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ABSTRACT 

 

Regulation of Endothelial Phenotype in Rat Soleus Muscle Feed Arteries: 

Influence of Aging and Exercise Training. (December 2010) 

Daniel Wayne Trott, B.S. University of New Mexico 

Chair of Advisory Committee: Dr. Christopher Woodman 

 

 Aging is associated impaired endothelial function in the skeletal muscle 

vasculature which contributes to decreased ability to increase muscle blow 

during exercise. This endothelial dysfunction is mediated, primarily, by 

impairments in the nitric oxide (NO) pathway in the skeletal muscle vasculature. 

The major purpose of this dissertation is to determine the mechanisms that 

mediate age-related endothelial dysfunction in rat soleus feed artery (SFA) and 

determine whether exercise training ameliorates this impairment in endothelial 

function. Therefore in these series of studies we sought to test three major 

hypotheses: 1) That exercise training reverses age-related decrements in 

endothelium-dependent dilation in SFA and that this improved endothelium-

dependent dilation is the result of increased NO bioavailability due to increased 

content and phosphorylation of eNOS and/or increased antioxidant enzyme 

content; 2) That age-related endothelial dysfunction in rat SFA is mediated in 

part, by NAD(P)H oxidase-derived reactive oxygen species (ROS); 3) and, that 

impaired endothelium-dependent dilation in senescent SFA is due to an impaired 

potential for p-eNOSser1177. To test these hypotheses, SFA from young (4 
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month) and old (24 month) Fischer 344 rats were isolated for either determination 

of endothelium-dependent and –independent dilations or biochemical analyses. 

Results from these investigations suggest that 1) exercise training reverses the 

detrimental effects of aging on endothelial function in skeletal muscle feed 

arteries by enhancing the capacity to scavenge superoxide, increasing the 

bioavailability of NO; 2) ROS contribute to impaired endothelium-dependent 

dilation in old SFA; whereas, ROS appear to play a role in ACh-mediated dilation 

in SFA from young rats; 3) and, that the PI3 kinase/protein kinase B (Akt)/eNOS 

pathway is preserved with age. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Clinical relevance 

Aging is a primary risk factor for cardiovascular disease (1). This is of 

importance as people 65 and older are the most rapidly expanding segment of 

the United States population and cardiovascular disease in this population is 

projected to result in a considerable rise in health care costs (137). In addition, 

maximal exercise capacity declines with age (1, 32). This decline in exercise 

capacity may contribute to reduced ability to perform activities and a decreased 

quality of life. There is experimental evidence that the ability to increase muscle 

blood flow during exercise is impaired with age and this may contribute to 

reductions in exercise capacity (4, 31, 91). As a result, determining the 

alterations that occur in the cardiovascular system with age has been an 

important research avenue. Findings from this research should result in effective 

cardiovascular disease prevention and treatment programs to decrease the 

health care cost burden and improve quality of life in the elderly. 

1.2 Early discoveries in endothelial function 

 Since the seminal discovery of endothelium-derived relaxing factor (EDRF) by 

Furchgot and Zawadski in 1980 (43), the endothelium has been recognized as an  

 
______________ 
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important modulator of vascular function. Arterial smooth muscle contraction or 

relaxation plays a key role in regulating blood flow, and hence oxygen supply to 

downstream tissues. In these key experiments, Furchgot and Zawadski treated 

strips of rabbit vascular smooth muscle with acetylcholine (ACh) with the 

endothelium intact or removed. Strips with the intact endothelium relaxed while 

strips with the endothelium removed contracted. In addition, when a strip with the 

endothelium removed was incubated together with an endothelium intact strip, 

ACh evoked relaxation in both strips. These important experiments demonstrated 

the release of an endothelium derived relaxing factor (EDRF). Since then, EDRF 

has been identified as nitric oxide (NO) (53). NO is a rapidly diffusible gas that 

activates smooth muscle soluble guanlyate cyclase and facilitates cyclic GMP 

formation, which then activates K+
 channels resulting in smooth muscle cell 

hyperpolarization and relaxation. In addition, the endothelium has been shown to 

produce the dilator prostacylin and a number of other vasodilators referred to as 

endothelium-derived hyperpolarizing factors (EDHF) (9, 37).  

 In 1994, Celemajer et al. demonstrated that brachial artery endothelium-

dependent dilation is impaired with advancing age and that this impaired 

endothelial function is associated with an increased risk for coronary artery 

disease (11, 12). More recently, it has been demonstrated in human and animal 

models that impaired NO bioavailability is associated with an age-related 

impairment in endothelial function in conduit and resistance vessels (6, 16, 19, 

81, 133). Importantly, the impaired NO-mediated response appears to be 

endothelium-dependent as sodium-nitroprusside (a direct NO donor) induces 
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similar responses in young and old humans and animals (3, 20, 107, 114, 132). 

These findings suggest that the ability of the vascular smooth muscle to dilate in 

response to NO is preserved with age. These findings have resulted in 

considerable research activity in an attempt to determine the mechanism(s) 

responsible for age-related impairments in endothelium-dependent vasodilation. 

1.3 Exercise and skeletal muscle blood flow 

In humans exercise results in increased oxygen consumption ( 2OV ), 

largely due to the increased oxygen demand of contracting skeletal muscle. In 

normal, healthy subjects, cardiac output increases four- to five-fold from rest to 

maximal oxygen consumption ( 2OV max), whereas 2OV  increases 12- to 16-fold 

suggesting that increased cardiac output alone is insufficient to explain the 

increase in 2OV . During exercise that induces increases in cardiac output, blood 

flow to visceral organs decreases, while muscle blood flow increases (2). This 

indicates that the capacity to redistribute blood flow during exercise is an 

important mechanism accounting for the increase in muscle blood flow, 2OV  and 

exercise capacity. A major component of this redistribution is mediated through 

the relaxation of vascular smooth muscle of the resistance arteries and arterioles 

that perfuse skeletal muscle. The smooth muscle tone of these vessels is 

regulated by neurohumoral factors (e.g. catecholamines, angiotensin II), 

metabolic factors (e.g. K+, CO2, O2, adenosine), intrinsic myogenic tone 

(response to intraluminal pressure), endothelial-derived dilators (NO, 

prostacyclin, EDHF) and constrictors (endothelin-1, prostanoid derived 

constrictors). Interestingly, muscle blood flow is dramatically increased during 
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exercise due to dilation of the resistance vessels that feed the muscle despite 

increases in adrenergic nerve activity and circulating catecholamines which 

generally act as constrictors (129). This phenomenon is referred to as “functional 

sympatholysis” (95). The mechanisms accounting for functional sympatholysis 

are not fully understood, however, a number of factors have been proposed 

including; neural factors, substances released from muscle itself, circulating 

substances and endothelial derived factors (60). Notably, NO is released by both 

contracting skeletal muscle fibers and the vascular endothelium and inhibition of 

NOS appears to blunt exercise hyperemia in some investigations (99, 102) but 

not in others (40, 93). 

1.4 Aging, exercise and skeletal muscle blood flow 

Aging results in a decline in maximal aerobic capacity that can be partially 

explained by reduced cardiac output (1, 32, 86); however, there is also 

considerable evidence that muscle blood flow is attenuated with age during 

exercise (49, 55, 83, 91, 92). This impairment in exercise hyperemia likely 

creates a mismatch between O2 supply and O2 demand by the contracting 

muscle, limiting exercise tolerance. Multiple investigators have reported blunted 

muscle blood flow responses to electrically stimulated muscle contractions in old 

rats (49, 55). Interestingly, in rats during treadmill exercise, total hindlimb blood 

flow is not compromised with age, however the distribution of blood flow within 

and between muscles is altered such that blood flow to oxidative muscles is 

significantly blunted (83). In older humans, exercise hyperemia is impaired in 

both leg and forearm (31, 62, 91, 92). Importantly, exercise hyperemia is blunted 
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with age in small muscle mass exercise where cardiac output is not maximal, 

suggesting that reduced cardiac output with age does not fully explain the 

observed reductions in muscle blood flow (73). The attenuated exercise 

hyperemia appears to be due in part to reduced vascular conductance in old 

subjects when compared to young (86), suggesting impaired vasodilation in the 

resistance vasculature. Several possible mechanisms have been proposed to 

explain the increased vascular resistance with age including, impairments in NO-

mediated dilation (62, 98), greater sympathetic nerve activity and/or sensitivity to 

catecholamines (24), and greater circulating concentrations of other constrictors 

such as endothelin-1 (29). In particular, two lines of evidence suggest that 

impairments in NO bioavailability mediate greater vascular resistance during 

exercise. First, inhibition of NO blunts exercise hyperemia to a greater extent in 

young versus old subjects (98). Second, infusion of vitamin C (which improves 

NO bioavailability) improves exercise hyperemia in elderly subjects (62, 115).  

Complimenting the observation that age results in blunted exercise 

hyperemia in oxidative muscle (83), impaired endothelial function has been 

observed in feed arteries and first order (1A) arterioles of soleus (oxidative) 

muscle with age (81, 107, 132, 133). Skeletal muscle feed arteries and arterioles 

play an important role in regulating skeletal muscle blood flow at rest and during 

exercise. The feed artery is a primary control point for total muscle blood flow to 

the soleus muscle, whereas the 1A arterioles regulate blood flow distribution 

within and between muscle fibers (129, 130). Both of these vessels exhibit 

impairment in NO-mediated dilation, supporting the concept that impaired NO 
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bioavailability plays an integral role in age-related impairments of exercise 

hyperemia. 

1.5 Mechanisms of NO bioavailability regulation 

The balance of NO-production and NO-degradation determines vascular 

NO bioavailability. Nitric oxide synthase (NOS) is the enzyme which is primarily 

responsible for production of NO. NOS catalyzes the reaction converting L-

arginine to L-citruline and NO. In mammals NOS exists in three isoforms 

endothelial (eNOS), inducible (iNOS) and neuronal (nNOS). In the endothelium, 

eNOS is the primary enzyme responsible for NO production and the activity of 

this enzyme is regulated by numerous postranslational modifications (46). The 

major pathway of NO-degradation is through its reaction with superoxide anion 

(O2
.-) (48).  Therefore, most research on age-related endothelial dysfunction has 

focused on mechanisms regulating NO production and NO degradation.  

In its non-active state eNOS is bound to the cell membrane structural 

protein caveolin and is phosphorylated on threonine residue 495 (p-

eNOS(thr495) inhibiting the ability of eNOS to bind with calmodulin (39, 79). 

Stimulation of endothelial cells with mechanical or chemical stimuli can lead to an 

increase in intracellular Ca2+ (65). The increased intracellular Ca2+ interacts with 

calmodulin and the Ca2+/calmodulin (CaM) complex binding with eNOS results in 

a dissociation with caveolin-1 (44, 79). Heat shock protein 90 also acts as a 

stabilizer of the eNOS/CaM protein complex (44).  In addition, stimulation of 

endothelial cells leads to dephosphorylation of eNOS(thr495) and 

phosphorylation of eNOS on a number of serine residues including 116 (p-
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eNOSser116), 1177 (p-eNOSser1177), 633 (p-eNOSser633) and 617(p-

eNOSser617). (7, 8, 22, 25, 38, 78) Phosphorylation at these sites appears to 

enhance electron flux through the enzyme by facilitating the dimerization of 

eNOS which is required for its activity (68). Dephosphorylation of p-eNOSthr495 

is primarily mediated by protein phosphatase 2A (47). Phosphorylation of eNOS 

on serine residues 1177 and 635 are primarily mediated by Phosphoinositol-3-

Kinase (PI3K) activation and subsequent downstream activation of protein kinase 

B (Akt), which then phosphorylates eNOS (22, 38). Protein kinase A (PKA) and 

AMP kinase have also been shown to play a role in eNOS phosphorylation (7, 8, 

22, 25, 38). Importantly, the activity of these kinases appears to be regulated 

differently depending on the stimuli (i.e. ligand/receptor mediated vs. shear 

stress) (7, 63). 

Lastly, the relationship of eNOS with its substrate (L-arginine) and cofactor 

(tetrahydrobiopterin, BH4) are important in regulation of eNOS activity. In 

numerous cardiovascular diseases, supplementation of L-arginine has been 

shown to improve vascular function in an NO-dependent manner (14, 45). These 

observations have lead to the “arginine-paradox” where supplementation with L-

argnine improves dilator function despite intracellular L-arginine concentrations in 

millimolar range much higher than the observed Km for eNOS (micromolar range) 

(45). Recent evidence suggests that intracellular trafficking of L-arginine is 

altered with disease, that asymmetric-dimethyl arginine may compete as an 

eNOS substrate with L-arginine and that arginase-1 may catabolize L-arginine 

(45).  
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BH4 is an eNOS cofactor which plays an important role in the dimerization 

of the enzyme (127). This dimerization facilitates electron flow through the 

enzyme and results in production of NO (127). In conditions of BH4 deficiency 

endothelial function and NO production are impaired (15, 17, 103, 127). The 

deficiency of L-arginine and/or BH4 results in “eNOS uncoupling” where eNOS 

exists in monomer form, electron flow through the enzyme is altered and 

molecular oxygen (rather than NO) becomes the final electron acceptor resulting 

in the production of O2
.-. 

In addition to the rate of production, NO bioavailability is also determined 

by the rate of degradation of NO. NO has a half-life of less than 5 seconds under 

physiological conditions (52). In addition, before the discovery that EDRF was 

NO, O2
.- was shown to be a mediator of EDRF degradation (48) and in conditions 

of excess O2
.-, O2

.- and NO react to form the peroxynitrite (ONOO.-) (48, 126). 

This reduces NO bioavailability and the resulting ONOO.-  (a highly reactive 

molecule) can cause cellular damage, further impairing endothelial function 

(126). There is a considerable body of evidence that endothelial dysfunction is 

reversible with the acute administration of exogenous superoxide dismutase 

(SOD, a major scavenger of O2
.-), or SOD mimetics and that this improvement is 

primarily mediated by improved NO bioavailability (16, 33, 35, 62, 115, 123). 

1.6 Aging and NO bioavailability 

 Aging is associated with increased risk of cardiovascular disease, 

impaired endothelial function, reduced exercise capacity, and blunted exercise 

hyperemia. Reduced NO bioavailability appears to play a role in each of these 
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changes, so much recent research has focused on alterations in the NO-

vasodilator pathway that occur with age. As discussed above, a number of 

studies have demonstrated impaired NO-mediated, endothelium-dependent 

dilation with age in humans and animals (3, 6, 16, 20, 107, 132).  A number of 

studies have examined the mechanisms of impaired age-related NO 

bioavailability. Aging has been shown to decrease (16, 33, 50, 132), increase 

(13, 50, 84, 107, 126) or not change (27, 74, 104, 105, 113, 132) eNOS protein 

content across a spectrum of species and vessel sizes. Similarly, age-induced 

alterations of Akt and eNOS phosphorylation appear to vary.  In unstimulated rat 

aorta, p-eNOS(ser1177) and p-Akt(473) are blunted and p-eNOS(thr495) is 

enhanced with age (104, 106). In addition, aortas from old rats exhibit attenuated 

eNOS-Akt and eNOS-Hsp90 and enhanced eNOS-Cav-1 protein-protein 

interactions (105), all suggesting impairment of eNOS activation. In contrast, in 

human brachial artery, endothelial cell p-eNOS(ser1777) is greater in old 

subjects when compared to young (27).  In rat coronary arterioles, p-

eNOS(ser1177) is preserved with age and increases to a similar extent with 

stimulation by intraluminal flow or vascular endothelial growth factor (VEGF) (74). 

In contrast to the changes observed with eNOS protein content and 

phosphorylation, eNOS activity appears to be consistently blunted with age (5, 

13, 105, 106). In total, these results suggest that there are age-related alterations 

in the ability to regulate eNOS activity and NO production; however, whether 

these changes occur in skeletal muscle vasculature is unknown. 
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 Reactive oxygen species (ROS) have been implicated as a contributor to 

age-related endothelial dysfunction. It is well documented that aging results in 

enhanced vascular O2
.- concentrations in numerous models (6, 16, 56, 103, 126). 

In addition, scavengers of O2
.- and other antioxidants have been shown to 

improve age-related endothelial dysfunction by restoring NO bioavailability (6, 16, 

33, 35, 62, 115).  

A number of potential sources of ROS may explain the increased vascular 

ROS concentrations with age. NAD(P)H oxidase has been implicated as a major 

source of vascular O2
.-. Inhibition of NAD(P)H oxidase reduces vascular O2

.- 

concentrations in senescent rat coronary arterioles and mesenteric arteries (16, 

56). In mouse carotid arteries, NAD(P)H oxidase activity is greater with age and 

inhibition of NAD(P)H oxidase improves endothelial function in these vessels 

(33). In contrast, in rat soleus 1A arterioles, inhibition of NAD(P)H oxidase blunts 

flow-induced dilation in vessels from both young and old animals. Xanthine 

oxidase has been implicated as a source of vascular O2
.- with age in rats (56, 

85); however, in aged humans inhibition of xanthine oxidase does not improve 

endothelial function (34). Mitochondrial-derived ROS may also play a role in age-

related endothelial dysfunction (125).  

Interestingly, eNOS itself also appears to contribute to vascular O2
.- 

production with age. There is emerging evidence that aging results in a 

deficiency of vascular BH4, an essential eNOS cofactor and recent studies report 

lower levels of vascular BH4 in rat skeletal muscle arterioles (17, 103). This has 

also been reported in mouse aorta, carotid and mesenteric arteries (6, 136). In 
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addition, exogenous sources of BH4 have been shown to improve endothelial 

function in skeletal muscle from old rats and brachial artery of aged humans (17, 

36). Inhibition of eNOS results in reduced vascular O2
.- concentrations in vessels 

from aged rats and mice (56, 103, 136). These data implicate reduced levels of 

BH4 as a potential mechanism for reduced NO-production by eNOS, and the 

potential for increased NO-degradation by O2
.-, both contributing to endothelial 

dysfunction. It is possible that ROS production from other sources and eNOS 

uncoupling are linked as O2
.- from other sources may oxidize BH4, resulting in 

eNOS uncoupling, generating more O2
.- and creating a feed-forward cycle 

resulting in greater vascular oxidant stress. 

The product of O2
.- dismutation, either spontaneously or mediated by 

SOD, is H2O2. The role of H2O2 in vascular aging is somewhat controversial. 

H2O2 appears to act as an EDHF and mediate phosphorylation of eNOS on 

ser1177, suggesting that it plays a role as a vasodilator in the vasculature (80, 

121). Indeed, in soleus first order (1A) and coronary arterioles from aged rats 

scavenging of H2O2 results in blunted flow-induced dilation (61, 103). In contrast, 

H2O2 contributes to dysregulation of NO production in aged rat mesenteric 

arteries (141) and promotes an inflammatory phenotype in aged rat conduit 

arteries (125).  

In summary, it appears that aging induces complex changes that 

contribute to both a decrease in the rate NO production and an increase in the 

rate of NO degradation. However, the precise mechanisms that account for the 

decline in NO bioavailability with age appear to differ depending on the vessel 
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studied (3). Specifically, in the skeletal muscle vasculature, aging blunts 

endothelium-depedent dilation in both soleus feed arteries (SFA) and 1A 

arterioles; however, with age eNOS protein content decreases (132) or does not 

change (135) in SFA but increases in soleus 1A arterioles (107). Thus, changes 

that occur in one vessel may not be applicable to the whole vasculature. 

1.7 Aging, exercise training and NO bioavailability 

 As aging results in endothelial dysfunction, a major area of study is to 

determine whether exercise can improve endothelial function in the senescent 

vasculature. This has been hypothesized as aerobic fitness is inversely related to 

cardiovascular events (64). In addition, increased shear stress and pressure, two 

physical changes that occur in the vasculature with exercise have been shown to 

modulate endothelial phenotype (38, 87, 122, 124, 134, 135). Of particular 

importance, short-term increases in shear stress or intraluminal pressure have 

been shown to improve endothelial function in senescent rat skeletal muscle feed 

arteries (134, 135). 

Aerobic exercise training improves endothelial function in some vascular 

beds including senescent human forearm (41, 97), mouse conduit vessels (33) 

and rat skeletal muscle arterioles (103, 107, 108, 111, 112). Resistance training 

improves endothelial function in femoral arteries from old rats (50). In cross-

sectional studies, physically active elderly subjects exhibit improved endothelium-

dependent dilation responses compared to their sedentary counterparts (20, 

114). Importantly, exercise training, appears to have disparate effects on 

endothelial phenotype depending on the size and location of the artery (71). This 
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finding suggests that alterations with exercise training in one vessel may not 

always translate to the entire vasculature.  

Despite potential differences due to differing vessels and training 

programs, several possible mechanisms have emerged to explain the 

improvement in endothelial function with exercise. First, inhibition of NOS 

appears to abolish the improvement in endothelial function with training (33, 103, 

107, 108, 110, 111). Using fluorescence measurements, vascular NO 

concentrations in response to increases in intraluminal flow were higher after 

exercise training in senescent rat soleus 1A arterioles (103). Exercise training 

also increases basal p-eNOS(ser1177) in conduit vessels from old mice (33). 

Together these observations suggest that exercise training improves NO 

bioavailability in the aged vasculature. Interestingly, in soleus 1A arterioles, 

exercise training increases vascular BH4 concentrations, but also increases 

vascular O2
.- concentrations (103). In addition, after exercise training scavenging 

of O2
.- or H2O2 blunts flow-induced dilation in arterioles from both young and old 

rats (103). These observations suggest that with exercise training ROS may play 

a greater role in endothelium-dependent dilation in some vessels.  

As discussed above, the feed artery is an important control point for 

regulating total muscle blood flow in a given muscle (129). Because of it’s 

importance in regulation of muscle blood flow (129) and because rat soleus 

muscle blood flow response to exercise is blunted with age (83), our laboratory 

has chosen to study endothelial function in the soleus muscle feed artery (SFA).  
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With age, impairments in the NO-pathway leading to blunted endothelial 

dysfunction are well documented in SFA (132-135); however, little is known 

about the mechanisms that cause impairments in NO bioavailability, particularly, 

whether aging alters the mechanisms of NO production, NO degradation or both. 

In the senescent SFA, the effects of exercise on endothelial function are 

unknown; however, exposing senescent SFA in vitro to short-term increases in 

pressure or flow (both signals occurring during exercise) improves NO-mediated, 

endothelium-dependent dilation (134, 135). In addition, whether ROS contribute 

to (as in the soleus 1A), or impair (as in numerous other vessels) endothelium-

dependent dilation in the SFA is also unknown.  

1.8 Purpose and hypotheses 

The major purpose of this dissertation is to determine the mechanisms 

that mediate age-related endothelial dysfunction in rat SFA and to determine 

whether exercise training ameliorates this impairment in endothelial function. 

Therefore in these series of studies we sought to test three major hypotheses: 

1) Exercise training reverses age-related decrements in endothelium-

dependent dilation in SFA and that this improved endothelium-

dependent dilation is the result of increased NO bioavailability 

due to increased content and phosphorylation of eNOS and/or 

increased antioxidant enzyme content. 

2) Age-related endothelial dysfunction in rat SFA is mediated in part, 

by NAD(P)H oxidase-derived ROS. 
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3) Impaired endothelium-dependent dilation in senescent SFA is due 

to an age-related impairment in PI3K/Akt dependent 

phosphorylation of eNOS on serine residue 1177. 
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CHAPTER II 

 

EXERCISE TRAINING REVERSES AGE-RELATED DECREMENTS IN 

ENDOTHELIUM-DEPENDENT DILATION IN SKELETAL MUSCLE FEED 

ARTERIES* 

 
 

2. 1 Introduction 

 Aging is associated with a decline in endothelial function characterized, in 

part, by impaired endothelium-dependent vasodilator responses in central and 

peripheral arteries (3, 12, 20, 81, 116, 132, 133).  The resulting endothelial 

dysfunction is believed to contribute to an increased risk of cardiovascular 

disease in older adults. In addition, the decline in endothelial function may 

contribute to impaired muscle blood flow and reduced exercise tolerance in the 

elderly (4, 55, 73, 83, 91, 98, 128). The mechanism(s) for the age-related 

decrement in endothelium-dependent dilation is not fully understood; however, 

previously published studies indicate that a decline in the bioavailability of nitric 

oxide (NO) plays an integral role (3, 14, 16, 81, 114, 133).  

Endurance exercise training improves endothelium-dependent dilation in 

some conduit arteries in young healthy subjects (18, 70, 77, 82, 88, 110, 112) 

and in skeletal muscle arterioles/resistance arteries (72, 76, 107, 108).  

Importantly, examination of the effects of training in the arteriolar tree of skeletal  

*Reprinted with permission from Exercise training reverses age-related 
decrements in endothelium-dependent dilation in skeletal muscle feed arteries. 
Trott DW, Gunduz F, Laughlin MH, and Woodman CR. J Appl Physiol 106: 
1925-1934, 2009 by the American Physiological Society 
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muscle indicates that the improvement in endothelium-dependent dilation 

induced by exercise training is not uniformly distributed throughout the arteriolar 

tree (72, 76). The beneficial effect of exercise training has also been reported to 

be associated with increased expression of endothelial nitric oxide synthase 

(eNOS) (71, 101, 131), enhanced production of NO (31), and improved NO-

mediated, endothelium-dependent dilation (82).  In addition, exercise training has 

been reported to increase expression of cytosolic and extracellular superoxide 

dismutases (SOD-1 and ecSOD) in the aorta of mice and pigs, which may 

improve endothelial function by enhancing the capacity to scavenge superoxide 

and prolonging the biological half-life of NO (42, 96).  

 Previous studies indicate that endurance exercise training is also an 

effective intervention for attenuating or reversing age-induced endothelial 

dysfunction in first order (1A) arterioles  perfusing skeletal muscle (107, 108).  

Specifically, Spier et al. (107, 108) reported that endurance exercise training 

improves endothelium-dependent vasodilator responses in 1A arterioles from 

soleus and gastrocnemius muscles of aged rats, and that the improved 

endothelium-dependent dilation was mediated by enhanced NO bioavailability.  

In addition, exercise training appears to enhance antioxidant status and improve 

endothelium-dependent dilation in conduit arteries of aged human subjects (20, 

35, 41).   

 In skeletal muscle, it has been established that a primary control point for 

regulating total muscle blood flow during exercise is the feed artery (129).  
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Indeed, previous research indicates that feed arteries, which lie immediately 

external to skeletal muscle, provide the principal site of resistance to flow through 

individual skeletal muscles and play an integral role in mediating increases in 

skeletal muscle blood flow during physical activity (69, 129, 130).  Thus, an 

exercise training-induced improvement in vasodilator responses in skeletal 

muscle feed arteries could potentially work in concert with enhanced endothelial 

function previously reported in skeletal muscle arterioles (107, 108) by increasing 

the capacity to augment total muscle blood flow (feed arteries) and the ability to 

redistribute the augmented blood flow (arterioles) to active skeletal muscle fibers.  

Given that exercise in young animals has been shown to exert changes in 

endothelium-dependent dilation in the resistance artery network of skeletal 

muscles in a non-uniform manner and the importance of feed arteries to 

perfusion of skeletal muscle, it is important to know whether exercise training in 

aged animals has a beneficial impact on soleus muscle feed arteries.  We know 

that  exercise training has been shown to improve endothelium-dependent 

dilation in aged soleus muscle 1A arterioles (107, 108); however, the efficacy of 

endurance exercise training to improve endothelial function in senescent soleus 

muscle feed arteries is not known.  Therefore, the purpose of this study was to 

test the hypothesis that exercise training reverses age-related decrements in 

endothelium-dependent dilation in soleus muscle feed arteries (SFA). We also 

hypothesized that endurance exercise training would improve endothelium-

dependent dilation in senescent SFA by increasing NO bioavailability due to 
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increased content and phosphorylation of eNOS and/or increased antioxidant 

enzyme content. 

2.2 Methods 

2.2.1 Experimental design 

 Endothelium-dependent dilation in response to application of acetylcholine 

(ACh) was examined in SFA isolated from young and old sedentary and exercise 

trained rats, using standard techniques.  The relative contribution of NO 

synthesis by NOS was evaluated by examining vasodilator responses in the 

presence of Nω-nitro-L-arginine (L-NNA; 300 µM) to inhibit nitric oxide synthase 

(NOS).  The contribution of cyclooxygenase (COX) was evaluated by examining 

vasodilator responses in the presence of indomethacin (Indo; 5 µM) to inhibit 

COX and the role of non-NOS and non-COX pathways to the responses was 

determined by examining vasodilator responses in the presence of L-NNA + Indo 

to inhibit NOS and COX.  Feed arteries were also harvested for examination of 

expression of eNOS, eNOS phosphorylation on serine residue 1177 (p-

eNOS(ser1177)), SOD-1 and ecSOD using immunoblot analysis.  When these 

results revealed that ecSOD content was increased by exercise training, we did a 

series of experiments to determine whether the improvement in endothelium-

dependent dilation could be produced simply by increasing antioxidant levels by 

adding exogenous antioxidants. 

2.2.2 Animals   

All of the protocols used in the present study were approved by the Animal 

Care and Use Committees at the University of Missouri and Texas A&M 



20 

University. To determine the efficacy of exercise training to improve endothelium-

dependent dilation in aged SFA, male Fischer 344 rats (2 and 22 mo of age; n = 

20/age group) were purchased from a commercial dealer (Harlan Sprague-

Dawley, Indianapolis, IN) and housed in the University of Missouri College of 

Veterinary Medicine's Animal Care Facility.  One week after arrival, rats were 

exercise trained (Ex) or remained sedentary (Sed) for 10-12 weeks.  Thus, at the 

end of the training program, the ages of the young and old rats were 4-5 mo or 

24-25 mo respectively.  The resulting experimental design consisted of four 

groups of rats: 1) young Sed (n = 10), 2) young Ex (n = 10), 3) old Sed (n = 10), 

and 4) old Ex (n = 10).  To determine whether exogenous antioxidants produce 

exercise-like effects on aged SFA, a separate group of male Fischer 344 rats (4 

and 24 mo of age) was purchased and housed at the Texas A&M University 

Comparative Medicine Program Facility. Both animal facilities were maintained at 

24o C with a 12:12-h light-dark cycle. Food and water were provided ad libitum, 

and the rats were examined daily by the investigators and by veterinarians 

affiliated with their respective institutions. 

2.2.3 Training program 

 The exercise training protocol used in the present study has been 

published previously in detail (107).  In brief, rats were familiarized with running 

on a motorized treadmill and randomly assigned to an Ex or Sed group for 10-12 

weeks.  Rats assigned to the Ex group ran 60 min/day, 5 days/week, at 15 m/min 

(15o incline). Rats assigned to the Sed group were restricted to their cages and 

did not exercise.  The efficacy of the exercise-training protocol was assessed 
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from measurements of citrate synthase activity in the vastus lateralis muscle 

(109).   

2.2.4 Isolation of feed arteries   

Procedures used to isolate SFA have been published previously (132-

135).  In brief, rats were anesthetized with an intraperitoneal injection of 

pentobarbital sodium (50-60 mg/kg body wt, ip).  Soleus muscles from the left 

and right hindlimb were removed and placed in MOPS-buffered physiological 

saline solution (PSS) containing (in mM) 145.0 NaCl, 4.7 KCl, 2.0 CaCl2, 1.17 

MgSO4, 1.2 NaH2PO4, 5.0 glucose, 2.0 pyruvate, 0.02 EDTA, 25.0 MOPS, at pH 

7.4.  SFA from one hindlimb were dissected free of paired veins and connective 

tissue under a dissection microscope, cut on both ends and transferred to a 

Lucite chamber containing MOPS-PSS (4o C) for cannulation.  SFA from the 

contra-lateral hindlimb were dissected free, transferred to a microcentifuge tube, 

snap frozen and stored at -80oC for subsequent immunoblot analysis. 

2.2.5 Determination of vasodilator responses 

 Preparation of Arteries.  SFA were prepared for functional analysis as 

described previously (19, 42).  Specifically, arteries were cannulated with two 

resistance matched glass micropipettes and secured with 11-0 surgical silk.  The 

micropipettes were subsequently attached to separate pressure reservoirs filled 

with MOPS-PSS supplemented with albumin (1g/100ml).  The height of each 

reservoir was initially adjusted to set intraluminal pressure in each SFA to 60 cm 

H2O (1 mmHg = 1.36 cm H20) for 20 min.  After 20 min, intraluminal pressure 

was raised to 90 cm H2O and the feed arteries were allowed to equilibrate for an 
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additional 40 min at 37oC.  At the end of the 60-min equilibration period, feed 

arteries that did not develop at least 25% spontaneous tone were constricted with 

phenylephrine.  All experimental protocols were subsequently conducted at an 

intraluminal pressure of 90 cm H2O to approximate in vivo intraluminal pressure 

(129). 

 Endothelium-Dependent Dilation.  Endothelium-dependent dilation was 

assessed in feed arteries by adding increasing concentrations of ACh to the bath 

solution in cumulative concentrations over the range of 10-9 - 10-4 M in whole log 

increments as described previously (58, 132, 133).  A total of 4 SFA were studied 

in parallel from each rat.  In SFA 1, ACh-induced vasodilator responses were 

assessed in the absence of enzyme inhibitors.  In SFA 2, vasodilator responses 

were assessed in the presence of L-NNA (300 µM) to inhibit NOS.  In SFA 3, 

vasodilator responses were assessed in the presence of Indo (5 µM) to inhibit 

COX.  In SFA 4, vasodilator responses were assessed in the presence of L-NNA 

+ Indo to inhibit NOS and COX.  

