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ABSTRACT 

System Design and Optimization of CO2 Storage in  

Deep Saline Aquifers. (December 2010)   

Hossein Shamshiri, B.S., Petroleum University of Technology 

Chair of Advisory Committee: Dr. Yousef Jafarpour  

 

Optimization of waterflooding sweep efficiency has been widely applied in reservoir 

engineering to improve hydrocarbon recovery while delaying water breakthrough and 

minimizing the bypassed oil in reservoirs. We develop a new framework to optimize 

flooding sweep efficiency in geologic formations with heterogeneous properties and 

demonstrate its application to waterflooding and geological CO2 sequestration problems. 

The new method focuses on equalizing and delaying (under constant total injected 

volume) the breakthrough time of the injected fluid at production wells. For application 

to CO2 sequestration where producers may not be present, we introduce the concept of 

pseudo production wells that have insignificant production rates (with negligible effect 

on the overall flow regime) for quantification of hypothetical breakthrough curves that 

can be used for optimization purpose. We apply the new method to waterflooding and 

CO2 sequestration optimization using two heterogeneous reservoir models. We show that 

in water flooding experiments, the proposed method improves the sweep efficiency by 

delaying the field breakthrough and equalizing breakthrough times in all production 

wells. In this case, the optimization results in increased oil recovery and decreased water 

production. We apply a modified version of the proposed algorithm to geologic CO2 

sequestration problems to maximize the storage capacity of aquifers by enhancing the 

residual and dissolution trapping. The results from applying the proposed approach to 

optimization of geologic CO2 storage problems illustrate the effectiveness of the 

algorithm in improving residual and solubility trapping by increasing the contact 
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between available fresh brine and the injected CO2 plume through a more uniform 

distribution of CO2 in the aquifer. 
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CHAPTER I 

 INTRODUCTION AND LITERATURE REVIEW 

 

1.1 CO2 SEQUESTRATION  

The pressing need for a clean and renewable energy infrastructure is primarily driven by 

the worldwide depletion of easily recoverable fossil fuel resources and the alarming 

trends in climate change and environmental degradation. According to the United 

Nations Intergovernmental Panel for Climate Change (IPCC, 2005), today, 

approximately 80% of the global energy consumption is supplied by fossil fuels, a fact 

that does not seem to change for the near future. The existing evidence suggests that the 

move toward clean and sustainable energy resources is likely to be fueled mainly by 

carbon-based fossil energy sources, which has called for controlled emission of 

anthropogenic carbon dioxide (CO2) into the atmosphere (IPCC, 2005). In the portfolio 

of climate change mitigation actions, CO2 capture and storage (CCS) has been 

considered as one of the viable options for reducing, primarily large point-source, 

emissions of anthropogenic CO2 into the atmosphere (IPCC, 2005). Compatibility of 

CCS systems with current energy infrastructures, together with its potential to reduce 

CO2 emissions over the next century, explains the strong interest in this technology. In 

addition, while the published storage needs for stabilizing CO2 concentration at a safe 

level vary over a wide range (220-2,200Gt CO2), the IPCC report estimates that the 

technical potential for worldwide geologic storage alone is sufficient to cover the high 

end of the economic potential range (IPCC, 2005). 

 

 

This thesis follows the style of SPE Journal. 
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Four lines of evidence suggest that the recent increase in atmospheric concentrations of 

CO2 is largely from human activities. The nuclei of carbon atoms in CO2 emitted by 

burning coal, oil, and natural gas (fossil fuels) differ in their characteristics from the 

nuclei of carbon atoms in CO2 emitted under natural conditions (Keeling, 1960; Stuiver 

et al., 1984). It takes millions of years for coal, oil, and natural gas to be formed deep 

inside the Earth. The fraction of their nuclei that were once radioactive has long ago 

changed to non-radioactive carbon. The CO2 emitted from natural sources on the Earth's 

surface retains a measurable quantity of radioactive material. As CO2 has been emitted 

through fossil fuel combustion, the radioactive fraction of carbon in the atmosphere has 

decreased. Forty years ago scientists provided the first direct evidence that combustion 

of fossil fuels was causing a buildup of CO2 and thereby diluting radioactive carbon in 

the atmosphere by measuring the decreasing fraction of radioactive carbon-14 captured 

in tree rings, each year between 1800 and 1950 (Stuiver et al., 1984; Francey et al., 

1999).  

Secondly, starting in the late 1950s, scientists have collected data through precise 

measurements of the total amount of CO2 in the atmosphere both at Mauna Loa, Hawaii, 

and at the South Pole. Nowadays, many locations around the world are used to monitor 

CO2. The data so far collected show that the levels of CO2 have increased each year 

worldwide (Keeling, 1973, 1976, and 1978). Furthermore, these increases are consistent 

with other estimates of the rise of CO2 emissions due to human activity over this period. 

Thirdly, ice buried below the surface of the Greenland and Antarctic ice caps contains 

bubbles of air that were trapped when the ice formed. Measurements from the youngest 

and most shallow segments of the ice cores, show increasing CO2 concentrations. Layers 

with air from only a few decades ago produce CO2 concentrations nearly identical to 

those that were measured directly in the atmosphere at the time the ice formed (Keeling, 

1978; Francey et al., 1999;IPCC, 2001, 2002). The CO2 content of the pre-industrial 

parts of the cores arelower by almost 25% than what is measured today and are relatively 

constant over a period of 10,000 years (Keeling, 1978; Francey et al., 1999; IPCC, 

2001,2002). 
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The fourth line of evidence comes from the geographic pattern of CO2 measured in air. 

Worldwide the CO2 distribution is not the same. According to observation, the CO2 

measurement on the northern hemisphere is slightly more than in the southern 

hemisphere (Stuiver et al., 1984; IPCC, 2001, 2002). The difference arises because most  

of the human activities that produce CO2 are in the north and it takes about a year for  

northern hemispheric emissions to circulate through the atmosphere and reach southern 

latitudes. 

 

The human population’s dependency on fossil fuels as a source of energy is strong and 

the transition to alternate renewable energy sources is not in the current foreseeable 

future. The United States is by far the leading contributor of CO2 emissions to the 

atmosphere followed by the Former Soviet Union and China. 

 

Growing concern about human-induced climate change is driving technology 

development aimed at slowing the buildup of greenhouse gases in the atmosphere. The 

Kyoto Protocol, the first attempt to reach global consensus on how and how much to 

reduce greenhouse gas emissions, described in length two key prospective solutions to 

the problem of balancing the carbon cycle: reduce emissions and/or sequester more 

carbon. Improved efficiency and increased use of alternative energy to reduce the use of 

fossil fuels almost certainly will be part of the solution. A second key prospect is to 

increase the storage of waste CO2 in reservoirs other than the atmosphere. Potential 

reservoirs for sequestering CO2 include the terrestrial biosphere (Seneviratne 2003), the 

oceans (Drange et al. 2001), mineralized forms at the Earth’s surface (Lackner 2002), 

and the deep underground formations (Holloway 2001). Electric power plants and large-

scale industrial process plants are ideal candidates for CO2 sequestration because they 

are point-source emitters. 
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1.1.1 Disposal in Geologic Storage 

Injection of power plant-generated CO2 into deep sedimentary formations is one way to 

limit the buildup of greenhouse gases in the atmosphere. Potential targets for CO2 

injection include depleted oil and gas reservoirs, deep unmineable coal seams, and deep 

saline aquifers. Technology for injecting CO2 has long been used in the oil and gas 

industry for enhanced oil recovery. In addition, a pilot study of CO2 injection for 

enhanced methane recovery from deep coal seams has been underway since 1996 (Gale  

& Freund 2001). These technologies potentially can provide economic return while 

storing CO2 in the subsurface for long times. Injection of CO2 into depleted oil and gas 

reservoirs, in particular, is a reasonable first approach to CO2 storage because the 

infrastructure is largely in place. However, the storage capacity may not be sufficient to 

meet long-term needs. The technology also exists for injecting CO2 into deep saline 

aquifers and pilot projects are underway in the Sleipner West oil field of the North Sea 

(Gale et al. 2001), the West Pearl Micro-pilot in New Mexico (Pawar et al., 2004), and 

the Frio Pilot Project in Texas. 

 

The overall task of diverting power plant CO2 to deep geologic reservoirs requires three 

steps: Capturing the flue gas, transport and injection of the CO2, and sequestration of 

CO2 in the reservoir. The present work focuses on the last step, CO2 sequestration, in a 

saline aquifer. CO2 is less dense than formation fluids. Once injected, some CO2 

dissolves into the pore water. The remainder rises buoyantly as a separate phase such 

that escape of CO2 to the surface is a concern. Escape of CO2 would compromise the 

objectives of injection and also could compromise safety, for example by contaminating 

shallow potable aquifers (Saripalli & McGrail 2002; Klusman 2003). Safe, long- term 

storage requires that the CO2 be immobilized or otherwise prevented from migrating 

upward. Closed structures immobilize buoyancy-driven flow in oil and gas reservoirs 

and demonstrably have retained oil, natural gas, and naturally occurring CO2 in the 

subsurface for millions of years (Pearce et al. 1996). As reported by Allis et al. (2001), 
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despite the abundance of CO2 reservoirs in the Colorado Plateau- Southern Rocky 

Mountains region, no hazards from surface CO2 accumulations are known. CO2 injected 

into deep coal seams is immobilized by absorption onto the coal itself. Given a low 

permeability cap rock, deep saline aquifers theoretically can trap CO2 hydrodynamically 

by slow moving, downward-directed formation waters (Bachu et al. 1994), by solubility 

in the pore waters (Weir et al. 1995), and by reactions with minerals and pore waters that 

convert CO2 to carbonate minerals (Gunter et al. 1993). These hydrodynamic and 

geochemical trapping mechanisms may eliminate the need for geometric traps to retain 

CO2 in deep saline aquifers.  

