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ABSTRACT 

 

On Design and Realization of New Generation  

Misson-critial Application Systems.  

(May 2011) 

Zhibin Mai, B.S.; M.S., Shanghai Jiao Tong University 

Chair of Advisory Committee: Dr. Wei Zhao 
   
 

Mission-critical system typically refers to a project or system for which the success 

is vital to the mission of the underlying organization. The failure or delayed completion 

of the tasks in mission-critical systems may cause severe financial loss, even human 

casualties. For example, failure of an accurate and timely forecast of Hurricane Rita in 

September 2005 caused enormous financial loss and several deaths. As such, real-time 

guarantee and reliability have always been two key foci of mission-critical system 

design. 

Many factors affect real-time guarantee and reliability. From the software design 

perspective, which is the focus of this paper, three aspects are most important. The first 

of these is how to design a single application to effectively support real-time requirement 

and improve reliability, the second is how to integrate different applications in a cluster 

environment to guarantee real-time requirement and improve reliability, and the third is 

how to effectively coordinate distributed applications to support real-time requirements 

and improve reliability. 
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Following these three aspects, this dissertation proposes and implements three novel 

methodologies: real-time component based single node application development, real-

time workflow-based cluster application integration, and real-time distributed admission 

control. For ease of understanding, we introduce these three methodologies and 

implementations in three real-world mission-critical application systems: single node 

mission-critical system, cluster environment mission-critical system, and wide-area 

network mission-critical system. We study full-scale design and implementation of these 

mission-critical systems, more specifically: 

1) For the single node system, we introduce a real-time component based 

application model, a novel design methodology, and based on the model and 

methodology, we implement a real-time component based Enterprise JavaBean 

(EJB) System. Through component based design, efficient resource management 

and scheduling, we show that our model and design methodology can effectively 

improve system reliability and guarantee real-time requirement. 

2) For the system in a cluster environment, we introduce a new application model, 

a real-time workflow-based application integration methodology, and based on 

the model and methodology, we implement a data center management system 

for the Southeastern Universities Research Association (SURA) project. We 

show that our methodology can greatly simplify the design of such a system and 

make it easier to meet deadline requirements, while improving system reliability 

through the reuse of fully tested legacy models. 
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3) For the system in a wide area network, we narrow our focus to a representative 

VoIP system and introduce a general distributed real-time VoIP system model, a 

novel system design methodology, and an implementation. We show that with 

our new model and architectural design mechanism, we can provide effective 

real-time requirement for Voice over Internet Protocol (VoIP). 
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This dissertation follows the style of IEEE Transactions on Parallel and Distributed Systems. 
 

CHAPTER I  

INTRODUCTION 

As information technologies play increasingly important roles throughout our 

society, mission-critical application systems are widely deployed in various sectors 

including health, energy, manufacturing, defense, air and space industries, etc. Generally 

speaking, the term ―mission-critical‖ refers to a factor (facility, process, procedure, 

software, etc.) that is crucial to the successful completion of an entire project. It may 

also refer to a project or system for which the success is vital to the mission of 

underlying organization [1].  

The classification of mission-critical systems is in context. Different projects, 

systems or business have different kinds of mission-critical systems. For example: 1) 

The U.S. Department of Defense (DoD) refers to mission-critical systems as those 

systems that are critical to DoD’s ability to meet its responsibilities and include 

command and control systems, satellite systems, inventory management systems, 

transportation management systems, medical systems and equipment, and pay and 

personnel systems [3]; 2) The National Hurricane Center (NHC) refers its mission-

critical systems to weather forecast systems, such as the National Centers for 

Environmental Prediction (NCEP) Advanced Weather Interactive Processing System 

and the Automated Tropical Cyclone Forecasting (ATCF) system are specific mission- 
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critical systems to National Hurricane Center (NHC) [4]; 3) The South Carolina 

Emergency Management Division (SCEMD) defines its mission-critical systems to be 

the Automated Data Processing (ADP) equipment that supports the execution of the 

agency's essential functions during hurricane season [5]. 

In spite of the differences in definitions and objectives, these mission-critical 

application systems differ from traditional numerical applications as they are usually 

tightly coupled with control processes and hence are critical for the accomplishment of 

mission objectives underlying physical systems. The failure or delayed completion of the 

tasks in mission-critical systems may cause severe financial loss, even human casualties. 

For example, failure of an accurate and timely forecast of Hurricane Rita in September 

2005 caused enormous financial loss and several deaths [2]. As such, real-time guarantee 

and reliability have always been two key focuses of mission-critical system design. 

These issues present challenges that do not occur in traditional computer systems and 

must be addressed by different strategies. 

Many factors affect the real-time guarantee and reliability of a mission-critical 

system. On the software design perspective, which is the focus of this paper, three 

aspects are most important. The first of these is how to design a single application to 

effectively support real-time requirement and improve reliability, the second is how to 

integrate different applications in a cluster environment to guarantee real-time 

requirements and improve reliability, and the third is how to effectively coordinate 

distributed applications to support real-time requirements and improve reliability.  
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Following these three aspects, this dissertation proposes and implements three novel 

methodologies: real-time component based application development, real-time 

workflow-based application integration, and real-time distributed admission control. For 

ease of understanding, we introduce these three methodologies and implementations in 

three real-world mission-critical application systems, single node mission-critical 

system, cluster environment mission-critical system, and wide-area network mission-

critical system. We study full-scale design and implementation of these mission-critical 

systems, more specifically: 

1) For the single node system, we introduced a real-time component based 

application model, a novel design methodology, and based on the model and 

methodology, we implement a real-time component based Enterprise JavaBean 

(EJB) System. Through component based design, efficient resource management 

and scheduling, we show that our model and design methodology can effectively 

improve system reliability and guarantee real-time requirements. 

2) For the system in a cluster environment, we introduced a new application model, 

a real-time workflow-based application integration methodology, and based on 

the model and methodology, we implement a data center management system 

for the Southeastern Universities Research Association (SURA) project. We 

show that our methodology can greatly simplify the design of such a system and 

makes it easier to meet deadline requirements, while improving system 

reliability through reuse of fully tested legacy models. 
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3) For the system in a wide area network, we narrow our focus to a representative 

VoIP system and introduce a general distributed real-time VoIP system model, a 

novel system design methodology, and an implementation. We show that with 

our new model and architectural design mechanism, we can provide effective 

real-time requirement for Voice over Internet Protocol (VoIP). 

 

Figure 1. 3 Systems x 3 Layers Research Methodologies 

In summary, we proposed 3 systems x 3 layers research methodologies as shown in 

Figure 1. We address reliability and real-time guarantee issues in the design and 

realization of the next generation of mission-critical application systems. We propose 

three novel system models and design methodologies for single node application, cluster 

environment application, and wide area network environment applications. We use these 
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novel models and methodologies building three demonstration applications and we show 

that our models and methodologies can greatly improve system reliability and provide 

real-time guarantees. 

A. Overview of Target Application Systems 

1.    Single Node Mission-critical System 

-- Real-time Enterprise JavaBean (EJB) Component System 

A real-time J2EE component system １  to support mission-critical real-time 

applications should be considered as another example of the mission-critical system. 

Component technology has become a central focus of software engineering in research 

and development due to its success in the market. Reusability is a key factor that 

contributes to this success [6]. With component technology, software systems are built 

by assembling components that have already been developed, with integration in mind. 

With software component frameworks, the nonfunctional codes are automatically 

generated, and system developers can focus on core business logic parts, without 

wasting time on common non-functional parts. The reuse of components and developers’ 

focus on core parts lead to a shortening of software development cycles and savings in 

software development costs.  

Although component-based models deal successfully with functional attributes, they 

provide little support for real-time services. Existing standards – such as CORBA, 

                                                
 

 
１ J2EE component system here refers to Enterprise Java Bean (EJB) component system. We use these two 
terms interchangeably in this dissertation. 
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COM+, and EJB – are unsuitable for real-time applications because they do not address 

issues of timeliness and predictability of service, which is basically required by real-time 

systems [7].  

The Real-time, Embedded, and Specialized Systems (RTESS) Platform Task Force 

of the OMG has proposed a specification for a real-time CORBA [8], [9]. The TAO 

project [10] provided an implementation of the CORBA standard that guarantees that 

calls across components preserve priority levels and that the overhead in servicing a call 

request is statically predictable. In [11], Stankovic et al. proposed to use component-

based techniques for developing embedded system software, i.e., software for resource 

constrained systems, and their VEST toolkit aims at providing a rich set of dependency 

checks based on the concept of aspects to support distributed embedded system 

development via components. Most of these real-time extensions use traditional 

approaches to provide real-time service guarantees: Real-time services are typically 

provided in the form of descriptions of the execution time, period, priority, and deadline 

to meet expectations for each method invocation. Applications would need intricate 

knowledge of the underlying hardware architecture and system software (such as 

subroutine procedures) in the target environment to estimate these parameters accurately. 

This is a big burden for any application, especially in large-scale and heterogeneous 

environments. Moreover, with these traditional approaches in component-based systems, 

components may no longer be reusable in terms of providing real-time services. 

Therefore, the benefit of component technology may be lost. 
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Our goal in this work is to develop a real-time component based system via 

integration with the Commercial Off-The-Shelf (COTS) component system that 

maintains the reusability of components, thus improving system scalability and 

dependability and to provide real-time guarantees. 

2.    Cluster Environment Mission-critical System 

-- SURA Scientific Computing Data Center System 

Scientific computing helps scientists and engineers use computers to analyze and 

solve scientific and engineering problems. It plays a critical role in different areas and is 

considered the third mode of science, complementing theory and experimentation. To 

support scientific computing, many computing facilities, including national, regional, 

and laboratory centers, have been established.  The major task of these facilities is to 

enable the transparent execution of complex mathematical models and numerical 

methods on a large set of scientific data over combined computing power resources 

provided by the computing facilities, thus allowing scientists to focus on mathematical 

modeling and knowledge discovery, which best utilizes their expertise.  

As part of the Southeastern Universities Research Association (SURA) Coastal 

Ocean Observing and Prediction (SCOOP) Program, the SURA scientific computing 

data center at Texas A&M University (referred to as the ―SURA data center‖) aims to 

support SURA's coastal research effort. The SCOOP Program is a multi-institutional 

collaboration whose partners are working to implement a modular, distributed system for 

real-time prediction and visualization of the impacts of extreme atmospheric events, 
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including water level, inundation, and wave height [12]. The SURA data center is 

required to provide storage and data management tools for SURA scientists to remotely 

archive and share Terabytes of atmospheric data collected from radar sites or generated 

by simulation programs. It also provides high performance computing infrastructure and 

legacy simulation program management tools for SURA scientists to remotely run the 

simulations for real-time prediction and visualization of the impacts of extreme 

atmospheric events, including water level, inundation, and wave height.  

The goal of this study is to design and implement a scientific computing data center 

management system that provides scientists a cloud computing infrastructure [13] to 

share data, application and hardware resources in order to support real-time prediction 

and visualization of the impacts of extreme atmospheric events, including water level, 

inundation, and wave height.  We proposed a workflow driven methodology to ease the 

effort of integrating existing software models into new scientific computing applications. 

3.    Wide Area Networked Mission-critical System 

-- QoS Provisioning System for Voice over Internet Protocol (VoIP) 

Voice over IP (VoIP) system is another that has been identified as a mission-critical 

system to provide voice communication service to the public or organization. 

Transmission of voice traffic must meet stringent requirements on packet delay as it is 

an important factor affecting the quality of calls. The International Telecommunication 

Union (ITU) recommends that a one-way delay between 0-150 ms is acceptable in 

Recommendation G.114 [14]. However, existing Internet Protocol (IP) networks do not 
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provide Quality of Service (QoS) to voice traffic and, therefore, can only offer best-

effort services. New traffic may keep entering the network even beyond the network 

capacity limit, consequently making both the existing and the new flows suffer packet 

loss and/or significant delay. 

Current VoIP systems have realized the importance of providing QoS guarantees. 

Their general solution is to introduce a call admission control (CAC) mechanism in 

order to ensure that sufficient resources are available to satisfy the requirements of both 

the new and the existing calls after the new call is admitted. Several CAC mechanisms, 

such as Site-Utilization-Based CAC (SU-CAC) and Link-Utilization-Based CAC (LU-

CAC), have been used in current VoIP systems. However, none of current VoIP systems 

can really provide QoS guarantees to VoIP. The basic reason behind this is that none of 

them are able to effectively apply and support CAC mechanisms. Their main approach is 

to use resource over-provisioning, which is expensive and cannot guarantee quality of 

services. 

The goal of this study is to design and implement a practical, scalable and highly 

efficient VoIP system that can provide the end-to-end QoS guarantees to voice in IP 

networks. We decide to accomplish our target system by enhancing and integrating with 

the current Cisco VoIP system, rather than to construct a totally new VoIP system from 

scratch. 
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B. Dissertation Contributions 

We address issues related to the design and realization of the next generation of 

mission-critical application systems. We pay special attention to two important aspects 

of these systems: reliability and real-time guarantees. We demonstrate our 

methodologies by three types of real-world mission-critical application systems. In 

particular, our study will address relevant issues via the three real-world cases which are:  

1) For the single node system, we introduced the real-time component based design 

and implementation for Enterprise JavaBean (EJB) and showed that our design 

can effectively integrate with the Commercial Off-The-Shelf (COTS) 

component system and provide real-time guarantees for single node mission-

critical systems. 

2) For the system in a cluster environment, we introduced the real-time workflow-

based application integration methodology to effectively integrate the legacy 

applications to build comprehensive applications and we used it in the data 

center management system for the Southeastern Universities Research 

Association (SURA) project. Our methodology greatly simplifies the design of 

such a system and makes it easier to meet deadline requirements, while 

improving system reliability through reuse of fully tested legacy models. 

3) For the system in a wide area network, we introduced the distributed real-time 

admission control mechanism to effectively provide real-time guarantee for a 

networked application and we show that with this mechanism, we can provide 

QoS provisioning system for Voice over Internet Protocol (VoIP).  Our 
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methodology on system integration makes it feasible to integrate the 

Commercial Off-The-Shelf (COTS) VoIP systems to provide real-time VoIP 

service. 

C. Dissertation Outline 

This dissertation is organized as follows. In Chapter II the related work is given.  

Chapter III introduces real-time component based single application development. 

Chapter IV introduces real-time workflow-based application integration in cluster 

environment. Chapter V introduces real-time Voice over IP (VoIP) system. Summary 

and conclusions are given in Chapter VI. 
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CHAPTER II 

 RELATED WORK 

A. Component Systems 

Component technology has become a central focus of software engineering in 

research and development due to its great success in the market. Reusability is a key 

factor that contributes to this success [6]. Component standards specify widely-accepted 

interfaces that allow independent components from different suppliers (third parties) to 

be plugged together and even to interoperate across language, compiler, and platform 

barriers. The best known examples of such standards are OMG’s CORBA [15], 

Microsoft’s COM+ [16] and Sun Microsystems’ Enterprise JavaBeans (EJB) [17]. 

