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ABSTRACT 
 

 

 

Adhesive Contact of a Conical Frustum Punch with a Transversely Isotropic or an 

Orthotropic Elastic Half Space. (December 2010) 

Chunliu Mao, B.S., Harbin Engineering University, Heilongjiang, China 

Chair of Advisory Committee: Dr. Xin-Lin Gao 

 

The adhesive contact problems of a conical frustum punch indenting a 

transversely isotropic elastic half space and an orthotropic elastic half space are 

analytically studied in this thesis work. To solve the problem involving a transversely 

isotropic half space, the harmonic potential function method and the Hankel transform 

are employed, which lead to a general closed-form solution for the adhesive contact 

problem. For the case with an orthotropic half space, the problem of a point load applied 

on the half space is first solved by using the double Fourier transform method. The 

solution for the adhesive contact problem is then obtained through integrating the former 

solutions over the punch surface.  
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CHAPTER I 

INTRODUCTION 

1.1. Background 

Solutions of contact problems have played an important role in many 

applications. In 1882, Hertz [1] developed a theory for spherical elastic bodies in contact 

under a pair of compressive forces, in which a half-ellipsoidal pressure distribution in 

the contact zone is assumed. However, Hertz’s theory does not consider the adhesive 

interactions between the two contacting bodies inside and outside the contact zone. The 

other is that, the interaction outside the contact zone is not considered. Bradley [2] 

studied the adhesive contact between two contacting spheres by considering surface 

deformations. However, the surface energy and strength of the adhesion are not always 

directly related due to different geometries and other prescribed conditions. 

Johnson et al.[3] developed an adhesive contact model, known as the JKR 

model, by considering the energy balance of the strain energy, potential energy and 

surface energy. The interacting force inside the contact area is shown to be larger than 

the one calculated using the Hertzian contact model.  

Derjaguin et al.[4] proposed an adhesive contact model, called the DMT model, 

by introducing the molecular forces outside the contact region but assuming the Hertzian  
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pressure distribution inside the contact zone. Both the JKR and DMT models have their 

limitations. The DMT model can be used for hard solids with low surface energy while, 

the JKR model fits soft materials with high surface energy better, e.g., Muller et al.[5]. 

This means that there should be a transition between the JKR and DMT models. 

Maugis [6] developed a transition model, known as the MD model that bridges 

the JKR and DMT models. 

A unified treatment of these and other existing contact models has recently been 

proposed by Zhou, Gao and He [7].  

The three representative adhesive contact models, the JKR, DMT and MD 

models, have been used to study various indentation problems along with the non-

adhesive contact theory of Hertz. 

These models for isotropic materials are extended in the current thesis work to 

solve the contact problems of a conical frustum punch indenting an elastic half space 

that is transversely isotropic or orthotropic. 

1.2. Motivation  

The adhesionless contact problem of a flat-end conical punch indenting an 

isotropic elastic half space has been solved by Ejike [8]. However, the adhesive contact 

problem of a conical frustum punching a transversely isotropic or orthotropic elastic half 

space has not been solved. This motivated the current thesis work.  

1.3. Organization 

The detailed organization for the rest of the thesis is: 

In Chapter II, the adhesive contact problem of a conical frustum punch with a 



3 

 

transversely isotropic half space has been analytically studied. The Hertz contact has 

been formulated by introducing both displacement and stress methods. In the 

displacement method, two harmonic potential functions are used, while in the stress 

method, one harmonic potential function is used. In order to solve the expressions of the 

normal displacement, radial displacement, normal stress and total force in terms of those 

potential functions, the Hankel transform method is used in both displacement and stress 

methods. Then, a solution of the Boussinesq contact problem of a rectangular punch 

involving a transversely isotropic elastic half space is obtained by considering an 

external crack near the punch edges. According to the superposition principle, the MD 

adhesive contact model of the prescribed problem has been approached and the 

expressions of the penetration depth, normal stress on the plane 0z , the normal 

displacement on the plane 0z and the total force are obtained. 

In Chapter III, the adhesive contact problem of a conical frustum punch with an 

orthotropic elastic half space has been solved. The problem of a point load applied on the 

half space is first solved by using the double Fourier transform method. Then, the 

adhesive contact solution of a conical frustum punch indenting a general orthotropic 

elastic half space is studied by assuming the pressure distribution of the JKR model.  
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CHAPTER II 

ADHESIVE CONTACT OF A CONICAL 

FRUSTUM PUNCH WITH A 

TRANSVERSELY ISOTROPIC ELASTIC 

HALF SPACE 

2.1. Introduction 

Elliott [9,10] studied the adhesionless contact problem of a transversely isotropic 

material indented by a conical, spherical or cylindrical punch by using a displacement 

formulation and the Hankel transform method. Hanson [11] further investigated the 

indentation of a transversely isotropic material by a conical punch by considering both 

the normal and tangential loadings. However, the adhesive interactions were not 

considered in [9-11]. 

Chen et al. [12] proposed a non-slipping JKR model for a transversely isotropic 

cylinder in contact with a dissimilar transversely isotropic elastic half space. However, 

the problem studied in [12] is only a plane strain problem. 

Espinasse et al. [13] studied adhesive contact problems of transversely isotropic 

materials by extending the JKR and DMT models. But only a spherical punch is 

considered. 

In this chapter, the adhesive contact problem of a conical frustum punch 

indenting a transversely isotropic elastic half space is studied. In Section 2.2, by using 
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displacement and stress methods, the closed-form solutions of the Hertz contact for the 

normal stress, the radial displacement, the normal displacement and total pressure are 

obtained. The Boussinesq contact problem of a rectangular punch is studied due to the 

singularity of an external crack near the punch edges. In Section 2.3, according to the 

superposition principle, the adhesive contact problem can consist of the Hertz contact 

and the Boussinesq contact problems, which are detailed in Section 2.4. Finally in 

Section 2.5, numerical results are shown by using selected transversely isotropic and 

isotropic materials. 

Figure 2.1 schematically shows the adhesive contact of a rigid conical frustum 

punch with an elastic half space. The cylindrical coordinate system (r, θ, z) shown will 

be used. Under an external force P , the depth of penetration δ is reached by the punch 

whose profile is )(rf . The flat-end radius of the punch and contact radius are ba  and a , 

respectively. As indicated in Fig.2.1,  is the half-included angle of the conical frustum. 
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Fig. 2.1. Adhesive contact of a conical frustum punch with a transversely isotropic elastic half space 

 
 
 
The boundary conditions for this adhesive contact problem are 
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The conical frustum punch profile is, 
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2.2. The Hertz Contact for a Conical Frustum Punch 

2.2.1 Displacement Method 

The Hertz contact theory considers the contact problem without including any 

adhesive interaction. As a result, the configuration for the Hertz contact problem (see 

Fig.2.2) is different from that for the adhesive contact problem (see Fig.2.1). 
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Fig. 2.2 Hertz contact of a conical frustum punch with a transversely isotropic elastic half space 
 
 
 

For a transversely isotropic elastic half space (with 0z  ), the stress-strain 

relations in the cylindrical coordinate system are given by Lai[14], 
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The strain-displacement equations in the cylindrical coordinate system are, 



9 

 

                

1
, ( ), ,

1 1
( ),

2

1
( ),

2

1 1
( ).