1.1.2 Why Saline Aquifers 

Deep saline aquifers provide no economic return for CO2 injection, but they are 

widespread, are geographically associated with fossil fuel sources, and, because it is not 

necessary to identify and inject directly into closed structural traps, are likely to have 

large storage volumes and suitable injection sites in close proximity to power-plant 

sources of CO2 (Bachu, 2003). 

 

Deep aquifers potentially have CO2-storage capacities sufficient to hold many decades 

worth of CO2 emissions, but estimates of global capacity are poorly constrained, varying 

from 300 to 10,000 Gigatons CO2 (Holloway 2001). In the United States, deep saline 

aquifers have a larger potential storage capacity than any other type of sedimentary 

formation, with estimates as high as 500 Gt of CO2 storage (Bergman and Winter, 1995). 

The variation in estimates of storage capacity reflects different assumptions about the 

effectiveness of trapping mechanisms. The low estimate counts only CO2 that could be 

stored as an immiscible phase in closed structures within aquifers. The high number 

assumes closed structures are not necessary and that CO2 can be stored through a 

combination of hydrodynamic, solubility, and mineral trapping. 
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1.1.3 Mechanisms of Aquifer Storage of CO2 

Carbon dioxide is retained in geologic formations in different ways (Hitchon, 1996). 

First, CO2 can be trapped as a gas or supercritical fluid under a low permeability 

caprock. This process, commonly called structural trapping. CO2 could also be trapped 

within the pore spaces of the rock as the residual gas. CO2 can dissolve into the 

groundwater, referred to as a solubility trapping. Furthermore, CO2 can react directly or 

indirectly with minerals in the geologic formation leading to the precipitation of 

secondary carbonate minerals referred as mineral trapping. We’ll describe residual, 

solubility and mineral trapping in the following sections. 

1.1.3.1 Residual Trapping 

Residual trapping refers to storage of free CO2 in the pore spaces of sedimentary layers 

and the transport of that CO2 away from the surface by regional groundwater flow 

(Bachu et al.1994). Free CO2 is the main form of storage during injection, which can last 

30-50 years. The injected CO2 is subject to injection-related hydrodynamic gradients 

and to buoyancy forces that cause it to form a plume that rises and spreads laterally until 

it meets a confining layer that impedes vertical ascent, causing the CO2 to accumulate as 

a cap. The buoyant force of the CO2 cap will depend on the difference in density 

between the CO2 and the brine and on the dip of the confining layer. Provided a near 

horizontal confining layer and relatively small density difference, the CO2 will travel 

with the downward-directed regional groundwater flow (Bachu et al. 1994), unless faults 

or other high permeability zones in the stratigraphic seal provide escape routes to the 

surface. The over-pressuring required for reasonable rates of CO2 injection and 

buoyancy forces exerted by the CO2 cap can widen small fractures, exacerbating the risk 

for CO2 escape (Saripalli and McGrail 2002; Klusman 2003). 

 

CO2 can exist in three different states under the pressure and temperature conditions of 

deep saline aquifers: liquid, gas, and supercritical. Supercritical CO2 behaves like a gas, 
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filling all the volume available, but has a density that varies with pressure and 

temperature from less than 200 kg/m3 to more than 900 kg/m3 (Angus et al. 1976). To 

reduce costs associated with injection and to limit the buoyancy forces and maximize the 

mass of free CO2 that can fill a given pore volume, CO2 should be injected in a 

supercritical state (Bachu, 2002). Early studies assumed an average surface temperature 

of 10°C, a geothermal gradient of 25°C/km, and a hydrostatic pressure gradient of 10 

MPa/km to determine the depth at which the critical point for CO2 (31.1 °C and 7.38 

MPa) is reached (Holloway and Savage 1993). These studies set 800 m as a minimum 

depth for the confining layer. A depth corresponding to a pressure of 10-20 MPa, on the 

order of 1000 m, may be better because it avoids large CO2 density gradients in the 

vicinity of the critical point (Holloway 2001). 

 

In reality, the depths in the earth at which the pressure and temperature conditions for 

supercritical CO2 are reached vary depending on climate conditions and the geology of 

the basin. In warm, over-pressured basins, the critical point can lie as shallow as 400 

meters and the pressure-temperature distribution can be such that CO2 passes with depth 

directly from a gas to a supercritical state. In cold basins, the depth at which the pressure 

and temperature conditions of the critical point are reached is likely to be deeper than the 

gas-to-liquid phase change. All things being equal, old, cold, stable basins are better for 

hydrodynamic trapping of CO2 because higher CO2 densities are reached at shallower 

depths and gradients in the density of CO2 are more easily avoided (Bachu 2000). Old 

foreland and continental basins are best suited for hydrodynamic trapping because they 

tend to be cold, stable, and close to hydrostatic pressure, and to have erosion- or 

topography-driven, down-dipdirected regional flow regimes (Bachu 2000).  

 

At 10 MPa and 35°C, CO2 has a density of approximately 700 kg/m3. Under these 

conditions, a cubic meter of sandstone with 10% porosity contains approximately 70 kg 

of CO2 if the pore space is completely filled by CO2. However, saturation of CO2 is not 

complete, some brine remains in the invaded pore spaces (Pruess et al. 2003; Saripalli & 
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McGrail 2002). In addition, nonuniform flow of CO2 bypasses parts of the aquifer 

entirely. Darcy-flow based analytical and numerical solutions are used to evaluate some 

of these effects by simulating the advance of the CO2 front over timescales of decades to 

hundreds of years and over distances of tens to hundreds of kilometers. To account for 

the extreme changes in density and viscosity of CO2 with pressure and temperature, 

these models must incorporate experimentally constrained equations of state (Adams and 

Bachu 2002). 

 

Initially the free CO2 is distributed in radially decreasing concentrations in zones around 

the injection site (van der Meer 1996). Nearest the injection site lies a zone of near 

completely saturated pores, containing isolated beads of trapped brine, some of which 

evaporate into the CO2 (Pruess et al. 2003). The middle zone contains mixed brine and 

CO2 (Pruess et al. 2003; Saripalli & McGrail. 2002). In the outer zone, CO2 is present 

only as aqueous species.  

 

Following injection, CO2 saturations around the injection site are predicted to decrease 

over tens of years as the free CO2 rises buoyantly, spreads laterally, and dissolves into 

the brine (Weir et al. 1995). Over timescales of hundreds of years dispersion, diffusion, 

and dissolution can reduce the concentration of both free and aqueous CO2 to near zero. 

 

Pruess et al. (2003) used the Darcy-flow based Buckley-Leverette two-phase 

displacement theory to solve analytically the average saturation of injected CO2 under a 

range of conditions. Under Buckley-Leverette conditions, the radius of the region swept 

by the CO2 front increases with duration of injection and the CO2 saturation decreases 

along that radius, but the average CO2 saturation in the region is time independent.  

ssuming a homogeneous aquifer and uniformly swept region, Pruess et al. (2003) found 

that average saturation is most sensitive to permeability and for a range of rock types 

calculated a saturation range of 20-40%, with higher average saturations corresponding 

to rocks with higher permeabilities. Under these conditions, a rock with 10% porosity 
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has a storage capacity of 14-28 kg of CO2 per cubic meter. These maximum values 

ignore flow patterns that may cause the CO2 to bypass large parts of the aquifer. For 

example, taking into account buoyancy effects, Van der Meer (1995) estimated only 6% 

average saturation by CO2. In addition, over certain ranges of viscosity ratio and 

injection velocity, the displacement front between CO2 and brine can develop fractal 

fingers, rather than advancing as straight front as modeled by Darcy-flow. Fractal fingers 

may reduce the CO2 volume of the aquifer accessed by CO2 to as low as 1%. Formation 

heterogeneity, including low permeability layers and lateral discontinuities in permeable 

rock types can compartmentalize the aquifer vertically and laterally, reducing the 

amount of the aquifer accessible to the flow of CO2. However, aquifer 

compartmentalization can also work in the other direction, limiting buoyancy and 

fingering effects and increasing the access of CO2 (Johnson et al. 2001). Any aquifer 

bypassing that does occur, due either to buoyancy effects, fingering, or formation 

heterogeneity, may be partially compensated by higher saturations in the layers swept by 

CO2 (Pruess et al. 2003). 

1.1.3.2 Solubility Trapping 

Solubility trapping refers to the CO2 that dissolves into the brine. The CO2- brine 

solution has a density greater than brine alone preventing buoyant flow of the CO2 

toward the surface, even along high permeability vertical pathways such as faults Most 

models of solubility trapping assume instantaneous equilibrium between the brine and 

free CO2. The solubility of CO2 varies as a function of pressure, temperature, and 

salinity. Numerous models for CO2 solubility in aqueous solutions have been published 

to describe this relationship, though few deal with high ionic strength, multicomponent 

brines. 