Although component-based models deal successfully with functional attributes, they 

provide little support for real-time services. Existing standards – such as CORBA, 

COM+, and EJB – are unsuitable for real-time applications because they do not address 

issues of timeliness and predictability of service, which is basically required by real-time 

systems [7]. The Real-time, Embedded, and Specialized Systems (RTESS) Platform 

Task Force of the OMG has proposed a specification for a real-time CORBA [8], [9]. At 

the same time, there is not yet a specification for a real-time EJB or a real-time COM+. 

The TAO project [10] provided an implementation of CORBA standard that guarantees 

that calls across components preserve priority levels and that the overhead in servicing a 

call request is statically predictable. In [11], Stankovic et al. proposed using component-

based techniques for developing embedded system software, i.e., software for resource 
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constrained systems, and their VEST toolkit aims at providing a rich set of dependency 

checks based on the concept of aspects to support distributed embedded system 

development via components.  

Most of these real-time extensions use traditional approaches to provide real-time 

service guarantees: Real-time services are typically provided in the form of descriptions 

of the execution time, period, priority, and deadline to meet expectations for each 

method invocation. Applications would need intricate knowledge of the underlying 

hardware architecture and system software (such as subroutine procedures) in the target 

environment to estimate these parameters accurately. This is a big burden for any 

application, especially in large-scale and heterogeneous environments. Moreover, with 

these traditional approaches in component-based systems, components may no longer be 

reusable in terms of providing real-time services. Therefore, the benefit of component 

technology may be lost. 

In this work, we aimed to study the design and implementation of a real-time 

component framework based on an existing J2EE component framework that assists the 

component developers and application integrators to develop reusable real-time 

components and build effective real-time applications. 

B. Scientific Computing Data Center Systems 

Most existing scientific computing data centers can be categorized into data-

intensive centers and computational-intensive centers. The data-intensive data centers 

provide tools for users to discover, convert, retrieve, read and visualize the data set. In 
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terms of data distribution and management, some data centers [18], [19], [20] (called 

traditional data centers) collect and centrally archive the data sets. The data sets remain 

isolated in the hands of the individual data center and are very domain-specific. 

Furthermore, the data format and name convention are normally inconsistent.  The end 

users must spend a lot of effort and time to discover, retrieve and unify the data set from 

different data centers in order to produce a comprehensive and complete data set. 

Understanding the limitation of data sharing inherent in traditional data centers, some 

research projects [21], [22], [23] build cyber infrastructure framework and systems 

aimed at providing uniform interfaces for the end users to discover, retrieve and unify 

the data set distributed in a variety of data sources and a set of data and meta-data 

management and communication standards for the data source owners (individual or 

organization) to register and post their data services, which are transparent to the end 

users. Such kinds of data centers normally won’t own and archive the data sets. This will 

reduce the cost of the data centers and avoid the problems of data ownership. However, 

the design and implementation of those data centers are very complicated. And the data 

center might become a single point of failure for data discovery. Furthermore, the 

potential failure of the network between the data center and data source will reduce the 

availability of the data sets.  

The computational-intensive data centers provide resource and application 

deployment tools for the users to deploy and run their applications in the data centers 

[24], [25], [26], [27]. The computational-intensive data center can significantly improve 

the utilization of the resource via resource sharing, which in turn reduces the cost-per-



 

 

15 

use of the resource. For example, Sun grid of Sun Microsystems already offers an 

affordable compute utility with a cost of $1/cpu-hr [27]. Furthermore, professional IT 

engineers in the data center can provide technical support to users with higher quality 

but lower costs, as compared with technical support teams within individual companies 

or organizations. As a result, the computational-intensive data centers enable 

commercial companies to outsource their IT services to have lower costs and better 

services [28], [29]. However, the current model of the computational-intensive data 

center is not always applicable to the scientific computing society. As we know, most of 

the scientific computing applications are not only resource intensive (also called 

computing-intensive), but they are also data intensive. To reduce the network overload 

and data staging time, the applications, especially the data intensive application, should 

be deployed to the resources close to where the data reside.  Unlike the data-intensive 

data center, the computational-intensive data centers do not archive data for the users’ 

applications. It is impractical, if not infeasible, to stage gigabytes of data across the 

internet between the data center and data source per execution. Furthermore, IT support 

engineers in the data center are not domain-specific experts. Therefore, they are of 

minimum help when it comes to the deployment and troubleshooting of domain-specific 

applications.  

The SURA scientific computing data center needs to provide the capabilities of data-

intensive centers and computational-intensive centers with a comprehensive data set, 

high performance computing resources and a range of domain-specific applications. The 

SURA scientific computing data center management system facilitates different roles of 
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data center users to manage and use those high value resources in the data center. It 

created a cloud computing [13] infrastructure that shared resources, applications, and 

data are provided to support SURA scientists’ research. 

Several research projects, such as LEAD [30], GEON [31], GAP [32], designed and 

implemented similar scientific computing data center systems or tools. However, our 

proposed system is superior to those systems in several aspects. 

LEAD is a large scale effort to build infrastructure allowing atmospheric science 

researchers to dynamically and adaptively respond to weather patterns to produce better-

than-real time predictions of tornadoes and other ―mesoscale‖ weather events. LEAD 

has some similarities with our proposed system. Both use workflow technology to reuse 

the existing software modules to construct and auto-handle larger scale scientific 

analysis. Both also support event driven to dynamically and adaptively respond to the 

predefined external events, in order to conduct real time analysis. However, the 

difference lies in the explicit separation of user roles and the real-time guarantee 

mechanism. Our proposed system explicitly classifies users into different roles and 

provides different interfaces and supporting tools to facilitate the separation. Our 

proposed system uses the scalable admission control mechanism to resolve resource 

competition issues in order to guarantee the admitted workflows to be completed by their 

deadlines. 

GEON is developing cyber infrastructure for integrative research to enable 

transformative advances in geosciences research and education. Similar to LEAD, 

GEON is also based on service-oriented architecture, with an emphasis on supporting 
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geosciences. Different from LEAD and GEON, our proposed system is a generic system 

for scientific research. It imposes no constraints on the kinds of supported scientific 

applications and data even though it is currently deployed in the SURA scientific 

computing data center to support atmospheric research.  

GAP is a system to enable legacy scientific applications on computing grids using a 

service-oriented architecture. It provides the approach to automatically turn an 

application into a service and generate the user interface from an XML description for 

the application without the need for coding. Like our proposed system, GAP explicitly 

classifies users into different roles, such as application specialist, system administrator 

and users. Similar to GAP, our system can automatically wrap the application to the 

service element and generate user interface without the application integrator writing any 

codes. However, our system frees the application integrator from writing tedious xml 

descriptions, which describe how to turn the application to service element, via the 

workflow module editing features in the workflow GUI editor. In addition, GAP 

currently does not support real-time guarantee service and workflow mechanism, 

although workflow is identified in their future plan. 

C. Voice over IP Systems 

In the past few years, VoIP has rapidly gained acceptance. Many leading vendors in 

the traditional voice and data industry have switched to provide VoIP solutions. In 

general, VoIP vendors are classified into two camps, in terms of the VoIP solutions. 

Traditional voice vendors, such as Nortel [33], Avaya [34], Alcatel [35], etc., with 
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products based on circuit-switched technologies (Time Division Multiplexing), would 

like to adapt traditional circuit switched voice solution to the VoIP solution. Meanwhile, 

data vendors, such as Cisco [36], and 3Com [37], would like to provide a pure VoIP 

solution, treating voice as just another data stream.  

To provide end-to-end delay guarantees in VoIP systems, Call Admission Control 

(CAC) mechanisms must be in place. CAC algorithms can be roughly grouped into two 

broad categories: 1) The Measurement-based CAC algorithm: It uses network 

measurement to estimate the current load of existing traffic. It has no prior knowledge of 

traffic statistics and makes admission decisions based on the current network state only 

[38], [39]. 2) The Parameter-based CAC algorithm: It uses the parameters of resource 

and service to decide whether the network can accommodate the new connection while 

providing end-to-end delay guarantees. The parameters are used to compute a 

deterministic bound imposing that, in any traffic situation, the end-to-end delay 

guarantees are provided for all flows [40], [41], [42]. Utilization-based CAC belongs in 

this category, where the parameters are the requested bandwidth utilization for each new 

connection and the available bandwidth utilization in the resource [40], [41]. Through 

appropriate system (re)configuration steps, the delay guarantee test at run time is 

reduced to a simple utilization-based test: As long as the utilization of links along the 

path of a flow is not beyond a given bound, the performance guarantee of the end-to-end 

delay can be met. Utilization-based CAC renders the system scalable. 

In this work, we aimed to study the design and implementation of a utilization-based 

admission control system, also called QoS-Provisioning system, to seamlessly integrate 
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with existing VoIP systems in order to provide delay guarantee to voice traffic over IP 

network. 
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CHAPTER III 

REAL-TIME COMPONENT BASED SINGLE APPLICATION DEVELOPMENT  

A. Overview 

In this section, we focus on how to design single node mission-critical applications 

to effectively improve system reliability, at the same time providing real-time 

guarantees.  

In a single node software application environment, the major factor affecting 

software reliability is software defects. It is widely acknowledged that the most effective 

way to reduce software defects is through reuse.  Component-based software design is 

one of the most successful application reuse approach that has been proven to greatly 

reduce software defects and improve software reliability.  

Although extensive work have been done on component-based application 

development models, they provide little support for real-time services. Existing 

standards – such as CORBA, COM+, and EJB – are unsuitable for real-time applications 

because they do not address issues of timeliness and predictability of service, which is 

basically required by real-time systems [6]. Some work has been done on real-time 

extensions of component-based design, but these extensions use traditional approaches 

to provide real-time service guarantees: Real-time services are typically provided in the 

form of descriptions of the execution time, period, priority, and deadline to meet 

expectations for each method invocation. Applications would need intricate knowledge 

of the underlying hardware architecture and system software (such as subroutine 
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procedures) in the target environment to estimate these parameters accurately. This is a 

big burden for any application, especially in large-scale and heterogeneous 

environments. Moreover, with these traditional approaches in component-based systems, 

components may not be reusable any more in terms of providing real-time services. 

Therefore, the benefit of component technology may be lost. 

Given the great potential benefits derived from component technology improving 

system reliability, and given the lack of consideration for reusability of components in 

providing real-time services, our goal in this chapter is to introduce a real-time 

component based application design model for single node application development. 

More specifically,  

1) we introduce a real-time component based application model for single node 

applications that not only support component based application development, but that 

can also provide real-time guarantees; our proposed real-time component based 

application model includes a general application model, a real-time component model, 

and a real-time admission control model;  

2) on top of the proposed real-time component based application model, we propose 

a real-time component-based system design methodology, which provides a detailed 

guide for application developer on implementation of real-time component services, 

optimization of real-time component services, service adaption, and architecture design;  

3) based on the real-time component based application development model and the 

proposed design methodology, we implement a demonstration system. The performance 
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results show that our proposed model and design methodology can improve system 

reliability and provide scalable real-time guarantees to the enhanced J2EE components. 

B. Real-time Component-based Application Model 

1.    Application Model 

We consider hybrid open/closed systems, where applications include clients and 

application servers, each of which hosts one or more components. Each invocation from 

a client triggers execution of one or more methods, either on a single component or on 

several components. These components, in turn, can be located on one or across several 

application servers. A sequence of client invocations resulting in such a sequence of 

method executions is called a task. In a component-based system, an invocation from a 

client can pass through several components and we assume that all invocations in the 

same task will execute on the same components in the same order. Tasks in applications 

can be modeled as a directed acyclic graph (DAG) which we call task graph. Each node 

is a component and each task forms a task path. There could be multiple tasks along each 

task path. 

2.    Real-time Component Model 

In component software, a component has three basic characteristic properties [18]: 

(i) Isolation – A component should be deployable independently as an isolated part. The 

component is an atomic unit of deployment, as it will never be deployed partially. (ii) 

Composability – A component should be composable with other components. It needs to 
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be a self-contained function unit with well-specified interfaces. A third party can access 

the component through its contractually specified interfaces. (iii) Opaqueness – Neither 

the environment nor other components or a third party have access to its implementation 

or other internal details. Figure 2 illustrates a component architecture. 

 

Figure 2. Component Architecture 

We extend the component architecture described above to build a real-time 

component architecture. For this, we augment the largely functional interfaces and 

context dependencies with contractually specified temporal interfaces and explicit time-

related context dependencies. Any such augmentation of the component interface 

architecture should continue to satisfy the three basic component properties described 

earlier: (i) The real-time interface architecture should not interfere with the isolation 

property. Each component should be separated from other components in providing real-

time service guarantees. For example, uncontrolled resource conflicts among different 

components should be avoided. (ii) Composability should be maintained. The real-time 

service interface should effectively represent the real-time service provided by the 
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component. Applications can access the service through the real-time service interface. 

(iii) The real-time interface architecture should maintain opaqueness. Applications do 

not need to know how real-time services are provided by each component. The 

interfaces should not include information relating to the underlying component 

implementation, such as methods’ worst-case execution time, or any scheduling 

algorithm used in method execution in components, for example. 

We use a very simple contractual interface, which formulates the real-time service 

provided in terms of the service guarantee (described in form of a deadline) given a 

worst case arrival (described in form of an arrival function). We first introduce the 

arrival function. 

Definition 3-1. (Arrival function) If the maximum number of method invocations 

during any time interval of length I is bounded by ( )A I , we define A as an arrival 

function of this sequence of method invocations. 

For example, a bursty arrival can be described using a burst size   and average 

arrival rate2   as ( )A I I   . The arrival function A  and the deadline D  give a 

contractual definition of the real-time service provided by the component: If the 

sequence of invocations of methods in Component e has an arrival function below A , it 

is guaranteed that any invocation in this sequence will meet its deadline D at Component 

e. This interface specification clearly meets the isolation, composability, and opaqueness 

requirements for real-time components. 

                                                
 

 
2 Here we use a bound instead of using      operator 



 

 

25 

However, this specification has two shortcomings in practice: First, a component will 

only provide a single real-time service to applications. Often, different applications may 

require different levels of timing requirement. Second, each component usually exposes 

a number of methods and different methods could be invoked at different times, which 

have different resource consumptions. In order to let components provide more flexible 

service and better utilize the underlying resource usage, we extend the above 

specification by introducing different service levels and taking into consideration 

different methods exposed by components. We define class of service as the service 

level for each component. Assuming there are M classes of service, we define Class- i  

real-time service for Component e as  , , ,, ,e i e i e iA D , where  ,e i  is a group is a group 

of methods exposed by Component e, ,e iA is an arrival function of invocations of 

methods in,  and ,e iD is a deadline for any invocation of methods in ,e i . In other words, 

If the sequence of invocations of methods in ,e i  has an arrival function below ,e iA , 

Component e guarantees a worst-case delay bounded by ,e iD  for any method invocation 

in this sequence. 

For example, assume that Component e exposes four methods  1 4,...,   and defines 

four classes, a real-time service interface specification is illustrated in Table 1. In this 

example, 1  and 2  may represent the main methods exposed by the component, while 

3  and 4  are used for management and auditing of the component. Clients that use 

Class-2 service can access the component at a higher rate than ones that use Class-1 

service, but receive less stringent timing guarantees (0.250 sec instead of 0.050 sec). 
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Clients that use Class-3 service have a different view of the component than ones that 

use Class-1 or Class-2 service (they may need to access all methods of the component) 

and have different real-time requirements. In this example, test suites may need to access 

all methods exposed by a component, and may need to do this in a timely fashion. 

