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ABSTRACT

Resampling Methodology in Spatial Prediction and Repeated Measures Time Series.

(December 2010)

Krista Dianne Rister, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Soumendra N. Lahiri

In recent years, the application of resampling methods to dependent data, such

as time series or spatial data, has been a growing field in the study of statistics. In

this dissertation, we discuss two such applications.

In spatial statistics, the reliability of Kriging prediction methods relies on the

observations coming from an underlying Gaussian process. When the observed data

set is not from a multivariate Gaussian distribution, but rather is a transforma-

tion of Gaussian data, Kriging methods can produce biased predictions. Bootstrap

resampling methods present a potential bias correction. We propose a parametric

bootstrap methodology for the calculation of either a multiplicative or additive bias

correction factor when dealing with Trans-Gaussian data. Furthermore, we investi-

gate the asymptotic properties of the new bootstrap based predictors. Finally, we

present the results for both simulated and real world data.

In time series analysis, the estimation of covariance parameters is often of ut-

most importance. Furthermore, the understanding of the distributional behavior of

parameter estimates, particularly the variance, is useful but often difficult. Block

bootstrap methods have been particularly useful in such analyses. We introduce a
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new procedure for the estimation of covariance parameters for replicated time series

data.
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CHAPTER I

INTRODUCTION

Ever since its introduction by Efron (1979), the bootstrap has had a growing impact

on statistical analysis. After Singh (1981) showed the bootstrap failed when the

independence assumption on the random variables generating the data was lost, the

work of Hall (1985), Künsch (1989) and Liu and Singh (1992), among others, adapted

the bootstrap for work with correlated data, allowing for the use of the bootstrap in

the temporal and spatial domains.

In this dissertation, we propose new bootstrap methods for bias correction in the

area of spatial prediction, or Kriging, and for the estimation of covariance parameters

for repeated measures time series. These projects incorporate both parametric and

nonparametric bootstrap methods.

A. Trans-Gaussian Kriging

The need for spatial prediction methods comes from various academic disciplines,

such as geology, meteorology, and epidemiology. Spatial prediction utilizes observed

values at certain locations on a grid or map to predict an unobserved value at one

or more other locations. For example, a meteorologist may use temperature readings

at a number of spread out weather stations to predict the temperature at a nearby

point of interest without an observation station. Kriging is one such type of spatial

prediction.

The journal model is Journal of the American Statistical Association.
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1. Background of Kriging

Kriging is named for D. G. Krige, who developed empirical methods for spatial predic-

tion with mining applications in his master’s thesis (Krige 1951). The methods now

known as Kriging were developed later by Matheron (1962) and others. For more on

the origins and development of Kriging, both the name and the methods, see Cressie

(1990). Also, for now we remark that further reading into Kriging methodology may

come from a spatial statistics textbook such as Cressie (1993) or Schabenberger and

Gotway (2005).

2. Basics of Kriging

Kriging relies on the second-order properties of a spatial process in order to make

prediction possible. The assumptions placed on the process differ for various types of

Kriging, but a general framework is as follows.

Let s0, s1, . . . , sn be locations on some spatial domain D. For example, if working

in the two dimensional space, D = R2, for each i = 0, 1, . . . , n, si = (xi, yi) where xi

and yi are the Cartesian coordinates. Alternatively, if si is a location on the Earth,

then xi and yi could represent the longitude and latitude, respectively.

Now, let Z(·) be some spatial process observed on D (e.g. temperature, humidity,

concentration of nitrogen in a soil sample, etc.). The goal of Kriging is to predict the

value of Z(s0) based on Z(s1), . . . , Z(sn). Alternatively, prediction can be made for

more than one unobserved location.

If the assumptions regarding the second-order properties of the process Z(·)

are met, then Kriging produces a best linear unbiased predictor (BLUP), meaning

that Kriging calculates weights λ = (λ1, . . . , λn) such that Ẑ(s0) =
∑n

i=1 λiZ(si) is

unbiased with a minimized mean square prediction error (MSPE).
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Kriging when the mean of the spatial process is constant throughout the domain

is known as Ordinary Kriging. When the mean is allowed to vary as a function of

the location s, a procedure known as Universal Kriging is used. Often, it is easier to

estimate the mean function and detrend the data, thus leaving a collection of residuals

with mean 0. Ordinary Kriging can then be employed.

3. Shortcomings of Kriging

One of the assumptions of most forms of Kriging is that the observed process Z(·)

comes from a Gaussian process, meaning that Z(s0), Z(s1), . . . , Z(sn) follow a multi-

variate normal distribution. In reality, this assumption is not always realistic. While

many real world spatial processes are in fact Gaussian, several are not. One type

of Kriging which deals with this problem is Trans-Gaussian Kriging. This type of

Kriging deals with so-called Trans-Gaussian data, or data that is not from a Gaus-

sian process but may be converted to one using some transformation. Suppose that

the observed process Z(·) is not Gaussian, but there exists an invertible function φ(·)

such that

Y (·) = φ−1(Z(·))

is a Gaussian process. A common practice is to perform Kriging for the Gaussian

process Y (·) and then transform the prediction using φ. This practice, however, leads

to biased predictions. Trans-Gaussian Kriging (Cressie 1993) attempts to correct for

that bias. In this dissertation, we propose and develop a method for bias correction

using parametric bootstrap methods. The idea of applying bootstrapping to spatial

prediction with Trans-Gaussian data is new. For a similar use of boostrapping in a

temporal setting, see Bandyopadhyay and Lahiri (2010).
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B. Replicated Time Series Data

In time series analysis, as in the study of spatial statistics, the correlation structure

between the observations is of interest. A straightforward example is the AR(1)

model. Suppose that Yt is some random process observed at time t. The AR(1)

model states that

Xt = ρXt−1 + εt,

where Eεt = 0, Eε2
t = σ2, and εt1 and εt2 are independent if t1 6= t2. Here, σ2

represents the variance of the white noise in the process, and ρ represents the strength

of correlation to the previous observation in the series. Estimation of these parameters

is important for a variety of time series applications, such as prediction of future

observations. A common application would be to consider Xt to be the price of a

given stock at the end of day t of trading. Naturally, predicting Xt+k, the price at

the end of day t + k could be very beneficial.

1. Problem Background

In some scientific and engineering fields, the values of the model parameters have

practical meaning that is important for the understanding of the field. The man-

ufacturing of semiconductors, for example, has motivated a problem in the study

of replicated time series data, regarding the estimation of covariance parameters. In

Chapter III, we will briefly discuss the semiconductor application. However, our focus

will be on the statistical side of the problem, and a brief description follows here.

Suppose that we have M independent stationary time series such that Xit is the

observation from the i-th time series taken at time t. Suppose that all M time series
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have a common autocovariance function of the form

C(h; θ) = θ0ρ(h; θ1, . . . , θp),

where h ∈ Z is the difference in time (“lag”) between two observations, θ0 > 0 is

the variance of the process, and ρ(·; θ1, . . . , θp) is a correlation function, determining

the strength of relationship between two points, depending on h and parameters

θ1, . . . , θp. Our goal is to not only estimate the parameter values contained in θ, but

to use nonparametric bootstrap methods to examine the behavior (specifically, the

variance or mean squared error) of those estimators.

2. Basics of the Moving Block Bootstrap

The moving block boostrap (Künsch 1989), or MBB, is a nonparametric resampling

algorithm for studying the behavior of a statistic based on dependent data. When

the observations are independent, it is possible to resample them individually when

bootstrapping. However, with dependent data, resampling observations individually

would lose the vitally important correlation structure with nearby observations. The

MBB allows for groups, or blocks, of nearby and highly correlated observations to

be resampled together. The blocks are then concatenated to form the bootstrap

replicates. This resampling procedure is normally performed on the residuals.

Most early work regarding the MBB involved short-range dependent processes.

Works such as Lahiri (1993) showed that under long-range dependence, the MBB

failed unless further restrictions are put on the statistic in question’s asymptotic

properties. In this dissertation, we will use the MBB to investigate the variance of

covariance parameter estimators.
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3. Basics of Subsampling

Subsampling, unlike bootstrap methods, does not involve recreating data sets of the

same size as the original data in order to study the properties of a statistic. Instead,

the subsampling process involves taking small subsets of the data, and calculating

the statistic in question for each subset. In the case of dependent data, these subsets

are very much like the blocks of the MBB, but they are not attached to one another

to form a data set of the same size as the original. In this dissertation, we will use

subsampling to estimate the weights to be used in weighted least squares estimation

of covariance parameters.

C. Overview

In Chapter II, a bootstrap method is developed and tested for correcting bias in

Kriging prediction when the observed data is not from a Gaussian process, but can

be converted to a Gaussian process via a one-to-one transformation of the data.

Testing of the method will be discussed with both simulated and real world data.

In Chapter III, a bootstrap method is developed and tested for the estimation of

covariance parameters for replicated time series data.
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CHAPTER II

BOOTSTRAP BASED TRANS-GAUSSIAN KRIGING

A. Introduction

When performing spatial prediction via Kriging for Trans-Gaussian data, a common

approach is to perform Kriging on the Gaussian data and then do a simple transfor-

mation. However, the resulting näıve predictor will be biased due to the fact that

generally, E(φ(X)) 6= φ(E(X)). To eliminate this bias, Cressie (1993) suggests an

additive correction factor. Here, we seek to improve upon the naive predictor through

the use of a correction factor to be calculated using bootstrap methods.

B. Problem Description

Let Z(·) be a spatial process on a domain D ⊂ IRd and let Z ≡ {Z(si) : i = 1, . . . , n}

be observed, where the sites s1, . . . , sn either lie on a regular grid (in which case, we

take D = ZZd, the d-dimensional integer grid) or are irregularly spaced (in which case

D = IRd). Furthermore, let s0 ∈ D be a site such that Z(s0) is unobserved. Suppose

that the observable process Z(·) is such that for a known continuous and invertible

link function φ(·), Z(s) ≡ φ(Y (s)), and

Y (s) ≡ µ(s; β) + ε(s), s ∈ D

where ε(s) is a zero-mean, second order stationary Gaussian process, with variogram

2γ(·; θ) ≡ E(ε(·) − ε(0))2, and covariogram C(·; θ) ≡ Eε(·)ε(0). We suppose that

µ(·; β) and 2γ(·; θ) (and hence C(·; θ)) are known, except for the finite dimensional

mean parameters β ∈ B and covariance parameters θ ∈ Θ. Alternatively, µ(·; β) can

be identically zero.
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1. Examples

Example B.1. Log-Normal Kriging: Suppose that the Z(·) variables are positive

with probability one. Define

Y (s) = log Z(s), s ∈ D.

Then Z(·) is a Log-Normal process.

Example B.2. Logit Kriging: Let Z(s) denote a (0, 1) valued random variables, e.g.,

a proportion. Consider a health related example. Z(s) might represent the mortality

rate due to a certain disease at a given location. In this case, n(s) represents the

number of people with the disease, and let π be the probability of dying from the

disease. If each patient is independent, then the number of people who die from

the disease, X(s), follows a binomial distribution with parameters π and n(s). Then

Z(s) = X(s)/n(s). Let

Y (s) = logit Z(s), s ∈ D,

where logit Z = log
(
Z/[1− Z]

)
, Z ∈ (0, 1). Then Z(·) is a translated Logit-Normal

process.

C. Background

1. Trans-Gaussian Kriging

If possible, we wish to work with the underlying Gaussian process instead of the

observed Trans-Gaussian data, which is nonstationary in both the mean and the

covariance. The problem is simplified further if we can work with a process with

mean 0. Since one assumption is that the form of µ(·; β) is known (e.g., linear model,

quadratic model, etc.), it is possible to detrend the data and perform Kriging on the
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residuals.

First, consider the “ideal” case where the parameters β and θ are known. Note

that in this case, the exact mean of Y (·)’s are known, and hence, we may work with

the error variables ε(s) = Y (s)−µ(s; β). Let Ỹ (s0) be the Ordinary Kriging predictor

of Y (s0) based on Y ≡ {Y (si) : i = 1, . . . , n}, which are observed, when β and θ are

known. Specifically, if ε ≡ {ε(si) : i = 1, . . . , n}, then the Ordinary Kriging predictor

is

Ỹ (s0) = µ(s0; β) + λ′ε

= µ(s0; β) +
n∑

i=1

λiε(si) (C.1)

where the weights λ = {λ1, . . . , λn} are calculated for Ordinary Kriging as suggested

by Cressie (1993). Let γ ≡ (C(s0−s1; θ), . . . , C(s0−sn; θ))′ and Σ be an n×n matrix

such that its (i, j)-th entry is given by C(si− sj; θ). When θ is known (as we assume

here), the Kriging weights are

λ ≡
(

γ + 1
1− 1Σ−1γ

1Σ−11

)′

Σ−1. (C.2)

The “natural” but biased Trans-Gaussian Kriging predictor of Z(s0) in the “ideal”

case is then given by

Z̃(s0) = φ
(
Ỹ (s0)

)
. (C.3)

In practice, the parameters β and θ are typically unknown. We suppose that

estimators β̂ and θ̂ of the model parameters are given. Let

ε̂(s) = Y (s)− µ
(
s; β̂
)

.

