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ABSTRACT 

 

 

Study of the Fatigue Life of Steel Catenary Risers in Interaction with the Seabed. 

(December 2010) 

Ali Nakhaee, B.S., University of Tehran, M.S., University of Tehran 

Chair of Advisory Committee: Dr. Jun Zhang 

 

The fatigue life of a Steel Catenary Riser (SCR) near its touch-down zone is 

substantially affected by its interaction with the seabed. Hence, accurate estimate of its 

fatigue life requires the understanding and realistic modeling of the interaction between 

them. 

The interaction between SCR and the seabed depends on many factors, such as soil 

properties, riser characteristics, and the development of trenching at the seafloor. 

Existing approaches for modeling the seabed in interaction with a SCR approximate the 

seabed soil by a linear or nonlinear spring and a dashpot which respectively represent the 

stiffness and damping of the soil. However, they do not take into account certain 

phenomena resulting from plastic deformation or degradation of the seabed soil, such as 

trenching. In this study, a more realistic approach is developed for simulating the 

interaction between a SCR and the seabed soil. In addition to the use of a realistic P-y 

curve (where P stands for the supporting or resistance force of the seafloor and y for the 

vertical penetration of the riser into the soil) to simulate the soil deformation during its 
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interaction with a riser, it considers the development of a trench caused by continuous 

poundings of a riser on the seabed and then its feedback effect on the variation of the 

bending moment along the riser. 

In this study, it has been found that trenching underneath a SCR may decrease the 

maximum variation of bending moment near its touch-down zone. Since the variation of 

the moment dictates the fatigue damage to the SCR, the results based on this approach 

indicate that the trenching development at the seabed may increase the fatigue life of a 

SCR and therefore, it may have important application to the design of a SCR. 
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1. INTRODUCTION 

 

 

1.1. Risers 

Risers are one of the essential parts of every hydrocarbon production platform. 

They are used to convey the fluids between the seabed and the supporting platform 

during the drilling, injection, completion, production and exporting stages. At the time of 

drilling, risers are employed to provide transportation of necessary fluids like drilling 

mud to and from the well. They also support drilling strings, guide tools and auxiliary 

lines. Production and export risers are used to transfer produced oil and gas to the 

platform or vessels. 

Different riser configurations have been developed to accommodate the 

requirements for specific floaters and water depths. Top Tension Riser (TTR), Steel 

Catenary Riser (SCR), Hybrid Riser and Flexible Riser are among the most used type of 

risers. Figure 1.1 shows some of common configurations of risers. In this study, we will 

particularly focus on the SCRs. The definition and general concepts about SCRs are 

discussed later in this dissertation. 

 

 

 

_____________ 

This dissertation follows the style of ASCE Journal of Waterway, Port, Coastal and 
Ocean Engineering. 
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Figure  1.1. Examples of riser configurations (DNV-OS-F201) 
 

Top Tension Riser Top Tension Riser

Catenary Riser 

Catenary Riser Catenary Riser 

Catenary Riser 
with Lazy Wave 
configuration 

Spar 

FPSO FPSO

Semisubmersible 

Semisubmersible
TLP 

Hybrid Riser 
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1.2. Design of Risers 

1.2.1. Loading 

The first step in the design of risers is to calculate the loads applied to them. Risers 

are subjected to various environmental and functonal loads. Some of these loads are as 

follows (DNV-OS-F201): 

 Environmental loads: waves, current and ice 

 Floater motions: mean offset, wave frequency motions, and low frequency 

motions  

 Weight and buoyancy of riser and its tubing, coating, marine growth, 

attachments, and buoyancy modules 

 Weight of internal fluid 

 Applied tension for Top Tension Risers 

 Installation induced residual loads 

 Thermal loads 

 Drilling operation loadings 

 Soil pressure on buried risers 

 Soil contact loading in SCRs 

 Construction loads 

 Pre loading of connectors 

 External hydrostatic pressure 

 Internal fluid pressure 

 Accidental loads 
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1.2.2. Limit States 

The design of riser is based on considering different load combinations. The riser 

should satisfy the requirements of design for following limit states (DNV-OS-F201): 

 Serviceability Limit State: It requires that the riser must be able to remain in 

service and operate properly during normal conditions. 

 Ultimate Limit State: It requires that the riser must remain intact and avoid 

rupture, but not necessary be able to operate. This limit state usually corresponds 

to the maximum resistance to applied loads with 10-2 annual exceedence 

probability. 

  Accidental Limit State: It is an ultimate limit state due to accidental (infrequent) 

loads. 

 Fatigue Limit State: It is an ultimate limit state from accumulated excessive 

fatigue crack growth or damage under cyclic loading. 

 

The basic procedure required for the fatigue design of the risers is briefly 

described in next section.  

 

1.3. Fatigue Life of SCR 

Usually in design and analysis of the riser, different loading combinations and 

limit states should be examined. One of the limit states for which the riser should be 

carefully analyzed and designed is the Fatigue Limit State. Fatigue is the progressive and 

localized structural damage that occurs when a material is subjected to the cyclic 
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loading.  

The main method for calculating the fatigue life of the riser is the Miner’s rule: 

 

1i

i

n

N
   ( 1.1)

 

where ni and Ni stand for the number of experienced times of a certain stress level and 

the number of allowed times of a certain stress level, respectively. N is usually obtained 

from S-N curves which depend on the material. A typical S-N curve could be seen in 

Figure 1.2.  

Different codes of design and installation of offshore structures, such as API RP2A 

(American Petroleum Institute, 2001), DNV-RP-F204 (Det Norske Veritas, 2001, 2005 

and 2006), and HSE OTO-1999-058 (Home and Safety Executive, 1999) suggest their 

version of S-N curves for SCRs. For example, the equation for the X’ S-N curve 

proposed by API RP 2A is given in Equation 1.2: 

  

 13 3.742.5 10 ,N SCF      ( 1.2)

 

and the equation for the E S-N curve proposed by HSE OTO-1999-058 (Home and 

Safety Executive, 1999 is as follows: 

 

 12 31.04 10 ,N SCF      ( 1.3)
 

where N is the number of allowable loading cycles at a certain stress level,   is the 



6 

 

stress level, and SCF  is the stress concentration factor. 

 

 

 
Figure  1.2. Sample of S-N curve (from DNV-RP-C203) 

 

Since the SCR experiences many levels of stress during its life, a method for 

calculating the number of times of each stress level is required. Rainflow method is the 

most used one. In this study, we assumed that the upper end of the riser experiences a 

periodic heave or surge motion and hence a simple algorithm is used to determine 

number of stress levels, n. 



7 

 

The main cause of fatigue in the SCR involves the variation of the moment along 

the riser due to the oscillatory motion of the riser. Studies show that the most vulnerable 

spots for the fatigue life of a riser are the upper end of the riser where it is attached to the 

vessel, and the TDZ where it contacts the seabed. 

Several methods are employed in order to reduce the fatigue damage in risers. 

Using flex joints –which consist of one or more metal-elastomer bearings – may reduce 

the fatigue damage ate upper end of the riser. Particular design of flex joint allows large 

angular deflections without producing large moments. Figure 1.3 demonstrates a sketch 

of a SCR and its flex joint. Using flex joints, however, does not have a significant effect 

on reducing the moments or the variation of moments, which is the main cause of fatigue 

damage, in the TDZ. 
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Figure  1.3. Schematic of flex joint (API RP 2RD) 
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Some studies show that the Fatigue damage at the TDZ is usually more severe than 

other zones of a SCR (Xu et al., 2006). Various solutions have been suggested to 

increase the fatigue life of the SCR in its TDZ: 

 

 Change in the SCR configurations: upper end angle, and draft 

 Using coating or buoyancy units for lightening the TDZ 

 Using more resistant material in the TDZ: titanium or composite 

 Lazy wave configuration 

 

Bhat et al. (2004) and Aggarwal et al. (2005) give a brief description of these 

methods and their possible effect on the improvement of the fatigue life of the riser.     

 

1.4. Riser-Soil Interaction Modeling 

The model used for analyzing the seabed behavior has a large effect on the 

calculated fatigue life of the SCR. For example, changing the value of the soil stiffness 

in the model may result in drastic change in the fatigue damage. Bridge et al. (2004) 

suggest that for a certain cae study (STRIDE JIP), changing the soil stiffness from 

infinity (rigid seabed) to a small value (100 kN/m/m), will increase the predicted fatigue 

life for 120%. 

Existing approaches for modeling the seabed in interaction with a SCR 

approximate the behavior of the seabed soil by linear or nonlinear spring and dashpot 

which respectively represent the stiffness and damping of the soil. These models are 
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considered to be too simplified to account for certain phenomena resulting from the 

plastic deformation of soil, such as trenching development at the seabed (Leira et al., 

2004).  

This study extends an existing code for the dynamic analysis of risers and mooring 

lines, CABLE3D, to allow for a more realistic behavior of the seabed soil in contact with 

the riser including the development of trenching at the seabed. A degradation P-y curve 

presented by Aubeny et al. 92006) and Aubeny and Biscontin (2008, 2009) is used to 

determine the rate of trench development at the seabed near the TDZ of a SCR 

experiencing forced periodic heave and surge at its upper end. The trenching 

development at the seabed is then considered in the computation of the bending moment 

along a riser, especially near its TDZ. The details of the CABLE3D and the soil-

interaction model are described in Sections 2-4. 
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2. CABLE3D 

 

 

2.1. Introduction 

CABLE3D is a FORTRAN code for computing dynamics of the mooring/riser 

system attached to a floating structure. A nonlinear Finite Element Method is used to 

solve the governing equations of a slender-body (Ma and Webster, 1994). There are two 

different elements in the CABLE3D. First, BEAM element with infinitesimal elongation 

and considering bending stiffness. Second, BAR element with no bending stiffness and 

large-elongation assumption to accommodate the characteristics of elements such as 

springs and polyester ropes that are often used in model tests and mooring systems. The 

equations in this chapter are derived and explained in details by Chen (2002).  

The dynamic equations for small extensible beam with bending stiffness are 

presented (Chen et al., 2001).Then the Galerkin's method is used to discretize the 

dynamic equations in space, resulting into a set of nonlinear 2nd-order ordinary 

differential equations in the time domain. Finally a Newmark- method was employed 

for time-domain integration of the discretized equations. 

 

2.2. Equation of Motion 

In a 3-D Cartesian coordinate system, the instantaneous configuration of a rod is 

expressed in terms of a vector, r (s,t), which is a function of s, the deformed arc length 

along the rod, and time t (Figure 2.1). In Figure 2.1, t, n and b are unit vectors in 
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tangential, normal and binormal directions, respectively, and ex (e1), ey (e2) and ez (e3) 

are unit vectors in the x-, y- and z-axis, respectively. If we assume that the rod is 

inextensible, i.e., arc length s is the same in both deformed and undeformed states. 

The internal state of stress at a point on the rod is described fully by the resultant 

force F and the resultant moment M
~

 acting at the centerline of the rod. On the basis of 

conservation of linear momentum and moment of momentum, we have equations 2.1 

and 2.2: 

 

),( tsrqF   ( 2.1)
 

0
~  mFrM  ( 2.2) 

 

where q is the distributed external force per unit length,   is the mass per unit length, m 

is the external moment per unit length, and a superposed dot denotes differentiation with 

respect to time. The prime denotes the derivatives with respect to s. In above equations, 

the effects of rotary inertia and shear deformations are neglected.  
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Figure  2.1. Coordinate system 
 

For a elastic rod with equal principal stiffness, the bending moment is 

proportional to curvature and directed along the binormal according to the Bernoulli-

Euler theory. In addition, the torsional component H is proportional to the angle of twist 

per unit length and is directed along the tangent. The resultant moment M
~

 can be 

written as: 

 

rrrM  HB )(
~

 ( 2.3)
 

rrrrM  HHB )(
~

  ( 2.4)
 

where H is the torque and B is the bending rigidity. Assuming H=0 and m=0 , (no 

torsion or external moment) and plug '
~
M  into equation 2.2, equations 2.1 and 2.2 

reduced to the expression of F: 

     y

ey (e2)
          s             n

  b
ex(e1)

        r(s,t)
        ez(e3)          t

           o     x

         z
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)(  rrF B   ( 2.5)
 

2 BT   ( 2.6)
 

where ''''2 rr  ,  is the local curvature of  the rod, and Fr  '),( tsT  is the local 

tension. In the derivation the assumption of the inextensibility condition was made:  

  
1 rr  ( 2.7)

 

The equation of motion is finally derived by plugging F of equation 2.5 into 

equation 2.1: 

 

rqrr   )()(B  ( 2.8)
 

Equation 2.7 can be expanded to allow for small extension by: 

  
2)1(  rr  ( 2.9)

 

where /T EA  , EA is the elastic stiffness of the rod. When  is very small, equation of 

motion (2.8) and equation of Lagrange multiplier  (2.6) are valid. 

