reductions of  , respectively, which means that the 

monopile foundation model has the highest amount of flexible behavior compared with 

the suction caisson and gravity-based foundation models. However, for the three-layer 

modified cone model (Tables 13 and 14), the suction caisson and gravity-based  
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Table 11 Maximum Response Behavior of a 3.0 MW Unit as a Function of Water Depth 

Based Upon a Single Layer Modified Cone Model 

Water 

Depth 

Monopile Suction Caisson Gravity Based 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m
 

MaxM
 

KN.m
 

Max
 

deg
 

Max
 

m
 

8m  13265 0.0369 0.3686 12700 0.0141 0.3284 11984 0.0155 0.3285 

12m  13804 0.0402 0.3830 13248 0.0153 0.3379 12538 0.0168 0.3379 

16m  14377 0.0440 0.4026 13826 0.0167 0.3522 13119 0.0183 0.3524 

20m  14978 0.0481 0.4283 14425 0.0183 0.3719 13721 0.0201 0.3722 

Note: 80m Hub Height 

 

 

 

 

Table 12 Maximum Response Behavior of a 3.0 MW Unit as a Function of Hub Height 

Based Upon a Single Layer Modified Cone Model 

Hub 

Height 

Monopile Suction Caisson Gravity Based 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m 

60m  10788 0.0312 0.2294 10278 0.0115 0.2018 9622 0.0124 0.2014 

65m  11467 0.0331 0.2588 10938 0.0123 0.2282 10269 0.0133 0.2278 

70m  12146 0.0350 0.2929 11609 0.0131 0.2583 10925 0.0143 0.2581 

75m  12835 0.0368 0.3315 12286 0.0139 0.2931 11588 0.0152 0.2930 

80m  13529 0.0385 0.3752 12969 0.0147 0.3326 12257 0.0161 0.3327 

Note: 10m Water Depth 

 

 

 

 

Table 13 Maximum Response Behavior of a 3.0 MW Unit as a Function of Water Depth 

Based Upon a Three Layer Modified Cone Model 

Water 

Depth 

Monopile Suction Caisson Gravity Based 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m 

8m  12639 0.0161 0.3315 12665 0.0041 0.3129 12085 0.0062 0.3153 

12m  13184 0.0175 0.3413 13217 0.0045 0.3206 12642 0.0067 0.3235 

16m  13761 0.0191 0.3562 13794 0.0049 0.3330 13222 0.0073 0.3362 

20m  14363 0.0209 0.3762 14389 0.0053 0.3502 13820 0.0080 0.3537 

Note: 80m Hub Height 
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Table 14 Maximum Response Behavior of a 3.0 MW Unit as a Function of Hub Height 

Based Upon a Three Layer Modified Cone Model 

Hub 

Height 

Monopile Suction Caisson Gravity Based 

MaxM  Max  Max  MaxM  Max  Max  MaxM  Max  Max  

60m  10197 0.0132 0.2040 10289 0.0033 0.1919 9755 0.0049 0.1934 

65m  10865 0.0141 0.2305 10935 0.0036 0.2166 10392 0.0053 0.2182 

70m  11539 0.0150 0.2611 11593 0.0038 0.2455 11038 0.0057 0.2475 

75m  12221 0.0159 0.2960 12262 0.0040 0.2785 11695 0.0060 0.2809 

80m  12906 0.0167 0.3359 12938 0.0043 0.3162 12360 0.0064 0.3189 

Note: 10m Water Depth 
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foundation models have 6.3% and 5.4% average reduction of  , respectively, and an 

average of 74.5% and 61.7% reductions of  , respectively.  

As previously mentioned, a replicated in-line thrust force signal was used in the 

numerical simulation (Wolf and Deeks 2004). In Fig. 41 the replicated thrust force signal 

of the two-bladed 3.0 MW unit is compared with the three case signals obtained from the 

FAST Software for the three-bladed 1.5 MW unit. Each of the signals were virtually the 

same wind velocity of 13 m/s. As shown in Fig. 41, the three-bladed (1.5 MW) unit has 

more thrust force than the two-bladed (3.0 MW) unit, except during test 13, which 

demonstrates pitch failure of one of the blades on the three-bladed (1.5 MW) after 13 

seconds. Morison’s equation is used for all scenarios, and the drag force modeling 

equation is used for estimating the aerodynamic loading on the slender tower. Lastly, 

FNV is used in one of the previous scenarios and is shown in Table 15 . Based on the 

numbers of the figure, FNV method appears to generate less wave force than Morison’s 

equation in this type of situation. 