Auditing and management applications, on the other hand, may need to access only a 

small subset of methods, and have only loose time requirements. Note that Class-1 and 

Class-2 services expose the same set of methods; that is, ,1e  and ,2e are identical. The 

functional aspect of the service interfaces is therefore identical, while their difference 

lies entirely in the real-time specification, more specifically in the expected arrival and 

in the timing guarantees. 

Table 1. A Real-time Service Interface Specification 

 

 

This separation of functional from timing specification allows for a configuration of 

real-time components into resource overlays, which in turn allow for the isolation of 

applications from the details of the low-level specification and management of the 

underlying computational resources. Figure 3 shows an example of a component-based 

resource overlay. This figure illustrates how resource overlays separate component 
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development from application development and relieve the application designer of the 

underlying resource management. In fact, application designers implement and deploy 

their systems on the resource overlay, which provides well-defined functional 

abstractions and timing behaviors. The real-time service interface specification in real-

time components does not provide access to their underlying implementation. Any 

change in the implementation of components will, therefore not affect the application 

design or behavior. 

 

 

Figure 3. A Component Based Resource Overlay 

It is up to the component providers to map the nodes of the component-based 

resource overlay to the underlying available resources. This is typically done 

independently of the particular application. In the following, we describe how 

application designers make use of resource overlays to build real-time applications. 

Given a set of real-time component services, it is the component providers’ 

responsibility to implement the component functionality defined by its set of interfaces. 

Component providers must ensure that both functional and timing properties are satisfied 

for each implemented real-time component. We will address this issue later. 
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3.    Scheduling and Admission Control Model 

Any task is associated with an arrival descriptor (in form of the source arrival 

function) and a timing requirement (in form of the end-to-end deadline). To provide real-

time service guarantees, application designers have to ensure that every invocation in a 

task meets the end-to-end deadline requirement. Moreover, the application designer must 

ensure that the real-time service specified in each real-time component will not be 

violated. Since the maximum arrival is part of the real-time service of the component, 

and the client population is not under control of the application servers, an admission 

control mechanism has to be in place. 

For a new Task T , admission control has to address the two parts of the real-time 

specification of the components (timing guarantee and arrival descriptor) to provide real-

time guarantees. First, what is the worst-case end-to-end delay experienced by any 

invocation in Task T ? In Task T , all of its invocations have an end-to-end deadline 

requirement TD . Assume that each invocation in Task T will go through a sequence of 

components he  of Class hi , h  = 1, 2, . . . , H , and any method that Task T will call in 

Component e is in ,e i . Recall that the worst-case delay provided by Component e of 

Class- i  is ,e iD . To guarantee the end-to-end deadline for any invocation in Task T , 

admission control has to ensure that the end-to-end delay Td suffered by any client 

invocation in Task T should be bounded as: 

                                       1, 1 ,...T T

e i eH iHd D D D       (III-1) 
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Secondly, what is the consumed resource by Task T ? Provided that a task has an arrival 

function ( )inA I  before arriving at a component, the arrival function will become 

( ) ( )out inA I A I d   just after a worst-case delay d at this component. We define TA as 

the source arrival function of Task T (before calling the first component). Then the 

arrival function of T at Component he  of Class hi , h  = 1, 2, . . . , H , is 

                                        1 1 1 1, ,, ( ) ( ... )h h
h h

T T
e i e ie iA I A I D D                         (III-2) 

 
If TA is defined with a burst size T and an average arrival rate T as ( )T T TA I I   ,  

then the consumed resource by Task T at Component e of Class i is 

                                    1 1 1 1, ,, ( ) ( ... )h h
h h

T T T T T
e i e ie iA I D D I                (III-3) 

 
Admission control has to ensure that the real-time service specified at each real-time 

component along the task path of  Task T will not be violated, i.e., 

                                          
,

'

, ,'
( ) ( )

h h h he ih h

T

e i e iT S
A I A I


                                    (III-4) 

 
where , kk

e iS is the set of existing tasks that use Class- hi  service of Component he . 

In summary, admission control ensures that sufficient overlay resources are available 

to meet the requirements of both the new and the existing tasks whenever a new task has 

been admitted. In other words, both (III-1) and (III-4) should remain satisfied for both 

new and existing tasks if a new task is admitted. This admission control mechanism is 

simple to implement efficiently. 
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C. Real-time Component Based Application Design Methodology 

In this section, based on the previous real-time component based application model, 

we propose a new application development methodology for single node application 

development. Specifically, we give a detailed method and/or algorithm on the 

implemented real-time component service, the optimization of real-time component 

service, the adaption of real-time component, and a general system architecture for real-

time component based single node applications. 

1.    Service Implementation 

Service implementation issues can be divided into two categories: (i) Inter-

component – Recall that each real-time component should be isolated from others in 

terms of the underlying resource usage to meet the isolation requirement. The underlying 

resource could be CPU, memory, link bandwidth, or others (here we focus on CPU). We 

use a guaranteed-rate scheduler to ensure temporal isolation of components on the same 

processor, and we allocate the required amount of the processor utilization to each 

component. A total bandwidth server (TBS) [43] can achieve this; (ii) Intra-component – 

Each component will provide multiple classes of service. To differentiate among classes 

of service within the same component, we use a simple static priority scheduler, and use 

the class-id as priority level. 

The main remaining implementation issue is how to determine the processor 

utilization that needs to be assigned to each component. We will address this as follows. 
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Since the component implementation is bound to the underlying hardware platform, 

the execution of the component’s methods can be characterized at component 

implementation time. In particular, each exposed method can be associated with its 

worst-case execution time (WCET) on the specific platform. We aim to compute the 

worst-case delay suffered by execution of any method in
,e i . For this, we denote 

,e iC  as 

the maximum WCET of all methods in ,e i . In conjunction with the arrival function 

defined as part of the real-time service interface specification, the WCET gives rise to 

the workload characterization for the method set ,e i  on the underlying implementation 

platform. 

Definition 3-2. (Workload function) If the cumulated execution time of a sequence of 

method executions is bounded by ( )F I  during any time interval with length I , we 

define F as a workload function of this sequence of method executions. 

Given the invocation arrival function , , ,( )e i e i e iA I I   for Component e of Class i  

and the associated ,e iC  of ,e i , the workload function for Component e of Class i  can be 

expressed as , , ,( ) ( )e i e i e iF I C A I . If we assume a constant processor utilization e  to be 

assigned to real-time Component e, we can use a time demand/supply argument to 

derive the worst-case delay ,e id  suffered by any method invocation in Component e of 

Class i  as follows: 

                             
,

, , , ,

1
max

e i

e i e p e i e i
I I p ie

d F I d F I I
 

   
     

   
                (III-5) 
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where 
,e iI  is the maximum busy interval, satisfying 

                                      , ,

1
min :e i e pp i

e

I I F I I
 

 
  

 
                            (III-6) 

 
If  

, ( )e iA I  can be defined using burst size 
,e i  and average arrival rate  

,e i , we can 

explicitly express  as the following inequality 

                                       , ,

, ,

, ,

e p e pp i

e i e i

e e p e pp i

C
d D

C



 





 





                                 (III-7) 

 
Therefore, in order to satisfy all classes of service, the allocated processor utilization for 

components has to be set at least to  

                              , , , ,

1 ,

1
maxe e p e p e p e pp i

i M p ie i

C C
D

  


  

  
  

  
                   (III-8) 

 
When allocating processor utilization to components, component developers should 

ensure that the overall processor utilization does not exceed the safe utilization level 

allowed by the specific platform. 

2.    Service Optimization 

The functional specifications  ,e i  of a real-time component can be defined only in 

the component design, the timing requirement ,e iD  is typically defined early on as well. 

The arrival descriptor ,e iA , on the other hand, depends on the expected arrival, and 

requires some understanding of the deployment environment in order to allow efficient 
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resource utilizations. In the following, we describe how component providers can 

optimally specify arrival descriptor based on the application arrival pattern.  

Assume that the task arrival along task path r  is a Poisson process with average rate  

 , the running duration of any task along task path r is exponentially distributed with 

average duration 1

r
 , and any task along task path r  is associated with real-time source 

service specification  ( ),r rA I D . The average number of task along task path r  is given 

as r

rrv



  . Define rejection probability rb  as the probability that a task request for task 

path r  is rejected. Then, the overall admission probability AP for applications in the 

system can be expressed as 

                                          
 1r rr R

rr R

v b
AP

v










                                           (III-9) 

 
The objective is to find the optimal real-time service specification to maximize the 

overall admission probability. Then we have the optimization problem: 

 

Input:  Task graph G and the set of task paths R; ,e i  and ,e iD  for 1,...,i M ; 

                   ,r rA I D , r and 1

r
 for r R . 

Ouput:  ,e iA ’s. 

Objective:  Maximize the overall task admission probability AP. 

Constraints:  The overall utilization does not exceed the safe utilization does not exceed  

        the safe utilization level for each application server. 
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It can be summarized as follows: 

       maximize AP                (III-10) 

    subject to ,ee 
  


     (III-11)  

where e is located in Processor   belonging to processor set   and   is the safe 

utilization bound for Processor  . 

In (III-9), the rejection probability rb  is not yet determined, and we compute it in the 

following using Kelly’s approximation approach [44]. 

We first compute the resource need of different Tasks. We do this with help of a 

reference unit resource. Let the parameters of a unit resource be ,  3 . Define 

, , , ,,r e i r e i   as the arrival function of any task along Task Path r at Component e of 

Class i, then 

, , ,, , h hh h
r e i r r e ie i r e i

D     ,   (III-12) 

, ,r e i r  ,      (III-13) 

 
where , ,h h re i e i  denotes all component services ,h he i ’s along Task Path r before 

component service ,e i .The resource for , , , ,,r e i r e i   can therefore be represented by 

the scale  , , , , , ,min ,r e i r e i r e ia            . Similarly, the resource at Component e of 

Class i is represented by the scale  , , ,min ,e i e i e ia            . 

                                                 
 
3 ,   can be chosen as the greatest common divisor (g.c.d) of r ’s and r ’s, respectively. 
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Define rejection probability 
,e ib  as the probability that a task request for Component 

e of Class i is rejected. Under the assumption that the rejections at all components are 

independent [44], we have 

  , ,

,,
1 1

r e i

r e ie i r
b b




   .    (III-14) 

By Erlang’s Formula, ,e ib  is given by 

   , , ,;e i e i e ib E v    ,     (III-15) 

where      0
; ! !

aa n

n
E a v v a v n


  , and ,e iv  is the admitted load to Component e of 

Class i. With the independence assumption, ,e iv  is given by  

 
,

, , ,

,

1
1

1 e i
e i r e i r rr R

e i

v a v b
b 

 


     (III-16) 

where ,e iR  is the set of paths that go through Component e of Class i. 

Therefore, rb is a solution to the fixed point equations (III-14), (III-15) and (III-16). 

Hence, AP in (III-9) can be obtained. 

This leads to the solution of the optimization problem. The objective function of the 

optimization problem is non-linear while all the constraints are linear. Therefore, the 

optimization is a linearly-constrained optimization. There are two issues involved in 

solving the optimization problem: 

 Minimum operators appear in both ,e ia  and , ,r e ia . From (III-12) and (III-13), we 

find that the burst size will increase along the path, but the average rate will not. 

Therefore, during the optimization process, we can set 
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, , ,e i e ea i i            and , , , ,, ,r e i r e r ea i i           . Minimum 

operators can be removed. 

 The objective function is not continuous because 
,e ia  and 

, ,r e ia  are integer 

functions, which make the problem even harder. If 
,e ia  is small, we can use an 

exhaustive search of ,e ia  to find the optimal value. Otherwise, we can reset 

, , ,e i e i e ia       and , , , , , ,r e i r e i r e ia      , and approximate rb  with the 

uniform asymptotic approximation (UAA) method [45]. Then the objective 

function becomes continuous and it can be resolved by an optimization toolbox. 

In the above, we assume that the application arrival pattern can be predicted a priori. 

Otherwise, it may be hard or impossible to specify good real-time services of 

components beforehand. However, the application pattern can be monitored, provided 

that the application pattern in our system will not change frequently. Based on the 

observed application pattern, an optimal service specification can gradually be achieved. 

Periodically updating the service specifications to reflect changes in the application 

patterns can greatly increase the utilization level of resources. 
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3.    Service Adaptation 

Note that in a component-based system, components compete with a limited amount 

of underlying resources, and the isolation property of components disables the 

dynamically sharing of the underlying resource among components, which results in an 

overall resource underutilization. However, due to variations in the application 

environment, components may not receive a constant rate service request from the 

application at each service level. Based on these observations, it is necessary to use 

service adaptation mechanisms to achieve better resource utilization. 

The proposed adaptation scheme therefore allows for a load balancing across the 

component services on the application server. We define the resource residue ,e iA , i.e., 

the amount of currently unused resource as 

                                    , , ,
ˆ

e i e i e iA I A I A I                                            (III-17) 

where    
,

'

, ,'

ˆ
e i

T

e i e iT S
A I A I


  is the amount resource currently used by the existing 

tasks. For any admission request by a task T for component service ,e i , we have to 

borrow resource from some other component service whenever the resource requested 

by T exceeds the amount of resource currently used, i.e., , ,

T

e i e iA A . We define *

,e iA  as the 

optimal service specification obtained by service optimization algorithm and define a 

threshold ,e i  for any real-time component service ,e i . If its current assigned resource 

is no ,e i  less than its original optimal assignment, it could be one of candidates whose 

resource can be borrowed. The details of this algorithm are shown in Algorithm 3-1. In 
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Step 2, the algorithm identifies the component service with the maximum resource 

residue, which can be potentially borrowed by other components in the same application 

server.  

Algorithm 3-1 Service adaptation: 

Admission request phase for any Task T: 

1: if , ,

T

e i e iA A  then 

2:    find a component service  ,
,

ˆˆ, arg max e i
e i S

e i A


 , where S is the set of all possible 

 component service satisfying that *

, , ,e i e i e iA A    and the overall new utilization  

will not violate the overall safe utilization bound after resource adaptation; 

3:    update the services of ˆˆ,e i  and ,e i  with their corresponding adapted resource. 

4: end if 

Tear-down phase for any Task T: 

1: undo step 3 in the above. 

 

Dynamically adapting real-time services of components can improve the statistical 

multiplexing gain of the underlying resources. We will show this with our evaluation 

data in Section ―Performance Evaluation‖. 
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D. System Architecture 

Figure 4 displays the system architecture of the real-time computing framework. In 

this architecture, there is one module – utilization allocation and scheduling – for 

component development, and two modules – admission control and policing – for 

application development.4 

 
 

Figure 4. System Architecture of Real-time Computing Framework 

Before a real-time Component is deployed, its real-time service interfaces must be 

specified, and will be loaded into the resource table of the admission control module 

once the component is deployed. The utilization allocation and scheduling module will 

reserve the processing utilization assigned to each component with the resource 

reservation mechanism and schedule the execution of methods at each component with 

the scheduling algorithm. 