The external forces applied on a rod consist of gravity forces, hydrostatic and 

hydrodynamic forces. The gravity force on the rod leads to a distributed load given by: 

  

yttt gAts eq ),(  ( 2.10)
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The hydrodynamic forces acting on the rod consist of added-mass force, drag 

force, and Froude-Krylov force. The Morrison equation is used to predict the first two 

terms: 

  
)()(),( raTraNq   fMtfffMnff

I
f CACAts   ( 2.11)

 

1
( , ) ( ) ( )

2
1

( ) ( )
2

D
f f f Dn f f

f f Dt f f

s t D C

D C





  

  

q N v r N v r

T v r T v r

 

 
 ( 2.12)

 

where CMn, CMt, CDn and CDt are the normal added-mass coefficient, tangential added-

mass coefficient, normal drag coefficient and tangential drag coefficient respectively.  

Froude - Krylov force due to sea water outside the rod is: 

)()(),(  raeq ffffyf
KF

f APAgts   ( 2.13)

 

Froude-Krylov force (pressure forces) due to the fluid inside the rod is: 

  
)(),(  req iiyii

KF
i APgAts   ( 2.14)

 

in the above equations: 

 = t At+i Ai, the mass per unit rod (including the internal fluid), 

f (s) = the mass density of the sea water, 

i (s) = the mass density of the inside fluid, 

t (s) = the mass density of the tube, 
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Af (s) = the outer cross-section area of the rod, 

Df (s) = the diameter of the rod, 

Ai (s) = the inner cross-section area of the rod, 

At (s) = the structural cross-section area of the rod, 

vf = the velocity of the sea water (current and wave), 

af = the acceleration of the sea water (current and wave), 

Pf = pressure of the sea water, 

Pi = pressure of the internal fluid, 

T, N = transfer matrices, 

I = identity matrix, 

 

where the subscripts f, i and t denote the sea water, the fluid inside the tube and the tube 

itself. T and N are defined by: 

  
rrT  T  ( 2.15)

 

TIN   ( 2.16)
 

The governing equation is finally obtained as: 

  

qrrrM  )
~

()( B  ( 2.17)
 

where 
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( ) ( )

1
( ) ( )

2
1

( ) ( )
2

f f i i t t y f f Mn Mt f

f f Dn f f

f f Dt f f

A A A g A C C

D C

D C

   





     

  

  

q e I N T a

N v r N v r

T v r T v r

 

 

 
( 2.18)

 

The virtual mass matrix: 

  
TNIM MtffMnffiitt CACAAA   )(  ( 2.19)

  

2)(
~  BAPAPT iiff   ( 2.20)

 

and assume curvature  is small, then  can expressed as: 

  

EA

APAP

EA

T iiff 




~

 ( 2.21)

 

The term in the parentheses in equation 2.20 is known as the “effective tension”. 

 

2.3. Numerical Implementation 

2.3.1. Finite Element Model 

The motion equation and constraint condition for a rod of small elongation are 

summarized in equations 2.9 and 2.17. 

The procedure for numerical implementation for the equations of small elongation 

element is described here. The Galerkin's method is used to discretize the partial 

differential equations of motion for (2.17) and the constraint equation (2.9) in space, 
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resulting in a set of nonlinear 2nd-order ordinary differential equations in the time 

domain.  

Two types of shape functions are used. Hermite cubics a (s) for describing the 

shape of the rod and quadratics p(s) for the parameters of ~ , B, q, M, etc. The Hermite 

cubic shape function a(s) are: 
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and the quadratic shape function p(s) are: 

 

)12()(

)1(4)(

231)(

3

2

2
1









p

p

p

 (2.23)

 

where  is a nondimensional coordinate given by =s/L, L is the unstretched length of 

the element. Therefore, the position of the rod in the inertia coordinate system, the 

Lagrange multiplier ~ , the distributed loading and the mass matrix are approximated as 

(tensor summation rule is employed): 
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where n = 1 - 3, i = 1 - 4 and m = 1 – 3. With the special selection of the shape functions 

the coefficients in the summation (2.42) are given by: 
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and 
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To discretize the governing equation, we rewrite equation (2.19) as follows: 

 

0)
~

()(  qrrrM B  (2.31)
 

Equation 2.31 may be reduced to a set of ordinary differential equations using 

Galerkin's method. Multiplying both side of the equation with ai(s) and integrating it 

with respect to s from 0 to L for an element of the rod with length of L: 
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Integrating the above equation by parts results in equation 2.33: 

 

  0)()
~

()(
0

 dssaB i

L
qrrrM   (2.33)

 

or, 
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The first term on the right-hand side of the equation is related to the moments at 

the ends of the element, and the second term (in curly brackets) is the forces at the ends 

of the element. The right-hand side terms are called generalized forces fi, which can be 

expressed as: 
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Inserting the expression (2.24) and the shape functions (2.22) and (2.23) into 

(2.34), we obtain the following set of ordinary differential equations for a small 

elongation element with prescribed bending stiffness: 
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Similarly, we obtain the discretized form of the constraint equation (2.9): 
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where the summation algorithm is employed. i and k run from 1 to 4; j, l, m and n runs 

from 1 to 3; and 
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In equation 2.40, fin is the generalized internal forces at the two ends of an element. 

For two smoothly connected elements (n) and (n+1), the continuity of a rod yields: 
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where L(n) and L(n+1) are the length of (n) and (n+1) elements respectively. If no 

concentrated mass, forces and moments are applied at the node connecting two elements, 

then the generalized internal forces cancel out when two adjacent elements connected. 

This condition can be written as: 
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At free ends of the first and last elements, it is necessary to supply the boundary 

conditions, such as, hinged boundary conditions. If N elements are used to describe a 

line in three dimensions, then the procedure results in 15+8(N-1) independent equations 

and coefficients. 

 

2.3.2. Static Problem 

For a static problem, all the terms related to the time derivatives are zero. 

Therefore, equation 2.40 is reduced to: 

 

inmnimknmikmknmikm fquuB   ~
 (2.45)

 

The Newton's method is employed to solve the nonlinear equations. Let u0 and 0 
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a first guess, then the updated values of u and  are: 
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Plugging the new expression of u and ~  into Equation (2.45) and discarding all 

the high order terms, the static problem is then represented by the following equations 

for small elongation elements. 
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where 
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Equations (2.47) and (2.48) are written in a matrix form ax=b for each element, 

where the unknown vector x consisting of the 15 unknowns mentioned above is defined 
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as: 

 

x = (u11, u12, u13, u21, u22, u23, 1, 2, u31, u32, u33, u41, u42, u43, 

3)
T.  

 

Applying boundary conditions for the two neighboring elements (2.43) and (2.44), 

the generalized internal forces cancel out. At free ends of the first and last elements, it is 

necessary to supply the boundary conditions.  If N elements are used to describe a line in 

three dimensions, then the procedure results in 15+8(N-1) independent equations and 

coefficients. Then the global system of equations AX=B are formed. Gauss elimination 

is used to solve the system of equations. 

 

2.3.3. Time Integration 

The nonlinear differential dynamic equations are solved using Newmark- 

method. At t = 0, or time step K = 0: 

 

)0()0()0()0()0()0()0( ~
inmnimknmikmknmikmkjnjmikm fquuBuM     (2.50)

 

where u(0) and )0(~  are the solution of the static problem, and )0(u  is the unknown. When 

dynamic analysis starts from a static initial equilibrium position and a ramp function is 

applied to the external forces, 0)0( u . The initial condition gives: 
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0)0( u  (2.51)
 

at time step K (>0), u(K), )(Ku , )(Ku  and )(~ K  are predicted by: 
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based on u(K), )(Ku  and )(Ku , M(K) and q(K) can be computed. 

Out of balance dynamic force for a small elongation element is hence: 
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Corrections for displacement and ~  of a small elongation element can be obtained 

by solving the following equations (each element matrix is sequentially integrated into a 

global matrix):  
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Finally, u(K), )(Ku , )(Ku  and )(~ K  are updated by: 
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The iteration of Equation (2.53) is terminated if u(K) and )(~ K  are small enough. 

Then step K+1 of Equation (2.52) starts. 

 

2.3.4. Bottom Support and Bottom Friction 

The sea bottom is modeled by a spring system in the static simulation and a spring-

damping system in the dynamic simulation of mooring lines. 

The distributed force due to the spring (elastic sea bottom) is in vertical direction: 
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where D is the distance from the centerline of the rod to the most outer fiber of the rod 

(mooring line); Dbtm is the coordinate of the ocean floor (in y-axis); and S is the 

submerged weight per unit lengths and described in Equation (2.58) for the case with 
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inside fluid and Equation (2.59) for the case without inside fluid: 

 

ffiitt gAgAgAS    (2.58)
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Considering the ocean bottom support force, an extra term representing the 

distributed ocean bottom support force is added to the equation of motion. Multiplying 

both sides of the Equation (2.57) by the shape function a(s) and then integrating it with 

respect to s from 0 to L of an element touching the bottom: 
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The distributed force due to damping is also in vertical direction: 
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where Cc is the critical damping: 
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Bottom friction is only considered in dynamic simulation of mooring lines. It 

could be modeled as:  

 














0)(0

0)(
)1(

btmy

btmyfFrict

DD

DDfSC
q

er

er
r

  (2.64)

 


















vt

vt
v

t

vt

f

Cv

Cv
C

v
Cv

C

1

1

 (2.65)

 

im

m

f

L

i
Frict SfCdssaq 

 










 )1(
)(

0

r
 (2.66)

 

where vt is the tangential velocity, Cv the tolerance of tangential velocity and f the 

dynamic bottom friction coefficient. 

Due to the presence of the ocean bottom, the shape coefficients  and  are no 

longer constants for the portion of the line around TDP and are integrated over the 

portion of an element that contacts with the sea bottom. 
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3. NON-DEGRADATION SOIL MODEL 

 

 

3.1. Model Description 

A non-degradation P-y curve was proposed earlier for modeling the interaction 

between the riser and the seabed which is based upon related laboratory tests and 

numerical simulations (Dunlap et al., 1990; Willis and West., 2001; Giertsen et al., 2004; 

Aubeny and Biscontin, 2008). This curve describes important phenomena occurring 

during the interaction between SCR and the seabed, such as elastic rebound, riser-soil 

separation, re-contact of soil and the riser and the plastic penetration. In a typical cycle 

of large loading-unloading-reloading, the P-y curve may be divided into four different 

paths (as shown in Figure 3.1). The first path describes the initial loading, where the P-y 

relation follows along the backbone curve from Point 0 to 1. It depicts the initial 

penetration of a riser into virgin soil. The penetration (y at Point 1) is determined by 

equating W and P, where W is the vertical force applying on the seabed (usually the 

submerged weight of the riser per unit length) and P is the soil resistance governed by 

the backbone curve (Bridge et al., 2004). The initial penetration is usually much smaller 

than that of the field observations made in the Gulf of Mexico. The observation indicated 

that the maximum penetration of a riser is in the range of 4-5 riser diameters a few 

months after the installation (Willis and West, 2001; Thethi and Moros, 2001). The 

second and third path together describe the uplift (unloading) of the riser, corresponding 

to the P-y curves from Point 1 to 2 and then from Point 2 to 3, respectively. When the 
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riser is being uplifted, the magnitude of the soil resistance to the riser reduces more 

quickly than the increase in the corresponding resistance during the initial penetration. 

After the resistance reaches zero, the soil may develop the suction (Dunlap et al., 1990; 

Bridge et al., 2004). The maximum suction (at Point 2), however, is significantly less 

than that of the corresponding maximum resistance (at Point 1). After Point 2, the 

suction of the soil diminishes and reaches zero at Point 3 when the riser completely 

separates from the soil. The fourth path describes the reloading of a riser. When the riser 

is being pushed again into the soil after the uplift, the riser will follow the curve from 

Point 3 to 1, which is much steeper than the path of initial loading (backbone curve). If 

the riser continues to experience the periodic loading cycle, the P-y relation will repeat 

the loop enclosed by the second, third and fourth path under the assumption of a non-

degradation model. It should be noted that the loop area is greatly exaggerated in Figure 

3.1 for the purpose of demonstrating.  
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Figure  3.1. Typical P-y curve (extreme condition) 
 

The empirical equations of backbone, elastic rebound, partial soil-pipe separation 

and re-contact paths of the curve were proposed by Aubeny and Biscontin (2008). They 

will be employed in this study. For the completeness, they are briefly described below. 