 

Under typical cold deep-aquifer conditions of 10 MPa, 35°C, and 10% mass fraction 

salt, the solubility of CO2 in brine is approximately 40 kg/m3 of brine. A rock layer with 

10% porosity has a storage capacity of as much as 4 kg CO2/m
3. Under the conditions of 
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interest for aquifer storage, CO2 solubility increases approximately linearly by about 10 

kg/m3 for each 10 MPa increase in pressure over the range of 10-30 MPa (Pruess et al. 

2003). It decreases by an average of approximately 10 kg/m3 for each 25° C rise of 

temperature over the range of 35-100°C (Pruess et al. 2003). Thus under hydrostatic 

pressure gradients 10 MPa/km and average geothermal gradients of 25 °C/km the effects 

of increasing pressure and temperature with depth on the solubility of CO2 essentially 

cancel each other out. However, around the injection site CO2 pressure increases to as 

much as twice hydrostatic pressure and CO2 solubility increases with it. CO2 solubility 

decreases by about 30% as salinity increases from zero to saturated NaCl (Moller et al. 

1998, Pruess et al. 2003). CO2 solubility is sensitive not only to the mass of salt 

dissolved (Bachu & Adams 2003), but also to the particular kind of salt. However, there 

are few experimental constraints on this effect. The extent to which CO2 dissolves into 

the brine is influenced by the migration of the CO2 front and by the rate of dispersion 

and diffusion of CO2. Viscous fingering and buoyancy flow, which tend to limit the 

storage of free CO2, may increase solubility trapping by increasing the surface area of 

the brine- CO2 contact, allowing more rapid solution. In addition, diffusion of CO2 into 

the brine can set up reverse density gradients that lead to convective mixing and 

increased rate of dissolution of free CO2 (Lindeberg & Wessel-Berg 1997). 

 

Through these processes, dissolved CO2 becomes the dominant form of CO2 storage in 

aquifers over periods of tens to hundreds of years following injection (Weir 1995). Over 

these timescales the CO2 disperses (Law & Bachu 1996) by dispersion and diffusion, 

and dissolution into the brine (Lindeberg 1997). Continued migration and dispersion 

drive both free and dissolved CO2 toward zero. 
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1.1.3.3 Mineral Trapping 

Mineral trapping is the fixing of CO2 in carbonate minerals due to geochemical reactions 

among aquifer brines, formation minerals, and aqueous species of CO2. The density of 

CO2 in calcite is 1250 kg/m3. In a rock with 10% porosity and the pores completely 

filled with calcite the storage capacity would be 220 kg CO2/m3. However, the mass of 

CO2 sequestered as carbonate minerals is sensitive to formation mineral and aquifer 

brine composition, pressure, temperature, and brine-rock ratio. Time is also important 

because mineral trapping reactions take hundreds to thousands of years and more to 

complete (Gunter et al. 1997). 

 

Four kinds of models are available to simulate mineral-brine- CO2 reactions: 

equilibrium, path of reaction, kinetic, and reactive transport models. Mineral equilibrium 

models and path of reaction models are used to calculate equilibrium solid phases and 

solution compositions for a given set of reactants based on a data set of equilibrium 

constants and activity coefficients. Equilibrium models calculate only the final state. 

Path of reactions models also calculate transitional phases along the way. These models 

do not provide information on the amount of time it takes to reach equilibrium or 

transition states. Kinetic models consider the rates of reactions. Widely available 

geochemical modeling codes such as PATHARC (Hitchon 1996), SOLMINEQ 

(Kharaka et al. 1988), and Geochemists Workbench (Bethke 1996) have been used for 

equilibrium, path of reaction, and kinetic simulations of CO2 storage in aquifers. 

Because these models have no transport components, these studies simulate closed-

system batch conditions and do not take into account migration of CO2 through the 

aquifer (Gunter et al. 1993, 1996, 1997). Studies using full-scale reactive transport codes 

to simulate the flow, dissolution, and reaction of CO2 are just becoming available (e.g. 

Johnson et al. 2001). In addition, experimental studies are investigating the kinetics of 

mineral-brine- CO2 reactions in mineral separate and rocks to refine and test model 

reliability (Kaszuba et al. 2003; Liu et al. 2003). Early studies by Gunter et al. (1993) 

recognized three general cases for mineral-brine- CO2 reactions: 1) reactions with mafic 
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minerals, including anorthite feldspar (CaAlSi2O8); 2) reactions with alkali feldspar 

(albite - NaAlSi3O8 and orthoclase – KAlSi3O8); and 3) reactions with carbonate 

minerals. They concluded that the most promising reactions for mineral trapping involve 

mafic minerals, which provide divalent cations (Fe2+, Mg2+, Ca2+) for precipitation of 

carbonate. Mafic minerals such as olivine, pyroxene, and amphibole have the highest 

CO2-fixing potential (Pruess et al. 2003), but are rare in sedimentary basins. The most 

common sedimentary-mineral sources of divalent cations are anorthite, mica-group 

minerals, especially glauconite, and clays, such that a general equation for mineral 

trapping in aquifers is:  

 

Anorthite + Micas + Clays + CO2 + H2O ↔ Quartz + Kaolinite + Calcite +  

Dolomite + Siderite                                                                                                   (1.1) 

 

The mineral trapping takes place in three steps as demonstrated by the example of 

anorthite dissolution: 

 

CO2(aq) + H2O ↔ H+ + HCO3                                                                                  (1.2) 

CaAl2Si2O8 + 2H+ + H2O ↔ Ca2+ + Al2Si2O5(OH)4                                                (1.3) 

Ca2+ + HCO3 ↔ CaCO3 + H+                                                                                    (1.4) 

 

Which leads to the net reaction: 

 

CaAl2Si2O8 + CO2(aq) + 2H2O ↔ CaCO3 + Al2Si2O5(OH)4                                     (1.5) 

Anorthite                                        Calcite         Kaolinite 

 

First the aqueous CO2 dissociates in water, producing carbonic acid (Eq. 1.2); second the 

acid attacks the anorthite, leaching Ca2+ and neutralizing the acid (Eq. 1.3); and third, 

calcium carbonate precipitates (Eq. 1.4). Reactions with alkali feldspars do not provide 
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divalent cations for the precipitation of carbonate minerals and initially were thought to 

be of little significance for mineral trapping (Gunter et al. 1997). However, more recent 

work indicates that dissolution of alkali feldspars contributes to the fixing of CO2 as the 

sodium alumino carbonate mineral dawsonite, NaAlCO3(OH)2 (Johnson et al. 2001, 

Saylor and Zerai, 2004, Zerai et al., 2005). In this case, the Na necessary for dawsonite 

precipitation is available in abundance in the brine, but dissolution of alkali feldspar 

provides a source of aluminum and neutralizes the acidic CO2 according to (Johnson et 

al. 2001):  

 

KAlSi3O8 + Na+ + CO2(aq) + 2H2O ↔ NaAlCO3(OH)2 + 3SiO2 + K+                        (1.6) 

 

The feasibility of mineral trapping of CO2 in dawsonite is demonstrated by the Bowen-

Gunnedah-Sydney Basin in Australia, which has abundant diagenetic dawsonite that 

formed in response to magmatic CO2 (Baker et al. 1995). In addition, abundant 

dawsonite in the Green River Formation of Colorado and in Pleistocene ash beds at 

Olduvai Gorge Tanzania formed by reactions of aqueous carbonate species with 

nepheline in the sediment (Smith and Milton 1966). 

 

Dissolution of carbonate minerals does not lead to mineral trapping of CO2 (Gunter 

1993). However, carbonate dissolution, and other mineral precipitationdissolution 

reactions can affect sequestration capacity by altering the permeability of the aquifer 

near the injection site.   
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1. 2 WATERFLOODING OPTIMIZATION 

Fundamentally, waterflood involves pumping water through a well (injector) into the 

reservoir. The water is forced through the pore spaces and sweeps the oil towards the 

producing wells (producers). The percentage of water in the produced fluids steadily 

increases until the cost of removing and disposing of water exceeds the income from oil 

production. After this point, it becomes uneconomical to continue the operation and the 

waterflooding is stopped. Some wells remain economical at a watercut of up to 99%2. 

On the average, about one-third of the original oil in place (OOIP) is recovered, leaving 

two-thirds behind after secondary recovery. Other secondary recovery methods include 

CO2 flooding and hydrocarbon gas injection, which requires a nearby source of 

inexpensive gas in sufficient volume. 

 

Waterflooding is most often used as a secondary recovery method of increasing oil 

recovery in reservoirs where primary depletion energy has been exhausted. It is 

responsible for the high production rates in the U.S. and Canada3 where most of the 

fields are mature. 

 

The number of new discoveries of significant oil fields per year is decreasing worldwide 

and most of the existing major oilfields are already at their mature stages. Consequently, 

it is becoming increasingly necessary to produce these fields as efficiently as possible in 

order to meet the global increase in demand for oil and gas (Sarma et al. 2005). For this 

reason, waterflooding projects are very commonly found in most of these mature fields. 

In many of these reservoirs however, water cuts from the production wells are very high 

and sometimes uneconomical thereby causing low ultimate recoveries (Arenas A. et al. 