 In a separate series of experiments, endothelium-dependent dilation was 

assessed in SFA from young Sed and old Sed rats in the absence and presence 

of exogenous antioxidants. In these studies, a total of 3 SFA were studied in 

parallel from each rat. In SFA 1, ACh-induced vasodilator responses were 

assessed in the absence of exogenous antioxidants.  In SFA 2, vasodilator 

responses were assessed in the presence of superoxide dismutase (SOD; 120 

U/mL) to scavenge superoxide.  In SFA 3, vasodilator responses were assessed 

in the presence SOD and catalase (CAT; 100 U/mL) to scavenge superoxide and 
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hydrogen peroxide. When results revealed that exogenous antioxidants improved 

endothelium-dependent dilation, a subsequent set of experiments was performed 

to determine whether NO mediated the improvement in endothelial function. In 

these studies 3 SFA were studied in parallel from each rat. In SFA 1, ACh-

induced vasodilator responses were assessed in the absence of exogenous 

antioxidants.  In SFA 2, vasodilator responses were assessed in the presence of 

SOD.  In SFA 3, vasodilator responses were assessed in the presence SOD and 

L-NNA. 

 Endothelium-Independent Dilation.  Endothelium-independent dilation was 

assessed by adding increasing concentrations of sodium nitroprusside (SNP) to 

the bath solution in cumulative concentrations over the range of 10-9 - 10-4 M in 

whole log increments (58, 132, 133). SNP-induced dilation was also assessed in 

SFA from young and old Sed rats in the presence of SOD, SOD+CAT and 

SOD+L-NNA. 

 Passive Diameter.  At the end of each experiment, SFA were incubated 

for 30 min in Ca2+-free PSS to determine passive diameter at an intraluminal 

pressure of 90 cmH2O. 

2.2.6 Solutions and drugs 

 All reagents used in concentration-response experiments were obtained 

from Sigma Chemical Co. (St. Louis, MO).  Reagents were prepared on the day 

of the experiment. 
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2.2.7 Quantification of eNOS, p-eNOS(ser1177), SOD-1 and ecSOD protein 

content.   

 Relative differences in eNOS, p-eNOS(ser1177), SOD-1 and ecSOD 

protein contents were assessed in feed arteries using immunoblot analysis as 

described previously in detail (58).  eNOS protein content was evaluated with a 

monoclonal antibody (1:1250; catalog no. 610297, BD Transduction 

Laboratories).  p-eNOS(ser1177) protein content was assessed with a 

monoclonal antibody (1:250; catalog no. 612393, BD Transduction Laboratories).  

SOD-1 protein content was assessed with a polyclonal antibody (1:3300; catalog 

no. SOD-100, Stressgen).  ecSOD protein content was assessed with a 

polyclonal antibody (1:1000; catalog no. SOD-105, Stressgen).  Immunoblots 

were evaluated by enhanced chemiluminescence (ECL, Amersham) and 

densitometry by using a LAS-3000 Luminescent Image Analyzer and Multi-

Gauge Image Analysis Software (FUJIFILM Medical Systems).  All protein data 

were expressed relative to GAPDH to control for small differences in protein 

loading. GAPDH protein content was assessed with a monoclonal antibody 

(1:10,000; catalog no. AB374, Millipore). To determine whether the ratio of p-

eNOS(ser1177)-to-total eNOS protein content was altered with aging or exercise 

training, immunoblots were probed with the p-eNOS(ser1177) antibody, stripped 

with Restore Western Blot Stripping Buffer (Thermo catalog no. 21059) and re-

probed with the eNOS antibody. 
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2.2.8 Statistical analysis  

All values are means ± SEM.  Between-group differences in body mass, citrate 

synthase activity, percent tone, relative protein content, and passive diameter 

were assessed using one-way ANOVA.  Concentration response curves were 

analyzed by two-way ANOVA with repeated measures on one factor 

(Concentration) to determine whether vasodilator responses to ACh and SNP 

differed by group.  In addition, IC50 values were determined by non-linear 

regression sigmodial concentration-reponse equations for each curve. Between 

group differences in IC50 values and response to the final concentration of ACh 

(10-4 M) were assessed with one way ANOVA.  Concentration-response data 

were expressed as a percentage of maximal possible dilation.  Percent possible 

dilation was calculated as [Dconcentration-DB)/DP-DB] x 100 where Dconcentration is 

measured diameter for a given concentration, DB is baseline diameter before an 

intervention was started, and DP is maximal passive diameter.  A total of 230 

SFA were used in experiments to assess vasodilator function.  Fifteen young (8 

Sed; 7 Ex) and 21 old (11 Sed; 10 Ex) SFA required phenylephrine to achieve 

25% tone.  Deletion of these arteries from the statistical analyses did not alter 

interpretation of the results; therefore, all 230 SFA were included in the final 

analyses. When a significant F value was obtained, post hoc analyses were 

performed with Duncan's multiple-range test and Fisher’s LSD test.  Statistical 

significance was set at the p ≤ 0.05 probability level. 

 



26 

2.3 Results 

2.3.1 Characteristics of rats and SFA 

 Skeletal muscle citrate synthase activity was increased by training in 

young and old rats confirming the efficacy of the exercise training program (Table 

2.1).  Body weight of old Sed rats was significantly greater than young Sed rats 

(Table 2.1).  Exercise training lowered body weight in the old rats such that the 

body weight of the old Ex rats was not significantly different from young Sed or 

young Ex rats.  Maximal passive diameter was similar in all groups of arteries 

(Tables 2.2 & 2.3). 

2.3.2 ACh-induced dilation 

 ACh-induced dilation was significantly blunted in the old Sed arteries 

relative to the young Sed arteries (Fig. 2.1).  Ex improved ACh-induced dilation in 

old (not young, p=0.21) SFA, such that ACh-induced dilation was significantly 

greater in old Ex SFA than in old Sed SFA (Fig. 2.1).  In addition, ACh-induced 

dilation of old Ex SFA was not different from that of young Sed and young Ex 

SFA (Fig. 2.1).   

 ACh-induced dilation was inhibited by L-NNA (Fig. 2.2) and L-NNA + Indo 

(Fig. 2.3) in young Sed, young Ex, and old Ex arteries.  In contrast, ACh-induced 

dilation was not significantly inhibited by L-NNA (Fig. 2.2) or L-NNA + Indo (Fig. 

2.3) in old Sed arteries.  In the presence of L-NNA, or L-NNA + Indo, ACh-

induced dilation of old Ex SFA was no longer greater than that of old Sed SFA 

(Figs. 2.2 and 2.3).  ACh-induced dilation was not significantly inhibited by Indo 

alone in any group of arteries (data not shown).  Alterations in the response to  
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Table 2.1.  Body weight and citrate synthase activity in the vastus lateralis red 

muscle. 

 Young Sed Young Ex Old Sed Old Ex 

Body weight, g 391 ± 9 353 ± 8acd 425 ± 12a 402 ± 12 

Citrate synthase activity; 

µmol.min-1.g wet wt-1 

29.9 ± 0.7 39.7 ± 3.7ac 25.6 ± 1.8 38.7 ± 3.0ac 

 

Values are means ± SEM; n = 8-10 rats/group.  Sed, sedentary; Ex, exercise 

trained.  Significantly different from ayoung Sed, byoung Ex, cold Sed, dold Ex, p ≤ 

0.05. 
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Table 2.2.  Characteristics of soleus muscle feed arteries from young and old rats 

used in the exercise training study. 

Parameter Con L-NNA Indo L-NNA + Indo 

Maximal diameter, µm     

       Young Sed 199 ± 5 193 ± 7 195 ± 11 180 ± 13 

       Young Ex 196 ± 12 178 ± 16 191 ± 12 184 ± 15 

       Old Sed 170 ± 8 173 ± 10 174 ± 17 187 ± 12 

       Old Ex 200 ± 10 194 ± 8 171 ± 11 171 ± 10 

Initial tone pre-ACh, %     

       Young Sed 48.6 ± 4.1 73.9 ± 2.8acd 45.3 ± 6.9b 57.6 ± 4.5b 

       Young Ex 40.1 ± 4.3 60.4 ± 4.7ac 34.4 ± 4.1bd 54.7 ± 6.1ac 

       Old Sed 44.0 ± 6.4 67.5 ± 5.2acd 32.0 ± 4.0b 45.6 ± 4.9b 

       Old Ex 46.4 ± 3.9 55.8 ± 4.9cd 33.4 ± 2.3abd 44.1 ± 2.7bc 

 

Values are means ± SEM; n = 8-10 rats/group.  Sed, sedentary; Ex, exercise 

trained; Con, control; L-NNA, Nω-nitro-L-arginine; Indo, indomethacin.  

Significantly different from aCon, bL-NNA, cIndo, dL-NNA+ Indo, p ≤ 0.05. 
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Figure 2.1.  ACh-induced dilation in soleus muscle feed arteries (SFA).  Sed, 
sedentary; Ex, exercise trained.  B, baseline diameter before the first 
concentration of ACh.  Values are means ± SEM; n = 8-10 rats per group.  
Concentration-response curve significantly different from 1Young Sed, 2Young 
Ex, and 4Old Ex, p ≤ 0.05. 
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Figure 2.2.  ACh-induced dilation in young (A) and old (B) SFA in the absence or 
presence of Nω-nitro-L-arginine (L-NNA; 300 µM) to inhibit nitric oxide synthase.  
B, baseline diameter before the first concentration of ACh.  Values are means ± 
SEM; n = 8-10 rats/group.  Concentration-response curve significantly different 
from 1Sed, 2Ex, 3Sed + L-NNA, and 4Ex + L-NNA, p ≤ 0.05. 
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Figure 2.3.  ACh-induced dilation in young (A) and old (B) SFA in the absence or 
presence of L-NNA (300 µM) and indomethacin (Indo; 5 µM) to inhibit nitric oxide 
synthase and cyclooxygenase.  B, baseline diameter before the first 
concentration of ACh.  Values are means ± SEM; n = 8-10 rats/group.  
Concentration-response curve significantly different from 1Sed and 2Ex, p ≤ 0.05. 



32 

the maximal concentration of ACh (10-4 M) followed a similar pattern to the 

alterations observed in the concentration response curves.  Sensitivity (IC50) to 

ACh was not altered by age, training status or treatment (Table 2.4). 

 To determine if exogenous antioxidants restore ACh-induced dilation in a 

manner similar to exercise, experiments were carried out in the absence and 

presence of SOD or SOD + CAT.  In the absence of antioxidants, the response to 

ACh was significantly attenuated in the old Sed SFA compared to the young Sed 

SFA (p=0.003) (Fig. 2.4). SOD and SOD+CAT significantly improved ACh-

induced dilation in old Sed SFA (Fig. 2.4).  SOD improved ACh-induced dilation 

in old Sed SFA such that the dilator response was greater than that seen in 

young Sed SFA while addition of SOD+CAT improved dilation in old Sed SFA to 

the extent that dilation was comparable to young Sed SFA (Fig. 2.4).  In young 

Sed SFA, addition of SOD, or SOD+CAT, did not alter the ACh concentration 

response curve (Fig. 2.4); however, SOD did enhance the response to the 

maximal concentration of ACh (Table 2.5). In old Sed SFA, the SOD-induced 

improvement in ACh-induced dilation was abolished in the presence of SOD + L-

NNA (Fig. 2.5). In young Sed, SOD + L-NNA tended (p=0.12) to inhibit ACh-

induced dilation (Fig. 2.5) and significantly attenuated sensitivity (IC50) to ACh 

(Table 2.5).  

2.3.4 SNP-induced dilation   

 SNP elicited a concentration-dependent dilation of all arteries. Statistical 

analysis revealed no significant between-group differences (data not shown). 
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2.3.5 eNOS, p-eNOS(ser1177), SOD-1 and ecSOD  protein content   

 Immunoblot analysis revealed that eNOS (Fig. 2.6A), p-eNOS(ser1177) 

(Fig. 2.6B), and SOD-1 (Fig. 2.7A) protein contents were not significantly altered 

by age or exercise training. The p-eNOS(ser1177)-to-total eNOS protein content 

ratio was also not altered by age or training status (Fig. 2.6C).  In contrast, 

ecSOD protein content was significantly increased by exercise training in young 

and old SFA such that ecSOD content was greater in young Ex and old Ex 

arteries than in young Sed and old Sed arteries (Fig. 2.7B).  
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 Table 2.3. Characteristics of soleus muscle feed arteries from young and old rats 

used in the antioxidant studies. 

Parameter Con SOD SOD+CAT SOD + L-NNA 

Maximal diameter, µm     

    Young 162.6 ± 5.5 178.1 ± 8.0 175.8 ± 7.3 181.9 ± 8.7 

    Old 158.3 ± 7.6 183.2 ± 9.4 175.3 ± 13.9 169.0 ± 14.2 

Initial Tone pre-ACh, %     

    Young 41.1 ± 2.3 38.3 ± 2.9 38.2 ± 3.9 47.4 ± 5.2 

    Old 40.8 ± 3.2 39.0 ± 2.8 37.1 ± 4.1 42.4 ± 4.9 

 

Values are means ± SEM; n = 6-21 rats/group. Con, control; SOD, Superoxide 

dismutase; SOD+CAT, Superoxide dismutase + catalase; SOD +L-NNA, 

Superoxide dismutase, Nω-nitro-L-arginine. 
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Table 2.4.  IC50 –(log) M values and response to 10-4 M ACh of soleus muscle 

feed arteries from young and old rats used in the exercise training study. 

 

Parameter Con L-NNA Indo L-NNA+Indo 

IC50, -(log) M ACh     

    Young Sed -7.75 ± 0.27 -6.97 ± 0.26 -7.37 ± 0.26 -7.06 ± 0.38 

    Young Ex -7.53 ± 0.30 -6.91 ± 0.18 -7.25 ± 0.29 -6.47 ± 0.45 

    Old Sed -7.52 ± 0.35 -7.13 ± 0.16 -6.55 ± 0.24 -6.5 ± 0.73 

    Old Ex -7.83 ± 0.55 -7.15 ± 0.26 -7.20 ± 0.60 -6.55 ± 0.60 

Response to final 

concentration of ACh 

(10-4 M), % possible 

dilation 

    

    Young Sed 87.0 ± 6.2 52.4 ± 8.2a 64.6 ± 9.3 60.6 ± 8.8a 

    Young Ex 76.9 ± 10.7 49.1 ± 12.6a 73.6 ± 9.4d 28.1 ± 8.6ac 

    Old Sed 54.2 ± 8.7f 37.9 ± 6.0 67.4 ± 9.0bd 28.5 ± 11.1c 

    Old Ex 80.9 ± 6.8eb 41.8 ± 9.5a 61.8 ± 11.3 39.1 ± 8.3a 

 

Values are means ± SEM; n = 8-10 rats/group.  Sed, sedentary; Ex, exercise 

trained; Con, control; L-NNA, Nω-nitro-L-arginine; Indo, indomethacin.  

Significantly different from aCon, bL-NNA, cIndo, dL-NNA+ Indo, eSed, fYoung, p ≤ 

0.05  
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Table 2.5.  IC50 –(log) M values and response to 10-4 M ACh of soleus muscle 

feed arteries from young and old rats used in the antioxidant studies. 

 

Parameter Con SOD SOD+CAT SOD+ L-NNA 

IC50, -(log) M ACh     

    Young -6.61 ± 0.20 -7.28 ± 0.26 -6.72 ± 0.20 -8.18 ± 0.62ac 

    Old -7.01 ± 0.18 -7.39 ± 0.14 -7.44 ± 0.35 -7.33 ± 0.46 

Response to final 

concentration of ACh 

(10-4 M), % possible 

dilation 

    

    Young 72.5 ± 4.7 78.7 ± 5.4d 64.9 ± 9.3 52.7 ± 13.2b 

    Old 44.1 ± 5.3bce 72.9 ± 6.6ad 72.8 ± 7.1ad 27.2 ± 4.5bc 

 

Values are means ± SEM; n = 6-21 rats/group. Con, control; SOD, Superoxide 

dismutase; SOD+CAT, Superoxide dismutase + catalase; SOD+L-NNA, 

Superoxide dismutase + Nω-nitro-L-arginine. Significantly different from aCon, 

bSOD, cSOD+CAT, dSOD+L-NNA ,eYoung, p ≤ 0.05. 
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Figure 2.4. ACh-induced dilation in young (A) and old (B) SFA in the absence or 
presence of exogenous antioxidants Superoxide dismutase (SOD, 120 U/ml) or 
SOD + Catalase (CAT, 100 U/ml). B, baseline diameter before the first 
concentration of ACh.  Values are means ± SEM; n = 6-14 rats per group.  
Concentration-response curve significantly different from 1Control, p ≤ 0.05. 
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Figure 2.5. ACh-induced dilation in young (A) and old (B) SFA in the absence or 
presence of SOD or SOD + L-NNA. B, baseline diameter before the first 
concentration of ACh.  Values are means ± SEM; n = 8-21 rats per group.  
Concentration-response curve significantly different from 1Control, p ≤ 0.05. 
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Figure 2.6.  Comparison of endothelial nitric oxide synthase (eNOS) (A), P-
eNOS(ser1177) (B) protein content and p-eNOS(ser1177)-to-eNOS ratio (C) in 
SFA from young and old rats.  Insets: representative blots for the target protein 
(top image) and the same blot reprobed for (bottom image). YS, young 
sedentary; OS, old sedentary, YX, young exercise trained; OX, old exercise 
trained.  Values are means ± SEM; n = 9-10 rats/group.  Statistical analysis 
revealed no significant differences. 
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Figure 2.7.  Comparison of Cu-Zn-dependent superoxide dismutase (SOD-1) (A) 
and extracellular superoxide dismutase (ecSOD) (B) protein content in SFA from 
young and old rats. Insets: representative blots for the target protein (top image) 
and the same blot reprobed for (bottom image). YS, young sedentary; OS, old 
sedentary, YX, young exercise trained; OX, old exercise trained.  Values are 
means ± SEM; n = 8 rats/group.  *Significantly different from Sed rats,  p ≤ 0.05.
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2.4 Discussion 
 
 The purpose of this study was to test the hypothesis that exercise training 

reverses age-related decrements in endothelium-dependent dilation in SFA by 

increasing NO bioavailability due to increased content and phosphorylation of 

eNOS and/or increased antioxidant enzyme content.  The primary new findings 

of this study are that: 1) Exercise training improved ACh-induced dilation in old 

SFA such that vasodilator responses in old Ex SFA were similar to young Sed 

and young Ex SFA.  2) ecSOD protein content was increased by training in SFA 

from both young and old rats whereas the SFA protein content of eNOS, p-

eNOS(ser1177), and SOD-1 were not altered by training.  3)  Exogenous SOD, 

and SOD + CAT, restored ACh-induced dilation in old SFA in an NO-dependent 

manner similar to the effects of exercise training.  Results also demonstrate that 

treatment with L-NNA, or L-NNA + Indo, inhibited ACh-induced dilation in old Ex 

SFA such that the response was not greater than the response in the old Sed 

SFA.  Also, ACh-induced dilation was not significantly inhibited by Indo alone in 

young or old rats. Collectively, these results indicate that exercise training 

reverses the detrimental effects of aging on endothelium-dependent dilation in 

SFA and that increased vascular ecSOD protein content may contribute to this 

improvement.  To our knowledge, this is the first study to demonstrate that 

exercise training reverses age-induced endothelial dysfunction in SFA or any 

skeletal muscle feed artery.  Given that skeletal muscle feed arteries contribute 

importantly to regulating total skeletal muscle blood flow during exercise (47), this 

exercise induced adaptation may have substantial functional significance. 
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 Reduced exercise capacity with age is well documented in humans and 

animals (4, 10, 75).  The mechanism(s) for the age-related decline in exercise 

tolerance is not fully understood; however, an impaired ability to increase skeletal 

muscle blood flow during exercise may contribute to the reduction in exercise 

capacity (4, 55, 83, 91, 98).  There are numerous potential mechanisms for the 

impairment in the blood flow response to exercise, including age-related 

increases in vasoconstrictor responsiveness (23, 28, 29, 98, 120) and blunted 

NO-mediated endothelium-dependent dilation (98).  The role of NO in exercise 

hyperemia is somewhat controversial. In some studies NOS inhibition blunts 

exercise hyperemia (98, 102), whereas in other studies NOS inhibition has no 

effect on exercise hyperemia (40, 93). Importantly, Schrage et al. (98) have 

shown that the contribution of NO to exercise hyperemia is reduced in older 

subjects.   

The decreased ACh-induced dilation observed in SFA from old Sed rats in 

the present study (Figs. 2.1, 2.4, 2.5) is in accord with previous studies indicating 

that endothelium-dependent dilation is impaired in feed arteries (132, 133) as 

well as 1A arterioles (81) of the soleus muscle of aged rats.  Also, previous 

studies indicate that exercise training attenuates the detrimental effects of aging 

on endothelium-dependent dilation of skeletal muscle 1A arterioles  (107, 108).  

Present results indicate that exercise improved ACh-induced dilation in old SFA 

such that vasodilator responses in old Ex SFA were similar to young Sed and 

young Ex SFA (Fig. 2.1).  The exercise-induced improvement in endothelial 

function in SFA may be functionally significant given that feed arteries serve as 
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the primary control point for regulating total muscle blood flow to soleus muscle 

at rest and during exercise (129).  In addition to enhancing NO-mediated dilation 

in aged skeletal muscle arterioles, exercise training has also been shown to 

attenuate vasoconstrictor responses in skeletal muscle arterioles (28, 29, 107, 

108). Thus, it is likely that the exercise-induced improvement in endothelium-

dependent vasodilator responses in SFA observed in the present study works in 

concert with enhanced vasodilator, and attenuated vasoconstrictor, responses in 

skeletal muscle arterioles to enhance the capacity to increase skeletal muscle 

blood flow and to distribute blood flow to the actively contracting muscle fibers 

during exercise.  

2.4.1 Mechanisms responsible for increased vasodilator responses 

 Results of the present study indicate that the beneficial effect of exercise 

training on ACh-induced vasodilator function is primarily due to increases in NO 

bioavailability, since the exercise effect was eliminated in the presence of L-NNA 

(Fig. 2.2B).  Importantly, the improvement in NO-mediated dilation could not be 

attributed to an exercise-induced improvement in the ability of vascular smooth 

muscle cells to respond to NO, since vasodilator responses to SNP (an NO 

donor) were similar in all groups of arteries.  To determine whether the beneficial 

effect of exercise on endothelium-dependent dilation also involved COX 

products, ACh-induced dilation was assessed in the presence of Indo to block 

COX.  ACh-induced dilation was not significantly inhibited by Indo alone in young 

or old rats regardless of training status (data not shown).  Thus, the beneficial 



44 

effect of exercise training on vasodilator responses in aged SFA does not to 

appear to be mediated by altered COX signaling.  

 To determine whether enhancement of a NOS- and COX-independent 

vasodilator mechanism contributed to the beneficial effect of exercise training, 

ACh-induced dilation was assessed in the presence of L-NNA + Indo (double 

blockade).  In the presence of L-NNA + Indo, residual dilation to ACh can be 

attributed to vasodilators other than NO and prostacyclin (PGI2), primarily 

endothelium-derived hyperpolarizing factors (EDHF).  Double blockade had no 

statistically significant impact on old Sed arteries (Fig., 2.3B) suggesting that 

endothelium-dependent dilation in Old Sed SFA is mediated entirely by non-

NOS, non-COX mechanisms. Double blockade inhibited, but did not eliminate, 

ACh-induced dilation in Old Ex SFA (Fig. 2.3B).    Equally important was the 

finding that ACh-induced dilation in old Ex SFA in the presence of L-NNA + Indo, 

was not different from the old Sed arteries in the presence of double blockade 

(Fig. 2.3B).  These data indicate that a vasodilator pathway independent of NOS 

and COX contributed to ACh-induced dilation in young and old arteries; however, 

the beneficial effect of exercise training in aged arteries can not be attributed to 

enhancement of this pathway.  In conclusion, our pharmacological experiments 

indicate that exercise training reverses the detrimental effects of aging on 

endothelial function of SFA primarily by enhancing NO bioavailability. This 

conclusion is similar to previous reports for 1A arterioles of soleus muscle of 

aged rats (107, 108).   
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 Results of the present study also indicate that exercise training did not 

induce increases in eNOS protein content in young or old SFA (Fig. 2.6A).  Nor 

did exercise training increase basal levels of p-eNOS(ser1177) (Fig. 2.6B) or 

alter the p-eNOS(ser1177)-to-total eNOS ratio (Fig. 2.6C).  These data suggest 

that enhanced NO-mediated, endothelium-dependent dilation in old Ex SFA is 

not due to increased eNOS protein content or eNOS phosphorylation on Ser 

1177.  Taken together with previous results in solues 1As exercise training 

increases NO bioavailability in SFA (Figure 2.6) and 1As (107, 108) of aged 

soleus muscle; however, the vascular adaptation induced by exercise in SFA is 

not the same as that reported in soleus 1A arterioles by Spier et al. where 

exercise training increased eNOS protein content (107). Thus, while exercise 

training improves endothelial function in SFA and 1A arterioles perfusing soleus 

muscle, the mechanism by which exercise improves NO-mediated endothelium-

dependent dilation is different in SFA and 1A arterioles of this muscle (107, 108).  

Exercise training has also been shown to increase eNOS mRNA and protein 

content in aged rat aorta (117).  The differences in aging and exercise training 

induced alterations in different vessels suggest that findings in one vessel cannot 

necessarily be applied to other vessels. 

 Another mechanism whereby exercise training could increase NO 

bioavailability in aged SFA is through an exercise-induced reduction in the rate of 

NO degradation.  The primary mechanism for NO degradation in blood vessels is 

rapid interaction with superoxide anion, leading to the formation of peroxynitrite 

(48). This mechanism has been implicated in aging-induced endothelial 
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dysfunction (48, 126). Vascular superoxide dismutases play a role in preserving 

the bioactivity of NO by scavenging superoxide.  Consequently, an exercise-

induced increase in the expression of superoxide dismutases could lead to the 

exercise-induced improvement in NO-mediated, endothelium-dependent dilation 

in aged SFA.  Therefore we tested the hypothesis that exercise training 

increases the expression of SOD-1 and ecSOD in old SFA.  The rationale for this 

hypothesis was based on experimental evidence indicating that exercise training 

increases expression of SOD-1 and ecSOD in the aorta of  young mice and pigs 

(42, 96).  Our results reveal that ecSOD (not SOD-1) content was increased by 

training in SFA from both young and old rats (Fig. 2.7B).  These results support 

the hypothesis that the beneficial effect of exercise on endothelium-dependent 

dilation observed in the old SFA is, in part, the result of an enhanced capacity of 

ecSOD to scavenge superoxide, resulting in an increase in the bioavailability of 

NO. Because ecSOD activity is regulated by a number of factors including 

protein folding, reactions with NO and hydrogen peroxide and copper availability 

(42, 51, 59, 89), further study is needed to fully elucidate the role of ecSOD in the 

beneficial effects of exercise training in aged SFA.   

In light of the observation that ecSOD protein content was increased in 

SFA with exercise training, we reasoned that the beneficial effects of exercise on 

endothelium-dependent dilation of SFA may be mimicked by treatment with 

exogenous antioxidant enzymes.  To test this hypothesis we chose SOD (non-

cell permeable) rather than PEG-SOD (cell permeable) because the primary 

exercise-induced alteration in antioxidant protein content occurred with the 
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extracellular isoform of SOD (ecSOD).  Results indicated that addition of 

exogenous SOD, or SOD + CAT, did not alter the ACh concentration response in 

feed arteries from young rats but resulted in greater ACh-induced dilation in old 

Sed SFA when compared to old Sed SFA without antioxidants (Fig. 2.4).  In 

addition, ACh-induced dilation in old Sed SFA was either equal to (in the 

presence of SOD + CAT) or greater than (in the presence of SOD alone) ACh-

induced dilation in young Sed SFA (Fig. 2.4). Also, L-NNA abolished the 

improvement in ACh-induced dilation in old Sed SFA observed in the presence of 

SOD (Fig. 2.5). These results demonstrate that exogenous antioxidant enzymes 

mimic the effects of exercise in old SFA, consistent with our hypothesis.  Based 

on the observation that exercise training increased ecSOD protein content and 

that exogenous SOD mimicked the effects of exercise on ACh-induced dilation in 

senescent SFA, we conclude that exercise training-induced improvements in NO-

mediated, endothelium-dependent dilation in senescent SFA may be in part the 

result of enhanced scavenging of superoxide by ecSOD, resulting in increased 

stability of NO. These results are consistent with those obtained in human 

subjects where older athletes exhibited enhanced endothelium-dependent 

dilation and antioxidant capacity when compared to their sedentary counterparts 

(41); also, addition of exogenous antioxidants enhanced endothelium-dependent 

dilation in old sedentary subjects (35). Complimenting these observations, our 

study is the first to demonstrate enhanced ecSOD protein content after exercise 

training in the aged vasculature. 

 



48 

2.4.2 Conclusion 

 The results of this study indicate that exercise induces improvement in 

endothelium-dependent dilation in soleus muscle feed arteries of aged rats.  The 

beneficial effect of exercise training in aged feed arteries was mediated by 

enhanced NO bioavailability that appears to be the result of increased ecSOD 

protein content in the aged SFA.  The improved NO bioavailability was not 

associated with increased content or phosphorylation of eNOS or increased 

SOD-1 protein content.  Exogenous SOD treatment of SFA from old Sed rats 

mimicked the effects of exercise training.  Collectively, these results suggest that 

exercise training reverses the detrimental effects of aging on endothelial function 

in skeletal muscle feed arteries by enhancing the capacity to scavenge 

superoxide, increasing the bioavailability of NO.  The exercise training-induced 

improvement in endothelial function in SFA may work in concert with enhanced 

endothelial function in skeletal muscle arterioles to improve skeletal muscle blood 

flow and increase exercise tolerance in the elderly. 
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CHAPTER III 

 

NAD(P)H OXIDASE-DERIVED REACTIVE OXYGEN SPECIES CONTRIBUTE 

TO AGE-RELATED IMPAIRMENTS OF ENDOTHELIUM-DEPENDENT 

DILATION IN RAT SOLEUS FEED ARTERIES 

 
 

3.1 Introduction 

 Aging is associated with a decline in maximal exercise capacity (32, 54, 

67, 86) which is due in part to impaired exercise hyperemia (4, 31, 55, 62, 83, 91, 

92).  Emerging evidence in humans and animals suggests that with age, 

endothelial dysfunction limits vasodilation in the skeletal muscle vascular beds, 

particularly in oxidative muscle (62, 81, 107, 133). Indeed, our laboratory has 

demonstrated impaired endothelial function in the rat soleus muscle feed artery 

(SFA) which is primarily due to attenuated nitric oxide (NO)-bioavailability (123, 

132-135). The feed artery is of particular importance as it is a primary control 

point for regulating total blood flow to the soleus muscle at rest and during 

exercise (129).  

NO bioavailability is determined by the balance of NO production and NO 

degradation. Decreased NO production by endothelial nitric oxide synthase 

(eNOS) and increased NO degradation by superoxide anion (O2
.-) have both 

been implicated as mechanisms for age-related endothelial dysfunction (16, 26, 

104-106, 123, 126).  A number of potential sources of O2
.- exist in the aged 

vasculature including: NAD(P)H oxidase, xanthine oxidase and mitochondrial 
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sources (16, 56, 125). In addition, eNOS itself, in the absence of its cofactor 

tetrahyrobiopterin (BH4), can produce O2
.- (6, 17, 36, 103).  We have recently 

reported that scavenging O2
.- with exogenous superoxide dismutase (SOD) 

improves, NO-mediated, endothelium-dependent dilation in senescent rat SFA 

(123). Similarly, exogenous antioxidants improve vasodilation and exercise 

hyperemia in the human forearm vasculature (35, 62). Interestingly, Sindler et al. 

recently reported that inhibition of O2
.-   production or scavenging of O2

.-  

attenuated flow-induced dilation in soleus first order (1A) arterioles from both 

young and old rats (103). In addition, these investigators reported that hydrogen 

peroxide (H2O2) plays a role in flow-induced dilation in soleus 1A (103). H2O2 is 

the product of SOD scavenging of O2
.- and has been implicated in some studies 

as a vasodilator in the aged vasculature (61, 103) whereas other studies suggest 

that H2O2 contributes to age-related endothelial dysfunction (118, 119, 125, 141).  

Due to the apparent contrast between our data and that of Sindler et al., 

the ambiguous role of H2O2 in endothelial function with age and the differing 

location and roles of the SFA (outside the muscle, regulation of total muscle 

blood flow) and the 1A arteriole (inside the muscle, regulation of blood flow within 

the muscle), we sought to determine whether reactive oxygen species (ROS) 

play a role in age-related endothelial dysfunction in rat SFA. We hypothesized 

that age-related endothelial dysfunction in rat SFA is mediated, in part, by 

NAD(P)H oxidase-derived ROS. 
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3.2 Methods 

3.2.1 Animals 

 The methods used in this study were approved by the Texas A&M 

University Institutional Animal Care and Use Committee. Male Fischer 344 rats [4 

mo (n = 40) and 24 mo of age (n = 36)] acquired from the National Institute of 

Aging (NIA) and housed at the College of Veterinary Medicine’s Comparative 

Medicine Program Facility. Rats were housed under a 12:12-h light-dark cycle 

and food and water were provided ad libitum. The rats were examined daily by 

Comparative Medicine Program veterinarians. Fischer 344 rats were chosen, in 

part, because of the absence of atherosclerosis or hypertension with age (67); 

thus, we could examine the effect of aging in the absence of other cardiovascular 

risk factors.  