2

r z
rr r zz

z
z

r z
rz

r
r

uu u
u

r r z

u u

z r

u u

z r

u uu

r r r







 


  










 
   
  

 
 

 

 
 

 


  

 

                        (2.4) 

The current indentation problem is axi-symmetric with 

0u  , ( , )r ru u r z , ( , )z zu u r z . Hence, Eq.(2.4) reduces to, 
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For the axi-symmetric problem with 0, 0,r z    and other ( , ),ij ij r z  the 

equilibrium equations (in the absence of body forces) are given by, 
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By using Eqs. (2.3) and (2.5) into Eq.(2.6), the equilibrium equations can be 

written in terms of the displacements as 
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Following Elliott [9], the displacements ru and zu can be taken to have the form, 
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where ( , )r z   and k is a constant. 

inserting Eq. (2.8) into Eqs. (2.7 a,b) yields 
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For eqns (2.9) and (2.10) to have a non-trivial solution, it is required that  
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which gives, 
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Eq.(2.11b)can be rewritten as,  
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which is a quadratic equation for k . Eq.(2.11b) can also be represented by  
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l
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Eq.(2.13a) can be rewritten as  

2

11 44 13 44 13 11 33 33 44[ (2 ) ] 0,c c l c c c c c l c c                                                  (2.13b) 
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which is a quadratic equation for l . 

Three possibilities can be considered for the roots of either Eq.(2.12) or equation 

(2.13): two distinct real roots; two identical real roots and two distinct complex roots. 

For the case of two distinct roots, the displacement method is used to solve the problem, 

while for the case of two identical roots, the stress method is chosen to solve the problem. 

From Eqs.(2.10) or (2.11), it then follows that for each root il  of Eq.(2.13b), the 

solution ( , )r z satisfies 

2
2

1 2
( ) 0 ( 1,2),i il i

z
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In terms of ( , )i r z , the displacements given in Eq.(2.8) can now be expressed 
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where 1k and 2k are the two roots of Eq.(2.12) 

Using Eqs.(2.16a,b) and (2.5) in Eq.(2.3) then yields 
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Define the potential functions i by using Hankel transform below, 
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where, )(0 rJ  is the zeroth-order Bessel function of the first kind, ( )i iG z  are two 

functions yet unknown and  

                                   i

i

z
z

l
                                                                     (2.17b) 

using Eq. (2.17)  in Eq.(2.14) gives, 

3

0
0

[ ( ) ( )] ( ) 0i i i iG z G z J r d    


   ,                                                         (2.18a) 

which is satisfied when 

( ) ( ) 0i i i iG z G z    ,                                                                                  (2.18b) 

The general solution of Eq.(2.18b) is 

                                          ( 1,2),i iz z

i i iG Ae B e i
 

                               (2.19a) 

For the displacement and stress components to vanish at infinity, it requires 

that 0iG  as z  . As a result, Eq.(2.19a) reduces to 

( ) iz

i i iG z Ae
 

                                           (2.19b) 

By using Eq. (2.17) in Eqs.(2.16c-f), gives the displacement and stress 
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components as 

2

1 2 1
0

( ) ( )ru G G J r d  


                                                                    (2.20a-f) 

1 2
1 2 0

0
( ) ( )z

G G
u k k J r d

z z
  

  
 

   

2 2
31 2

13 1 2 11 1 2 02 20

2

11 12 1 2 1

{[ ( ) ( )] ( )

( )( ) ( )}

rr

G G
c k k c G G J r

z z

c c G G J r d
r

   


 

  
   

 

  


 

2 2

1 2
33 1 13 1 33 2 13 2 02 20

[( ) ( ) ] ( )zz

G G
c k c l c k c l J r d

z z
   

  
   

   

2 2
31 2

13 1 2 12 1 2 02 20

2

12 11 1 2 1

{[ ( ) ( )] ( )

( )( ) ( )}

G G
c k k c G G J r

z z

c c G G J r d
r

   


 

  
   

 

  


 

2 1 2
44 1 2 1

0
[(1 ) (1 ) ] ( )rz

G G
c k k J r d

z z
   

  
    

   

From Eqs. (2.1b) and (2.19b), 

3

44 1 1 2 2 1
0

2

1 1
[(1 ) (1 ) ] ( ) 0, 0

i

c k A k A J r d r a
l l

  


                        (2.21) 

Eq. (2.21) will be satisfied when 

                                        1 1 2 2

1 2

1 1
(1 ) (1 ) 0,k A k A

l l
                           (2.22) 

which gives 
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                                                2 1
1 2

1 2

1

1

k l
A A

k l


 


                                        (2.23) 

using Eqs.(2.20e) and (2.19b) in Eq.(2.1 a)yields 

3 2
33 1 13 1 33 2 13 2 2 0

0
1 21 2

1 1 1
[( )( ) ( ) ] ( ) ( ) 0,

1

k
c k c v c k c v A J r d r a

k ll l
   

 
     

         (2.24) 

Let, 

                            2
33 1 13 1 33 2 13 2

1 21 2

1 1 1
( )( ) ( )

1

k
D c k c l c k c l

k ll l


    


             (2.25) 

Eq. (2.24) then becomes 

                                  3

2 0
0

( ) ( ) 0,DA J r d r a   


                                    (2.26) 

Similarly, from Eqs.(2.20b), (2.19b) and (2.23), the displacement in the z-

direction on the plane 0z is obtained as 

                                  2 2 1
2 0

0
1 2

1
( ,0) ( ) ( ) ( )

1
z

k k
u r A J r d

k l
   

 
 

             (2.27) 

Let 

                                             1

2 1

2

2

4

2

, ,

( ,0)(1 )
( ),

( )

( )
( ),

z

a p r a

u r k D
g

k k a

Dp A
F p

l a

 





 


 





                         (2.28a-d) 

Thus, Eqs.(2.26) and (2.27) can be written in term of the parameters defined in 
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Eq.(2.28) 

                              
0

0

0
0

( ) ( ) ( ), 0 1

( ) ( ) 0, 1

F p J p dp g

pF p J p dp

  

 





  

 




               (2.29a,b) 

The dual equations given in Eqs.(2.29 a,b) have the following solution by 

Titchmarsh (1937)[15]. 