More detailed information about these empirical equations can be found in Jiao (2007), 

and Aubeny and Biscontin (2008, 2009). 

The backbone curve is typically approximated by Equation (3.1), 

 

 0p gP N D S S y   (3.1)

 

where pN  is a dimensionless bearing factor, D  the external diameter of the riser, 0S the 

shear strength of soil at the seabed level, gS shear strength gradient and P  the soil 
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resistance to the riser per unit length.  

The elastic rebound path (from Point 1 – 2) is described in Equations (3.2), (3.3), 

(3.4) and (3.5): 
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where 0k  is approximately related to soil undrained elastic modulus uE  through: 
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2 1 ,P P  (3.5)
 

where 1P  and 1y are the resistance and penetration to seabed soil at Point 1, which are 

determined based on the backbone curve, and 2P  the maximum suction.   and   are 

dimensionless parameters and equal to 0.433 and 0.203, respectively (Jiao, 2007). The 

value of   indicates that the maximum suction is about 20% of the maximum resistance. 

The partial soil-pipe separation path (from Point 2 -3) is given by Equations (3.6) –
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(3.8), 

 

3

0 02 2 3
2 4 m m

y y y yP P
P

y y

     
      
     

 (3.6.a)

 

where 
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where   is a dimensionless parameter and equal to 0.661.  

 

Finally, the equations describing the re-contact path of the curve are given by, 
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where 
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  (3.9.c)

 

The curve in Figure 3.1 applies to the case that a riser experiences a periodic 

oscillation, that is, full contact and then full separation and the full contact again. If 

before the completion of a periodic oscillation the reversal motion of the riser takes 

place, the P-y curve will follow the dash line as depicted in Figure 3.2 The empirical 

formula for the dash curves was also described in Aubeny and Biscontin (2008), 
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(3.10)

 

where rP  and ry  are the force and penetration at a reversal point, and   is a sign 

parameter (  =1 for loading and  = -1 for unloading). It should be noted that this study 

assumes periodic oscillations of a riser and hence only the fully loading P-y curves are 

employed.  
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Figure  3.2. P-y curve (deflection reversals) 
 

 

3.2. Extension of the Existing Version of CABLE3D Code 

3.2.1. Soil Stiffness 

In the original version of the CABLE3D, the resistance of seabed soil to a riser is 

modeled by a linear spring-dashpot system. The linear stiffness of the spring is chosen 

such that the penetration of a riser to the seabed is equal to R (the outside radius of the 

riser). This assumption does not take the effect of soil characteristics into account. 

Figure 3.1 shows that the soil stiffness is varying significantly in different stages of 

loading-unloading. Therefore incorporating a constant linear stiffness for soil into the 

model does not represent the true behavior of the soil. However, using the P-y curve, we 
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can have a better estimate of the equivalent soil stiffness. This will be an intermediate 

stage between the original version of the CABLE3D and the more complicated extension 

in which soil properties are derived from a P-y curve in every step. 

Based on a non-degradation model assumption and regular motion of the upper-

end of the riser, the P-y curve does not vary significantly between consecutive cycles. 

The equivalent stiffness of the soil is derived by calculating the slope of the line between 

the point of initiation of elastic rebound and the point of maximum suction (points 1 and 

2 in Figure 3.1.) Notice that the distance between the intersection of the elastic rebound 

curve and point 3 in Figure 3.1 is exaggerated for better demonstration. Therefore, 

choosing different points on the P-y curve does not result in drastic difference in the 

estimation of the equivalent stiffness (Figure 3.3.) 

 

Figure  3.3. Equivalent soil stiffness 
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In the original version of CABLE3D it is assumed that the seabed has the stiffness 

of S/R, where S is the submerged weight of the riser and R is its external radius. 

Therefore the penetration of the riser under its own weight always would be equal to the 

radius of the riser. The supporting force is calculated from Equation (2.57). 

In order to add the soil stiffness to the model, Equation (2.57) is modified as 

follows: 

 

 ( ) ( ) 0

0 ( ) 0

y btm y btmSpring

y btm

k R D R D
q

R D

        
   

r e r e

r e
 (3.11)

 

where k  is the equivalent soil stiffness, R  is the external radius of the riser, btmD  is the 

coordinate of the ocean floor (in y-axis), and yr e  is the vertical coordinate of the 

centerline of the riser. 

       Since k  is unknown at the beginning, the value of 0 ( )y btmy R D   r e is estimated 

using the backbone curve (Equation 3.1) and assuming that supporting force ( P ) is 

equal to the submerged weight of the riser. The value of P  is then modified by adding 

the vertical components of shear and tensile forces. As a result, a new value for 1y  will 

be acquired from Equation (3.1). Equation (3.11) is modified accordingly and iteration is 

continued until 1i iy y   . 

   

3.2.2. Damping Coefficient 

Assuming a simple spring-dashpot model, the critical damping coefficient is equal 
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to: 

 

2cC k m  (3.12)

 

where k  is the stiffness and m  is the mass. 

In the original version of the CABLE3D, since the stiffness is equal to S/R, the 

critical damping coefficient is calculated using the following equation: 

 

2 /cC S R  (3.13)

 

where S is the submerged weight of the riser per unit length,  the density of riser per 

unit length, and R  is the radius of the riser . The damping ratio (the ratio of the damping 

coefficient to the critical damping coefficient) is also assumed to be always equal to 1. It 

should be noted that the above choice of damping coefficient does not allow for different 

properties of seabed soil. To allow for the support of the seabed described by the P-y 

curve and actual soil properties, the existing version of CABLE3D (Equation 2.62) is 

extended in this study, and Aubeny and Biscontin’s model for relationship between soil 

penetration and supporting force are adopted.    

Using the hysteresis loop (1-2-3-1 in Figure 3.1) the dissipated energy in one cycle 

could be calculated by integrating the supporting force with respect to vertical 

displacement, y. The equivalent viscous damping is then calculated by equating the 

dissipated energy from P-y curve to the equivalent elastic energy. A procedure similar to 
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what is recommended by DNV F105 is followed to obtain the equivalent damping ratio: 

 

hystersis

elastic

1 E

E



  (3.14)

 

where Ehysteresis and Eelastic are depicted in Figure 3.4. 

 

 

Figure  3.4. Equivalent soil damping 
 

 

Knowing the area within the P-y curve and assuming the equivalent soil stiffness, 

the equivalent soil damping ratio is obtained.  
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3.3. Case Studies 

3.3.1. Riser Characteristics 

Two typical SCRs employed in the previous studies (Pesce et al., 2006; Xu et al., 

2006) were selected for our numerical simulation. Their characteristics are summarized 

in Table 3.1. For simplification, it is assumed that the upper end of a riser is connected to 

a vessel through a hinge. It is noted that special joints, such as Flexjoints®, were 

employed as the connector between a riser and a vessel to reduce the bending moment of 

the riser near its upper end. Similar to a hinge joint, a Flexjoint allows a riser to rotate 

relatively with respect to the vessel. However, different from the former, the latter 

applies certain rotational stiffness at the upper end of a riser. Because the upper end 

connector is far away from the TDZ of a riser deployed in deep water, our simplification 

will not have significant effect on the bending moment of a riser near its TDZ. 
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Table  3.1. Properties of two risers 
 

Property unit Riser 1 Riser 2 

Length m 5000 8000 

Water Depth m 1800 3000 

Wall Thickness mm 19.05 25.5 

Internal Diameter m 0.1651 0.355 

External Diameter m 0.2032 0.406 

Axial Rigidity, EA kN 2.314*10 6 6.402*10 6 

Bending Stiffness, EI kN.m2 9915 116360 

Submerged Weight kN/m 0.727 1.894 

Mass Kg/m 108 238.6 

Top Tension kN 1950 4750 

Hang off angle (wrt vertical) deg 20 22 

 

 

3.3.2. Soil Properties 

It is known that the shear strength of the soil increases linearly with depth. (Willis 

and West, 2001) 

 

0 gS S S y   (3.15)

 

where S  is the shear strength of the soil at the depth y measured from the surface of the 

seabed, and 0S  and gS were defined in Equation (3.1). Table 3.2 presents the three sets 

of values for 0S  and gS  that represent three typical ranges of seabed soil (soft clay) in 
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the Gulf of Mexico. By default the median range of soil property will be used in the 

following numerical simulation, unless the other two ranges for soil are specially 

mentioned.  

 

Table  3.2. Typical ranges of shear strength of seabed soil (soft clay) in the Gulf of 
Mexico (Willis and West, 2001) 

 

Soil classification S0 (kPa) Sg (kPa/m) 

Lower range 1.2 0.8 

Median range 2.6 1.25 

Upper range 3.8 2.0 

 

 

3.4. Approximation of a Non-degradation P-y Curve 

In using CABLE3D to simulate the interaction between a riser and seabed soil, we 

assumed that the upper end of the riser was forced to have a regular heave or surge, 

presumably resulting from the oscillation of a floating surface structure, such as a semi-

submersible, TLP and SPAR. It was found that to model the soil resistance to a riser 

exactly following a P-y curve is intensive in computation owing to the requirement of a 

small time step for the sake of numerical stability. Hence, first we explore if it is feasible 

to approximate the non-degradation P-y curve by a spring-dashpot model with an 

equivalent linear (or nonlinear) stiffness and damping coefficient (Nakhaee and Zhang, 
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2007). The equivalent linear/nonlinear stiffness is approximated by the center line of the 

loop in the P-y curve, which connects Point 1 - 2. Hence, the equivalent stiffness allows 

for the suction of the soil during the uplifting of a riser. The damping coefficient (in 

terms of the ratio to the critical damping) is determined by matching the amount of 

energy consumed by the spring-dashpot model to the energy loss represented by the area 

of the loop in a P-y curve. Because the penetration of a riser varies along its TDZ even if 

the heave or surge amplitude at the upper end remains constant, the area of the loop also 

varies along the TDZ. Thus, given the motion amplitude at the upper end of a riser, the 

damping coefficient was attempted by two different matching techniques. In using the 

first one, the damping coefficient is obtained by matching with the area of the loop 

where the greatest penetration of the riser into the seabed occurs. Because the loop area 

is the greatest at the location of the greatest penetration, the damping coefficient derived 

using the first technique is likely overestimated. The second technique is to match the 

average area of P-y loops at three points evenly distributed along the TDZ (sketched in 

Fig. 3.5). The damping coefficient derived using the second technique is in general 

smaller than that obtained using the first technique.  

 

 

Figure  3.5. Sketches for 1-point (at Node 1) and 3-point matching technique for 
determining damping coefficient. 
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To examine whether or not the simplified spring-dashpot model is able to 

approximate the related P-y curve, the dynamics of the two risers described in Table 3.1 

was numerically simulated in the time domain when their upper ends are forced to have 

regular heave with 12 seconds period . To examine the different amplitudes of heave on 

the results of simulation, four heave amplitudes ranging from 0.5 – 5.0 m were 

considered in the simulation. Each simulation was made using three different extended 

versions of CABLE3D. The first allows for the support of seabed soil exactly following 

the non-degradation P-y curve, while the other two use the same equivalent stiffness but 

different damping coefficients derived respectively by one-point and three-point 

matching techniques described earlier. For an oscillating riser, the tension at its upper 

end, and the changes in its suspended length and bending moment at a reference point 

near the TDZ - where they reach maximum - are the important factors considered in the 

design. The related results of Riser 1 obtained using the three different extended versions 

of CABLE3D are summarized and compared in Tables 3.3 and 3.4.  
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Table  3.3. Results of Riser 1 obtained using three different extended versions of 
CABLE3D 

 

 
unit  Riser 1  

Heave amp. m 0.5 1.0 2.0 5.0 

Max Penetration m 0.0407 0.0410 0.0418 0.0431 

Equivalent damping ratio (using 1 point) - 21.4 23.2 23.9 26.8 

Equivalent damping  ratio (using 3 points) - 18.9 20.4 21.0 23.7 

Moment variation at reference point (whole 
curve) 

kN.m +2.77 
-2.71

+4.72 
-4.95 

+7.68 
-7.33 

+14.24 
-13.92

Moment variation at reference point (1 point) kN.m +2.51 
-2.42

+4.45 
-4.70 

+7.23 
-6.92 

+14.61 
-14.11

Moment variation at reference point (3 points) kN.m +2.88 
-2.86

+4.98 
-4.87 

+7.54 
-7.29 

+14.90 
-14.62

Variation of suspended length (whole curve) m ±1.88 ±3.91 ±8.12 ±23.11 

Variation of suspended length  (1 point) m ±1.81 ±4.01 ±8.69 ±25.35 

Variation of suspended length (3 points) m ±1.86 ±4.04 ±8.24 ±25.02 

Variation of tension at upper end (whole 
curve) 

kN ±10.4 ±23.4 ±40.7 ±128.14 

Variation of tension at upper end (1 point) kN ±10.0 ±24.2 ±41.3 ±139.0 

Variation of tension at upper end (3 points) kN ±10.4 ±24.1 ±40.9 ±135.2 
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Table  3.4. Results of Riser 2 obtained using three different extended versions of 
CABLE3D 