As shown in Fig. 42 and 43, the suction caisson model shows more stiff behavior than 

the gravity-based and monopile models. With respect to the soil condition, the monopile 

model has the highest flexible behavior as comparing with the suction caisson and 

gravity-based models. Relatively,  the gravity-based model has very close results 

comparing with the suction caisson model. The angle of the foundation head at seabed 

level in Fig. 42 is pretty much in phase. In Fig. 43, the monopile soft clay case has the 

largest displacement, which is consistent with Fig. 42 on angle. The monopile soft soil 

case begins slightly out of phase and becomes more so as time progresses. All cases in 

Fig. 43 demonstrate a damping of the displacement, and the steady state appears to be a  
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 Fig. 41. Thrust Force Signals of Two-Bladed (3.0 MW) and Three-Bladed 

 (1.5MW) Units 

 

 

 

 

 

 

 

Table 15 Maximum Response Behavior of a 3.0 MW Unit as a Function of Water Depth 

Based Upon a Three Layer Modified Cone Model and FNV Theory 

Water 

Depth 

Monopile Suction Caisson Gravity Based 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m
 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m 

MaxM
 

KN.m
 

Max
 

deg 

Max
 

m
 

8m  12131 0.0138 0.3296 12064 0.0036 0.3119 11466 0.0056 0.3143 

12m  12576 0.0141 0.3352 12508 0.0037 0.3167 11912 0.0057 0.3193 

16m  13161 0.0145 0.3427 13089 0.0038 0.3234 12497 0.0059 0.3262 

20m  13832 0.0150 0.3524 13756 0.0039 0.3319 13167 0.0061 0.3350 

Note: 80m Hub Height 
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 Fig. 42. Pile Head Angle Results of 3.0 MW Unit with Water Depth  12D m  

 and Hub Height  80BH m  

 

 

 

 
 Fig. 43. Horizontal Displacement Results of 3.0 MW Unit with Water Depth 

  12D m  and Hub Height  80BH m
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total displacement value in the range of 0.18 - 0.2 m. The dimensionless term  cy y
 
for 

both cases (one and three layer modified cone models) has linear response and the 

monopile foundation is not in the yielding zone. 
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5. SUMMARY AND CONCLUSION 

As countries worldwide pursue their stated goals to become less dependent on non-

renewable sources of energy, the potential of the natural wind resource available to those 

countries having access to offshore sites presents an attractive option.  Several innovative 

offshore concepts were presented that illustrate the parallel development with earlier 

offshore and gas platform concepts but have a distinctively different objective.  The 

magnitude of this resource, which is the driving force for these innovations, was briefly 

presented in the introduction.  The discussion included a selective overview of the 

increasing number offshore farms that have been developed or are planned.  Moving 

land-based technology to the offshore presents many technical challenges within the 

broad range of topics including design, manufacturing, installation, operation, 

maintenance and removal.  This research study was focused upon modeling of a single 

offshore wind tower with an emphasis of developing a basic finite element model that 

better addressed several typical foundation types, the local soil variability, and an 

alternative wave force model in the time domain.  The offshore industry has used single 

pile, gravity base and suction caissons foundations for their various platform and 

anchoring system designs.  This research study highlighted examples most relevant to 

offshore wind turbines and illustrated the use of time dependent wind thrust output from 

NREL’s FAST software as input to the dynamic response of the basic finite element 

model presented in this study.  The emphasis was on developing a basic model of a single 

wind turbine tower that would capture the various considerations without being too 

simple or overwhelming. 

A series of numerical examples were investigated in order to examine several key 

design parameters for a monopile wind turbine tower.  The parameters of particular 
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concern were the bending moment at the seafloor elevation, the off vertical angular 

rotation of the tower at the seabed and the horizontal deflection at the hub elevation.  

Manufactures have strict limits on the rotation angle and hub elevation deflection as the 

blades for upwind wind turbines are often long and flexible and the chance for blade 

tower impacts must be avoided.   