2003). This is because the injected water finds its way through conductive fractures and 

high permeability zones within the reservoir. Premature breakthrough mostly occurs in 

highly heterogeneous reservoirs. As a result, many water injectors do not usually achieve 

improved sweep efficiencies and a lot of the oil is by-passed. Various methods of 

solving the problem of poor sweep efficiency have been suggested. One method of 
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mitigating this problem is by employing smart production and injection wells (Brouwer 

D. R. et al. 2001, Glandt C. A. et al. 2003). 

 

The best production schemes for oil and gas fields is being continually sought after in 

order to maximize the production from these existing fields. The objective of reservoir 

simulation is to determine the best production design for a given field. This goal has 

been commonly achieved by trial and error method. The reservoir engineer is left to 

decide what parameters to change and how the changes are made to improve the results. 

This imposes a high level of subjectivity to the optimization process. In the past few 

decades, researches have been made to develop simulators that can be used to determine 

the best production schemes. This can be (Esmaiel, T. E. H. et al. 2005) conceptually 

achieved by combining the existing reservoir simulators with some numerical search 

algorithms. The problem of production optimization requires the maximization or 

minimization of some objective function g(x). In this optimization problem, the 

objective function to be maximized is the net present value or cumulative oil production. 

Here, x is a set of controls, which may include bottom hole pressures, flow rates, choke 

size, etc and these controls may be manipulated in order to achieve an optimum value at 

which the objective function is maximized (or minimized). Optimization processes result 

in the improvement of future performance of a reservoir and therefore requires a 

simulation model of the real reservoir on which the optimization is carried out. The 

simulation model is a dynamic model that relates the objective function to the set of 

controls. The controls, x are also subject to other constraints such as surface production 

facilities, choke sizes, fracture limits, minimum allowable bottom hole pressures, etc and 

these constraints determine feasible values of the controls. These additional constraints 

pose major problems and further complicate the solution of the optimization process. 

 

Two major categories of optimization algorithms exist in literature (Sarma P. et al. 

2005): gradient-based algorithms (Ramirez, W. F. et al. 1984, Fathi, Z. et al. 1984) and 

stochastic algorithms. Gradientbased algorithms require an efficient technique of 
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calculating the gradient of the objective function g(x) with respect to the controls x. The 

optimal control theory is one of the most popular gradient-based algorithms. 

 

The total number of controls to be adjusted is the product of the number of controls to be 

updated in time (control steps) and the total number of wells in the reservoir model. The 

number of controls could be very large even for a simple reservoir model with a 

reasonable number of wells and control steps, making the gradient estimation a very 

tedious process. Also, another major drawback of the gradient-based method using 

adjoint equations is that it requires explicit knowledge of the simulation model equations 

used to describe the dynamic system. 

 

On the other hand, the stochastic algorithms such as genetic algorithms (Tavakkolian, M. 

et al. 2004) and simulated annealing (Zhou, C. et al. 1992) require many forward model 

evaluations but are capable of finding a global optimum with a sufficiently large number 

of simulation runs. Unlike the gradient-based algorithms, they do not require gradient 

estimations since the relationship between the objective function and the controls can be 

obtained from several forward models. However, the methods can be inefficient when 

the number of variables is large. 

 

Production optimization problems involving reservoir modeling with time was first 

attempted by Lee and Aronofsky . The purpose of their study was to apply linear 

programming procedure to oil production scheduling problems. The problem was to 

determine an oil production schedule from 5 different wells that will give the maximum 

profit over an eight-year period. The constraints placed on the individual reservoir 

production rates of the wells included well pressures and pipeline capacity. They solved 

this problem using constant well interference coefficients as a substitute for a real 

reservoir simulation model. Wattenbarger , along with some other researchers extended 

this study further with the use of real reservoir simulation models for estimating the well 
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interference coefficients. Wattenbarger developed a method for maximizing withdrawals 

from a natural gas storage reservoir. 

 

Natural gas is commonly stored in underground reservoirs during the summer months 

and then produced during the winter to meet seasonal demands. This seasonal production 

can be maximized through optimal scheduling of the individual wells. Wattenbarger 

proposed a method for optimizing the withdrawal schedule problem using the linear 

programming format. In his case, the withdrawal schedule was optimized in the sense 

that no discretized withdrawal schedule can be specified for the finite difference model 

that will give greater total seasonal production while still meeting the constraints placed 

on the problem. One of the constraints of this problem requires that the wellbore 

pressure of each well not fall below a minimum value. Also, the total reservoir 

withdrawal rate at any time is limited to the demand rates. 

 

 All the work previously mentioned have been limited by the number of phases, the 

phase behavior or by the geometry and size of the reservoir model. An approach, which 

uses only the control variables explicitly for numerical optimization has been developed. 

He was involved in the study of optimal control in water flood reservoirs using reservoir 

simulation models. He developed a method for numerical optimization of the net present 

value of a natural water drive and water drive by injection. The method uses an areal 

two-phase reservoir simulator to calculate the net present value (NPV) of a 

waterflooding scheme. In his study, the variables subject to control were the well rates. 

The waterflooding scheme that maximized the net present value was numerically 

obtained by combining reservoir simulation with control theory practices of implicit 

differentiation. He was able to achieve improved sweep efficiency and delayed water 

breakthrough by dynamic control of the well flow rates. For the reservoir models he 

considered, there was a net present value improvement of up to 11%. 

 



18 
 

Brouwer and Jansen studied the optimization of water flooding with fully penetrating, 

smart horizontal wells in 2-dimensional reservoirs with simple, large-scale 

heterogeneities. They used optimal control theory as an optimization algorithm for valve 

settings in smart wells. The objective was to maximize the recovery or net present value 

of the waterflooding process over a period of time. In the study, they investigated the 

static optimization of waterflooding with smart wells. Static implies that the injection 

and production rates in the wells were kept constant during the displacement process, 

until water breakthrough occurred. They observed significant improvements from simple 

reservoir models. They however, observed that more improvements could be achieved 

by dynamic optimization of the production and injections. In a later study (Brouwer D. 

R. et al. 2002), they addressed this same problem using dynamic optimization in which 

case, the inflow control valves in the wells were allowed to vary during the 

waterflooding process. Waterflood was improved by changing the well profiles 

according to some simple algorithm that move flow paths away from the high 

permeability zones in order to delay water break-through. This was achieved by 

calculating the productivity index (PI) for each segment. For each well, the segments 

with the higher PI are shut-in and the rates are equally distributed among the other 

segments that are open in order to maintain the production rates. They repeated this 

process until the optimum flow profile is obtained. This optimum flow profile was found 

to occur when the ultimate oil recovery from a successive step is lower than that 

obtained with the preceding flow profile. 

 

Brouwer and Jansen investigated the optimization problem under two different scenarios 

of well operating conditions – purely pressure constrained and purely rate-constrained 

operating environments. They concluded that the benefit of smart wells under pressure-

constrained operating conditions was mainly the reduced amount of water production 

rather than increased oil production. On the other hand, wells operating under rate 

constraints gave an increased production and ultimate recovery as well as reduced water 

production. Their results show that water breakthrough is delayed from 253 days for the 
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base case to 658 days for the optimized case Lorentzen et al. also carried out a study on 

the dynamic optimization of waterflooding using a different approach from those 

described above. He carried out his optimization by controlling the chokes to maximize 

cumulative oil production or net present value. Their new approach uses the ensemble 

Kalman filter as an optimization routine. The ensemble Kalman filter was originally 

used for estimation of state variables but has been adapted to optimization in their work. 

In their optimization study, they demonstrated the use of the ensemble Kalman filter as 

an optimization routine on a simple 5-layer reservoir with different permeabilities.  

 

The above methodology provided by Lorentzen et al. avoids the use of the optimal 

control theory since no adjoint equations were needed and the model equations are 

treated as a “black box”. This methodology avoids one obvious disadvantage of the 

optimal control approach when used as a solution to optimization problems – it entails 

the construction and solution of an adjoint set of equations. These adjoint equations 

require an explicit knowledge of the reservoir model equations and also require 

extensive programming in order to implement them. This has been shown by Sarma and 

Aziz. 
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CHAPTER II 

 PROBLEM FORMULATION 

 

Because of its lower density, the injected CO2 predominantly moves upward until it 

reaches, and accumulates under, impermeable layers. During this upward movement, 

CO2 comes to contact with the resident brine triggering the dissolution trapping 

mechanism. The injected CO2 forms a migrating plume. At the leading edge of the 

plume, CO2 (non-wetting phase) displaces the brine (wetting phase) in a drainage 

process while at its tail water displaces CO2 in an imbibitions process. The imbibition 

process, due to capillary forces, results in trapping of the CO2 as an immobile phase in 

the pore spaces. Juanes et al. (2006) studied the hysteresis effect of saturation dependent 

relative permeability curves and concluded that it can have a significant contribution in 

CO2 storage. Since aquifers are typically heterogeneous and anisotropic migration of 

CO2 plume, and hence the amount of brine that comes to contact with it, depends on the 

distribution of aquifer hydraulic properties. Therefore, the CO2 trapped via solubility and 

residual trapping mechanisms depend on the flow property distribution in the aquifer. In 

addition, pore size distribution in different regions of an aquifer affects the distribution 

of residual trapping in different parts. Hence, the spatial variability in the reservoir 

hydraulic properties is quite important in the design of CO2 injection scenario. 