Also, let γ̂ and Σ̂ be estimated versions of γ and Σ obtained by replacing θ with θ̂.
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Define the estimated predictor of Y (s0) by

Ŷ (s0) = µ
(
s0; β̂

)
+

n∑
i=1

λ̂iε̂(si), (C.4)

where λ̂ =
(
λ̂1, . . . , λ̂n

)
is given by (C.2) with γ = γ̂, Σ = Σ̂. The näıve Trans-

Gaussian predictor of Z(s0) is then given by

Ẑ(s0) = φ
(
Ŷ (s0)

)
. (C.5)

2. Bias Corrected Predictors

Note that the predictors in (C.3) and (C.5) are biased for a nonlinear φ(·) such

as in the examples. Often, this bias is significant when Y (s0) is in the tails of its

marginal univariate normal distribution. Then, depending on the extremity of the

transformation performed by φ(·), any inaccuracy in Ŷ (s0) can be magnified.

As a result, often a bias corrected version of Z̃(s0) or Ẑ(s0) is constructed, pri-

marily using the delta method, such as in a predictor similar to the one proposed by

Cressie (1993), given by

ẐC(s0) = Ẑ(s0) + φ′′(µ̂0,Y )

(
τ̂ 2(s0)

2
− m̂Y

)
, (C.6)

where µ̂0,Y = µ
(
s0; β̂

)
is an estimate of E(Y (s0)), τ̂ 2(s0) is an estimate of the Kriging

variance, or mean square prediction error (MSPE), of Ỹ (s0), given by

τ̂ 2(s0) = C
(
0; θ̂
)
− λ̂

′
γ̂ + m̂, (C.7)

and m̂ = mY

(
θ̂
)
. Here, mY (θ) is a Lagrangian multiplier, given by

mY (θ) =
(1− 1′Σ−1γ)

1Σ−11
.

Cressie (1993) states that in the case where µ(·; β) ≡ 0 and θ is known, the accuracy
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of this predictor relies on σ2
Y (s0), the variance of Y (s0), being “small.” It can be

shown that the correction factor in (C.6) is derived from the formal Taylor expansion

of φ(·), centered at EY (s0),

φ(Y (s0)) =
∑

i

φ(i)(µ(s0; β))

i!
[Y (s0)− µ(s0; β)]i , (C.8)

where φ(i)(µ(s0; β)) denote the i-th derivative of φ(·) at µ(s0; β). See Section II.E

for the derivation of (C.8). Notice that the approximate predictor in (C.6) ignores

the terms in this summation with i ≥ 3. This leads to other limitations on the

type of function φ(·) that can be used. A low order polynomial function such as

φ(y) = y3 will be acceptable because the higher order derivatives are zero. However,

some families of functions φ(·) such as exponential functions will have nonzero higher

order derivatives, causing the later terms in (C.8) to become nontrivial.

A Bayesian approach to bias correction is presented in De Oliveira et al. (1997).

However, here, we concern ourselves with frequentist methods.

In the next section, we construct a bias-corrected predictor based on a paramet-

ric spatial bootstrap, improving upon the bias correction method described above.

Specifically, for the biased Kriging predictor Ẑ(s0) in (C.5), we are looking to estimate

a value c such that

ẐBC
M (s0) ≡ cẐ(s0) (C.9)

is approximately unbiased. Here, the subscript M corresponds to a “multiplicative”

bias correction. The multiplicative bias correction factor c described in (C.9) works

best for nonnegative Z-variables, such as in the case of log-normal Kriging. For Z-

variables with an unrestricted range, such as in power transformation models, an

alternative is to use an additive correction factor a based on the bootstrap such that

ẐBC
A (s0) = Ẑ(s0) + a (C.10)
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is approximately unbiased.

D. Bootstrap Based Bias Corrected Prediction

1. Known Parameters

For now, we will work in the setting where we assume we know the value of the

covariance parameter θ and the mean parameter β. Note that in the mulitiplicative

case that the factor that makes Z̃(s0) exactly unbiased is given by c ≡ c(β, θ) =

EZ(s0)/EZ̃(s0), while in the additive case, a ≡ a(β, θ) = EZ(s0)− EZ̃(s0).

Since c and a depend on unknown parameters, they can not be used in practice.

Further, the explicit forms of c(β, θ) and a(β, θ) are often difficult to derive analyti-

cally. In this section, we present a bootstrap method for estimating the factors c(β, θ)

and a(β, θ) that does not require the user to do such analytical work; it replaces the

tedious and intractable analytical derivation by a simple, albeit computer intensive

bootstrap algorithm. The same principle also produces an estimate of the MSPE of

the Trans-Gaussian predictor with and without bias-correction. Explicit formula for

the MSPE of the Trans-Gaussian predictor is not available in the literature, except

in some very specific cases (e.g., Log-Normal Kriging and its generalized versions);

see Cressie (1993), Shimizu and Iwase (1987), and the references therein.

The parametric bootstrap algorithm for the known parameter case for estimating

a and c is as follows:

1. Generate ε∗(s0), ε
∗(s1), . . . , ε

∗(sn) from the Gaussian process with covariogram

C(·; θ). Note that this involves the generation n + 1 observations.

2. Compute Ỹ ∗(s0) by replacing {ε(si) : i = 1, . . . , n} in (C.1) with the generated

variables {ε∗(si) : i = 1, . . . , n}.
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3. Compute Z̃∗(s0) = φ
(
Ỹ ∗(s0)

)
and Z∗(s0) = φ (Y ∗(s0)).

4. Let ãn = E∗Z
∗(s0)− E∗Z̃

∗(s0) and c̃n = E∗Z
∗(s0)/E∗Z̃

∗(s0) where E∗ denotes

the conditional expectation given Y. Then, the bootstrap-based bias-corrected

predictors of Z(s0) are given by

Z̃BC
A (s0) = Z̃(s0) + ãn, and

Z̃BC
M (s0) = c̃n · Z̃B(s0).

In practice, ãn and c̃n are evaluated by Monte Carlo simulation, where steps 1,

2, and 3 are repeated a large number of times, say B times, resulting in the bootstrap

replicates {Z̃∗j(s0) : j = 1, . . . , B} and {Z∗j(s0) : j = 1, . . . , B}, for Z̃∗(s0) and

Z∗(s0), respectively. Then, the Monte-Carlo approximation to ãn and c̃n are given by

ãMC
n ≡ 1

B

[
B∑

j=1

Z∗j(s0)−
B∑

j=1

Z̃∗j(s0)

]
, and

c̃MC
n ≡

∑B
j=1 Z∗j(s0)∑B
j=1 Z̃∗j(s0)

,

respectively.

2. Unknown Parameters

For real applications, the value of the covariance parameter θ is unknown, as is the

mean structure of the Gaussian process. Therefore, in reality the aforementioned

predictors must be calculated using estimates of the parameters.

For concreteness, we propose using Cressie’s weights to obtain θ̂, a WLS estimate

of the covariance parameter θ, which will then be used in the calculations of γ̂ and

Σ̂. However, other choices of β̂ and θ̂ are also possible.

1. From the observed {Z(si) : i = 1, . . . , n}, find {Y (si) = φ−1(Z(si)) : i =
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1, . . . , n}.

2. Construct β̂, an estimator of the parameter (vector) β, based on {Y (si) : i =

1, . . . , n}. Then, use the residuals to calculate Matheron’s (1962) method of

moments estimator for the variogram and weighted least squares to find θ̂.

3. Generate ε∗(s0), ε
∗(s1), . . . , ε

∗(sn) from the Gaussian process with covariogram

C
(
·; t̂e
)
.

4. Compute Ŷ ∗(s0) by replacing {ε(si) : i = 1, . . . , n} in (C.4) with the generated

variables {ε∗(si) : i = 1, . . . , n} and replacing β and θ with β̂ and θ̂, respectively.

5. Compute Ẑ∗(s0) = φ
(
Ŷ ∗(s0)

)
and Z∗(s0) = φ(Y ∗(s0)).

6. Let ân = E∗Z
∗(s0)−E∗Ẑ

∗(s0) and let ĉn = E∗Z
∗(s0)/E∗Ẑ

∗(s0) where E∗ denotes

the conditional expectation given Y. Then, the bootstrap-based bias-corrected

predictors of Z(s0) are given by

ẐBC
A (s0) = Ẑ(s0) + ân, and (D.11)

ẐBC
M (s0) = ĉn · ẐB(s0), (D.12)

respectively.

Again, a Monte Carlo simulation is normally used to approximate ân and ĉn.

Steps 3, 4, and 5 are repeated B times resulting in the bootstrap replicates {Ẑ∗j(s0) :

j = 1, . . . , B} and {Z∗j(s0) : j = 1, . . . , B}. Then, the Monte Carlo approximation

to ĉn is given by

ĉMC
n ≡

∑B
j=1 Z∗j(s0)∑B
j=1 Ẑ∗j(s0)

.

A similar adjustment can be made for unknown parameters in the case of an additive

correction factor âMC
n .



15

3. Bootstrap MSPE Estimation

Another advantage of the bootstrap procedure is that it allows for estimation of the

MSPE of each predictor based on a single data set, because of the large number of

bootstrap replicates produced by the resampling procedure. Here, we work in the case

of unknown parameters, so we will refer to Steps 1-6 above leading to the predictors

in (D.11) and (D.12). An analogous procedure can be easily seen if parameters are

known.

For Ẑ(s0), repeat Steps 3, 4, and 5 B times as described above. The bootstrap

estimate of the MSPE is given by ˆMSPE
(
Ẑ(s0)

)
= E∗

[
Ẑ∗(s0)− Z∗(s0)

]2
, so the

Monte Carlo approximation will be

ˆMSPE
MC

n

(
Ẑ(s0)

)
=

1

B

B∑
j=1

[
Ẑ∗j(s0)− Z∗j(s0)

]2
.

For ẐC(s0), the procedure is very similar. Because we can treat the estimates β̂ and

θ̂ as the true values of the parameters for the boostrap distribution, the correction

does not change for each replicate, and

Ẑ∗C(s0) = Ẑ∗(s0) + φ′′(µ̂0,Y )

(
τ̂ 2(s0)

2
− m̂Y

)
.

Therefore, the bootstrap estimate of the MSPE of ẐC(s0) is given by

ˆMSPE
(
ẐC(s0)

)
= E∗

[
Ẑ∗(s0) + φ′′(µ̂0,Y )

(
τ̂ 2(s0)

2
− m̂Y

)
− Z∗(s0)

]2

,

and the Monte Carlo approximation is

ˆMSPE
MC

n

(
ẐC(s0)

)
=

1

B

B∑
j=1

[
Ẑ∗j(s0) + φ′′(µ̂0,Y )

(
τ̂ 2(s0)

2
− m̂Y

)
− Z∗j(s0)

]2

,

where all quantities are as defined above.

Estimating the MSPE for the bootstrap predictors is more complicated, because
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each bootstrap replicate does not create its own estimate of an or cn. Here, a nested

bootstrap procedure is necessary. The following procedure must be followed for each

bootstrap replicate {ε∗(si) : i = 0, . . . , n}:

1. Based on {ε∗(si) : i = 0, . . . , n}, calculate θ̂∗ using WLS methods, in a method

similar to the one used to calculate θ̂.

2. Generate ε∗∗(s0), ε
∗∗(s1), . . . , ε

∗∗(sn), the nested bootstrap replicate, based on a

Gaussian process with covariogram C
(
·; θ̂∗

)
.

3. Calculate Ŷ ∗∗(s0) by replacing {ε(si) : i = 1, . . . , n} in (C.4) with {ε∗∗(si) :

i, . . . , n} and replacing β and θ with β̂ and θ̂∗, respectively. Notice that this

only requires a bootstrap estimate of θ.