1/21
2

0

1 1
2 1/2

0 0

2
( ) cos( ) (1 ) ( )

2
(1 ) ( ) sin( )

F p p y y g y dy

y y dy g yu pu pu du









 

 



 

          (2.30) 

When arab  , 1
a

ab , then the boundary condition in (2.1c) reads 

                  ( ,0) ( ) ( ) tan( )z bu r f r r a                                          (2.31) 

inserting Eq.(2.31) into Eq.(2.28c) 

                     1

2 1

[ ( ) tan( )](1 )
( )

( )

ba a k D
g

k k a

  


  
 


                                (2.32) 

using Eq.(2.32) in Eq.(2.30) then yields 

1

2 1

2 2

2 (1 ) sin( )
( ) [ tan( )sin( )

( ) 2

tan( )sin( ) tan( ) cos( ) tan( )
]

2 2

b

D k a p
F p p

a k k p p

a p a a p

p p p

 




    


 



  

       (2.33) 

substituting Eq.(2.33) into (2.28d) gives the expression of 2A as 
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4

2

2 2

3

2 1

2

2 1

2 2

( )

2 (1 ) sin( )
[ tan( )sin( )

( ) 2

tan( )sin( ) tan( ) cos( ) tan( )
]

2 2

b

a l
A F p

Dp

a l k a p
p

k k p p p

a p a a p

p p p

 




    




 



  

             (2.34) 

The use of Eqs. (2.34), (2.23), (2.19b) in Eq.(2.20a-f) will lead to the complete 

determination of the displacement and stress components. Inserting Eq.(2.33) into 

Eq.(2.29b) results in 

0
0

1
0

0
2 1

0
0

( ,0) ( ) ( )

2 (1 ) tan( )
[sin( )( tan( )) ( )

( ) 2

tan( ) cos( ) 1
[ ( )] ( ) 0

2

zz

b

a pF p J p dp

D k a
p a J p dp

a k k

a p
J p dp

p

  

 
  



 











  




 







 

                                                                                                                     (2.35a) 

which indicates that each integral has to be finite at any [1, )   or [ , )r a  . For the 

first integral to be finite at 1  , it is necessary that (see Appendix A, Eq.(A2)) 

                                           tan( )
tan( ) 0,

2
b

a
a

 
                            (2.35b) 

which gives the depth of the punch penetration as 

                                       tan( )
tan( )

2
b

a
a

 
                                      (2.35c) 

using Eq.(2.35c) in Eq.(2.33) yields 
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1

2

2 1

2 (1 ) tan( ) cos 1
( )

( ) 2

D k p
F p

k k p

 
  


                                                            (2.36) 

From Eqs.(2.20a,b,d), the normal stress, radial and normal displacements and the 

total force on the plane 0z   can be obtained as 

11

2 1

1
( ,0) tan( )cosh ( / ),zz b

k
r D a r a r a

k k
  

   


                             (2.37 a-d) 

2 1
1

0
1 2

2 2 2

2 1 1

22 2
2 1 2 2 1

2

2 1 1

2 1 2 2 1

1
( ,0) ( ) ( ) ( 1)

1

1 1tan( )
[log( ) ] ( ),

2

1 1
tan( )( ),

2

r

b

k l a
u r F p J p dp

k l D

k l kr r a a a r
a r a

r k k l k ka a r

k l ka
r a

r k k l k k







 
  



   
    

   
 

 
    



 

2
1

2

tan( )
tan( ),

2
( ,0)

tan( )[sin ( ) 1 ],

b

z

a
r a r a

u r
a r r

a r a
r a a

 


 


  


 
    


 

1

2 2 2 11

2 1

2 ( ,0)

tan( )(1 )
[ cosh ( )],

b

a

zz
a

b b b

b

P r r dr

D k a
a a a a a r a

k k a

 

  

 


     





 

In reaching Eqs.(2.37 a-d), use has been made of Eqs.A(1)-A(5) given in 

Appendix A. 



18 

 

For bar 0 , or 0 ba

a
  , 

                                                           ( ,0)zu r                                         (2.38) 

which is given in Eqs. (2.1c) and (2.2 a). 

By following a procedure similar to that used for the region 
ba r a  , the 

solution for this case can be readily obtained to be 

                             

1

2 1

1

2 1

(1 )
( ) , 0

( )

2 (1 ) sin( )
( ) , 0

( )

b

b

ak D
g

k k a a

aD k p
F p

a k k p a


 

 



   




    



           (2.39 a,b) 

Thus, 

1

2 2
2 1

2 (1 ) 1
( ,0) tan( )( ) , 0

( ) 2
zz b b

D k a
r a r a

k k a r


 




    

 
           (2.40a-d) 

2 1
1

0
1 2

2 1 1

2 2
1 2 2 1

1
( ,0) ( ) ( ) ( 1)

1

1 12 tan( ) 1
( ) ( 1)( ), 0

2 1

r

b b

k l a
u r F p J p dp

k l D

k l kr a
a r a

k l k ka a r



 



 
  



 
      

  


 

( ,0) ( ) tan( ), 0
2

z b b

a
u r a r a


     

2
0

2 21

2 1

2 ( ,0)

4 (1 )
tan( )( )( ), 0

2

ba

zz

b b b

P r r dr

D k a
a a a a r a

k k

 




 


     




 

By combining the solutions derived above for the two regions, the normal stress, 
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radial and normal displacements and total force can be summarized as 

( ) tan( ),
2

b

a
a


  

                                                                                          (2.41a-e)
 

1

2 2
2 1

11

2 1

2 (1 ) 1
tan( )( ) , 0

( ) 2

(1 )
( ,0) tan( )cosh ( / ),

0

b b

zz b

D k a
a r a

k k a r

k
r D a r a r a

k k

r a






  


      
 

   


 



 

2 1 1

2 2
1 2 2 1

2 2 2

2 1 1

22 2
1 2 2 1

2

2 1 1

1 2 2 1

1 12 tan( ) 1
( ) ( 1) ( ), 0

2 1

1 1tan( )
( ,0) [log( ) ]( 1) ( ), ,

2 1

1 1tan( )
( 1) ( ),

2 1

b b

r b

k l kr a
a r a

k l k ka a r

k l kr r a a a r
u r a r a

r k l k ka a r

k l ka
r a

r k l k k

 







  
       

  


  
     

  


    
  


 

2
1

2

( ) tan( ), 0
2

( ,0) ( ) tan( ),
2

tan( )[sin ( ) 1 ],

b b

z b

a
a r a

a
u r r a r a

a r r
a r a

r a a







 


  




   



   


 

1 2

2 21

2 1

2 2 2 11

2 1

4 (1 )
tan( )( )( )

2

tan( )(1 )
[ cosh ( )]

b b

b b

b

P P P

D k a
a a a a

k k

D k a
a a a a

k k a




  

 


   




  


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2.2.2 Stress Method 

When Eq.(2.12) or (2.13b) has two identical real roots, the displacement method 

that introduces two potential functions 
1  and 

2  can no longer be used. However, the 

stress method can be employed in this case. Ding et al. [16] elaborate the stress method 

for transversely isotropic material in term of one potential function in a general context. 