 

It is possible to maximize the sweep efficiency and storage capacity of CO2 in geologic 

formations by a controlled injection scenario. The current methods used in waterflooding 

optimization of oil reservoirs are NPV maximization (Brouwer et al., 2004; Sarma et al., 

2006) and streamline-based time-of-flight optimization (Alhuthali et al., 2007). When 

optimization of NPV is considered, the injection and production scenario is 

systematically adjusted to find a scheme that produces the maximum asset value for a 

given time interval. When arrival time optimization is used, the goal is to obtain a 

uniform sweep efficiency by equalizing the arrival time of the injected phase. An 



21 
 

important difficulty in calculation of arrival times in streamline simulation is the 

difficulties that arise in calculation of streamline for compressible compositional runs 

(such as modeling CO2 displacement). The method proposed in this paper is quite 

general and can be applied to both waterflooding optimization as well as CO2 

sequestration. We demonstrate the effectiveness of the proposed method by applying it 

to waterflooding and geologic CO2 sequestration examples following our discussion of 

problem formulation. 

2.1 OBJECTIVE FUNCTION 

The objective of our optimization algorithm is to improve sweep efficiency of the 

injected CO2 into heterogeneous saline aquifers, which in turn results in improve 

solubility and residual trapping. We achieve this objective by controlling the CO2 

injection rates in a manner that, despite the existing heterogeneities and preferential 

flowpaths, CO2 movement in the reservoir is more uniform.  In waterflooding of 

reservoirs, controllable dynamic well variables (such as bottomhole pressure, injection 

and production rates) are adjusted to optimize the performance of the field. Field 

performance (or the objective function of the optimization) can be formulated in terms of 

the response of the reservoir to input controls. A popular objective function is the 

economic profitability of the reservoir asset and is defined as its net present value, which 

is a function of the volume of injected and produced water, volume of produced oil, and 

other capital and operating costs. While cost is certainly an important consideration in 

geologic CO2 storage, our goal in this paper is to focus mainly on maximizing CO2 

trapping by enhancing solubility and residual trapping mechanisms. To this end, we 

maximize the CO2 spread in the aquifer by controlling the injection rate allocation. 

  

Flooding rate allocation is a strong function of the spatial distribution of reservoir flow 

properties. A uniform water rate allocation usually results in different water 

breakthrough times at different producers. Upon water breakthrough at a production well 

the water injected at the injection point is continuously produced until the production 
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well is economically non-profitable. In addition, production of the injected water by 

wells that experience earlier breakthrough results in additional operating (recycling) 

costs that can be reduced if water breakthrough is delayed. One suitable objective 

function to avoid early water breakthrough can be obtained by trying to equalize and 

delay water production at relevant production wells despite the existing reservoir 

heterogeneity in the field. Therefore, by optimally distributing the injected water 

(through injection rate control), water production rate at different production wells can 

be equalized and delayed. This objective leads to a more uniform sweep efficiency and 

more extensive sweep of the reservoir for a fixed amount of injected water. Therefore, in 

our formulation we define an objective function that achieves: i) uniform sweep, and ii) 

delayed breakthrough. 

 

Uniform sweep efficiency is obtained by minimizing a term in the objective function that 

penalizes the difference between water production rate at different producers. In 

addition, a second term is introduced to delay the water breakthrough. Figure 2.1 

illustrates the two components of the objective function. Figure 2.1a shows well 

watercut curves for different producers with different breakthrough times 1
bt , 2

bt , 3
bt , and 4

bt

Figure 2.1b shows the effect of minimizing water breakthrough differences at different 

production well. A uniform sweep, however, can occur early or late in the life of the 

reservoir. Since a later breakthrough (under constant total water injection) implies a 

better sweep efficiency, it is desirable to delay water production by including a term that 

minimizes field water production. Mathematically, the objective function is now 

expressed with two terms as follows: 
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Fig. 2.1- (a) Well watercut in a base case with uniform injection and production scenario 
where producers have different breakthrough times; (b) Well watercut curves for an 
optimized case in which uniform sweep is achieved and producers experience the same 
breakthrough time; (c) Well watercut curves for an optimized case in which the sweep 
efficiency is maximized and field water production is minimized, with the former 
resulting in equalized breakthrough times at all wells and  the latter delaying the 
breakthrough time. 
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( ) ( ) ( )1 2J J Ju u u= -

where t denotes the report times at which the objective function is calculated and 
simT

represents the total simulation time. The total  number of producers is denoted with Nw 

and the rate of water production at producer i is represented with wprod
iq . The decision 

variable of the optimization problem is denoted with the control vectoru , which in our 

examples consists of water injection rates winj
iq and total fluid production rates tprod

iq . The 

weight functions tF  and
tG are chosen to tune the contribution of the misfit terms and total 

field water production (i.e., the inner summation in the second term) at different time 

steps, respectively.  Since we intend to delay water breakthrough, the weights are chosen 

to exponentially decrease in time. This choice for the weights places significantly more 

importance on having equal water production rates at earlier times and less emphasis on 

deviations from equal water production rates later after breakthrough happens.  

 

As shown in Figure 2.1c, together the two terms of the objective function favor solutions 

that achieve a uniform and late water breakthrough at all wells. One could also include 

an additional term to favor solutions with lower overall cost (i.e., a higher NPV). In that 

case, the objective function will be of the form: 

 

(2.2) 
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representing the NPV. In the above equation, the costs of injecting and producing a unit 

volume of water are shown with 
winjr and

winjr , respectively, while the price per unit 

volume of oil is represented with
oprodr . The discount factor

discr is used to account for the 

time value of money in computing the NPV. In this paper, however, we set 0W =  which 

effectively removes the NPV terms and optimizes the 
1J term of the objective function. 
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With the above objective function the optimization problem can be expressed as:  
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where ( , )if x u , ( )ig u , and ( )ih u  are the flow equations, equality, and inequality constraints 

(linear or nonlinear) on the control variable. Examples of field constraints are injection 

/production bottomhole pressure, total or group injection/production rates, as well as 

economic constraints such as maximum well watercut. Of particular importance in CO2 

storage is to have a constraint that keeps the CO2 injection pressure below the fracture 

pressure of the aquifer rock by limiting the injection rate. In the examples of this paper, 

we have used a total injection/production constraint for waterflooding example and total 

injection volume constraint for the CO2 sequestration problem. The BFGS algorithm 

(Nocedal and Wright, 2006) is used to minimize the above objective function subject to 

the stated mass balance (flow) equations and total injection/production constraints. 

 

In the first part of the objective function which is as follow we expect a general behavior 

as shown in Figure 2.2. 

                                                                           (2.5) 
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Fig. 2.2- Increasing behaivior of the objective function (water production misfit) over 
the time. 
 

As you can see in the Figure 2.2 the misfit value has an increasing trend over the time 

and in the beginning the misfit is zero because in the beginning (before field 

breakthrough) non of the producers produce water. Therefore the objective function has 

higher values for later timesteps and this causes the optimization algorithm to focus on 

minimizing those values. The fact is that we want to have a uniform sweep efficiency 

which technically means that different producers will have the same breakthrough and 

for that we have to have higher weights on the misfit of water production in earlier 

timesteps.  

 

One idea is to use an exponential weight function over the entire weight function. This 

weight function could be as below: 
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As we experienced this type of weight function is very sensitive to the value of 

meaning that for different values of  we’ll get different solutions which provide the 

production values which are totally different from each other. Therefore we introduce 

another weight function together with the above weight function. This weight function 

attempts to first equalize the values of the misfit over the time and then we can apply the 

exponential weight function. Equation 2.7 shows the final weight function that we have 

used: 
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                                                                                                                (2.7) 

In which iR is the total misfit of water production rate over report time t.  

 

The weights of misfit terms play the role of the coefficients of the objective function and 

these weights should be constant at different iterations for each term of the objective 

function. Moreover the report times that the objective function is calculated must be 

uniform and constant during all the iterations. 

 

The other part of the objective function which is the field water production rate has the 

same behavior and we are applying the same type of the objective function for that. 
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CHAPTER III 

 APPLICATION OF THE METHOD IN WATERFLOODING 

OPTIMIZATION 

 

Among the methods that have been using in waterflooding we can name NPV 

optimization and arrival time optimization. In NPV optimization the revenue is 

maximized based on the total oil and water production, oil price and water injection and 

production cost and discount rate as shown in equation 3.1. 
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In the above equation, the costs of injecting and producing a unit volume of water are 

shown with winjr and winjr , respectively, while the price per unit volume of oil is represented 

with oprodr . The discount factor discr is used to account for the time value of money in 

computing the NPV. While cost is certainly an important consideration in geologic CO2 

storage, our goal in this paper is to focus mainly on maximizing CO2 trapping by 

enhancing solubility and residual trapping mechanisms. To this end, we maximize the 

CO2 spread in the aquifer by controlling the injection rate allocation. 

 

In arrival time optimization which uses streamline simulation, the arrival time of the 

particles (the time that it takes that a particle reaches to producer starting from injector) 

is maximized in an attempt to maximize sweep efficiency. 

 

As we discussed in previous chapter in our method we try to minimize the misfit of 

water production rate among the producers to achieve uniform sweep. In this chapter we 

show the results of applying this objective function in waterflooding optimization for a 



29 
 

3D synthetic model and for PUNQ-S3 model. The same models will be used in case of 

CO2 sequestration optimization. 

3.1 SYNTHETIC 3D MODEL 

The synthetic model is a 3D heterogeneous reservoir with three layers. Figure 3.1 shows 

the porosity and permeability distribution of the model. The locations of the injectors 

and producers are illustrated in Figure 3.2. The model contains a 13-spot well 

configuration with four injectors and nine producers.  

 

 

Fig. 3.1- Permeability (a) and porosity (b) distributions for the 3D synthetic model. 