4. Compute Ẑ∗∗(s0) and Z∗∗(s0).

5. Let ĉ∗n = E∗∗Z
∗∗(s0)/E∗∗Ẑ

∗∗(s0) and â∗n = E∗∗Z
∗∗(s0)−E∗∗Ẑ

∗∗(s0). In practice,

these conditional expectations are calculated based on B2 nested bootstrap

replicates for large B2. We recommend B2 ≤ B.

The bootstrap MSPE estimates of the multiplicative and additive bootstrap pre-

dictors are thus given by the conditional expectations

MSPE
(
ẐBC

M (s0)
)

= E∗

[
ĉ∗nẐ

∗(s0)− Z∗(s0)
]2

and

MSPE
(
ẐBC

A (s0)
)

= E∗

[
â∗n + Ẑ∗(s0)− Z∗(s0)

]2
.

The Monte Carlo approximations are

MSPEMC
n

(
ẐBC

M (s0)
)

=
1

B

B∑
j=1

[
ĉ∗jn Ẑ∗j(s0)− Z∗j(s0)

]2
,
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and

MSPEMC
n

(
ẐBC

A (s0)
)

=
1

B

B∑
j=1

[
â∗jn + Ẑ∗j(s0)− Z∗j(s0)

]2
.

Note that this nested bootstrap procedure is computationally very intensive, involving

B estimates of θ and the generation of BB2 bootstrap replicates.

4. Bootstrap Prediction Intervals

In addition to point estimates, prediction intervals are often used in spatial prediction.

These intervals are beneficial to point estimates in that they gauge the amount of

variability in a predictor, and inform the reader of that variability via a margin of

error. Moreover, the intervals give a range of plausible values for an observation, with

a given level of certainty or confidence. We start by referring to the estimate of the

Kriging variance of Ŷ (s0), given in (C.7). A 100(1−α)% prediction interval for Y (s0)

is given by (
Ŷ (s0)− zα/2τ̂(s0), Ŷ (s0) + zα/2τ̂(s0)

)
, (D.13)

where zα/2 is the number such that the probability of a standard normal variable

being greater than zα/2 is α/2. This interval may be interpreted by saying that if

many samples are taken, and Ŷ (s0) and τ̂(s0) is calculated each time, the resulting

prediction interval will contain Y (s0) 100(1 − α)% of the time. When Y (·) is a

Gaussian process, a 100(1−α)% prediction interval for Z(s0) may simply be calculated

by transforming the endpoints of the interval in (D.13), i. e.,

(
φ
(
Ŷ (s0)− zα/2τ̂(s0)

)
, φ
(
Ŷ (s0) + zα/2τ̂(s0)

))
. (D.14)

The interpretation of this interval is similar to the one for the interval in (D.13), and

the intervals will have the same coverage probabilities.

The bootstrap procedure can also be used to produce prediction intervals. When
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the Y (·) process is Gaussian, these prediction intervals should perform no better than

the interval in (D.14). However, when working with real world data, the assumptions

of a Gaussian process may be questionable, and bootstrap prediction intervals will be

of some use. Using order statistics, a 100(1 − α)% bootstrap-t prediction interval is

be given by

(
φ
(
Ŷ (s0) + t∗(B(α/2))τ̂(s0)

)
, φ
(
Ŷ (s0) + t∗(B(1−α/2))τ̂(s0)

))
, (D.15)

where t∗ = (Ŷ ∗(s0)− Y ∗(s0))/τ̂ , B is the number of bootstrap replicates, and t∗(n) is

the n-th order statistic of t∗; that is, the n-th observation when the the B values of

t∗ are placed in increasing order. Also, symmetric bootstrap-t intervals can be given

by (
φ
(
Ŷ (s0) + |t∗|(B(α/2))τ̂(s0)

)
, φ
(
Ŷ (s0) + |t∗|(B(1−α/2))τ̂(s0)

))
, (D.16)

where the order statistics work similarly as before, but this time are for the absolute

value of t∗.

E. Theoretical Results

1. Preliminaries

The observed process is

Z(s) = φ(Y (s)),

where φ(·) is a known one-to-one fucntion,

Y (s) = µ(s; β) + ε(s), s ∈ D,

and ε(·) is a second order zero-mean stationary spatial Gaussian process on D ⊂ Rd,

with covariogram C(·; θ).
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Let

Ŷ (s0) = µ
(
s0; β̂

)
+ ε̂(s0)

and

ε̃(s0) = λ′ε

be the ideal predictor of ε(s0) when ε = {ε(s1), . . . , ε(sn)} are observable, with weights

given by (C.2) and MSPE

τ 2(s0) = C(0; θ)− λ′γ + m,

with

m =
1− 1′Σ−1γ

1Σ−11
.

Here,

γ = (C(s0 − s1; θ), . . . , C(s0 − sn; θ))′,

Σ = ((C(si − sj; θ)))

for unknown parameters θ. These formulas are taken from Cressie (1993). If θ̂ is an

estimate of θ, then

ε̂(s0) = λ̂
′
ε̂,

Ẑ(s0) = φ
(
Ŷ (s0)

)
= φ

(
µ(s0; β̂) + ε̂(s0)

)
,

where λ̂ = λ
(
θ̂
)

and ε̂ is the vector of residuals, with i-th component ε̂i = Y (si)−

µ
(
s0; β̂

)
, 1 ≤ i ≤ n.
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2. Derivation of the Taylor Series Based Bias Corrected Predictor

From the Taylor’s expansion of φ(·), we see that

φ(Y (s0)) = φ(µ(s0; β)) + [Y (s0)− µY (s0, β)]φ′(µ(s0; β))

+
[Y (s0)− µY (s0; β)]2

2
φ′′(µ(s0; β)) + · · · ,

and therefore, using the terms upto the second order, we obtain the approximation

EZ(s0) = Eφ(Y (s0))

≈ φ(µ(s0; β)) + 0

+
φ′′(µ(s0; β))

2
E[Y (s0)− µY (s0; β)]2. (E.17)

And similarly,

Eφ
(
Ỹ (s0)

)
= Eφ (µ(s0; β) + ε̃(s0))

≈ E

{
φ(µ(s0; β)) + φ′(µ(s0; β))ε̃(s0)

+
φ′′(µ(s0; β))

2
ε̃(s0)

2

}
. (E.18)

Note that Eε̃(s0) = 0. From (E.17) and (E.18),

E
(
φ
(
Ỹ (s0)

)
− φ(Y (s0))

)
≈ φ′′(µ(s0; β))

2

[
Eε̃(s0)

2 − Eε(s0)
2
]

=
φ′′(µ(s0; β))

2

[
E (ε̃(s0)− ε(s0))

2 + 2E (ε(s0)(ε̃(s0)− ε(s0))
]

=
φ′′(µ(s0; β))

2
[τ 2(s0) + 2(m− τ 2(s0))]

= −φ′′(µ(s0; β))

2
[τ 2(s0)− 2m]

= −φ′′(µ(s0; β))

[
τ 2(s0)

2
−m

]
,



21

since

E (ε(s0)(ε̃(s0)− ε(s0))) = E (ε(s0)(λ
′ε− ε(s0)))

= λ′γ − C(0; θ)

= m− [C(0; θ)− λ′γ + m]

= m− τ 2(s0).

This yields the “ideal” and “estimated” Taylor’s expansion based bias corrected pre-

dictors:

Z̃C(s0) = φ
(
Ỹ (s0)

)
+ φ′′(µ(s0; β))

[
τ 2(s0)

2
−m

]
,

ẐC(s0) = φ
(
Ŷ (s0)

)
+ φ′′

(
µ(s0; β̂)

)[ τ̂ 2

2
− m̂

]
.

where τ̂ 2(s0) and m̂ are given by, replacing θ with θ̂ in τ 2(s0) ≡ τ 2(s0; θ) and m ≡

m(θ).

3. Bias of Predictors

In this section, as well as in the accompanying proofs, we highlight the dependence of

various quantities depending on (the distribution of) Z(s0), Z(s1), . . . , Z(sn) by using

the subscript n. Thus, we shall write θ̂ = θ̂n, β̂ = β̂n, γ = γn, Σ = Σn, Z̃(s0) = Z̃n(s0),

Ẑ(s0) = Ẑn(s0), etc.

Further, we work under the assumption that the following assumption is met.

Condition E.1. Assume that EY (s0) = µ(s0; β) where Y (s0) = µ(s0; β) + ε(s0)

and that β̂n is an estimate of the parameter β. Further, suppose that ε̃(s0) and

ε̂(s0) are Ordinary Kriging predictors of ε(s0) using known and unknown parameters,
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respectively. Further, assume that∣∣∣µ(s0; β̂n)− µ(s0; β)
∣∣∣+ |ε̂(s0)− ε̃(s0)| →p 0

Proposition E.1. Suppose that Condition E.1 holds and that φ(·) admits a power-

series representation given by

φ(x) =
∞∑

k=0

dk(x− µ(s0))
k, x ∈ R (E.19)

for some d0, d1, . . . ∈ R. Further, supppose that E
[
Ẑn(s0)

]2
= O(1) and that for

some k1 ∈ (0,∞),

∞∑
k=1

∞∑
j=1

kj|dkdj|2(k+j−2)/2Γ

(
k + j − 1

2

)[
σj+k−2

n + σj+k−2
0

]
< k1 < ∞, (E.20)

for n large, where Γ(·) is the Gamma function and where σ2
0 = C(0; θ) and σ2

n =

Eε̃(s0)
2 = λ′

nΣnλn. Then:

Bias
(
Ẑn(s0)

)
=

∞∑
k=1

φ(2k)(µ(s0; β))

k!2k
(σ2k

n − σ2k
0 ) + o(1), (E.21)

and

Bias
(
ẐC

n (s0)
)

=
∞∑

k=2

φ(2k)(µ(s0; β))

k!2k
(σ2k

n − σ2k
0 ) + o(1). (E.22)

Next we comment about the regularity conditions. Condition E.1 is a mild

requirement on the estimators β̂n and θ̂n. In particular, if µ(s0; ·) is continuous at β

and
{

β̂n

}
n≥1

is consistent for β, then

µ
(
s0; β̂n

)
− µ(s0; β) →p 0.

Similarly, if ‖Σn(θ)−1‖ = O(1), then it can be shown that consistency of
{

θ̂n

}
n≥1

and (equi-)continuity of C(s; ·) at θ implies that ε̂(s0)− ε̃n(s0) →p 0.

Condition (E.19) on φ(·) implies that φ(·) is infinitely diffentiable, although a
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more complicated expression can be derived for functions φ(·) that are twice differ-

entiable. The power series representation is specifically used for deriving an explicit

expression for the bias of the näıve predictor in terms of σ2
0 and σ2

n. Note that this con-

dition holds for both Log-normal Kriging and Logit Kriging (Examples B.1 and B.2).

The requirement that E
[
Ẑn(s0)

]2
= O(1) can be weakened to E

∣∣∣Ẑn(s0)
∣∣∣1+δ

= O(1)

for some δ > 0. Here, we take δ = 1 as it seems to be the most natural condition in

this context; the MSPE of Ẑn(s0) is bounded only when E
[
Ẑn(s0)

]2
= O(1).

Finally, Condition (E.20) is a sufficient condition for deriving the series repre-

sentation of Bias
(
Ẑn(s0)

)
. Under (E.20), the sum on the right side of (E.21) is

absolutely convergent.

Note that under the conditions of Proposition E.1, the bias of the näıve predictor

is the difference between the values of an analytic function of σ2
n and σ2

0. For pure-

increasing domain asymptotic structure (cf. Cressie (1993), Lahiri (2003)) with either

regularly-spaced or irregularly spaced data points, {σn}n≥1 does not converge to σ0

and therefore, the bias typically remains bounded away from zero. However, in the

presence of an infill component in the spatial sampling design, under mixed or pure

infill asymptotics, {σn}n≥1 may converge to σ0 (e. g., if s0 is a limit point of si’s) and

the bias must go to zero in this case. A similar remark applies to the bias-corrected

predictor ẐC
n (s0) of Cressie (1993).

Next consider the bias properties of the bootstrap based bias-corrected predictors

ẐBC
M,n(s0) and ẐBC

A,n(s0).

Let f0(·) denote the probability density function of the N(0, 1) distribution, i. e.

f0(x) =
1√
2π

e−x2/2, for x ∈ R.