However, the stress method has not been applied to the contact problem under 

consideration. By using the stress method and the Hankel transforms, the normal stress, 

radial displacement, normal displacement and total force are derived in this section. In 

this method, the displacement and stress components are given by Ding et al.[16] , 

2

11 12( )( )
r

e s s d mn
u

d r z

    


 
,                                                              (2.42 a-f) 

2 2
211 12

44 12 2

( )( )
( )z

e s s d mn
u s m

d z z


    

   
 

, 

2 2

2 2
( )rr b m

z r r r z
     

   
   

, 

2 2

2 2
( )b m

z r r r z
     
   

   
, 

2
2

1 2
( )zz n d

z z
   

  
 

, 

2
2

1 2
( )zr m

r z
   

  
 

 

where ijs  are the components of the elastic compliance matrix , 
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2

13 11 12 11 33 13( ) / ( )m s s s s s s   ,                                                                 (2.43 a-g) 

2

11 44 13 11 12 11 33 13[ ( )] / ( )n s s s s s s s s    , 

2 2 2

11 12 11 33 13( ) / ( )d s s s s s   , 

2

13 11 12 11 33 13( ) / ( )f s s s s s s   , 

2

11 11 12 11 33 13( ) / [2( )]g s s s s s s   , 

4 2 0d g ge   , 

1 ( )b e d mn    

And   is potential function satisfying  

2 2
2 2

1 1 1 22 2
( )( ) 0l l

z z


 
    

 
                                                                    (2.44a) 

where 

             
2

2

1 2

1

r r r

 
  

 
                                                                              (2.44b) 

Consider   of the following form given by the Hankel transform: 

                                    0
0

( ) ( )R z J r d    


                                              (2.45) 

where ( )R z is a function yet unknown. Using Eq. (2.45) in Eq.(2.44a) gives 

                                     1 2
1 2( )

z z

l lR z B e B e

 



 

                                              (2.46) 

inserting Eqs. (2.45) into Eq.(2.42a,b,e,f) gives the following stress and displacements 

expressions as 
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211 12
1

0

( )( )
( )r

e s s d mn R
u J r d

d z
  


   


 ,                                           (2.47a-d) 

2 2
211 12

44 44 02 20

( )( )
[ ] ( )z

e s s d mn R R
u s R s m J r d

d z z
   


    
  

  , 

3
2

030
( ) ( )zz

R R
d n J r d

z z
    


  
 

  , 

2
2 2

120
( ) ( )zr

R
R m J r d

z
    


 
 

  

using Eqs.(2.47d) and Eq.(2.46) in Eq.(2.1b) yields 

4 1 2 1 1 2 2 2 1 1 2
1

0
1 2

( ,0) ( ) ( ) 0zr

l l B l l B ml B ml B
r J r d

l l
   


   

                          (2.48) 

This is satisfied when 

                             1 2 1 1 2 2 2 1 1 2

1 2

0
l l B l l B ml B ml B

l l

  
                                      (2.49) 

which gives 

                                          1 1 2
1 2

1 2 2

ml l l
B B

l l ml





                                                  (2.50) 

FromEqs. (2.47c) and (2.1a),it follows that 

4

2 0
0

( ,0) ( ) 0zz r MB J r d   


    ,                                                       (2.51 a,b) 

3

2 0
0

( ,0) ( )zu r NB J r d  


    

where 

3/ 2 3/ 2 3/ 2 3/ 2

2 2 1 2 2 1 1 1 2 1 1 2

3/ 2

2 1 1( )

l d l md nl l l nl m l d l md nl l l nl m
M

l l l m

       



,          (2.52 a,b) 
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11 12 1 2
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Then Eqs.(2.51a,b) become, with the use of Eq. (2.53a,b), 

0
0

( ) ( ) ( ),0 1F p J p dp g  
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                                                           (2.54a,b) 
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    

Eqs.(2.54a,b) have the same form as those of Eqs.(2.29). Hence, its solution is 

also given by Eq.(2.30), with ( )g y defined in Eq.(2.55). 

When ba r a  , or 1ba

a
  , Eqs.(2.1c) and (2.2b) can be combined to get the 

normal displacement , 

                       ( ,0) ( ) ( ) tan( )z bu r f r r a                                    (2.55a) 

using Eq.(2.54) in Eq.(2.53a) 
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substituting Eq.(2.55) into eq.(2.30) leads to 
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The use of eq.(2.56a) in Eq.(2.54b) yields 
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                                                                                                                      (2.56b) 

which requires 

( ) tan( )
2

b

a
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
                                                                                      (2.56c) 

inserting Eq.(2.56c) into Eq.(2.56a) then results in  
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From Eq.(2.53b), it follows that 
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using Eqs.(2.46),(2.50),(2.56e),(2.52) in Eqs.(2.47 a,b,c) finally gives 

1( ,0) tan( )cosh ( ),zz b
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r a r a

N r
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                                              (2.57a-d)
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Similarly, for the region 0 br a  , or 0 ba

a
  ,it can be shown that  

( ,0) ( ) tan( )
2

z b

a
u r a


     ,                                                                         (2.59a-g) 

( ) ( ) tan( )
2

b

M a
g a

Na


     , 

2 sin( )
( ) ( ) tan( )

2
b

M a p
F p a

Na p






     

2 2

2 1
( ,0) ( ) tan( ) 0

2
zz b b

M a
r a r a

N a r


 



     


  



26 

 

1
0

2 2

( ,0) ( ) ( )

2 1
( ) tan( ) , 0

2

r

b b

Qa
u r F p J p dp

M

Qr a
a r a

N a a r









  

    
 


 

( ,0) ( ) tan( ), 0
2

z b b

a
u r a r a


      

2 2

2

4
( ) tan( )( ), 0

2
b b b

M a
P a a a a r a

N


        

Thus, combining Eqs. (2.57) and (2.59) results in 
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These are valid when Eq.(2.12) or Eq.(2.13b) has two identical real roots.

 

2.3. The Boussinesq Contact of a Cylindrical Punch 

The adhesive contact can be viewed as a superposition of the Hertz contact and 

the Boussinesq contact (Chen and Yu [17]). Thus, it is necessary to introduce the 

Boussinesq contact in this section.  

2.3.1 An Axisymmetric External Crack in an Infinite Body 

Consider the problem of an axisymmetric external crack in an infinite elastic 

body of an transversely isotropic material as shown in Fig.2.3. 

 
 
 

z

ro

a a

 
Fig.2.3 Axisymmetric external crack problem 

 
 
 

Due to the symmetry, only a semi-infinite space 0z needs to be considered. 

The boundary conditions for this crack problem are given by( Chen and Yu [17]) 
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  arruz  0,00,                                                                            (2.61a-c) 

arrhrzz  ),()0,(  

0,0)0,(  rrzr  

The governing equations are the same as those given in Eq.(2.7a,b). Using a 

similar approach to that employed in Section 2.2.1, the following dual integral equations 

can be obtained  





0

0 1),()()(  rhdppJp                                                          (2.62 a,b) 
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  dppJpp  

where 

                              
3

4

2

1
( ) ( )

p
p DA

a l
                                                       (2.63) 

Lowengrub and Sneddon[18] discussed how to solve this pair of dual integral 

equations. Especially, for a constant pressure distribution 0( )h r h  on the crack surface 

region a r c  , it can be shown that (Maguies,1992[6]) 

2 2 2 2
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


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 
                               (2.64) 

Then, the total axial force acting on the neck region is given by 
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P r dr h c a h a

a c a
                           (2.65) 
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Clearly, Eq. (2.65) shows that the total force applied on the cylindrical punch 

does not equilibrate the force )( 22

0 ach  , which is acting on the external crack surface. 