                                                
 

 
4
 In this context, application development is also called component integration, and application developer 

is also called component integrator. We use both kinds of terms in the chapter interactively.  
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Admission control is performed at the task level: When the client wants to start a 

new task, it first sends an admission request to the admission control module. The 

admission control module will make a decision for this admission request based on the 

policy in admission control mechanism and the profile including in the admission 

request. If the admission request is admitted, an acknowledgement message will be sent 

back to the client, which includes a task ID. At the same time, shaper instances at the 

corresponding components for this task will be created. During the teardown process of 

this task, the task will be removed from the existing-task table. Information about the 

admitted task will be maintained in the existing-task table in the admission control 

module. The modules for Service optimization and service adaptation are implemented 

as sub-modules in the admission control module. 

When a task is successfully admitted, the system will protect its resources against 

sources of invocations that exceed their share of invocation arrivals. This is done by 

appropriately policing the invocations by the policing module. One of the most well-

known policing mechanisms in the literature is known as leaky bucket, where the arrival 

function is defined by a burst size and an average arrival rate. Once policed, the 

invocations are passed on to the utilization allocation and scheduling module for 

execution of their corresponding method on the processor. 
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E. Implementation 

1.    Background 

We used Enterprise JavaBeans (EJB) as the underlying framework of a resource 

overlay infrastructure based on real-time components. In the following, we first 

introduce the background information, such as EJB and its implementation JBoss [46], 

and then address the implementation of our system in details. 

a) EJB and JBoss Application Server 

EJB technology is a server-side component architecture that simplifies the 

development and deployment of multi-tier, distributed, scalable, Java enterprise 

applications. Enterprise beans (beans, to be concise) are server-side components in EJB, 

which represents a business concept. There are three basic types of beans: (i) entity 

beans, which represent data in a database, (ii) session beans, which either represent 

processes or act as agents performing tasks, and (iii) message-driven beans, which are 

asynchronous message consumers.  

JBoss application server is a popular, open-source EJB application server. It provides 

the basic EJB containers as well as EJB services such as database access (JDBC), 

transactions (JTA/JTS), messaging (JMS), naming (JNDI) and management support 

(JMX).  

As the foundation for the JBoss infrastructure, JMX [47] provides a common server 

spine that allows the user to integrate modules, containers, and plug-ins. Service 

components are declared as Managed Bean (MBean) that are then loaded into JBoss and 
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may subsequently be administered using JMX. MBeans are managed resources and Java 

objects that follow certain conventions to expose their management interfaces to remote 

management applications. Remote management applications can access MBeans through 

JMX agent services. Each MBean is given a unique object name and registered to 

MBean Server at initial time. MBean Server provides registry service for MBeans. The 

JBoss EJB server and EJB container are completely implemented using component-

based plug-ins onto JMX. When an EJB is deployed into JBoss, a container MBean is 

created to manage the EJB [48], [49]. In our real-time component-based system, we will 

build the admission control module as an MBean. 

In JBoss, the dynamic proxy approach is used for the server to generate container 

classes and for the generated container to generate home and remote interfaces of the 

EJB at run time. Whenever a method invocation is issued on the client-side proxy, the 

invocation handler creates a special Invocation object, which will reify the method 

invocation. After traversing a chain of client-side interceptors, the Invocation object is 

sent by an invoker proxy to an invoker MBean at the server side, where it is routed 

through the container MBean associated with the target EJB. Each Invocation object 

includes information about object name, method, and arguments for target EJB. 

Application developers can place customized interceptors in the interceptor stack 

traversed by the Invocation object. This interceptor stack mechanism allows developers 

to add additional services to the called target [48]. We use this interceptor mechanism to 

build the policing module in our real-time component-based system. 
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b) Real-time Infrastructure 

The implementation of our real-time component-based system is based on JBoss 

3.2.1. We use TimeSys Linux RT 3.1 as the underlying real-time operating system 

[TimeSys]. To complete the platform, we use the RTSJ Reference Implementation 

(RTSJ-RI) from TimeSys [50] as Java VM. Since TimeSys RTSJ-RI (just as other 

foreseeable RTSJ implementations) provides only a limited set of Java classes, and 

JBoss is intended for building enterprise systems, we disabled some advanced features in 

JBoss while at the same time adding RTSJ compatible Java class libraries. In particular, 

RTSJ-RI does not support real-time capabilities for Java Remote Method Invocation 

(RMI) [51] on which the remote invocation is based. As a result, we appropriately 

extended RMI to make it real-time capable. For this, we eliminated sources for priority 

inversion, such as, for example, where the listening thread is used to assign incorrect 

priorities to incoming requests. As a result, this combination of a real-time OS, a real-

time capable Java, and Real-time RMI in conjunction with an appropriately trimmed 

JBoss framework results in a powerful basis for a real-time component-based system. 

2.    Implementation Detail 

The core of the real-time component-based system as described in the previous 

sections is the Real-time Specification, the admission control, the policer, and the thread 

scheduler. 
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 Real-tTime Service Specification Each real-time component will expose its real-

time service interface. The real-time service is defined as a number of 

ClassOfService objects. Class ClassOfService is defined as  

class ClassOfService { 

int classID; 

Method[] groupOfMethods; 

ArrivalFunction arrival; 

long deadline; 

... // methods not shown 

} 

where Class ArrivalFunction defines the arrival function for the corresponding 

 class of service. 

 Admission Control Module The admission control module is implemented as an 

MBean. This MBean realizes the admission control mechanism and the decision 

making procedure. The resource table and the existing-task table required by 

admission control are implemented as entity beans. Service optimization and 

service adaptation are implemented as sub-modules. 

 Policing Module After a task request is admitted, a task ID is generated and 

forwarded to the client. At the same time, a shaper instance (implemented as 

entity beans) is created. Any invocation of this task will add the task ID to the 

Invocation object at the Admission Interceptor on the client side. At the Shaping 
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Interceptor on the server side, the task ID is retrieved, and is used, together with 

the name of the EJB, as a key to match its corresponding shaper instance. 

 Utilization Allocation and Scheduling Module As an example of a guaranteed-

rate scheduler to provide temporal isolation, a Total Bandwidth Server (TBS) [43] 

is implemented to allocate the underlying CPU utilization to each real-time 

component. The input parameters for TBS are WCETs of methods in the 

component and the allocated CPU utilization. Recall that when a task is admitted, 

a corresponding shaper instance is initiated. The shaper instance also includes the 

priority assigned to any run-time method execution in the task. Once an 

invocation enters Shaping-Interceptor, its corresponding shaper instance can be 

found in the same way as in the policing module. Then, the priority value can be 

retrieved, and the priority for the worker thread is set. 

F. Performance Evaluation 

Recall that the two key foci of this dissertation are improving system reliability and 

provide real-time guarantee. For reliability, it has been widely studied and acknowledged 

that component based application development can greatly reduce the number of bugs 

per thousand lines of code. Our proposed real-time component based application is an 

extension and enhancement of existing component based methods and in turn, can 

greatly improve system reliability. In the experiments described below, we focus on the 

real-time guarantee. Specifically, we will evaluate the performance of our system in 

terms of the admission probability for each task request and of the latency overhead 
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introduced in our system. In our experiments, we assume that the CPU on the EJB server 

is the bottleneck and that the other resources, such as memory, disk and network 

bandwidth, are never a limiting resource.  

Admission Probability vs. Task Arrival Rate In this experiment, we choose two 

Pentium 4 machines with 2.53 GHz CPU and 1 GB memory as application servers. 

These two machines are in the same subnet together with another machine chosen to 

host as the clients. The network bandwidth for all connections is 100 Mbps. The 

application servers are installed with real-time component-based systems software. We 

deployed three real-time components  1 2 3, ,e e e  – real-time session beans – in the first 

real-time application server and 4e  in the other real-time application server. Component 

ie  will expose one method eke  and define a single class of service (therefore we can 

ignore the class index), and its real-time service interface is , ,ek ek ekA D  , where 

 ek ek  , and ekD  = 1.000 sec, for k = 1, . . . , 4. Methods are associated with WCET 

1eC  = 0.050 sec, 2eC  = 0.080 sec, 3eC  = 0.050 sec, and 4eC  = 0.030 sec, respectively. 

The safe utilization for each processor at each application server is 90%. The arrival 

function  ekA I  will be optimally specified and CPU utilization ek  will be determined 

with our service optimization algorithm. The runtime method execution will be assigned 

a single real-time priority. There are three task paths, as shown in Figure 5. 
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Figure 5. The Experiment Testbed 

In this experiment, we choose three different system configurations in the application 

server: A system with no component isolation and enabled admission control (NCI), our 

system with component isolation and enabled admission control under service 

optimization (CI-OPT), and our system with component isolation and enabled admission 

control under service adaptation (CI-SA). In CI-SA, we choose , ,2 T

e i e iA  . Emulated 

applications consist of task generators, and client-server interactions. Clients will send a 

sequence of periodic tasks. In each task, the period for invocation arrival is 2 sec and 

each invocation has a 2 sec deadline requirement. Each task has an exponentially-

distributed life time and includes 6 invocations in a life time, on average. The task 

arrival is a Poisson process and each task will choose a uniform task path randomly. We 

vary the overall task arrival rate   from 0.1 per sec to 1.5 per sec. 

Figure 6 shows admission probabilities for all task admission requests from clients. 

As expected, as the task arrival rate increases, admission probability decreases in the 

systems with enabled admission control for all system configurations. The data show 

that CI-OPT has a lower admission probability than NCI with only a maximal difference 
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6.7% as   = 1.0. With our introduced adaptation algorithm, the admission probability in 

CI-SA can even be improved close to that in NCI. 

 

Figure 6. Comparison of Admission Probability vs.Task Arrival Rate 

Admission Probability vs. Number of Components In this experiment, we deploy n 

real-time components in the first application server and none in the second application 

server. Each component exposes one method with WCET ekC  = 0.050 sec, k = 1, 2, · · ·,  

n. In each periodic task, the period for invocation arrival is 1 sec and each invocation has 

a deadline 1 sec requirement. We fix the overall task arrival rate as 2.0 per sec. The other 

configurations are same as the experiment above. We vary n from 2 to 10 and measure 

the admission probability for each n. Figure 7 shows that the admission probability in 

NCI keeps constant and the one in CI-OPT will decrease as the number of components 
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increases. With the adaptation algorithm, the admission probability in CI-SA can still be 

improved close to the one in NCI. 

 

 

Figure 7. Comparison of Admission Probability vs. Number of Components 

Admission Control Latency In the first experiment, we also collect the data about the 

latency of admission decision conducted by admission control. In Figure 8, the data 

shows that the average latency will increase slowly as the task arrival rate increases. 

Recall that the admission control module is implemented as an MBean and the involved 

resource table and existing-task table are implemented as entity beans. This 

implementation results in the admission control latency up to 0.035 sec in average as   

= 0.1. Since the queueing for the bursty task arrival may introduce an extra delay, the 

latency will increase slowly as the task arrival rate increases. The admission control 

latency only increases 2.02 times as the task arrival rate increases 15 times (from 0.1 to 

1.5). Our admission control mechanism is quite scalable. 
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Figure 8. Admission Control Latency 

In summary, through above detailed analysis and evaluation, we can see, with our 

proposed real-time component based application model and development methodology, 

that we can greatly improve system reliability and provide effective real-time deadline 

guarantees. 
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CHAPTER IV  

REAL-TIME WORKFLOW-BASED APPLICATION INTEGRATION IN CLUSTER 

ENVIRONMENT  

A. Overview 

In this work, we focus on software design issues affecting system reliability and real-

time guarantee of mission-critical system operated in a cluster environment. 

 In a cluster environment, the reliability of a mission-critical system is not only 

affected by the reliability of a single application, but, more importantly, by the 

integration methodology of the different heterogeneous application.  Such integration is 

not an easy task since the integration process involves complex legacy model 

encapsulation, model interaction and invocation control, and dynamic resource 

allocation. The raditional manual method of integration using individual customized 

programs or scripts involves significant effort in understanding the underlying business 

logics, tremendous coding effort, and is difficult to maintain, especially mission-critical 

systems which require frequent adjustment of the application integration logic. 

Workflow-based application has been proven to be a feasible approach to simplify the 

integration practice and thus improve system reliability. However, though extensive 

research work has been done on workflow-based application integration, little has been 

done for cluster environment,  and especially flexible workflow-based integration model 

and methodology that can provide real-time guarantees.     
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In this chapter, on top of the real-time component based application development 

model, we proposed a novel real-time workflow-based application model and a software 

design methodology for cluster environment. We developed the new methodology to 

integrate the legacy applications to build comprehensive applications and used it in the 

data center management system for the Southeastern Universities Research Association 

(SURA) project. We show that our model and methodology greatly simplifies the design 

of such a system and makes it easier to meet deadline requirements, while improving 

system dependability through reuse of fully tested legacy models. 

B. Real-time Cluster Environment Application Model 

1.    Application Model 

We consider that a cluster environment mission-critical application is composed of a 

set of real-time workflows, and each workflow consists of a set of real-time applications. 

The scheduling and execution of the workflow and applications is managed by backend 

resource and application managing subsystems, which dynamically monitor the total 

system resource usage, the current system workflow and application execution 

requirements, and allocate resource to different workflow and applications based on 

predefined scheduling rules. 

2.    Resource Management and Scheduling Model 

The resource management and scheduling is responsible for maintaining the resource 

catalog and monitoring the status of the computing resources. It allows system 
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administrators to allocate computing resources to workflows and scientists to 

transparently share their computing resources.  

The resource management and scheduling ensures that simulations are finished 

before the deadline. It includes 1) Admission Control; 2) Timer Service; 3) Job 

Generator; 4) Scheduler; and 5) Job Dispatcher. Figure 9 shows the architecture of QoS 

components.  

 

 

Figure 9. QoS Architecture 

The Admission Control component is used to decide whether the new task meets its 

QoS contract while the admitted QoS contracts won’t be violated by the new task. If the 

answer is yes, the new task is admitted and saved as admitted task in the system database. 

We use schedulability bound based admission control and r-shaped task model in this 

implementation [52]. A set of r-shaped tasks is schedulable if 
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where   is the deadline inversion and is calculated as 
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To perform the test, we need to calculate the deadline inversion ratio  . Another 

important functionality of the admission control component is handling the task 

departure, e.g. deleted tasks, or finished tasks. The utilization reserved for these deleted 

tasks must be recycled. In our current implementation, this recycle will not happen until 

the system is idle. The reason for this is twofold: first, that it has been proven that the 

reserved resource of a departure task cannot be recycled at the time of departure since 

the task may have already used the resource, and secondly, recycling the reserved 

resource at the system idle time is more efficient and safe since the system can be treated 

as a ―restart‖.  

The timer service is used to create and send an event to the job generator that is 

responsible for constructing the job. The admission control component will register the 

admitted task to the timer service when a new task is admitted and will remove the task 

from the timer service when the task is completed or cancelled.  The timer service can be 

automatically initiated to guarantee that the admitted tasks can be dispatched when the 

data center management system is restarted.  

The job generator is an asynchronous messaging service and is able to receive 

messaging event from the timer service. It is responsible for constructing the job once it 

receives a JobReady event from the timer service. The generated jobs are sent to the 

incoming job queue of the scheduler.  
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A static priority scheduler is implemented in the current data center management 

system. The scheduler maintains a job queue for each cluster and the jobs in the queue 

are arranged based on their priorities. That is, the jobs from the task with higher priority 

are inserted in front of the lower priority ones. After admission, each task is assigned to 

a specific cluster for execution. For each new job, the scheduler finds the cluster on 

which it will run and insert the job to the outgoing job queue corresponding to the cluster. 