 

 
unit  Riser 2  

Heave amp. m 0.5 1.0 2.0 5.0 

Max Penetration m 0.192 0.199 0.207 0.218 

Equivalent damping ratio (using 1 point) - 24.2 26.3 30.3 38.8 

Equivalent damping ratio (using 3 points) - 19.8 22.5 25.7 32.1 

Moment variation at reference (whole curve) kN.m +27.11 
-26.61

+45.10 
-44.83 

+72.41 
-72.02 

+135.09 
-133.98

Moment variation at reference (1 point) kN.m +27.82 
-26.79

+45.34 
-44.08 

+73.12 
-71.84 

+137.13 
-134.19

Moment variation at reference (3 points) kN.m +27.42 
-26.80

+45.45 
-45.01 

+73.69 
-72.24 

+136.19 
-134.11

Variation of suspended length (whole curve) m ±3.84 ±7.21 ±13.33 ±34.15 

Variation of suspended length  (1 point) m ±3.72 ±7.11 ±13.09 ±33.86 

Variation of suspended length (3 points) m ±3.94 ±7.26 ±13.64 ±34.35 

Variation of tension at upper end (whole 
curve) 

kN ±33.3 ±51.3 ±89.7 ±216.1 

Variation of tension at upper end (1 point) kN ±32.7 ±51.1 ±89.8 ±216.6 

Variation of tension at upper end (3 points) kN ±33.4 ±51.7 ±91.0 ±217.5 

 

The maximum penetration into the seabed increases slightly with the increase in 

the heave amplitude at the upper end of the riser, which is expected. The maximum 

penetrations predicted using the three different versions of CABLE3D are virtually the 
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same and given in the third row of the table. In the fourth and fifth rows listed are the 

equivalent damping coefficients, which were obtained using one-point (first) and three-

point (second) techniques, respectively. As expected, the values in the fourth row are 

greater than the corresponding ones in the fifth. The table also shows that the equivalent 

damping coefficient depends upon the maximum penetration. The larger the maximum 

penetration is, the larger the corresponding equivalent damping coefficient. The 

variation of bending moments reaches the maximum slightly above the TDZ. The 

variations in the maximum bending moment obtained using three different versions are 

given in the sixth to eighth rows. The comparison shows that the agreement is 

satisfactory, especially between those in the sixth and eighth rows, indicating the three-

point match technique is better in determining the equivalent damping coefficient. The 

variations in the suspended riser lengths are given in the ninth to eleventh rows and those 

of the tension at the upper end of the riser in the twelfth to fourteenth rows. The 

comparisons of predicted variations of suspended lengths and tensions show the similar 

trend as in the case of predicted variation in bending moment. Therefore, in later 

simulations the three-point matching technique will be used to determine the damping 

coefficient of seabed soil.   

Tables 3.5 and 3.6 demonstrate the effect of different soil types on the values of 

stiffness and damping. 
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Table  3.5. Values of equivalent stiffness and damping ratio for different soil types 
(Riser 1, Heave amplitude 1m) 

 

 
unit  Lower range 

soil
Median range 

soil
Upper range 

soil

Equivalent damping ratio 
(using 3 points) 

- 36.4 20.4 13.9 

Equivalent stiffness kN/m/m 98 137 222 

 

 

Table  3.6. Values of equivalent stiffness and damping ratio for different soil types 
(Riser 2, Heave amplitude 1m) 

 

 
unit  Lower range 

soil
Median range 

soil
Upper range 

soil

Equivalent damping ratio 
(using 3 points) 

- 41.0 22.5 15.1 

Equivalent stiffness kN/m/m 103 131 201 

 

It should be notified that the value of equivalent stiffness for a certain soil type but 

different riser characteristics does not vary significantly. The change of equivalent 

stiffness for lower range of shear strength is 11.2%. This change for median range and 

upper range of soil shear strength is 9.3% and 7.9% respectively. However the values of 

equivalent damping ratio are significantly different for two risers. According to DNV-

F105, the equivalent damping ratio is highly dependent on the characteristics of riser 

such as riser’s diameter. 
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4. DEGRADATION SOIL MODEL 

 

 

4.1. Model Description 

The non-degradation model described in the previous chapter neglects plastic 

deformation effects of cyclic loading on seabed soil. It states that a riser follows the 

same loop in a P-y curve repeatedly if cyclic loading remains the same. 

In reality, cyclic loading degrades the soil condition. After many cycles of impact 

of the pipe on the soil, a plastic deformation occurs. This explains why the observed 

penetration of a riser into the seabed is much greater than computed penetration 

governed by the backbone curve or P-y curve. In addition, tri-axial shear tests show that 

the stiffness of cohesive soils is reduced with the increase in the number of loading 

cycles (Idriss et al., 1978). The degradation mechanism involves soil remolding in each 

downward and upward motion that may reduce the stiffness and strength of the soil 

(Fountaine et al., 2004). One explanation for the reduction is that when a pipe is pushed 

back toward soil after separation, the water underneath the pipe is pushed downward. 

The water is mixed with the soil and causes the erosion of the seabed (Clukey at al., 

2005). 

The degradation model (Aubeny and Biscontin, 2008) used in this study neglects 

the effects of water entrainment, reconsolidation, soil erosion and thixotropy on seabed 

soil. However, it considers the plastic deformation and consequently trenching 

development on the seabed.   
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The trench at the seabed smoothes the curvature of a riser near its TDZ, and thus 

reduces the maximum (spatial) change rate of bending moment near the TDZ and the 

variation of bending moment when the riser oscillates. 

In order to estimate the trenching development on the seabed under cyclic loading, 

laboratory tests were conducted and an empirical formulation for the P-y curve 

considering the trench development in the seabed has been proposed by Aubeny and 

Biscontin (2008). 

Figure 4.1 illustrates a P-y curve considering the soil degradation under multiple 

periodic loading cycles. Each individual P-y loop is similar to the corresponding non-

degradation P-y loop except that the deformation of the soil. That is, y gradually 

increases after each loading cycle and consequently the loops translate to the right 

gradually. 

It should be noted that the increase in deformation after each cycle plotted in the 

figure was greatly exaggerated for the purpose of demonstration. The plastic 

deformation of the seabed after one loading cycle is too minute to be discerned. 

However, the accumulation of the plastic deformation after many cycles is substantial 

and cannot be neglected. The estimate of the accumulation of the plastic deformation 

was empirically formulated and is briefly described below (Aubeny and Biscontin, 

2008). 
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Figure  4.1. Sketch of a degradation P-y curve under multiple periodic loading 
cycles 

 

The loop corresponding to one loading cycle can be defined by three points (1, 2, 

and 3) similar to a non-degradation P-y curve. The superscripts in the figure denote the 

different loading cycles but of the same magnitude of loading.  After nth cycle, instead of 

at Point 11, the end of reloading curve moves to a control Point X (yn, Pn) due to the 

degradation of soil. The maximum penetration yn in the nth cycle depends on an energy 

dissipation factor (
n ) and initial penetration 1

1y .  

 

1 0.5
1

n
ny y      ( 4.1)

 

where   is the degradation control factor (in this study, 0.003  ), and 
n  is given by 
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the equation below: 

1

n

n i
i

y


   (4.2)

 

1 3
i i iy y y    (4.3)

 

iy  represents the maximum variation of penetration in the thi cycle. Considering 

that the loops in the P-y curve belonging to different cycles with the same loading 

pattern are almost identical except for a translation in y, the change in equivalent 

stiffness and damping coefficient are essentially negligible provided that the plastic 

deformation is subtracted from the current penetration.  

For the degradation soil model, the elastic rebound path (from Point 1i – 2i) is 

described in a hyperbolic form: 
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1
/
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i
i y y

P P y y
k P

 
      

 (4.4)

 

where   is a dimensionless parameter equal to 0.433 (Jiao, 2007). 

The partial soil-pipe separation path (from Point 2i -3i) is given by Equations 4.5-

4.8, 
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 (4.5.a)
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3 2 1 2( )i i i iy y y y    (4.6)
 

2 1
i iP P  (4.7)

 

3 0iP   (4.8)
 

where   and   are dimensionless parameters and equal to 0.661 and 0.203, respectively 

(Jiao, 2007). 

Finally, the equations describing the re-contact path of the curve are given by, 
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Like the case of non-degradation model, if before the completion of a periodic 

oscillation the reversal motion of the riser takes place, the P-y curve will follow a curve 

as described by Aubeny and Biscontin (2008), 
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where 
rP  and

ry are the force and penetration at a reversal point, 
0k is equal to 

0660 S , 

and  is a sign parameter ( 1   for loading and 1    for unloading). 

 

4.2. Numerical Implementation 

To allow for the development of a trench on the seabed, the existing version of 

CABLE3D is extended (Nakhaee and Zhang, 2008). There are two major steps made in 

the extension. First, an individual loop in the P-y curve corresponding to an individual 

loading cycle is approximated by an equivalent linear or nonlinear stiffness and damping 

coefficient, similar to the approximation made in a non-degradation P-y curve described 

earlier.  

Since the loops in a degradation P-y curve corresponding to different cycles but of 

the same loading magnitude are similar except for a translation in y, the equivalent 

stiffness and damping coefficient of all these loops are assumed to be time independent. 

Secondly, the plastic deformation of the seabed beneath a riser at a later loading cycle 

depends upon the number of loading cycles conducted before. That is, y* at the nth 

loading cycle (see Fig. 4.1) is calculated as a function of number (n) based upon 

Equations 4.1 – 4.3.  

It is noted that the change in the plastic deformation is insignificant after just a few 

loading cycles. Hence, for simplification only after hundreds of cycles the trench depth 
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along the TDZ is calculated. In this study, the trench depth beneath the riser is updated 

every one hundred loading cycles. Then the bending moment, tension and bending 

moment variation along the riser are calculated with respect to the updated (trenched) 

seabed. To avoid the discontinuity in the shape of the trench, a smooth curve of normal 

distribution shape is used for fitting the trench depth at different nodes of a riser along its 

TDZ.  



57 

 

5. TRENCHING EFFECTS 

 

 

5.1. Case Studies 

The two SCRs described in Table 3.1 are also employed in the simulation using 

the version of CABLE3D extended to allow for a degradation P-y curve. Considering 

that the dynamics of a riser varies significantly near its TDZ, we reduced the element 

size along a riser from 30 m in its suspended section to only 10 cm in the vicinity of its 

TDZ. However, in later description of simulation results, nominal nodes of uniform 

segment length (3.3 m for Riser 1 and 5m for Riser 2) will be adapted. It should be noted 

that the locations of the maximum bending moment, maximum variation of the bending 

moment, the deepest trench depth near the TDZ, can be actually pinpointed with an error 

less than 10 cm because the distance between two nodes near the TDZ is actually 10 cm 

in the simulation.  

Figures 5.1 and 5.2 respectively show the gradual increase in the trench depth 

under Riser 1 and 2 with the increase in time (or the number of loading cycles). In both 

cases, the cyclic loading applied on the seabed results from a forced periodic heave of 

amplitude 1 m and period 12 s at the upper end of the risers. It is observed that initially 

the rate of trenching is relatively fast but slows after many cycles. This is expected 

because the trenching development is related to the square root of 
n  as shown in 

Equation 4.1. Although the rate of trenching slowed from 180-hour (54,000 cycles) to 

300-hour (90,000 cycles), the trenching development still remains noticeable. It is also 
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noticed that at the beginning the trench is almost symmetric with respect to the center of 

the TDZ (located at 80 cm left from Node 17 in Figure 5.1 and 40 cm left from Node 57 

in Figure 5.2). After 100 hours of cyclical loading, the deepest point of the trench 

(located right at Node 17 in Figure 4.2 and 10 cm right from Node 57 in Figure 5.2) 

moves slightly towards the left end of the TDZ (close to the suspended portion of a 

riser). The trench depth in the case of Riser 2 is greater than that in the case of Riser 1. It 

is expected because the submerged weight per unit length of Riser 2 is heavier than that 

of Riser 1. The simulation also confirms our assumption that the trenching between two 

consecutive loading cycles is extremely small (less than 0.002 mm per loading cycle in 

the case of Riser 1 and less than 0.005 mm in the case of Riser 2, when heave amplitude 

is 1m and period 12s). However, after several hundreds of cycles the trench development 

on the seabed is noticeable as shown in both figures. To verify whether or not it is 

sufficient to up-date of trench depth for every 100 loading cycles, the corresponding 

numerical simulation has been conducted based upon the up-date of trench depth for 

every 50 cycles. It is found that the related numerical results are virtually the same. 