This indicates that a compressive force exists in the neck region, which is the second 

term on the right hand side of Eq.(2.65).  

2.3.2 The Boussinesq Contact Problem 

The Boussinesq contact problem of a cylindrical punch of a radius a indenting a 

half space is considered.The force added on the punch is upward. It is shown in Fig.2.4. 

 
 
 

r

z

o

bP

b

 
 

Fig.2.4 Boussinesq contact of a cylindrical punch 
 
 
 

To consider the crack singularity, the force added on the punch is given by, 

                     
2 2

2 1

0 2 2
2 [ cos ( ) 1]b c a c

P h a
a c a

                                           (2.66) 
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By using Eq.(2.66), the depth of penetration, normal stress and vertical 

displacement can be calculated. For the case with two distinct real roots, the results are, 
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For the case with two identical real roots, the results are, 
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where HP is the total force of the Hertz contact shown in Section 2.2.

 
2.4. The Adhesive Contact of a Conical Frustum Punch 

As mentioned before, the adhesive contact problem can be decomposed into two 

parts: a Hertz contact problem and a Boussinesq contact problem, as shown in Fig 2.5. 
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Fig. 2.5 Adhesive contact problem by the superposition principle 

 
 
 

Combining the results obtained in Sections 2.2 and 2.3, the adhesive contact 

problem can be readily solved. For the case with two distinct real roots discussed in 

Section 2.2.1, the results are 
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For the case with two identical real roots discussed in Section 2.2.2, the results are 
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2.5. The Numerical Results for the Adhesive Contact Problem 

For numerical analysis, the selected transversely isotropic material and elastic 

constants values are shown in Table 2.1. 

Penetration depth, normal stress, normal displacement and total force are 

studied by comparing the adhesive contact and the Hertz contact. Especially for adhesive 

contact, different values for h0 are set for the results from both displacement and stress 

methods. They are 0.1GPa, 0.5GPa, 1GPa and 1.5GPa, respectively. The ratio values for 
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a/c and ab/a are prescribed as 0.2 for each case studied. The punch angle 𝜶=30deg is 

chosen.  

 
 
 

Table 2.1 The selected transversely isotropic material and elastic constants 
 

c 11 c 12 c 13 c 33 c 44

8.28 2.767 0.285 86.8 4.147

k 1 k 2 v 1 v 2
D

(10
10)

37.44 0.027 20.54 0.52 -2.23

s 11 s 12 s 13 s 22 s 33 s 44 s 66

1.36 -0.454 -0.003 1.36 0.115 1.21 1.81

m n d f g e b

-0.034 10.429 10.483 -0.017 3.929 0.666 -6.219

M
N

(10
-10)

l 1 l 2

-22.630 0.963 9.261 1.134

Compliance Matrix

Components

 (10
-10

)

Other Used Values

in M2

Stress Method

(M2)

Graphite/Expoxy Composite

Refer to [19]

By eqns (2.13),

(2.14) & (2.26)

Transversely

Isotropic Masterial

Stiffness Matrix

Components (Gpa)

Other Used Values

in M1

Displacement Method

(M1)

By eqns (2.44) & (2.55)

 
 
 
 

Figures 2.6 and 2.7 show the penetration depth of the conical frustum punch 

versus contact radius comparisons for each case from displacement and stress methods. 

Clearly seen from both methods, the penetration depth increases as the contact radius 

increases and the results from adhesive contact are upper bounded by Hertz contact. 

Especially when h0=0.1GPa, the adhesive contact and the Hertz contact have no large 

difference. As h0 varies from 0.1 GPa to 1.5 GPa, if given the same contact radius, the 
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penetration depth decreased faster for displacement method, compared with the results 

from the stress method. 
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Fig. 2.6 Penetration depth of the conical frustum punch versus contact radius comparisons for 
displacement method 
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Fig. 2.7 Penetration depth of the conical frustum punch versus contact radius comparisons for stress 
method 
 
 
 

Figures 2.8 and 2.9 reveal the normal stress on the plane z=0 versus r/a ratio 

comparisons for both displacement and stress methods. When r/a<1, the region studied 

is inside the contact region.  

For both displacement and stress methods, inside the contact zone, the negative 

normal stress arises smoothly as the r/a ratio increases but with different directions. 

When r/a=0.3, the negative normal stress values approach the peak values. Once 

r/a>0.3, the negative normal stress would go down suddenly in the cohesive zone. After 

r/a is larger than around 0.9, the normal stress values tend increasing. As h0 varies from 

0.1 GPa to 1.5 GPa, given the same r/a ratio value, the negative normal stress values 

increases for both methods. Also, the four cases for adhesive contact are lower bounded 

by the Hertz contact for both methods. For the zones inside the circle shown in Figs 2.8 

and 2.9, the adhesive contact results change more gently than the Hertz contact, which is 
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caused by the Boussinesq contact assuming the peeling upwards force inside the 

cohesive region. 
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Fig. 2.8 Normal stress on the plane z=0 versus r/a ratio comparisons for displacement method 
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Fig. 2.9 Normal stress on the plane z=0 versus r/a ratio comparisons for stress method 
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Figures 2.10 and 2.11 indicate the normal displacement the plane z=0 changes 

with r/a ratio for both displacement and stress methods. Seen from both figures, inside 

the circle zones, the negative normal displacement values keep constant firstly and then 

increase sharply. Before r/a=0.2, it is the punch flat-end part. The normal displacements 

are the same for all the points along the flat end. For 0.2<r/a<5, the negative normal 

displacement goes up for each case and reaches the peak values at r/a =5. As h0 varies 

from 0.1 GPa to 1.5 GPa, given the same r/a ratio value, the negative normal 

displacement values increase and the adhesive contact results are lower bounded by the 

Hertz contact results for both methods. The intervals between each case in displacement 

method are larger than the stress method. 
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Fig. 2.10 Normal displacement on the plane z=0 versus r/a ratio comparisons for displacement 
method 
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Fig. 2.11 Normal displacement on the plane z=0 versus r/a ratio comparisons for stress method 

 
 
 

Figure 2.12 shows the total force added on the punch versus the contact radius 

for the displacement method. Clearly, with contact radius increasing, the total force 

increases in the negative direction. When h0 changes from 0.1 GPa to 1.5GPa, the 

direction of the total force is never changed. Compared with the Fig.2.12, Figure 2.13 

shows the total force increases with the contact area for the stress method. However, for 

different cases, the influence of h0 is different. The displacement method is affected 

significantly by h0 while the stress method is affected less. 
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Fig. 2.12 Total force of the conical frustum punch versus contact radius comparisons for 
displacement method 
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Fig. 2.13 Total force of the conical frustum punch versus contact radius comparisons for stress 
method 

 
 
 

Figure 2.14 shows the total force added on the punch versus the penetration 

depth for the displacement method. Clearly, with contact radius increasing, the total 



42 

 

force increases. When h0 changes from 0.1 GPa to 1.5GPa, the changes of the total force 

become more smoothly. Compared with the Fig.2.14, Figure 2.15 shows the total force 

increases with the penetration depth for the stress method. However, for different cases, 

the influence of h0 is different. The displacement method is affected significantly by h0 

while the stress method is affected less. They are both upper bounded by Hertz contact. 
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Fig. 2.14 Total force of the conical frustum punch versus penetration depth comparisons for 
displacement method 
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Fig. 2.15 Total force of the conical frustum punch versus penetration depth comparisons for stress 
method 
 
 
 

The stress method can be used to solve the indentation problem for isotropic 

material and Eqs. (2.71) can be reduced. If ab is set zero, a solution of the adhesive 

contact problem of a rigid conical punch with an isotropic half space can be obtained. 