Since the queue is ordered based on their priorities, the insert operations is very efficient 

using the binary search algorithm with a complexity of O(log(n)). 

The job dispatcher is implemented as an active service that periodically checks the 

cluster status. The job dispatcher is implemented as part of workflow engine component 

in the data center management system. If the job dispatcher finds that the cluster is free 

(empty or partially empty), it will perform the following two operations: 

 Notify the admission control and scheduler. 

 Get the next job from the scheduler.  

Note that the job dispatcher may not be able to get a job from the scheduler. If this is 

the case, the job dispatcher will switch to sleep mode until the next polling time. 

C. Cluster Application Integration Methodology 

1.    Role-based System Design 

In this section, we introduce our role-based design methodology of cluster 

environment software application integration. 
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Figure 10 shows the high level view of the role-based design. The top layer 

illustrates four kinds of users in the cluster environment: model developers, model 

integrators, system administrators and model users. The users manage and access 

resources through the middle layer. The backend management system provides different 

kinds of the tools to service different kinds of users. These include tools for model 

developers to develop the scientific computing models; tools for model integrators to 

integrate the legacy computing models into the comprehensive workflows; tools for 

model users to execute the workflows as well as retrieve and visualize the results; and 

tools for system administrators to manage user accounts and grant the roles and the 

resource access permissions to the users. The bottom layer includes the managed 

resources, scientific computing models and workflows, data, and high performance 

computing clusters / large volume storage. 

 

 

Figure 10. High Level View 



 

 

57 

2.    Workflow Driven System Integration 

Unlike traditional application integration methodology, in this dissertation, we 

propose a real-time workflow driven application integration methodology. In this novel 

methodology, the integration of applications is supported and managed by backend 

workflow facilitating components, including: 1) workflow builder; 2) application and 

workflow management tools; and 3) workflow engine. 

The workflow builder helps model integrators to wrap the legacy applications to 

enable modules and build comprehensive simulation workflows that consist of one or 

several modules. It consists of two parts: a workflow builder and several EJB 

components to provide the access to the workflow modules and workflows stored in 

database.  

The model integrators first use workflow builder to wrap the legacy applications as 

workflow modules that unify the applications with unified input/output interfaces (e.g. 

<module> -input <xml configuration file>, -output <output directory>), associate the 

applications with data products as part of the parameters in the input xml file and resolve 

deployment issues with script. The workflow module specification includes three 

sections, 1) The general section that provides the generic information about the wrapped 

applications, such as name, platform, version, description and etc. 2) The execution 

section that includes scripts to set environment variables, extracts the values of the 

parameters defined in the xml configuration file, converts parameters to application 

specific formats, use MPI or not, calls the application in its native command line format 

and etc.; and 3) The parameter section that defines the application parameters in xml 
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schema. The parameters can be converted to html format to allow the end users to set the 

parameters using a web browser.  

Once the workflow modules are defined, the model integrators can use workflow 

builder to create the workflows that consist of one or multiple workflow modules to 

construct different simulation scenarios. The workflow builder allows the model 

integrators to easily create the workflows as directed acyclic graphs (DAG). Like the 

workflow module, the workflow specification is defined using an xml schema. DAG can 

be re-constructed and displayed to end user based on the definition in xml.  

 A workflow created by a model integrator cannot be used by the model users until 

system administrators use the application and workflow management components to: 1) 

allocate hardware resources to the workflows, e.g. clusters and number of cluster nodes; 

2) define the QoS parameters, such as priority (e.g. 1-100), worst case execution time 

(WCET) for each workflow module; and 3) assign the workflow to model users. A new 

non-admitted task is created after the administrator allocates resources, defines QoS 

parameters and assigns the workflow to the scientists.  

Once the tasks are created by the system administrators, the model users can use a 

client side tool to remotely schedule the execution of the predefined and authorized tasks, 

and visualize and retrieve the simulation results. In order to guarantee the simulation 

results to be generated in a timely manner, model users need to define and submit the 

QoS contract (e.g. relative deadline, first execution time, frequency of the execution) for 

the selected workflows. The tasks admitted by the QoS components are called admitted 

tasks. Each execution of the admitted task is called a job, which includes the owner of 
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the job, workflow specification, associated resource and QoS contract. When the task is 

admitted, the QoS contract is stored in the system database as part of the admitted task 

information and the admitted task is registered to the timer service. The timer service 

will automatically dispatch the jobs based on the QoS contracts to the job queue for 

execution.   

Once the job is dispatched from the job queue, the workflow engine will parse the 

workflow of the job, run workflow modules in the allocated cluster and monitor the 

execution of the workflow modules. 

With introduction of the workflow modules, which wrap the original command line 

applications as web enabled applications and handle the deployment issues (e.g. 

dependency on data and hardware, different argument formats of the original 

application), cluster environment application management system enables the model 

users to transparent access of data, applications, and computing resources remotely. It 

also facilitates the reuse of the existing software modules/applications. With introduction 

of the workflow, cluster environment management tools allows the model integrators to 

construct different research scenarios to meet the need of the users. The integrated QoS 

framework ensures that the simulation results can be generated in a timely manner. Since 

the concept and implementation of workflow modules and workflows is application 

generic, it makes the cluster environment application management and integration 

components adaptable and extendable to support other requirements.   
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3.    Multi-layered System Architecture 

Figure 11 shows 4-layer software architecture for cluster environment application 

integration. We will focus on the top 3 layers: User Interface Layer, Management and 

Integration Layer and Uniform Access Layer.  

 

 

Figure 11. Software Layer Architecture 

User Interface Layer provides separate interfaces for the system administrator, 

model integrator and scientist to manage and access the resources, applications and data 

in the data center. For example, the user interface includes system administrator 

interfaces for managing user account, resource, data, applications and workflows; it also 

includes model integrator interfaces for creating workflows; and includes scientist 

interfaces for scheduling and executing the workflows, accessing and viewing the data.  
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Management and Integration Layer contains a set of core service components. It 

includes four components including user management components, resource 

management and QoS components, application management and integration components, 

and data management and integration components.  

The application management and integration components include key components, 

such as the application and workflow management component, workflow builder 

component and a workflow engine. The application and workflow management 

component is responsible for maintaining the application and workflow catalog.  The 

workflow builder component is responsible for assisting the model integrator to build 

workflow specification. The workflow engine is responsible for parsing and executing 

the workflow specification.   

 The data management and integration include the data management component, data 

loader toolset and data viewer toolset.  The data management component is responsible 

for maintaining the metadata and sources of the data. The data loader toolset is provided 

to upload and download data, while the data viewer toolset is provided to view the data.  

The resource management and QoS components include the resource management 

component and QoS components, such as admission control and scheduler.  The 

resource management component is responsible for maintaining the catalog and 

monitoring the status of the computing resources. The admission control service 

component is introduced here to guarantee the timely completion of the tasks in the 

system and the scheduler is the unit that resolves resource usage conflict. 
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Uniform Access Layer provides uniform interfaces to integrate with the existing 

computing, communication and storage infrastructure to allow the upper layer 

components to access the computing resources, application and data.  The ―Uniform 

Access Layer‖ also provides a mechanism to support new types of computing resources 

and data via configurable accessors, called drivers. 

Computing, Communication and Storage Infrastructure Layer provides basic 

instruments to manage, store, and access computing resources, applications and data. 

Although it is not part of the integrated system design and implementation, our design of 

the platform allows the existing infrastructure to be easily integrated into the system and 

used by the scientific computing data center.  

D. Implementation and Performance Evaluation 

Based on the previous system model and design methodology, we build a real-world 

cluster environment system – data center management system for the Southeastern 

Universities Research Association (SURA) project. The system is implemented in a 

LINUX environment using J2EE technologies. Its design and implementation is based 

on 3-tier architecture. Figure 12 shows the implementation architecture of the SURA 

data center system.  
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Figure 12. Implementation Architecture 

The system is integrated with different kinds of open source platforms. In the first 

tier, it uses Struts/Tomcat/Axis as the web container that supports dynamic web 

interfaces and web services. In the second tier, it uses JBoss as the EJB container for the 

EJB components that provide the business logics of the data center management system. 

As part of the second tier, a set of RMI services are designed and implemented as 

proactive services to monitor and access the resources, e.g. hardware, data and 

applications. In the third-tier, it uses PostgreSQL database. The design of data center 

management allows us to easily switch to other relational database management systems.  

The system is also integrated with other applications to manage hardware resources 

and transfer data, e.g. using Portable Batch Scheduling System (PBS) [53] to manage the 

clusters, using Unidata Local Data Manager (LDM) [54] to capture and distribute large 

volumes of data from/to other research labs and national data centers. 
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1.    User Interface Layer 

The SURA data center system basically provides a web-based interface for its users, 

especially  scientists, to manage and access data center resources. The design and 

implementation of the web interface follow the Model-View-Controller (MVC) 

architecture to separate concerns and improve the sustainability and reusability of the 

data center software components. Apache Struts [55] is a free open-source framework to 

support the MVC architecture. The implementation of SURA data center system web-

based interfaces is based on the Apache Struts framework.   

The SURA data center system also uses Java Applet to support highly interactive 

operations with low latency tolerance, e.g. workflow builder GUI, visualization toolkits. 

The web services are provided to allow the third party applications and the other data 

centers applications to interact with the data center management system. For example, 

the data center data transfer service uses web services to trigger the update of the data 

catalog after new data are captured and archived in the data center storage; the third-

party applications can use the web services to schedule the execution of the workflows.   

2.    Management and Integration Layer 

Management and Integration Layer contains a set of core service components. It 

provides management and integration services. We address all the key issues of a data 

center when we design and implement the management and integration layer.  
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a) User Management 

The user management is responsible for authenticating and authorizing users’ access 

to data center resources. The user management components use Java Authentication and 

Authorization Service (JAAS) [56], [57]to separate the concerns of user authentication 

so that they can be managed independently. A user with single sign-on can be assigned 

to one or multiple roles, e.g. model integrator and system administrator.  

The user management supports both descriptive role-based access control 

mechanism and programming group-based access control mechanism to provide 

different levels of access controls. The descriptive role-based access control mechanism 

is a coarse-grained security mechanism to control what kinds of components and 

methods can be accessed by each role. The descriptive role-based access control is not 

managed by the user management components. Its access control list (ACL) is defined in 

xml configuration files. The access control is enforced by the EJB container, JBoss, in 

run-time [58]. This greatly simplifies access control of a data center system. It also gives 

the administrators the capability to update the access control without re-programming 

the user management components.  The programming group-based access control 

mechanism is a fine-grained security mechanism to control which resources, e.g. 

workflows (integrated applications), data and clusters, may be accessed by a group of 

users with the same or different roles.   

With the MVC architecture on interface design and flexible access control 

mechanisms on user management, we can create different user interfaces and related 

toolsets with access control to support the separation of concerns.  
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b) Data Management and Integration 

Data management and integration include key components, such as data management 

components, data loader toolset and data viewer toolset. The data management 

components manage two kinds of data, scientific computing data and their metadata, 

called data products. The scientific computing data are used or generated by scientific 

computing applications. Data products are metadata about the scientific computing data. 

Data products are modeled by a generic model with common information, e.g. id, 

name, description, criteria (e.g. time, geographic location) for scientific computing data 

selection, location of the scientific computing data and access methods as described 

below. The data products are created by the (data) system administrator or programs and 

stored in the system database.  

Scientific computing data can be stored in the relational database or the self-

contained files with well-defined formats. If the data are stored in the self-contained files, 

the data loader toolset will extract the minimum information from the data files and store 

them as metadata so that the users or tools can find data based on the metadata and 

extract the data from the data files. As mentioned above, one of the key requirements for 

the SURA data center management system is to be adaptable and extendable to support 

other scientific research. In terms of data management and integration, it is impossible to 

develop a set of common data models to accommodate all scientific computing data 

from different research domains. It is even impossible to predefine a set of data models 

to accommodate all atmospheric data collected from radar sites or generated by the 

simulation applications as new simulation applications are developed and new data will 
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be collected or generated for and by those new simulation applications. The most 

feasible solution to manage and integrate the heterogeneous information/data is to 

develop a federated architecture [59]. Figure 13 shows the federated architecture for data 

management and integration. 

 

 

Figure 13. Federated Architecture 

  



 

 

68 

The top layer is the uniform access layer for creating, reading, updating and deleting 

(CRUD) functions [60]. The middle layer is the extracting, transforming, and loading 

(ETL) [61]layer that includes a set of CRUD accessors. The CRUD accessors map and 

wrap the underlined heterogeneous repositories (e.g. database, file system, and 

applications) to provide common CRUD functions to service its upper layers. To 

improve the reusability of CRUD accessors, CRUD accessors are separated into two 

parts, data mapping and CRUD methods. The data mapping is specific to each data 

model or table of the underlining repositories while the CRUD methods can be generic 

for the same repositories. For example, we can develop four generic CRUD methods for 

the relational databases based on JDBC. Each data product should refer a set of CRUD 

accessors in order to provide information on how to access the scientific computing data. 

The bottom layer consists of the repositories that are used to store the scientific 

computing data and metadata. The repositories can be the database, files or applications. 

The CRUD accessors in the ETL layer are responsible for hiding the detail of the 

repositories and providing uniform access to the data in the repositories. In the SURA 

data center, most of the atmospheric data are stored as self-contained files and their 

metadata are stored in a relational database, called data catalog database (DB). Figure 14 

shows search and retrieve data interfaces. 
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Figure 14. Search and Retrieve Data 

With the introduction of the data product concept that hides the detail on where and 

how to access the scientific computing data, the data center management system can 

provide the scientists transparency of sharing (scientific computing) data. The federated 

architecture design on managing and integrating data from heterogeneous repositories 

allows the data center system to be able to manage and integrate new data repositories to 

support new applications without changing the architecture of the data center 

management system. 
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c) Application Management and Integration 

Most scientific computing applications are ―legacy‖ command-line based 

applications. The applications could have different kinds of parameters and data as 

inputs. Some applications require special third-party libraries (e.g. Message Passing 

Interface (MPI)) and applications (e.g. data transfer application). In order to support the 

scientists to remotely run the legacy and heterogeneous applications in a timely manner 

without detailed knowledge of the application, data and hardware as well as their 

dependency, the application management and integration implements three kinds of 

major components: 1) workflow builder; 2) application and workflow management; and 

3) workflow engine. 

The workflow builder helps model integrators to wrap the legacy applications to 

web-based enable modules and build comprehensive simulation workflows that consist 

of one or several modules. It consists of two parts: a workflow builder GUI deployed as 

java applet in the first-tier and several EJB components in the middle tier to provide the 

access to the workflow modules and workflows stored in database.  

The model integrators first use workflow builder to wrap the legacy applications as 

workflow modules that unify the applications with unified input/output interfaces (e.g. 