3.2.2 Isolation of feed frteries 

 The protocol for SFA isolation has been described previously in detail 

(132-135).  Briefly, rats were anesthetized with an injection of pentobarbital 

sodium (60 mg/kg body wt. ip). The soleus/gastrocnemius muscle complex was 

dissected from both hindlimbs and was placed in a MOPS buffered physiological 

saline solution (PSS), containing (in mM) 145.0 NaCl, 4.7 KCl, 2.0 CaCl2, 1.17 

MgSO4, 1.2 NaH2PO4, 5.0 glucose, 2.0 pyruvate, 0.02 EDTA and 25.0 MOPS (pH 

7.4). SFA were dissected free and transferred to a Lucite chamber containing 

MOPS-PSS (2 ml) for cannulation. SFA not used for isolated artery studies were 

dissected, transferred to a microcentifuge tube, snap frozen and stored at -80oC 

for subsequent biochemical analyses. 
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3.2.3 Determination of vasodilator responses 

Preparation of arteries. SFA were cannulated with two resistance-matched 

glass micropipettes and secured with a single strand of surgical thread. The 

micropipettes were attached to separate reservoirs filled with MOPS-PSS 

supplemented with albumin (1g/100ml). The height of each reservoir was 

adjusted to set intraluminal pressure in each feed artery to 60 cmH2O (1 mmHg = 

1.36 cm H2O) for 20 min. SFA were checked for leaks by verification that 

intraluminal diameter was maintained after closing the pressure reservoirs. After 

20 min, intraluminal pressure was raised to 90 cmH2O and the SFA were allowed 

to equilibrate for an additional 40 min at 37oC. At the end of the equilibration 

period, arteries that did not develop at least 25% spontaneous tone were 

discarded. All experimental protocols were conducted at an intraluminal pressure 

of 90 cmH2O to approximate in vivo SFA pressure (129).  

Assessment of vasodilation. Endothelium-dependent, flow-induced dilation 

was assessed by establishing intraluminal flow in the SFA by raising and 

lowering the heights of the pressure reservoirs in equal but opposite directions 

while maintaining constant pressure at the midpoint of the artery (66). Vasodilator 

responses to flow were assessed at pressure gradients of 0, 2, 4, 6, 8, 10, 15, 

20, 30 and 40 cmH2O, corresponding to flow rates of 0-62 µl/min (57). Each flow 

rate was maintained for 5 min to allow SFA to reach a steady diameter. 

Endothelium-dependent, acetylcholine (ACh)-induced dilation was assessed in 

SFA by adding cumulative, increasing, whole log concentrations of ACh over the 

range of 10-9-10-4 M. Endothelium-independent dilation was assessed in SFA by 
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addition of cumulative, increasing, whole log concentrations of sodium 

nitroprusside (SNP) over the range of 10-9-10-4 M.  

Passive Diameter.  At the end of each experiment, SFA were incubated for 30 

minutes in Ca2+-free PSS to determine passive diameter at an intraluminal 

pressure of 90 cmH2O. 

3.2.4 Effects of ROS on endothelium-dependent dilation 

 To determine the role and source of vascular O2
.-,  endothelium-dependent 

vasodilator responses were assessed in the absence and presence of tempol 

(100 μM, a cell permeable SOD mimetic) and apocynin (100 μM), an NAD(P)H 

oxidase inhibitor (100). Tempol or apocynin was added to the vessel bath 30 

minutes before assessing the dilator responses. 

 To determine the role of H2O2 in endothelium-dependent dilations, 

vasodilator responses were assessed in the absence and presence of catalase 

(100 U/ml, a non cell-permeable H2O2 scavenger) and PEG-catalase (200 U/ml, 

a cell-permeable H2O2 scavenger). Catalase or PEG-catalase was added to the 

vessel bath for 30 minutes before assessing the dilator responses. 

3.2.5 Immunoblotting 

Relative protein content of NAD(P)H oxidase subunits, SOD isoforms and 

catalase were assessed in single SFA using immunoblotting techniques 

described previously in detail (58). The following NAD(P)H subunit protein 

contents were assessed using monoclonal antibodies: gp91phox (1:1,000, BD 

Biosciences, catalog no.G95320), p47phox (1:1,000, BD Biosciences, catalog 

no.P33720), p67phox (1:250, BD Biosciences, catalog no.610912), Nox-1 (1:500, 
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Santa Cruz Biotechnology, catalog no.sc-25545). The following SOD isoform 

protein contents were assessed using polyclonal antibodies: Cu/Zn SOD 

(1:3,333, Assay Designs, catalog no.SOD-100), MnSOD (1:6,000, Assay 

Designs, catalog no.SOD-110), ecSOD (1:1,000, Assay Designs, catalog 

no.SOD-105). Catalase protein contents were assessed using a monoclonal 

antibody (1:1000, Sigma-Aldrich, catalog no.C-0979). In addition, relative SFA 

Nitrotyrosine content was assessed using a polyclonal antibody (1:1000, 

Millipore, catalog no.AB5411). Immunoblots were evaluated by enhanced 

chemiluminescence (ECL, Amersham) and densitometry by using a LAS-4000 

Luminescent Image Analyzer and Multi-Gauge Image Analysis Software 

(FUJIFILM Medical Systems).  Total protein data were expressed relative to 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to control for small 

differences in protein loading. GAPDH protein content was assessed with a 

monoclonal antibody (1:10,000, Millipore, catalog no.AB374).  

3.2.6 SOD activity assay 

Single SFA were solubilized in 20 μl of 20 mM HEPES buffer using 

repeated freeze thaw cycles. SFA SOD activity was assessed using a 

commercially available SOD activity assay kit (Cayman Chemical) as previously 

described (33) and assessed colormetrically.  

3.2.7 Drugs 

 All drugs were obtained from Sigma-Aldrich and with the exception of 

apocynin were dissolved in PSS. Apocynin was dissolved in dimethyl sulfoxide 

(DMSO) such that the concentration of DMSO in the vessel bath did not exceed 
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0.1%. Pilot studies revealed that this concentration did not alter endothelium-

dependent or –independent dilations. 

3.2.8 Statistical analysis 

 All data are presented as means ± SEM. Between-group differences in 

body mass, maximal diameters, % spontaneous tone, relative protein content 

and SOD activity were assessed by using student’s t-test or one-way ANOVA 

where appropriate. Vasodilator response data were assessed as percent 

possible dilation calculated as [(Dconcentration – DB)/(DP
 – DB)] x 100 where 

Dconcentration is the measured diameter for a give concentration/flow rate, DB is the 

baseline diameter before the concentration response curve and DP is maximal 

passive diameter. Two-way repeated-measures ANOVA with repeated measures 

on one factor (concentration/flow rate) was used to determine differences in 

dilator responses. Statistical significance was set a P ≤ 0.05 probability level. 
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3.3 Results 

3.3.1 Characteristics of rats and SFA 

 Body weight and maximal vessel diameter were significantly greater in old 

rats compared to young (Table 3.1). Spontaneous myogenic tone was not altered 

with either age or pharmacological treatment (Table 3.1).  

3.3.2 Vasodilator responses 

 Both flow- and ACh-induced dilations were attenuated with age (Fig. 3.1). 

SNP-induced (endothelium-independent) dilation was not altered with age (data 

not shown). 

3.3.3 Role of O2
.- in endothelium-dependent dilation 

 In SFA from young rats, scavenging of O2
.- with tempol did not alter flow-

induced dilation (Fig. 3.2A). In SFA from old rats, tempol significantly improved 

flow-induced dilation (Fig. 3.2B). Similarly, the presence of tempol did not alter 

ACh-induced dilation in SFA from young rats and improved dilation in SFA from 

old rats (Fig. 3.2C, D).   

 Inhibition of NAD(P)H oxidase by apocynin did not alter flow-induced 

dilation in SFA from young rats (Fig. 3.3A) whereas NAD(P)H oxidase inhibition 

significantly improved flow-induced dilation in SFA from old rats (Fig. 3.3B). 

Apocynin attenuated ACh-induced dilation in SFA from young rats (Fig. 3.3C) 

and improved ACh-induced dilation in SFA from old rats (Fig. 3.3D).  

3.3.4 Role of H2O2 in endothelium-dependent dilation 

 Neither catalase (extracellular H2O2 scavenging) nor PEG-catalase 

(intracellular H2O2 scavenging) significantly altered flow-induced dilation in SFA 
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from young rats (Fig. 3.4A); however, both catalase and PEG-catalase blunted 

ACh-induced dilation in SFA from young rats (Fig. 3.4C). In SFA from old rats, 

catalase significantly improved flow-induced dilation (Fig. 3.4B) and PEG-

catalase significantly improved ACh-induced dilation (Fig. 3.4D). 

3.3.5 Immunoblotting 

 Immunoblot analysis for NAD(P)H oxidase subunits revealed that age 

resulted in increased gp91phox protein content (Fig. 3.5C) whereas age did not 

alter p47phox, p67phox or Nox-1 protein content (Fig. 3.5A, B&D). Immunoblots 

for SOD isoform protein content revealed that SOD-1 and ecSOD protein 

contents from SFA from young and old rats were similar (Fig. 3.6A & C). MnSOD 

protein content was greater in SFA from old rats compared to young (Fig. 3.6B). 

SOD enzyme activity was also greater in SFA from old rats (Fig. 3.6D). Catalase 

protein content was not altered with age (Fig. 3.6E). Nitrotyrosine expression was 

not different with age (Fig. 3.7). 
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Table 3.1 Animal and vessel characteristics. 

 Young (n = 40) Old Rats (n = 36) 

Body weight, g 377 ± 6 414 ± 7* 

Vessel Characteristics   

Maximal Diameter, μm 160 ± 4 173 ± 5* 

Spontaneous tone, %   

Pre-Flow   

Control 41 ± 3 40 ± 2 

Tempol 46 ± 4 37 ± 3 

Apocynin 46 ± 5 49 ± 7 

Catalase 45 ± 4 34 ± 2 

PEG-Catalase 40 ± 3 38 ± 4 

Pre-Acetylcholine   

Control 38 ± 2 40 ± 3 

Tempol 37 ± 3 37 ± 3 

Apocynin 41 ± 4 49 ± 8 

Catalase 38 ± 3 37 ± 2 

PEG-catalase 35 ± 2 33 ± 2 

 

Values are means ± SEM. *significantly different from young, p ≤ 0.05. 
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Figure 3.1.  Flow-induced (A) and ACh-induced (B) dilation in soleus muscle 
feed arteries (SFA). B, baseline diameter before the first concentration of ACh. 
Values are means ± SEM. n sizes: young flow (n = 34), old flow (n = 36), young 
ACh (n = 37), old ACh (n = 34). *concentration-response curve significantly 
different from young, p ≤ 0.05. 

A 

B 
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Figure 3.2.  Flow-induced (A & B) dilation in soleus muscle feed arteries (SFA) in 
the absence or presence of SOD mimetic Tempol (100μM). n sizes: young 
control (n = 24), young + Tempol (n = 8), old control (n = 29), old + Tempol (n = 
10). ACh-induced (C & D) dilation in SFA in the absence or presence of Tempol. 
n sizes: young control (n = 28), young + Tempol (n = 9), old control (n = 30), old 
+ Tempol (n = 11). B, baseline diameter before the first concentration of ACh. 
Values are means ± SEM.  *concentration-response curve significantly different 
from control, p ≤ 0.05. 
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Figure 3.3.  Flow-induced (A & B) in soleus muscle feed arteries (SFA) in the 
absence or presence of Apocynin (100μM). n sizes: young control (n = 24), 
young + Apocynin (n = 11), old control (n = 29), old + Apocynin (n = 8).  ACh-
induced (C & D) dilation in SFA in the absence or presence of apocynin. n sizes: 
young control (n = 28), young + Apocynin (n = 11), old control (n = 29), old + 
Apocynin (n = 8). B, baseline diameter before the first concentration of ACh. 
Values are means ± SEM. *concentration-response curve significantly different 
from control, p ≤ 0.05. 
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Figure 3.4. Flow-induced (A & B) dilation in soleus muscle feed arteries (SFA) in 
the absence or presence of catalase (an extracellular H2O2 scavenger, 100 U/ml) 
or PEG-catalase (an intracellular H2O2 scavenger, 200 U/ml). n sizes: young 
control (n = 24), young + Catalase (n = 8), young + PEG-catalase (n = 8), old 
control (n = 29), old + Catalase (n = 7), old + PEG-catalase (n = 8). ACh-induced 
(C & D) dilation in SFA in the absence or presence of catalase or PEG-catalase. 
n sizes: young control (n = 28), young + catalase (n = 8), young + PEG-catalase 
(n = 9), old control (n = 29), old + catalase (n = 8), old + PEG-catalase (n = 8). B, 
baseline diameter before the first concentration of ACh.  Values are means ± 
SEM. *concentration-response curve significantly different from control, p ≤ 0.05. 
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Figure 3.5.  Comparison of NAD(P)H oxidase subunit protein contents p47phox 
(A) p67phox (B) gp91phox (C) Nox-1 (D) in SFA from young and old rats.  Insets: 
representative blots for the target protein (top image) and the same blot reprobed 
for GAPDH (bottom image).  Values are means ± SEM; n = 8-12 rats/group.  
*significantly different from young, p ≤ 0.05.
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Figure 3.6.  Comparison of Cu-Zn-dependent superoxide dismutase (SOD-1) 
protein content (A), mitochondrial superoxide dismutase (mnSOD) protein conent 
(B), extracellular superoxide dismutase (ecSOD) protein content (C), total 
superoxide dismutase activity (D) and catalase protein content (E) in SFA from 
young and old rats. Insets: representative blots for the target protein (top image) 
and the same blot reprobed for GAPDH (bottom image). Values are means ± 
SEM; n = 8-12 rats/group.  *significantly different from young,  p ≤ 0.05. 
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Figure 3.7.  Comparison of nitrotyrosine expression in SFA from young and old 
rats. Inset: representative blots for nitrotyrosine (top image) and the same blot 
reprobed for (bottom image). Values are means ± SEM; n = 12 rats/group.
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3.4 Discussion 
 
 The purpose of this study was to test the hypothesis that age-related 

endothelial dysfunction in rat SFA is mediated in part by NAD(P)H oxidase-

derived ROS. The major new findings of this study are as follows: 1) O2
.- 

scavenging and inhibition of NAD(P)H oxidase improved endothelium-dependent 

dilation in SFA from old rats. 2) Inhibition of NAD(P)H oxidase attenuated ACh-

induced dilation in SFA from young rats. 3) Scavenging of H2O2 improved 

endothelium-dependent dilations in SFA from old rats. 4) Scavenging of H2O2 

attenuated ACh-induced dilation in SFA from young rats 5) NAD(P)H oxidase 

subunit, gp91phox protein content was greater in SFA from old compared to 

young rats. 6) MnSOD protein content and SOD enzyme activity were greater in 

SFA from old compared to young rats. Collectively, these results suggest that 

ROS contribute to impaired endothelium-dependent dilation in old SFA; whereas, 

ROS appear to play a role in ACh-mediated dilation in SFA from young rats. 

 Age is associated with impairment in endothelial function in conduit and 

resistance arteries in humans and animals including the SFA (3, 6, 12, 16, 17, 

81, 116, 126, 132). SFA were used in this study because the SFA is a primary 

control point for regulating total muscle blood flow to the soleus muscle (129) and 

because, exercise hyperemia to oxidative muscle (including the soleus) is 

attenuated with age (83).  An impaired ability of the SFA to dilate during physical 

activity may contribute to attenuated exercise hyperemia and exercise capacity. 

In the present study, the finding that age attenuates both flow- and ACh-induced 
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dilation are in accord with previous studies from our laboratory demonstrating 

endothelial dysfunction with age in the SFA (123, 132-135).  

 We have previously shown that exogenous SOD improved ACh-induced 

dilation in a NO-dependent manner in senescent SFA (123). This led us to 

hypothesize that with age, vascular O2
.- limits endothelium-dependent dilation. 

We found that scavenging of O2
.- with the SOD mimetic tempol or inhibition of 

NAD(P)H oxidase (a major source of O2
.-) with apocynin improved endothelium-

dependent dilations in SFA from old rats. Interestingly, Sindler et al. (103), found 

that in senescent soleus 1A arterioles both O2
.- scavenging with tempol and 

inhibition of O2
.- production with apocynin attenuated flow-induced dilation. This 

difference may be explained by the difference in anatomical location of the vessel 

as the SFA is external to the soleus whereas the 1A arteriole is internal. As 

contracting muscle releases ROS (94), the apparently ROS-mediated dilations of 

the 1A arterioles suggest that muscle-derived ROS may mediate dilation of these 

vessels during exercise. In contrast, the feed artery is external to the muscle and 

may be exposed to different concentrations and/or respond differently to 

extravascular ROS. 

 Since H2O2 has been implicated as an endothelium-derived 

hyperpolarizing factor (EDHF) in some studies (61, 80, 103) but contributes to 

endothelial dysfunction in others (118, 119, 125, 141), we also sought to 

determine the role of H2O2 in endothelial dysfunction. We utilized both 

extracellular (catalase) and intracellular (PEG-catalase) H2O2 scavengers and 

found that scavenging of H2O2 did not significantly alter flow-induced dilation, but 
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blunted ACh-induced dilation in SFA from young rats. In SFA from old rats, 

catalase treatment improved flow-induced dilation, whereas PEG-catalase 

improved ACh-induced dilation. These results suggest that with age H2O2 impairs 

endothelium-dependent dilation in the rat SFA. These results are in contrast to 

those observed in soleus 1A arterioles (103) and underscores the important 

differences in mechanisms regulating vascular reactivity in feed arteries versus 

arterioles despite their proximity. The finding that extracellular H2O2 scavenging 

improved flow-induced dilation and intracellular H2O2 scavenging improved ACh-

dilation in SFA from aged rats indicates the location of H2O2 may be important in 

the regulation of vascular function. This finding is somewhat surprising as H2O2 is 

an uncharged molecule which should be able to freely traverse the cell 

membrane. The apparent importance of the precise location of vascular H2O2 is 

an important topic for further investigation. 

 The finding that scavenging of H2O2 and inhibition of NAD(P)H oxidase 

blunt dilation in SFA from young rats (Fig. 3.4) is intriguing as it suggests that 

ROS contribute to ACh-induced dilation in young vessels. Importantly, H2O2 has 

been implicated as an EDHF and also appears to play a role in eNOS 

phosphorylation and activation (80, 121). We have previously shown that a 

significant amount of ACh-induced dilation in rat SFA is EDHF-dependent (123, 

133), whereas flow-induced dilation is primarily NO- and prostacyclin-mediated 

(133). This difference may explain why H2O2 scavenging only blunted ACh-

induced dilation in SFA from young rats. Inhibition of NAD(P)H oxidase also 

blunted ACh-induced dilation (Fig. 3.3C). NAD(P)H oxidase is a major source of 
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vascular H2O2, both from dismutation of O2
- and direct H2O2 production (21, 138). 

This may explain the inhibitory effect of apocynin on ACh-induced dilation in SFA 

from young rats. Together these observations suggest that NAD(P)H oxidase-

derived H2O2 contribute to ACh-mediated dilation in young rat SFA. 

The observation that scavenging of H2O2 improves endothelial function in 

senescent SFA but blunts ACh-induced dilation in SFA from young rats suggests 

that with age there is an alteration in the role of H2O2. It is conceivable that in the 

young SFA, ROS contribute to endothelium-dependent dilation and with age the 

production and/or scavenging of ROS is altered resulting in excessive vascular 

ROS, blunting endothelium-dependent dilation. 

With age there appear to be multiple sources of vascular ROS. These 

sources include NAD(P)H oxidase, xanthine oxidase, mitochondrial sources and 

eNOS (in the absence of it’s cofactor BH4) (6, 16, 17, 36, 56, 103, 125). NAD(P)H 

oxidase is a membrane bound enzyme complex with several subunits (100). The 

finding that NAD(P)H subunit gp91phox protein content is increased with age is 

of significance as gp91phox is homologous to the catalytic subunit Nox-2, which 

facilitates the transfer of electrons from NAD(P)H to molecular oxygen yielding 

O2
.- (100). Nox-1, a different isoform of the catalytic subunit, was not altered with 

age. p47phox and p67phox bind to the catalytic subunit and facilitate electron 

flow through the catalytic subunit. In the present study, these protein contents 

were not altered with age. This is in contrast with findings in conduit vessels from 

aged humans and mice demonstrating increased p47phox and p67phox 

respectively (26, 33, 90). The age-related increase in protein content of the 
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catalytic subunit gp91phox is in accord with the finding that inhibition of NAD(P)H 

oxidase improved endothelium-dependent dilation, suggesting that NAD(P)H 

oxidase-derived ROS play a role in age-induced endothelial dysfunction in the 

SFA. In addition to NAD(P)H oxidase, it appears that eNOS is also a source of 

O2
.- in the skeletal muscle resistance vasculature. In soleus 1A a precursor of 

BH4 improved endothelial function and inhibition of eNOS resulted in lower 

vascular O2
.- concentrations (17, 103). It is conceivable that in the aged skeletal 

muscle vasculature, these two mechanisms are linked in that O2
.- derived from 

NAD(P)H oxidase may oxidize BH4 limiting it’s availability and resulting in eNOS 

uncoupling and further O2
.- production. 

In addition to hypothesizing that with age ROS production contributes to 

endothelial dysfunction, we hypothesized that decreased ROS scavenging would 

also contribute to the observed decline in endothelium-dependent dilation. 

Previously we have shown that exercise training improved endothelial function in 

senescent SFA and that this improvement was mediated by an increase in 

ecSOD protein content (123). In the present study we found that SOD-1, ecSOD 

and catalase protein contents were not altered with age. Contrary to our 

hypothesis, we found that both MnSOD protein and total SOD activity were 

greater in SFA from old rats compared to young. This finding may be reflective of 

a compensatory cellular response in attempt to combat greater vascular O2
.- 

concentrations. Further, this may result in increased vascular H2O2 which 

appears to blunt dilation in senescent SFA (Fig. 3.4B,D). In addition, it is 

interesting to note that the mitochondrial isoform of SOD (MnSOD) was 
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enhanced with age and mitochondrial-derived ROS appear to play a role in 

vascular aging in rat conduit arteries (125). The increased MnSOD protein 

content and greater SOD activity may also explain the finding that nitrotyrosine 

was not altered with age in SFA. Nitrotyrosine is an index of peroxynitrite, the 

product of NO and O2
.- . Increased SOD activity may facilitate scavenging of O2

.- 

and reduce formation of peroxynitrite. In addition, there are a number of potential 

mechanisms by which NO production may be reduced with age (74, 104-106, 

136). It is conceivable that reduced NO production with age reduces the 

availability of NO for reaction with O2
.-.  

In summary, we tested the hypothesis that age-related endothelial 

dysfunction in rat SFA is mediated, in part by NAD(P)H oxidase-derived ROS. 

The findings of the present study suggest that NAD(P)H oxidase-derived ROS  

attenuate endothelium-dependent dilation in senescent rat SFA. In contrast, it 

appears that NAD(P)H oxidase-derived H2O2 play a role in ACh-induced dilation 

in young rat SFA. Contrary to our hypothesis, MnSOD protein content and total 

SOD activity were increased with age suggesting a compensatory response in 

attempt to scavenge O2
.-. These results suggest that ROS contribute to impaired 

endothelium-dependent dilation in old SFA; however, ROS appear to play a role 

in ACh-induced dilation in SFA from young rats. 
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CHAPTER IV 

 

 

INFLUENCE OF AGING ON PI3 KINASE/AKT-DEPENDENT eNOS 

PHOSPHORYLATION(SER1177) IN RAT SOLEUS MUSCLE FEED ARTERIES 

 

 

4.1 Introduction 

 Age is associated with impairments in endothelial function in humans and 

animals (3, 12, 19, 81, 132). This impairment likely contributes to increased risk 

for cardiovascular diseases with age. In addition, endothelial dysfunction in the 

skeletal muscle resistance vasculature appears to contribute to impairments in 

muscle blood flow and oxygen delivery (11, 16-18, 24). These alterations likely 

contribute to the decline in exercise capacity observed in the elderly (10, 32, 54). 

 In old rats, oxidative muscles exhibit attenuated exercise hyperemia in 

comparison to muscles from young rats (83). In soleus muscle, a primary control 

point regulating total muscle blood flow at rest and during exercise is the soleus 

feed artery (SFA) (129). We have previously shown that with age endothelium-

dependent dilation is impaired in the SFA and that this impairment is primarily 

mediated by decreased nitric oxide (NO)-bioavailability (132, 133). NO 

bioavailability is determined by the balance of production of NO (primarily by the 

endothelium) and degradation of NO which is primarily due to NO reacting with 

superoxide anion (48). We have recently reported that exogenous superoxide 
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dismutase improves NO-dependent dilation in senescent SFA, suggesting that 

excess superoxide plays a role in decreasing NO bioavailability with age (123).  

Whether decreased production of NO also contributes to impairments in 

NO bioavailability in SFA is unknown. Endothelial nitric oxide synthase (eNOS) is 

the primary enzyme responsible for synthesis of NO in the vasculature and 

several post-translational modifications of eNOS act to facilitate enzyme 

activation and NO production. Phosphorylation of eNOS on serine residue 1177 

(p-eNOSser1177), mediated by the PI3-kinase(PI3K)/Protein Kinase B (Akt) 

pathway appears to play and important role in eNOS activation and NO 

production (22, 38). In mouse conduit vessels, a single bout of exercise induces 

increased phosphorylation of Akt(ser473), and eNOS(ser1177) as well as eNOS 

activity, suggesting that this pathway may contribute to NO-production and 

subsequent dilation of vessels perfusing skeletal muscle (140).  In rat and mouse 

conduit vessels basal p-eNOS(ser1177) is attenuated with age (33, 104-106). In 

old mice, wheel running augments basal phosphorylation at this site (33). 

Recently, LeBlanc et al. (74) have reported that impairment of flow-induced 

dilation in coronary arterioles with age is related to alterations of the PI3K/Akt 

pathway. In SFA, we have reported no change in basal p-eNOS(ser1177) with 

age or exercise training status (123); however, whether there are age-related 

alterations in the ability of the PI3K/Akt pathway to phosphorylate eNOS in 

response to vasodilatory stimuli is unknown. Therefore, the purpose of this study 

is to test the hypothesis that impaired endothelium-dependent dilation in 
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senescent SFA is due to an age-related impairment in PI3K/Akt dependent 

phosphorylation of eNOS on serine residue 1177. 

4.2 Methods   

4.2.1 Animals 

 The methods used in this study were approved by the Texas A&M 

University Institutional Animal Care and Use Committee. Male Fischer 344 rats [4 

mo (n = 25) and 24 mo (n = 23)] were obtained from the National Institute of 

Aging (NIA) and housed at the College of Veterinary Medicine’s Comparative 

Medicine Program Facility. Rats were housed under a 12:12-h light-dark cycle, 

food and water were provided ad libitum. The rats were examined daily by 

Comparative Medicine Program veterinarians. Fischer 344 rats were chosen, in 

part, because of the absence of atherosclerosis or hypertension with age (67).  

4.2.2 Isolation of feed arteries 

 The protocol for SFA isolation has been described previously in detail 

(132-135).  Briefly, rats were anesthetized with an injection of pentobarbital 

sodium (60 mg/kg body wt. ip). The soleus/gastrocnemius muscle complex was 

dissected out and placed in a MOPS buffered physiological saline solution (PSS), 

containing (in mM) 145.0 NaCl, 4.7 KCl, 2.0 CaCl2, 1.17 MgSO4, 1.2 NaH2PO4, 

5.0 glucose, 2.0 pyruvate, 0.02 EDTA and 25.0 MOPS (pH 7.4). SFA were then 

transferred to a Lucite chamber containing MOPS-PSS for cannulation.  

4.2.3 Determination of vasodilator responses 

Preparation of arteries. Both ends of the SFA were cannulated with 

resistance-matched glass micropipettes and secured with a single strand of 
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surgical thread. The pipettes were attached to separate reservoirs filled with 

MOPS-PSS supplemented with albumin (1 g/100 ml). The height of each 

reservoir was adjusted to set intraluminal pressure in each feed artery to 60 

cmH2O for 20 min. The SFA were checked for leaks by verification that the 

intraluminal diameter was maintained after closing the pressure reservoirs. After 

20 min, intraluminal pressure was raised to 90 cmH2O and the SFA were allowed 

to equilibrate for an additional 40 min at 37oC. At the end of the equilibration 

period, arteries that did not develop at least 25% spontaneous tone were 

constricted with phenylephrine. All experimental protocols were conducted at an 

intraluminal pressure of 90 cmH2O, the approximate in vivo SFA pressure (129).  

Assessment of vasodilation. Endothelium-dependent, flow-induced dilation 

was assessed by establishing intraluminal flow in the SFA by raising and 

lowering the heights of the pressure reservoirs in equal but opposite directions 

while maintaining constant pressure at the midpoint of the artery (66). Vasodilator 

responses to flow were assessed at pressure gradients of 0, 2, 4, 6, 8, 10, 15, 

20, 30 and 40 cmH2O, corresponding to flow rates of 0-62 µl/min. Each flow rate 

was maintained for 5 min to facilitate SFA reaching a steady diameter. 

Endothelium-dependent, acetylcholine (ACh)-induced dilation was assessed in 

SFA by adding cumulative, increasing, whole log concentrations of ACh over the 

range of 10-9-10-4 M. Endothelium-independent dilation was assessed in SFA by 

adding cumulative, increasing, whole log concentrations of sodium nitroprusside 

(SNP) over the range of 10-9-10-4 M. After the SNP concentration reponse curve 
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SFA were incubated in Ca2+ free PSS for 30 minutes to assess maximal passive 

diameter. 

4.2.4 Role of PI3K  

In order to determine the role of PI3K, endothelium-dependent and 

independent dilations were assessed in the presence and absence of a PI3K 

inhibitor LY-294002 (25μM). LY-294002 was added to the vessel bath at least 30 

minutes before the assessment of dilations and remained in the bath for the 

duration of the experiment. 

4.2.5 Role of Akt 

In a separate series of experiments the role of Akt in endothelium-

dependent and –independent dilation was assessed by performing 

concentration-response curves in the presence and absence of an Akt inhibitor 

1L6-Hydroxymethyl-chiro-inositol-2-(R)-2-O-methyl-3-O-octadecyl-sn-

glycerocarbonate, 5µM (Akt inhibitor). The Akt inhibitor was added to the vessel 

bath at least 30 minutes before the assessment of dilations and remained in the 

bath for the duration of the experiment. In this series of experiments, after the 

assessment of flow-, ACh- or SNP-induced dilation, the SFA were immediately 

removed from the pipettes and snap frozen on dry ice for subsequent 

immunoblot analysis (as described below). Because these vessels were not 

incubated with Ca2+ free PSS, true maximal diameter was not determined. 

Maximal diameter was estimated from the initial diameter of the vessel 

immediately after cannulation which, in our experience, is similar to the true 

maximal diameter. 
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4.2.6 Akt and eNOS phosphorylation 

To determine whether basal and agonist-stimulated p-Akt(ser473) and p-

eNOS(ser1177) were altered with age, SFA not used for dilator response studies 

were isolated and placed in 200μl of PSS in a microcentrifuge tube and allowed 

to equilibrate for 1 hour at 37oC in the absence and presence of the PI3K 

inhibitor LY-294002 (25 μM). After the equilibration period, a group of SFA were 

treated with 10-5 M ACh for 1 min. After this treatment, the PSS was removed 

and 20 μl of Laemmli buffer was added to the tube and the vessels were snap 

frozen in the Laemmli buffer. Phosphorylation of Akt(ser473) and eNOS(ser1177) 

as well as total Akt, and eNOS protein contents were assessed in single SFA 

using immunbloting techniques described previously described in detail (58). p-

Akt(ser473) was assessed using a monoclonal antibody (1:1,000, Cell Signaling 

catalog no. 4058), p-eNOS(ser1177) was assessed using a monoclonal antibody 

(1:250, BD Biosciences catalog no. 612393), total Akt protein content was 

assessed using a polyclonal antibody (1:1,000, Cell Signaling catalog no. 9272) 

and total eNOS protein content was assessed using a monoclonal antibody 

(1:1,250, BD Biosciences catalog no. 610297). Immunoblots were evaluated by 

enhanced chemiluminescence (ECL, Amersham) and densitometry by using a 

LAS-4000 Luminescent Image Analyzer and Multi-Gauge Image Analysis 

Software (FUJIFILM Medical Systems).  Protein phosphorylation data were 

expressed as a ratio of phosphorylated-to-total protein where the blot was first 

probed for the phosphorylated protein then stripped (Restore Western Blot 

Stripping Buffer, Thermo) and probed for the total protein. Total protein data were 
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expressed relative to GAPDH to control for small differences in protein loading. 

GAPDH protein content was assessed with a monoclonal antibody (1:10,000, 

Millipore catalog no. AB374).  

4.2.7 Drugs 

LY-294002 was obtained from Sigma-Aldrich and Akt Inhibitor was 

obtained from Calbiochem. Both drugs were dissolved in dimethyl sulfoxide 

(DMSO). The concentration of DMSO in the vessel bath did not exceed 0.25%. 