The selected isotropic material is listed in Table 2.2. The numerical analysis results are 

compared with the ones shown in Maguis and Barguins [20] by using the JKR adhesive 

contact model. The difference between the JKR and MD adhesive contact models are 

clearly shown. 
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Table 2.2 The selected isotropic material and elastic moduli values 
 

E

(Gpa)
v

µ

(Gpa)

λ

(Gpa)

k

(Gpa)

68.9 0.34 25.700 54.6 71.8

s 11

(10
-12
)

s 12

(10
-12
)

s 13

(10
-12
)

s 33

(10
-12
)

s 44

(10
-12
)

M
N

(10
-10)

14.514 -4.935 -4.935 14.51 19.448 2 -1.05

m n d f g e b

-0.515 1.000 1.000 -0.254 -0.724 2.69 -3.076

Other Used

Values

By eqns (2.44) &

(2.55)

Refer to [21]

Aluminum

Isotropic Material

Compliance

Matrix

Components

 
 
 
 
Figures 2.16-2.18 compare the JKR and the MD adhesive contact models with 

different pressure constant h0 and energy of adhesion w values which are set at 0.01 GPa, 

0.1 GPa and 1GPa, respectively. The penetration depth increases as the contact radius 

increases. Especially at 0.01 GPa, the JKR adhesive contact model is essentially 

coincident with the MD adhesive contact model. With pressure constant h0 and energy of 

adhesion w values changing from 0.01 GPa to 1 GPa, the difference between these two 

adhesive contact models becomes larger. Thus, for this selected isotropic material, there 

is a transition between these two adhesive contact models and when the adhesive 

interaction is prescribed as a small value, the MD adhesive contact model can approach 

the results as the JKR model. 
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Fig. 2.16 Penetration depth versus contact radius for both the JKR and the MD models (w=h0=0.01 
GPa) 
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Fig. 2.17 Penetration depth versus contact radius for both the JKR and the MD models (w=h0=0.1 
GPa) 
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Fig. 2.18 Penetration depth versus contact radius for both the JKR and the MD models (w=h0=1 
GPa) 

 
 
 
Figures 2.19-2.21 show the contact radius changes with the total force added on 

the conical punch indenting an isotropic half space. With different pressure constant h0 

and energy of adhesion w values, as the total force arises, the contact radius increases. 

As the constant values increase from 0.01 GPa to 1 GPa, the increasing tendency 

becomes gentle. Given the same external force, the JKR adhesive contact model can 

achieve a larger contact radius compared with the MD adhesive contact model. This is 

identical with the results in Zhang [22]. As the adhesive interaction becomes bigger, to 

reach the same contact radius, a larger external force needs to be added on the conical 

punch. 
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Fig. 2.19 Contact radius versus total force for both the JKR and the MD models (w=h0=0.01 GPa) 
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Fig. 2.20 Contact radius versus total force for both the JKR and the MD models (w=h0=0.1 GPa) 
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Fig. 2.21 Contact radius versus total force for both the JKR and the MD models (w=h0=1 GPa) 
 
 
 

Figures 2.22-2.24 study the normal stress changes with the radius r. With r 

increasing, the negative value of the normal stress decreases. There are no big changes 

among the three cases discussed and given by a same radius r, the negative value of the 

normal stress from the JKR adhesive contact model is always larger than those from the 

MD adhesive contact model. 
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Fig. 2.22 Normal stress versus r for both the JKR and the MD models (w=h0=0.01 GPa) 
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Fig. 2.23 Normal stress versus r for both the JKR and the MD models (w=h0=0.1 GPa) 
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Fig. 2.24 Normal stress versus r for both the JKR and the MD models (w=h0=1 GPa) 
 
 
 

If the half-included angle α of the conical frustum punch is set at zero and use the 

selected isotropic material shown in Table 2.2, then the problem is reduced to solve the 

adhesive contact problem of a flat-end cylindrical punch with radius a indenting an 

isotropic elastic half space. To analyze the numerical results for this case, the results in 

Yang and Li [23] are compared with the ones shown in the following part. Yang and Li 

study the adhesion of a rigid flat-end cylinder with an incompressible elastic film. In the 

case of the cylinder radius much larger than the film thickness, the film can be seemed as 

an elastic half space. Therefore, the JKR adhesive contact model for analyzing the 

adhesion between the flat-end cylinder and isotropic elastic half space are used and 

compared with the MD model results. 

Figures 2.25-2.27 show the negative normal stress increases with the radius 

distance increasing. As the constant values increase from 0.01 GPa to 1 GPa, the normal 
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stress from the JKR model decreases until the normal stress from the MD model is larger 

than the ones from the JKR model. Especially when w = h0 =1 GPa, in the region r<4, 

the results from the JKR and MD adhesive contact models are almost identical. Thus, 

those constants, different pressure constant h0 and energy of adhesion w, affect the 

normal stress significantly.  
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Fig. 2.25 Normal stress versus r for flat-end cylindrical punch (w=h0=0.01 GPa) 
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Fig. 2.26 Normal stress versus r for flat-end cylindrical punch (w=h0=0.1 GPa) 
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Fig. 2.27 Normal stress versus r for flat-end cylindrical punch (w=h0=1 GPa) 

 
 
 
Figures 2.28-2.30 detail the total force versus the penetration depth of the flat-

end cylindrical punch. As clearly seen, the total force increases as the penetration depth 
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increases. As the constant values increase from 0.01 GPa to 1 GPa, the difference 

between these two models becomes larger and larger until the two models have no cross 

point. The total force calculated from the JKR adhesive contact model keeps above than 

those from the MD model. 
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Fig. 2.28 Total force versus penetration depth for flat-end cylindrical punch (w=h0=0.01 GPa) 
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Fig. 2.29 Total force versus penetration depth for flat-end cylindrical punch (w=h0=0.1 GPa) 
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Fig. 2.30 Total force versus penetration depth for flat-end cylindrical punch (w=h0=1 GPa) 
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2.6. Conclusion 

By applying superposition principle, the adhesive contact problem of a conical 

frustum punch with a transversely isotropic elastic half space can be solved by combing 

the Hertz contact and Boussinesq contact together. For this chapter, the MD model is 

used to evaluate the adhesive contact, which considering an external crack near the 

contact edges with the contact radius changing from a to c. In this zone, the constant 

pressure distribution h0 is assumed. The Boussinesq contact is added in order to 

counteract the singularity of the external crack. Seen from the numerical analysis, the 

displacement method and stress method do not have significant differences. However, 

the penetration depth, normal stress, normal displacement and total force would change 

greatly if h0 is set various values. The adhesive contact model such as the JKR, DMT 

and MD models can be extended from isotropic material into transversely isotropic 

material. 
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CHAPTER III 

ADHESIVE CONTACT OF A CONICAL 

FRUSTUM PUNCH WITH AN 

ORTHOTROPIC ELASTIC HALF SPACE 

3.1. Introduction 

Compared with those for transversely isotropic materials, but also very few 

studies have been conducted for indentation of orthotropic elastic materials. 