<module> -input <xml configuration file>, -output <output directory>), associate the 

applications with data products as part of the parameters in the input xml file and resolve 

deployment issues with script.. Figure 15 shows a screenshot of the workflow module 

specification GUI of the workflow builder. The workflow module specification GUI 

includes three sections, 1) the general section that provides the generic information about 
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the wrapped applications, such as name, platform, version, description and etc. 2) The 

execution section that includes scripts to set environment variables, extract the values of 

the parameters defined in the xml configuration file, convert parameters to application 

specific formats, use MPI or not, call the application in its native command line format 

and etc.; and 3) The parameter section that defines the application parameters in xml 

schema. The parameters can be converted to html format to allow the scientists to set the 

parameters using  a web browser. Figure 16 demonstrates the auto-conversion of xml 

format to html format for the workflow module parameters.   

 

 

Figure 15. Module Specification 
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Figure 16. Conversion of Workflow Module XML to HTML 

Once the workflow modules are defined, the model integrators can use the workflow 

builder to create the workflows that consist of one or multiple workflow modules to 

construct different simulation scenarios. The drag & drop feature of the workflow 

builder allows the model integrators to easily create the workflows as directed acyclic 

graphs (DAG). Figure 17 shows the workflow builder interface that defines workflow as 

DAG. Like the workflow module, the workflow specification is defined using xml 

schema. DAG can be re-constructed and displayed in web interface based on the 

definition in xml. Figure 18 demonstrates the process. 
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Figure 17. Define Workflow as DAG 

 

Figure 18. Conversion of Workflow XML to HTML 
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A workflow created by a model integrator cannot be used by the scientists until 

system administrators use the application and workflow management components to: 1) 

allocate hardware resources to the workflows, e.g. clusters and number of cluster nodes; 

2) define the QoS parameters, such as priority (e.g. 1-100), worst case execution time 

(WCET); and 3) assign the workflow to scientists. A new non-admitted task is created 

after the administrator allocates resources, defines QoS parameters and assigns the 

workflow to the model users.  

Once the tasks are created by the system administrators, the scientists can use a web 

browser to remotely schedule the execution of the predefined and authorized tasks, and 

visualize and retrieve the simulation results. In order to guarantee the simulation results 

to be generated in a timely manner, scientists need to define and submit the QoS contract 

(e.g. relative deadline, first execution time, frequency of the execution) for the selected 

workflows. The tasks admitted by the QoS components are called admitted tasks. Each 

execution of the admitted task is called job, which includes the owner of the job, 

workflow specification, associated resource and QoS contract. When the task is admitted, 

the QoS contract is stored in the system database as part of the admitted task information 

and the admitted task is registered to the timer service. The timer service will 

automatically dispatch the jobs based on the QoS contracts to the job queue for 

execution.   

Once the job is dispatched from the job queue, the workflow engine will parse the 

workflow of the job, run workflow modules in the allocated cluster and monitor the 

execution of the workflow modules. 
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With the introduction of the workflow modules, which wrap the original command 

line applications as web enabled applications and handle the deployment issues (e.g. 

dependency on data and hardware, different argument formats of the original 

application), the data center management system enables the scientists transparent access 

of data, applications, and computing resources remotely. It also facilitates the reuse of 

the existing software modules/applications. With introduction of the workflow, data 

center management allows the model integrators to construct different research scenarios 

to meet the need of the scientists’ research. The integrated QoS framework ensures that 

the simulation results can be generated in a timely manager. Since the concept and 

implementation of workflow modules and workflows is application-generic, it makes the 

data management and integration components adaptable and extendable to support other 

scientific research.  

As the summary of this section, Figures 19-22 show the interfaces to support the 

scientists to run the workflows using web browser. 
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Figure 19. Set Module Parameters and Schedule the Workflow 

 

Figure 20. Monitor Execution of the Workflow 
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Figure 21. Visualize Results 

 

Figure 22. Disseminate the Results 
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d) Resource Management and Quality of Service 

The resource management component is responsible for maintaining the resource 

catalog and monitoring the status of the computing resources. It allows system 

administrators to allocate computing resources to workflows and scientists to 

transparently share the computing resources.  

As mentioned in the previous section, ―Application Management and Integration‖, 

scientists need to submit QoS contracts to ensure that the simulation (job) can be 

finished in a timely manner, as described in the contract. The details on how to provide 

real-time guarantee to workflow applications in the cluster environment was introduced 

in the previous section, ―Resource Management and Scheduling Model‖.  

3.    Uniform Access Layer 

Uniform Access Layer provides uniform interfaces to integrate with the existing 

computing, communication and storage infrastructure to allow the upper layer 

components to access the computing resources, application and data. 

The federated architecture and CRUD accessors in the ETL sublayer provide the 

foundation to access the heterogeneous data from different repositories. The workflow 

modules with their execution scripts provide the foundation to execute the heterogeneous 

applications with different formats and environmental dependency. The cluster adaptors 

implement a common resource monitoring interface. The factory design pattern used for 

cluster adaptors allows upper layer components in the data center management system to 

access and monitor the heterogeneous computing resources using uniform methods.   
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E. Deployment 

The SURA data center management system has been deployed in the Texas A&M 

SURA data center. Figure 23 shows part of the hardware resource managed by the 

SURA data center management system in the data center. With the SURA data center 

management system, the SURA atmospheric research scientists can remotely archive 

and share Terabytes of atmospheric data and run the simulations for real-time prediction 

and visualization of the impacts of extreme atmospheric events with transparency of data 

store infrastructure, computing infrastructure and application storage infrastructure in the 

Texas A&M SURA data center.  They can use the web-based interfaces or web service 

interfaces of the data center management systems to access the integrated atmospheric 

applications of the data center. The data center management system provides delay 

guarantee on the simulation application with its utilization-based admission control 

components and static priority scheduler.  

 

 

Figure 23. Hardware Deployment in Texas A&M SURA Data Center 
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With real-time workflow-based application integration, the SURA data center 

management system not only was able to provide scalable real-time guarantees for 

cluster environment applications, but was also able to support the integration of legacy 

models, thus facilitating the improvement of system reliability though reuse of fully 

tested components or software modules. A portion of the research results have been 

published in [62]. 
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CHAPTER V 

REAL-TIME VOIP SYSTEM  

A. Overview  

In this work, we focus on software design issues affecting integration and real-time 

guarantee of mission-critical system operated in a wide-area network. Given that there 

are many different kinds of wide area networked applications and study all of them in a 

single dissertation is almost impossible. In this dissertation, we select one of the most 

representative applications, the Voice over Internet Protocol (VoIP) system, for study. 

For this VoIP system, we will further narrow our focus to the real-time deadline 

guarantees since the reliability issues have already been addressed in previous two 

chapters. 

  We proposed a novel VoIP system model, a new design methodology, and based on 

the model and methodology, we implemented a demonstration system. We show that our 

new model and design methodology can effectively provide real-time guarantee for 

networked applications. With this mechanism, we can provide QoS provisioning system 

for VoIP. Our system integration methodology makes it feasible to integrate the QoS 

provisioning system with the Commercial Off-The-Shelf (COTS) VoIP systems to 

provide real-time VoIP service. 
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B. A General Model of VoIP Systems 

VoIP systems are rapidly gaining acceptance. Currently, some of the leading vendors 

have made announcements about their strategies and product directions for such systems. 

Some VoIP systems, such as Cisco’s and Alcatel’s VoIP systems, have been put on the 

market. The existing VoIP systems aim to provide a certain degree of QoS to voice over 

IP networks. However, none of these systems can provide end-to-end QoS guarantees. In 

the following, we introduce a general architecture of the existing commercial VoIP 

systems and illustrate why these VoIP systems cannot provide QoS guarantees. 

 

 

Figure 24. Typical Architecture of Existing Multisite VoIP Systems 

Figure 24 illustrates a typical multisite architecture of the VoIP system. CallManager 

and Gatekeeper are the main components in the architecture. CallManager provides the 
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overall framework for communication within a corporate enterprise environment 5 . 

Gatekeeper can provide services, such as address translation and call admission control, 

to the calls. These two components communicate with each other by using the H.323 

signaling protocol [63], [64]. In Figure 24, a location defines a topological area 

connected to other areas by links with limited bandwidth registered to a CallManager. A 

zone is a collection of H.323 endpoints6  that registers to the same Gatekeeper. 

CallManager, as well as Gatekeeper, performs admission control for calls between 

locations in a zone or calls between zones, aiming to provide a certain degree of QoS to 

voice over IP networks. To call within a zone, only the CallManager located in the 

enterprise environment is invoked to perform CAC. However, for a call traversing 

multiple zones, not only CallManagers (both in the environment where the call is 

originated and in the one where the call is terminated), but also the related Gatekeeper(s) 

may be involved to perform CAC. 

Utilization-based CAC is one type of CAC mechanism. It makes an admission 

control decision based on a predefined utilization bound: For each call request, as long 

as the used resource utilization plus the requested resource utilization are not beyond the 

predefined resource utilization bound that is computed offline and set at the 

configuration time, the service guarantee can be provided. Two kinds of Utilization-

                                                 
 
5 We adopt Cisco CallManager term to refer to the component that manages calls within a corporate 
enterprise environment, which can be a proprietary product such as Cisco CallManger or a standard H.323 
Gatekeeper. 
6 An H.323 endpoint can be a H.323 terminal, a gateway, or a CallManager, which represent a corporate 
enterprise environment. 
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based CAC mechanisms, Site-Utilization-Based CAC (SU-CAC) and Link-Utilization-

Based CAC (LU-CAC), have been adopted by some VoIP systems. 

The basic idea of SU-CAC is to perform CAC based on the bandwidth which is 

preallocated to the sites. In this strategy, the site can be a location to the CallManager or 

a zone to the Gatekeeper. Bandwidth preallocation to sites is performed at the 

configuration time (i.e., at offline). A new call can be admitted if there is enough 

bandwidth left for the related site, otherwise, the call will be rejected. The core of SU-

CAC is how to do bandwidth preallocation to the sites. Bandwidth preallocation (or 

provisioning) determines the certainty of QoS that a VoIP system can provide to voice 

over IP networks. Unfortunately, so far, the existing VoIP systems do not define a proper 

way to do that. Currently, bandwidth preallocation is performed in an ad-hoc manner. As 

a matter of fact, this is the reason why the end-to-end QoS guarantees cannot be 

achieved in current VoIP systems. The main advantage of SU-CAC is that it is simple 

and it enables CAC to be performed in a distributed fashion. It neither sends probes to 

test the availability of resources nor dispatches messages to make reservations. However, 

since the bandwidth has been preallocated to the sites at the configuration time, links 

cannot be fully shared by dynamic calls and, accordingly, high network resource 

utilization cannot be achieved (in this paper, the network resource is mainly referred to 

the link bandwidth). The Link-Utilization-Based CAC (LU-CAC) aims to address this 

issue. 

The main idea of LU-CAC is to perform CAC directly based on availability of the 

individual link bandwidth. With this mechanism, call multiplexing can be performed at 
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the link level, hence, high network resource utilization can be obtained. The 

disadvantage of LU-CAC is its complexity. Current VoIP systems have to rely on the 

resource reservation protocols, such as RSVP, to perform explicit resource reservation 

within the whole network. To achieve that, all the routers within the network should 

support resource reservation, which is not practical. Also, in current high speed networks, 

there are potentially thousands of flows passing through the core-routers. The overhead 

of the core routers within the network to support resource reservation can be 

significantly large. The overhead of resource reservation at the core-routers will 

compromise their main function, i.e., packet forwarding, which will degrade the whole 

network performance. 

C. A New Qos-Provisioning VoIP System Design Methodology 

1.    Design Rationale  

The goal of this study is to design and implement a practical, scalable, and highly 

efficient QoS-provisioning VoIP system that can provide end-to-end QoS guarantees to 

VoIP networks. Our main strategies to achieve this goal and address the challenging 

issues are listed as follows: 

1) We build up our target system by enhancing the current existing VoIP systems, 

rather than build up a totally new VoIP system from scratch. The QoS 

architecture includes two planes: the data plane and the control plane. The data 

plane is responsible for packet scheduling and forwarding, while the control 

plane is for resource management and admission control. The simple utilization 
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test in utilization-based CAC (both SU-CAC and LU-CAC) can render the 

control plane scalable. We plan to enhance current VoIP systems by integrating a 

new QoS-provisioning system to enable both SU-CAC and LU-CAC to be well 

utilized and supported. With this system, the overhead of resource reservation at 

the core routers will be pushed to the agents in the QoS-provisioning system, 

which overcomes the weakness of the current VoIP system in applying the LU-

CAC mechanism. We will also address the issue of performing resource 

allocation to better support the SU-CAC mechanism. 

2) We leverage our research results on absolute differentiated services in static-

priority (SP) scheduling networks to provide scalable QoS guarantees to the 

VoIP system. The static-priority scheduler is classbased. Its overhead introduced 

to the data plane is small and independent from the flow population. The data 

plane is scalable with the static-priority scheduler. It is not the case for the 

guaranteed-rate schedulers, such as Weighted Fair Queuing (WFQ), which needs 

to maintain per flow information, hence making the data plane not scalable. 

However, the static-priority scheduler does not provide flow separation as the 

guaranteed-rate schedulers do. With the static-priority scheduler, the utilization-

based admission control mechanism such as SU-CAC and LU-CAC cannot be 

directly applied to provide QoS guarantees. It cannot simply admit a new flow by 

checking the availability of utilization due to the flow interference with the 

static-priority scheduler. To account for such interference, the runtime overhead 

of admission control will be very large. In our previous research work, we 
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derived a novel utilization-based delay analysis technique in static-priority 

scheduling networks. With this technique, the runtime overhead to perform 

admission control is moved to the configuration time while sustaining scalability 

in the data plane. The existing VoIP systems do not specify a particular type of 

packet scheduler to be used in its data plane. This gives us room to select the 

proper scheduler for our purpose. We decided to use a static-priority scheduler in 

the data plane of the VoIP system. Particularly, all the voice traffic shares the 

same priority, which is higher than the one used to transmit the non-voice traffic. 

In this way, our previous research results on absolute differentiated services in 

static-priority scheduling networks can be applied directly. 

3) We apply the linear programming approach to optimize the resource allocation in 

the control plane. As we know, the SU-CAC mechanism tends to underutilize the 

network resource. Care must be taken to prevent wasting too many resources in 

applying this CAC mechanism. In this study, we will use the linear programming 

approach to optimize the resource utilization while still providing the end-to-end 

guarantees with SU-CAC mechanism. 

2.    Integrated System Architecture  

Having discussed the design rationale of our QoS-provisioning system, in the 

following, we will introduce the architecture of this system and its components. Figure 

25 shows our QoS-provisioning system integrating with the commercial VoIP system. It 
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consists of three kinds of components: QoS Manager (QoSM), Call Admission Control 

Agent (CACA), and Integration Component (IC). 

 

 

Figure 25. VoIP System with QoS Provisioning System 

Figure 26 shows the components of the QoS-provisioning system. The main 

functions of these components are as follows: 

1) QoS Manager (QoSM)—The QoSM implements three basic functions: 1) It 

provides user interface to control and monitor the components, which are in the 

same QoS domain. 2) It provides registration to the distributed agents and 

coordination among the distributed agents in the same QoS domain. 3) It 

cooperates with the peer QoSMs that belong to other QoS domains. 

2) Call Admission Control Agent (CACA)—The CACA has two modules: 1) 

Utilization Computation Module, which performs deterministic or statistic delay 
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analysis to obtain the maximum bandwidth utilization. 2) Admission Decision 

Making Module, which performs admission control with specific CAC 

mechanisms. 