According to the maximum response behavior, the off vertical angular rotation of the 

tower at the seabed and the horizontal deflection at the hub elevation, of a 1.5 MW unit, 

the modified cone model shows stiffer behavior and less effect on the blade pitch failure 

compared with the apparent fixity level and the Randolph elastic continuum models. For 

all models, the effect of the blade pitch failure (Test 11) on the offshore wind turbine 

structure decreases with increasing water depth, and increases with increasing hub height 

of the structure. From the result, the apparent fixity level model is a little bit more 

flexible than the Randolph model, based on choosing 3.7D  as an effective depth of the 

pile below the seabed, and choosing a modulus of elasticity equal to 280 /MN m  for the 

Randolph model, where D  is the diameter of the pile and is equal to 3.5m  in the 1.5MW 

unit. 

In addition to these findings, the maximum response behavior of the vertical angular 

rotation of the foundation head at seafloor and the horizontal displacement of a 3.0 MW 

unit show that the suction caisson model has more stiff behavior than gravity-based and 

monopile models. Moreover, the monopile model has the highest amount of flexible 

behavior as compared with the suction caisson and the gravity-based models with respect 

to the soil condition. Relatively, the behavior of the gravity-based model does not differ 

very much when compared with behavior of the suction caisson model. Finally, the 

results show that the response behavior of a 3.0 MW unit with the nonlinear wave force 
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model (FNV-Theory) has less wave force when compared with the linear form of 

Morison’s equation in these types of parametric conditions. 

There is a need for more simulations and more field data to improve the simulation 

accuracy of the offshore wind turbine structural designs. In this research study, the results 

show that the flexibility of the offshore wind turbine tower is key to the total horizontal 

displacement of the structure. They also show that the soil properties of the foundation 

controls the angle of the foundation head at seabed level. The varying soil properties 

across foundation models will change the behavior of the structure; therefore, the 

modified cone foundation model should be used. The apparent fixity level is easy to 

apply, and it can predict the behavior of the structure, as it appears to be more 

conservative and a good choice for first pass. However, to further refine the behavior of 

the structure, the horizontal displacement at the top of the structure, the angle of the 

foundation head at seabed level, and the multi-layered damping soil system, the modified 

cone model is the best option for counting those variables, since it is not possible to 

include the multi-layered damping soil system in the apparent fixity level and Randolph 

models. 
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APPENDIX 

SUMMARY OF OFFSHORE WIND FARM PROJECTS 
 

                                                

 All dimensions in meter, except “Distance From Shore” in kilometer. 

[1] http://en.wikipedia.org/wiki/List_of_offshore_wind_farms 

[2] http://www.renewableenergyworld.com/rea/news/article/2009/10/large-wind 

[3] http://www.4coffshore.com/windfarms 

[4] http://www.wind-energy-the-facts.org 

[5] http://www.energyiemeteorologie.de 

[6] http://www.vattenfall.com 

[7] http://www.khi.co.jp/index_e.html 

[8] http://www.risoe.dk 

[9] http://www.kentishflats.co.uk 

[10] http://www.fbbb.dk 

[11]National Renewable Energy Laboratory (NREL) - September 2010 
  

 

Project 

 

Country 

 

MW 

 

Turbine 

 

Year 

 

Diam. 

 

Total Turbine 

Height 

 

Hub 

Height 

 

Water D. 

(min.) 

 

Water D. 

(max.) 

 

Distance From 

Shore 

 

Reference 

Vindeby Denmark 5
 

11 1991 35

 56 38 3 7 1.8 [1][8] 

Lely Netherlands 2 4 1994 41 60 40 2.5 5 0.8 [1] 

Tunø Knob Denmark 5 10 1995 39 65 45 4 7 5.5 [1] 

Irene Vorrink Netherlands 17 28 1996 43 72 50 2 2 0 [1] 

Gotland Sweden 3 5 1998 37 56.5 40 6 8 3 [1][4][5] 

Blyth UK 4 2 2000 62 91 60 5 9 1 [1] 

Middelgrunden Denmark 40 20 2001 72 100 64 3 6 4.7 [1] 

Utgrunden Sweden 11 7 2001 70 100 65 13 14 4.2 [1] 

Yttre Stengrund Sweden 10 5 2001 72 96 60 7 9 2 [1] 