Therefore, it is justified to up-date the trench depth (or plastic deformation) at the seabed 

for every 100 loading cycles. 



59 

 

 
 

Figure  5.1. Trench development under Riser 1 (heave amplitude = 1m, period = 
12s, median range of shear strength) 
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Figure  5.2. Trench development under Riser 2  (heave amplitude = 1 m, period  = 
12 s, median range of shear strength) 

 

 

Figures 5.3 and 5.4 respectively depict the maximum variation of bending moment 

near the TDZ of Riser 1 and 2 as a function of time after they experience forced heave. 

Both figures show that the maximum variation of bending moment near the TDZ 

gradually reduces due to the development of trenching. It should be noted that the 

maximum variation in bending moment in the TDZ shown in Figures 5.3 and 5.4 does 

not always occur at the same location during the development of trenching. As 

demonstrated in Figure 5.5, at different nodes the variation of the bending moment 
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decreases or even increases with the development of trenching. Hence, the maximum 

variation of bending moment near the TDZ likely occurs at the different nodes during 

the trenching development. In the case of Riser 1, after 140-hour cycle loading the 

location of the maximum variation of bending moment shifted from Node 34 to Node 

33. Figure 5.5 shows the variation of bending moment at Node 34 reduces from 5.68 

kN.m to 5.05 kN.m. At Node 33, however, the variation increases from 4.52 kN.m to 5.2 

kN.m.  Thus, at this moment Node 33 becomes the location of the maximum variation of 

bending moment near the TDZ. It should be noted that although the variation of bending 

moment at Node 33 has increased and becomes the maximum near the TDZ it is still 

smaller than the initial maximum variation of bending moment (5.68 kN.m at Node 34). 

The shift in the location of the maximum variation of bending moment is related to the 

deepening and increasing the length of the trench.  
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Figure  5.3. Maximum moment variation along Riser 1 near TDZ (heave amplitude 

= 1 m, period = 12 s, median range of shear strength) 
 

 

Figure  5.4. Maximum moment variation along Riser 2 near TDZ (heave amplitude 
= 1 m, period = 12 s, median range of shear strength) 
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Figure  5.5. Moment variation in different nodes along Riser 1 (heave amplitude = 1 
m, period = 12 s, median range of shear strength) 

 

 

To explore the effect of different soil shear strengths on the maximum variation of 

bending moment, we also conducted numerical simulation on Riser 2 interacting 

respectively with the soils of three different ranges of stiffness, namely, lower range, 

median range and upper range as quantified in Table 3.3. For the same forced heave of 

amplitude (0.5m) and period (12s) at the upper end of Riser 2, the deepest trench is 

developed on the seabed of soils of lower range stiffness. As expected, the deepest 

trench results in largest reduction in the maximum variation of bending moment.  

Figure 5.6 shows that after 480-hour heave induced cyclical loading the reduction 

in the maximum variation of bending moment of Riser 2 may reach 35%, 20% and 14% 

with respect to their corresponding initial values when interacting respectively with the 
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soils of lower, median and upper range stiffness. In interacting with the soil of the same 

(median) range of stiffness, the rate of the reduction in the maximum variation of 

bending moment of a riser depends on the amplitude of forced heave at its upper end. 

Figure 5.7 shows the reduction in the maximum variation of bending moment near the 

TDZ of Riser 2 normalized by the corresponding initial value (at the beginning of trench 

development) decreases with the increase in heave amplitude. The same trend is also 

observed in the case of Riser 1 experiencing forced heave and surge as shown in the 

figure on P. 68. Hence, the rate of the reduction in the maximum variation of bending 

moment is more substantial for a riser under sea states more frequently occurring in 

nature (which likely result in small heave or surge amplitude at the upper end of a riser).  

 

Figure  5.6. Maximum moment variation in Riser 2 for different shear strengths of 
soil (heave amplitude = 0.5 m, period = 12 s) 
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Figure  5.7. Reduction in the maximum variation of bending moment normalized by 
the related initial values (Riser 2, Heave period = 12 s, Median range of shear 

strength) 
 

The corresponding numerical simulations were also made for Riser 1 experiencing 

forced surge at its upper end to examine whether or not the trends of the trench 

development and reduction in maximum variation of bending moment are qualitatively 

similar to those induce by forced heave. A SCR connected to a SPAR likely experiences 

relatively large surge at its upper end, which results mainly from the slow-drift motion of 

a SPAR near its surge resonance period. Hence, the forced periodic surge at the upper 

end of Riser 1 was chosen to have the amplitudes of 5, 10 and 20 m and period of 100 s. 

Figure 5.8 depicts the maximum trench depth developed on the seabed as a function of 

time in the case of Riser 1 experiencing periodic surge at its upper end. The trench depth 

increases with the increase in time and the rate of increase gradually slows. This trend is 
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similar to that observed in the cases of Riser1 and 2 experiencing forced heaves. 

 

5.2. Surge Motion 

 Figure 5.9 shows that the reduction in the maximum variation of the bending 

moment near the TDZ as a function of time for Riser 1 experiencing the periodic forced 

surges. The trend observed in this figure is similar to those observed in Figure 5.7. For 

comparison, also plotted are the related values of Riser 1 experiencing forced heave at its 

upper end. Because the periods of forced surge (100s) and heave (12s) are quite 

different, the horizontal coordinate in this figure denotes the number of loading cycles 

instead of time. It is observed that the trend of reduction in the maximum variation of 

bending moment as a function of loading cycles is similar. However, to reach similar 

magnitude in the reduction, the amplitude of forced surge is roughly 10 times as that of 

forced heave. This is because that forced surge induces a much smaller variation in 

suspended length of a riser than that induced by forced heave of the same amplitude, 

especially when a riser is deployed in relatively deep water. This phenomenon was 

observed earlier by Theckumpurath and Zhang (2006) in the case of two SCRs 

connected to a truss SPAR. In addition, because the surge period is much greater than 

the heave period it takes much longer time for a riser experiencing forced surge to have 

the similar reduction in the maximum variation of bending moment than in the case of 

forced heave motion. 
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Figure  5.8. The maximum trench depth of Riser 1 in its TDZ at the seabed of 
median range shear strength  (surge period = 100 s and related surge amplitudes 

are 5, 10, and 20 m, respectively) 
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Figure  5.9. Reduction of the maximum bending moment variation of Riser 1 near 
its TDZ (surge period = 100 s and heave period = 12 s; Percentages on the graph 
show the ratio of the reduction of the bending moment with respect to the initial 

value) 
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6. RESULTS AND CONCLUSION 

 

 

6.1. Discussion of the Results 

The total stress along a riser results from both bending moment and tension. In the 

cases of Riser 1 and 2, the variation of the tension induced by forced surge or heave is 

found to be about 1 - 3% of the mean tension and less than 10% of that induced by the 

maximum variation of bending moment near the TDZ. Therefore, the stress level (or 

stress fluctuation) is dictated by the variation in the bending moment. The variation of 

bending moment is related to the stress level through the following equation: 

 

R
M

I
    (6.1)

 

where   is the stress level, M , the variation of bending moment , R  the radius, and I 

the moment of inertia of the cross section area of a riser. Assuming that the radius and 

moment of inertia of a riser remain constant near its TDZ, the stress level is proportional 

to the variation of bending moment. Following the X’ S-N curve proposed by API RP 

2A given below, 

 

  3.74132.5 10N SCF      (6.2)
 

where N  is the number of allowable loading cycles at a certain stress level and SCF  the 
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stress concentration factor, the number of allowable loading cycles can be estimated. 

Assuming that SCF remains unchanged during the trenching development, the ratio of 

allowable loading cycles with the trenching to those without the trenching is hence 

related to the ratio of the variation of bending moment during the trenching development 

to that without trenching through Equation (6.3). 

 

total

3.74

trenching

0
no-trenching total no-trenching

1 ( )TN M t
dt

N T M


 

    
  (6.3)

 

where  
totalT  is the total duration for the trenching development, ( )M t  is the maximum 

variation of bending moment at time t, and no-trenchingM  is  the maximum variation of 

bending moment in the absence of the trenching development. 

As shown in Figure 5.3, the maximum variation of the bending moment near the 

TDZ of Riser 1 is 5.70 kN.m before the trenching development. After 140 hours of 

forced heave of amplitude 1m and period 12s, the maximum variation of bending 

moment gradually reduces to 5.20 kN.m. Similarly, the maximum variation of the 

bending moment near the TDZ of Riser 2 before the trenching development is 49.20 

kN.m (Figure 5.4). 
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 After 140 hours of forced heave of amplitude 1m and period 12s, it gradually 

reduces to 46.50 kN.m. For computing the ratio of allowable loading cycle, Equation 6.3 

is numerically integrated using a Trapezoidal rule, where  
totalT is equal to 140 hour and 

the increment time used in the numerical integration is 5T  hours. The computation 

given in Table 6.1 shows that the increase in the number of allowable loading cycles for 

Riser 1 and 2 is about 30% and 18%, respectively.  

It is noted that maximum variation of bending moment decrease more in ratio to 

the initial maximum variation when the amplitude of heave or surge is small and/or 

seabed soil is of small shear strength. The increase in allowable cycles can be 

significantly higher than 30%. For example, 20% reduction in the maximum variation of 

bending moment (that has occurred in Figure 5.7 for Riser 2) may increase the allowable 

cycles by 100%.   
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Table  6.1. Numerical integration of the ratio of allowable loading cycles during 140-
hr trenching development over median strength soil (Heave amp= 1m, T=12 s) 

 

 
Riser 1 Riser 2 

t (hr) 
Maximum Moment 

Variation (kN) 

3.74

no-trenching

( )M t
M


 
  

Maximum Moment
Variation (kN) 

3.74

no-trenching

( )M t
M


 
  

0 5.65 1 49.20 1.00 
5 5.62 1.02 49.14 1.00 
10 5.51 1.10 48.50 1.06 
15 5.46 1.13 48.27 1.07 
20 5.43 1.16 48.08 1.09 
25 5.41 1.18 47.97 1.10 
30 5.39 1.19 47.86 1.11 
35 5.37 1.21 47.76 1.12 
40 5.35 1.22 47.67 1.13 
45 5.34 1.24 47.60 1.13 
50 5.33 1.25 47.55 1.14 
55 5.32 1.25 47.49 1.14 
60 5.31 1.26 47.44 1.15 
65 5.31 1.26 47.41 1.15 
70 5.30 1.27 47.36 1.15 
75 5.29 1.28 47.32 1.16 
80 5.28 1.29 47.28 1.16 
85 5.27 1.30 47.25 1.16 
90 5.27 1.30 47.21 1.17 
95 5.26 1.30 47.16 1.17 

100 5.26 1.31 47.14 1.17 
105 5.25 1.31 47.10 1.18 
110 5.25 1.32 47.09 1.18 
115 5.24 1.32 47.08 1.18 
120 5.24 1.33 47.05 1.18 
125 5.23 1.33 47.02 1.18 
130 5.23 1.33 47.00 1.19 
135 5.23 1.33 46.99 1.19 
140 5.23 1.34 46.99 1.19 

Trapezoidal rule 1.25 1.14 
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Table  6.2. Numerical integration of the ratio of allowable loading cycles during 140-
hr trenching development over lower range strength soil (Heave amp= 1m, T=12 s) 

 

 
Riser 1 Riser 2 

t (hr) 
Maximum Moment 

Variation (kN) 

3.74

no-trenching

( )M t
M


 
  

Maximum Moment
Variation (kN) 

3.74

no-trenching

( )M t
M


 
  

0 5.65 1.00 49.20 1.00 
5 5.21 1.35 46.88 1.20 
10 5.08 1.49 45.66 1.32 
15 4.99 1.59 44.76 1.42 
20 4.92 1.68 44.43 1.46 
25 4.88 1.74 44.28 1.48 
30 4.86 1.75 44.05 1.51 
35 4.85 1.77 43.88 1.53 
40 4.83 1.80 43.79 1.55 
45 4.82 1.81 43.74 1.55 
50 4.82 1.82 43.71 1.56 
55 4.81 1.83 43.66 1.56 
60 4.80 1.83 43.62 1.57 
65 4.80 1.84 43.59 1.57 
70 4.79 1.86 43.53 1.58 
75 4.78 1.87 43.51 1.58 
80 4.77 1.88 43.47 1.59 
85 4.77 1.89 43.46 1.59 
90 4.76 1.89 43.40 1.60 
95 4.76 1.90 43.35 1.60 

100 4.75 1.91 43.35 1.61 
105 4.75 1.91 43.31 1.61 
110 4.75 1.92 43.32 1.61 
115 4.74 1.93 43.31 1.61 
120 4.73 1.94 43.27 1.62 
125 4.73 1.94 43.24 1.62 
130 4.73 1.94 43.23 1.62 
135 4.73 1.94 43.22 1.62 
140 4.73 1.95 43.22 1.62 

Trapezoidal rule 1.80 1.54 
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6.2. Effect of Wave Period on Trenching 

A riser will experience the loads and motions of different sea environments during 

its service life. It would be useful if a relationship between the wave period and 

trenching could be obtained. In order for this, several comparisons are made. 