Let g(b, u) ≡
∫

φ(µ(s0; b) + ux)f0(x)dx, for b ∈ B, u ∈ [0,∞). Let λ = λn(θ) =

(λ1n(θ), . . . , λnn(θ))′.
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Condition E.2. Suppose that k0, k1, k2, and k3 are positive constants such that the

following conditions hold.

(i) There exists δ0 > 0 and {αi}i≥1 ⊂ [0,∞) with
∑∞

i=1 αi < ∞ such that for all

t ∈ Θ,

|λin| ≤ αi for all i = 1, . . . , n,

and for all ‖t− θ‖ < δ0,

|λin(t)− λin(θ)| ≤ k0|t− θ|αi, for 1 ≤ i ≤ n,

where n ≥ 1.

(ii) {τn(·)}n≥1 is equicontinuous at the true value θ.

(iii) |µ(s; t1)− µ(s; t2)| ≤ k1|t1 − t2| for all s, t1, t2.

(iv) φ(·) is differentiable and there exists a monotone function Φ(1) : [0,∞) → [0,∞)

such that

Eβ,θΦ
(1)

(
|µ(s0; β)|+ k

n∑
i=1

αi|ε(si)|+ k
∥∥∥β̂n − β

∥∥∥)2

≤ k2

for all n large and all β, θ.

(v) There exists a sequence {bn}n≥1 → 0 as n →∞ such that(
Eβ,θ

∥∥∥β̂n − β
∥∥∥4
)1/4

≤ bn

and

Pβ,θ

(∥∥∥θ̂n − θ
∥∥∥ > δ

)
≤ k(δ)bn

for any δ > 0, for all β, θ.

(vi) C(0, θ) < k3 for all θ.

Finally, consider the following condition.



25

Condition E.3. Suppose that g(·, ·) and C(0, ·) are functions such that the following

conditions hold.

(i) g(·, ·) and C(0, ·) are continuous and {g2(β̂n, C(0, θ̂n))}n≥1 and {g2(β̂n, τ
2
n(θ̂n))}n≥1

are uniformly integrable.

(ii) E
∣∣∣Ẑn(s0)/E∗(Ẑ

∗(s0))
∣∣∣2 = O(1).

Then, we have the following result.

Proposition E.2. Suppose that Conditions E.1, E.2, and E.3 hold. Then

Bias
(
ẐBC

M,n(s0)
)

= o(1), and (E.23)

Bias
(
ẐBC

A,n(s0)
)

= o(1). (E.24)

Thus, it follows that under the conditions of Proposition E.2, the bootstrap bias-

corrected predictors are asympotically unbiased for any limiting configuration of the

data sets s1, . . . , sn. In particular, unlike the näıve predictor Ẑn(s0) or its analytical

bias corrected version ẐC
n (s0), the asymptotic unbiasedness of ẐBC

·,n (s0) holds even

under pure increasing domain asymptotic structure, when σn 6→ σ0.

By construction, the “ideal” bootstrap based bias-corrected predictors are exactly

unbiased (for any given sample size n). The error term o(1) in (E.23) and (E.24)

results from estimating the unknown parameters β and θ by β̂n and θ̂n, respectively.

The magnitude of this term in finite samples is primarily determined by the size of

the left side of Condition E.1.
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F. Simulations

1. Framework

For the purposes of these simulations, we suggested setting D to be some subset of

R2 containing s0 near its center. Here, s0 will be set to be the origin and D will be

one of the following subsets of R2:

• D1 := {(i, j) ∈ Z2 : |i|, |j| ≤ 3}

• D2 := {(i, j) ∈ R2 : |i|, |j| ≤ 3 and 2i, 2j ∈ Z}

• D3 := {(i, j) ∈ Z2 : −4 ≤ i, j ≤ 5}

• D4 := {(i, j) ∈ R2 : −4 ≤ i, j ≤ 5 and 2i, 2j ∈ Z}

• D5 := {(i, j) ∈ Z2 : −9 ≤ i, j ≤ 10}

These choices for D allow for the observance of the asymptotic behavior of the

predictor for both an expanding and filling in observed data set. Notice, for example,

that as we move from D1 to D3 to D5, the window expands from a 7 × 7 grid to a

20× 20 grid. Also, D2 is a filled in version of D1, and D4 is a filled in version of D2,

allowing for closer neighbors to be used for prediction.

We then generated ε(s0), . . . , ε(sn) from a zero mean, second order stationary

Gaussian process with one of the following covariograms:

• Matérn: C(h) := exp(−θ‖h‖) with θ = 0.5

• Exponential: C(h) := exp(−θ1|h1| − θ2|h2|) with θ = (0.5, 1)

The first covariogram is a special case of the Matérn (1960) class of covariograms

with variance equal to 1 and a smoothness parameter of 0.5, while the second is an
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exponential covariogram. These two covariograms give examples of both isotropic

and anisotropic models.

Next, we let µ(·; β) ≡ 1. Then,

Y (s) = µ(s; β) + ε(s)

= 1 + ε(s).

Because of interest in polynomial, exponential, and power functions (particularly

power functions, as methods such as the Box-Cox Transformation are often used in

practice for Trans-Gaussian data), the following functions were used to transform

Y (s0), . . . , Y (sn) to Z(s0), . . . , Z(sn):

• φ(y) := y3

• φ(y) := ey

• φ(y) := e2y

When analyzing the data, we started by estimating the mean function µ(s; β).

When the mean is constant for all s, we simply used the sample mean Ȳ . We then

calculated the estimated residuals and performed Trans-Gaussian Kriging.

All simulations were done for 1000 randomly generated datasets and B = 500

bootstrap replicates for each sample.

We compared four predictors: the näıve biased predictor Ẑ(s0), Cressie’s pre-

dictor ẐC(s0) with an additive correction factor based on the second derivative of

φ(·), and two bootstrap predictors, ẐBC
A (s0) with an additive correction factor and

ẐBC
M (s0) with a multiplicative correction factor. The predictors were compared using

the following measurements:
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Table 1. Results for φ(y) = y3, C(h) = exp(−θ‖h‖) with θ = 0.5

D1 D2 D3 D4 D5

Ratios Ẑ 1.449 1.194 1.376 1.182 1.393

ẐC 1.008 0.995 0.945 1.006 0.993

ẐBC
A 1.007 0.993 0.944 1.008 0.996

ẐBC
M 1.066 1.007 0.978 1.003 0.982

Biases Ẑ -1.217 -0.661 -0.976 -0.664 -1.136

ẐC -0.031 0.022 0.208 -0.027 0.029

ẐBC
A -0.029 0.027 0.210 -0.032 0.017

ẐBC
M -0.244 -0.027 0.079 -0.011 0.075

MSPEs Ẑ 29.607 16.622 28.769 18.055 29.679

ẐC 26.470 15.511 27.199 17.471 28.310

ẐBC
A 26.575 15.518 27.285 17.548 28.422

ẐBC
M 26.979 15.147 27.295 17.669 29.310

• Ratio of expected values of an observation and its prediction:

Ratio =
EZ(s0)

EẐ(s0)

• Bias of the predictor:

Bias = E
[
Ẑ(s0)− Z(s0)

]
• Mean square prediction error (MSPE):

MSPE = E
[
Ẑ(s0)− Z(s0)

]2
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An accurate predictor will have a ratio of expect values close to 1, and a bias

close to 0. A smaller MSPE represents less variability in the prediction.

In addition to comparing the performance of the bootstrap predictors to the näıve

predictor and Cressie’s predictor, actual coverage probabilities for normal, bootstrap-t

(D.15), and symmetric bootstrap-t (D.16) prediction intervals were calculated.

2. Simulation Results

Overall, the bootstrap bias correction procedure does tend to decrease bias, as does

Cressie’s predictor, particularly as the observation grids are filled in (moving from

D1 to D2 and D3 to D4). Which of the two bias correction methods works better

depends on the model.

Tables 1 and 2 show the results for φ(y) = y3 with both the isotropic (Table

1) and anisotropic (Table 2) covariograms. Looking at the ratios of expected values

and biases, it is easily seen that all three predictors with a correction factor perform

better than the näıve predictor. Here, Cressie’s predictor in (C.6) performs as well

as the bootstrap predictors.

This is due to the “nice” differentiation behavior of the function φ(y) = y3. The

Taylor expansion yields

φ(Y (s0)) =
∞∑
i=0

φ(i)(s0)

i!
(Y (s0)− µ(s0; β))i

=
3∑

i=0

φ(i)(s0)

i!
(Y (s0)− µ(s0; β))i.

The same also holds for φ
(
Ŷ (s0)

)
. When the expected value is taken for a bias

calculation, the only terms left are when i = 0 and i = 2, providing the basis for

Cressie’s predictor.

Finally, we note that the bias and MSPE tend to increase as the observation grid
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Table 2. Results for φ(y) = y3, C(h) = exp(−θ1|h1| − θ2|h2|) with θ = (0.5, 1)′

D1 D2 D3 D4 D5

Ratios Ẑ 1.351 1.133 1.331 1.114 1.386

ẐC 0.995 1.006 0.962 1.006 0.986

ẐBC
A 0.998 1.006 0.961 1.003 0.986

ẐBC
M 1.027 1.002 0.960 1.009 1.005

Biases Ẑ -0.996 -0.464 -0.926 -0.405 -1.011

ẐC 0.019 -0.025 0.145 -0.011 0.052

ẐBC
A 0.008 -0.024 0.151 -0.015 0.050

ẐBC
M -0.099 -0.006 0.154 -0.037 -0.017

MSPEs Ẑ 26.308 10.236 36.998 10.718 25.210

ẐC 24.395 9.822 35.176 10.521 24.094

ẐBC
A 24.578 9.855 35.303 10.561 24.156

ẐBC
M 26.157 9.749 32.397 11.109 23.285

is filled in, and that the MSPEs are comparable for all four predictors, which was

seen in all simulations.

Figure 1 shows the biases for 1000 realizations of all four predictors for the

isotropic covariogram. It is easy to see that the bias correction factors reduce the

skew in the distribution of the biases, bringing the outliers closer to the boxes. Recall

that the most bias arises when Y (s0) is far from its mean, and this effect increases as

the derivative of φ(·) becomes more positive or negative.

Figure 2 demonstrates the improvement in bias as a result of the corrected predic-

tors, without a dramatic increase in MSPE. With a transformation such as φ(y) = y3,

Cressie’s predictor is as effective as the bootstrap predictors, as we see in Tables 1
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Figure 1. (a) Biases for 1000 realizations of the four predictors, where φ(y) = y3,

C(h) = exp(−θ‖h‖), θ = 0.5, and the observation grid is D1; (b) Bias of

observations where original bias is between -5 and 5.
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Figure 2. (a) Biases for each predictor for D1 through D5; (b) MSPEs for each pre-

dictor for D1 through D5. Here, φ(y) = y3, C(h) = exp(−θ1|h1| − θ2|h2|),
θ = c(0.5, 1)′.
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Figure 3. (a) Biases for each predictor for D1 through D5; (b) MSPEs for each pre-

dictor for D1 through D5. Here, φ(y) = ey, C(h) = exp(−θ1|h1| − θ2|h2|),
θ = c(0.5, 1)′.
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Figure 4. (a) Biases for each predictor for D1 through D5; (b) MSPEs for each pre-

dictor for D1 through D5. Here, φ(y) = e2y, C(h) = exp(−θ1|h1| − θ2|h2|),
θ = c(0.5, 1)′.
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and 2.

However, it is clear from Figures 3 and 4 that Cressie’s predictor begins to fail in

correcting bias compared to the bootstrap predictors for exponential transformation

functions, as implied by comparing the biases of the three predictors in Propositions

E.1 and E.2.

Table 3. Results for φ(y) = ey, C(h) = exp(−θ‖h‖) with θ = 0.5

D1 D2 D3 D4 D5

Ratios Ẑ 1.219 1.095 1.209 1.108 1.254

ẐC 1.037 1.012 1.037 1.034 1.096

ẐBC
A 0.971 0.971 0.972 0.999 1.030

ẐBC
M 0.986 0.972 0.975 0.993 1.024

Biases Ẑ -0.780 -0.396 -0.730 -0.451 -0.933

ẐC -0.153 -0.052 -0.151 -0.152 -0.404

ẐBC
A 0.130 0.136 0.122 0.007 -0.133

ẐBC
M 0.060 0.131 0.107 0.030 -0.107

MSPEs Ẑ 15.687 7.684 15.270 9.251 20.070

ẐC 14.466 7.484 14.542 8.923 19.205

ẐBC
A 14.539 7.564 14.694 8.942 19.027

ẐBC
M 14.265 7.723 14.645 8.636 17.822

This is further illustrated by Tables 3 and 4, which show the results for φ(y) = ey.