Pilot studies (n = 9) revealed that this concentration did not alter dilator 

responses. 

4.2.8 Statistical analysis 

 All data are presented as means ± SEM. Between group differences in 

body mass, maximal diameters, % spontaneous tone and relative 

phosphorylation/ total protein content were assessed by using student’s t-test or 

one-way ANOVA where appropriate. Vasodilator response data were assessed 

as percent possible dilation calculated as [(Dconcentration – DB)/(DP
 – DB)] x 100 

where Dconcentration is the measured diameter for a give concentration/flow rate, DB 

is the baseline diameter before the concentration response curve and DP is 

maximal passive diameter. One-way ANOVA with repeated measures on one 

factor (concentration/flow rate) was used to determine differences in dilator 

responses. Statistical significance was set a P ≤ 0.05 probability level. 
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4.3 Results 

4.3.1 Characteristics of rats and SFA 

 Body weight, maximal vessel diameter and myogenic tone values for the 

studies with LY-294002 and the Akt inhibitor are shown in Tables 4.1 & 4.2, 

respectively. Body weights were significantly greater in old rats compared to 

young (Tables 4.1 & 4.2). Spontaneous myogenic tone was blunted in SFA from 

old rats in the presence of the Akt inhibitor before the flow-induced dilation 

experiments compared to SFA from young rats (Table 4.2). A total of 64 arteries 

were used in functional studies; 10 were preconstricted with phenylephrine, 

removing these vessels did not alter statistical analysis so they were included in 

all final analyses. 

4.3.2 Effect of age on endothelium-dependent and –independent dilations.  

Both flow- (Fig. 4.1A) and ACh-induced (Fig. 4.1B) vasodilations were 

attenuated with age. SNP-induced dilation was not altered with age, PI3K 

inhibition or Akt inhibition (data not shown).  

4.3.3 Roles of PI3K and Akt in endothelium-dependent dilation.  

 In the presence of the PI3K inhibitor, LY-294002, both flow- and ACh-

induced dilations were blunted in SFA from young rats (Fig. 4.2A & C). In SFA 

from old rats, LY-294002 did not alter flow-induced dilation (Fig. 4.2B), whereas 

ACh-induced dilation was blunted (Fig. 4.2D). The presence of LY-294002 

eliminated the age difference in flow-induced dilation, whereas the difference in 

ACh-induced dilation remained. Akt inhibition did not alter flow- or ACh-induced 

dilation in SFA regardless of age (Fig. 3). 
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4.3.4 Immunoblotting 

 Phosphorylation of eNOS(ser1177) (Fig. 4.4A) and Akt(ser473) (Fig. 

4.4B) were not altered with age, ACh stimulation or treatment with LY-294002. 

Total eNOS (Fig. 4.4C) and Akt (Fig. 4.4D) protein contents were not altered with 

age or treatment. 
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Table 4.1 Animal and vessel characteristics LY-294002 studies. 

 Young (n = 11) Old Rats (n = 10) 

Body weight, g 359 ± 9 418 ± 5* 

Maximal Diameter, μm 184 ± 6 186 ± 10 

Spontaneous tone, %   

Pre-Flow   

Control 44 ± 5 53 ± 6 

LY-294002 40 ± 2 43 ± 6 

Pre-Acetylcholine   

Control 48 ± 4 41 ± 4 

LY-294002 36 ± 2 45 ± 7 

 

Values are means ± SEM. *significantly different from young,  p ≤ 0.05. 
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Table 4.2. Animal and vessel characteristics Akt Inhibitor studies. 

 Young (n = 14) Old Rats (n = 13) 

Body weight, g 375 ± 7 440 ± 16* 

Maximal Diameter Flow, μm 162 ± 6 176 ± 6 

Maximal Diameter ACh, μm 164 ± 6 172 ± 6 

Spontaneous tone pre-Flow, %   

Control 47 ± 4 45 ± 4 

Akt Inhibitor 51 ± 4 38 ± 3* 

Spontaneous tone Pre-ACh, %   

Control 44 ± 3 43 ± 4 

Akt Inhibitor 44 ± 3 42 ± 2 

 

Values are means ± SEM. *significantly different from young,  p ≤ 0.05. 
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Figure 4.1.  Flow-induced (A) and ACh-induced (B) dilation in soleus muscle 
feed arteries (SFA). B, baseline diameter before the first concentration of ACh. 
Values are means ± SEM. n sizes: young flow (n = 11), old flow (n = 9), young 
ACh (n = 8), old ACh (n = 9). *concentration-response curve significantly different 
from young, p ≤ 0.05. 
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 ure 4.2.  Flow-induced (A & B) dilation in soleus muscle feed arteries (SFA) in 
the absence or presence of PI3K inhibitor LY-204002 (25μM). n sizes: young 
control (n = 11), young + LY-294002 (n = 10), old control (n = 9), old + LY-
294002 (n = 7). ACh-induced (C & D) dilation in SFA in the absence or presence 
of LY-294002. n sizes: young control (n = 8), young + LY-294002 (n = 9), old 
control (n = 9), old + LY-294002 (n = 7). B, baseline diameter before the first 
concentration of ACh. Values are means ± SEM.  *concentration-response curve 
significantly different from control, p ≤ 0.05. 
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Figure 4.3.  Flow-induced (A & B) dilation in soleus muscle feed arteries (SFA) in 
the absence or presence of Akt Inhibitor (5μM). n sizes: young control (n = 10), 
young + Akt Inhibitor (n = 10), old control (n = 13), old + Akt Inhibitor (n = 10). 
ACh-induced (C & D) dilation in SFA in the absence or presence of Akt Inhibitor. 
n sizes: young control (n = 14), young + Akt Inhibitor (n = 10), old control (n = 
13), old + Akt Inhibitor (n = 10). B, baseline diameter before the first 
concentration of ACh. Values are means ± SEM. 
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Figure 4.4.  Comparison of p-eNOS(ser1177) (n = 9 rats/group) (A); p-
Akt(ser473) (n = 6 rats/group) (B); total eNOS (n = 9 rats/group)  (C); total Akt (n 
= 6 rats/group)  (D) in SFA from young and old rats. Sample blots shown 
represent SFA from young and old animals treated with or without ACh (10-5 M) 
and with or without LY-294002 (25μM). Values are means ± SEM. 

A B 

C D 
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4.4 Discussion 
 

The purpose of this study was to test the hypothesis that impaired 

endothelium-dependent dilation in senescent SFA is due to an age-related 

impairment in PI3K/Akt-dependent phosphorylation of eNOS on serine residue 

1177. The major new findings of this study are as follows: 1) Inhibition of PI3K 

blunts flow- and ACh-induced dilation in SFA from young rats. 2) Inhibition of 

PI3K blunts ACh-induced dilation in SFA from old rats. 3) Inhibition of Akt did not 

alter endothelium-dependent dilation regardless of age. 4) Treatment of SFA with 

ACh in the presence or absence of a PI3K inhibitor did not alter p-Akt(ser473) or 

p-eNOS(ser1177). 

Aging has been shown to impair endothelium-dependent dilation in a 

variety of animal models and vessels (3, 6, 11, 16, 17, 33, 81, 116, 126, 132). 

We chose SFA for use this study because it is a primary control point for 

regulating total soleus muscle blood flow at rest and during exercise (129). 

Exercise hyperemia is blunted with age in oxidative muscles like the soleus (83) 

and this may be, in part, explained by impaired dilation of the vessels perfusing 

skeletal muscle. We have previously shown that aging blunts endothelium-

dependent dilation in the SFA (123, 132-135). In the present study, both flow- 

and ACh-mediated dilations are impaired in accordance with our previous 

findings. Also in accordance with previous studies, SNP-induced (endothelium-

independent) dilation was not altered with age. 

In previous investigations from our laboratory we found that the age-

related deficit in endothelium-dependent dilation is primarily mediated by 
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attenuated NO bioavailability (123, 133-135). Scavenging of superoxide with 

exogenous SOD improved endothelium-dependent dilation in senescent SFA 

(123) suggesting that with age, NO bioavailability is blunted by enhanced 

superoxide-mediated NO degradation; however, whether mechanisms 

influencing the ability of the endothelium to produce NO are altered with age in 

the SFA is unknown. This led us to hypothesize that impaired endothelium-

dependent dilation in senescent SFA is due to an impaired potential for agonist 

stimulated p-eNOSser1177. 

The PI3K/Akt pathway is important in contributing to the activation of 

eNOS and NO production (22, 38). In the present study, we found that inhibition 

of PI3K resulted in blunted dilation in response to flow and ACh in SFA from 

young rats, consistent with the concept that PI3K plays a role in endothelium-

dependent dilation.  In senescent SFA, inhibition of PI3K blunted ACh-mediated 

dilation but not flow-mediated dilation. The observation that PI3K inhibition 

blunted ACh-induced dilation in SFA from both young and old rats suggests that 

the role of PI3K is preserved with age. Similarly, in coronary arterioles from both 

young and old rats, PI3K inhibition blunted vascular endothelial growth factor 

(VEGF)-induced dilation (74). Together these results suggest that PI3K signaling 

is preserved with age.  

As PI3K has been shown to activate Akt and Akt to phosphorylate and 

activate eNOS (22, 38), we sought to determine if impaired Akt signaling 

contributes to age-related endothelial dysfunction. In the present study, inhibition 

of Akt did not alter flow- or ACh-induced dilation regardless of age. Kobayashi et 
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al. (63) recently reported that Akt inhibition did not alter ACh-induced relaxation 

of rat aortic rings, but did blunt insulin-induced relaxation. These results support 

the concept that the signaling pathways involved in endothelium-dependent 

dilation are agonist-specific. Additionally, it has been reported that PI3K can 

activate PKA in addition to Akt and that PKA can also phosphorylate and activate 

eNOS (7, 8). This may explain why PI3K, but not Akt inhibition blunted 

endothelium-dependent dilation in SFA in the present study. 

We have previously reported that neither aging nor exercise training 

altered basal p-eNOS(ser1177) in rat SFA (123). This is in contrast to 

observations in rat conduit vessels where p-eNOS(ser1177) was attenuated with 

age (104-106). In the human brachial artery p-eNOS(ser1177) was greater in old 

subjects compared to young (27). In rat coronary arterioles stimulation with either 

flow or VEGF increased p-eNOS(ser1177) to a similar extent regardless of age 

despite age-related impairments in dilation in response to these stimuli (74). In 

this same study VEGF-induced p-Akt(ser473) was blunted in vessels from old 

rats compared to young (74). In rat mesenteric arteries flow-induced p-

eNOS(ser1777) was blunted with age (113). ACh has been shown to induce 

increases in p-eNOS(ser1177) and p-Akt(ser473) in rat aorta (139). Therefore, in 

the present study, we sought to determine if the ability of ACh to stimulate p-

Akt(ser473) and p-eNOS(ser1177) in rat SFA was altered with age. Additionally, 

we used the PI3K inhibitor LY-294002 to determine if this response was PI3K-

dependent. Results revealed that age did not alter p-eNOS(ser1177) in untreated 

vessels, in accord with our previous study (123).  Treatment with ACh did not 
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significantly alter p-Akt(ser473) or p-eNOS(ser1177) regardless of age, or PI3K 

inhibition. Interestingly, PI3K inhibition did blunt ACh-induced dilation in SFA from 

both young and old rats, suggesting that PI3K may mediate alternative pathways 

of vasodilator production. In addition to p-eNOS(ser1177), PI3K can act 

upstream of PKA to facilitate p-eNOS(ser633), another activation site (7). Thus, it 

is possible that PI3K inhibition can blunt p-eNOS(ser633) and as result, NO 

production, explaining the blunting of endothelium dependent-dilation but not p-

eNOS(ser1177) observed in the presence of LY-294002. The differences in our 

study compared to others may be reflective of differing vessel, stimuli and 

downstream PI3K targets. Overall, the finding that p-eNOS(ser1177) and p-

Akt(ser473) were not altered with age under either basal or ACh-stimulated SFA, 

suggests that the PI3K/Akt pathway is preserved with age. This is consistent with 

the observation that inhibition of PI3K blunted ACh-induced dilation to a similar 

extent. 

In the present study we also found that total eNOS protein content was not 

altered with age. Aging appears to have variable effects on eNOS protein content 

depending on species and vessel studied. In SFA, we have reported both 

decreased and unchanged eNOS protein content with age (123, 132, 135). 

Despite varying age-related changes in eNOS protein content, we have 

consistently observed an age-related decline in NO-mediated endothelium-

dependent dilation. These observations suggest eNOS protein content alone 

does not mediate age-related endothelial dysfunction. Total Akt protein content 
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was also not altered with age in the present study. This is consistent with 

observations in rat aorta and coronary arterioles (74, 104-106).  

In summary, we tested the hypothesis that impaired endothelium-

dependent dilation in senescent SFA is due to an age-related impairment in 

PI3K/Akt dependent phosphorylation of eNOS on serine residue 1177. The 

findings of the present study suggest that PI3K mediates flow- and ACh-induced 

dilation in rat SFA. Since inhibition of PI3K blunts ACh-induced dilation to a 

similar extent in SFA from young and old rats, and p-eNOS(ser1177) is 

preserved with age, these data suggest that the PI3K/Akt/eNOS pathway is 

preserved with age and is not a mechanism accounting for the age-related 

decline in NO-mediated endothelium-dependent dilation.  
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CHAPTER V 

 

SUMMARY AND CONCLUSION 
 
 
5.1 Summary 
 
 The overall purpose of this dissertation was to determine the mechanisms 

that mediate age-related endothelial dysfunction in rat SFA and to determine 

whether exercise training ameliorates this impairment in endothelial function. 

 In the first investigation we tested the hypothesis that exercise training 

reverses age-related decrements in endothelium-dependent dilation in SFA and 

that improved endothelium-dependent dilation is the result of increased NO 

bioavailability due to increased content and phosphorylation of eNOS and/or 

increased antioxidant enzyme content. The major findings of the study were as 

follows: 1) Exercise training improved ACh-induced dilation in old SFA such that 

vasodilator responses in old Ex SFA were similar to young Sed and young Ex 

SFA.  2) ecSOD protein content was increased by training in old SFA whereas 

the SFA protein content of eNOS, p-eNOS(ser1177), and SOD-1 were not 

altered by training.  3)  Exogenous SOD, and SOD + CAT, restored ACh-induced 

dilation in old SFA in an NO-dependent manner similar to the effects of exercise 

training. These findings suggest that exercise training reverses the detrimental 

effects of aging on endothelial function in skeletal muscle feed arteries by 

enhancing the capacity to scavenge superoxide, increasing the bioavailability of 

NO and are summarized in the scheme in Figure 5.1.  
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Figure 5.1 Proposed alterations in endothelial phenotype with aging and 
exercise training. With age greater vascular O2

.- concentrations react with NO to 
reduce NO bioavailability. Exercise training increases ecSOD protein content, 
increasing the capacity to scavenge extracellular O2

.- and improving NO 
bioavailability. 
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Second, we tested the hypothesis that age-related endothelial dysfunction 

in rat SFA is mediated in part, by NAD(P)H oxidase-derived ROS. The major 

findings of the study were as follows: 1) O2
.- scavenging and inhibition of 

NAD(P)H oxidase improved endothelium-dependent dilation in SFA from old rats. 

2) Inhibition of NAD(P)H oxidase attenuated ACh-induced dilation in SFA from 

young rats. 3) Scavenging of H2O2 improved endothelium-dependent dilations in 

SFA from old rats. 4) Scavenging of H2O2 attenuated ACh-induced dilation in 

SFA from young rats. 5) NAD(P)H oxidase subunit, gp91phox protein content 

was greater in SFA from old compared to young rats. 6) MnSOD protein content 

and SOD enzyme activity were greater in SFA from old compared to young rats. 

Collectively, these results suggest that ROS are detrimental and contribute to 

impaired endothelium-dependent dilation in old SFA; whereas, ROS appear to 

play a beneficial role, contributing ACh-mediated dilation in SFA from young rats. 

The potential alterations in ROS influence on vascular function are summarized 

in Figure 5.2. 
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Figure 5.2. Proposed model of ROS regulation with age in the SFA. With age 
increased NAD(P)H oxidase activity results in greater vascular O2

.- and H2O2 
production. O2

.-
 reacts with NO, reducing NO bioavailability. Aging also results in 

increased MnSOD protein content and SOD activity increasing O2
.- scavenging 

and H2O2 concentrations. With age the role of H2O2 appears to shift, mediating 
ACh-induced dilation in young SFA but blunting dilation in old SFA. This may be 
a result of altered concentrations of H2O2 or altered downstream effects of H2O2. 



96 

 

Lastly, we tested the hypothesis that impaired endothelium-dependent 

dilation in senescent SFA is due an age-related impairment in PI3K/Akt 

dependent phosphorylation of eNOS on serine residue 1177. The major new 

findings from the study were as follows: 1) Inhibition of PI3K blunts flow- and 

ACh-induced dilation in SFA from young rats. 2) Inhibition of PI3K blunts ACh-

induced dilation in SFA from old rats. 3) Inhibition of Akt did not alter 

endothelium-dependent dilation regardless of age. 4) Treatment of SFA with ACh 

in the presence or absence of a PI3K inhibitor did not alter p-Akt(ser473) or p-

eNOS(ser1177). The findings of this study suggest that PI3K mediates flow- and 

ACh-induced dilation in rat SFA. Since inhibition of PI3K blunted ACh-induced 

dilation to a similar extent in SFA from young and old rats and p-eNOS(ser1177) 

was persevered with age, these data suggest that the PI3K/Akt/eNOS pathway is 

preserved with age. Importantly, PI3K inhibition blunted endothelium-dependent 

dilation but not alter p-eNOS(ser1177). It is possible that PI3K mediates other 

pathways of eNOS activation, specifically p-eNOS(ser633) (7, 8). In addition, 

PKA may serve as an alternative pathway to mediate phosphorylation/activation 

of eNOS (7, 8, 25). Whether these pathways are altered with age in SFA is 

unknown. This is an important topic for further study and a potential scheme of 

regulation of eNOS phosphorylation is presented in Figure 5.3. 
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Figure 5.3 Potential alterations in PI3K-mediated endothelial cell signaling. Data 
from the present study suggest that the PI3K/Akt/p-eNOS(ser1177) pathway is 
preserved with age; however whether there are age-related alterations in PKA-
dependent phosphorylation of eNOS on ser633 or 1177 is unknown. 
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In accordance with our hypotheses, we found that scavenging of O2
.-, 

scavenging of H2O2, or inhibition of NAD(P)H oxidase-derived ROS improved 

endothelium-dependent dilation in senescent SFA. In addition, we found that 

exercise training increased ecSOD protein content in SFA. Together these data 

strongly suggest that oxidative stress plays a role in age-related endothelial 

dysfunction and that exercise training results in an improved antioxidant capacity. 

Future studies are required to elucidate the source(s) of vascular ROS in SFA, 

the precise roles of O2
.- and H2O2 in age-related endothelial dysfunction, and 

whether ROS contribute to eNOS uncoupling in the SFA. 

Interestingly, we also found that scavenging of H2O2 and inhibition of 

NAD(P)H oxidase blunted ACh-induced dilation in SFA from young animals. 

These observations are in accordance with the observation that H2O2 can act as 

an EDHF and phosphorylate eNOS (80, 121). H2O2 also appears to play a role in 

dilation in soleus 1A arterioles (103). The observation that ROS contribute to 

dilation in SFA from young rats but impair dilation in SFA from old rats suggest 

that aging results in an alteration of the role of vascular ROS.  

Contrary to our hypothesis, we found that inhibition of PI3K blunted 

endothelium-dependent dilation to a similar extent in SFA from young and old 

rats. In addition, p-eNOS(ser1177) and p-AKt(ser473) appear to be unaltered 

with age. These results suggest that the PI3K/Akt/eNOS pathway is preserved 

with age. Interestingly, inhibition of PI3K blunted endothelium-dependent dilation 

but not did not alter p-eNOS(ser1177) or p-Akt(ser473). This suggests that PI3K 
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may mediate other mechanisms of eNOS activation. PI3K has been shown to 

activate PKA which mediates phosphorylation of eNOS at ser(1177) and ser(633) 

(7, 8, 25).  In addition PKA may mediate phosphorylation at those sites 

independently of PI3K (see Figure 5.3) (7). It is possible that other mechanisms 

of eNOS activation and NO production beyond the scope of these studies are 

altered with age. Importantly, eNOS phosphorylation may be blunted on other 

activation sites or phosphorylation may be enhanced on inhibitory sites. Also, the 

state of eNOS protein—protein interactions with Hsp90, CaM, Akt and Cav-1 

may change with age. Lastly, eNOS activity may be well preserved with age, but 

it may be in an uncoupled state due to decreased BH4 synthesis and/or 

increased BH4 oxidation. This mechanism may link the observed ROS-mediated 

impairments in endothelial function to impairments in NO production, further 

exacerbating age-related endothelial dysfunction.  

In conclusion, in the rat SFA ROS appear to play a role in age-related 

endothelial dysfunction. Exercise training appears to ameloriate this observed 

endothelial dysfunction partly by increasing antioxidant capacity. Finally, it 

appears that PI3K-dependent activation of eNOS is preserved with age. These 

results contribute to the understanding of how aging and exercise training 

influence endothelial phenotype and underscore the importance of physical 

activity for maintaining optimal vascular function. 

5.2 Limitations 

 There are several limitations that must be considered when interpreting 

the present studies. First, the isolated artery technique used for the functional 
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assessment of endothelium-dependent dilation is an in vitro preparation. This 

provides the major advantage of isolating mechanisms that regulate endothelial 

function that may be altered with age, however, in vivo there are numerous 

factors that influence vascular tone (see section 1.3). For example, in the isolated 

artery technique there is no innervation of the vessels, no release of vasoactive 

molecules from surrounding tissue and no flow running through the vessel (with 

the exception of flow-induced dilation experiments).  

 Second, the flow rates used to assess endothelium-dependent dilation (0-

62 μl/min) may be lower than those predicted in vivo (95 μl/min standing-225 

μl/min running) (57). Thus, the flow-induced dilation experiments conducted in 

the present studies may be limited in their applicability to exercise hyperemia. 

Despite this limitation important insight can be gained from these experiments. 

Flow-induced dilation is a non-agonist mediated dilator response this is in 

contrast to ACh-mediated dilation which is mediated through the muscarinic 

receptor. Our results indicate both flow- and ACh-induced dilations are blunted in 

aged arteries suggesting that cell signaling event(s) impaired by aging are 

downstream of the receptor level. In addition, although the flow rates in these 

experiments differ from those in vivo, these studies provide insight into the basic 

mechanisms that regulate endothelial function with age.  

 Finally, these studies have examined numerous mechanisms that regulate 

NO bioavailability and ROS concentrations however, we have not directly 

assessed vascular NO and ROS concentrations. Direct assessment of the 

concentration of these molecules would add considerable clarity to the 
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mechanisms regulating endothelial function with aging and exercise training.  As 

these molecules have short half-lives and the amount of SFA tissue is limited 

these experiments have proved to be technically challenging. 

5.3 Clinical relevance 

 The results from these studies are of particular importance as they provide 

mechanistic insight into findings observed in human subjects. In several studies 

infusion of exogenous antioxidants improve endothelium-dependent dilation old 

subjects (30, 35, 62, 115). Recently, increased p47phox protein content and 

nitrotyrosine expression has been reported in the aged human vasculature (26). 

These results suggest that similar to the present results ROS contribute to age-

related endothelial dysfunction. Importantly, infusion of exogenous antioxidants 

results in greater forearm blood flow during handgrip exercise compared to 

exercise without antioxidants (62). This suggests that exogenous antioxidants 

improve endothelial function in the skeletal muscle vasculature, complimenting 

the observations in the present studies. Exercise training improves endothelial 

function in old subjects (20, 30) and physically active older subjects exhibit 

greater endothelium-dependent dilation compared to their sedentary counterparts 

(35, 114). In elderly subjects, exercise-induced improvements in endothelial 

function are not further improved by exogenous antioxidants (30, 35). This 

suggests that exercise improves vascular antioxidant capacity, in accord with the 

finding that exercise increase ecSOD protein content in SFA. Lastly, in the 

present studies, mechanisms that regulate eNOS activation do not appear to be 

altered with age. Studies in human subjects examining these mechanisms are 
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limited, however one study has shown an age-related increase in p-

eNOS(ser1177) in endothelial cells from the brachial artery (27). 

 Interestingly, in young subjects exogenous antioxidants resulted in blunted 

endothelium-dependent dilation during handgrip exercise (30). This report 

compliments the observation in the present studies that inhibition of NAD(P)H 

oxidase or scavenging of H2O2 blunts dilation in SFA from young rats and 

suggests that in both rats and humans ROS play a role in mediating dilation of 

the skeletal muscle vasculature.  

 The present studies provide mechanistic insight into the regulation of 

endothelial phenotype with age and exercise training. In particular these studies: 

1) Clarify the roles and sources of ROS in the vasculature. 2) Provide insight into 

the mechanisms of exercise-induced improvement in the aged vasculature. 3) 

Underscore the importance of physical activity in maintenance of vascular health. 

The results from these studies also provide direction for future study to further 

examine age-related endothelial dysfunction and identify targets for lifestyle 

and/or pharmacological interventions to preserve vascular health with age. 
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APPENDIX 
 

RAW DATA TABLES 
 
Table 1-Exercise Training Studies Acetylcholine Data (Figs. 2.1-2.3) 
 

Animal Group 
Body Weight 
(g) 

Maximal Diameter 
(μm) 

% Spontaneous 
Tone 

115 Young Sed Con 424 191 50.0 
101 Young Sed Con 369 192 40.0 
153 Young Sed Con 374 197.2 55.0 
151 Young Sed Con 395 213.4 44.0 
105 Young Sed Con 400 206.1 35.0 
149 Young Sed Con 358 173.6 46.0 
107 Young Sed Con 426 216.2 73.0 
142 Young Sed Con 382 205.7 46.0 
 Mean  199.4 48.6 
 Standard Error  4.9 4.1 
     
107 Young Sed LNNA  184.3 67 
142 Young Sed LNNA  192.9 75 
101 Young Sed LNNA  207.5 81 
149 Young Sed LNNA  219.6 78 
97 Young Sed LNNA  176.3 89 
151 Young Sed LNNA  191.8 69 
105 Young Sed LNNA  224.9 75 
153 Young Sed LNNA  210.3 63 
116 Young Sed LNNA  171 82 
115 Young Sed LNNA  158.4 60 
 Mean  193.7 73.9 
 Standard Error  6.9 2.9 
     
115 Young Sed INDO  198.7 34 
151 Young Sed INDO  221.5 41 
149 Young Sed INDO  168.2 48 
101 Young Sed INDO  143.3 28 
107 Young Sed INDO  234.3 38 
116 Young Sed INDO  170.1 34 
105 Young Sed INDO  225.3 85 
97 Young Sed INDO  174.4 26 
142 Young Sed INDO  219.2 74 
 Mean  195.0 45.3 
 Standard Error  10.7 6.9 
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Table 1, continued 
 

Animal Group 
Body Weight 
(g) 

Maximal 
Diameter (μm) 

% 
Spontaneous 
Tone 

151 Young Sed Both  202.5 39 
97 Young Sed Both  187.1 34 
105 Young Sed Both  247.6 68 
142 Young Sed Both  170.1 60 
115 Young Sed Both  138 58 
153 Young Sed Both  122.9 49 
116 Young Sed Both  182.1 63 
101 Young Sed Both  137.5 53 
107 Young Sed Both  228.3 80 
 Mean  179.9 57.6 
 Standard Error  12.6 4.5 
     
156 Young Ex Con 370 156.2 19 
103 Young Ex Con 341 221 49 
99 Young Ex Con 353 178 47 
143 Young Ex Con 310 211.6 33 
110 Young Ex Con 366 243.4 53 
152 Young Ex Con 374 190.7 41 
113 Young Ex Con 360 173.2 39 
 Mean  196.3 40.1 
 Standard Error  11.5 4.3 
     
113 Young Ex LNNA  158.3 52 
103 Young Ex LNNA  215 66 
143 Young Ex LNNA  169.1 46 
110 Young Ex LNNA  243.6 83 
152 Young Ex LNNA  113.3 51 
156 Young Ex LNNA  167.6 61 
99 Young Ex LNNA  175.9 64 
 Mean  177.5 60.4 
 Standard Error  15.8 4.7 
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Table 1, continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) 

% Spontaneous 
Tone 

103 Young Ex INDO  215 26 
143 Young Ex INDO  196.5 25 
99 Young Ex INDO  153.9 40 
113 Young Ex INDO  149.9 37 
110 Young Ex INDO  231.1 36 
152 Young Ex INDO  180.4 54 
 Mean  187.8 36.3 
 Standard Error  12.3 4.0 
     
110 Young Ex Both  197.9 65 
103 Young Ex Both  207 45 
152 Young Ex Both  219.7 47 
99 Young Ex Both  195.9 46 
113 Young Ex Both  110 33 
143 Young Ex Both  148.1 79 
156 Young Ex Both  208.4 68 
 Mean  183.9 54.7 
 Standard Error  15.0 6.1 
   
98 Old Sed Con 474 147 82 
145 Old Sed Con 385 176.2 52 
138 Old Sed Con 424 171.3 25 
111 Old Sed Con 436 179.5 34 
148 Old Sed Con 412 195.2 43 
106 Old Sed Con 426 153.1 44 
102 Old Sed Con 459 194.8 27 
150 Old Sed Con 380 138.9 45 
 Mean  169.5 44.0 
 Standard Error  7.5 6.4 

 



119 

Table 1, continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

150 Old Sed LNNA  136.8 61 
138 Old Sed LNNA  178.7 82 
111 Old Sed LNNA  201.6 93 
145 Old Sed LNNA  137.9 60 
102 Old Sed LNNA  188.6 61 
148 Old Sed LNNA  190.9 47 
106 Old Sed LNNA  152.8 61 
 Mean  173.3 67.4 
 Standard Error  9.5 5.2 
     
106 Old Sed INDO  245 27 
102 Old Sed INDO  199.5 50 
138 Old Sed INDO  109.7 28 
148 Old Sed INDO  115.4 18 
150 Old Sed INDO  208.7 30 
98 Old Sed INDO  153.1 28 
111 Old Sed INDO  199.3 27 
145 Old Sed INDO  162.2 48 
 Mean  174.1 32.0 
 Standard Error  16.7 3.9 
     
145 Old Sed Both  199.8 68 
138 Old Sed Both  272.1 58 
150 Old Sed Both  190.2 47 
148 Old Sed Both  109.2 46 
98 Old Sed Both  140.9 23 
106 Old Sed Both  233.9 49 
102 Old Sed Both  156.5 33 
111 Old Sed Both  190.7 41 
 Mean  186.7 45.6 
 Standard Error  18.3 4.9 
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Table 1, continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

100 Old Ex Con 400 167 45 
147 Old Ex Con 346 183.1 45 
112 Old Ex Con 464 166.3 38 
154 Old Ex Con 403 233.1 42 
109 Old Ex Con 410 197 54 
114 Old Ex Con 411 248 74 
144 Old Ex Con 354 193.9 45 
104 Old Ex Con 402 182 36 
155 Old Ex Con 425 232.4 39 
 Mean  200.3 46.4 
 Standard Error  10.1 3.9 
     
109 Old Ex LNNA  190.2 61 
104 Old Ex LNNA  168 71 
147 Old Ex LNNA  183 65 
144 Old Ex LNNA  193.1 36 
155 Old Ex LNNA  222.8 41 
154 Old Ex LNNA  167.5 30 
112 Old Ex LNNA  158.8 53 
100 Old Ex LNNA  202.1 78 
108 Old Ex LNNA  232.8 58 
114 Old Ex LNNA  223.2 65 
 Mean  194.2 55.8 
 Standard Error  8.2 5.0 
     
114 Old Ex INDO  232.4 29 
144 Old Ex INDO  153.3 27 
155 Old Ex INDO  122.6 28 
100 Old Ex INDO  173.7 34 
154 Old Ex INDO  179.3 24 
108 Old Ex INDO  123.2 42 
112 Old Ex INDO  187.4 44 
109 Old Ex INDO  183.1 38 
104 Old Ex INDO  184 33 
 Mean  171.0 33.2 
 Standard Error  11.4 2.3 
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Table 1, continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

114 Old Ex Both  228 44 
104 Old Ex Both  163.8 45 
154 Old Ex Both  145 28 
147 Old Ex Both  155.3 59 
144 Old Ex Both  153.2 47 
155 Old Ex Both  209.6 40 
100 Old Ex Both  159 50 
109 Old Ex Both  180.8 34 
108 Old Ex Both  126.6 45 
112 Old Ex Both  183.8 49 
 Mean  170.5 44.1 
 Standard Error  9.7 2.7 
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Table 1, continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
115 Young Sed Con 0 7.9 29.8 75.3 92.9 97.9 99.3 
101 Young Sed Con 0 8.7 13.6 69.9 91.1 94.4 94.7 
153 Young Sed Con 0 15.3 55.1 84.2 94.5 95.5 95.5 
151 Young Sed Con 0 3.1 3 7.5 38.3 48.7 48.9 
105 Young Sed Con 0 12.9 27.7 62.3 72.1 72.3 72.4 
149 Young Sed Con 0 0 36.1 66.9 90.7 90.7 90.9 
107 Young Sed Con 0 7.7 50.9 80.3 92.2 98.1 99 
142 Young Sed Con 0 46.3 78 89.6 94.1 94.1 95.6 
 Mean 0.0 12.7 36.8 67.0 83.2 86.5 87.0 
 Standard Error 0.0 5.1 8.5 9.1 6.9 6.1 6.2 
         