 

 

 

 

  
 Fig. 3.2-Well configuration of the synthetic model. 

(a) 

(b) 
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In the following examples, we only minimize 
1J without considering the NPV term (

2J ). 

A summary of the oil and water properties is reported in Table 3.1 while other 

simulation details are summarized in Table 3.2.  

Table 3.1 PVT data for waterflooding examples 
 

 

 

 

 

Table 3.2 Reservoir and fluid properties for waterflooding examples 

 

  

0.063 0.0548 Gas density (lb/ft3) 

19 ×28×5 45 ×45×3 Reservoir dimensions 

5000 days 5000 days Total injection time 

4 4 No. of injectors 

4 9 No. of producers 

5 5 No. of control timesteps 

40 65 No. of control variables 

Inj. & prod. rate Inj. & prod. rate Type of control 

1 PV 1 PV Total injection constraint  

63.29 

52.1 

--------- 

4100 

5863.8 

4000 

8.10E-06 (at 5863.8psi) 

Synthetic Parameter PUNQ-S3 

Rock compressibility (psi-1) 3E-6 (at 14.7psi) 

Datum depth (ft) 2355 

Datum pressure (psi) 2000 

OWC depth (ft) 10000 

GOC depth (ft) 100 

Oil density (lb/ft3) 43.7 

Water density (lb/ft3) 62.43 

µ(cp) C (psi-1) B (bbl/STB)Pref (psi)  

0.29 3.44e-6 1.30500 2897.1 

0.31 3.3e-6 1.04 5863.8 

Oil 

Water  

PUNQ 

Oil 

Water  

Synthetic 

14.7 1.00 1.0e-5 1.00 

14.7 1.00 1.0e-5 2.00 



31 
 

Figure 3.3 displays saturation-dependent oil and water relative permeability functions for 

this experiment.  

 

 

 

 

 

 
Fig.3. 3- Water and oil relative permeability as a function of water saturation. 

 

Water saturation plots for the base and optimized cases after 30 and 36 months (end of 

simulation) are depicted in Figure 3.4. The improvement of the sweep efficiency in the 

optimized case over the base case is apparent. As discussed earlier a uniform sweep 

leads to producers having similar breakthrough times.  
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Fig. 3.4- Water saturation for the synthetic model after 30th (a) and 36th (b) months. In 
each case the results for the base case (top row) and optimized case (bottom row) are 
shown. 
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(b) (a) 

(c)

Figure 3.5a shows well watercut plots for the base case (corresponding to the initial 

solution of optimization) while Figure 3.5b display the same plots after optimized. The 

corresponding field watercut plots are shown in Figure 3.5c.  

 

 

 

 

 

 

 

 

 
 
Fig. 3.5- Watercut curves for the synthetic model: Well watercut curves for the base case 
and the optimized case are shown in (a) and (b), respectively, while field watercut plots 
are shown in (c). 
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It is evident from these figures that the base case breakthrough times vary from less than 

10 months to around 20 months. After optimization, however, all breakthrough times 

occur almost at the same time (20 months) indicating the effectiveness of the objective 

function in both equalizing and delaying breakthrough times. A similar behavior is 

observed in the field breakthrough time (Figure 3.5c). The effect of sweep efficiency 

optimization and delayed breakthrough time on the total oil and water productions is 

shown in Figure 3.6. Figure 3.6a shows the total (field) water production while Figure 

3.6b displays the total (field) oil production for the base and optimized cases. The 

substantial decrease (increase) in the water (oil) production confirms the positive impact 

of the proposed objective function on overall recovery from the field. 

 

 
Fig. 3.6- Production plots for the base and optimized cases clearly show the advantage of 
optimization: total water and oil production plots are shown in (a) and (b), respectively.  
 

 

 

 

 

(a) (b) 
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3. 2 PUNQ-S3 

Our second example is based on a waterflooding experiment in the PUNQ-S3 model, a 

3D heterogeneous reservoir with five layers that was originally published in (see PUNQ-

S3 website). A three-phase black-oil simulation with oil, water, and gas as existing 

phases is considered. Figure 3.7 illustrates the well configuration for the waterflooding. 

The permeability and porosity distributions for the all layers are shown in Figures 3.8a 

and 3.8b, respectively. When CO2 sequestration is considered, the injectors are 

perforated only in the bottom most layer to increase CO2 contact with resident brine 

during the density-driven upward movement of CO2. To simulate an open boundary 

reservoir for CO2 sequestration an aquifer is simulated on the boundary of the bottom 

most layer. The aquifer is chosen to be in the bottom layer to prevent its effect on 

trapping CO2 since the gas moves to upper layers. The only role of the open aquifer is to 

prevent extreme pressure increases. Bulk injection of CO2 into closed saline aquifers 

may results in pressure buildup that exceeds fracture pressure and can compromise the 

integrity of aquifer seal.  

 

Fig. 3.7- Well configuration for the PUNQ model under waterflooding. 
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

  

Layer 1 Layer 2 Layer 3 

 

Layer 4 Layer 5 

Fig. 3. 8- Permeability (a) and porosity (b) distributions for different layers of the PUNQ 
model.  
 

For the PUNQ model, we minimize the objective function
1J in Equation 2.1. Tables 3.1 

and 3.2 contain the fluid properties and other simulation information for waterflooding 

experiment with the PUNQ and the 3D synthetic model.  

 

Figure 3.9 presents the pressure-dependent formation volume factor and viscosity of the 

gas phase (3.9a and 3.9b, respectively). In Figure 3.9c the relative permeability curves 

for each phase are shown as a function of water saturation.  

  

                      0.01065                                                        0.08275                                                      0.15484                                                        0.22694                                                        0.29903 

1                                                                  250                                                              500                                                               749                                                               999 

(a) 

(b) 
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Fig. 3.9- Formation volume factor (a) and viscosity (b) of the gas phase as function of 
phase pressure for the PUNQ model under waterflooding.  The water, oil, and gas 
relative permeabilities as a function of water saturation are displayed in (c). 
 

The optimization results are displayed in Figures 3.10 through 3.12. Figure 3.10 shows 

the water saturation maps in all layers after 4000 (3.10a) and 5000 (3.10b) days.  

 

  

water oil gas

Water saturation, Sw 

R
el

at
iv

e 
p

er
m

ea
b

ili
ty

, K
r 

(c)

(a) (b)

B
g
, f

t3 /s
cf

 

Pressure, psi Pressure, psi

G
as

vi
s

co
si

ty
,c

p



38 
 

     0.30958                                                      0.39323                                                          0.47689                                                        0.56054                                                         0.64419 
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Fig. 3.10- Water saturation for the PUNQ model after 4000 (a) and 5000 (b) days. In 
each case the results for the base case (top row) and optimized case (bottom row) are 
shown. The sweep efficiency in optimized case is clearly improved relative to the base 
case. 
 

The improvement in the case of maximized sweep efficiency is evident from a visual 

inspection of the results. Figure 3.11 confirms that the breakthrough happens almost at 

the same time for all the producers, implying that the injected water is uniformly 

distributed within the reservoir. In the optimized case, the field breakthrough is delayed 
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(b)(a) 

(c)

by more than 1000 days. The uniform and delayed breakthrough results in increased 

total oil production and reduced total water production as shown in Figure 3.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.11- Watercut curves for the PUNQ model: Well watercut plots for the base case 
and the optimized case are shown in (a) and (b), respectively, while field watercut curves 
are displayed in (c). The figures clearly illustrate that watercut occurs at almost the same 
time and at a delayed time 3000 days (compared to the base case of 1600 days). 
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As we saw in the above examples this new method of sweep efficiency optimization is 

capable of providing optimal trajectories which results in uniform sweep efficiency 

through minimizing the misfit of water production rate and delaying the field 

breakthrough. It must be mentioned that any type of constraints could be applied in the 

algorithm of the optimization including constraints on production quantities (water cut, 

water production rate, BHP etc) and the constraints on the controls (injections and 

production rates and BHPs).  

 

In next chapter we will use the same algorithm to optimize the CO2 storage into saline 

aquifers. Since in CO2 sequestration no production happens we have to do some 

adjustments to be able to use the developed algorithm. 

  

Fig.3.12- Production plots for the base and optimized cases illustrating the advantage of 
optimization: total oil (a) and water (b) production plots are shown.  

(a)  (b)  
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CHAPTER IV 

 APPLICATION OF THE METHOD IN CO2 SEQUESTRATION 

OPTIMIZATION 

The methods that have been recently proposed to accelerate CO2 sequestration are based 

on brine injection (Keith et al., 2005; McMillan and Bryant, 2007; Leonenkoy and Keith, 

2008; Hassanzadeh et al., 2009; Anchliya et al., 2010). The effect of simultaneous CO2 

and brine injection and also water-alternate-gas systems have been studied by several 

authors (Juanes et al., 2006;  Sifuentes et al., 2009; Anchliya et al., 2010). These 

methods can affect both residual and solubility trapping. Introducing fresh brine into 

regions of the aquifer that are saturated with CO2 increases the dissolution and residual 

trapping. Hassanzadeh et al. (2009) studied the effect of including brine injectors to 

accelerate the solubility mechanism. They showed that brine injection can potentially 

accelerate CO2 dissolution in saline aquifers and therefore reduce the risk of CO2 

leakage. Leonenkoy et al. (2007) also suggested a top-hat model in which brine injection 

starts when CO2 injection stops. The brine producers are placed far from the injectors to 

prevent production of CO2-rich brine. A particularly important problem in improving 

CO2 storage capacity in large scale heterogeneous field problems is allocating optimal 

injection rates based on the long term performance of the aquifer given the existing 

heterogeneity in hydraulic properties. 