Maximum trenching under Riser 1 and Riser 2 is calculated for constant wave 

type, wave height and different wave periods. Tables 6.3-6.6 summarize these results. 

 

Table  6.3. Maximum trenching after 300-hr over median strength soil (Riser 1, 
Heave height= 1m) 

 

Motion period (s) Trench depth (m)

6 0.093 

12 0.078 

18 0.066 

24 0.057 

30 0.050 

 
 

Table  6.4. Maximum trenching after 300-hr over median strength soil (Riser 1, 
Heave height= 5m) 

 

Motion period (s) Trench depth (m)

6 0.241 

12 0.218 

18 0.146 

24 0.117 

30 0.096 
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Table  6.5. Maximum trenching after 300-hr over median strength soil (Riser 2, 
Heave height= 1m) 

 

Motion period (s) Trench depth (m)

6 0.413 

12 0.331 

18 0.264 

24 0.228 

30 0.199 

 

 

Table  6.6. Maximum trenching after 300-hr over median strength soil (Riser 2, 
Heave height= 5m) 

 

Motion period (s) Trench depth (m)

6 1.018 

12 0.843 

18 0.779 

24 0.568 

30 0.421 

 

As it could be observed in all these tables, reducing the wave period, while the 

wave height is constant, will result in increasing the trench depth. This is of no surprise 

since all these results are compared at 300-hour time pass. Therefore, waves with the 

lower period will have more occurrences during this period. If we look back at equations 

4.1 and 4.2 we will notice that the number of wave occurrence directly affects energy 
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dissipation factor (
n ) which in return changes maximum penetration.  

To observe the effect of wave period on the trenching at similar occurrences, 

another comparison is made. These results are summarized in Tables 6.7-6.9. 

 

Table  6.7. Maximum trenching after 90,000 occurrences over median strength soil 
(Riser 1, Heave height= 1m) 

 

Motion period (s) Trench depth (m)

6 0.081 

12 0.078 

18 0.076 

24 0.074 

30 0.073 

 

 

Table  6.8. Maximum trenching after 90,000 occurrences over median strength soil 
(Riser 2, Heave height= 1m) 

 

Motion period (s) Trench depth (m)

6 0.341 

12 0.331 

18 0.324 

24 0.320 

30 0.317 

 

As you it could be seen in these tables, the lower the period, the maximum the 
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trenching will be at the same number of occurrences. There is a 9.9% and 7.0% of 

reduction in the trenching in Riser 1 and 2 respectively as the period changes from 6s to 

30 s. This could be described as follows. A motion with lower period and same wave 

height results in higher velocities and acceleration in the upper end and as a result the 

dynamic forces and moments will increase. The downward force at the seabed level is a 

summation of static (riser weight) and dynamic forces. Since the dynamic variation of 

tension is higher for the lower periods, the maximum trenching will be higher too. 

Another comparison is made for different wave periods and different wave 

heights. It is assumed that the same motion magnitude occurs in heave and surge for 

different wave periods. 

 

Table  6.9. Maximum trenching after 90,000 occurrences over median strength soil 
(Riser 1) 

 

Motion  Trench depth (m)

Heave = 5m, period = 12 s 0.218 

Surge = 5m, period = 60 s 0.039 

 

As it could be seen, the trench depth is almost 7 times bigger for a have motion of 

the same magnitude of surge motion. One obvious explanation is that the wave period 

for heave motion is less than of surge motion. But as compared with the results of Table 

6.6, we notice that ratio of trench depth in two cases are much higher here. This could be 

explained as follows:  According to Theckumpurath and Zhang (2006), ratio of change 

in suspended length to motion is different for Heave and surge motion. For the case 
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study mentioned in their paper, this ratio is 19.89 for heave motion and only 0.714 for 

surge motion. It means that for a similar motion magnitude, heave will cause more than 

27 times change in the suspended length comparing to a surge motion. Also according to 

Pesce et al. (2006) the excursion of the TDP is the main reason for the variation of 

tension and bending moment in the TDZ. Therefore it could be anticipated that a heave 

motion will cause a significantly deeper trench comparing to a surge motion of the same 

magnitude.  

 

6.3. Conclusion 

A numerical scheme for analyzing the dynamics of risers, CABLE3D, has been 

extended to allow for two different soil models: first non-degradation and then 

degradation. The non-degradation model does not consider the effects of plastic 

deformation of seabed soil on the dynamics of a riser near the TDZ. It, however, 

provides a more accurate stiffness and damping coefficients of the soil comparing to 

traditional elastic seabed simulation. These coefficients are then used in a degradation 

model that accounts for the plastic deformation and consequently trenching development 

at the seabed based on a degradation P-y curve. Two different SCRs interacting with 

three different shear strengths of seabed soils have been studied when they are forced to 

have a periodic heave or surge at their upper end. The trenching development at the 

seabed and the maximum variation in bending moment near their TDZ are estimated as 

function of time lapse after they start experiencing cyclic loading. The results show that 

a trench gradually deepened at the seabed may smooth curvature of risers near their TDZ 
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and in turn the maximum (spatial) change rate of bending moment near the TDZ. Our 

simulation indicates the maximum variation of bending moment near the TDZ mainly 

depends on the maximum (spatial) change rate of bending moment near the TDZ and the 

excursion of the TDP due to the heave or surge at the upper end of the riser. Since the 

excursion of the TDP does not change substantially with or without trenching, the 

reduced maximum (spatial) change rate of bending moment near the TDZ is responsible 

for the decrease in maximum variation in the bending moment near TDZ. This finding is 

consistent with the decrease in the maximum change rate of bending moment near the 

TDZ when the computation was conducted based on a static riser and a trench at the 

seabed prescribed empirically (Hahn et al, 2003). The reduction in the maximum 

variation of the bending moment results in the reduction in the stress level of a riser near 

the TDZ, which increases the allowable loading cycles, namely, its fatigue life. Our 

simulation indicates the relative reduction in the maximum variation of the bending 

moment is greater when the amplitude of heave or surge is smaller and/or seabed soil has 

lower shear strength. Since a deep-water floating structure experiences oscillations of 

small amplitudes during most time of its life span, this finding is relevant to the estimate 

the fatigue life of SCRs. For example, a 20% reduction in the maximum variation of 

bending moment near the TDZ may increase the estimated fatigue life by 100% near the 

TDZ.  

Also the effects of two different types of upper end motions (surge and heave) on 

trenching behavior are studied. Our results indicate that for a similar amplitude, heave 

motion will result in a much larger trench than a surge motion. This is due to the fact that 
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the ratio of change in suspended length to motion is different for Heave and surge 

motion (Theckumpurath and Zhang, 2006).  

In addition the relationship between wave period and trenching magnitude are 

discussed. The results show that a motion with smaller period will cause a larger trench.  

This is quite predictable since the smaller period (while the magnitude of the motion is 

constant) translates into higher velocities and acceleration and hence the bending 

moment and forces are increased. 

It should be noted that the vortex induced vibration (VIV) and the lateral resistance 

experienced by risers in a trench at the seabed are neglected in our simulation. 

Furthermore, our simulation assumes periodic heave or surge at the upper end of a riser. 

Realistically, a SCR may experience non-periodic motions, such as irregular surge and 

sway in combination of heave at its upper end resulting from the motions of a floating 

structure. Therefore, our study should be further extended to allow for the factors 

mentioned above. 



81 

 

REFERENCES 

 

 

American Petroleum Institute,. (2001). “Recommended practice for planning, designing 
and constructing fixed offshore Platforms - working stress design.” API RP 2A-
WSD, 21st Edition. API Publishing Services, Washington, D.C. 

Aggarwal, R., Bhat, S., Meling, T., Mourelle, M., Linden, C., and Else, M. (2005). 
“Qualification of solutions for improving fatigue life at SCR touch down zone.” 
Deep Offshore Technology Conference, Vitoria, Brazil. 

Aubeny, C., Biscontin, G., and Zhang, J. (2006). “Seafloor interaction with steel 
catenary risers”. Final report for MMS/OTRC project #1435-01-04-CA-35515. 
Offshore Technology Research Center, Texas A&M University, College Station. 

Aubeny, C., and Biscontin, G. (2008). “Interaction model for steel compliant riser on 
soft seabed”. OTC 194193, Houston, TX. 

Aubeny, C., and Biscontin, G. (2009). “Seafloor-riser interaction model.” International 
Journal of Geomechanics, 9, 133-141. 

Bhat, J., Dutta, A., Wu, J., and Sarkar, I. (2004). “Pragmatic solution to touch-down 
zone fatigue challenges in steel catenary risers.” OTC 16627, Houston, TX. 

Bridge, C., Laver, K., Clukey, E., and Trevor, E. (2004). “Steel catenary riser touchdown 
point vertical interaction models.” OTC 16628, Houston, TX. 

Chen, X., Zhang J., Johnson, P., and Irani, M. (2001). “Dynamic analysis of mooring 
lines with inserted springs.” Applied Ocean Research, 23, 277-284. 

Chen, X. (2002). “Studies on dynamic interaction between deep-water floating structures 
and their mooring/tendon systems.” Ph.D. Dissertation, Texas A&M University, 
College Station. 

Clukey, E., Houstermans, L., and Dyvik, R., (2005). “Model tests to simulate riser-soil 
interaction in touchdown point region.” International Symposium on Frontiers in 
Offshore Geotechnics, Center for Offshore Foundation Systems (COFS), Perth, 
Australia, 651-658. 

Det Norske Veritas. (2006). “Offshore Standard DNV-OS-F105, Free spanning 
pipelines.” DNV Services, Research and Publications, Hovik, Norway. 



82 

 

Det Norske Veritas. (2001). “Offshore Standard DNV-OS-F201, Dynamic risers.” DNV 
Services, Research and Publications, Hovik, Norway. 

Det Norske Veritas. (2005). “Recommended Practice DNV-RP-F204, Riser fatigue.” 
DNV Services, Research and Publications, Hovik, Norway. 

Dunlap, W., Bhohanala, R., and Morris, D. (1990). “Burial of vertically loaded offshore 
pipelines.” OTC 6375, Houston, TX. 

Giertsen, E., Verley, R., and Schroder, K. (2004). “CARISMA: a catenary riser/soil 
interaction model for global riser analysis.” OMAE 51345, Vancouver, Canada. 

Hahn, G.D., Shanks, J.M., and Masson, C. (2003). “An assessment of steel catenary riser 
trenching.” Deep Offshore Technology International Conference, Marseille, 
France. 

Health and Safety Executive. (1999). “Offshore Technology Report OTO-1999-058: 
Fatigue design curves for welded joints in air and seawater under variable 
amplitude loading.” HSE Publications, London, UK. 

Idriss, I.M., Dobry, R., and Singh, R.D. (1978). Nonlinear behavior of soft clays during 
cyclic loading.” Journal of Geotechnical Engineering, 104 (12), 1427-1447.   

Jiao, Y., (2007). “Non-linear load-deflection models for seabed interaction with steel 
catenary risers.” M.S. Thesis, Texas A&M University, College Station. 

Leira, B., Passano, E., Karunakaran, D., Farnes, K., and Giertsen, E. (2004). “Analysis 
guidelines and application of a riser-soil interaction model including trench 
effects.” OMAE 51527, Vancouver, Canada. 

Ma, W., and Webster, W.C. (1994). “An analytical approach to cable dynamics: theory 
and user manual.” SEA GRANT Project R/OE-26. California University, 
Berkeley, CA. 

Nakhaee, A., and Zhang, J. (2007). “Dynamic interaction between SCR and the seabed.” 
OMAE Conference, San Diego, CA. 