107 Young Sed LNNA 0 2.8 4.4 4.4 24.4 13.1 13.1 
142 Young Sed LNNA 0 7 51.8 56.7 66.9 70.4 70.3 
101 Young Sed LNNA 0 0 0 2.5 21.3 28.1 21.6 
149 Young Sed LNNA 0 0 21.2 7.1 56.6 48.4 40 
97 Young Sed LNNA 0 0 0 0 0 0 0 
151 Young Sed LNNA 0 1.5 11.6 27.5 57.6 59.8 59.8 
105 Young Sed LNNA 0 9.4 13.5 63.1 85.9 67.5 87.7 
153 Young Sed LNNA 0 0 0 24.2 9.8 82.7 71.6 
116 Young Sed LNNA 0 0 1.4 42.3 52.2 53.1 44.1 
115 Young Sed LNNA 0 9.6 20.1 33.1 48.4 69.7 63.7 
 Mean 0.0 3.0 12.4 26.1 42.3 49.3 47.2 
 Standard Error 0.0 1.3 5.1 7.2 8.6 8.6 9.0 
         
115 Young Sed INDO 0 2.8 11.8 63.1 89.3 93 98.6 
151 Young Sed INDO 0 43.7 53.6 68.2 87.5 89.8 89.8 
149 Young Sed INDO 0 0 2.1 30.4 45.2 46.4 53.8 
101 Young Sed INDO 0 24.3 26.2 72.4 74.3 78.1 81.8 
107 Young Sed INDO 0 6.4 11.9 59.6 80.2 81.3 81.9 
116 Young Sed INDO 0 28.9 26.2 33.1 54.7 62.9 43.9 
105 Young Sed INDO 0 3.2 3.2 5.8 7.9 11.1 11.1 
97 Young Sed INDO 0 0 33.2 57.3 63.9 67.6 74.7 
142 Young Sed INDO 0 0 0 10.6 25.5 46.4 46.4 
 Mean 0.0 12.1 18.7 44.5 58.7 64.1 64.7 
 Standard Error 0.0 5.4 5.9 8.4 9.4 8.7 9.3 
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Table 1, continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
149 Young Sed Both 0 0 0 0 7.9 32.2 34.4 
151 Young Sed Both 0 3.2 4.6 9 27.5 47.7 47.7 
97 Young Sed Both 0 6.9 31.1 31.1 19.2 19.2 17.1 
105 Young Sed Both 0 7.3 10.7 66.2 90.1 92.2 93.3 
142 Young Sed Both 0 0 0 50.5 79.6 87.9 77.1 
115 Young Sed Both 0 11.8 8.9 12.3 17.7 19.5 23.5 
153 Young Sed Both 0 46.3 73.3 84.1 87.9 89.6 89.6 
116 Young Sed Both 0 3.5 3.5 43.1 51.3 77.5 81.9 
101 Young Sed Both 0 0 2.1 10.2 43.6 73.5 66.1 
107 Young Sed Both 0 0 0 1.5 58.4 72.7 75.3 
 Mean 0.0 7.9 13.4 30.8 48.3 61.2 60.6 
 Standard Error 0.0 4.4 7.3 9.2 9.6 9.2 8.8 
         
156 Young Ex Con 0 24.9 -5.4 62.4 63 85.4 85.4 
103 Young Ex Con 0 18 58.1 78.5 78.5 83.2 83.2 
99 Young Ex Con 0 0 0 73.7 96 100 100 
143 Young Ex Con 0 5.7 13.1 16.3 60.8 84.5 86.9 
110 Young Ex Con 0 10.1 19.7 66.7 88.4 89.3 90 
152 Young Ex Con 0 1.2 18 18 18 18 14.2 
113 Young Ex Con 0 0 4.2 64.6 71 79.4 78.9 
 Mean 0.0 8.6 15.4 54.3 68.0 77.1 76.9 
 Standard Error 0.0 3.7 7.9 9.8 9.6 10.2 10.7 
         
113 Young Ex LNNA 0 0 -8.8 -8.5 23.2 20.9 0 
103 Young Ex LNNA 0 0 2.2 31.2 71.9 84.9 79.5 
143 Young Ex LNNA 0 0 0 1.9 51.8 77.7 84.2 
110 Young Ex LNNA 0 3.7 7.9 18.5 37.3 41.5 42.5 
152 Young Ex LNNA 0 0 11.4 24.8 48 47 12.5 
156 Young Ex LNNA 0 2.4 2.4 39.9 77.4 83.1 76.8 
99 Young Ex LNNA 0 4.3 6.4 47.4 66.5 78.6 48.1 
 Mean 0.0 1.5 3.1 22.2 53.7 62.0 49.1 
 Standard Error 0.0 0.7 2.5 7.6 7.4 9.5 12.6 
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Table 1, continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
103 Young Ex INDO 0 13.1 33.5 80.1 85.8 85.8 86.8 
143 Young Ex INDO 0 18.6 45 66.7 72 88.3 88.3 
99 Young Ex INDO 0 5.2 21.9 43.2 77.8 83.7 84.3 
113 Young Ex INDO 0 0 0 54.5 75.4 91.6 83.2 
110 Young Ex INDO 0 2.7 2.7 25.3 53.8 59.9 64.8 
152 Young Ex INDO 0 1.3 1.3 1.3 9.4 18.8 20 
 Mean 0.0 6.8 17.4 45.2 62.4 71.4 71.2 
 Standard Error 0.0 2.8 7.2 10.8 10.6 10.6 10.0 
         
110 Young Ex Both 0 0 3.7 3.7 28.2 42.1 40.3 
103 Young Ex Both 0 33.7 37.6 44.6 61.2 69.1 46.8 
152 Young Ex Both 0 -18.9 -18.9 -18.9 6.8 20.7 1.2 
99 Young Ex Both 0 0 0 0 24.4 31 6.8 
113 Young Ex Both 0 -3.9 -3.9 29 43.9 73.7 57.5 
143 Young Ex Both 0 0 0 0 0 5.9 6.3 
156 Young Ex Both 0 0 0 12.9 32.5 54.2 37.9 
 Mean 0.0 1.6 2.6 10.2 28.1 42.4 28.1 
 Standard Error 0.0 6.0 6.5 7.9 7.9 9.5 8.6 
         
98 Old Sed Con 0 4.3 4.4 5.4 5.9 7.4 7.4 
145 Old Sed Con 0 -10.8 -9.7 26.8 27.4 54.7 54.7 
138 Old Sed Con 0 0 0 0 0 0 0 
111 Old Sed Con 0 7.7 14.8 62 52.5 45.1 45.1 
148 Old Sed Con 0 -2.4 6 17.2 43.1 56.2 62.4 
106 Old Sed Con 0 15.4 26.1 48.7 70.9 70.9 70.9 
102 Old Sed Con 0 2.3 9.7 43.1 69.9 73.7 75.4 
150 Old Sed Con 0 0 0 60.1 83.1 87.6 63.4 
 Mean 0.0 2.1 6.4 32.9 44.1 49.5 47.4 
 Standard Error 0.0 2.7 3.8 8.5 10.9 11.0 10.1 
         
98 Old Sed LNNA 0 2.7 6.3 26.7 20.4 24.6 24.6 
150 Old Sed LNNA 0 6.8 13.1 39.7 56.3 66.6 55.2 
138 Old Sed LNNA 0 0 1.1 0 12.8 15.5 15.4 
111 Old Sed LNNA 0 5.3 13.6 32.7 40.2 48.4 41.1 
145 Old Sed LNNA 0 3 3.2 19.5 35.8 33.8 23.6 
102 Old Sed LNNA 0 0 3.7 18.5 36.9 29.8 29.7 
148 Old Sed LNNA 0 6.8 19.5 31.2 39.2 59.1 59.2 
106 Old Sed LNNA 0 4.5 7.6 15.4 76.9 74.5 54.6 
 Mean 0.0 3.6 8.5 23.0 39.8 44.0 37.9 
 Standard Error 0.0 1.0 2.2 4.4 7.0 7.5 6.0 
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Table 1, continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
106 Old Sed INDO 0 2.3 20.9 57.9 81.7 98.26 120.16 
102 Old Sed INDO 0 15.4 42.4 47.8 84.7 98.6 118.78 
138 Old Sed INDO 0 5.3 8.7 19.6 45.8 47.65 58.24 
148 Old Sed INDO 0 0 0 0 10.6 8.48 10.6 
150 Old Sed INDO 0 27.9 27.9 39.6 83.7 89.55 107.46 
98 Old Sed INDO 0 8.1 10.4 12.6 31.1 32.45 39.12 
111 Old Sed INDO 0 0 0 8.5 9.5 11.85 14.6 
145 Old Sed INDO 0 0 3.9 54.2 89.4 99.4 122.7 
 Mean 0.0 7.4 14.3 30.0 54.6 60.8 74.0 
 Standard Error 0.0 3.5 5.3 8.0 12.2 14.2 17.2 
         
145 Old Sed Both 0 0 -14.2 -11.4 47 41.7 25.3 
138 Old Sed Both 0 6.3 12.3 12.3 15.5 15.5 15.5 
150 Old Sed Both 0 -9.8 2.6 2.6 2.3 2.3 -26.3 
148 Old Sed Both 0 0 0 0 5.7 5.8 13.6 
98 Old Sed Both 0 12.5 19.6 28.5 31.2 31.2 31.2 
106 Old Sed Both 0 4.8 4.8 11.7 41.7 54.7 33.1 
102 Old Sed Both 0 7.7 11.8 29.1 43.3 55.2 55.2 
111 Old Sed Both 0 2.6 25.1 48.8 85.2 95.4 80.6 
 Mean 0.0 3.0 7.8 15.2 34.0 37.7 28.5 
 Standard Error 0.0 2.3 4.3 6.8 9.5 11.0 11.1 
         
100 Old Ex Con 0 23.5 26.9 46.9 66.6 69.7 71 
147 Old Ex Con 0 17.9 23.4 88.9 92.3 92.3 96.6 
112 Old Ex Con 0 -1.5 7.7 42.5 74.9 74.6 74.9 
154 Old Ex Con 0 0 5.6 87.7 94.4 94.4 96.3 
109 Old Ex Con 0 6.8 19.5 37.8 62.5 63.4 56.8 
114 Old Ex Con 0 0 6.6 16.9 44.6 29.9 44.3 
144 Old Ex Con 0 83.3 82 86.1 87.4 88.2 88.2 
104 Old Ex Con 0 13 17.6 48.1 75.4 100 100 
155 Old Ex Con 0 20.6 27.5 86.4 96.9 96.7 100 
 Mean 0.0 18.2 24.1 60.1 77.2 78.8 80.9 
 Standard Error 0.0 8.7 7.8 9.1 5.8 7.5 6.8 
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Table 1, continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
109 Old Ex LNNA 0 2.4 2.5 36.7 54.7 60 61.9 
104 Old Ex LNNA 0 6 9.6 43 45.4 31.3 23 
147 Old Ex LNNA 0 1.8 2.7 10.7 45.7 52.1 38.4 
144 Old Ex LNNA 0 84 45.6 -3.3 55.4 79.1 76.7 
155 Old Ex LNNA 0 19.1 25.6 16.5 35.3 41.4 41.3 
154 Old Ex LNNA 0 0 -11.1 -11.1 -23.1 -21.5 -16.3 
112 Old Ex LNNA 0 0 4.2 10.1 63.1 85.3 86.1 
100 Old Ex LNNA 0 7.8 14.8 17.5 25.5 27.8 28 
108 Old Ex LNNA 0 2.6 7.1 25.9 23 23 23 
114 Old Ex LNNA 0 4.5 11.6 50.5 63.9 50.4 55.9 
 Mean 0.0 12.8 11.3 19.7 38.9 42.9 41.8 
 Standard Error 0.0 8.1 4.9 6.2 8.2 9.7 9.5 
         
114 Old Ex INDO 0 0 0 28.7 32.6 45.6 39 
144 Old Ex INDO 0 0 14.5 67.4 88.1 88.1 90.3 
155 Old Ex INDO 0 0 0 0 34.6 77.5 77.5 
100 Old Ex INDO 0 27.4 43.6 96.8 97.1 96.8 97.1 
154 Old Ex INDO 0 0 11.9 43.6 63.4 63.4 63.9 
108 Old Ex INDO 0 9.1 9.1 13.8 21.8 22.9 28 
112 Old Ex INDO 0 0 -1.4 -3.2 -3.2 -3.8 -3.8 
109 Old Ex INDO 0 0 4.3 59.1 77.4 77.4 77.4 
104 Old Ex INDO 0 5.6 5.6 38.1 87 87 86.7 
 Mean 0.0 4.7 9.7 38.3 55.4 61.7 61.8 
 Standard Error 0.0 3.0 4.6 10.9 11.7 11.3 11.3 
         
114 Old Ex Both 0 0 3.5 5.8 71.4 53.6 39.8 
104 Old Ex Both 0 4.8 8.7 33.7 61.9 71.8 71.8 
154 Old Ex Both 0 0 0 1.9 1.9 1.9 1.9 
147 Old Ex Both 0 0 0 0 35.5 65.8 43.2 
144 Old Ex Both 0 1.1 1.1 5.1 42.7 44.7 44.8 
155 Old Ex Both 0 0 0 0 3.4 10.3 10.3 
100 Old Ex Both 0 0 3.6 17.2 77.7 74.8 78.6 
109 Old Ex Both 0 18.6 22.2 36.5 47.4 57.5 60.5 
108 Old Ex Both 0 0 0 0 5.2 25.4 25.6 
112 Old Ex Both 0 0 0 0 21.2 33.3 14.2 
 Mean 0.0 2.5 3.9 10.0 36.8 43.9 39.1 
 Standard Error 0.0 1.9 2.2 4.5 9.0 8.1 8.3 
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Table 2-Exogenous SOD Acetylcholine Data (Figs. 2.4 & 2.5) 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) 

% 
Spontaneous 
Tone 

53 young control 326 161 57.8 
56 young control 344 154 52.6 
65 young control 354 194 32.0 
66 young control 334 138 37.0 
68 young control 300 166 42.2 
70 young control 280 114 39.5 
72 young control 234 181 32.5 
74 young control 256 138 36.2 
76 young control 321 140 37.9 
78 young control 324 198 36.9 
82 young control 331 154 27.3 
84 young control 389 174 35.6 
89 young control 302 151 35.1 
90 young control 340 166 50.6 
91 young control 330 177 36.7 
143 young control 392 192 61.4 
147 young control 371 166 48.2 
 Mean  162.6 41.1 
 Standard Error  5.3 2.3 
     
78 young + SOD  191 34.6 
80 young + SOD  116 41.4 
82 young + SOD  170 31.8 
84 young + SOD  140 35.7 
86 young + SOD  170 45.9 
89 young + SOD  185 62.2 
90 young + SOD  214 37.9 
91 young + SOD  202 41.1 
135 young + SOD  201 35.8 
137 young + SOD  175 21.7 
139 young + SOD  198 41.9 
141 young + SOD  175 29.7 
 Mean  178.1 38.3 
 Standard Error  8.8 3.2 
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Table 2- continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) 

% 
Spontaneous 
Tone 

78 young + SOD & catalase 157 50.3 
82 young + SOD & catalase 144 59.7 
84 young + SOD & catalase 167 28.7 
86 young + SOD & catalase 185 38.9 
88 young + SOD & catalase 214 27.6 
89 young + SOD & catalase 157 44.6 
90 young + SOD & catalase 179 39.7 
91 young + SOD & catalase 197 27.4 
92 young + SOD & catalase 182 26.9 
 Mean  175.8 38.2 
 Standard Error  7.3 3.9 
     
135 young SOD & L-NNA  152 59.9 
137 young SOD & L-NNA  160 40.0 
139 young SOD & L-NNA  213 39.9 
141 young SOD & L-NNA  180 50.0 
143 young SOD & L-NNA  199 27.1 
145 young SOD & L-NNA  156 59.0 
147 young SOD & L-NNA  183 69.9 
149 young SOD & L-NNA  212 33.5 
 Mean  181.9 47.4 
 Standard Error  8.7 5.2 
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Table 2- continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) 

% 
Spontaneous 
Tone 

50 old control 413 212 34.9 
51 old control 412 184 26.6 
52 old control 460 187 41.7 
54 old control 400 174 35.0 
55 old control 478 124 88.7 
57 old control 448 158 54.0 
58 old control 424 203 47.3 
59 old control 376 179 31.8 
73 old control 429 155 39.4 
75 old control 418 118 31.4 
77 old control 372 112 25.0 
79 old control 438 152 33.6 
81 old control 482 182 64.8 
85 old control 454 189 36.0 
87 old control 468 154 35.7 
136 old control 470 206 55.3 
140 old control 413 104 35.6 
142 old control 475 170 35.3 
144 old control 440 142 28.2 
148 old control 415 113 38.1 
 Mean  160.9 40.9 
 Standard Error  7.5 3.3 
     
70 old + SOD  174 35.6 
73 old + SOD  185 33.0 
75 old + SOD  219 35.2 
77 old + SOD  116 29.3 
81 old + SOD  205 41.5 
83 old + SOD  185 60.0 
85 old + SOD  174 36.2 
87 old + SOD  167 37.7 
136 old + SOD  202 57.4 
140 old + SOD  227 38.8 
142 old + SOD  208 31.7 
148 old + SOD  136 31.6 
 Mean  183.2 39.0 
 Standard Error  9.5 2.8 
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Table 2- continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) 

% 
Spontaneous 
Tone 

70 old + SOD & catalase  149 48.3 
73 old + SOD & catalase  136 33.1 
75 old + SOD & catalase  201 31.8 
81 old + SOD & catalase  224 29.9 
83 old + SOD & catalase  155 28.4 
85 old + SOD & catalase  187 51.3 
 Mean  175.3 37.1 
 Standard Error  13.9 4.1 
     
134 old + SOD & L-NNA  167 26.9 
136 old + SOD & L-NNA  197 40.6 
138 old + SOD & L-NNA  171 28.7 
140 old + SOD & L-NNA  224 36.2 
142 old + SOD & L-NNA  199 61.3 
144 old + SOD & L-NNA  171 61.4 
146 old + SOD & L-NNA  114 33.3 
148 old + SOD & L-NNA  109 50.5 
 Mean  169.0 42.4 
 Standard Error  14.2 4.9 
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Table 2- continued 
    
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 

53 young sed control 0 1.1 2.2 32.3 88.2 92.5 97.8 
56 young sed control 0 2.5 6.2 27.2 60.5 55.6 58.0 
65 young sed control 0 0.0 4.8 12.9 38.7 95.2 95.2 
66 young sed control 0 0.0 -2.0 -2.0 -2.0 76.5 100.0 
68 young sed control 0 10.0 11.4 12.9 17.1 74.3 70.0 
70 young sed control 0 2.2 2.2 4.4 57.8 77.8 60.0 
72 young sed control 0 4.5 4.5 7.6 46.0 82.0 83.7 
74 young sed control 0 8.0 8.0 14.0 32.0 44.0 44.0 
76 young sed control 0 6.0 36.9 49.1 78.6 80.2 86.6 
78 young sed control 0 9.6 32.9 35.6 39.7 84.9 97.3 
82 young sed control 0 28.6 31.0 40.5 54.8 69.0 69.0 
84 young sed control 0 9.7 12.9 16.1 74.2 82.3 82.3 
89 young sed control 0 0.0 1.9 9.4 20.8 50.9 50.9 
90 young sed control 0 1.2 2.4 45.2 45.2 42.9 45.2 
91 young sed control 0 15.4 24.6 43.1 46.2 61.5 66.2 
143 young sed control 0 11.9 16.1 32.2 36.4 42.4 42.4 
147 young sed control 0 10.0 40.0 70.0 76.3 83.8 83.8 
 Mean 0.0 7.1 13.9 26.5 47.7 70.3 72.5 
 Standard Error 0.0 1.7 3.3 4.5 5.6 4.1 4.7 
         
78 young + SOD 0 15.2 40.9 62.1 77.3 87.9 89.4 
80 young + SOD 0 0.0 6.3 16.7 20.8 31.3 31.3 
82 young + SOD 0 9.3 9.3 11.1 24.1 61.1 83.3 
84 young + SOD 0 4.0 64.0 68.0 80.0 86.0 94.0 
86 young + SOD 0 9.0 33.3 43.6 41.0 61.5 82.1 
89 young + SOD 0 0.9 0.9 5.2 36.5 63.5 63.5 
90 young + SOD 0 4.9 9.9 48.1 48.1 54.3 70.4 
91 young + SOD 0 0.0 1.2 2.4 57.8 75.9 78.3 
135 young + SOD 0 8.3 65.3 84.7 88.9 88.9 80.6 
137 young + SOD 0 7.9 15.8 73.7 94.7 100.0 100.0 
139 young + SOD 0 6.0 24.1 60.2 67.5 67.5 71.1 
141 young + SOD 0 7.7 25.0 69.2 98.1 100.0 100.0 
 Mean 0.0 6.1 24.7 45.4 61.2 73.2 78.7 
 Standard Error 0.0 1.4 7.2 9.3 8.7 6.5 6.0 
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Table 2- continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
78 young + SOD & CAT 0 1.3 1.3 7.6 11.4 11.4 11.4 
82 young + SOD & CAT 0 3.5 34.9 36.0 80.2 89.5 96.5 
84 young + SOD & CAT 0 29.2 39.6 50.0 83.3 87.5 87.5 
86 young + SOD & CAT 0 4.2 5.6 51.4 55.6 58.3 66.7 
88 young + SOD & CAT 0 6.8 20.3 35.6 67.8 71.2 71.2 
89 young + SOD & CAT 0 72.9 55.7 64.3 94.3 98.6 98.6 
90 young + SOD & CAT 0 19.7 19.7 18.3 22.5 49.3 49.3 
91 young + SOD & CAT 0 0.0 3.7 13.0 35.2 44.4 46.3 
92 young + SOD & CAT 0 20.4 26.5 26.5 32.7 42.9 57.1 
 Mean 0 17.5 23.0 33.6 53.7 61.5 65.0 
 Standard Error 0.0 7.7 6.1 6.4 9.8 9.3 9.3 

    
135 young SOD & L-NNA 0 1.1      
137 young SOD & L-NNA 0 0.0 4.4 4.4 5.5 6.6 6.6 
139 young SOD & L-NNA 0 8.2 12.5 12.5 89.1 92.2 92.2 
141 young SOD & L-NNA 0 -8.9 28.2 44.7 44.7 88.2 88.2 
143 young SOD & L-NNA 0 14.8 22.2 35.6 47.8 53.3 53.3 
145 young SOD & L-NNA 0 5.4 29.6 29.6 29.6 31.5 31.5 
147 young SOD & L-NNA 0 13.3 16.3 37.0 57.6 57.6 41.3 
149 young SOD & L-NNA 0 12.7 58.6 80.5 80.5 69.5 100.0 
 Mean 0.0 5.8 12.7 4.2 9.9 8.5 8.5 
 Standard Error 0.0 2.9 23.1 31.1 45.6 50.9 52.7 
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Table 2- continued 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
50 old control 0 8.1 5.9 8.9 10.7 11.7 13.2 
51 old control 0 2.0 10.8 17.6 54.1 66.2 70.3 
52 old control 0 6.4 2.0 10.2 18.4 28.6 28.6 
54 old control 0 13.2 12.8 39.7 94.9 100.0 100.0 
55 old control 0 1.8 18.2 20.7 28.2 33.3 36.7 
57 old control 0 5.0 4.5 34.5 22.7 35.5 37.3 
58 old control 0 6.3 14.5 34.8 49.2 70.6 75.2 
59 old control 0 7.0 11.5 12.5 21.9 26.0 26.0 
73 old control 0 1.6 15.8 29.8 38.6 38.6 38.6 
75 old control 0 0.0 4.9 9.8 37.7 45.9 50.8 
77 old control 0 28.6 8.1 13.5 16.2 24.3 24.3 
79 old control 0 5.9 28.6 46.4 50.0 50.0 57.1 
81 old control 0 5.1 9.8 9.8 9.8 11.8 15.7 
85 old control 0 10.3 9.3 12.7 17.8 23.7 32.2 
87 old control 0 5.5 11.8 11.8 38.2 47.1 58.8 
136 old control 0 0.0 5.5 5.5 16.4 18.2 18.2 
140 old control 0 5.4 -3.5 10.5 19.3 23.7 23.7 
142 old control 0 3.3 24.3 24.3 27.0 29.7 29.7 
144 old control 0 10.0 5.0 8.3 -165.0 26.7 31.7 
148 old control 0 2.3 10.0 15.0 30.0 35.0 40.0 
 Mean 0.0 6.4 7.0 7.0 9.3 27.9 32.6 
 Standard Error 0.0 1.4 10.5 18.7 21.7 38.1 41.4 
         
70 old + SOD 0 37.1 50.0 53.2 74.2 93.5 93.5 
73 old + SOD 0 9.8 19.7 39.3 49.2 55.7 57.4 
75 old + SOD 0 19.5 23.4 48.1 72.7 88.3 94.8 
77 old + SOD 0 17.6 23.5 73.5 88.2 100.0 100.0 
81 old + SOD 0 3.5 10.6 50.6 61.2 67.1 67.1 
83 old + SOD 0 1.8 8.1 62.2 64.9 81.1 81.1 
85 old + SOD 0 7.9 19.0 66.7 82.5 96.8 100.0 
87 old + SOD 0 7.9 12.7 25.4 50.8 71.4 74.6 
136 old + SOD 0 5.2 5.2 19.8 25.0 31.0 31.0 
140 old + SOD 0 6.8 13.6 58.0 46.6 40.9 40.9 
142 old + SOD 0 0.0 48.5 54.5 69.7 78.8 78.8 
148 old + SOD 0 0.0 27.9 46.5 51.2 55.8 55.8 
 Mean 0.0 9.8 21.9 49.8 61.3 71.7 72.9 
 Standard Error 0.0 3.1 4.2 4.5 5.1 6.4 6.6 
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Table 2- continued 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
70 old + SOD & catalase 0 27.8 55.6 55.6 51.4 94.4 100.0 
73 old + SOD & catalase 0 17.8 37.8 53.3 75.6 75.6 77.8 
75 old + SOD & catalase 0 25.0 32.8 40.6 40.6 51.6 56.3 
81 old + SOD & catalase 0 19.4 26.9 37.3 56.7 71.6 71.6 
83 old + SOD & catalase 0 2.3 4.5 52.3 81.8 81.8 79.5 
85 old + SOD & catalase 0 6.3 19.8 19.8 46.9 52.1 52.1 
 Mean 0.0 16.4 29.6 43.1 58.8 71.2 72.9 
 Standard Error 0.0 4.2 7.0 5.6 6.7 6.9 7.1 
         
134 old + SOD & L-NNA 0 0.0 11.1 24.4 35.6 42.2 42.2 
136 old + SOD & L-NNA 0 2.5 3.8 3.8 6.3 10.0 17.5 
138  old + SOD & L-NNA 0 4.1 12.2 12.2 12.2 14.3 14.3 
140 old + SOD & L-NNA 0 3.7 8.6 8.6 8.6 11.1 12.3 
142 old + SOD & L-NNA 0 3.3 3.3 12.3 21.3 20.5 20.5 
144 old + SOD & L-NNA 0 6.7 10.5 18.1 20.0 32.4 38.1 
146 old + SOD & L-NNA 0 0.0 5.3 26.3 26.3 26.3 28.9 
148 old + SOD & L-NNA 0 9.1 20.0 25.5 25.5 36.4 43.6 
 Mean 0.0 3.7 9.3 16.4 19.5 24.1 27.2 
 Standard Error 0.0 1.1 1.9 3.0 3.5 4.3 4.5 
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Table 3-Desitometry Values for Training Study eNOS Immunoblots (Fig. 2.6) 
 
vessel number  group Proteins of Interest  
peNOS blot 1  eNOS p-eNOSser1177 GAPDH 
23709 YS 4998723 7228988  
23794 YS 5090219 7211414  
23613 OS 5867279 7835130  
23632 OS 5434181 7475966  
23688 YX 5036215 6793499  
23785 YX 4860031 6623776  
23664 OX 6312930 7345963  
23645 OX 6567813 7164256  
     
peNOS blot 2  eNOS p-eNOSser1177 GAPDH 
23820 YS 4977932 7499624 9789577 
23856 YS 4816153 6604414 9004931 
23740 OS 6103856 6285078 13975713 
23759 OS 5799298 6190660 9294305 
23875 YX 5647010 6548838 9959375 
23897 YX 5439298 6364247 10498490 
24158 OX 5150488 5948714 12252349 
24139 OX 5875610 5751678 8401590 
     
peNOS blot 5  eNOS p-eNOSser1177 GAPDH 
24471 YS 6129884 7815646 3696631 
24392 YS 6058036 7504981 4428264 
24435 OS 6079195 7491252 6891347 
24318 OS 6288743 7612480 10984296 
24293 YX 6032894 7375786 9406547 
24274 YX 6052944 7251417 10566159 
24333 OX 6043645 7253376 8439670 
24275 OX 6088757 7525020 4530894 
     
peNOS blot 6  eNOS p-eNOSser1177 GAPDH 
23995 YS 8378006 9486751 13879710 
23915 YS 10711401 10020489 11905185 
24054 OS 12543049 10942206 12954551 
24016 OS 14113708 15720294 15857342 
23952 YX 7753653 8988628 13315754 
23931 YX 8322186 8467184 20050872 
24237 OX 9486927 8752504 16321779 
24199 OX 11731664 12222744 13826367 
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Table 3- continued 
 
vessel number  group Proteins of Interest  
peNOS blot 7  eNOS p-eNOSser1177 GAPDH 
24372 YS 5776349 8109234 3547762 
24355 YS 5388825 7452216 4946577 
24177 OS 5999296 9337652 5246277 
24080 OS 5696306 7979945 4561492 
24122 YX 5901194 7760329 4650936 
24103 YX 5818339 7569452 3647610 
24259 OX 7678377 11946974 5170605 
24220 OX 5318531 9015379 4415438 
    
peNOS blot 1  p-eNOS(ser1177)/eNOS eNOS/GAPDH 
23709 YS 1.103167142  
23794 YS 1.080704218  
23613 OS 1.018667269  
23632 OS 1.04943635  
23688 YX 1.028992333  
23785 YX 1.039655566  
23664 OX 0.887647733  
23645 OX 0.832095556  
    
peNOS blot 2  p-eNOS(ser1177)/eNOS eNOS/GAPDH 
23820 YS 1.149247098 0.490674529 
23856 YS 1.046060732 0.516093473 
23740 OS 0.785469413 0.421442944 
23759 OS 0.814299958 0.602097726 
23875 YX 0.884644081 0.547135574 
23897 YX 0.892538706 0.499947608 
24158 OX 0.881043995 0.405636944 
24139 OX 0.746731529 0.674838666 
    
peNOS blot 5  p-eNOS(ser1177)/eNOS eNOS/GAPDH 
24471 YS 0.972602787 1.600127673 
24392 YS 0.945019201 1.320099987 
24435 OS 0.940007281 0.851236891 
24318 OS 0.923390077 0.552459061 
24293 YX 0.932621661 0.618876435 
24274 YX 0.913858824 0.552787222 
24333 OX 0.915512187 0.691006228 
24275 OX 0.942761637 1.296740936 
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Table 3- continued 
 
vessel number  group Proteins of Interest  
peNOS blot 6  p-eNOS(ser1177)/eNOS eNOS/GAPDH 
23995 YS 0.86377319 0.582463554 
23915 YS 0.713617551 0.86819766 
24054 OS 0.665464133 0.934306209 
24016 OS 0.849654616 0.85885375 
23952 YX 0.884320986 0.561887123 
23931 YX 0.776112119 0.400509327 
24237 OX 0.703768209 0.5608756 
24199 OX 0.794752651 0.818766409 
    
peNOS blot 7  p-eNOS(ser1177)/eNOS eNOS/GAPDH 
24372 YS 1.070900923 1.571113023 
24355 YS 1.054907158 1.0512301 
24177 OS 1.187299485 1.103462437 
24080 OS 1.068635192 1.20502172 
24122 YX 1.003143646 1.224356835 
24103 YX 0.992403537 1.539214355 
24259 OX 1.186892464 1.432968195 
24220 OX 1.293049585 1.162321805 
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Table 4-Desitometry Values for Training Study SOD Immunoblots (Fig. 2.7) 
 
Vessel 
number group Protein of Interest 
SOD Blot 1 SOD-1 GAPDH SOD-1/GAPDH 
23997 YS 6114444 6954248 0.879238704 
24008 OS 2654121 3013078 0.880867007 
24092 YX 3338317 5578766 0.598397029 
24133 OX 3289056 4599574 0.715078396 
24364 YS 2991377 4022436 0.743672988 
24059 OS 3639076 6664649 0.546026655 
24116 YX 3135245 4828235 0.649356338 
24149 OX 2773153 3953929 0.701366413 
     
SOD Blot 2 SOD-1 GAPDH SOD-1/GAPDH 
24364 YS 1812269 2226884 0.813813831 
24384 YS 1992520 3576350 0.557137864 
24070 OS 2233017 4376915 0.510180572 
24169 OS 2020135 3564231 0.566780043 
24286 YX 2410656 4135120 0.582971232 
24287 YX 2922523 5021531 0.581998398 
24189 OX 2345711 5860142 0.40028228 
24209 OX 3549115 8935615 0.397187547 
     