Willis [24] presented a closed-form solution of the Hertz contact of two 

anisotropic bodies, which covers both transversely isotropic and orthotropic elastic 

materials. By using the Fourier transform method, the solution for the problem of a point 

load applied on an elastic anisotropic half space was derived. Then, by integrating the 

solution of the point load case over the contact area, the complete expressions for both 

the displacement and stress components of the Hertz contact were obtained. 

Willis [25] later provided a closed-form solution of the Boussinesq contact of a 

flat-end cylindrical punch on an anisotropic half space. Different pressure distributions 

in the contact area were discussed.  

Swanson [26] studied the spherical indentation into an orthotropic elastic half 

space by using Willis’ method.  

Figure 3.1 shows a conical frustum indenting an orthotropic half space. The 

adhesion is considered. The parameters are shown below. 
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Fig. 3.1 Adhesive contact of a conical frustum punch with an orthotropic elastic half space. 

 
 
 
The projected contact area is assumed to be elliptical, and the boundary 

conditions are prescribed to be the same as those for the transversely isotropic material 

given in Eqs. (2.1) and (2.2). 

3.2. General Solutions for Conical Frustum Indentation into an Orthotropic Half 

Space 

This section will follow the formulation of Willis [24,25] and Swanson [26] to 

derive an analytical solution for the contact problem shown in Fig.3.1. 

Zhang [22] gave a pressure distribution form for the JKR adhesive contact model, 

which is separated into two parts. One part is the  Hertz pressure and the other is the 

Boussinesq pressure. For the current problem with a conical frustum punch, 

modifications are necessary due to the flat-end contact surface. For bar 0 (flat-end), 
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the Hertz pressure is taken to be 2/1

2

2

2

2

2

1

2

1
0 )1( 

a

x

a

x
p , which is the same as the pressure 

distribution for the Boussinesq contact assumed by Willis [25]. The reason for this is 

that, in this region the prescribed normal displacement zu equals to the punch 

penetration depth  , which is a zero order polynomial of 1x and 2x . For arab  , the 

Hertz pressure is assumed to have the form of ])[(cosh 2/1

2

2

2

2

2

1

2

11

0

 
a

x

a

x
p

 
, as was 

mentioned in Vlassak et al.[27]. However, for both the regions bar 0 and arab  , 

the pressure distribution for the Boussinesq contact is 2/1

2

2

2

2

2

1

2

1
0 )1( 

a

x

a

x
p . Then, the 

pressure distribution for the adhesive contact of the conical frustum indenter can be 

obtained easily by adding the Hertz pressure and the Boussinesq pressure. 

3.2.1 Displacement Formulation Due to a Unit Point Load 

In a Cartesian coordinate system for an orthotropic elastic materials, the stress-

strain relations are given by 

                                    

11 11 11 12 22 13 33

22 12 11 22 22 23 33

33 13 11 23 22 33 33

23 44 23

31 55 31

12 66 12
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c c c

c c c

c

c

c

   

   

   

 

 

 

  

  

  







                                              (3.1) 

 
And the strain-displacement relations are 
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                                        (3.2) 

where 1v ,
2v and 

3v are the three displacement components in the absence of body forces 
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1 2 3
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                                                                   (3.3) 

 
using Eqs. (3.1) and (3.2) in Eq. (3.3) gives 

 

                            

11 1,11 66 1,22 55 1,33 12 66 2,12 13 55 3,13

22 2,22 66 2,11 44 2,33 12 66 1,12 23 44 3,23

33 3,33 55 3,11 44 3,22 13 55 1,13 23 44 2,23

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

c v c v c v c c v c c v

c v c v c v c c v c c v

c v c v c v c c v c c v

      

      

      

   (3.4a,b,c) 

 
The Fourier transforms in the 1x - and 2x -directions are defined by 

 

                                    
1 1 1 1 1
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( ) ( )exp( )

2
f f x i x dx 






                                          (3.5) 

2 2 2 2 2

1
( ) ( )exp( )

2
f f x i x dx 






 

 
 

Taking the Fourier transforms on Eqs.(3.4a,b,c) then yields 
 

 

                 

2 2
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Consider the solution of the form, 
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3 3
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                                                (3.7) 

 
using Eq.(3.7)in Eq. (3.6) leads to 
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In order to get a non trivial solution, the determinant of the coefficient matrix has 

to vanish. That is, 
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Define, 
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(3.10) 

 
inserting Eq.(3.10) into Eq.(3.9) computing the determinant will result in 

 
6 2 2 4 4 2 2 4 2 6 4 2 2 4 6

1 1 2 2 3 1 4 1 2 5 2 6 1 7 1 2 8 1 2 9 2( ) ( ) ( ) 0e e e e e e e e e                        (3.11) 
 
where 
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The six roots of Eq.(3.11) have the form: 
 

                                         1,2 1 3,4 2 5,6 3, , ,                                      (3.13) 
 
For each root ( 1,2...6)i i  , substituting it into Eq.(3.8) and solving the equation 

system with two independent equations will lead to two unknowns 1 3( / )iA A  and 

2 3( / )iA A . The solution of Eq.(3.6) can then expressed as  
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                          (3.14) 

where 3( ) ( 1,2...6)kA k  are six unknown constants. Three of these six constants  

associated with the three roots whose imaginary parts are negative will be taken to be  

zero to satisfy the boundary conditions of the displacements vanishing at 3x  . 
 
The remain three constants (say, 3 1( )A , 3 2( )A and 3 3( )A ) will be determined from the 

following boundary conditions. 

             13 1 2 23 1 2 33 1 2 1 2( , ,0) 0, ( , ,0) 0, ( , ,0) ( ) ( )x x x x x x x x                      (3.15a) 
 
using Eqs.(3.1) and (3.2) in Eq.(3.15a) gives 
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Taking the Fourier transforms on each of Eq.(3.15b) and then using Eq.(3.14) 

will yield 
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The displacement components ( 1,2,3)iv i  can then be obtained through 

inverse Fourier transforms to be 
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      (3.16) 

Solving Eq.(3.16) will lead to the determination of 3( ) ( 1,2,3)iA i  , thereby the 

completing solution given in Eqs.(3.7) and (3.13) in transformed domain. 
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                                 (3.17a,b,c) 

where 1v - 3v are given in Eqs.(3.14) and (3.16). 
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3.2.2 The Adhesive Contact by Using the JKR Model 

The contact pressure is taken to have the following form ([22] and [27]), 
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The surface displacements due to this contact pressure can then be obtained by 

integrating the displacements induced by the unit point load over the contact area. That 

is, in the contact area 0 br a  , the vertical surface displacement is given by 
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 where  

1 2 3 1 2( , ) ( , ,0)w x x v x x                                                        (3.20) 

is the vertical surface displacement due to the point load obtained in Section 3.2.2, and 

use has been made of Eq.(3.17c) and (3.18a). 