Nakhaee, A., and Zhang, J. (2008). “Effects of the interaction with the seabed on the 
fatigue life of a SCR.” ISOPE Conference, Vancouver, Canada. 

Pesce, C., Martins, C., and Silveira, L. (2006). “Riser-soil interaction: local dynamics at 
TDP and a discussion on the eigenvalue and the VIV problems.” Journal of 
Offshore Mechanics and Arctic Engineering, 128, 39-55. 

Theckumpurath, B., and Zhang, J. (2006). “Numerical simulation of the truss spar Horn 
Mountain.” Proceedings of the 16th ISOPEC, ISOPE I, 196-203.  



83 

 

Thethi, R., and Moros, T. (2001). “Soil interaction effects on simple catenary riser 
response.” Deepwater Pipeline and Riser Technology Conference, Houston, TX. 

Willis, N.R.T., and West, P.T.J. (2001). “Interaction between deepwater catenary risers 
and a soft seabed: large scale sea trials.” OTC 13113, Houston, TX. 

Xu, J., Jesudasen, A.S., Fang, J., and Else, M. (2006). “Wave loading fatigue 
performance of SCRs in underwater applications.” OTC 18180, Houston, TX. 

 
 
 
 
 
 
 
 
 
 



84 

 

APPENDIX A 

NON-DEGRADATION SOIL MODEL 
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% Non degradation P-y curve based on Dr Aubeny's model (Jiao, 2007) 
% Ali Nakhaee 
  
clc 
close all; 
clear all; 
  
% INPUT 
  
a=fopen('input.txt','r'); 
su0=fcanf(a,'%g',1);                    % Soil shear strength                 
sug=fcanf(a,'%g',1);                    % Gradient of soil shear 
strength 
Er=fscanf(a,'%g',1); 
t=fcanf(a,'%g',inf);                    % Thickness of SCR                        
d=fcanf(a,'%g',inf);                    % External diameter of SCR                    
rho_steel=fcanf(a,'%g',1);              % Density of steel 
  
% Model parameters 
  
a1=fcanf(a,'%g',1);                        
b1=fcanf(a,'%g',1);                       
a2=fcanf(a,'%g',1); 
b2=fcanf(a,'%g',1); 
k=fcanf(a,'%g',1);                        
phi=fcanf(a,'%g',1);                       
psi=fcanf(a,'%g',1); 
omega=fcanf(a,'%g',1); 
  
fclose(a); 
  
%% 
  
Area=pi*(d-t)*t;                        % Cress sectional area of SCR 
w=Area*rho_steel                        % unit weight of SCR 
  
% Backbone curve 
  
y(1)=0; 
p(1)=0; 
err2=-1; 
ib=1; 
while(err2<=0) 
    y(ib+1)=y(ib)+0.002; 
    if y(ib+1)/d<0.52; 
        a=a1; 
        b=b1; 
    else 
        a=a2; 
        b=b2; 
    end 
    p(ib+1)=a*(y(ib+1)/d)^b*(su0+sg*y(ib+1))*d; 
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    err2=P(ib+1)-w; 
ib=ib+1; 
end 
  
yy1=y(ib)-.002; 
PP1=a*(yy1/d)^b*(Su0+Sg*yy1)*d; 
y1=yy1; 
P1=PP1; 
Prup=-phi*P1; 
Y=y1; 
y_1=y1; 
alpha=0.016; 
beta=0.0016; 
k0=k_normal*Er*(Su0+Sg*yy1); 
  
b=fopen('yhistory.txt','r');  
yhist=fscanf(b,'%g',inf); 
fclose(b); 
ylength2=size(yhist); 
yy=[y(1:ib-1) yhist']; 
  
% unloading and reloading 
  
ul0=-1; 
yold=y1; 
Pold=P1; 
ib=ib-1; 
Prev=P1; 
yrev=y1; 
  
AA=0; 
  
for i=1:ylength2 
    ynew=y(ib+1); 
    ul=(ynew-yold)/abs(ynew-yold); 
    [P2 y2 y3]=f(y1,P1,k0,phi,psi,omiga); 
     
    if ynew<=y3||i==1 
        yrc=y3; 
        Prc=0; 
    end 
  
    if ul~=ul0 
        Prev=Pold; 
        yrev=yold; 
        ul0=ul; 
    end 
  
    dy=ynew-yrev; 
     
    AA=AA+dy*pold 
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    if ul==-1 
         
        if ynew>y2 
            Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
             
            if Pnew<=bound1(ynew,y1,P1,k0,omega) 
                Pnew=bound1(ynew,y1,P1,k0,omega); 
            end 
             
            elseif ynew>y3 
                Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
                 
                if Pnew<=bound2(ynew,y2,y3,P2) 
                    Pnew=bound2(ynew,y2,y3,P2); 
                end 
                     
        else 
                    Pnew=0; 
        end 
                     
        elseif ul==1 
             
            if ynew>y1  
                Pnew=a*(ynew/d)^b*(Su0+Sg*ynew)*d; 
                P1=Pnew; 
                y1=ynew; 
                Prup=-phi*P1; 
                [P2,y2,y3]=f(y1,P1,k0,phi,psi,omega); 
                 
                elseif ynew>y3 
                     
                    if yrev<=y1&&yrev>=y2 
                        Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
                         
                    else 
                        Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
                         
                        if Prev==bound2(yrev,y2,y3,P2) 
                            yrc=yrev; 
                            Prc=Prev; 
                            Pnew=bound3(ynew,y1,yrc,Prc,P1); 
                        end 
                    end 
  
                    if Pnew>=bound3(ynew,y1,yrc,Prc,P1) 
                        Pnew=bound3(ynew,y1,yrc,Prc,P1); 
                    end 
                         
            else 
                Pnew=0; 
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            end 
             
    else 
        disp('err11') 
    end 
         
    y(ib+1)=ynew; 
    P(ib+1)=Pnew; 
    yold=ynew; 
    Pold=Pnew; 
    ib=ib+1; 
end 
  
% 
  
kk=(y2-y1)/(p2-p1); 
    
  
output=[y;P]; 
  
c = fopen('output.txt', 'wt');  
fprintf(c, 'y P\n'); 
fprintf(c, '%g %g\n ', output); 
fclose(c) 
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APPENDIX B 

DEGRADATION SOIL MODEL 
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% Degradation P-y curve based on Dr Aubeny's model (Jiao, 2007) 
% Includes trenching (permanant soil deformation) 
% Ali Nakhaee 
  
clc 
close all; 
clear all; 
  
% INPUT 
  
% 
a=fopen('input.txt','r'); 
su0=fcanf(a,'%g',1);                    % Soil shear strength                 
sug=fcanf(a,'%g',1);                    % Gradient of soil shear 
strength 
Er=fscanf(a,'%g',1); 
t=fcanf(a,'%g',inf);                    % Thickness of SCR                        
d=fcanf(a,'%g',inf);                    % External diameter of SCR                    
rho_steel=fcanf(a,'%g',1);              % Density of steel 
  
% Model parameters 
  
a1=fcanf(a,'%g',1);                        
b1=fcanf(a,'%g',1);                       
a2=fcanf(a,'%g',1); 
b2=fcanf(a,'%g',1); 
k=fcanf(a,'%g',1);                        
phi=fcanf(a,'%g',1);                       
psi=fcanf(a,'%g',1); 
omega=fcanf(a,'%g',1); 
  
alpha=fscanf(a,'%g',inf);               %cubic degradation control 
parameter 
  
fclose(a); 
  
% Backbone curve 
  
y(1)=0; 
P(1)=0; 
err2=-1; 
ib=1; 
  
while (err2<=0) 
    y(ib+1)=y(ib)+.002; 
     
    if y(ib+1)/d<0.52 
        a=a1; 
        b=b1; 
     
    else 
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        a=a2; 
        b=b2; 
    end 
         
    P(ib+1)=a*(y(ib+1)/d)^b*(Su0+Sg*y(ib+1))*d; 
    err2=P(ib+1)-w; 
    ib=ib+1; 
end 
     
k0=k_normal*Er* (Su0+Sg*yy1); 
yy1=y(ib)-.0001; 
PP1=a*(yy1/d)^b*(Su0+Sg*yy1)*d; 
y1=yy1; 
P1=PP1; 
Prup=-phi*P1; 
Y=y1; 
y_1=y1; 
  
  
% Read loading history 
  
b=fopen('yhistory.txt','r'); 
filetype=fscanf(b,'%g',1); 
  
if filetype==1 
    yhist=fscanf(b,'%g',inf); 
    fclose(b); 
    ylength2=size(yhist); 
    yy=[y(1:ib-1) yhist']; 
  
% 
  
    ul0=-1; 
    yold=y1; 
    Pold=P1; 
    ib=ib-1; 
    Prev=P1; 
    yrev=y1; 
  
    for i=1:ylength2 
        ynew=yy(ib+1); 
        ul=(ynew-yold)/abs(ynew-yold); 
        [P2 y2 y3]=f(y1,P1,k0,phi,psi,omega); 
  
        if ynew<=y3||i==1 
            yrc=y3; 
            Prc=0; 
        end 
  
        if ul~=ul0 
            Prev=Pold; 
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            yrev=yold; 
            ul0=ul; 
        end 
  
        dy=ynew-yrev; 
        Y=Y+abs(dy); 
        y_1=yy1+eta*Y^0.5; 
        P_1=a*(y_1/d)^b*(Su0+Sg*y_1)*d; 
  
        if ul==-1 
  
            if ynew>y2 
                Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
  
                if Pnew<=bound1(ynew,y_1,P_1,k0,omega) 
                    Pnew=bound1(ynew,y1,P1,k0,omega); 
                end 
  
                elseif ynew>y3 
                    Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omiga)*P1))); 
  
                    if Pnew<=bound2(ynew,y2,y3,P2) 
                        Pnew=bound2(ynew,y2,y3,P2); 
                    end 
  
            else 
                Pnew=0; 
            end 
  
            elseif ul==1 
  
                if ynew>y3 
                    xi=(y_1-yrev)/((P_1*(1+omega))*((y_1-yrev)/(P_1-
Prev)-1/k0)); 
  
                    if yrev<=y1&&yrev>=y2 
                        
Pnew=Prev+(1/((1/(k0*dy))+ul/((1+omega)*P_1*xi))); 
  
                        if Pnew>=PP1 
                            Pnew=PP1; 
                            P1=PP1; 
                            y1=ynew; 
                            [P2,y2,y3]=f(y1,P1,k0,phi,psi,omega); 
                        end 
  
                    else 
                        
Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P_1*xi))); 
  
                        if Prev==bound2(yrev,y2,y3,P2) 
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                            yrc=yrev; 
                            Prc=Prev; 
                            Pnew=bound3(ynew,y_1,yrc,Prc,P_1); 
                        end 
  
                        if Pnew>=PP1 
                            Pnew=PP1; 
                            y1=ynew; 
                            [P2,y2,y3]=f(y1,P1,k0,phi,psi,omega); 
                        end 
  
                    end 
  
                    if Pnew>=bound3(ynew,y_1,yrc,Prc,P_1) 
                        Pnew=bound3(ynew,y_1,yrc,Prc,P_1); 
                    end 
  
                else 
                    Pnew=0; 
                end 
  
                if ynew>=y_1 
                    Pnew=a*(ynew/d)^b*(Su0+Sg*ynew)*d-(P_1-PP1); 
                    P1=Pnew; 
                    P_1=2*Pnew-P_1; 
                end 
  
        else 
            disp('err11') 
        end 
  
        y(ib+1)=ynew; 
        P(ib+1)=Pnew; 
        yold=ynew; 
        Pold=Pnew; 
        ib=ib+1; 
    end 
     
    elseif filetype==2 
        NumCycle=fscanf(input,'%g',1); 
        fclose(input); 
        [P2 y2 y3]=f(y1,P1,k0,phi,psi,omega);  
         
        if y3<0 
            yend=-0.3*yy1; 
            step=0.0001; 
        else 
                 
            yend=0.8*yy1; 
            step=0.0001; 
             



94 

 

        end 
             
       
        for N=1:NumCycle 
            yhist=[y1-step:-step:yend,yend+step:step:10*y1]; 
            [ylength1,ylength2]=size(yhist); 
            ul0=-1; 
            yold=y1; 
            Pold=P1; 
            Prev=P1; 
            yrev=y1; 
             
            for i=1:ylength2 
                ynew=yhist(i); 
                ul=(ynew-yold)/abs(ynew-yold); 
                [P2 y2 y3]=f(y1,P1,k0,phi,psi,omega); 
                 
                if ynew<=y3||i==1 
                    yrc=y3; 
                    Prc=0; 
                end 
                     
                if ul~=ul0 
                    Prev=Pold; 
                    yrev=yold; 
                    ul0=ul; 
                end 
                     
                dy=ynew-yrev; 
                Y=Y+abs(dy); 
                y_1=yy1+eta*Y^0.5; 
                P_1=a*(y_1/d)^b*(Su0+Sg*y_1)*d; 
                 
                if ul==-1 
                     
                    if ynew>y2 
                        Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
                         