Here, while the later terms in the Taylor expansion do not go to zero, they will tend to

get smaller as φ(i)(y) = ey becomes smaller compared to i!. Cressie’s predictor is still

an improvement over the näıve predictor, but it is not comparable to the bootstrap

predictors.
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Table 4. Results for φ(y) = ey, C(h) = exp(−θ1|h1| − θ2|h2|) with θ = (0.5, 1)′

D1 D2 D3 D4 D5

Ratios Ẑ 1.172 1.063 1.183 1.041 1.195

ẐC 1.032 1.013 1.039 0.999 1.063

ẐBC
A 0.976 0.986 0.983 0.978 1.005

ẐBC
M 0.984 0.985 0.983 0.976 0.996

Biases Ẑ -0.620 -0.266 -0.663 -0.174 -0.750

ẐC -0.132 -0.058 -0.162 0.003 -0.272

ẐBC
Add. 0.103 0.062 0.075 0.100 -0.021

ẐBC
Mult. 0.068 0.069 0.075 0.109 0.017

MSPEs Ẑ 13.179 5.630 13.303 4.787 16.657

ẐC 12.470 5.500 12.786 4.741 16.066

ẐBC
A 12.537 5.482 12.856 4.816 16.044

ẐBC
M 12.546 5.201 12.874 5.068 16.870

Table 5 shows the results for φ(y) = e2y with the isotropic covariogram. Here,

we see that as the transformation function becomes more extreme, the estimators

become less reliable.

The näıve predictor performs poorly, and Cressie’s predictor performs signifi-

cantly worse than the bootstrap predictors. With this transformation function, we

can no longer count on the later terms in the in Taylor expansion to be small, par-

ticularly when φ(i)(y) = 2ie2y > i!.

Compared to the earlier models, the accuracy of the bootstrap predictors has

begun to deteriote, although they both still outperform the existing predictors. In-

terestingly, the MSPE of the multiplicative predictor appears to be more volatile than
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Table 5. Results for φ(y) = e2y, C(h) = exp(−θ‖h‖) with θ = 0.5

D1 D2 D3 D4 D5

Ratios Ẑ 2.229 1.635 1.940 1.487 2.057

ẐC 1.544 1.433 1.443 1.329 1.615

ẐBC
A 0.694 0.918 0.720 0.878 0.882

ẐBC
M 0.841 0.856 0.749 0.911 0.902

Biases Ẑ -27.491 -25.928 -21.065 -17.288 -24.726

ẐC -17.580 -20.182 -13.351 -13.070 -18.321

ẐBC
A 21.923 5.892 16.909 7.351 6.460

ẐBC
M 9.402 11.235 14.550 5.180 4.214

MSPEs Ẑ 21387 74594 29472 17504 19801

ẐC 19116 72271 29056 17271 19477

ẐBC
A 20803 68583 31012 17778 19562

ẐBC
M 29172 55962 60113 18003 19140

the MSPE of the additive predictor.

For the anisotropic covariogram, similar results are seen in Table 6, which corre-

sponds to Figure 4.

Table 7 gives the coverage probabilities for the prediction intervals corresponding

to the simulation in Table 1. We compare the normal prediction interval in (D.14),

the bootstrap-t interval in (D.15), and the symmetric bootstrap-t interval in (D.16).

The three prediction interval methods perform reasonably well, with the normal

and symmetric bootstrap-t intervals performing best. This is not surprising, given

that in these simulations, we know we are in fact dealing with a Gaussian process, so

we expect the normal prediction interval to perform very well. The performance of



36

Table 6. Results for φ(y) = e2y, C(h) = exp(−θ1|h1| − θ2|h2|) with θ = (0.5, 1)′

D1 D2 D3 D4 D5

Ratios Ẑ 2.379 1.389 2.171 1.182 1.987

ẐC 1.875 1.310 1.733 1.120 1.612

ẐBC
A 1.010 1.020 0.974 0.896 0.884

ẐBC
M 1.152 0.981 0.994 0.885 0.927

Biases Ẑ -32.542 -16.496 -27.957 -6.868 -22.382

ẐC -26.199 -13.929 -21.924 -4.767 -17.108

ẐBC
A -0.576 -1.141 1.390 5.164 5.940

ẐBC
M -7.428 1.166 0.300 5.792 3.526

MSPEs Ẑ 174284 66089 34371 14490 29520

ẐC 173045 65765 33763 14442 29284

ẐBC
A 171144 64592 33067 14720 29599

ẐBC
M 168512 55034 27128 24423 28719

the bootstrap intervals indicates that they could be useful with real world data.

G. Oklahoma Climatology Data

For a real world data example, we look at a problem relating weather and energy

consumption. Define Z(s) to be the “heating degree days” (HDDs) at a location s,

depending on the average daily outside air temperature T (s). HDD depends on a

base temperature, often taken to be 65◦ Fahrenheit, such that

Z(s) =

 65◦ F− T (s), for T (s) < 65◦ F

0 otherwise.
. (G.25)
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Table 7. Prediction interval coverage probabilities for φ(y) = y3, C(h) = exp(−θ‖h‖)
with θ = 0.5

D1 D2 D3 D4 D5

Normal 90% 0.881 0.892 0.891 0.876 0.886

95% 0.945 0.944 0.939 0.935 0.949

99% 0.984 0.982 0.988 0.983 0.989

Bootstrap-t 90% 0.787 0.794 0.794 0.783 0.798

95% 0.884 0.885 0.894 0.880 0.887

99% 0.970 0.966 0.975 0.971 0.982

Symmetric 90% 0.878 0.888 0.888 0.880 0.886

Bootstrap-t 95% 0.945 0.944 0.940 0.938 0.940

99% 0.984 0.977 0.985 0.983 0.990

An interpretation of HDD is as follows: if one location s1 has an HDD value of 20

and another location s2 has an HDD value of 40, a building at s2 will require twice as

much energy to heat as a similar building at s1. As implied by the (G.25), HDDs are

calculated on a daily basis. For more on HDDs, see Ristinen and Kraushaar (2006).

Cooling degree days (CDDs) is a similar measurement regarding the amount of energy

required to cool a building. Generally, HDDs are higher in the winter and CDDs in

the summer.

Often, HDDs are accumulated over weeks, months, or seasons, to study energy

usage over an extended period of time, but we will focus on a single day of observa-

tions. Figure 5 shows the heating degree days for January 1, 2009 at 116 observation

sites in Oklahoma, provided by the Oklahoma Climatological Survey (2010), a joint

venture between the University of Oklahoma and Oklahoma State University that
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Figure 5. HDD observations in Oklahoma, Jan. 1, 2009, with multiplication symbols

(×) representing prediction points

tracks weather throughout the state. Suppose we wish to predict the daily HDD

measurement at the points (-98,36), (-96,36.2), (-96,35.2), and (-97.4). These sites

are marked by a “×” symbol in Figure 5.

There appears to be a definite relationship between the spatial location and the

HDD measurement, with a higher number of HDDs corresponding to the sites in the

northeastern part of the state. Further, Figure 6 shows that the distribution HDDs

is highly skewed. The next step is to identify a suitable transformation function φ(·).

We begin by using the transformation suggested by Box and Cox (1964), which

has proven to be suitable for positive variables. If negative observations were present,

the Box-Cox transformation fails, and another method, such as the one suggested by

Yeo and Johnson (2000), should be tried. The Box-Cox transformation function is
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Figure 6. (a) Histogram and (b) normal quantile plot showing that the distribution of

HDDs is skewed.

given by:

gλ(xi) =


xλ

i −1

λ(GM(x))λ−1 if λ 6= 0,

GM(x) log(xi) if λ = 0.

where x = {x1, . . . , xn} and GM(x) is the geometric mean of x. The geometric mean

is a constant that scales the data, and is often omitted. For the HDD data, the

optimal value of λ is -3.005236. The omission of the geometric mean for this data

set leads to transformed observations with a small variance, causing computational

problems later in the analysis. Therefore, we will include the geometric mean in gλ(·).

Define x ≡ Z = {Z(s1), . . . , Z(sn)}, Y (s) = gλ(Z(s)) ≡ φ−1(Z(s)), and κ ≡

(GM(Z))λ−1. It is easy to check that

Z(s) = φ(Y (s))

= g−1
λ (Y (s))
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= (yλκ + 1)1/λ,

where λ = −3.005236.

The distribution of transformed HDD observations is shown in Figure 7. It is

clear that normality is plausible for Y (s).

Table 8. Linear model summary for HDD data

Effect Coefficient p-value

Intercept 429250.2 < 2× 10−16

Latitude -11.125688 0.01626

Longitude 37.22961 0.00355

Interaction 0.3514275 0.00728

Next, we calculate ε̂(s1), . . . , ε̂(sn), the estimated residuals, by estimating the

mean parameter β. We assume a mean function depending on the latitude and

longitude, such that

Y (s) = µ(s; β) + ε(s)

= β0 + β1X1(s) + β2X2(s) + β3X1(s)X2(s) + ε(s),

where X1(s) is the longitude of s, X2(s) is the latitude, and µ(s; β) = β0 + β1X1(s) +

β2X2(s)+β3X1(s)X2(s). The estimated coefficients and p-values from a least squares

regression model are given in Table 8, with all coefficients significantly different from

0.

For our covariogram, we choose

C(h) = θ1 exp(−‖h‖/θ2),
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Transformed HDD Observations
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Figure 7. (a) Histogram and (b) normal quantile plot showing that the distribution of

transformed HDDs is approximately normal.
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where ‖h‖ is the Euclidean distance between two locations. θ1 represents the marginal

variance (σ2) of ε(s), whereas θ2 represents the range of correlation. These parameters

were estimated using weighted least squares. This covariogram is a member of the

Matérn (1960) class, with fixed smoothness parameter equal to 0.5, which is believed

to have considerable use in practice (cf. Stein (1999), Schabenberger and Gotway

(2005)).

Table 9. Predictors for HDD data

(-98,36) (-96,36.2) (-96,35.2) (-97.4,34.5)

Ẑ(s0) 25.15465 28.23200 26.25444 25.41312

ẐC(s0) 25.21641 28.27352 26.30458 25.46030

ẐBC
A (s0) 25.02503 28.03837 26.19769 25.38501

ẐBC
M (s0) 25.02985 28.03462 26.19745 25.38438

WLS procedures give θ̂ = (9.603985, 2.683276)′. We now have all information

needed to calculate the predictors in (C.5), (C.6), (C.9), and (C.10). The predictors

for each of the four prediction points are given in Table 9. If each predictor is

considered to be an estimate of the amount of energy needed to heat a home at a

given location, ẐC(s0) estimates that between 0.14 and 0.25% more energy is required

than Ẑ(s0) does. On the other hand, the bootstrap predictors say that between 0.11

and 0.7% less energy is required than Ẑ(s0).

H. Proofs

Here, we once again shall write θ̂ = θ̂n, β̂ = β̂n, γ = γn, Σ = Σn, Z̃(s0) = Z̃n(s0),

Ẑ(s0) = Ẑn(s0), etc. Denote the k-th derivative of φ(·) by φ(k)(·), k ≥ 1. We will also

use φ′(·), φ′′(·), φ′′′(·) for φ(1)(·), φ(2)(·), and φ(3)(·), respectively. Let 1l(·) denote the
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indicator function, with 1l(S) = 0 or 1 accordingly as a statement S is false or true.

Let k, k(·) denote generic constants in (0,∞) that may depend on some arguments

(if any) but not on n.

Proof of Proposition E.1. First, consider (E.21). Let N ∼ N(0, 1). Then, it is easy

to check that for any k ≥ 1,

E|N |k =

(√
2
)k

√
π

Γ

(
k + 1

2

)
,

where Γ(·) is the Gamma function. Note that by Jensen’s inequality, for any a, b ∈

(0,∞), ∫ ∞

0

xae−xdx ≤
(∫ ∞

0

xa+be−xdx

) a
a+b

.

Thus,

Γ(a + 1) ≤ [Γ(a + b− 1)]
a

a+b

for a > 0 and b ≥ 0. Further, for any integer r ≥ 2, it is easy to check that

Γ

(
r − 1

2

)
≥ Γ(r)Γ(3/2)

r − 1
.