Horns Rev Phase 1 Denmark 160 80 2002 80 110 70 6 14 14 [1][6] 

Frederikshavn Phase 1&2 Denmark 11 4 2003 88 123 80 1 2 3.2 [1] 

Nysted Havmollepark Denmark 166 72 2003 82 110 69 6 9 10.8 [1] 

Rønland Denmark 17 8 2003 93 120 73 0 2 0.1 [2] 

Samsø Denmark 23 10 2003 82 105 64 12 18 4 [1] 

North Hoyle UK 60 30 2004 80 107 67 7 11 7.2 [1] 

Arklow Bank Ireland 25 7 2004 50 99 74 1 35 10 [1] 

Hokkaido Japan 1 2 2004 47 71 47 13 13 0.7 [2][7] 

Scroby Sands UK 60 30 2004 80 108 68 5 10 2.3 [1] 

Ems-Emdem Germany 4.5 1 2004    3 3 0.1 [11] 

Kentish Flats UK 90 30 2005 90 115 70 5 5 8.5 [1][9] 

Barrow Offshore Wind UK 90 30 2006 90 120 75 15 20 7.5 [1] 

Egmond aan Zee Netherlands 108 36 2006 90 112 70 18 18 10 [1] 

8
1
 

http://www.kentishflats.co.uk/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Project 

 

Country 

 

MW 

 

Turbine 

 

Year 

 

Diam. 

 

Total Turbine 

Height 

 

Hub 

Height 

 

Water D. 

(min.) 

 

Water D. 

(max.) 

 

Distance From 

Shore 

 

Reference 

Breitling Germany 2.3 1 2006    2 2 0.5 [11] 

Beatrice Demonstration UK 10 2 2007 126 170 107 45 45 23 [1] 

Burbo Offshore Wind Farm UK 90 25 2007 107 137 84 7 12 6.4 [1] 

Lillgrund Sweden 110 48 2007 93 115 68 4 13 11.3 [1] 

Kemi Ajos Phase 1&2 Finland 30 10 2008 100 138 88 1 7 2.6 [1] 

Inner Dowsing UK 97 27 2008 107 134 80 18.6 26 5 [1] 

Lynn UK 97 27 2008 107 134 80 5 10 5 [1] 

Princess Amalia Netherlands 120 60 2008 80 97 59 19 24 23 [1] 

Thornton Bank Belgium 30 6 2008 126 130 94 12 27 27 [1] 

Hooksiel Germany 5 1 2008    5 5 0.5 [11] 

Brindisi Italy 0.08 1 2008    108 108 20 [11] 

Hywind Norway 2.3 1 2009    100 100 10 [11] 

Horns Rev Phase 2 Denmark 209 91 2009 93 115 68 9 17 31.7 [1] 

Alpha Ventus Germany 60 12 2009 126 155 92 28 30 56.2 [1] 

Avedøre Denmark 7.2 2 2009 120 153 93 6 8 1.4 [1][3][10] 

Gasslingegrund Sweden 30 10 2009 100 135 90 3 13 3.5 [1][3] 

Rhyl Flats UK 90 25 2009 107 134 80 6.5 12.5 8 [1] 

Robin Rigg UK 180 60 2009 90 125 80 0 20 11 [1] 

Sprogø Denmark 21 7 2009 90 115 70 6 16 10.6 [1][3] 

Donghai Bridge China 100 34 2010 90 136 91 7 7 9 [1] 

BARD Offshore Germany 400 80 2010 122 151 90 39 41 107 [1][3] 

Frederikshavn Denmark 12 6 2010       [1][3] 

Gunfleet Sands UK 172 48 2010 107 129 75 0.5 10 7 [1] 

Ormonde UK 150 30 2010 140 165 100 17 22 9.5 [1][3] 

Rødsand II Denmark 200 72 2010 93 115 68 6 12 8.8 [1] 

Thanet UK 300 100 2010 90 115 70 20 25 12 [1] 

Greater Gabbard UK 500 140 2011 130 170 105 24 34 36 [1] 

Sheringham Shoal UK 315 88 2011 104 132 80 16 22 23 [1] 

Bligh Bank Belgium 165 55 2011 90 127 72 15 37 46 [1] 

Tricase Italy 90 38 2012    33 86 20 [1] 

8
2
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