Eq.(3.19) can be evaluated to give (Willis[25] and Swanson[26]) 
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where, 
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The depth of penetration is then obtained from Eq.(3.21) to be 
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Similarly in the contact area 
ba r a  , the vertical surface displacement is 
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To evaluate the integral, use will be made of the following expression [28] 
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3.2.3 The Numerical Results for the General Orthotropic Solutions 

Due to the complex integration in eqn (3.26), use the approximation integration 

method in Maple to get the numerical results. The solutions discussed in Section 3.2.2 

could be used for any anisotropic material. Therefore, for convenience, the transversely 

isotropic material is selected and the contact area is assumed as a circle shape. The 
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comparisons are made between the reduced solutions of transversely isotropic material 

from Section 3.2.2 and the closed-form solutions shown in Chapter II.  

The following results show the normalized pressure distribution, displacement 

and normal stress. 

The normalized pressure distribution, 
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Figures 3.2-3.3 show the assumed pressure distribution for the JKR adhesive 

contact model for the flat-end region ( bar 0 ) and the conical region ( arab  ), 

respectively. As ρ varies from 0.1 to 1.5, the pulling force added on the punch becomes 

larger than the indenting force. For the flat-end region of the punch, the normalized 

pressure distribution decreases to zero and turns out to increase in the opposite direction 

when ρ increases. For the conical region, the pressure distribution decreases when ρ 

increases. When γ equals exactly to one, the pressure distribution goes to infinity. 
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Fig.3.2 Pressure distribution when 0 br a   

 
 
 

 
Fig.3.3 Pressure distribution when ba r a   
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Figures 3.4 – 3.7 indicate that the comparisons for the penetration depth of the 

conical frustum punch changes with the contact radius among displacement method, 

stress method and approximation method. For Gpap 1.00  , 0p increases from 0.7 GPa to 

10 GPa. Seen from Fig. 3.4, the results of the displacement method, stress method and 

the approximation method when 0p equals to 7 GPa have no large difference and almost 

overlap to a single line. However, in the cases when 0p equals to 0.1 GPa, 5 GPa or 10 

GPa, the results show a huge discrepancy compared with the displacement and stress 

methods. This means when the pulling out force is fixed in the first place, 0p can affect 

the penetration depth of the conical frustum punch significantly, which can also be 

illustrated from Fig. 3.5 to Fig. 3.7. As 0p  increases from 0.1 GPa to 1.5 GPa, the 

interval between the displacement and stress methods increases. 
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Fig. 3.4 Penetration depth versus contact radius comparisons between displacement method, stress 
method and approximation ( 0 0.1p Gpa  ) 
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Fig. 3.5 Penetration depth versus contact radius comparisons between displacement method, stress 
method and approximation ( 0 0.5p Gpa  ) 
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Fig. 3.6 Penetration depth versus contact radius comparisons between displacement method, stress 
method and approximation ( 0 1p Gpa  ) 
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Fig. 3.7 Penetration depth versus contact radius comparisons between displacement method, stress 
method and approximation ( 0 1.5p Gpa  ) 
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Figures 3.8 – 3.10 detail the normal displacement changes with the contact radius 

when 0p  and   increase for displacement, stress and approximation methods. 0p is 

fixed at 0.1 GPa, 0.5 GPa and 1 GPa, respectively. As seen from these three plots, the 

normal displacement decreases as the contact radius increases. Both of displacement and 

stress methods appear the linear relationship between the normal displacement and 

contact radius. As the half-included angle  varies from 30 degrees to 60 degrees with 

the interval of 15 degrees, the slope of the line becomes larger and especially when 0p  

equals to 0.1 GPa, these two methods have no big difference. As 0p increases, the 

difference between these two methods becomes larger and the intersection point of three 

lines becomes away from the x axis. For the approximation method, it is easily 

illustrated that both 0p  and   can influence the normal displacement compared with the 

numerical results from displacement and stress methods. With 0p increases from 

132 10 Pa to 1410 , the intersection point of the approximation and the exact solutions 

becomes smaller and these three methods start and end at the same points for each case. 
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Fig. 3.8 Normal displacement for conical part versus contact radius comparisons between 
displacement method, stress method and approximation ( 0 0.1p Gpa  ) 
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Fig. 3.9 Normal displacement for conical part versus contact radius comparisons between 
displacement method, stress method and approximation ( 0 0.5p Gpa  ) 
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Fig. 3.10 Normal displacement for conical part versus contact radius comparisons between 
displacement method, stress method and approximation ( 0 1p Gpa  ) 
 
 
 

3.3. Conclusion 

This chapter studies the approximation method of the conical frustum punch 

indenting the general orthotropic half space and the closed-form solutions for the special 

orthotropic half space. For the general orthotropic material, the pressure distribution for 

the contact area is assumed as the ellipsoidal shape and the Fourier transform is used.  
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CHAPTER IV 

CONCLUSION 

The adhesive contact problems of a conical frustum punch with a transversely 

isotropic or an orthotropic elastic half space are analytically achieved. To solve a conical 

frustum punch indenting a transversely isotropic elastic half space, the adhesive contact 

is formed of the Hertz contact and the Boussinesq contact based on the superposition 

principle. By using the harmonic potential function method and Hankel transform, a 

closed-form solution of the displacement and stress is obtained. The MD adhesive 

contact model solved by the former work for isotropic material is extended to solve the 

transversely isotropic material. Inside the cohesive contact region, the external crack and 

constant pressure distribution are assumed. The constant h0 can affect the normal 

displacement, normal stress and total force of the conical frustum punch. 

To analyze the adhesive contact problems of a conical frustum punch with an 

orthotropic half space, the Fourier transform is used to solve the problem of a point load 

applied on the elastic half space. The projected contact area is assumed to be semi-

ellipsoidal and the pressure distribution of the JKR adhesive contact model is applied. 

The approximation method has certain discrepancy compared with the derived closed-

form solution of the transversely isotropic material. Along with the pressure distribution 

constants 0p and 0p , the half-included angle of the conical frustum punch can influence 

the normal displacement, normal stress and total force. For the adhesive contact 

problems of general orthotropic elastic half space, the JKR adhesive contact model can 
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be extended into an orthotropic material. Finally, the pressure distribution assumption of 

the project area shape for the general orthotropic materials can affect the numerical 

results significantly. 

For future work, firstly, the Fourier transform method of solving the contact 

problem of the general orthotropic materials needs to be improved to obtain the exact 

solutions other than the approximation solutions. Secondly, the pressure distribution of 

the JKR model needs to be improved for a conical punch profile. Last but not least, do 

the research on the MD adhesive contact model to check whether it can be extended to 

solve the contact problem of the general orthotropic materials. 
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APPENDIX A 

In this appendix, several infinite integral values used are shown below, 
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