Hence, by (E.20), it follows that for x ∈ {σn, σ0},

∞∑
k=1

|dk|2k/2Γ

(
k + 1

2

)
xk

=

[
∞∑

j=1

∞∑
k=1

|dj||dk|2(k+j)/2

×Γ

(
k + 1

2

)
Γ

(
j + 1

2

)
xj+k

]1/2

≤

[
∞∑

j=1

∞∑
k=1

|dj||dk|2(k+j)/2

×Γ

(
k − 1

2
+

j − 1

2
+ 1

) k−1
k+j−2
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×Γ

(
k − 1

2
+

j − 1

2
+ 1

) j−1
k+j−2

xj+k

]1/2

≤

[
∞∑

j=1

∞∑
k=1

|dj||dk|2(k+j)/2 Γ
(

k+j−1
2

)
(k + j)xk+j

Γ
(

3
2

) ]1/2

= O(1), as n →∞

Now using Fubini’s theorem, we get

Bias
(
Z̃(s0)

)
= E[Z̃(s0)− Z(s0)]

= E [φ (µ(s0; β) + ε̃n(s0))− φ(µ(s0; β) + ε(s0))]

= E

(∑
k≥0

φ(k)(µ(s0; β))

k!
ε̃n(s0)

k

)
− E

(∑
k≥0

φ(k)(µ(s0; β))

k!
ε(s0)

k

)

=
∞∑

k=1

φ(2k)(µ(s0; β))

(2k)!

{
E(ε̃n(s0)

2k)− E(ε(s0)
2k)
}

=
∞∑

k=1

φ(2k)(µ(s0; β))

(2k)!

[
(2k)!

k!2k
(σ2k

n − σ2k
0 )

]
=

∞∑
k=1

φ(2k)(µ(s0; β))

k!2k
(σ2k

n − σ2k
0 ), (H.26)

where ε(s0) ∼ N(0, σ2
0) and ε̃n(s0) ∼ N(0, σ2

n). By (H.26), we have

E
∞∑

k=1

|dk||wk| < ∞

for wk ∈
{
ε(s0)

k, ε̃n(s0)
k
}
, k ≥ 1. Also, from (E.19), it follows that φ(·) is infinitely

differentiable and that dk = φ(k)(µ(s0; β))/k!, k ≥ 1.

Next, fix δ ∈ (0, 1/2). Let

An =
{∣∣∣µ(s0; β̂n)− µ(s0; β)

∣∣∣ ≤ δ
}
∩ {|ε̂n(s0)− ε̃n(s0)| ≤ δ} ,
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for n ≥ 1. Then,∣∣∣E [Ẑ(s0)− Z̃(s0)
]
1l(An)

∣∣∣
=

∣∣∣E {φ
(
µ
(
s0; β̂n

)
+ ε̂n(s0)

)
− φ (µ(s0; β) + ε̃n(s0))

}
1l(An)

∣∣∣
=

∣∣∣∣E {[µ(s0; β̂n

)
− µ(s0; β) + ε̂n(s0)− ε̃n(s0)

]
×
∫ 1

0

(1− u)φ′′
[
u
(
µ
(
s0; β̂n

)
+ ε̂n(s0)

)
+ (1− u) (µ(s0; β)

+ ε̃n(s0))
]
du
}

1l(An)
∣∣∣

≤
√

2

[
E
(
µ
(
s0; β̂n

)
− µ(s0, β)

)2

1l(An)

+E (ε̂n(s0)− ε̃n(s0))
2 1l(An)

]1/2

×
[∫ 1

0

E
{

φ′
(
µ(s0; β) + ε̃n(s0) + u

[
{µ
(
s0; β̂n

)
− µ(s0; β)}

+ {ε̂n(s0)− ε̃n(s0)}]) 1l(An)}2 du

]1/2

.

Note that by the Dominated Convergence Theorem (DCT),

E
[
µ
(
s0; β̂n

)
− µ(s0; β)

]2
1l(An) → 0 as n →∞.

Similarly,

E(ε̂n(s0)− ε̃n(s0))
21l(An) → 0 as n →∞.

Further, by (E.19), uniformly in u ∈ (0, 1),

E
{

φ′
(
µ(s0; β) + ε̃n(s0) + u

[{
µ(s0; β)− µ

(
s0; β̂n

)}
+ {ε̂n(s0)− ε̃n(s0)}

])
1l(An)

}2

≤ E

[
∞∑

k=1

k|dk| {|ε̃n(s0)|+ 2δ}k−1

]2

≤
∞∑

k=1

∞∑
j=1

kj|dkdj|E (|ε̃n(s0)|+ 2δ)k+j−2
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≤
∞∑

k=1

∞∑
j=1

kj|dkdj|2k+j−2
{
E|ε̃n(s0)|k+j−2 + (2δ)k+j−2

}
≤

∞∑
k=1

∞∑
j=1

kj|dkdj|2(k+j−2)/2Γ

(
k + j − 1

2

)
σj+k−2

n + k(δ)

= O(1).

Hence, it follows that ∣∣∣E [Ẑn(s0)− Z̃n(s0)
]
1l(An)

∣∣∣ = o(1). (H.27)

Also, by the Cauchy-Schwarz inequality and Condition E.1,∣∣∣E [Ẑn(s0)− Z̃n(s0)
]
1l(AC

n )
∣∣∣ ≤

[
E
(
Ẑn(s0)

)2
]1/2 [

P (AC
n )
]1/2

+

[
E
(
Z̃n(s0)

)2
]1/2 [

P (AC
n )
]1/2

= o(1). (H.28)

From (H.26)-(H.28), (E.21) follows. The proof of (E.22) is similar and hence, is

omitted.

Proof of Proposition E.2. First, consider the multiplicative bias-corrected predictor

ẐBC
M,n(s0) and its ideal version Z̃BC

M,n(s0). Note that, with cn ≡ EZ̃n(s0)/EZ(s0),

E
(
Z̃BC

M,n(s0)− Z(s0)
)

= cEZ̃n(s0)− EZ(s0)

= 0,

so that the ideal version Z̃BC
M,n(s0) is unbiased. It is easy to see that

Bias
(
ẐBC

M,n(s0)
)

= E
(
ẐBC

M,n(s0)− Z(s0)
)

= EĉnẐn(s0)− EZ(s0)
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= E
{

(E∗Z
∗(s0)− EZ(s0)) Ẑn(s0)/E∗Ẑ

∗
n(s0)

}
− EZ(s0)

EẐn(s0)
E
[{

E∗Ẑ
∗
n(s0)− EẐn(s0)

}
Ẑn(s0)/E∗Ẑ

∗
n(s0)

]
≡ I1n + I2n (say).

Note that ε̂(s0) =
∑n

i=1 λin(θ̂n)ε(si), where λn(θ) = (λ1n(θ), . . . , λnn(θ))′ is as given

by Condition E.3. Note that

E∗Ẑ
∗
n(s0)

= E∗φ

(
µ(s0; β

∗
n) +

n∑
i=1

λin(θ∗n)
[
ε∗(si)−

{
µ(si; β

∗
n)− µ

(
si; β̂n

)}])

= E∗φ

(
µ
(
s0; β̂n

)
+

n∑
i=1

λin

(
θ̂n

)
ε∗(si)

+
n∑

i=1

(
λin(θ∗n)− λin

(
θ̂n

))
ε∗(si)

−
n∑

i=1

λin(θ∗n)
{

µ(si; β
∗
n)− µ

(
si; β̂n

)}
+
[
µ(s0; β

∗
n)− µ

(
s0; β̂n

)] )
= g

(
β̂n, τn

(
θ̂n

))
+ R1n,

where τ 2
n(θ) ≡ Eθ (

∑n
i=1 λin(θ)ε(si))

2
= EθZ̃(s0)

2, and where, on the set

{∥∥∥θ̂n − θ
∥∥∥ < δ0/2

}
,

for any δ ∈ (0, δ0/2),

|R1n|

≤ E∗

[(
n∑

i=1

k0αi

{∥∥∥θ∗n − θ̂n

∥∥∥ |ε∗(si)|+ k1

∥∥∥β∗
n − β̂n

∥∥∥}
+k1

∥∥∥β∗
n − β̂n

∥∥∥ 1

2

)
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×Φ(1)

(∣∣∣µ(s0; β̂n

)∣∣∣+ ∣∣∣∣∣
n∑

i=1

λin

(
θ̂n

)
ε∗(si)

∣∣∣∣∣
+δk0

n∑
i=1

αi|ε∗(si)|+ k
∥∥∥β∗

n − β̂n

∥∥∥)

×1l
(∥∥∥θ∗n − θ̂n

∥∥∥ ≤ δ
) ]

+E∗

[(
2k0

n∑
i=1

αi|ε∗(si)|+ k
∥∥∥β∗

n − β̂n

∥∥∥)

×Φ(1)

(∣∣∣µ(s0; β̂n

)∣∣∣+ 3k0

n∑
i=1

αi|ε∗(si)|+ k
∥∥∥β∗

n − β̂n

∥∥∥)

×1l
(∥∥∥θ∗n − θ̂n

∥∥∥ > δ
) ]

≤

δk0

E∗

(
n∑

i=1

αi|ε∗(si)|

)2


1/2

+ k

(
E∗

∥∥∥β∗
n − β̂n

∥∥∥2
)1/2


×

[
E∗

{
Φ(1)

(∣∣∣µ(s0; β̂n

)∣∣∣+ ∣∣∣∣∣
n∑

i=1

λin

(
θ̂n

)
ε∗(si)

∣∣∣∣∣
+ δk0

n∑
i=1

αi|ε∗(si)|+ k
∥∥∥β∗

n − β̂n

∥∥∥)}2
1/2

+k


E∗

(
n∑

i=1

αi|ε∗(si)|

)4
1/4

+

(
E
∥∥∥β∗

n − β̂n

∥∥∥4
)1/4


×
[
P∗(
∥∥∥θ∗n − θ̂n

∥∥∥)]1/4

×

E∗

{
Φ(1)

(∣∣∣µ(s0; β̂n

)∣∣∣+ 3k0

n∑
i=1

αi|ε∗(si)|+ k
∥∥∥β∗

n − β̂n

∥∥∥)}2
1/4

≤

[
1 +

(
E∗

{
Φ(1)

(∣∣∣µ(s0; β̂n

)∣∣∣+ k
n∑

i=1

αi|ε∗(si)|

+ k
∥∥∥β∗

n − β̂n

∥∥∥)}2
)1/2

]
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×

( n∑
i=1

αiE∗ε
∗(si)

4

)1/4( n∑
i=1

αi

)3/4

×
{

δk0 + k
(
P∗

(∥∥∥θ∗n − θ̂n

∥∥∥ > δ
))1/4

}
+ k

(
E∗

∥∥∥β∗
n − β̂n

∥∥∥4
)1/4

]
≤

[
1 + k

1/2
2

] [
6k

1/2
3 α∞δk0

]
(H.29)

for all n ≥ n0 for some n0 = n0(k1, k2, k3). By a similar argument,

EẐn(s0) = g(β, τn(θ)) + r1n, (H.30)

where |r1n| ≤
[
1 + k

1/2
2

] [
6k

1/2
3 α∞δk0

]
for all n ≥ n1 for some n1 ≥ 1. Now, consider

I1n. Note that be Condition E.3,

|I1n| =
∣∣∣E [{g

(
β̂n, C

(
0, θ̂n

))
− g (β, C (0, θ))

}
Ẑn(s0)/E∗Ẑ

∗(s0)
]∣∣∣

≤

{(
E
∣∣∣g (β̂n, C

(
0, θ̂n

))
− g (β, C (0, θ))

∣∣∣2)1/2

(
E
∣∣∣Ẑn(s0)/E∗Ẑ

∗(s0)
∣∣∣2)1/2

}
= o(1).

Next, consider I2n. By (H.29) and (H.30) and Condition E.3, we have∣∣∣∣∣EẐn(s0)

EZ(s0)
I2n

∣∣∣∣∣ =
∣∣∣E [{E∗Ẑ

∗
n(s0)− EẐn(s0)

}
Ẑn(s0)/E∗Ẑ

∗
n(s0)

]∣∣∣
≤

{(
E
[
g
(
β̂n, τn

(
θ̂n

))
− g (β, τn(θ))

]2)1/2

+
[
12
(
1 + k

1/2
2

)
k

1/3
3 α∞k0

]
δ
}

×
[
E
(
Ẑn(s0)/E∗Ẑ

∗
n(s0)

)2
]1/2

→ 0,

by letting n → ∞ first and then δ ↓ 0. The proof for ẐBC
A,n is similar and is thus
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omitted. This proves Proposition E.2.
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CHAPTER III

INFERENCE FOR COVARIANCE PARAMETERS OF REPLICATED TIME

SERIES DATA

A. Introduction

In the analysis of time series, sometimes estimation of the mean parameter of a series

is of little interest, while the estimation of the covariance parameters is much more im-

portant. Such a problem arises from an application in semiconductor manufacturing.