 

In this chapter we present the application of the developed method to improve sweep 

efficiency of the injected CO2 into heterogeneous saline aquifers. The objective is to 

accelerate solubility and residual trapping by optimizing injection rate allocations based 

on the existing heterogeneity in the hydraulic aquifer properties and the intrinsic 

physical properties of the CO2 sequestration problem. Aquifer heterogeneity exists in 

multiple scales, each with their respective uncertainty and influence on the flow and 

transport regime (IPCC, 2005). Heterogeneities can affect various aspects of the design 

and monitoring of permanent CO2 storage in deep saline aquifers. Particularly important 
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in determining the global flow regime is the large scale structural continuity and layering 

of aquifer formation. Small-scale or local heterogeneity also plays an important role in 

CO2 transport and trapping behavior (Bryant et al., 2006). It has been observed that as 

the heterogeneity of the aquifer increases, capillarity effects become more dominant 

during the buoyant CO2 displacement, leading to enhanced dissolution and residual 

trapping (Bryant et al., 2006). These important properties of flow and transport in 

heterogeneous aquifers calls for an optimal well placement and injection rate allocation 

design to maximize the sweep efficiency of CO2 and increase the storage capacity of 

aquifers. In this chapter, we study the rate allocation optimization problem and develop a 

new algorithm to improve the sweep efficiency of the injected CO2.  

 

The goal of our optimization formulation is to maximize permanent storage of CO2 in 

heterogeneous geologic formations. The target trapping mechanisms in our study are 

dissolution and residual trapping, which we strive to achieve by adjusting injection rate 

allocations by accounting for aquifer heterogeneity. Since in CO2 sequestration the main 

focus is on injecting CO2 into the formation, there may not be any production wells in 

the field. Hence, our problem formulation that relies on the breakthrough curves need to 

be modified for application to CO2 storage problems. We introduce the concept of the 

pseudo wells to apply our problem formulation to CO2 storage problems. 

 

Pseudo production wells are producers with very small (negligible) total fluid production 

rate introduced in the flow simulation with the purpose of aiding the optimization 

processes. The production rates at these producers are chosen to be too small to have an 

influence on the overall flow regime. In our case, the producers are used to indicate the 

arrival of CO2 (and its fractional production rate), which can be used to equalize 

production rates at all producers and to delay CO2 breakthrough. Since the pseudo wells 

do not exist in the real reservoir, the user can have flexibility in choosing their location 

based on the objective of the project. Once pseudo wells are introduced, the proposed 

formulation can be easily applied to CO2 storage problem. Similar to the waterflooding 
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problem, the objective here is also to maximize the sweep efficiency by mobilizing the 

injected CO2 uniformly in all directions and exposing a larger volume of fresh brine to 

the CO2 plume, leading to an enhanced solubility and residual trapping. As such, the 

problem formulation in Equations (2.1)-(2.4) remain unchanged (except for the pseudo 

wells replacing the production wells).  We illustrate the effectiveness of the method by 

comparing this method with direct maximization of the stored gas. In this case the 

objective function will be defined as follow: 

 

                                                                                                                                     (4.1) 

Table 4.1 and 4.2 summarizes some optimization and simulation properties for the two 

models we use. 

 

 
Table. 4.1- Reservoir and fluid properties for CO2 storage. 

 

 

 

 

 

 

 

 

 
 
 
 
 

StoredGas ResidualGas DissolvedGas 

Parameter Value

Reservoir temperature 40°C 

Rock compressibility 5e-5 

Datum pressure 89.2 atm 

Number of components 3 

Maximum residual gas saturation 0.4 

Residual water saturation 0.31 

Reference density of solid phase1 2650 kg/m3  

 H2O CO2 NACL 

Total mole phase fraction 0.9 0.0 0.1 

Water diffusion coefficients 0.0001 0.0001 0.0001 

Gas diffusion coefficients 0.001 0.001 --------- 
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Table. 4.2- General simulation information for CO2 storage. 
 

 

 

 

 

 

 

 

 

4.1 SYNTHETIC 3D MODEL 

The pseudo well configuration for this model is illustrated in Figure 4.1. We examine 

two different optimization methods. First, sweep efficiency optimization similar to the 

method used for waterflooding optimization. The second method directly optimizes the 

total stored CO2 in the aquifer. In this study by free gas we mean the mobile gas which is 

neither dissolved nor trapped as residual gas. The optimization goal is to have the 

minimum free gas or in our case the maximum dissolved and residual gas. There are 

three cases that will be compared together. The base case is the initial solution for the 

optimization in which the total amount of injection is uniformly distributed between the 

injectors.  

0.0075 PV 0.0110 PV Total CO2 extracted  

6.32e-6 PV 2.55e-4 PV Total brine extracted (constraint) 

0.52 PV 0.61 PV Total CO2 injected (constraint) 

Injection Injection Type of control 

20 20 No. of unknowns 

5 5 No. of control timesteps 

4 7 No. of pseudo-producers 

4 4 No. of injectors 

30 years 10 years Total injection time 

19 ×28×5 45 ×45×3 Reservoir dimensions 

PUNQ Synthetic Parameter 
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Fig. 4.1- Pseudo well configuration of the synthetic model. 

 

Figures 4.2a-4.2c show the free gas saturation for the base case, maximized stored CO2, 

and maximized sweep efficiency, respectively. It is important to note that the reported 

saturation profiles are obtained without assuming the presence of any pseudo wells 

(while the optimization is carried out using the pseudo wells).  
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(a) Base case (b) Maximized stored gas (c) Maximized sweep 

efficiency  
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Fig.4.2- Well configuration (a) and free gas saturation for the base case (b) and 
maximized stored gas (c) and maximized sweep efficiency (d) for CO2 storage after 100 
years (second row), 150 years (third row), and 200 years (fourth row). The two 
optimized cases show less free gas relative to the base case; maximizing sweep 
efficiency results in an overall better spread of CO2. 
 

The optimized cases contain less free gas than the base case does. It is also clear from 

the results that the sweep efficiency optimization leads to a more uniformed distribution 

0.0000                                      0.12109                                     0.24218                                       0.36326                                     0.48435 
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of the injected CO2, thereby enhancing the residual and solubility trapping more than 

maximization of the stored CO2 can achieve.  

  

 

 

 

 

 

 

 

  

 

 

 

Fig .4.3- Pseudo well gas production rates before (a) and after (b) sweep efficiency 
optimization with the synthetic model; the resulting dissolved and residual CO2 for the 
base case and after maximizing the stored CO2 and sweep efficiency are shown in (c) 
and (d), respectively.  
 

Figures 4.3a and 4.3b show the gas production rates at the pseudo wells before and after 

optimization, respectively. It is clear that the arrival time of CO2 is delayed. However, it 

can also be observed that the arrival times at different wells are not equalized. This is 

mainly attributed to the higher mobility and lower density of the gas phase that 

constrains the global movement of CO2 in the aquifer. These effects, coupled with the 

(c)  (d) 

(a)  (b) 
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limited controllability that is available in CO2 storage problems (due to the gap between 

control and simulation time-scales) provide the main explanation for the variability in 

the CO2 breakthrough times at different pseudo wells. Nonetheless, the optimization 

outcomes are markedly more desirable than those for the base case.  

 

Figures 4.3c and 4.3d display the dissolved and residual gas for the base case, and two 

optimization cases (maximized stored CO2, and maximized sweep efficiency). The 

improvements in the trapped residual and dissolved gas for the optimized cases relative 

to the base case are clearly visible in Figure 4.3. 

 

In Figure 4.4, the optimal injection scenarios (trajectories) for the two optimization 

methods are shown. Clearly, the trajectory for each optimization method is different. In 

maximizing the sweep efficiency, Injector 1 is assigned the highest rate among all 

injectors at all timesteps. This injector is located in a high porosity region and is exposed 

to a high storage capacity. Hence, more gas is injected from Injector 1 into the top-left 

quadrant to achieve a more uniform sweep. Injector 4, on the other hand, has the lowest 

injection rate at all the timesteps. This injector is located in a low porosity area with little 

storage capacity; therefore, the injected gas covers the corresponding (bottom-left) 

quadrant of the domain rapidly. For a better sweep efficiency and similar breakthrough 

time, the corresponding injection rate must be sufficiently small to spread the CO2 plume 

proportionally. Injectors 2 and 3 are assigned medium injection rates mainly because 

these two regions have mid range porosity and permeability values. 

 

When stored CO2 is maximized Injector 1 is again given the highest injection rate 

initially, because this injector is located in a region with high storage capacity. Unlike 

the sweep efficiency optimization, the injection rate of this injector decreases in time 

possibly because after a high CO2 volume is injected in this region less storage capacity 

remains to store CO2, resulting in lower injection rates at later time steps. Injector 4 has 

the smallest rate with and increasing trend in time. A possible justification for the 
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increased injection rate with time is that other injectors have higher rates and tend to 

utilize the storage capacity of their corresponding quadrants early during the simulation; 

at later times, Injector 4 has more storage capacity available relative to other injectors, 

which explains the increasing trend. 

 

 

 

 

 

 
 
 

Fig. 4.4- Optimal injection scenario (trajectory) after maximizing sweep efficiency (a), 
and stored gas (b) for the synthetic model. 