3) Integration Component (IC)—The IC integrates CACA into existing VoIP 

systems and provides call signaling processing modules the ability to monitor 

and intercept call setup signaling from Gatekeeper or Call-Manager, withdraws 

the useful message and passes it to CACA, and executes call admission decision 

made by CACA. 

 

Figure 26. Components of the QoS-Provisioning System 

It is the CACA that does delay analysis and makes admission control that are the 

main functions of the QoS Provisioning system to provide QoS guarantees for VoIP. 

Most of the challenging problems we encountered are in designing and implementing 

CACA. We will devote Section D to this important component. Our QoS-provisioning 
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system is not a stand-alone system. It should integrate with the existing VoIP system. 

Such integration is conducted through the Integration Component (IC) which will be 

discussed in Section E. 

D. Call Admission Control Agent (CACA) 

The Call Admission Control Agent (CACA) is a key component in the QoS-

provisioning system. It consists of two modules: Utilization Computation Module and 

Admission Decision Making Module. The utilization computation module performs 

delay analysis and computes the maximum bandwidth utilization. It usually runs at the 

configuration time. The computed utilization will be allocated to either links in the LU-

CAC mechanism or to sites in the SU-CAC mechanism. At the runtime, the admission 

decision making module will make an admission decision for each incoming call request, 

based on the allocated bandwidth utilization (by the utilization computation module) and 

the currently consumed bandwidth. In the following, we discuss the details of these two 

modules. 

1.    Utilization Computation Module 

The utilization computation module has two submodules: 1) the Link Utilization 

Computation Submodule and 2) the Site Utilization Computation Submodule. The first 

submodule is to compute the maximum link utilization for LU-CAC, while the second 

submodule is to compute the maximum site utilization for SU-CAC. The maximum link 

utilization is the maximum value of the link utilization under which the end-to-end delay 

can be guaranteed with LU-CAC. The maximum site utilization has a similar definition 
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to SU-CAC. The above two submodules are closely related to each other. The maximum 

utilization allocated to sites is constrained by the maximum utilization allocated to the 

links since each pair of sites is connected by links. In the following, we will describe 

these submodules in detail. 

a) Link Utilization Computation Submodule 

The main task of this submodule is to compute the maximum link utilization for LU-

CAC by calling a procedure, named the utilization verification procedure. It is shown in 

Figure 27. 

 

Figure 27. The Utilization Verification Procedure 

Given the voice traffic model, the network topology, and the voice traffic deadline 

requirement, for any input of link utilization u, we compute the worst-case delay 

(deterministic case) or delay distribution (statistical case) with our delay analysis 

methods. Then, we can verify whether or not the utilization is safe in order to make the 
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end-to-end delay meet the deadline requirement. Using the binary searching method for 

utilization, we can obtain the maximum link utilization. As shown, the most challenging 

thing is to do delay analysis. 

Generally, there are two distinct types of delays suffered by a voice packet from 

source to destination: fixed and variable. Fixed delays include propagation delay, 

transmission delay, and so on. Variable delays arise from queuing delays in the output 

buffers. All fixed delays can be obtained by well-known experimental data or by using 

existing tools. However, it is difficult to obtain the variable delays. There is a significant 

amount of research on queuing delay analysis [65], [66] for both deterministic and 

statistical delay analysis. 

Recall that we consider the VoIP system where static priority scheduling is used and 

voice traffic is assigned the highest priority. This scheduling does not provide flow 

separation. The local queuing delay at each output queue depends on detailed 

information (number and traffic characteristics) of other flows, both at the output queue 

under consideration and at the output queues upstream. Therefore, all the calls currently 

established in the network must be known in order to compute queuing delays. Delay 

formulas for this type of system have been derived for a variety of scheduling algorithms. 

While such formulas could be used (at quite some expense) for flow establishment at the 

runtime, they are not applicable for delay computation during the configuration time, as 

they rely on information about flow population. In the absence of such information, the 

worst-case delays or deadline violation probabilities must be determined assuming a 

worst-case combination of flows. 
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We assume that the network topology is known in advance, which includes the 

potential end-to-end path information and link bandwidth information. Each voice traffic 

will be regulated by a leaky bucket with burst size  and average rate  at the entrance of 

the network. Link k is of capacity Ck. The link bandwidth utilization allocated to voice 

traffic is assumed to be uk at link k. Since the deadline requirement can be either 

deterministic or statistical, resulting in deterministic services and statistical services, we 

classify the delay analysis as utilization-based deterministic delay analysis and 

utilization-based statistical delay analysis, respectively. 

Utilization-based Deterministic Delay Analysis: If the deadline requirement is 

deterministic, we can bound the worst case queuing delay by the following theorem [65]. 

Theorem 5-1. The worst-case queuing delay dk suffered by any voice packet with the 

highest priority at the buffer of output link k is bounded by7 
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link k with capacity Ck, and Sk is the set of all subroutes used by voice packets with the 

highest priority upstream from output link k.  

The proof can be found in [65]. In DisplayText cannot span more than one line!, 

the value of Yk, in turn, depends on the delays ds’s experienced at output link s other 

than k. Then, we have a circular dependency. Therefore, dk can be determined iteratively. 

                                                
 

 
7 If 1kc  , then dk = 0. 
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Furthermore, the end-to-end worst-case delay can be obtained, which only depends on 

the link utilization uk, the parameters for voice traffic (burst size  and average rate ), 

and the network topology. 

Utilization-Based Statistical Delay Analysis: If the deadline requirement is 

probabilistic, we can bound delay violation probabilities as follows [66]: 

Theorem 5-2. In this case, dk is a random variable and Dk is denoted as its deadline. The 

violation probability of delay for any voice packet with the highest priority suffered at 

the buffer of output link k is bounded by  
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   (V-2) 

The proof can be found in [66]. The end-to-end deadline violation probability can be 

bounded as 

2{ ) 1 (1 { })e e

K k KK R k R
P d D P d D

 
                           (V-3) 

which only depends on the link utilization uk, the parameters for voice traffic (the burst 

size   and the average rate ), and the network topology. 

Our utilization-based delay analysis techniques show that, under the given network 

topology and traffic model, the queuing delay or deadline violation probability at each 

output queue depends on link bandwidth utilization. By limiting the utilization of link 

bandwidth, the overall delay or deadline violation probability can be bounded. Given the 

deadline requirement, with the utilization-based delay analysis techniques, the maximum 
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link utilization computation can obtain the maximum link utilization, which will be 

applied in the LU-CAC mechanism to perform admission control. 

b) Site Utilization Computation Submodule 

The main task of this submodule is to compute the maximum site utilization for SU-

CAC. As we mentioned, the SU-CAC mechanism tends to underutilize the network 

resource while providing end-to-end delay guarantees. The objective in the maximum 

site utilization computation is to optimize the overall site bandwidth utilization. Our 

maximum link utilization computation will be based on the maximum link utilization 

computation and further splitting each maximum link utilization to pairs of sites that 

share this link. Given the network topology and the limitation of link bandwidth 

allocated to voice traffic, we can optimize the overall bandwidth utilization to sites, 

defined as follows: 

Maximize RR
u                                                (V-4) 

Subject to R kR k
u u


 , for each link k             (V-5) 

0 1

R R Ru u u  , for each route R                             (V-6) 

where uk is the maximum bandwidth of link k allocated to voice traffic (obtained in the 

above section), R k  represents all routes among any pair of sites R going through link 

k, uR is the bandwidth for R allocated to voice traffic, and 0

Ru  and 1

Ru  are the lower and 

upper bandwidth bounds for R allocated to voice traffic, respectively. 
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In the above equations, (V-4) is the overall bandwidth utilization, (V-5) shows that 

the bandwidth preallocation to each pair of sites is constrained by the link bandwidth 

limitation, and (V-6) is the user requirement for bandwidth preallocation to each pair of 

sites. This is a linear programming problem, which can be solved in polynomial time. 

The output, i.e., the preallocated bandwidth, will be used as bandwidth limitation in the 

SU-CAC mechanism. 

c) Discussions 

The utilization computation module has three input parameters: 1) The network 

topology, which can be obtained by existing network management tools. 2) The worst-

case delay bounds or deadline violation probability bounds, which are predefined 

according to the timing requirement of the voice traffic. 3) The burst size and the 

average rate for voice flow model, which are predefined according to the characteristics 

of the voice traffic. Except for the network topology, all these parameters are fixed. 

When the network topology changes, our system will re-compute the link/site bandwidth 

utilization. Generally speaking, the network topology is relatively stable and predictable 

compared with the dynamic traffic. Even in the Internet, the study in [67] shows that the 

majority of the routing paths are stable. Therefore, the utilization re-computation will not 

happen frequently. We can further reduce the frequency of such re-computation by using 

the delay formula (7) in [68]. This formula depends only on the network diameter. A 

change in the network topology does not necessarily cause a change in the network 

diameter. With this formula, the utilization re-computation happens much less frequently. 
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Once the maximum link or site bandwidth utilizations are obtained and set in the 

LU-CAC mechanism and the SU-CAC mechanism, respectively, the Admission 

Decision Making Module will make the admission decision for the incoming call based 

on the overall bandwidth and the currently consumed bandwidth, which we discuss in 

the following. 

2.    Admission Decision Making Module 

The Admission Decision Making module supports both the LU-CAC mechanism and 

the SU-CAC mechanism8. In this section, we will describe the data structure and the 

working process of the two mechanisms in the Admission Decision Making module. 

a) Admission Decision Making in LU-CAC Mechanisms 

To support the LU-CAC mechanism, the Admission Decision Making module has to 

keep the network topology information and the routing information. There are two tables 

for supporting this mechanism: the Bandwidth Table and Routing Table. The Bandwidth 

Table is used to keep the information about how much of the configured bandwidth on 

the links is currently consumed by voice traffic and how much link bandwidth is 

available for calls as shown in Table 2. Note that overall bandwidth in Table 2 Table 

2Table 2Table 2Table 2Table 2Table 2Table 2is the maximum link utilization from the 

                                                
 

 
8 The Admission Decision Making module for the SU-CAC mechanism is an optional implementation in 
CACA since the SU-CAC mechanism in the current VoIP system can simply provide QoS guarantees by 
applying the result from the Utilization Computation Module. 
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Utilization Computation module. The routing information can be found in the Routing 

Table. 

Table 2. The Bandwidth Table in LU-CAC

 

 
 
 

Once a call request comes, each link along the call route will be checked to see if 

there is sufficient bandwidth left in the Bandwidth Table. First of all, the call route with 

the source and destination of the call should be found in the Routing Table as shown in 

Table 3. If all links along the call route have sufficient bandwidth left, then the CAC 

module will admit the call and decrease the available bandwidth of all call links by the 

requested bandwidth; otherwise, it will reject it. Once the call tears down, the bandwidth 

requested by the call will be returned to the pool for each link along the call route. 

Table 3.  The Routing Table in LU-CAS  
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b) Admission Decision Making in SU-CAC Mechanisms 

To support the SU-CAC mechanism, the Admission Decision Making module keeps 

neither the information about the overall bandwidth nor the available bandwidth for each 

individual link of the network. It takes a fixed amount of bandwidth for each pair of sites 

or a fixed total amount of bandwidth from/to a site, which is statically configured in the 

Bandwidth Table. Note that the fixed bandwidth is allocated by the Utilization 

Computation Module in our QoS-provisioning system. 

Table 4 shows an example of a bandwidth table for pairs of sites. As each call is 

setup, the sites of source and destination can be known. If there is sufficient bandwidth 

left for the pair of sites, then the call is admitted and a certain amount of bandwidth is 

subtracted and will be returned to the pool when the call tears down. Otherwise, the call 

request is rejected. 

Table 4. The Bandwidth Table in SU-CAC 
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E. Integration with Existing VoIP Systems 

1.    Methodology in Integration 

The Call Admission Control Agent (CACA) is integrated into the existing VoIP 

systems through the Integration Component (IC). The Integration Component monitors 

and intercepts call setup signaling, withdraws useful messages (i.e., the bandwidth 

required by calls, the locations or addresses of callers and callees), passes them to the 

admission decision making module, and executes the call admission decision. Generally 

speaking, there are two approaches for this kind of component to intercept the call setup 

signaling and to execute the call admission decision: 

Front-End approach: In this approach, the call setup requests must pass through the 

agent before reaching the existing call admission decision unit (e.g., CallManager). The 

call setup responses must also pass through the agent before coming back to the call 

request endpoint. The agent can directly enforce its call admission decision to the call 

setup request by adding, modifying or dropping signaling between the endpoint and the 

existing admission decision unit. There are two basic methods to implement the agent in 

this approach: proxy method and filter method. To implement proxy method, the agent 

will be implemented as a signaling proxy. The consistency of the call signalings between 

the end point and the existing call admission unit can be achieved. However, in most 

cases, it is complicated to implement a functional proxy, and the integration overhead 

cannot be neglected since the integration is not transparent to the existing system. To 

implement the filter method, the agent only intercepts its relevant signaling and is easy 
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to implement. Since the (filter) agent is treated as an IP router or firewall by the existing 

system, the integration is transparent to the existing system. It may be difficult to 

achieve the call signaling consistency since there is no direct interaction between the 

(filter) agent and the existing system. 

Back-End approach: In this approach, the call setup requests and responses will be 

forwarded to the agent by the existing call admission decision unit (e.g., Gatekeeper). 

The agent will indirectly execute its call admission decision to the call setup request by 

negotiating with the existing call admission decision unit. The Back-End overcomes 

several problems of the Frond-End approach: 1) The implementation of the agent will 

not be very complicated since the existing system normally allows the agent to 

selectively receive and process the signaling; 2) the consistency of the signaling can be 

easily achieved since the agent directly interacts with call admission decision unit; 3) the 

integration overhead is little because only the existing admission control unit is aware of 

the agent. However, the Back-End approach requires the existing system to have the 

ability that the call setup requests and responses can be redirected to the external 

application, e.g., our CACA, while the Front-End one does not. In most cases, the Back-

End approach has more advantages than the Front-End approach. 

2.    Case Study 

In this section, we would like to use the Cisco VoIP system to illustrate how our QoS 

provisioning subsystem can be integrated with the existing VoIP system. VoIP is a key 

part of Cisco’s AVVID (Architecture for Voice, Video, and Integrated Data) framework 
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for multiservice networking [69]. The architecture of the Cisco VoIP system is the same 

as the one shown in Figure 24. It has two major components: Gatekeeper and 

CallManager. Due to the different design and implementation methodologies of these 

two components, we adopt the Back-End approach for Cisco Gatekeeper and the Front-

End approach with the filter method for Cisco CallManager in the IC, respectively. In 

the remainder of the section, we will describe the details of how the integration 

component works with the Cisco Gatekeeper and Cisco CallManager. 

a) Integration with Gatekeeper 

Cisco Gatekeeper is a built-in feature of Cisco IOS in some Cisco Router series (e.g., 

2600, 3600 series) and is a lightweight H.323 gatekeeper. The Registration, Admission, 

and Status (RAS) signaling that the Cisco Gatekeeper handles is H.323-compatible. 