                        if Pnew<=bound1(ynew,y1,P1,k0,omega) 
                            Pnew=bound1(ynew,y1,P1,k0,omega); 
                        end 
                             
                        elseif ynew>y3 
                            
Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
                             
                            if Pnew<=bound2(ynew,y2,y3,P2) 
                                Pnew=bound2(ynew,y2,y3,P2); 
                            end 
                             
                    else 
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                        Pnew=0; 
                    end 
                         
                    elseif ul==1 
                         
                        if ynew>y3 
                             
                            if yrev<y3 
                                yrc=y3; 
                                Prc=0; 
                                Pnew=bound3(ynew,y_1,yrc,Prc,P_1); 
                                 
                                if Pnew>PP1 
                                    Pnew=PP1; 
                                    y1=ynew; 
                                    
[P2,y2,y3]=f(y1,P1,k0,phi,psi,omega); 
                                     
                                    break; 
                                     
                                end 
                                     
                            end 
                                 
                            if Pnew>=bound3(ynew,y_1,yrc,Prc,P_1) 
                                Pnew=bound3(ynew,y_1,yrc,Prc,P_1); 
                            end 
                                 
                        else 
                            Pnew=0; 
                        end 
                             
                else 
                    disp('err11') 
                end 
                     
                yn(i)=ynew; 
                PN(i)=Pnew; 
                yold=ynew; 
                Pold=Pnew; 
            end 
                 
            y=[y,yn]; 
            P=[P,PN]; 
            y_peak(1,N)=y1; 
            y_Peak=y_peak'/d; 
            Yn(N,1)=Y'/d; 
        end 
             
end 
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output=[y;P]; 
fid = fopen('output.txt', 'wt');  
fprintf(fid, 'y P\n'); 
fprintf(fid, '%g %g\n ', output); 
fclose(fid) 
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APPENDIX C 

DEGRADATION SOIL MODEL WITH TRENCHING 
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% Degradation P-y curve based on Dr Aubeny's model (Jiao, 2007) 
% Includes trenching (permanant soil deformation) 
% Ali Nakhaee 
  
clc 
close all; 
clear all; 
  
% INPUT 
  
% 
a=fopen('input.txt','r'); 
su0=fcanf(a,'%g',1);                    % Soil shear strength                 
sug=fcanf(a,'%g',1);                    % Gradient of soil shear 
strength 
Er=fscanf(a,'%g',1); 
t=fcanf(a,'%g',inf);                    % Thickness of SCR                        
d=fcanf(a,'%g',inf);                    % External diameter of SCR                    
rho_steel=fcanf(a,'%g',1);              % Density of steel 
  
% Model parameters 
  
a1=fcanf(a,'%g',1);                        
b1=fcanf(a,'%g',1);                       
a2=fcanf(a,'%g',1); 
b2=fcanf(a,'%g',1); 
k=fcanf(a,'%g',1);                        
phi=fcanf(a,'%g',1);                       
psi=fcanf(a,'%g',1); 
omega=fcanf(a,'%g',1); 
  
alpha=fscanf(a,'%g',inf);               %cubic degradation control 
parameter 
  
fclose(a); 
  
% SCR node data 
  
r=fopen('scr.txt','r'); 
N=fcanf(r,'%g',1);                      % number of elements  
p_i=fcanf(r,'%g',N);  
x_i=fcanf(r,'%g',N); 
  
  
for i=1:N 
      
% Model parameters 
  
    a1=fcanf(a,'%g',1);                        
    b1=fcanf(a,'%g',1);                       
    a2=fcanf(a,'%g',1); 
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    b2=fcanf(a,'%g',1); 
    k=fcanf(a,'%g',1);                        
    phi=fcanf(a,'%g',1);                       
    psi=fcanf(a,'%g',1); 
    omega=fcanf(a,'%g',1); 
  
    alpha=fscanf(a,'%g',inf);               %cubic degradation control 
parameter 
  
    fclose(a); 
  
% Backbone curve 
  
    y(1)=0; 
    P(1)=p_i(i); 
    err2=-1; 
    ib=1; 
  
    while (err2<=0) 
        y(ib+1)=y(ib)+.002; 
  
        if y(ib+1)/d<0.52 
            a=a1; 
            b=b1; 
  
        else 
            a=a2; 
            b=b2; 
        end 
  
        P(ib+1)=a*(y(ib+1)/d)^b*(Su0+Sg*y(ib+1))*d; 
        err2=P(ib+1)-w; 
        ib=ib+1; 
    end 
  
    k0=k_normal*Er* (Su0+Sg*yy1); 
    yy1=y(ib)-.0001; 
    PP1=a*(yy1/d)^b*(Su0+Sg*yy1)*d; 
    y1=yy1; 
    P1=PP1; 
    Prup=-phi*P1; 
    Y=y1; 
    y_1=y1; 
  
  
% Read loading history 
  
    b=fopen('yhistory.txt','r'); 
    filetype=fscanf(b,'%g',1); 
  
    if filetype==1 
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        yhist=fscanf(b,'%g',inf); 
        fclose(b); 
        ylength2=size(yhist); 
        yy=[y(1:ib-1) yhist']; 
  
    % 
  
        ul0=-1; 
        yold=y1; 
        Pold=P1; 
        ib=ib-1; 
        Prev=P1; 
        yrev=y1; 
  
        for i=1:ylength2 
            ynew=yy(ib+1); 
            ul=(ynew-yold)/abs(ynew-yold); 
            [P2 y2 y3]=f(y1,P1,k0,phi,psi,omega); 
  
            if ynew<=y3||i==1 
                yrc=y3; 
                Prc=0; 
            end 
  
            if ul~=ul0 
                Prev=Pold; 
                yrev=yold; 
                ul0=ul; 
            end 
  
            dy=ynew-yrev; 
            Y=Y+abs(dy); 
            y_1=yy1+eta*Y^0.5; 
            P_1=a*(y_1/d)^b*(Su0+Sg*y_1)*d; 
  
            if ul==-1 
  
                if ynew>y2 
                    Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
  
                    if Pnew<=bound1(ynew,y_1,P_1,k0,omega) 
                        Pnew=bound1(ynew,y1,P1,k0,omega); 
                    end 
  
                    elseif ynew>y3 
                        Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omiga)*P1))); 
  
                        if Pnew<=bound2(ynew,y2,y3,P2) 
                            Pnew=bound2(ynew,y2,y3,P2); 
                        end 
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                else 
                    Pnew=0; 
                end 
  
                elseif ul==1 
  
                    if ynew>y3 
                        xi=(y_1-yrev)/((P_1*(1+omega))*((y_1-
yrev)/(P_1-Prev)-1/k0)); 
  
                        if yrev<=y1&&yrev>=y2 
                            
Pnew=Prev+(1/((1/(k0*dy))+ul/((1+omega)*P_1*xi))); 
  
                            if Pnew>=PP1 
                                Pnew=PP1; 
                                P1=PP1; 
                                y1=ynew; 
                                [P2,y2,y3]=f(y1,P1,k0,phi,psi,omega); 
                            end 
  
                        else 
                            
Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P_1*xi))); 
  
                            if Prev==bound2(yrev,y2,y3,P2) 
                                yrc=yrev; 
                                Prc=Prev; 
                                Pnew=bound3(ynew,y_1,yrc,Prc,P_1); 
                            end 
  
                            if Pnew>=PP1 
                                Pnew=PP1; 
                                y1=ynew; 
                                [P2,y2,y3]=f(y1,P1,k0,phi,psi,omega); 
                            end 
  
                        end 
  
                        if Pnew>=bound3(ynew,y_1,yrc,Prc,P_1) 
                            Pnew=bound3(ynew,y_1,yrc,Prc,P_1); 
                        end 
  
                    else 
                        Pnew=0; 
                    end 
  
                    if ynew>=y_1 
                        Pnew=a*(ynew/d)^b*(Su0+Sg*ynew)*d-(P_1-PP1); 
                        P1=Pnew; 
                        P_1=2*Pnew-P_1; 



102 

 

                    end 
  
            else 
                disp('err11') 
            end 
  
            y(ib+1)=ynew; 
            P(ib+1)=Pnew; 
            yold=ynew; 
            Pold=Pnew; 
            ib=ib+1; 
        end 
  
        elseif filetype==2 
            NumCycle=fscanf(input,'%g',1); 
            fclose(input); 
            [P2 y2 y3]=f(y1,P1,k0,phi,psi,omega);  
  
            if y3<0 
                yend=-0.3*yy1; 
                step=0.0001; 
            else 
  
                yend=0.8*yy1; 
                step=0.0001; 
  
            end 
  
  
            for N=1:NumCycle 
                yhist=[y1-step:-step:yend,yend+step:step:10*y1]; 
                [ylength1,ylength2]=size(yhist); 
                ul0=-1; 
                yold=y1; 
                Pold=P1; 
                Prev=P1; 
                yrev=y1; 
  
                for i=1:ylength2 
                    ynew=yhist(i); 
                    ul=(ynew-yold)/abs(ynew-yold); 
                    [P2 y2 y3]=f(y1,P1,k0,phi,psi,omega); 
  
                    if ynew<=y3||i==1 
                        yrc=y3; 
                        Prc=0; 
                    end 
  
                    if ul~=ul0 
                        Prev=Pold; 
                        yrev=yold; 
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                        ul0=ul; 
                    end 
  
                    dy=ynew-yrev; 
                    Y=Y+abs(dy); 
                    y_1=yy1+eta*Y^0.5; 
                    P_1=a*(y_1/d)^b*(Su0+Sg*y_1)*d; 
  
                    if ul==-1 
  
                        if ynew>y2 
                            
Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
  
                            if Pnew<=bound1(ynew,y1,P1,k0,omega) 
                                Pnew=bound1(ynew,y1,P1,k0,omega); 
                            end 
  
                            elseif ynew>y3 
                                
Pnew=Prev+(dy/((1/k0)+ul*dy/((1+omega)*P1))); 
  
                                if Pnew<=bound2(ynew,y2,y3,P2) 
                                    Pnew=bound2(ynew,y2,y3,P2); 
                                end 
  
                        else 
                            Pnew=0; 
                        end 
  
                        elseif ul==1 
  
                            if ynew>y3 
  
                                if yrev<y3 
                                    yrc=y3; 
                                    Prc=0; 
                                    Pnew=bound3(ynew,y_1,yrc,Prc,P_1); 
  
                                    if Pnew>PP1 
                                        Pnew=PP1; 
                                        y1=ynew; 
                                        
[P2,y2,y3]=f(y1,P1,k0,phi,psi,omega); 
  
                                        break; 
  
                                    end 
  
                                end 
  



104 

 

                                if Pnew>=bound3(ynew,y_1,yrc,Prc,P_1) 
                                    Pnew=bound3(ynew,y_1,yrc,Prc,P_1); 
                                end 
  
                            else 
                                Pnew=0; 
                            end 
                             
                            yperm(i)=y3; 
  
                    else 
                        disp('err11') 
                    end 
  
                    yn(i)=ynew; 
                    PN(i)=Pnew; 
                    yold=ynew; 
                    Pold=Pnew; 
                end 
  
                y=[y,yn]; 
                P=[P,PN]; 
                y_peak(1,N)=y1; 
                y_Peak=y_peak'/d; 
                Yn(N,1)=Y'/d; 
            end 
  
    end 
  
end 
  
% fit curve to permanant deformation 
  
h=0.5; 
ymax=max(yperm); 
xnew=[]; 
ynew=[]; 
for i=1:N 
    if yperm(i)>ymax*h; 
        xnew=[xnew,x_i(i)]; 
        ynew=[ynew,yperm(i)]; 
    end 
end 
  
ylog=log(ynew); 
xlog=xnew; 
p=polyfit(xlog,ylog,2); 
A2=p(1); 
A1=p(2); 
A0=p(3); 
sigma=sqrt(-1/(2*A2)); 
mu=A1*sigma^2; 
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A=exp(A0+mu^2/(2*sigma^2)); 
  
y0_new=A*exp(-(x-mu).^2/(2*sigma^2)); 
  
output=[x_i;y0_new]; 
  
yy = fopen('output.txt', 'wt'); 
  
fprintf(fid, 'x_i y0_new\n'); 
fclose(fid) 
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