Here, we propose resampling methods for the estimation of covariance parameters of

replicated time series.

B. Problem Description

1. Stationary Time Series

Let X = {Xt : Xt ∈ R, t ∈ N} be a collection of observations from some random

variable, with each Xt yielding (potential) observation taken at time t. For example,

consider Xt to be the price of a given stock at the end of day t of trading, the air

temperature at a given location at a time t, or the water level of a lake at time t.

Clearly, in each of these examples, Xt will be correlated to Xt−1, and possibly earlier

observations as well. When discussing time series, we consider the “lag” between two

observations Xt1 and Xt2 , where the lag h = |t1− t2| is the difference in time between

measurements. Time series where strong correlations exist for only small values of h

are said to exhibit short range dependence, while those series where strong correlations

exist for large values of h exhibit long range dependence.

Stationarity is a property of time series (and of other types of dependent processes

such as spatial processes) under which the distributional properties of observations
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do not change when the observations are moved in position, e.g. in time. A time

series X is said to be intrisically stationary if

E(Xt −Xt+h) = 0, (B.1)

and

Var(Xt −Xt+h) = Var(X0 −Xh) = 2γ(h) (B.2)

for all (t, h) ∈ Z2. (B.1) implies that the mean of Xt is the same for all times t, while

(B.2) implies that the variance of the difference between two observations depends

only on the lag between those two observations, and not on the location of t and t+h

within Z. Further, the function 2γ(·) is a special function known as the variogram,

while γ(·) is known as the semivariogram.

A time series is said to be second order stationary if it meets a further require-

ment, that

Cov(Xt, Xt+h) = Cov(X0, Xh) = C(h), (B.3)

for all (t, h) ∈ Z2, where C(·) is called the covariogram. (B.3) implies that the

covariance between two observations depends only on the lag h. It can be shown that

second order stationarity implies intrinsic stationarity, and also implies

2γ(h) = Var(Xt −Xt+h)

= Var(Xt) + Var(Xt+h)− 2Cov(Xt, Xt+h)

= 2(C(0)− C(h)). (B.4)

The variogram and covariogram generally depend on some (possibly vector) parameter

θ. These definitions of stationarity can be extended into the spatial domain, where

locations are considered rather than times, and the variogram and covariogram are

functions of the lag vector h, representing the vector difference between two locations.
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2. Replicated Time Series

For i = 1, . . . ,M , let {Xit}t∈N be independent second order stationary time series

with unknown means µi but common autocovariance function C(·; θ). Furthermore,

suppose

C(h; θ) = θ0ρ (h/ξ; α) , h ∈ Z (B.5)

where θ0 ≡ σ2 ∈ (0,∞), θ1 ≡ ξ ∈ (0,∞), and α ∈ A ⊂ Rr and ρ(·; α) is a known

autocorrelation function on the continuum except for the parameter(s) α such that

for all ξ, α,

1. ρ(0; α) = 1

2.
∫
|ρ(t; α)|dt < ∞,

3.
∫

ρ(t; α)dt 6= 0.

Further, notice that C(0) = σ2 follows from the fact the correlation between Xt and

itself is 1. Therefore, (B.5) implies that

ρ(h/ξ; α) =
C(h)

C(0)
,

and (B.4) implies that

2γ(h) = 2σ2(1− ρ(h/ξ; α)).

Our primary interest is the estimation of the vector covariance parameters θ =

(θ0, θ1, α
′)′ ∈ Θ, where Θ = (0,∞) × (0,∞) × A. The µi’s are treated as nuisance

parameters. The covariance parameters are defined as follows. σ2 is the variance of the

time series, i. e. σ2 = E[Xit−µi]
2. Larger values of σ2 correspond to bigger variation

from the mean µi as seen in Figure 8(a). The parameter ξ identifies the strength of

correlation between two observations Xt and Xt+h at a given length. Small values of ξ

correspond to a short range dependence structure, while higher values correspond to



54

0 20 40 60 80 100

−
6

−
4

−
2

0
2

4
6

t

X

Variance=5
Variance=1

(a)

0 20 40 60 80 100

−
6

−
4

−
2

0
2

4
6

t

X

Corr. Length=5
Corr. Length=1

(b)

0 20 40 60 80 100

−
4

−
2

0
2

4

t

X

Roughness=1
Roughness=0.5

(c)

Figure 8. Time series generated with differing values of (a) variance σ2, (b) correlation

length ξ, and (c) roughness exponent α.



55

long range dependence. As seen in Figure 8(b), larger values of ξ correspond to time

series with stronger form of dependence at unit lag. Finally, the roughness exponent

α also determines the roughness or smoothness of the line, but on a more local scale

than ξ. Larger values of α correspond to smoother time series, as scene in Figure

8(c).

Suppose that we have observed Xn ≡ {Xit : t = 1, . . . , L, i = 1, . . . ,M}. Gener-

ally, the length of the series does not need to be the same for all i, but we do not pursue

such generalization here. While we only have L observations for the estimation of

each µi, we have ML observations for the estimation of the covariance parameters in

θ. We propose methods for the estimation of θ at Op([ML]−1/2). Further, we propose

block bootstrap methods for estimating the standard errors of these estimators.

C. Motivating Example

This problem is motivated by the estimation of line width roughness (LWR) param-

eters in the manufacturing process of semiconductors and transistors (Patel et al.

2010). Here, the process means are of little interest, while the covariance parameters

are indicative of the overall quality of the final product.

The lines in question can be seen on on a scanning electron micrograph (SEM)

image, containing 8-20 lines of 300-1500 nm in length. These lines represent pat-

terned film, and the width of lines determine the resistance. In the manufacturing

of transistors, smaller line width allows for more transistors to be included in a chip.

This means chips will have smaller area and thus, lower cost. An example of an SEM

image is given in Figure 9.

The lines lie adjacent to one another, with rough edges. If we limit ourselves to

lines of the same length, then we can say we have M lines of length Ld, where d is
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Figure 9. Example of an SEM image.

selected such that L is an integer. The variable of interest, Xit, represent the width

of line i at location t, t ∈ {0, 1, . . . , L}, as shown in Figure 10. Fluctuations in width

are caused by LWR, which is caused by polymer aggregates being non-uniformly

distributed along the edge of lines due to differing dissolution rates (Yoshimura et al.

(1993) and Yamaguchi et al. (2003)). When line widths are small, the LWR can be

very significant, affecting the transistor’s performance. Therefore, investigation of

LWR parameters is of vital interest.

Despite the spatial nature of the lines in an SEM image, we treat the observations

as time series data because as we move along a line from t = 0 to t = L, we are only

moving in one direction, leading to one-dimensional correlation similar to what is seen

in time series data, rather than the higher-dimensional correlation seen in a spatial

setting.

It is accepted that LWR can be described by three covariance parameters, vari-

ance of line width σ2, correlation length ξ and roughness exponent α (Constantoudis

et al. 2003). Leunissen et al. (2004) suggest a covariance model depending only on
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Figure 10. Framework of time time series representation of SEM image.

σ2 and ξ, but Figure 8(c) demonstrates the importance of α’s inclusion. The vari-

ance parameter describes fluctuations transversing the line, but does not incorporate

any information regarding correlation between different locations along the same line.

This type of correlation is described by the correlation length. The roughness expo-

nent describes the short-range roughness of the line.

D. Inference Methodology Review

Here, we include a brief literature review, and describe the methods to be used in

analyzing the repeated time series data. This involves a combination of block boot-

strap and subsampling resampling algorithms, as well as parameter estimation using

weighted least squares (WLS).

1. Weighted Least Squares

Weighted least squares (WLS) improve upon ordinary least squares (OLS) methods

in that they are more suited for situations in which the observations do not have the

same variance. For example, in simple linear regression, one key assumption is that
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the residuals have constant variance. In this case, OLS is adequate for the estimation

of the regression line’s parameters. However, if the assumptions are relaxed such that

the variance of the residuals can vary as the explanatory variable changes, WLS could

be used, with the differing weights reflecting the change in various.

We will use WLS methods to estimate variogram parameters, as discussed by

Cressie (1985). Lahiri et al. (2002) explored the asymptotic properties of variogram

parameter estimates from WLS, as well as OLS and generalized least squares (GLS),

and gave the regularity conditions under which the variogram estimates and param-

eter estimates from least squares methods were asymptotically normal.

The estimation of variogram parameters uses the method of moments variogram

estimator 2γ̂(h). If OLS were used, our estimator would be

θ̂OLS = argminθ

∑
h

[2γ̂(h)− 2γ(h; θ)]2.

Using WLS will allow for the fact that the variance of 2γ̂(h) depends on the value of

h. Using the reciprocal of the variance as the weight, we have

θ̂WLS = argminθ

∑
h

1

Var(2γ̂(h))
[2γ̂(h)− 2γ(h; θ)]2. (D.6)

Also, note that the coefficient 2 in (D.6) has no effect on the minimization of the

expression in (D.6), and may be removed.

2. Block Bootstrap

The block boostrap, developed independently by Künsch (1989) and Liu and Singh

(1992), is a nonparametric resampling method for dependent observations, such as

time series or spatial data. Suppose we have a series of n dependent observations

X = X1, X2, . . . , Xn, and we wish to study the behavior of a statistic R(X), such

as the sample mean, sample variance, or a predictor based on the observed data.
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We wish to create bootstrap replicates of length l < n. For simplicity, let m = n/l

be an integer. The i-th block would consist of observations Xi, Xi+1, . . . , Xi+l−1 for

i = 1, . . . , n− l + 1.

The blocks are then sampled independently with replacement m times, and the

m resulting blocks are concatenated to produce the bootstrap replicate

X∗
1 , X

∗
2 , . . . , X

∗
n.

This is done a large number of times (at least in the hundreds), and we then

calculate R(X∗) for each bootstrap replicate.

Clearly, the choice of block length l is of critical importance. Generally, the

larger the block length, the smaller the bias of a bootstrap estimator, but the larger

the variance. Therefore, the ideal block length should be one that minimizes the mean

square error (MSE) of the bootstrap estimator. For example, for α, the optimal block

length would be given by

lopt. = argminlE [α∗ − α]2 .

Early work indicated only that l should increase with n. Hall et al. (1995) and

Bühlmann and Künsch (1999) explored methods for the selection of l. However, their

methods were largely dependent on the data. Politis and White (2004) introduced

a method that was less dependent on the data, based on a “flat-top” lag window

introduced in Politis and Romano (1995). This method can be used to estimate the

optimal block length for estimating the variance of a linear function of the data of

the form (cf. Patel et al. (2010))

Tn = [M(L− h)]−1

M∑
i=1

L−h∑
t=1

g(Xit).

To estimate the variance of a LWR parameter estimator, we must identify a suitable
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function g(·) by linearizing the estimator, as decribed in Serfling (1980). Once g(·)

has been selected, the Politis and White (2004) method for selecting the optimal block

length is given by the following steps:

1. Calculate the sample mean of g(Xit), given by

ḡ = [M(L− h)]−1

M∑
i=1

L−h∑
t=1

g(Xit).

2. Next, calculate the sample autocovariance of {g(Xit)} at lag k, given by

R̂(k) = [M(L− h)]−1

M∑
i=1

L−h−|k|∑
t=1

[(g(Xit)− ḡ)(g(X(i+|k|)t)− ḡ)].

3. Choose a value k0 such that R̂(k) ≈ 0 for k > k0.

4. Calculate the flat-top kernel of Politis and Romano (1995), given by

λ(t) =


1 if |t| ∈ [0, 1/2),

2(1− |t|) if |t| ∈ [1/2, 1],

0 otherwise.

5. Calculate

Ĝ =

2k0∑
k=−2k0

λ(k/(2k0))|k|R̂(k).

6. Calculate

D̂ =

2k0∑
k=−2k0

λ(k/(2k0))R̂(k).

7. Then, the estimated optimal block size is given by

l̂opt. =

(
3[M(L− h)]

2

)(
Ĝ

D̂

)2/3

.