Cisco Gatekeeper provides interface for external application servers to offload and 

supplement its features. The interaction between the Cisco Gatekeeper and the external 

application is completely transparent to the H.323 endpoint. 
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(a) Call Setup   (b) Call Tearing-Down 

Figure 28. An Illustration of a Successful Call Procedure in IC for Gatekeeper 

As shown in Figure 28, the Back-End approach is adopted for the IC to intercept the 

call signaling between the CACA and the Gatekeeper. The IC handles the H.323 RAS 

signaling and communicates with the Cisco IOS Gatekeeper. The communication 

between the Cisco IOS Gatekeeper and the IC is based on Cisco’s propriety protocol, 

Gatekeeper Transaction Message Protocol (GKTMP) [70]. GKTMP provides a set of 

ASCII RAS request/response messages between Cisco Gatekeeper and the external 

application over a TCP connection. There are two types of GKTMP messages: 1) 

GKTMP RAS Messages: It is used to exchange the contents of RAS messages between 

the Cisco IOS Gatekeeper and the external application. 2) Trigger Registration Messages: 

It is used by the external application to indicate to the Cisco Gatekeeper which RAS 

message should be forwarded. If an external application is interested in receiving certain 

RAS messages, it must register this interest with the Cisco Gatekeeper. 

In our implementation, the IC is interested in receiving the following four RAS 

messages from the Gatekeeper: Admission Request (ARQ), Location Confirm (LCF), 

Location Reject (LRJ), and Disengage Request (DRQ). LRJ and DRQ is notification-
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only message to IC.  All of the four messages will be automatically registered to Cisco 

Gatekeeper once the CACA is functional.  

Figure 28 (a) illustrates a successful call setup procedure. As an example, we 

illustrate the detail of a successful call setup procedure as blow: 

1) A CallManager as a H.323 gateway sends an ARQ message to Gatekeeper. 

2) The Gatekeeper searches its trigger condition and finds a match to the IC. It 

patches the message ARQ to message named ―REQUEST ARQ‖ and sends it to 

the IC. 

3) The IC processes the ―REQUEST ARQ‖, e.g. recording down the bandwidth of 

the call, conference ID, address of the caller etc. and sends back a ―RESPONSE 

ARQ‖ to let Gatekeeper continue normal processing. 

4) The Gatekeeper sends a Location Request (LRQ) message to request address 

translation. 

5) The Gatekeeper receives a message LCF, patches it to message ―REQUEST LCF‖ 

and sends it to the IC.  

6) The IC withdraws the address of the caller from the message ―REQUEST LCF‖. 

In addition to the previous buffered information from message ARQ, it sends 

collected information to the Admission Decision Making Module of the CACA. 

7) The Admission Decision Making Module of the CACA sends a confirmation to 

IC to accept the call if the network resource is available. The IC sends a message 

―RESPONSE LCF‖ back to the Gatekeeper. In the meantime, the Admission 

Decision Making Module updates the status of the network resource and the call.  
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8) The Gatekeeper sends message Admission Confirm (ACF) to grant call 

permission to the CallManager. 

Figure 28 (b) illustrates a simple tearing down procedure, where the IC will update 

the status of network resource once receiving the message DRQ.  

b) Integration with CallManager 

Cisco CallManager is a comprehensive and heavyweight VoIP processing 

application, which runs on the Microsoft Windows platform. It can interact with 

endpoints using multiple protocols, e.g., Skinny Client Control Protocol (SCCP), H.323, 

and Session Initiation Protocol (SIP), etc. In this work, we implement SCCP, a popular 

signaling protocol in Cisco VoIP system, in the IC for CallManager. 

To the best of our knowledge, Cisco CallManager does not provide an interface for 

external applications to supplement its call admission control mechanism as a 

Gatekeeper does. In this case, only the Front-End approach can be adopted to intercept 

the Call Signaling of a CallManager. As we mentioned above, there are two basic 

methods, proxy and filter, to implement Front-End approach. By the proxy method, if 

the integration of the CACA to the current VoIP system is not transparent to the 

endpoints, the integration will affect thousands of the endpoints. The overhead and 

interruption caused by the integration to an operational environment is a realistic 

problem when using the proxy method. Considering that, we use the filter method in the 

current design and implementation of the IC for CallManager. Figure 29 shows the basic 

idea of this method. 
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Figure 29. An Illustration of Communication Protocol in IC for CallManager 

Since the basic idea and the procedure of the signaling process in both the IC for 

CallManager and the IC for Gatekeeper are similar, we would like to highlight the 

difference in intercepting the SCCP using the IC for CallManager. The CallManager is 

unware of the IC. It directly sends the implicit grant permission message (i.e.,message 

―StartMediaTransmission‖) to the endpoints of the admitted call. However, in case the 

CACA makes a decision to deny the call because of the lack of available bandwidth, it 

should not let the message ―StartMediaTransmission‖ be received by the endpoints. One 

of the approaches is to continue dropping the message from the CallManager until the 

CallManager terminates the TCP connection after a finite timeout. There are two 

problems: 1) The caller does not get any indication whether the call is accepted or not. 2) 

The timeout is about 60 seconds. To compensate for the above two problems, the IC can 

explicitly indicate caller by sending the busy tone message, ―StartToneMessage,‖ to the 

endpoint and prevent the CallManager from sending a message to the endpoint by 

sending the call terminating message, ―OnHookMessage,‖ to the CallManager. However, 

additional messages from the IC would interfere with the synchronization of the TCP 
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connection between the endpoint and the CallManager. To speed-up the 

resynchronization of the TCP connection, and limit the impact on the CallManager, the 

IC will send a TCP RESET packet to the endpoint in place of the CallManager. 

F. Performance Evaluation 

We consider two metrics in the performance evaluation: 1) the introduced overhead 

to the admission and 2) the overall bandwidth utilization. Correspondingly, we choose 

two measurement metrics: admission latency and admission probability. Admission 

latency is used to measure the overhead of admission. Admission probability is the ratio 

of the number of admissions to the number of overall requests, which is a well-known 

metric to measure the overall bandwidth utilization. The higher the admission 

probability, the higher the overall bandwidth utilization achieved. 

1.    Admission Latency 

In this section, we run a suite of experiments to evaluate the admission latency in 

two VoIP systems: 1) the one with our CACA and 2) the one without our designed 

CACA. Due to the different design and implementation methodology of CACA for 

CallManager and Gatekeeper, we run two experiments for both cases. The experiments 

are run in the Internet2 Voice Over IP Testbed at Texas A&M University. 

a) Call Admission Control Agent (CACA) for Cisco Gatekeeper 

In the experiment, we tried 300 calls for each CAC mechanism. The call signaling 

crosses two Cisco CallMangers and two Cisco Gatekeepers from a Cisco IP phone in 
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Texas A&M University to another IP phone in Indiana University. To show the 

introduced overhead by our designed QoS-provisioning system, we have two sets of data: 

local admission latency and round-trip admission latency. 

 

   

              (a) Local Admission Latency                   (b) Round-trip Admission Latency 

Figure 30. The Distribution of Local and Round-trip Admission Latency for Gatekeeper 

Figure 30 (a) shows the distribution of local admission latency between receiving 

ARQ and sending out LRQ by Gatekeeper. Figure 30 (b) shows the distribution of 

round-trip admission latency between receiving ARQ and sending ACF out by 

Gatekeeper. Table 5 gives us the summary of the distribution of admission latency for 

each case in terms of the mean value and standard deviation. The local admission latency 

excludes the network latency and the processing latency on the other side. It shows a 
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more accurate latency introduced by our designed QoS-provisioning system, which is 

shown by the standard deviation of the latency distribution in Table 5. The round-trip 

admission latency gives us the view of the overall admission latency. 

 
Table 5. The Mean Value and Standard Deviation of Latency Distribution for 

Gatekeeper 

 

 

The admission latency in the VoIP system with CACA is around 44.3 ms. The 

admission latency in the VoIP system without CACA is around 39.8 ms. With CACA, 

the introduced latency is about 8.3 – 3.9 = 4.4 ms. The overall latency is very acceptable 

and the introduced latency is pretty small. To measure the introduced latency, we 

measured the admission latency between receiving ARQ and sending out LRQ from the 

Gatekeeper, not the additional latency from the CACA directly. Here, the additional 

admission latency includes not only the admission latency introduced in CACA, but also 

the additional latency in Gatekeeper caused by interaction between Gatekeeper and 

CACA, which cannot be measured directly. 

b) Call Admission Control Agent (CACA) for Cisco CallManager 

In the experiment, we also initiated 300 calls for each CAC mechanism. The call 

signaling crosses one Cisco CallManger between two Cisco IP phones at Texas A&M 
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University. To show the introduced overhead by our designed QoS provisioning system, 

we have two sets of data: local admission latency and round-trip admission latency. 

Figure 31 (a) shows the distribution of local additional admission latency which is 

introduced by CACA in processing one call signaling message. Figure 31 (b) shows the 

distribution of round-trip admission latency.  

 

 

              (a) Local Admission Latency                  (b) Round-trip Admission Latency 

Figure 31. The Distribution of Local and Round-trip Admission Latency for 
CallManager 

 
 
 
 

Table 6 gives us the summary of the distribution of admission latency for each case 

in terms of the mean value and standard deviation. 
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Table 6. The Mean Value and Standard Deviation of Latency Distribution for 

CallManager 
 

 

 

The admission latency in the VoIP system with CACA is around 476 ms. The 

admission latency in the VoIP system without CACA is around 479.3 ms. With CACA, 

the introduced latency is about 1.2 ms (i.e., additional latency). The overall latency is 

acceptable and the introduced latency is quite small9. 

2.    Admission Probability 

To make the data convincing, the measure of admission probability requires a high 

volume of calls in the VoIP system. However, it is not feasible or realistic to produce a 

high volume of calls in the VoIP system: First, our designed QoS-provisioning system is 

                                                
 

 
9 As shown in Table 6: 1) The average latency with CACA is less than the one without CACA. It is 
because the latency varies on the status of the network and VoIP system, and the additional latency 
introduced by CACA is a small proportion of the round-trip latency. 2) The average latency with CACA 
for CallManager is much larger than the one for Gatekeeper. It is because the SCCP signaling is more 
comprehensive than RAS signaling, and the call admission requires tens of round-trip SCCP messages 
between the CallManager and endpoint for each call request. 
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only deployed in Internet2 Voice Over IP Testbed in Texas A&M University, where 

simultaneous calls from many sites are not available. Second, even in the fully-deployed 

VoIP system, a high volume of calls for the experiment will affect the operation of VoIP 

heavily. Admission probability can only be measured by simulation. In this section, we 

run a suite of simulation to evaluate the admission probability for the LU-CAC 

mechanism and the SU-CAC mechanism, respectively. 

Traditionally, call arrivals follow a Poisson distribution and call lifetimes are 

exponentially distributed. This call mode can approximate the realistic call mode very 

well. In our simulation, we use this call mode to simulate calls by Mesquite CSIM 19 

toolkits [71] for simulation and modeling. In the simulation, overall requests for call 

establishment in the network form a Poisson process with rate  , while call lifetimes are 

exponentially distributed with an average lifetime of 180   seconds for each call. All 

calls are duplex (bidirectional) and use G.711 codec, which has a fixed packet length of 

(160 + 40) bytes (RTP, UDP, IP headers, and two voice frames) and a call flow rate of 

80 Kbps (including 64 Kbps payload and other header). 

Two different network topologies are chosen for the simulation: Internet2 backbone 

network and a campus network. Gatekeeper and CallManager are configured to perform 

call admission control in the Internet2 environment and in the campus environment, 

respectively. 
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a) Internet2 Backbone Network 

Abilene is an advanced backbone network that supports the development and 

deployment of the new applications being developed within the Internet2 community. 

Figure 32 shows the core map of the Abilene network (September 2003) used in our 

simulation. There are 11 core node routers, each located in a different geographical area. 

All backbone links are either OC48 (2.4 Gbps) or OC192 (9.6 Gbps). The call route will 

be chosen uniformly randomly from the set of all pairs of core node routers. Suppose 

that the end-to-end deadline for queueing is 10 ms. The maximum utilization is 0.195 for 

deterministic service, i.e., under the condition that about 19.5 percent link bandwidth is 

used for voice traffic, the end-to-end delay for any voice packet can meet the deadline 

requirement. The maximum utilization is 0.307 for statistical service with deadline 

violation probability 610 , i.e., under the condition that about 30.7 percent link 

bandwidth is used for voice traffic, any voice packets may miss the deadline with small 

probability 610  at most.   changes from 100.0 to 1000.0. 
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Figure 32. The Core Map of Abilene Network (September 2003) 

Figure 33 shows the admission probabilities for the voice call in the two CAC 

mechanism as a function of arrival rates. We find that the LU-CAC mechanism can 

achieve a much higher admission probability than SU-CAC for both deterministic 

service and statistical service. Statistical service can achieve a much higher admission 

probability than deterministic service, as expected. 
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Figure 33. The Admission Probability in Abilene Network 

b) Campus Network 

Figure 34 shows the campus network topology used in our simulation. The link 

bandwidth is either 100 Mbps or 155 Mbps. The call route will be chosen uniformly 

randomly from the set of all pairs of sites (0, 1, . . . , 18). Suppose that the end-to-end 

deadline is 10 ms for queueing. The maximum utilization is 0.208 for deterministic 

service, i.e., under the condition that about 20.8 percent link bandwidth is used for voice 

traffic, the end-to-end delay for any voice packet can meet the deadline requirement. The 

maximum utilization is 0.332 for statistical service with deadline violation probability

610 , i.e., under the condition that about 33.2 percent link bandwidth is used for voice 

traffic, any voice packets may miss the deadline with small probability 610 at most. 

changes from 1.0 to 10.0. 



 

 

116 

 

Figure 34. A Campus Network Topology 

Figure 35 shows the admission probabilities for the voice call in the two CAC 

mechanisms as a function of arrival rates. The admission probabilities in the two call 

admission control mechanism are different. Similar to the observation made in the 

Internet2 Backbone network, the LU-CAC mechanism can achieve much higher 

admission probability than SU-CAC for both deterministic service and statistical service. 

Statistical service can achieve a much higher admission probability than deterministic 

service, as expected. 
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Figure 35. The Admission Probability in the Campus Network 

G. Deployment 

We have successfully realized our system in the Internet2 Voice Over IP Testbed at 

Texas A&M University. We systematically evaluate our proposed QoS-provisioning 

system in terms of admission delay and admission probability. Our data show that, if a 

VoIP system is designed with our new system model and design methodology, the 

overall system can achieve high resource utilization while invoking relatively low 

overhead. A portion of the research results have been published in [68], [72], [73]. 



 

 

118 

CHAPTER VI 

SUMMARY 

This research work provides analysis and addresses issues related to the design and 

realization of the next generation of mission-critical application systems. We pay special 

attention to two important aspects of these systems:  reliability and real-time guarantees. 

We narrow our focus to three most important software design scenarios, single node 

mission-critical applications, cluster environment mission-critical applications, and wide 

area network environment mission-critical applications. For these three types of 

applications, we proposed novel system models, design methodologies to improve 

system reliability and provide real-time guarantees. Based on these novel model and 

design methodology, we build demonstrative or real world applications and through 

detailed analysis and performance evaluation, we show that our model and design 

methodology can indeed improve the reliability and provide real-time guarantees for 

these different mission-critical applications.  
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