SOD Blot 3 SOD-1 GAPDH SOD-1/GAPDH 
23860 YS 5274950 4732164 1.114701435 
23908 YS 3844191 3029255 1.269021921 
23755 OS 3518444 2604045 1.351145622 
24306 OS 2924918 2088665 1.400376796 
23947 YX 2839963 2225507 1.276097087 
24325 YX 2349232 2153891 1.090692147 
24252 OX 2325682 2227751 1.043959581 
24229 OX 2945301 2786973 1.056810023 
     
SOD Blot 4 SOD-1 GAPDH SOD-1/GAPDH 
23702 YS 5307256 2235368 2.374220263 
23801 YS 4657825 2680497 1.737672156 
23615 OS 5038577 2998046 1.680620311 
23622 OS 6415424 2435762 2.633846821 
23680 YX 7294675 3555647 2.05157458 
23775 YX 9717232 2978804 3.262125336 
23640 OX 7255625 2697343 2.689915595 
23658 OX 4336949 1913205 2.266850128 
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Table 4-Continued 
 
Vessel 
number group Protein of Interest 
SOD Blot 5 SOD-1 GAPDH SOD-1/GAPDH 
23812 YS 4093717 4418229 0.926551566 
23736 OS 2659298 3107444 0.855783081 
23871 YX 3327690 4091016 0.813414076 
23886 OX 2019570 1498504 1.34772413 
   
SOD Blot 7    
24365 YS GAPDH ecSOD ecSOD/GAPDH 
24385 YS 1780270 5333161 2.995703461 
24073 OS 2327248 9245513 3.972723577 
24170 OS 2454684 4984811 2.030734302 
24269 YX 1838122 4749193 2.583720232 
24290 YX 2118379 5519178 2.60537798 
24190 OX 3968498 5959649 1.501739197 
24210 OX 2515577 5097815 2.026499288 
  4634050 7889073 1.702414303 
SOD Blot 8    
23861 YS GAPDH ecSOD ecSOD/GAPDH 
23909 YS 4853178 9585694 1.975137528 
23763 OS 3219135 11155929 3.465505175 
24307 OS 3248116 9031383 2.780498911 
23948 YX 2172685 11051624 5.086620472 
24326 YX 5366689 45202076 8.42271203 
24253 OX 2267273 9230730 4.071291812 
24230 OX 2562991 24778865 9.667948502 
     
SOD blot 10    
23814 YS GAPDH ecSOD ecSOD/GAPDH 
23704 YS 3601388 8993924 2.497349355 
23747 OS 2558072 6196828 2.422460353 
23624 OS 2527035 10442179 4.132186139 
23872 YX 4356896 8571842 1.967419466 
23686 YX 3838317 19287050 5.024871578 
23887 OX 2423923 6700781 2.764436412 
23671 OX 2042546 6913793 3.384889741 
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Table 4-Continued 
 
Vessel 
number group 

Protein of 
Interest  

SOD blot 11    
22450 YS GAPDH ecSOD ecSOD/GAPDH 
22565 YS 1824616 5213675 2.857409449 
22442 OS 1838552 5418100 2.946938678 
22425 OS 1890301 7674333 4.059847083 
22444 YX 1880511 5015739 2.667221303 
22495 YX 2011839 7235169 3.596296224 
22454 OX 2451368 15659451 6.388045777 
22462 OX 2173489 4940113 2.272895331 
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Table 5-NAD(P)H oxidase Studies, Flow Data (Figs. 3.1-3.4) 
 

Animal Group 
Body 
Weight(g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

172 young control 410 212 37.7 
174 young control 420 185 38.9 
176 young control 426 233 40.3 
183 young control 411 180 31.7 
186 young control 450 144 33.3 
195 young control 365 214 33.6 
197 young control 328 149 30.2 
199 young control 427 220 58.6 
210 young control 311 99 59.6 
216 young control 368 126 33.3 
224 young control 342 89 33.7 
225 young control 349 205 63.4 
230 young control 404 215 27.9 
231 young control 410 171 36.3 
235 young control 360 115 25.2 
261 young control 372 186 33.9 
263 young control 310 115 25.2 
297 young control 305 108 76.9 
305 young control 396 182 59.9 
308 young control 354 137 52.6 
309 young control 407 172 32.6 
310 young control 410 119 43.7 
318 young control 376 163 40.5 
 Mean  162.6 41.3 
 Standard Error  9.4 2.2 
     
297 young tempol  136 53.7 
300 young tempol  156 41.7 
302 young tempol  188 35.6 
307 young tempol  229 51.1 
308 young tempol  178 28.7 
309 young tempol  233 35.2 
313 young tempol  159 70.4 
318 young tempol  176 50.0 
 Mean  181.9 45.8 
 Standard Error  12.1 4.7 
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Table 5-continued 
 

Animal Group 
Body 
Weight(g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

297 young apocynin  133 32.3 
300 young apocynin  118 47.5 
302 young apocynin  167 35.9 
305 young apocynin  136 41.9 
307 young apocynin  103 57.3 
308 young apocynin  180 33.9 
309 young apocynin  200 70.5 
310 young apocynin  193 25.4 
313 young apocynin  161 75.8 
318 young apocynin  136 41.9 
 Mean  152.7 46.2 
 Standard Error  9.3 4.8 

  
235 young catalase  136 64.0 
250 young catalase  155 40.6 
255 young catalase  158 33.5 
256 young catalase  159 42.8 
258 young catalase  93 38.7 
259 young catalase  153 57.5 
261 young catalase  159 44.7 
263 young catalase  160 38.1 
 Mean  146.6 45.0 
 Standard Error  8.1 3.7 
     
250 young pegcat  157 30.6 
255 young pegcat  171 42.1 
256 young pegcat  172 40.1 
257 young pegcat  119 48.7 
258 young pegcat  135 43.7 
259 young pegcat  198 51.5 
261 young pegcat  185 25.4 
263 young pegcat  133 39.8 
 Mean  158.8 40.3 
 Standard Error  9.8 3.1 
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Table 5-continued 
 

Animal Group 
Body 
Weight(g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

173 old control 438 125 62.4 
175 old control 453 173 24.9 
177 old control 450 174 35.6 
181 old control 471 165 41.8 
189 old control 395 139 44.6 
196 old control 452 180 30.0 
203 old control 433 145 42.8 
208 old control 331 110 47.3 
213 old control 396 147 32.7 
217 old control 401 177 27.1 
222 old control 400 101 22.8 
229 old control 410 100 28.0 
232 old control 443 117 33.3 
248 old control 384 238 42.4 
249 old control 309 190 30 
252 old control 317 219 33.3 
253 old control 407 190 33.2 
254 old control 373 126 42.1 
260 old control 385 116 44.8 
262 old control  133 38.3 
265 old control 449 151 51.0 
294 old control 407 127 46.5 
298 old control 409 159 61.0 
303 old control 429 136 40.4 
304 old control 420 162 32.7 
306 old control 404 191 74.9 
312 old control 414 241 35.3 
314 old control 463 128 40.6 
319 old control 419 137 46.0 
 Mean  155.1 40.2 
 Standard Error  7.0 2.2 
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Table 5-continued 
 

Animal Group 
Body 
Weight(g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

294 old tempol  198 25.8 
298 old tempol  168 28.6 
301 old tempol  206 53.9 
303 old tempol  250 28.8 
304 old tempol  199 35.7 
306 old tempol  224 46.0 
311 old tempol  124 42.7 
312 old tempol  192 34.4 
314 old tempol  212 40.6 
317 old tempol  278 29.9 
 Mean  205.1 36.6 
 Standard Error  13.3 2.9 
     
294 old apocynin    
298 old apocynin  201 52.7 
301 old apocynin  165 43.0 
303 old apocynin  222 33.8 
304 old apocynin  244 29.1 
306 old apocynin  155 56.8 
312 old apocynin  165 49.7 
314 old apocynin  197 30.5 
317 old apocynin  205 45.9 
 Mean  232 42.7 
 Standard Error  198.4 42.7 
   10.5 3.3 
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Table 5-continued 

Animal Group 
Body 
Weight(g) Maximal Diameter (μm) % Spontaneous Tone 

248 old catalase  227 33.9 
249 old catalase  183 27.3 
252 old catalase  201 35.8 
262 old catalase  143 30.8 
264 old catalase  106 33.0 
265 old catalase  132 40.9 
268 old catalase  175 33.7 
 Mean  166.7 33.6 
 Standard Error  15.9 1.6 
     
234 old pegcat    
248 old pegcat  189 31.2 
249 old pegcat  124 42.7 
252 old pegcat  179 29.6 
254 old pegcat  203 25.1 
260 old pegcat  207 63.3 
262 old pegcat  115 41.7 
264 old pegcat  156 30.8 
 Mean  147 38.1 
 Standard Error  165.0 37.8 
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Table 5-continued 
 
Animal Group Start Δ2cmH2O Δ4cmH2O Δ6cmH2O Δ8cmH2O 
172 young control 0 17.5 20.0 18.8 18.8 
174 young control 0 41.7 11.1 12.5 18.1 
176 young control 0 19.1 25.5 29.8 26.6 
183 young control 0 12.3 12.3 52.6 59.6 
186 young control 0 8.3 29.2 29.2 29.2 
195 young control 0 5.6 9.7 9.7 9.7 
197 young control 0 17.8 24.4 24.4 24.4 
199 young control 0 16.3 22.5 22.5 28.7 
210 young control 0 22.0 35.6 35.6 33.9 
216 young control 0 21.4 4.8 4.8 -7.1 
224 young control 0 13.3 30.0 30.0 30.0 
225 young control 0 19.2 20.8 21.5 21.5 
230 young control 0 25.0 25.0 28.3 28.3 
231 young control 0 16.1 19.4 19.4 19.4 
235 young control 0 55.2 62.1 62.1 69.0 
261 young control 0 30.2 42.9 58.7 58.7 
263 young control 0 6.9 10.3 13.8 17.2 
297 young control 0 1.2 1.2 3.6 3.6 
305 young control 0 35.8 35.8 35.8 35.8 
308 young control 0 18.1 19.4 19.4 5.6 
309 young control 0 8.9 14.3 14.3 10.7 
310 young control 0 23.1 23.1 -5.8 -15.4 
318 young control 0 16.7 42.4 47.0 59.1 
 Mean 0.0 19.6 23.6 25.6 25.5 
 Standard Error 0.0 2.1 2.0 2.9 3.6 
       
297 young tempol 0 -1.4 2.7 2.7 4.1 
300 young tempol 0 23.1 24.6 18.5 7.7 
302 young tempol 0 3.0 7.5 7.5 7.5 
307 young tempol 0 0.9 1.7 1.7 1.7 
308 young tempol 0 82.4 84.3 84.3 88.2 
309 young tempol 0 18.3 22.0 22.0 22.0 
313 young tempol 0 0.0 0.9 2.7 8.0 
318 young tempol 0 5.7 8.0 26.1 26.1 
 Mean 0.0 16.5 19.0 20.7 20.7 
 Standard Error 0.0 9.9 9.9 9.7 10.1 
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Table 5-continued 
 
Animal Group Start Δ2cmH2O Δ4cmH2O Δ6cmH2O Δ8cmH2O 
297 young apocynin 0 2.3 0.0 0.0 0.0 
300 young apocynin 0 12.5 14.3 14.3 25.0 
302 young apocynin 0 1.7 8.3 8.3 11.7 
305 young apocynin 0 22.8 26.3 26.3 33.3 
307 young apocynin 0 18.6 18.6 18.6 18.6 
308 young apocynin 0 6.6 13.1 14.8 16.4 
309 young apocynin 0 14.9 19.9 19.9 12.8 
310 young apocynin 0 20.4 24.5 24.5 24.5 
313 young apocynin 0 5.7 7.4 7.4 9.8 
318 young apocynin 0 19.3 19.3 31.6 17.5 
 Mean 0.0 12.5 15.2 16.6 17.0 
 Standard Error 0.0 2.3 2.3 2.8 2.7 
       
235 young catalase 0 0.0 6.9 11.5 17.2 
250 young catalase 0 23.8 23.8 23.8 15.9 
255 young catalase 0 0.0 0.0 -9.4 -7.5 
256 young catalase 0 11.8 13.2 13.2 13.2 
258 young catalase 0 8.3 8.3 11.1 8.3 
259 young catalase 0 10.2 18.2 22.7 22.7 
261 young catalase 0 4.2 11.3 14.1 12.7 
263 young catalase 0 3.3 3.3 3.3 3.3 
 Mean 0.0 7.7 10.6 11.3 10.7 
 Standard Error 0.0 2.8 2.8 3.8 3.3 
       
250 young pegcat 0 25.0 33.3 33.3 33.3 
255 young pegcat 0 29.2 58.3 58.3 58.3 
256 young pegcat 0 33.3 43.5 49.3 49.3 
257 young pegcat 0 0.0 0.0 15.5 15.5 
258 young pegcat 0 5.1 5.1 3.4 3.4 
259 young pegcat 0 64.7 65.7 48.0 34.3 
261 young pegcat 0 36.2 70.2 74.5 63.8 
263 young pegcat 0 9.4 9.4 9.4 15.1 
 Mean 0.0 25.4 35.7 36.5 34.1 
 Standard Error 0.0 7.4 10.0 9.0 7.7 
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Table 5-continued 
 
Animal Group Start Δ2cmH2O Δ4cmH2O Δ6cmH2O Δ8cmH2O 
173 old control 0 0.0 17.9 24.4 24.4 
175 old control 0 58.1 74.4 74.4 74.4 
177 old control 0 0.0 6.5 6.5 -37.1 
181 old control 0 0.0 -10.1 -24.6 -24.6 
189 old control 0 6.5 9.7 11.3 37.1 
196 old control 0 0.0 0.0 0.0 -20.4 
203 old control 0 0.0 0.0 -1.6 1.6 
208 old control 0 0.0 0.0 0.0 0.0 
213 old control 0 4.2 -2.1 -8.3 -8.3 
217 old control 0 2.1 2.1 2.1 2.1 
222 old control 0 43.5 43.5 -21.7 -21.7 
228 old control 0 17.9 3.6 3.6 3.6 
232 old control 0 2.6 2.6 2.6 2.6 
248 old control 0 13.9 13.9 10.9 10.9 
249 old control 0 15.8 24.6 24.6 24.6 
252 old control 0 5.5 12.3 35.6 39.7 
253 old control 0 11.1 11.1 11.1 20.6 
254 old control 0 5.7 17.0 15.1 15.1 
260 old control 0 0.0 23.1 34.6 50.0 
262 old control 0 3.9 9.8 19.6 19.6 
265 old control 0 6.5 9.1 24.7 29.9 
294 old control 0 0.0 -1.7 -1.7 -1.7 
298 old control 0 1.0 12.4 14.4 19.6 
303 old control 0 5.5 10.9 10.9 10.9 
304 old control 0 0.0 0.0 3.8 3.8 
306 old control 0 -0.7 20.3 30.1 30.1 
312 old control 0 15.3 27.1 27.1 27.1 
314 old control 0 65.4 65.4 65.4 46.2 
319 old control 0 0.0 -7.9 0.0 0.0 
 Mean 0.0 9.8 13.6 13.6 13.1 
 Standard Error 0.0 3.2 3.6 4.0 4.5 
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Table 5-continued 
 
Animal Group Start Δ2cmH2O Δ4cmH2O Δ6cmH2O Δ8cmH2O 
294 old tempol 0 15.7 19.6 27.5 27.5 
298 old tempol 0 22.9 29.2 29.2 33.3 
301 old tempol 0 0.9 20.7 42.3 42.3 
303 old tempol 0 47.2 -11.1 -11.1 -11.1 
304 old tempol 0 29.6 29.6 29.6 29.6 
306 old tempol 0 9.7 29.1 31.1 31.1 
311 old tempol 0 34.0 35.8 35.8 41.5 
312 old tempol 0 13.6 22.7 22.7 22.7 
314 old tempol 0 27.9 27.9 27.9 32.6 
317 old tempol 0 37.3 79.5 90.4 100.0 
 Mean 0.0 23.9 28.3 32.5 34.9 
 Standard Error 0.0 4.4 7.0 7.8 8.6 
       
294 old apocynin 0 6.6 14.2 14.2 14.2 
298 old apocynin 0 4.2 21.1 22.5 36.6 
301 old apocynin 0 8.0 12.0 12.0 13.3 
303 old apocynin 0 11.3 26.8 26.8 28.2 
304 old apocynin 0 25.0 26.1 27.3 27.3 
306 old apocynin 0 40.2 53.7 53.7 56.1 
312 old apocynin 0 11.7 11.7 11.7 11.7 
314 old apocynin 0 20.2 25.5 42.6 42.6 
317 old apocynin 0 4.0 17.2 19.2 19.2 
 Mean 0.0 14.6 23.1 25.5 27.7 
 Standard Error 0.0 4.0 4.3 4.8 5.0 
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Table 5-continued 
 
Animal Group Start Δ2cmH2O Δ4cmH2O Δ6cmH2O Δ8cmH2O 
248 old catalase 0 9.1 9.1 6.5 7.8 
249 old catalase 0 36.0 42.0 68.0 64.0 
252 old catalase 0 30.6 79.2 90.3 91.7 
262 old catalase 0 15.9 20.5 25.0 25.0 
264 old catalase 0 45.7 45.7 45.7 45.7 
265 old catalase 0 -11.1 13.0 18.5 20.4 
268 old catalase 0 0.0 6.8 8.5 8.5 
 Mean 0.0 18.0 30.9 37.5 37.6 
 Standard Error 0.0 7.7 10.0 12.1 11.8 
       
234 old pegcat 0 20.3 20.3 20.3 13.6 
248 old pegcat 0 0.0 9.4 22.6 43.4 
249 old pegcat 0 13.2 15.1 13.2 7.5 
252 old pegcat 0 13.7 13.7 9.8 7.8 
254 old pegcat 0 4.6 6.1 6.9 13.7 
260 old pegcat 0 0.0 0.0 -12.5 -12.5 
262 old pegcat 0 16.7 29.2 29.2 33.3 
264 old pegcat 0 0.0 -19.6 10.7 10.7 
 Mean 0.0 8.6 9.3 12.5 14.7 
 Standard Error 0.0 3.0 5.2 4.5 6.0 

 



151 

Table 5-continued 
 
Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
172 young control 18.8 11.3 11.3 11.3 11.3 
174 young control 19.4 19.4 19.4 30.6 30.6 
176 young control 27.7 27.7 9.6 -26.6 -29.8 
183 young control 59.6 63.2 63.2 64.9 64.9 
186 young control 29.2 29.2 29.2 25.0 31.3 
195 young control 9.7 9.7 6.9 5.6 15.3 
197 young control 15.6 20.0 28.9 33.3 33.3 
199 young control 29.5 44.2 44.2 41.9 41.9 
210 young control 42.4 42.4 42.4 42.4 42.4 
216 young control -9.5 -9.5 -9.5 -9.5 35.7 
224 young control 30.0 13.3 13.3 -6.7 3.3 
225 young control 23.8 23.8 29.2 30.8 43.8 
230 young control 33.3 33.3 21.7 21.7 21.7 
231 young control 19.4 17.7 17.7 17.7 17.7 
235 young control 69.0 65.5 72.4 72.4 72.4 
261 young control 58.7 58.7 58.7 44.4 55.6 
263 young control 17.2 17.2 6.9 -6.9 -6.9 
297 young control 15.7 15.7 21.7 21.7 38.6 
305 young control 34.9 34.9 34.9 34.9 34.9 
308 young control 5.6 -4.2 2.8 -19.4 -25.0 
309 young control 1.8 7.1 8.9 12.5 12.5 
310 young control 11.5 13.5 19.2 21.2 26.9 
318 young control 16.7 -18.2 -18.2 -15.2 -13.6 
 Mean 25.2 23.3 23.3 19.5 24.3 
 Standard Error 3.9 4.3 4.5 5.6 5.2 
       
297 young tempol 4.1 0.0 32.9 49.3 50.7 
300 young tempol 7.7 -1.5 -1.5 -12.3 -12.3 
302 young tempol 13.4 17.9 25.4 25.4 10.4 
307 young tempol 12.0 20.5 48.7 48.7 45.3 
308 young tempol 88.2 90.2 90.2 90.2 90.2 
309 young tempol 22.0 36.6 36.6 36.6 24.4 
313 young tempol 22.3 22.3 23.2 23.2 23.2 
318 young tempol 26.1 26.1 28.4 28.4 38.6 
 Mean 24.5 26.5 35.5 36.2 33.8 
 Standard Error 9.5 10.2 9.3 10.3 10.8 
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Table 5-continued 
 
Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
297 young apocynin -11.6 -11.6 -11.6 -11.6 -11.6 
300 young apocynin 25.0 14.3 32.1 37.5 39.3 
302 young apocynin 11.7 11.7 15.0 15.0 15.0 
305 young apocynin 36.8 52.6 52.6 66.7 66.7 
307 young apocynin 18.6 23.7 25.4 25.4 25.4 
308 young apocynin 19.7 19.7 19.7 -9.8 -34.4 
309 young apocynin 12.8 7.8 7.8 3.5 10.6 
310 young apocynin 16.3 18.4 18.4 18.4 18.4 
313 young apocynin 13.1 13.1 13.1 8.2 0.8 
318 young apocynin 17.5 17.5 21.1 26.3 26.3 
 Mean 16.0 16.7 19.4 18.0 15.6 
 Standard Error 3.5 4.6 4.7 6.6 7.9 
       
235 young catalase 31.0 64.4 72.4 75.9 79.3 
250 young catalase 15.9 11.1 15.9 11.1 23.8 
255 young catalase -7.5 9.4 39.6 39.6 37.7 
256 young catalase 13.2 25.0 25.0 25.0 29.4 
258 young catalase 13.9 11.1 8.3 8.3 8.3 
259 young catalase 22.7 14.8 19.3 52.3 53.4 
261 young catalase 12.7 12.7 12.7 12.7 12.7 
263 young catalase -21.3 -21.3 -21.3 -26.2 -26.2 
 Mean 10.1 15.9 21.5 24.8 27.3 
 Standard Error 5.9 8.4 9.5 11.0 11.1 
       
250 young pegcat 33.3 33.3 58.3 58.3 18.8 
255 young pegcat 36.1 33.3 47.2 55.6 55.6 
256 young pegcat 49.3 49.3 30.4 30.4 31.9 
257 young pegcat 15.5 17.2 17.2 20.7 20.7 
258 young pegcat -6.8 -5.1 -5.1 -3.4 -3.4 
259 young pegcat 21.6 16.7 2.9 2.9 4.9 
261 young pegcat 51.1 51.1 51.1 51.1 51.1 
263 young pegcat 15.1 15.1 15.1 15.1 17.0 
 Mean 26.9 26.4 27.2 28.8 24.6 
 Standard Error 6.9 6.7 8.3 8.5 7.3 
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Table 5-continued 
       
Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
173 old control 24.4 28.2 30.8 33.3 33.3 
175 old control 46.5 46.5 46.5 48.8 48.8 
177 old control -37.1 -37.1 -75.8 -75.8 -75.8 
181 old control -24.6 17.4 42.0 50.7 50.7 
189 old control 37.1 37.1 17.7 11.3 -1.6 
196 old control -27.8 -27.8 -33.3 -16.7 -16.7 
203 old control 1.6 1.6 1.6 1.6 11.3 
208 old control 0.0 40.4 23.1 1.9 -13.5 
213 old control -12.5 -12.5 -33.3 -33.3 -41.7 
217 old control 2.1 -14.6 -14.6 -4.2 -4.2 
222 old control -21.7 -34.8 -34.8 -34.8 -39.1 
228 old control -50.0 -132.1 -132.1 -139.3 -157.1 
232 old control -5.1 -5.1 0.0 10.3 10.3 
248 old control 10.9 12.9 18.8 18.8 18.8 
249 old control 24.6 24.6 68.4 68.4 45.6 
252 old control 39.7 39.7 39.7 39.7 47.9 
253 old control 20.6 30.2 30.2 30.2 28.6 
254 old control 9.4 9.4 9.4 9.4 9.4 
260 old control 50.0 57.7 57.7 34.6 25.0 
262 old control -19.6 -31.4 -39.2 -43.1 -49.0 
265 old control 31.2 28.6 28.6 24.7 24.7 
294 old control -1.7 -1.7 3.4 3.4 3.4 
298 old control 35.1 40.2 41.2 43.3 43.3 
303 old control 14.5 14.5 14.5 32.7 38.2 
304 old control 3.8 3.8 3.8 3.8 7.5 
306 old control 36.4 36.4 1.4 -2.1 -7.7 
312 old control 21.2 21.2 17.6 17.6 17.6 
314 old control 32.7 19.2 13.5 13.5 9.6 
319 old control -1.6 -1.6 -6.3 -6.3 -7.9 
 Mean 8.3 7.3 4.8 4.9 2.1 
 Standard Error 4.8 6.9 7.7 7.7 8.1 
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Table 5-continued 
 
Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
294 old tempol 27.5 0.0 -17.6 -27.5 -27.5 
298 old tempol 33.3 25.0 25.0 25.0 16.7 
301 old tempol 38.7 38.7 33.3 33.3 26.1 
303 old tempol 72.2 29.2 29.2 5.6 0.0 
304 old tempol 29.6 29.6 29.6 38.0 38.0 
306 old tempol 22.3 15.5 15.5 15.5 13.6 
311 old tempol 41.5 41.5 41.5 41.5 41.5 
312 old tempol 16.7 12.1 12.1 12.1 3.0 
314 old tempol 32.6 32.6 32.6 32.6 32.6 
317 old tempol 100.0 100.0 100.0 100.0 100.0 
 Mean 41.4 32.4 30.1 27.6 24.4 
 Standard Error 8.1 8.5 9.4 10.3 10.6 
       
294 old apocynin 17.9 19.8 23.6 34.0 34.0 
298 old apocynin 25.4 25.4 25.4 25.4 25.4 
301 old apocynin 13.3 16.0 16.0 16.0 16.0 
303 old apocynin 28.2 28.2 33.8 43.7 54.9 
304 old apocynin 28.4 28.4 28.4 35.2 35.2 
306 old apocynin 58.5 59.8 59.8 63.4 69.5 
312 old apocynin 21.7 36.7 20.0 20.0 20.0 
314 old apocynin 24.5 4.3 2.1 1.1 9.6 
317 old apocynin 22.2 37.4 40.4 40.4 40.4 
 Mean 26.7 28.4 27.7 31.0 33.9 
 Standard Error 4.3 5.2 5.4 6.0 6.4 
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Table 5-continued 
 
Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
248 old catalase 7.8 7.8 7.8 -2.6 -2.6 
249 old catalase 74.0 78.0 78.0 78.0 86.0 
252 old catalase 91.7 95.8 91.7 91.7 91.7 
262 old catalase 25.0 31.8 31.8 31.8 15.9 
264 old catalase 45.7 37.1 37.1 40.0 45.7 
265 old catalase 20.4 20.4 5.6 -3.7 0.0 
268 old catalase 8.5 8.5 8.5 8.5 8.5 
 Mean 39.0 39.9 37.2 34.8 35.0 
 Standard Error 12.4 13.0 13.2 14.4 15.1 
       
234 old pegcat 13.6 8.5 5.1 5.1 5.1 
248 old pegcat 50.9 54.7 54.7 47.2 47.2 
249 old pegcat 7.5 7.5 -1.9 -13.2 -18.9 
252 old pegcat 7.8 7.8 7.8 23.5 39.2 
254 old pegcat 13.7 13.7 15.3 15.3 21.4 
260 old pegcat -20.8 -20.8 18.8 18.8 18.8 
262 old pegcat 33.3 33.3 45.8 56.3 60.4 
264 old pegcat 12.5 14.3 14.3 14.3 8.9 
 Mean 14.8 14.9 20.0 20.9 22.8 
 Standard Error 7.4 7.7 7.0 7.8 9.0 

 



156 

Table 6-NAD(P)H oxidase Studies Acetylcholine Data (Figs. 3.1-3.4) 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

172 young control 410 212 32.5 
174 young control 420 185 30.3 
176 young control 426 233 33.5 
184 young control 400 167 38.3 
186 young control 450 159 34.0 
193 young control 380 209 54.1 
195 young control 365 214 34.1 
197 young control 328 149 38.3 
199 young control 427 220 48.6 
210 young control 311 99 45.5 
218 young control 364 140 50.0 
224 young control 342 89 34.8 
225 young control 349 205 45.9 
228 young control 377 163 32.5 
231 young control 410 171 32.7 
233 young control 381 138 36.2 
235 young control 360 115.0 26.1 
250 young control 359 113.0 25.7 
259 young control 403 188 39.4 
261 young control 372 186 25.3 
263 young control 310 115 25.2 
296 young control 335 128 61.7 
297 young control 305 108 50.9 
305 young control 396 182 36.8 
308 young control 354 137 29.9 
309 young control 407 172 37.8 
310 young control 410 119 40.3 
318 young control 376 163 49.7 
 Mean  160.0 38.2 
 Standard Error  7.5 1.8 
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Table 6-continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

296 young tempol  168 39.9 
297 young tempol  136 27.2 
300 young tempol  156 26.3 
302 young tempol  188 30.9 
307 young tempol  229 37.1 
308 young tempol  178 42.1 
309 young tempol  233 31.3 
313 young tempol  159 52.8 
318 young tempol  176 49.4 
 Mean  180.3 37.5 
 Standard Error  10.8 3.2 
     
296 young apocynin  204 32.4 
297 young apocynin  133 38.3 
300 young apocynin  118 38.1 
302 young apocynin  167 37.7 
305 young apocynin  136 29.4 
307 young apocynin  103 49.5 
308 young apocynin  180 33.9 
309 young apocynin  200 41.5 
310 young apocynin  193 32.1 
313 young apocynin  161 76.4 
318 young apocynin  136 45.6 
 Mean  157.4 41.4 
 Standard Error  10.4 3.9 
     
235 young catalase  136 30.9 
250 young catalase  155 40.0 
255 young catalase  158 59.5 
256 young catalase  159 32.1 
258 young catalase  93 31.2 
259 young catalase  153 41.8 
261 young catalase  159 39.0 
263 young catalase  160 36.3 
 Mean  146.6 38.8 
 Standard Error  8.1 3.3 
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Table 6-continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

233 young pegcat  146 43.8 
250 young pegcat  157 38.2 
255 young pegcat  171 36.3 
256 young pegcat  172 26.2 
257 young pegcat  119 41.2 
258 young pegcat  135 32.6 
259 young pegcat  198 34.8 
261 young pegcat  185 24.9 
263 young pegcat  133 37.6 
 Mean  157.3 35.1 
 Standard Error  8.7 2.1 
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Table 6-continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

173 old control 438 125 33.6 
175 old control 453 173 30.1 
177 old control 450 174 57.5 
181 old control 470 181 33.7 
189 old control 395 139 29.5 
192 old control 402 163 36.2 
196 old control 452 180 35.6 
203 old control 433 145 34.5 
209 old control 357 110 46.4 
211 old control 434 140 37.1 
213 old control 396 147 34.0 
217 old control 401 177 24.9 
222 old control 400 101 31.7 
248 old control 384 238 29.4 
249 old control 309 190 28.4 
252 old control 317 219 32.9 
253 old control 407 190 37.4 
254 old control 373 126 34.9 
260 old control 385 116 40.5 
262 old control 455 133 53.4 
265 old control 449 151 39.7 
294 old control 407 127 37.0 
295 old control 454 234 29.9 
298 old control 409 159 52.2 
303 old control 429 136 27.9 
304 old control 420 162 35.2 
306 old control 404 191 58.1 
312 old control 414 241 52.7 
314 old control 463 128 41.4 
319 old control 419 137 47.4 
 Mean  161.1 42.4 
 Standard Error  6.9 1.7 
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Table 6-continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

295 old tempol  195 29.7 
298 old tempol  168 29.2 
301 old tempol  206 51.9 
303 old tempol  250 37.2 
304 old tempol  199 33.7 
306 old tempol  224 52.7 
311 old tempol  124 31.5 
312 old tempol  192 33.9 
314 old tempol  212 42.9 
317 old tempol  278 31.7 
319 old tempol  166 35.5 
 Mean  201.3 37.3 
 Standard Error  12.6 2.5 
     
222 old apocynin  222 30.2 
298 old apocynin  165 38.8 
303 old apocynin  244 61.1 
304 old apocynin  155 42.6 
306 old apocynin  165 25.5 
311 old apocynin  197 30.4 
314 old apocynin  205 49.3 
317 old apocynin  232 43.5 
 Mean  198.1 40.2 
 Standard Error  10.1 3.5 
     
232 old catalase  201 30.3 
248 old catalase  227 40.5 
252 old catalase  201 41.3 
260 old catalase  221 37.1 
262 old catalase  143 40.6 
264 old catalase  106 25.5 
265 old catalase  132 41.7 
268 old catalase  175 39.4 
 Mean  175.8 37.1 
 Standard Error  15.7 2.1 
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Table 6-continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