4.2 PUNQ-S3  

Figure 4.5 shows the position of the injectors and the pseudo producers in the PUNQ 

model. The injectors are perforated in the bottom most layer and since the gas moves 

upward to the top most layer the pseudo wells are perforated in the top most layer.  

 

 

 

 

 

Fig. 4.5-Pseudo well configuration of the PUNQ model. 
 

(a)  (b) 
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It has been shown in the literature that the size of the gridblocks is important in 

capturing the exact behavior of CO2 (Juanes et al., 2006; Sifuentes et al., 2009). 

Therefore, it is important to use a reasonable gridsize, especially closer to CO2 injectors 

where steeper changes are expected; otherwise, the simulation results may suffer from 

numerical errors in estimation of CO2 saturation and be unreliable (Hassanzadeh et al., 

2009). This effect is more pronounced during and shortly after the CO2 injection period 

where the dominant mechanism is two-phase flow displacement, mainly because 

resolving the fingering effect (convection) requires high spatial resolution. Low spatial 

resolution may lead to overestimation of dissolution due to numerical smearing 

(numerical diffusion) at the CO2 front. For our purpose, we used a 2 by 2 by 1 

refinement of the original PUNQ model. The total injection time is 30 years and we 

inject about 50% of the pore volume of the reservoir. The total injection time is 30 years, 

which is divided into 5 equal timesteps. In each timestep there are 4 control variables 

(injection rates) and a total of 20 unknowns (controls) for the 5 optimization timesteps. 

 

Figure 4.6 shows the free gas saturation for the base case, maximized stored CO2 and 

maximized sweep efficiency, respectively, for all the layers of PUNQ model after 500 

years. The optimization methods lead to less free gas at the end of simulation, implying 

that more gas is stored in the form of residual gas and dissolved gas. It is also evident 

that maximizing sweep efficiency leads to better results (less free gas). 
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(d) Maximized 
sweep efficiency  

L
ay

er
 1

 

   

L
ay

er
 2

 

   

L
ay

er
 3

 

   

L
ay

er
 4

 

   

L
ay

er
 5

 

   

Fig. 4.6- Optimization results for CO2 sequestration with the PUNQ model: (a)  
saturation-dependent CO2 and brine relative permeability curves (Kilough’s model is 
used for hysteresis);  free CO2 saturation for the base case (b), maximized stored gas (c) 
and maximized sweep efficiency (d) are displayed. Less free gas is observed for the two 
optimized cases and maximization of sweep efficiency results in the least free gas. 
 

(a) 
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Figures 4.7c and 4.7d show the total dissolved and residual CO2 trapping, respectively,  

which can be used to confirm improved results for the maximized sweep efficiency case. 

Figure 4.8 shows the optimal injection scenario for the two optimization methods 

considered.  

 

Figures 4.7a and 4.7b display the gas production rates at the pseudo wells before and 

after sweep efficiency optimization. The breakthrough of CO2 happen at almost the same 

time at all wells and is delayed from about 10 years to more than 60 years. 

 

 

 

 

 

 

 

 

                                                                      

 

 

 

Fig. 4.7- Pseudo well gas production curves before (a) and after (b) sweep efficiency 

optimization with the PUNQ model; the resulting dissolved and residual CO2 for the 

base case and after maximizing the stored CO2 and sweep efficiency are shown in (c) 

and (d), respectively.  

(a)  (b) 

(c)  (d) 
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In the PUNQ model, the injected gas has a tendency to move upward and accumulate as 

free gas phase under the anticline structure on the top layer. Maximizing the sweep 

efficiency aims at distributing the CO2 in a larger area of the reservoir and impeding the 

upward movement and accumulation of CO2 under the cap rock. In the adopted well 

configuration (see Figure 4.5), Injector 4 is very close to the anticline and is located in a 

highly permeable path extending to the anticline. This is expected to affect the optimal 

solution of the sweep efficiency optimization by assigning low injection rates to this well 

at all timesteps (as can be verified in Figure 4.8a). On the other hand, Injector 1 is 

farthest from the anticline and is not connected to the anticline through a high 

permeability streak, which results in delayed breakthrough and, therefore, a higher 

injection rate assigned to it. Injector 2 is the second farthest well from the anticline and 

is assigned relatively high injection rates. The optimal injection rate for Injectors 1 and 2 

gradually decrease in time mainly because the initial high injection rates consume the 

storage capacity in those regions. 

 

In maximizing the stored CO2 (Figure 4.8b) the algorithm targets the storage capacity of 

different portions of the reservoir. Since Injector 4 is located in a high porosity region 

the optimization algorithm chooses a relatively high rate for this injector with a 

decreasing trend at later timesteps. The decreasing behavior can also be explained by the 

proximity of this well to the anticline. Injector 2 is also located in a high porosity region 

and is far from the anticline; hence, a relatively high injection rate is assigned to it 

throughout the injection period. Finally, Injector 1 is farther from the anticline (with a 

combined low permeability and physical distance), had is given a steady high injection 

rate. 
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Fig. 4.8 Optimal injection scenario (trajectory) after maximizing sweep efficiency (a), 
and stored gas (b) for the synthetic model. 
 

As we saw in this chapter, the new method of sweep efficiency optimization can enhance 

the storage of CO2 through improving residual and solubility trapping. The two methods 

of CO2 storae optimization provide different solutions because the objective functions 

have been defiened in different ways. In case in sweep efficiency optimization we saw 

that the gas production curves cannot follow that uniform behavior as they did in case of 

water flooding. The three below reason could be stated for this issue: 

1- Higher mobility ratio in water-gas system comparing with water-oil system: 

Since the mobility of gas is very high the controllability of the system will be less 

meaning that the injection rates have less effect on managing the behavior of the 

gas. 

2- No production control in CO2 sequestration optimization: In waterflooding rather 

that the injectors we have controls on producers but in CO2 sequestration there is 

no producers. 

3- Difference between the timescale of controls and the objective function: We 

define the objective function during the whole simulation time but the impact of 

the controls (injection rates) are only during the injection period. 

  

(a)  (b)
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CHAPTER V 

CONCLUSIONS 

 

In this study a new optimization algorithm for maximizing the sweep efficiency of CO2 

injection into heterogeneous saline aquifers or reservoirs. The proposed method is 

applicable to optimization of sweep efficiency in both waterflooding and CO2 

sequestration projects. The general idea is to find optimal injection/production scenarios 

that lead to delayed and equalized breakthrough times in all production or monitoring 

wells. In the case of CO2 sequestration, pseudo production wells with very small 

(negligible) production rates (to avoid disturbing the overall flow regime) are placed in 

the aquifer to quantify the breakthrough of injected fluid at selected locations. The 

objective function in waterflooding optimization is the misfit between water production 

rates (to equalize breakthrough times) augmented by a term to minimize the total field 

water production (thereby delaying water breakthrough). This objective function is 

minimized by controlling the injection and production rates or well bottomhole pressures 

depending on problem setup. The application of this method to waterflooding 

experiments in a 3D synthetic model and a more realistic formation (PUNQ model) has 

shown that the new method can successfully achieve a uniform sweep efficiency, 

resulting in equalized and delayed breakthrough times. The synthetic model allowed for 

introduction of a well grouping concept to better implement the algorithm while the 

PUNQ model offered an opportunity to evaluate the performance of the optimization 

algorithm in a highly heterogeneous formation where well placement and grouping is not 

obvious. 

 

The introduction of pseudo wells in CO2 sequestration allows us to apply the proposed 

algorithm to geologic CO2 storage problems. The CO2 sequestration problem has distinct 

properties that distinguish it from waterflooding problems. Among these important 

differences, the sharp density contrast between the brine and injected CO2 leads to a 
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dominant upward migration of the CO2 plume from the injection point to the top layer of 

the aquifer. The dominant upward flow regime constrains the ability of the optimization 

problem in achieving good sweep efficiency and mobilizing CO2 plume in the lateral 

direction. In addition, since the time-scale of CO2 injection period (which is also the 

control time) is orders of magnitude less than the time it takes to achieve permanent 

storage (which needs to be simulated in calculating the desired objective function), there 

is a small scope (and time interval) for controlling the storage performance of the aquifer 

far into the future. Despite these challenging aspects of optimizing sweep efficiency and 

performance of CO2 storage we obtained significant improvement in improving 

solubility and residula trapping by improving the sweep efficiency. 

 

Overall, successful application of the proposed optimization method to two 

heterogeneous models in this paper suggests that that an optimal rate allocation can 

mitigate the challenges in increasing the storage capacity of saline aquifers when a 

reliable model exists to capture the heterogeneity in aquifer properties. Generation of 

such predictive models would require integration of various sources of data from static 

well measurements to dynamic monitoring data, tracer test data, and time-lapse seismic 

surveys.  Once a reasonable predictive model is constructed, the optimization approach 

proposed in this paper can be used to guide the injection rate allocation problem in large 

scale field applications where several injection wells may be used to store CO2 in 

complex geologic formations. The complexity associated with heterogeneity and spatial 

variability of aquifer transport properties at several scales, together with the 

inaccessibility and high cost of direct sampling, leads to significant uncertainty and 

systematic errors in subsurface characterization studies, hence modeling CO2 

displacement behavior. An important addition to the proposed problem formulation 

currently under investigation is accounting for the uncertainty in the description of 

subsurface heterogeneity, which can be quite significant in realistic problems. 
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