234 old pegcat  189 31.7 
248 old pegcat  124 42.7 
249 old pegcat  179 27.4 
252 old pegcat  203 24.6 
254 old pegcat  207 42.0 
260 old pegcat  115 35.7 
262 old pegcat  156 28.8 
264 old pegcat  147 33.3 
 Mean  165.0 33.3 
 Standard Error  12.4 2.3 
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Table 6-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
172 young control 0 30.4 69.6 85.5 89.9 89.9 89.9 
174 young control 0 7.1 10.7 23.2 37.5 37.5 42.9 
176 young control 0 6.4 10.3 12.8 38.5 42.3 61.5 
184 young control 0 10.9 46.9 71.9 81.3 92.2 92.2 
187 young control 0 9.3 22.2 63.0 64.8 64.8 66.7 
193 young control 0 0.0 38.9 65.5 86.7 90.3 90.3 
195 young control 0 6.8 56.2 56.2 87.7 91.8 91.8 
197 young control 0 3.5 22.8 31.6 31.6 52.6 52.6 
199 young control 0 38.3 32.7 69.2 69.2 92.5 92.5 
210 young control 0 6.7 15.6 60.0 71.1 55.6 55.6 
218 young control 0 11.4 22.9 37.1 58.6 54.3 62.9 
224 young control 0 16.1 22.6 25.8 38.7 48.4 51.6 
225 young control 0 8.5 13.8 78.7 88.3 93.6 93.6 
228 young control 0 3.8 15.1 28.3 28.3 41.5 41.5 
231 young control 0 26.8 28.6 46.4 46.4 51.8 57.1 
233 young control 0 38.0 62.0 68.0 80.0 86.0 86.0 
235 young control 0 23.3 46.7 50.0 53.3 80.0 80.0 
250 young control 0 24.1 65.5 79.3 89.7 100.0 100.0 
259 young control 0 32.4 59.5 70.3 71.6 71.6 71.6 
261 young control 0 6.4 55.3 57.4 68.1 68.1 34.0 
263 young control 0 24.1 62.1 65.5 75.9 75.9 75.9 
296 young control 0 38.0 88.6 93.7 96.2 96.2 100.0 
297 young control 0 12.7 20.0 25.5 29.1 30.9 34.5 
305 young control 0 7.5 58.2 71.6 74.6 76.1 76.1 
308 young control 0 22.0 56.1 75.6 80.5 87.8 87.8 
309 young control 0 18.5 38.5 72.3 80.0 80.0 80.0 
310 young control 0 25.0 35.4 77.1 93.8 93.8 93.8 
318 young control 0 8.6 39.5 39.5 46.9 65.4 65.4 
 Mean 0.0 16.7 39.9 57.2 66.4 71.8 72.4 
 Standard Error 0.0 2.2 3.9 4.0 4.0 3.8 3.8 
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Table 6-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
296 young tempol 0 4.5 6.0 13.4 23.9 23.9 23.9 
297 young tempol 0 13.5 81.1 81.1 91.9 91.9 91.9 
300 young tempol 0 19.5 24.4 26.8 31.7 31.7 31.7 
302 young tempol 0 3.4 6.9 6.9 13.8 13.8 17.2 
307 young tempol 0 21.2 55.3 84.7 88.2 88.2 88.2 
308 young tempol 0 44.0 46.7 88.0 94.7 94.7 97.3 
309 young tempol 0 27.4 57.5 83.6 86.3 91.8 91.8 
313 young tempol 0 4.8 8.3 9.5 16.7 20.2 20.2 
318 young tempol 0 18.4 31.0 42.5 55.2 58.6 58.6 
 Mean 0 17.4 35.2 48.5 55.8 57.2 57.9 
 Standard Error 0 4.4 8.9 11.9 11.6 11.7 11.6 
         
296 young apocynin 0 4.5 6.1 3.0 13.6 18.2 27.3 
297 young apocynin 0 2.0 11.8 19.6 19.6 19.6 19.6 
300 young apocynin 0 6.7 11.1 22.2 33.3 33.3 33.3 
302 young apocynin 0 11.1 23.8 69.8 76.2 77.8 77.8 
305 young apocynin 0 15.0 22.5 65.0 77.5 77.5 50.0 
307 young apocynin 0 2.0 37.3 45.1 60.8 60.8 66.7 
308 young apocynin 0 6.6 24.6 27.9 31.1 42.6 50.8 
309 young apocynin 0 8.4 41.0 55.4 63.9 63.9 48.2 
310 young apocynin 0 9.7 16.1 16.1 21.0 29.0 30.6 
313 young apocynin 0 4.1 8.1 26.8 33.3 35.0 35.0 
318 young apocynin 0 8.1 29.0 33.9 35.5 45.2 46.8 
 Mean 0 7.1 21.0 35.0 42.3 45.7 44.2 
 Standard Error 0.0 1.2 3.5 6.4 7.0 6.5 5.2 
         
235 young catalase 0 7.1 19.0 42.9 66.7 73.8 73.8 
250 young catalase 0 0.0 4.8 56.5 75.8 80.6 82.3 
255 young catalase 0 9.6 40.4 43.6 51.1 51.1 47.9 
256 young catalase 0 7.8 13.7 23.5 29.4 29.4 29.4 
258 young catalase 0 17.2 31.0 34.5 37.9 41.4 48.3 
259 young catalase 0 23.4 39.1 53.1 57.8 59.4 59.4 
261 young catalase 0 1.6 17.7 22.6 22.6 22.6 22.6 
263 young catalase 0 12.1 13.8 20.7 27.6 27.6 27.6 
 Mean 0.0 9.9 22.5 37.2 46.1 48.2 48.9 
 Standard Error 0.0 2.7 4.6 5.0 7.0 7.7 7.8 



164 

Table 6-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
233 young pegcat 0 18.8 37.5 45.3 46.9 46.9 40.6 
250 young pegcat 0 3.3 3.3 33.3 40.0 40.0 40.0 
255 young pegcat 0 3.2 25.8 40.3 74.2 67.7 67.7 
256 young pegcat 0 15.6 24.4 51.1 60.0 57.8 57.8 
257 young pegcat 0 44.9 55.1 67.3 69.4 69.4 69.4 
258 young pegcat 0 22.7 40.9 43.2 45.5 54.5 54.5 
259 young pegcat 0 36.2 55.1 55.1 52.2 52.2 59.4 
261 young pegcat 0 26.1 52.2 58.7 58.7 58.7 58.7 
263 young pegcat 0 6.0 8.0 8.0 8.0 16.0 16.0 
 Mean 0.0 19.6 33.6 44.7 50.5 51.5 51.6 
 Standard Error 0.0 4.9 6.5 5.7 6.5 5.4 5.6 
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Table 6-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
173 old control 0 9.5 9.5 11.9 23.8 28.6 28.6 
175 old control 0 5.8 7.7 9.6 11.5 13.5 13.5 
177 old control 0 2.0 15.0 18.0 22.0 22.0 27.0 
181 old control 0 4.9 8.2 14.8 18.0 18.0 18.0 
189 old control 0 19.5 41.5 41.5 43.9 46.3 46.3 
193 old control 0 20.3 20.3 37.3 25.4 25.4 18.6 
196 old control 0 15.6 26.6 51.6 60.9 60.9 50.0 
203 old control 0 8.0 12.0 16.0 22.0 28.0 30.0 
208 old control 0 0.0 25.5 35.3 70.6 78.4 78.4 
211 old control 0 11.5 13.5 15.4 15.4 15.4 19.2 
213 old control 0 6.0 10.0 26.0 32.0 32.0 32.0 
217 old control 0 2.3 2.3 2.3 11.4 11.4 11.4 
222 old control 0 31.3 53.1 53.1 53.1 56.3 56.3 
248 old control 0 2.9 14.3 14.3 14.3 17.1 17.1 
249 old control 0 18.5 29.6 29.6 29.6 37.0 37.0 
252 old control 0 13.9 31.9 54.2 54.2 54.2 62.5 
253 old control 0 2.8 22.5 32.4 32.4 35.2 35.2 
254 old control 0 0.0 20.5 27.3 34.1 34.1 34.1 
260 old control 0 6.4 14.9 29.8 38.3 38.3 38.3 
262 old control 0 2.8 5.6 9.9 12.7 12.7 12.7 
265 old control 0 8.3 15.0 16.7 20.0 20.0 25.0 
294 old control 0 10.6 14.9 23.4 36.2 36.2 34.0 
296 old control 0 22.9 28.6 45.7 68.6 68.6 68.6 
298 old control 0 14.5 26.5 44.6 45.8 45.8 45.8 
303 old control 0 0.0 28.9 34.2 55.3 84.2 84.2 
304 old control 0 12.3 12.3 59.6 61.4 61.4 61.4 
306 old control 0 16.2 27.0 33.3 37.8 41.4 41.4 
312 old control 0 5.5 10.2 21.3 22.8 27.6 28.3 
314 old control 0 9.4 11.3 32.1 41.5 49.1 49.1 
319 old control 0 3.1 9.2 27.7 21.5 24.6 30.8 
 Mean 0.0 10.5 18.8 35.8 43.4 48.8 49.3 
 Standard Error 0.0 1.4 2.1 2.7 3.2 3.6 3.5 
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Table 6-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
295 old tempol 0 25.9 36.2 37.9 50.0 50.0 50.0 
298 old tempol 0 16.3 26.5 28.6 28.6 30.6 30.6 
301 old tempol 0 4.7 1.9 4.7 8.4 8.4 12.1 
303 old tempol 0 26.9 86.0 90.3 90.3 95.7 95.7 
304 old tempol 0 3.0 32.8 52.2 61.2 62.7 68.7 
306 old tempol 0 11.9 14.4 16.1 22.0 20.3 20.3 
311 old tempol 0 15.4 25.6 30.8 38.5 38.5 38.5 
312 old tempol 0 7.7 10.8 13.8 16.9 24.6 24.6 
314 old tempol 0 5.5 35.2 69.2 72.5 72.5 62.6 
317 old tempol 0 43.2 48.9 64.8 80.7 80.7 92.0 
319 old tempol 0 35.6 67.8 81.4 88.1 98.3 100.0 
 Mean 0.0 17.8 35.1 44.5 50.7 52.9 54.1 
 Standard Error 0.0 4.0 7.5 8.7 9.0 9.4 9.6 
         
222 old apocynin 0 25.4 49.3 68.7 82.1 85.1 85.1 
298 old apocynin 0 1.6 25.0 25.0 35.9 39.1 56.3 
303 old apocynin 0 6.7 8.7 16.8 28.9 28.9 28.9 
304 old apocynin 0 7.6 15.2 24.2 31.8 33.3 33.3 
306 old apocynin 0 19.0 35.7 45.2 57.1 64.3 76.2 
311 old apocynin 0 3.3 8.3 13.3 18.3 21.7 26.7 
314 old apocynin 0 4.0 59.4 85.1 87.1 92.1 92.1 
317 old apocynin 0 29.7 54.5 54.5 62.4 64.4 64.4 
 Mean 0.0 12.2 32.0 41.6 50.5 53.6 57.9 
 Standard Error 0.0 3.3 6.2 7.9 7.7 8.0 7.8 
         
232 old catalase 0 18.0 26.2 26.2 26.2 32.8 42.6 
248 old catalase 0 8.7 22.8 31.5 38.0 38.0 38.0 
252 old catalase 0 2.4 8.4 41.0 41.0 41.0 33.7 
260 old catalase 0 9.8 6.1 19.5 20.7 20.7 20.7 
262 old catalase 0 3.4 19.0 24.1 24.1 24.1 24.1 
264 old catalase 0 7.4 -7.4 0.0 11.1 29.6 33.3 
265 old catalase 0 14.5 30.9 45.5 54.5 58.2 58.2 
268 old catalase 0 5.8 24.6 36.2 53.6 66.7 66.7 
 Mean 0.0 8.8 16.3 28.0 33.7 38.9 39.7 
 Standard Error 0.0 1.9 4.5 5.0 5.6 5.7 5.6 
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Table 6-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
234 old pegcat 0.0 3.3 26.7 53.3 56.7 56.7 36.7 
248 old pegcat 0.0 20.8 32.1 75.5 83.0 83.0 79.2 
249 old pegcat 0.0 38.8 46.9 55.1 61.2 69.4 69.4 
252 old pegcat 0.0 10.0 10.0 18.0 24.0 34.0 34.0 
254 old pegcat 0.0 16.1 59.8 88.5 94.3 94.3 97.7 
260 old pegcat 0.0 24.4 34.1 43.9 53.7 53.7 65.9 
262 old pegcat 0.0 11.1 20.0 26.7 35.6 31.1 31.1 
264 old pegcat 0 10.2 28.6 46.9 46.9 49.0 49.0 
 Mean 0.0 16.8 32.3 51.0 56.9 58.9 57.9 
 Standard Error 0.0 3.9 5.5 8.2 8.2 7.9 8.5 
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Table 7-Desitometry Values for NAD(P)H oxidase subunits (Fig 3.5) 
 
vessel number  group Proteins of Interest 
p47phox blot 1  p47phox GAPDH p47phox/GAPDH 
370 young  5864595 4407352 1.330639123 
364 young  5879287 5334629 1.102098571 
352 young  5930326 3455044 1.716425608 
333 young  6304112 17451502 0.36123607 
255 old 5838244 16751141 0.348528139 
244 old 5691892 11514471 0.494325098 
227 old 5620591 2786015 2.017430272 
203 old 5516961 2298337 2.4004143 
     
p47phox blot 3  p47phox GAPDH p47phox/GAPDH 
381 young  7258894 6616260 1.097129496 
378 young  7203141 4639246 1.552653384 
375 young  7422915 8781398 0.845299917 
297 young  7147970 2492305 2.868015752 
305 old 7139554 10037328 0.711300258 
298 old 7041274 9479873 0.742760372 
290 old 7216947 11161924 0.646568369 
281 old 7353907 13091304 0.561739839 
     
p47phox blot 5  p47phox GAPDH p47phox/GAPDH 
414 young  8253038 2453106 3.364321803 
407 young  8572007 2102344 4.077356988 
400 young  7896528 2832937 2.78739979 
393 young  8513270 4665754 1.824628988 
341 old 7121896 2667032 2.670345163 
336 old 7087578 1996620 3.549788142 
325 old 7704696 2553266 3.017584537 
315 old 7634665 3252081 2.34762449 
     
p67phox blot 1  p67phox GAPDH p67phox/GAPDH 
429 young  9222415 2281773 4.041775847 
512 young  13959631 4409076 3.166112582 
505 young  10192716 3372015 3.022737443 
479 young  11106077 4540184 2.446173327 
399 old 28007162 2418743 11.57922193 
367 old 11338234 4138319 2.739816336 
346 old 12323674 2517112 4.895957748 
293 old 12399374 2372261 5.226816948 
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Table 7-continued 
 
vessel number  group Proteins of Interest  
p67phox blot 2  p67phox GAPDH p67phox/GAPDH 
570 young  10022428 5940240 1.687209271 
562 young  12417851 6715549 1.84911926 
555 young  12625117 7006019 1.802038647 
550 young  16836974 5752366 2.926965009 
531 old 12252584 3223456 3.801070652 
528 old 15287598 7792248 1.961898287 
524 old 14557091 7181606 2.026996608 
517 old 11029394 7646110 1.442484348 
     
p67phox blot 3  p67phox GAPDH p67phox/GAPDH 
590 young  7368272 15367078 0.479484258 
586 young  7716745 4923909 1.567198947 
580 young  7814225 4063643 1.922960506 
574 young  9652465 13675397 0.705827041 
578 old 8345864 6547088 1.274744436 
564 old 16781173 11411190 1.47058922 
558 old 12760400 15492131 0.823669771 
552 old 9678698 16666449 0.580729464 
     
gp91phox blot 2  gp91phox GAPDH gp91phox/GAPDH 
383 young     
379 young  14980223 6549204 2.287334919 
376 young  13959503 8226749 1.696843188 
372 young  19315715 5283699 3.655718276 
289 old 20144615 3831059 5.258236691 
279 old 18181005 9369393 1.940467755 
270 old 18301921 9450283 1.93665322 
262 old 13211984 7347843 1.798076524 
     
gp91phox blot 3  gp91phox GAPDH gp91phox/GAPDH 
413 young  59477230 13945115 4.265094264 
406 young  21766735 8929929 2.437503702 
399 young  30923712 12914238 2.394544068 
392 young  34197399 16430688 2.081312663 
323 old 33225930 7532210 4.411179455 
314 old 19266565 4295835 4.484940646 
306 old 27956508 7351330 3.802918383 
299 old 35202780 5620353 6.263446442 
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Table 7-continued 
 
vessel number  group Proteins of Interest  
gp91phox blot 4  gp91phox GAPDH gp91phox/GAPDH 
571 young  25704780 9052276 2.839593048 
563 young  63883966 14729185 4.337236989 
556 young  19500525 9346475 2.086404233 
515 young  25457601 13842869 1.839040809 
532 old 26834993 3252672 8.25013804 
525 old 37806172 9614222 3.932317352 
518 old 36315744 12740311 2.850459773 
509 old 73823130 16212479 4.553475752 
     
Nox-1 blot 1  Nox-1 GAPDH Nox-1/GAPDH 
617 young  3449531 6762095 0.510127557 
600 young  3501441 4030159 0.868809642 
592 young  3495560 3451827 1.012669523 
582 young  4649583 3330833 1.395921981 
605 old 4375273 9919854 0.441062237 
602 old 5065153 12166826 0.416308493 
596 old 4377509 4471742 0.978927004 
579 old 3390951 14550423 0.233048276 
     
Nox-1 blot 2  Nox-1 GAPDH Nox-1/GAPDH 
584 young  3059447 25065185 0.122059622 
924 young  4258001 2227435 1.911616276 
920 young  8241894 2891117 2.850764601 
917 young  5654112 7723003 0.732113143 
830 old 4370977 3623294 1.206354494 
739 old 5328255 3653720 1.458309613 
766 old 6800507 5254701 1.294175825 
778 old 6984966 13643696 0.511955558 
     
Nox-1 blot 3  Nox-1 GAPDH Nox-1/GAPDH 
630 young  8446913 2702301 3.125822401 
635 young  16410521 4039540 4.062472707 
646 young  14907351 3563976 4.182786584 
653 young  7665346 15820195 0.484529173 
648 old 14021366 2772433 5.057422848 
665 old 7488559 2937544 2.549258496 
672 old 7870742 3656841 2.152333667 
674 old 7527670 5430358 1.38621984 
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Table 8-Desitometry Values for Antioxidant Enzyme Blots (Fig 3.6) 
 
vessel number  group Proteins of Interest    
SOD-1 blot 1       
vessel  SOD-1 GAPDH SOD-1/GAPDH  
464 young 12104554 9915949 1.220715637   
452 young 16059374 23152544 0.693633235   
427 young      
334 young 11376696 10121845 1.123974532   
282 old 14434554 29530290 0.48880502   
272 old 10906705 18319706 0.595353714   
228 old 28217431 23023611 1.225586681   
204 old 4620910 3510003 1.31649745   
       
SOD-1 blot 2       
vessel  SOD-1 GAPDH SOD-1/GAPDH  
504 young 9546494 4190601 2.278072763   
500 young 7770925 5066725 1.533717539   
496 young 9562603 4551842 2.100820503   
478 young 3520548 9758433 0.360769808   
355 old 4330903 6468534 0.669533931   
345 old 6946114 4369510 1.589678019   
301 old 9794227 3124982 3.134170693   
292 old 23354586 2804949 8.326207001   
       
SOD-1 blot 3       
Vessel  SOD-1 GAPDH SOD-1/GAPDH  
413 young 9111078 13945115 0.653352661   
406 young 6643978 8929929 0.74401241   
399 young 6834618 12914238 0.529231225   
392 young 6281407 16430688 0.38229726   
323 old 4688900 7532210 0.62251318   
314 old 3258808 4295835 0.758597106   
306 old 4554832 7351330 0.619592917   
299 old 6449425 5620353 1.147512443   
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Table 8-continued 
 
vessel number  group Proteins of Interest    
MnSOD blot 1  MnSOD GAPDH MnSOD/GAPDH  
468 young 3398644 7842486 0.433363094   
453 young 3744627 10346037 0.361938296   
428 young 3640163 9416785 0.386561125   
476 young 3002041 6153413 0.487866002   
300 old 5902089 6129809 0.962850392   
291 old 3496525 4231260 0.826355506   
283 old 3494639 6607240 0.528910559   
229 old 4448641 4574988 0.972383097   
      
MnSOD blot 2  MnSOD GAPDH MnSOD/GAPDH  
499 young 6898605 17774747 0.388112697   
495 young 3968572 7442447 0.533234835   
492 young 4532549 23272870 0.19475677   
477 young 4315838 13432100 0.321307763   
354 old 5390392 15024802 0.358766259   
344 old 4500649 7718471 0.583101109   
327 old 3917999 6856429 0.571434343   
       
ecSOD blot 1  ecSOD GAPDH ecSOD/GAPDH  
464 young 4141479 9915949 0.41765836   
452 young 5070826 23152544 0.219018091   
427 young      
334 young 4640671 10121845 0.458480741   
282 old 3637493 29530290 0.12317837   
272 old 4433383 18319706 0.242000772   
228 old 7931129 23023611 0.344478066   
204 old 4692795 3510003 1.33697749   
       
ecSOD blot 2  ecSOD GAPDH ecSOD/GAPDH  
548 young 16670697 5786059 2.881183375   
545 young 19744484 5790890 3.409576766   
514 young 14106639 6285480 2.244321675   
506 young 15629995 5139987 3.040862749   
460 old 16509289 7671240 2.152101746   
450 old 18468999 8258413 2.236385974   
443 old 12620068 4192132 3.010417611   
463 old 14875133 5410702 2.749205741   
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Table 8-continued 
 
vessel number  group Proteins of Interest    
ecSOD blot 3  ecSOD GAPDH ecSOD/GAPDH  
548 young 16670697 5786059 2.881183375   
545 young 19744484 5790890 3.409576766   
514 young 14106639 6285480 2.244321675   
506 young 15629995 5139987 3.040862749   
460 old 16509289 7671240 2.152101746   
450 old 18468999 8258413 2.236385974   
443 old 12620068 4192132 3.010417611   
463 old 14875133 5410702 2.749205741   
      
catalase blot 1  Catalase GAPDH Catalase/GAPDH  
547 young 21742978 1827179 11.89975257   
543 young 4816450 1800401 2.675209578   
542 young 2769842 1691305 1.637695153   
513 young 2933310 2159447 1.358361655   
434 old 2706803 1690353 1.601324102   
437 old 2813523 2568708 1.095306668   
411 old 2730667 1697684 1.608466004   
390 old 6136334 1742953 3.520653741   
       
catalase blot 2  Catalase GAPDH Catalase/GAPDH  
548 young 11447265 5786059 1.978421755   
545 young 6456596 5790890 1.114957459   
514 young 5662084 6285480 0.900819667   
506 young 6482470 5139987 1.261184124   
460 old 13733423 7671240 1.790248122   
450 old 10645388 8258413 1.289035557   
443 old 6752264 4192132 1.610699281   
463 old 6357568 5410702 1.174998734   

 



174 

Table 9-SOD Activity Assay Data (Fig. 3.6) 
 
Sample # Group Mean Absorbance  SOD activity 
465 young 0.0475 0.075464427 
534 young 0.0365 0.122170953 
486 old 0.0125 0.509410513 
527 old 0.0125 0.509410513 
475 young 0.0555 0.05312486 
536 young 0.038 0.114209613 
502 old 0.017 0.353518117 
529 old 0.0125 0.509410513 
503 young 0.038 0.114209613 
546 young 0.0285 0.178784923 
510 old 0.0185 0.318407216 
530 old 0.0195 0.298000881 
520 young 0.032 0.150533225 
146 young 0.0275 0.188177696 
516 old 0.0165 0.366640372 
540 old 0.019 0.307935545 
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Table 10-Desitometry Values for Nitrotyrosine (NT) blots (Fig. 3.7) 
 
vessel number  group Proteins of Interest  
NT blot 1  NT GAPDH NT/GAPDH 
370 young 9579240 4407352 2.173468332 
364 young 83535635 5334629 15.65912737 
352 young 51776323 3455044 14.9857203 
333 young 24134929 17451502 1.382971449 
255 old 8790950 16751141 0.524797087 
244 old 30864941 11514471 2.680534868 
227 old 16166290 2786015 5.8026572 
203 old 7284254 2298337 3.169358541 
     
NT blot 2  NT GAPDH NT/GAPDH 
384 young 39824448 2001457 19.8977285 
380 young 43178603 2078275 20.77617399 
377 young 47498401 2210296 21.48961089 
374 young 56131860 3478339 16.13754726 
289 old 60379359 1930523 31.27616661 
280 old 45951849 2451471 18.74460232 
271 old 65226792 1884293 34.616056 
264 old 39069201 2096791 18.6328542 
     
NT blot 3  NT GAPDH NT/GAPDH 
414 young 10180947 2453106 4.1502271 
407 young 9587358 2102344 4.560318387 
400 young 24699347 2832937 8.718636172 
393 young 12313067 4665754 2.639030476 
341 old 18654585 2667032 6.994511127 
336 old 9795294 1996620 4.905938035 
325 old 14782672 2553266 5.789710904 
315 old 27973224 3252081 8.601638151 
     
NT blot 4  NT GAPDH NT/GAPDH 
570 young 28745336 5940240 4.839086636 
562 young 24441521 6715549 3.639541756 
555 young 20787591 7006019 2.967104571 
550 young 28063496 5752366 4.878600562 
531 old 25145434 3223456 7.800768492 
528 old 26537579 7792248 3.405638399 
524 old 31751116 7181606 4.421172089 
517 old 77024236 7646110 10.07365 

 



176 

Table 11-PI3K Inhibitor Studies Flow Data (Fig. 4.1 & 4.2) 
 

Animal Group 
Body 
Weight(g) 

Maximal 
Diameter 
(μm) % Spontaneous Tone 

131 young control 282 165 32.7 
133 young control 359 223 42.6 
151 young control 345 210 27.6 
154 young control 350 195 47.7 
156 young control 352 136 75.7 
158 young control 375 157 31.2 
164 young control 370 140 35.7 
165 young control 358 177 72.3 
166 young control 367 199 27.6 
168 young control 401 213 39.4 
170 young control 390 159 54.1 
 Mean  179.5 43.3 
 Standard Error  9.1 5.1 
     
151 young + LY-294002  216 36.1 
154 young + LY-294002  148 41.2 
156 young + LY-294002  139 50.4 
158 young + LY-294002  205 46.3 
160 young + LY-294002  199 46.7 
164 young + LY-294002  195 30.8 
165 young + LY-294002  203 43.8 
166 young + LY-294002  210 41.0 
168 young + LY-294002  218 25.2 
170 young + LY-294002  158 42.4 
 Mean  189.1 40.4 
 Standard Error  9.3 40.8 
     
112 old control 445 149 75.8 
132 old control 406 178 68.0 
153 old control 432 207 39.1 
155 old control 420 187 39.6 
157 old control 422 158 72.2 
161 old control 402 117 28.2 
163 old control 425 237 49.8 
167 old control 410 235 72.3 
169 old control 400 208 30.8 
 Mean  186.2 52.9 
 Standard Error  13.4 6.4 
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Table 11-continued 
     

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter 
(μm) % Spontaneous Tone 

153 old + LY-294002  201 28.9 
155 old + LY-294002  166 51.8 
157 old + LY-294002  98 32.7 
161 old + LY-294002  171 71.3 
163 old + LY-294002  214 43.5 
167 old + LY-294002  247 33.2 
169 old + LY-294002  198 38.4 
 Mean  185.0 42.8 
 Standard Error  17.8 5.6 
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Table 11-continued 
 
Animal Group Start Δ2cmH20 Δ4cmH20 Δ6cmH20 Δ8cmH20 
131 young control 0 0.0 16.7 16.7 16.7 
133 young control 0 7.4 8.4 8.4 9.5 
151 young control 0 0.0 10.3 10.3 10.3 
154 young control 0 10.8 10.8 10.8 14.0 
156 young control 0 0.0 32.0 82.5 82.5 
158 young control 0 55.1 57.1 44.9 44.9 
164 young control 0 10.0 24.0 30.0 28.0 
165 young control 0 14.8 17.2 17.2 18.8 
166 young control 0 3.6 3.6 5.5 0.0 
168 young control 0 10.7 19.0 19.0 19.0 
170 young control 0 1.2 1.2 2.3 4.7 
 Mean 0.0 10.3 18.2 22.5 22.6 
 Standard Error 0.0 4.8 4.7 7.0 7.0 
       
151 young + LY-294002 0 1.3 3.8 20.5 17.9 
154 young + LY-294002 0 0.0 -6.6 -23.0 -36.1 
156 young + LY-294002 0 0.0 -4.3 -2.9 -2.9 
158 young + LY-294002 0 12.6 12.6 0.0 0.0 
160 young + LY-294002 0 0.0 -3.2 -15.1 -23.7 
164 young + LY-294002 0 0.0 0.0 -26.7 -26.7 
165 young + LY-294002 0 0.0 0.0 18.0 25.8 
166 young + LY-294002 0 14.0 19.8 19.8 19.8 
168 young + LY-294002 0 -49.1 -49.1 -49.1 -9.1 
170 young + LY-294002 0 13.4 29.9 64.2 64.2 
 Mean 0.0 -0.8 0.3 0.6 2.9 
 Standard Error 0.0 -0.3 0.0 -0.4 0.5 
       
112 old control 0 0.0 0.0 2.7 7.1 
132 old control 0 1.7 4.1 5.0 8.3 
153 old control 0 0.0 0.0 8.6 9.9 
155 old control 0 0.0 0.0 -10.8 -10.8 
157 old control  10.5 23.7 23.7 42.1 
161 old control 0 0.0 -9.1 -9.1 -9.1 
163 old control 0 4.2 4.2 0.8 0.8 
167 old control 0 0.6 2.4 1.2 1.2 
169 old control 0 7.8 15.6 15.6 6.3 
 Mean 0 2.8 4.5 4.2 6.2 
 Standard Error 0.0 1.3 3.2 3.6 5.1 
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Table 11-continued 
 
Animal Group Start Δ2cmH20 Δ4cmH20 Δ6cmH20 Δ8cmH20 
153 old + LY-294002 0 5.2 5.2 5.2 0.0 
155 old + LY-294002 0 64.0 67.4 64.0 32.6 
157 old + LY-294002 0 28.1 28.1 31.3 31.3 
161 old + LY-294002 0 0.0 0.0 1.6 4.1 
163 old + LY-294002  0.0 -6.5 -6.5 -6.5 
167 old + LY-294002  7.3 2.4 -7.3 -7.3 
169 old + LY-294002  0.0 0.0 -1.3 -3.9 
 Mean 0 14.9 13.8 12.4 7.2 
 Standard Error 0.0 9.0 9.9 9.9 6.6 
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Table 11-continued 
 
Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
131 young control 13.0 13.0 -20.4 -20.4 68.5 
133 young control 9.5 10.5 11.6 14.7 29.5 
151 young control 10.3 10.3 -15.5 -15.5 -24.1 
154 young control 14.0 14.0 15.1 18.3 30.1 
156 young control 66.0 68.0 68.0 66.0 65.0 
158 young control 40.8 79.6 79.6 79.6 32.7 
164 young control 18.0 16.0 40.0 40.0 40.0 
165 young control 18.8 18.8 18.8 18.8 18.8 
166 young control 3.6 18.2 21.8 21.8 9.1 
168 young control 14.3 14.3 14.3 8.3 8.3 
170 young control 4.7 4.7 10.5 10.5 18.6 
 Mean 19.4 24.3 22.1 22.0 26.9 
 Standard Error 5.5 7.5 9.2 9.1 7.9 
       
151 young + LY-294002 17.9 21.8 21.8 21.8 21.8 
154 young + LY-294002 -54.1 -70.5 -62.3 -59.0 -39.3 
156 young + LY-294002 -1.4 22.9 30.0 32.9 32.9 
158 young + LY-294002 0.0 -5.3 -5.3 -5.3 -14.7 
160 young + LY-294002 -10.8 -10.8 -10.8 -8.6 -8.6 
164 young + LY-294002 -38.3 -30.0 13.3 8.3 -6.7 
165 young + LY-294002 34.8 36.0 46.1 53.9 46.1 
166 young + LY-294002 19.8 31.4 36.0 36.0 26.7 
168 young + LY-294002 3.6 7.3 7.3 3.6 -14.5 
170 young + LY-294002 49.3 41.8 32.8 23.9 23.9 
 Mean 2.1 4.5 10.9 10.8 6.7 
 Standard Error 0.2 0.9 3.1 3.1 1.7 
       
112 old control 6.2 8.8 20.4 20.4 20.4 
132 old control 9.9 9.9 14.0 14.0 14.0 
153 old control 9.9 9.9 6.2 6.2 6.2 
155 old control -10.8 -12.2 -17.6 -6.8 -4.1 
157 old control 42.1 24.6 20.2 14.9 13.2 
161 old control 3.0 3.0 9.1 0.0 0.0 
163 old control 0.8 0.8 0.8 -9.3 -47.5 
167 old control 1.2 1.2 -7.6 -19.4 -19.4 
169 old control 6.3 -12.5 -12.5 -12.5 3.1 
 Mean 7.6 3.7 3.7 0.8 -1.6 
 Standard Error 4.8 3.9 4.6 4.6 6.9 
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Table 11-continued 
 
Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
153 old + LY-294002 0.0 3.4 0.0 -19.0 -32.8 
155 old + LY-294002 -47.7 -55.8 -59.3 -57.0 -57.0 
157 old + LY-294002 34.4 34.4 37.5 37.5 37.5 
161 old + LY-294002 4.1 4.1 8.2 9.8 9.8 
163 old + LY-294002 -6.5 -6.5 -6.5 -57.0 -51.6 
167 old + LY-294002 -3.7 -1.2 3.7 14.6 14.6 
169 old + LY-294002 -3.9 -3.9 -7.9 3.9 26.3 
 Mean -3.3 -3.6 -3.5 -9.6 -7.6 
 Standard Error 9.1 10.1 10.9 13.8 14.6 
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Table 12-Akt Inhibitor Studies Acetylcholine Data (Fig. 4.1 & 4.2) 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

131 young control 282 165 52.7 
133 young control 359 223 45.7 
151 young control 345 210 40.0 
156 young control 352 136 53.7 
165 young control 358 177 64.4 
166 young control 367 199 25.6 
168 young control 401 213 53.1 
170 young control 390 159 50.3 
 Mean  185.3 48.2 
 Standard Error  10.8 4.1 
     
151 young + LY-294002  216 30.6 
154 young + LY-294002  148 39.2 
156 young + LY-294002  139 36.0 
158 young + LY-294002  205 43.4 
160 young + LY-294002  199 41.2 
165 young + LY-294002  203 41.4 
166 young + LY-294002  210 31.9 
168 young + LY-294002  218 25.2 
170 young + LY-294002  158 34.8 
 Mean  188.4 36.0 
 Standard Error  10.3 2.0 
     
112 old control 445 149 47.7 
132 old control 406 178 43.3 
153 old control 432 207 46.4 
155 old control 420 187 43.9 
157 old control 422 158 62.0 
161 old control 402 117 24.8 
163 old control 425 237 31.2 
167 old control 410 235 37.0 
169 old control 400 208 32.7 
 Mean  186.2 41.0 
 Standard Error  13.4 3.7 



183 

Table 12-continued 
 

Animal Group 
Body 
Weight (g) 

Maximal 
Diameter (μm) % Spontaneous Tone 

153 old + LY-294002  201 50.2 
155 old + LY-294002  166 74.1 
157 old + LY-294002  98 23.5 
161 old + LY-294002  171 59.1 
163 old + LY-294002  214 41.6 
167 old + LY-294002  247 30.0 
169 old + LY-294002  198 35.9 
 Mean  185.0 44.9 
 Standard Error  17.8 6.6 
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Table 12-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
131 young control 0 16.1 80.5 74.7 80.5 80.5 80.5 
133 young control 0 6.9 34.3 54.9 63.7 63.7 63.7 
151 young control 0 11.9 11.9 19.0 29.8 39.3 42.9 
156 young control 0 13.7 61.6 89.0 94.5 94.5 94.5 
165 young control 0 11.4 14.9 31.6 34.2 37.7 42.1 
166 young control 0 29.4 54.9 54.9 62.7 78.4 78.4 
168 young control 0 3.5 6.2 83.2 91.2 97.3 100.0 
390 young control 0 55.0 55.0 88.8 91.3 93.8 93.8 
 Mean 0 18.5 39.9 62.0 68.5 73.2 74.5 
 Standard Error 0 5.9 9.6 9.4 9.0 8.5 8.1 
         

151 
young + LY-
294002 0 15.2 28.8 34.8 60.6 66.7 69.7 

154 
young + LY-
294002 0 1.7 1.7 1.7 3.4 3.4 10.3 

156 
young + LY-
294002 0 6.0 24.0 68.0 94.0 96.0 96.0 

158 
young + LY-
294002 0 0.0 -2.2 0.0 5.6 16.9 18.0 

160 
young + LY-
294002 0 9.8 22.0 25.6 29.3 45.1 45.1 

165 
young + LY-
294002 0 6.0 9.5 51.2 54.8 70.2 72.6 

166 
young + LY-
294002 0 10.4 10.4 16.4 16.4 16.4 16.4 

168 
young + LY-
294002 0 18.2 23.6 29.1 30.9 52.7 52.7 

170 
young + LY-
294002 0 3.6 3.6 49.1 60.0 60.0 60.0 

 Mean 0 7.9 13.5 30.7 39.4 47.5 49.0 
 Standard Error 0 2.0 3.8 7.6 10.0 10.0 9.8 
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Table 12-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
112 old control 0 1.4 9.9 18.3 46.5 54.9 54.9 
132 old control 0 0.0 3.9 26.0 36.4 40.3 45.5 
153 old control 0 0.0 6.3 10.4 13.5 16.7 17.7 
155 old control 0 11.0 20.7 41.5 47.6 51.2 54.9 
157 old control 0 11.2 31.6 31.6 46.9 55.1 61.2 
161 old control 0 20.7 37.9 65.5 79.3 79.3 75.9 
163 old control 0 9.5 16.2 29.7 39.2 37.8 37.8 
167 old control 0 10.3 27.6 49.4 49.4 40.2 54.0 
169 old control 0 8.8 51.5 52.9 52.9 52.9 52.9 
 Mean 0 8.1 22.8 36.2 45.7 47.6 50.5 
 Standard Error 0 2.2 5.3 5.9 5.7 5.7 5.4 
         
153 old + LY-294002 0 9.9 11.9 20.8 50.5 54.5 54.5 
155 old + LY-294002 0 0.0 7.3 22.0 43.9 48.0 48.0 
157 old + LY-294002 0 4.3 8.7 4.3 4.3 4.3 4.3 
161 old + LY-294002 0 1.0 2.0 4.0 8.9 10.9 16.8 
163 old + LY-294002 0 0.0 4.5 4.5 5.6 11.2 11.2 
167 old + LY-294002 0 0.0 12.2 18.9 18.9 28.4 28.4 
169 old + LY-294002 0 1.4 12.7 26.8 42.3 45.1 45.1 
 Mean 0 2.4 8.5 14.5 24.9 28.9 29.8 
 Standard Error 0 1.4 1.6 3.7 7.6 7.7 7.5 
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Table 13-Akt Inhibitor Studies Acetylcholine Data (Fig. 4.1 & 4.2) 
 

Animal Group 
Body 
Weight (g) 

Initial Diameter 
(μm) % Spontaneous Tone 

23 young control 321 103 44.7 
26 young control 321 172.5 38.3 
28 young control 332 155 26.5 
29 young control 320 177.5 52.1 
30 young control 345 129 63.4 
32 young control 325 149.5 41.7 
34 young control 328 140 53.6 
36 young control 332 180 74.0 
38 young control 358 153 47.1 
109 young control 362 173 29.5 
 Mean  153.3 47.1 
 Standard Error  7.7 4.6 
     
93 young Akt Inhibitor  160 43.8 
95 young Akt Inhibitor  196 69.4 
98 young Akt Inhibitor  171 56.7 
100 young Akt Inhibitor  140 59.3 
102 young Akt Inhibitor  160 45.0 
104 young Akt Inhibitor  205 66.8 
106 young Akt Inhibitor  133 45.1 
109 young Akt Inhibitor  187 50.8 
110 young Akt Inhibitor  176 38.6 
111 young Akt Inhibitor  170 38.8 
 Mean  169.8 51.4 
 Standard Error  7.2 3.5 
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Table 13-continued 
 

Animal Group 
Body 
Weight (g) 

Initial Diameter 
(μm) % Spontaneous Tone 

19 old control 425 154.5 36.3 
21 old control 446 161.5 31.2 
22 old control 430 173 55.0 
24 old control 423 160 33.8 
25 old control 424 186 55.4 
27 old control 425 169 35.6 
31 old control 383 206 77.2 
33 old control 429 217.5 38.6 
35 old control 361 202 40.1 
37 old control 424 185 43.8 
49 old control 383 202 29.7 
94 old control 455 187 43.9 
99 old control 453 132 68.2 
 Mean  179.7 45.3 
 Standard Error  6.7 4.1 
     

49 old Akt Inhibitor  115 36.5 
94 old Akt Inhibitor  157 33.8 
96 old Akt Inhibitor  206 31.6 
97 old Akt Inhibitor  225 25.3 
99 old Akt Inhibitor  135 43.0 
101 old Akt Inhibitor  193 45.1 
103 old Akt Inhibitor  188 33.5 
105 old Akt Inhibitor  147 39.5 
107 old Akt Inhibitor  162 35.2 
108 old Akt Inhibitor  185 57.8 
 Mean  171.3 38.1 
 Standard Error  17.1 3.6 
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Table 13-continued 
 
Animal Group Start Δ2cmH2O Δ4cmH2O Δ6cmH2O Δ8cmH2O 
23 young control 0 7.1 14.1 14.7 13.6 
26 young control 0 23.4 26.4 31.0 30.1 
28 young control 0 22.0 56.1 63.4 51.2 
29 young control 0 44.2 47.9 45.0 39.7 
30 young control 0 6.6 14.5 28.7 37.4 
32 young control 0 17.0 23.6 24.7 26.2 
34 young control 0 30.7 29.3 16.0 12.0 
36 young control 0 8.5 9.8 6.5 3.5 
38 young control 0 26.4 26.4 20.8 16.7 
109 young control 0 3.9 5.9 13.7 13.7 
 Mean 0.0 19.0 25.4 26.4 24.4 
 Standard Error 0.0 4.1 5.1 5.4 4.8 
       
93 young Akt Inhibitor 0 7.1 7.1 31.4 47.1 
95 young Akt Inhibitor 0 19.9 46.3 91.2 92.6 
98 young Akt Inhibitor 0 0.0 -5.2 -5.2 -9.3 
100 young Akt Inhibitor 0 18.1 25.3 25.3 18.1 
102 young Akt Inhibitor 0 0.0 13.9 13.9 13.9 
104 young Akt Inhibitor 0 2.2 2.2 -2.2 -1.5 
106 young Akt Inhibitor 0 1.7 1.7 21.7 38.3 
109 young Akt Inhibitor 0 0.0 -8.4 -15.8 -31.6 
110 young Akt Inhibitor 0 8.8 8.8 8.8 5.9 
111 young Akt Inhibitor 0 10.6 10.6 10.6 -9.1 
 Mean 0 6.8 10.2 18.0 16.5 
 Standard Error 0 2.4 5.0 9.3 11.2 
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Table 13-continued 
 
Animal Group Start Δ2cmH2O Δ4cmH2O Δ6cmH2O Δ8cmH2O 
19 old control 0 8.2 3.0 4.9 0.5 
21 old control 0 4.2 -4.6 -23.6 -37.0 
22 old control 0 -0.5 -1.1 12.6 4.3 
24 old control 0 -7.4 -5.6 -9.3 -11.1 
25 old control 0 12.6 15.5 23.3 -1.0 
27 old control 0 17.5 20.6 24.2 23.0 
31 old control 0 1.9 1.9 0.9 2.8 
33 old control 0 18.2 18.4 1.2 1.8 
35 old control 0 17.3 23.5 18.5 6.2 
37 old control 0 61.7 65.4 61.7 40.7 
49 old control 0 5.0 5.0 0.0 0.0 
94 old control 0 1.2 7.3 14.6 14.6 
99 old control 0 0.0 1.1 3.3 3.3 
 Mean 0 10.8 11.6 10.2 3.7 
 Standard Error 0 4.8 5.2 5.7 4.9 
       

49 old Akt Inhibitor 0 14.3 16.7 26.2 28.6 
94 old Akt Inhibitor 0 9.4 9.4 -11.3 -11.3 
96 old Akt Inhibitor 0 1.5 6.2 6.2 15.4 
97 old Akt Inhibitor 0 0.0 -1.8 -29.8 -19.3 
99 old Akt Inhibitor 0 34.5 34.5 34.5 17.2 
101 old Akt Inhibitor 0 10.3 10.3 -3.4 9.2 
103 old Akt Inhibitor 0 15.9 34.9 34.9 31.7 
105 old Akt Inhibitor 0 91.4 100.0 100.0 100.0 
107 old Akt Inhibitor 0 0.0 0.0 -7.0 -19.3 
108 old Akt Inhibitor 0 0.0 13.1 -23.4 -34.6 
 Mean 0 17.7 22.3 12.7 11.8 
 Standard Error 0 7.7 8.4 10.4 10.5 
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Table 13-continued 
 

Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
23 young control 13.9 2.8 -0.4 4.1 8.5 
26 young control 26.9 28.5 26.9 17.2 14.9 
28 young control 26.8 14.6 7.3 9.8 9.8 
29 young control 38.0 45.6 50.1 62.6 67.9 
30 young control 40.3 39.5 38.6 39.8 39.8 
32 young control 27.8 25.0 20.0 41.3 42.7 
34 young control 10.7 25.3 32.0 33.3 38.7 
36 young control 2.0 0.7 5.8 6.6 11.5 
38 young control 20.8 34.7 34.7 22.2 22.2 
109 young control 15.7 17.6 23.5 23.5 21.6 
 Mean 22.3 23.4 23.9 26.1 27.7 

 
Standard 
Error 3.8 4.7 5.1 5.8 6.1 

       

93 
young Akt 
Inhibitor 55.7 55.7 52.9 64.3 64.3 

95 
young Akt 
Inhibitor 92.6 69.1 56.6 52.9 52.9 

98 
young Akt 
Inhibitor -15.5 -21.6 -21.6 62.9 62.9 

100 
young Akt 
Inhibitor 7.2 4.8 -6.0 71.1 71.1 

102 
young Akt 
Inhibitor 5.6 -1.4 -1.4 -1.4 -12.5 

104 
young Akt 
Inhibitor -1.5 -1.5 -1.5 -0.7 -0.7 

106 
young Akt 
Inhibitor 38.3 26.7 11.7 0.0 -6.7 

109 
young Akt 
Inhibitor -32.6 -32.6 -32.6 -35.8 60.0 

110 
young Akt 
Inhibitor 5.9 10.3 10.3 -14.7 -19.1 

111 
young Akt 
Inhibitor -9.1 1.5 1.5 -33.3 -16.7 

 Mean 14.7 11.1 7.0 16.5 25.6 

 
Standard 
Error 11.8 10.0 9.0 13.3 12.4 



191 

Table 13-continued 
 
Animal Group Δ10cmH2O Δ15cmH2O Δ20cmH2O Δ30cmH2O Δ40cmH2O 
19 old control 9.6 13.1 7.7 13.8 1.6 
21 old control -36.1 -33.1 -28.2 -29.4 -30.5 
22 old control 6.1 3.6 7.8 8.5 5.7 
24 old control 0.0 0.0 -3.7 -25.9 -29.6 
25 old control -8.7 -7.8 -5.8 40.8 23.3 
27 old control 21.9 26.7 28.5 27.3 31.6 
31 old control 2.3 2.8 0.9 0.9 1.9 
33 old control 1.3 -3.0 -3.7 -12.0 3.6 
35 old control 6.2 4.9 22.2 33.3 37.0 
37 old control 25.9 16.0 6.2 -4.9 -1.2 
49 old control 0.0 -1.7 -1.7 -1.7 -1.7 
94 old control 14.6 14.6 14.6 14.6 11.0 
99 old control 0.0 -3.3 -5.6 -5.6 -5.6 
 Mean 3.3 2.5 3.0 4.6 3.6 

 
Standard 
Error 4.2 4.0 4.0 5.9 5.5 

       

49 
old Akt 
Inhibitor 28.6 31.0 33.3 42.9 42.9 

94 
old Akt 
Inhibitor -24.5 -34.0 -20.8 -20.8 -45.3 

96 
old Akt 
Inhibitor 15.4 10.8 -13.8 -13.8 -3.1 

97 
old Akt 
Inhibitor -14.0 -14.0 -14.0 -8.8 8.8 

99 
old Akt 
Inhibitor 6.9 0.0 -8.6 -8.6 -15.5 

101 
old Akt 
Inhibitor 8.0 9.2 9.2 0.0 -20.7 

103 
old Akt 
Inhibitor 12.7 7.9 7.9 -3.2 66.7 

105 
old Akt 
Inhibitor 100.0 100.0 81.0 81.0 79.3 

107 
old Akt 
Inhibitor -24.6 -24.6 -38.6 14.0 1.8 

108 
old Akt 
Inhibitor -34.6 -31.8 -27.1 -27.1 -12.1 

 Mean 7.4 5.5 0.9 5.6 10.3 

 
Standard 
Error 10.5 10.7 9.5 9.0 11.0 
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Table 14-Akt Inhibitor Studies Acetylcholine Data (Fig 4.3) 
 
Animal Group 

Body 
Weight (g) 

Initial 
Diameter(μm) % Spontaneous Tone 

20 young control 310 119.5 47.6 
23 young control 321 133 40.6 
26 young control 321 148 47.3 
28 young control 332 135 46.7 
29 young control 320 167.5 43.2 
30 young control 345 145 57.1 
32 young control 325 186 43.5 
34 young control 328 141 47.7 
36 young control 332 190 32.1 
38 young control 358 151 40.4 
100 young control 382 166.0 31.9 
102 young control 381 193.0 28.0 
104 young control 400 204 29.4 
109 young control 362 189 76.2 
 Mean  162.0 43.7 
 Standard Error  7.1 3.3 
     
93 young Akt Inhibitor  178 59.6 
95 young Akt Inhibitor  154 37.0 
98 young Akt Inhibitor  174 39.7 
100 young Akt Inhibitor  159 53.5 
102 young Akt Inhibitor  199 46.2 
104 young Akt Inhibitor  204 46.6 
106 young Akt Inhibitor  127 49.6 
109 young Akt Inhibitor  211 41.7 
110 young Akt Inhibitor  129 41.9 
111 young Akt Inhibitor  131 25.2 
 Mean  166.6 44.1 
 Standard Error  10.0 5.3 
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Table 14-continued 
 

Animal Group 
Body 
Weight (g) 

Initial 
Diameter(μm) % Spontaneous Tone 

19 old control 425 163 43.6 
21 old control 446 150 42.0 
22 old control 430 164 33.5 
24 old control 423 174 35.9 
25 old control 424 190 55.2 
27 old control 425 201 68.2 
31 old control 383 207 64.1 
33 old control 429 225 29.3 
35 old control 361 161 29.8 
37 old control 424 179 52.1 
49 old control 383 176 26.7 
94 old control 455 107 28.0 
99 old control 453 136 48.5 
 Mean  171.7 42.8 
 Standard Error  8.6 3.9 
     
49 old Akt Inhibitor  142 39.4 
94 old Akt Inhibitor  226 33.2 
96 old Akt Inhibitor  200 49.0 
97 old Akt Inhibitor  168 47.0 
99 old Akt Inhibitor  133 28.6 
101 old Akt Inhibitor  142 43.0 
103 old Akt Inhibitor  196 37.8 
105 old Akt Inhibitor  193 43.0 
107 old Akt Inhibitor  133 42.9 
108 old Akt Inhibitor  160 51.3 
 Mean  169.3 41.5 
 Standard Error  10.4 2.2 
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Table 14-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
20 young control 0 14.0 22.2 22.8 41.0 73.6 81.2 
23 young control 0 1.9 7.4 9.3 57.4 92.6 100.0 
26 young control 0 4.3 5.7 28.6 48.6 55.7 58.6 
28 young control 0 3.2 42.9 74.6 81.0 95.2 96.8 
29 young control 0 5.8 8.5 25.0 55.5 78.8 73.1 
30 young control 0 12.8 30.5 54.3 73.2 75.6 76.0 
32 young control 0 4.9 4.9 60.5 67.9 95.1 95.1 
34 young control 0 3.8 6.9 35.3 85.7 96.3 96.3 
36 young control 0 6.6 32.8 45.9 72.1 83.6 83.6 
38 young control 0 1.6 1.6 6.6 65.6 100.0 100.0 
100 young control 0 0.0 0.0 39.6 52.8 54.7 71.7 
102 young control 0 5.6 5.6 7.4 13.0 53.7 33.3 
104 young control 0 6.7 21.7 25.0 38.3 38.3 38.3 
109 young control 0 3.5 7.6 38.2 41.0 41.7 41.7 
 Mean 0.0 5.3 14.2 33.8 56.6 73.9 74.7 
 Standard Error 0.0 1.1 3.6 5.4 5.2 5.7 6.3 
         
93 young Akt Inhibitor 0.0 1.9 1.9 27.4 98.1 101.9 98.1 
95 young Akt Inhibitor 0.0 0.0 14.0 19.3 26.3 80.7 78.9 
98 young Akt Inhibitor 0.0 5.8 5.8 21.7 89.9 100.0 100.0 
100 young Akt Inhibitor 0.0 0.0 0.0 56.5 67.1 96.5 98.8 
102 young Akt Inhibitor 0.0 84.8 84.8 52.2 90.2 92.4 93.5 
104 young Akt Inhibitor 0.0 20.0 21.1 77.9 91.6 98.9 98.9 
106 young Akt Inhibitor 0.0 0.0 42.9 79.4 93.7 96.8 96.8 
109 young Akt Inhibitor 0.0 0.0 11.4 45.5 14.8 69.3 69.3 
110 young Akt Inhibitor 0.0 3.7 3.7 7.4 24.1 35.2 38.9 
111 young Akt Inhibitor 0.0 12.1 30.3 39.4 51.5 60.6 60.6 
 Mean 0.0 12.8 21.6 42.7 64.7 83.2 83.4 
 Standard Error 0.0 7.6 7.6 7.8 11.0 6.9 6.6 
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Table 14-continued 
 
Animal Group Start 10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 
19 old control 0.0 16.2 14.8 16.2 42.8 45.7 39.7 
21 old control 0.0 1.6 9.5 46.0 88.9 100.0 96.8 
22 old control 0.0 7.3 3.6 1.8 63.6 70.9 41.8 
24 old control 0.0 -1.6 -2.2 13.9 19.3 26.7 21.5 
25 old control 0.0 11.8 15.4 29.7 53.5 50.1 50.8 
27 old control 0.0 -0.7 7.3 40.9 55.5 55.5 54.0 
31 old control 0.0 3.0 5.5 11.3 48.1 61.3 53.3 
33 old control 0.0 4.5 15.2 75.8 81.8 86.4 86.4 
35 old control 0.0 4.2 10.4 12.5 18.8 16.7 18.8 
37 old control 0.0 -0.4 17.4 61.0 69.7 77.1 68.0 
49 old control 0.0 23.4 42.6 85.1 95.7 97.9 100.0 
96 old control 0.0 13.3 13.3 13.3 16.7 40.0 50.0 
103 old control 0.0 1.5 6.1 9.1 25.8 27.3 37.9 
 Mean 0.0 6.5 12.2 32.0 52.3 58.1 55.3 
 Standard Error 0.0 2.1 3.0 7.6 7.5 7.5 7.2 
         
49 old Akt Inhibitor 0.0 8.9 14.3 73.2 82.1 82.1 82.1 
94 old Akt Inhibitor 0.0 10.7 17.3 17.3 54.7 73.3 73.3 
96 old Akt Inhibitor 0.0 0.0 6.1 88.8 88.8 98.0 100.0 
97 old Akt Inhibitor 0.0 2.5 3.8 32.9 89.9 81.0 51.9 
99 old Akt Inhibitor 0.0 5.3 13.2 18.4 23.7 28.9 39.5 
101 old Akt Inhibitor 0.0 8.2 8.2 70.5 78.7 88.5 91.8 
103 old Akt Inhibitor 0.0 17.6 21.6 31.1 58.1 67.6 68.9 
105 old Akt Inhibitor 0.0 14.5 14.5 25.3 31.3 34.9 38.6 
107 old Akt Inhibitor 0.0 0.0 70.2 63.2 78.9 80.7 84.2 
108 old Akt Inhibitor 0.0 22.0 35.4 62.2 75.6 80.5 80.5 
 Mean 0.0 9.0 20.5 48.3 66.2 71.6 71.1 
 Standard Error 0.0 2.3 6.2 8.2 7.4 7.1 6.7 
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Table 15-Desitometry Values for p-eNOS(ser1177) blots (Fig 4.4) 
 
vessel 
number  group Proteins of Interest     
        
blot 1  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
382 y 7408680 7447292 0.9948 1656455 4.4959  
387 y Ach 7959395 5642016 1.4107 1602557 3.5206  
384 y LY 7590584 7902917 0.9605 1476825 5.3513  
385 y Ach+LY 7281761 8179579 0.8902 1603313 5.1017  
367 o 8462115 17469276 0.4844 1365042 12.798  
368 o Ach 13876679 29853080 0.4648 1407419 21.211  
369 o LY 7808729 12643643 0.6176 1456319 8.6819  
370 o Ach+LY 13409370 8436240 1.5895 1806765 4.6693  
        
blot 2  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
390 y 11198519 9187268 1.2189 19683303 0.4668  
391 y Ach 9719172 9718827 1 40197976 0.2418  
392 y LY 10140945 12810150 0.7916 10252691 1.2494  
393 y Ach+LY 10364975 8314426 1.2466 7877169 1.0555  
374 o 13190514 10395349 1.2689 13793269 0.7537  
375 o Ach 15288222 9926141 1.5402 17736137 0.5597  
376 o LY 12234362 10459555 1.1697 38604319 0.2709  
377 o Ach+LY 12031177 6384390 1.8845 42320688 0.1509  
        
blot 3  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
394 y 5683721 3041450 1.8688 3682114 0.826  
395 y Ach 5990936 3030274 1.977 2029616 1.493  
388 y LY 5501770 2969006 1.8531 2036801 1.4577  
389 y Ach+LY 5780938 2979854 1.94 2129324 1.3994  
378 o 6653068 2968156 2.2415 2011812 1.4754  
379 o Ach 5283683 2931090 1.8026 1973988 1.4849  
380 o LY 4909418 2932646 1.6741 2426508 1.2086  
381 o Ach+LY 6304192 2953566 2.1344 2059928 1.4338  
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Table 15-continued 
 
vessel 
number  group Proteins of Interest     
blot 4  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
400 y 9337798 3972113 2.3508 3667693 1.083  
401 y Ach 34140402 8269143 4.1287 4918160 1.6813  
402 y LY 8584119 5458386 1.5726 8956243 0.6095  
403 y Ach+LY 8403718 3776342 2.2254 17809540 0.212  
371 o 11472268 4837065 2.3717 6154697 0.7859  
372 o Ach 30718455 7830403 3.923 8168749 0.9586  
373 o LY 17626748 7161532 2.4613 46654032 0.1535  
396 o Ach+LY 8383565 3562629 2.3532 13008620 0.2739  
       
blot 5  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
411 y 9460399 3011847 3.1411 1619513 1.8597  
404 y Ach 11999689 3322466 3.6117 1710332 1.9426  
405 y LY 8789380 3450595 2.5472 3897531 0.8853  
400 y Ach+LY 11983173 3385375 3.5397 1882632 1.7982  
397 o 24229920 3690103 6.5662 2208937 1.6705  
398 o Ach 44838856 3792600 11.823 2002837 1.8936  
399 o LY 13001741 3141452 4.1388 9206665 0.3412  
417 o Ach+LY 10651009 3115486 3.4187 1522905 2.0458  
        
blot 6  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
400 y 9178516 2929085 3.1336 1416759 2.0675  
401 y Ach 11852347 2925138 4.0519 1466925 1.9941  
402 y LY 9900878 3364048 2.9431 1952634 1.7228  
403 y Ach+LY 11361797 3095563 3.6703 1455174 2.1273  
371 o 18202965 3034313 5.999 1949940 1.5561  
372 o Ach 8478081 2881495 2.9423 1460780 1.9726  
373 o LY 7995237 2901947 2.7551 2289473 1.2675  
396 o Ach+LY 16862244 3156488 5.3421 3876466 0.8143  
        
blot 7  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
423 y 5464725 2478584 2.2048    
412 y Ach 5801752 2417608 2.3998    
424 y LY 5557277 2362460 2.3523    
425 y Ach+LY 5814818 2419041 2.4038    
413 o 9072443 2470268 3.6727    
414 o Ach 6057580 2351192 2.5764    
415 o LY 5559974 2350452 2.3655    
416 o Ach+LY 5390344 2311371 2.3321    
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Table 15-continued 
 
vessel 
number  group Proteins of Interest     
blot 9  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
445 y 6073726 5922650 1.0255 7315307 0.8096  
446 y Ach 6234384 6084092 1.0247 11250496 0.5408  
447 y LY 5969619 5243951 1.1384 7237773 0.7245  
448 y Ach+LY 5780728 4944243 1.1692 2565754 1.927  
430 o 7392863 13364047 0.5532 5894046 2.2674  
431 o Ach 6535303 8653963 0.7552 10647092 0.8128  
432 o LY 6226722 7924107 0.7858 4769255 1.6615  
433 o Ach+LY 6150897 6355877 0.9677 2439936 2.6049  
       
blot 12  peNOS eNOS peNOS/totaleNOS GAPDH eNOS/GAPDH 
473 y 4424511 3871073 1.143    
474 y Ach 4396688 3997036 1.1    
482 y LY 4368992 3872843 1.1281    
483 y Ach+LY 4422787 4030981 1.0972    
438 o 5120972 6272253 0.8164    
439 o Ach 4747311 4996045 0.9502    
440 o LY 4578583 4520437 1.0129    
441 o Ach+LY 4330747 3966102 1.0919    
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Table 16-Desitometry Values for p-Akt(ser473) blots (Fig. 4.5) 
 
vessel 
number  group Proteins of Interest    
       
blot 1  pAKt Akt pAkt/totalAkt GAPDH Akt/GAPDH 
382 y 7285671 7927624 0.919023279 1656455 4.785897595 
387 y Ach 7337869 5908718 1.241871587 1602557 3.687056373 
384 y LY 7278021 13037187 0.558250871 1476825 8.827848256 
385 y Ach+LY 7274726 18709879 0.388817373 1603313 11.66951119 
367 o 7510196 24003815 0.312875099 1365042 17.58467139 
368 o Ach 6935577 16780377 0.413314731 1407419 11.92280124 
369 o LY 6525074 14185311 0.459988082 1456319 9.740524569 
370 o Ach+LY 6728913 10866551 0.619231714 1806765 6.014368775 
       
blot 2  pAKt Akt pAkt/totalAkt GAPDH Akt/GAPDH 
390 y 7170858 11643112 0.615888433 19683303 0.591522266 
391 y Ach 7487861 23175682 0.32309129 40197976 0.57653853 
392 y LY 7364645 18334194 0.401689052 10252691 1.788232377 
393 y Ach+LY 7435792 8867929 0.838503781 7877169 1.125776151 
374 o 7918201 11862535 0.667496534 13793269 0.860023465 
375 o Ach 7586109 12007759 0.63176726 17736137 0.677022229 
376 o LY 8109844 19770722 0.41019463 38604319 0.512137567 
377 o Ach+LY 8152303 13002491 0.626980092 42320688 0.307237231 
       
blot 4  pAKt Akt pAkt/totalAkt GAPDH Akt/GAPDH 
400 y 11048256 1804488 6.122654182 3667693 0.491995377 
401 y Ach 11808770 1788708 6.601843342 4918160 0.363694552 
402 y LY 10500358 1859717 5.646212838 8956243 0.207644768 
403 y Ach+LY 9924539 1902964 5.215305702 17809540 0.106850823 
371 o 9387858 1930621 4.862610528 6154697 0.313682542 
372 o Ach 9292320 1912356 4.859095273 8168749 0.234106348 
373 o LY 8320875 2477763 3.358220701 46654032 0.0531093 
396 o Ach+LY 8340748 2010510 4.148573248 13008620 0.154552135 
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Table 16-continued 
 
vessel 
number  group Proteins of Interest    
blot 5  pAKt Akt pAkt/totalAkt GAPDH Akt/GAPDH 
411 y 6541972 2395163 2.731326427 1619513 1.478940274 
404 y Ach 6499782 2392857 2.716326968 1710332 1.399059949 
405 y LY 7012669 2433472 2.881754547 3897531 0.624362449 
400 y Ach+LY 7487979 2458875 3.045286564 1882632 1.306083717 
397 o 7000656 2460720 2.84496245 2208937 1.113983785 
398 o Ach 7283498 2449256 2.973759378 2002837 1.222893326 
399 o LY 8308189 2448274 3.393488229 9206665 0.265924089 
417 o Ach+LY 6975795 2357518 2.958957259 1522905 1.548040094 
 
blot 6  pAKt Akt pAkt/totalAkt GAPDH Akt/GAPDH 
400 y 6732725 2369260 2.841699518 1416759 1.672309828 
401 y Ach 7273056 2347559 3.098135553 1466925 1.600326533 
402 y LY 7116820 2530656 2.81224315 1952634 1.296021681 
403 y Ach+LY 6293363 2381658 2.64242935 1455174 1.636682624 
371 o 7640595 2607349 2.930407475 1949940 1.337143194 
372 o Ach 6991886 2409675 2.901588803 1460780 1.649581046 
373 o LY 7464697 2517247 2.965420954 2289473 1.099487524 
396 o Ach+LY 8056500 2893050 2.784777311 3876466 0.746311202 
       
blot 9  pAKt Akt pAkt/totalAkt GAPDH Akt/GAPDH 
445 y 7156570 3333335 2.146969927 7315307 0.45566577 
446 y Ach 7758308 4375789 1.773007794 11250496 0.388941874 
447 y LY 6877093 4569164 1.505109687 7237773 0.631294184 
448 y Ach+LY 7976596 2451504 3.253756062 2565754 0.955471179 
430 o 7658172 7446393 1.028440481 5894046 1.263375447 
431 o Ach 7107878 3623226 1.961753973 10647092 0.340301934 
432 o LY 7056558 3312569 2.130237287 4769255 0.694567391 
433 o Ach+LY 6727069 2719641 2.4735136 2439936 1.114636204 
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