Each covariance parameter will have its own unique influence function g(·).
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3. Subsampling

Subsampling is a resampling method in which the sampling distribution of a statistic

is studied using subsets of the data. As described in Politis et al. (1999), if we wish to

investigate the properties of a statistic Rn(X), where X = {X1, . . . , Xn}, we calculate

not only Rn(X), but also the corresponding statistic Rl(X
(i)), where X(i) is the i-th

subsample, or subset, of size l of X, for some l < n.

If the data is independent, we look at all subsets of size l, so i ranges from 1 to

n!/(l!(n − l)!). in the case of dependent data, we care only about subsets where the

l observations are highly correlated.

For time series, we choose l to be a lag such that if i < j, we consider Xi and

Xj to be highly correlated if j − i ≤ l, and not highly correlated if j − i > l. Then,

the subsets of X we consider are X(i) = {Xi, . . . , Xi+l} for i = 1, . . . , n− l +1. In the

spatial setting, subsamples are often designed to be of the same shape as the original

sampling area.

Notice the difference between the block bootstrap and subsampling. In the block

bootstrap, we resample n observations from the empirical distribution a large number

of times to get the bootstrap replicate X∗, and then calculate R(X∗) for each replicate.

Here, we are not generating observations from an empirical distribution, and we are

dealing with subsamples of size l < n rather than replicates of size n.

As in the case of the block boostrap, the choice of block length l is of vital

importance, as it helps determine the behavior of the subsampled statistic Rn(X(i)).
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E. Our Methodology

1. Estimation of Parameters

We näıvely estimate σ2 by

s2
n =

1

ML

M∑
i=1

L∑
t=1

(Xit − X̄i)
2, (E.7)

where X̄i is the sample mean of the i-th series. Furthermore, we estimate the vari-

ogram 2γ(h) = 2[C(0; θ)− C(h; θ)] by

2γ̂(h) =
1

M(L− h)

M∑
i=1

L−h∑
t=1

(Xit −Xi(t+h))
2. (E.8)

Notice that s2
n is a poor estimator of σ2, as

Es2
n =

1

ML

M∑
i=1

L∑
t=1

E
[
(Xit − µi)− (X̄i − µi)

]2
= C(0; θ)− L−2

L∑
t1=1

L∑
t2=1

C(|t1 − t2|; θ)

= C(0; θ)

[
1− L−2

L∑
t1=1

L∑
t2=1

ρ(|t1 − t2|; ξ, α)

]
= σ2 [1− f(L; ξ, α)] , (E.9)

where

f(L; ξ, α) = L−1 + 2L−2

L−1∑
k=1

(L− k)ρ(k/ξ; α).

It can be shown that

f(L; ξ, α) ∼ L−1

[
1 + 2

∞∑
k=1

ρ(k/ξ; α)

]
as L →∞.

Therefore, the bias of s2
n is O(L−1), but it can be significantly large in finite samples

or if ξ is large. Figure 11 demonstrates that as ξ increases, the value of f(L; ξ, α)
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Figure 11. Approximate values of f(L; ξ, α) for L = 200 for varying values of α.

increases as well, leading to a value of (E.9) far from σ2.

One way around the bias is to estimate the variance of the sample means X̄i, by

using

σ̂2
X̄i

=
1

M − 1

M∑
i=1

(X̄i − X̄)2, (E.10)

where X̄ is average of the sample means X̄i. Leunissen et al. (2004) proposed

σ̂2 = s2
n + σ̂2

X̄i

as an unbiased predictor of σ2. Furthermore, this sum is constant as L changes.

However, the term in (E.10) is problematic because it also incorporates non-LWR
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sources of variability. Therefore, a different bias correction is needed.

From (E.9), we see that f(L; ξ, α) =
∑L

t1=1

∑L
t2=1 ρ(|t1− t2|/ξ; α). A straightfor-

ward plug-in estimator for asymptotic unbiasedness will thus be given by

σ̂2
BC =

s2
n

1− f
(
L; ξ̂, α̂

) . (E.11)

The strength of dependence and shape parameters will be estimated using weighted

least squares methods, where the weights are based on block subsampling.

Here, the statistic R(·) of interest is the method of moments variogram estimate,

because it is used to calculate the weights for WLS.

Let l1, an integer in (1, L), be the subsample size, selected via a method similar

to that proposed in Politis and White (2004). Then

2γ̂(i,j)(h) = l−1
1

j+l1−1∑
t=j

(Xit −Xi(t+h))
2

for j = 1, . . . , (L− h− l1 + 1), i = i, . . . ,M and let γ̄ be the average of γ̂(i,j)(h) over

all i, j. Then the weights for SWLS are

ŵ(h) =
l1

M(L− h)

1

M(L− h− l1 + 1)

M∑
i=1

L−h−l1+1∑
j=1

(γ̂(i,j)(h)− γ̄(h))2.

Using the weights as previously defined, the SWLS estimator of (σ2, θ) is

(σ̂2, θ̂) = argminσ,θ

hmax∑
h=1

[2γ̂(h)− 2γ(h; σ, θ)]2

ŵ(h)
. (E.12)

This estimator has the advantages of avoiding the estimation of nuisance parameters

and of having a mean squared error of O([ML]−1). Furthermore, θ̂ =
(
ξ̂, α̂
)′

may be

plugged into (E.11) for an unbiased estimator of σ2.
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2. Bootstrap Estimation of Parameter Estimate Variance

We propose using moving block bootstrap (MBB) methodologies, initially developed

by Künsch (1989) and Liu and Singh (1992), to estimate the variance of the covariance

parameter estimates.

Fix a block length l2 < L. For simplicity, we suppose that L is a multiple of l2,

i.e. b2 = L/l2 is an integer, or work with the smallest integer greater than L/l2 and

retain only the first L resampled values for the reconstruction of each line. Since the

means of the M lines can be different, we need to detrend the data in the formulation

of the block bootstrap.

The steps in the block bootstrap algorithm are as follows:

1. Let eit = Xit − X̄i, t = 1, . . . , L, i = 1, . . . ,M denote the residuals. Form the

centered residuals

ẽit = eit − ē

where ē is the grand mean of all eit’s across all groups, given by

ē =
1

ML

M∑
i=1

L∑
t=1

eit.

2. Form the overlapping blocks of centered residuals of length l2 within each line,

giving

B(i, j) ≡ (ẽit : t = j, . . . , j + l2 − 1)

for j = 1, . . . , L− l2 + 1, i = 1, . . . ,M.

3. Resample Mb2 many blocks independently and reconstruct the MBB version of

the original time series (of length ML), X∗ = {X∗
it : t = 1, . . . , L, i = 1, . . . ,M},

where Xit is given by

X∗
it = X̄i + e∗it
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for all i, t, where (e∗it, t = 1, . . . , L, i = 1, . . . ,M) is obtained by concatenating

the values in Mb2 resampled blocks.

4. Compute α∗, ξ∗, σ∗2 based on this MBB data set. For example, to calculate σ∗2

we plug in X into (E.7), giving

σ∗2 =
1

ML

M∑
i=1

L∑
t=1

(X∗
it − X̄∗

i )2,

where X̄∗
i is the sample mean of the i-th time series for the bootstrap replicate,

given by

X̄∗
i =

L∑
t=1

X∗
it.

α∗ and ξ∗ are calculated making similar adjustments to (E.8) and (E.12), giving

2γ∗(h) =
1

M(L− h)

M∑
i=1

L−h∑
t=1

(X∗
it −X∗

i(t+h))
2

5. Repeat steps 3 and 4 B times where B is large.

The values of α∗, ξ∗, and σ∗2, the estimators of each parameter based on a

bootstrap replicate, may be used to variance of the parameter estimates. For example,

the variance of α̂ may be calculated as

V̂ar(α̂) =
1

B − 1

B∑
b=1

[α∗b − ᾱ∗]2, (E.13)

where ᾱ∗ is the mean of α∗1, . . . , α∗B. Similar adjustments will lead to variance

estimates of σ̂2 and ξ̂.

3. Bootstrap Confidence Intervals

Moreover, the distribution of bootstrap replicates may be used to produce bootstrap

confidence intervals, giving a range of plausible values for a parameter. This is a
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key use of bootstrap replicates, particularly when the distributive properties of X are

unknown. As an example, we continue to consider the estimation of the roughness

exponent α, and we look at the bootstrap estimators α∗1, . . . , α∗B. Let α∗
(n) be the

n-th order statistic of those estimators. Then a 100(1−π)% nonparametric bootstrap

confidence interval for α is given by

(
α∗

(B(π/2)), α
∗
(B(1−π/2))

)
,

and similar procedures can be used for confidence intervals for σ2 and ξ.

F. Theoretical Results

Theorem F.1. Suppose that the following conditions hold:

(F.1.1) {Xit} is a second order stationary sequence and for i ≥ 1, the {Xit}’s are

iid.

(F.1.2) E|Xit|4+2δ < k < ∞ for some δ ∈ (0,∞) and k ∈ (0,∞).

(F.1.3)
∫

α(t)
δ

2+δ dt < ∞.

Then, as L →∞, M →∞,

s2
n − σ2 =

1√
ML

W1n +
1

L
W2n

for some bivariate random vector (W1n, W2n) such that W1n

W2n

→d

 W1

W2


and W1, W2 are independent, W1 ∼ N(0, τ 2

1 ) with τ 2
1 =

∑
k∈Z Cov(X2

11, X
2
1k) and

P (W2 = −τ 2) = 1.
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Theorem F.1 shows that the best possible rate of convergence for s2
n to σ2 is

Op(L
1/2[M ∧ L]−1/2), where x ∧ y = min{x, y}, x, y ∈ R. For L ∼ M , the limit

distribution is normal with a non-zero bias, which makes s2
n a worse estimator (in the

sense of asymptotic MSE) compared to the estimator obtained by WLS variogram

fitting. For L � M , this bias vanishes asympotically and both estimators have the

same rate of convergence. For M � L, s2
n has a slower rate of convergence compared

to σ̂2
WLS.

The next theorem investigates the asymptotic distribution of θ̂.

Theorem F.2. Let θ̂ = argminθ

∑h0

h=1 ŵ(h)[2γ̂(h) − 2γ(h; θ)]2. Suppose that the

conditions of Theorem F.1 hold. Further, suppose that

(F.2.1) ŵ(h) →p w(h) for all h ∈ [1, h0].

(F.2.2) γ(·, θ) is twice continuously differentiable in θ and

sup

{∣∣∣∣ ∂2

∂θi∂θj

γ(h; θ)

∣∣∣∣ : 1 ≤ i, j ≤ p, 1 ≤ h ≤ h0, ‖θ − θ0‖ < δ

}
< ∞

for some δ > 0.

(F.3.3) The matrix

Γ0 ≡
h0∑

h=1

w(h)[2γ(1)(h; θ0)][2γ
(1)(h; θ0)]

′

is nonsingular.

Then,

(a) If the parameter space is compact, then

θ̂M,L →p θ

as M, L →∞.
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(b) For any p-consistent
{

θ̂M,L

}
,

√
ML

(
θ̂n − θ

)
→d N(0, Σ)

as M, L →∞, where

Σ ≡ Γ−1
0

(∑
k∈Z

ET1T
′
k

)
Γ−1

0

and

Tk =

h0∑
h=1

w(h)
{
(X1k −X1(k+h))

2 − 2γ(h; θ0)
}

2γ(1)(h; θ0),

for k ∈ Z.

G. Simulations

1. Framework

For simulations, we look to the setup in Patel et al. (2010), which looks at the

motivating example regarding the estimation of LWR parameters in semiconductor

manufacturing.

Suppose that ρ(h/ξ; α) is of the form

ρ(h/ξ; α) = exp

(
−
[
|h|
ξ

]2α
)

,

for h ∈ Z. The lag between two observations h is divided by the scale parameter ξ,

which controls the strength of the correlation, and α controls the smoothness of the

correlation function. This makes the autocovariance function

C(h; θ) = σ2ρ(h/ξ; α)

= σ2 exp

(
−
[
|h|
ξ

]2α
)

,

where θ = (θ0, ξ, α). This particular form of ρ(·) was proposed by Sinha et al. (1988).
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The variogram of h ∈ Z is then given by

2γ(h; θ) = 2σ2

[
1− exp

(
−
[
|h|
ξ

]2α
)]

.

2. Results
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Figure 12. Bootstrap variance estimates for α = 0.05 and (a) ξ = 10 and (b) ξ = 15.

For simulations, we set M = 8 and L = 500, given 8 independent time series each

with 500 observations. Data was generated using σ2 = 1, α = 0.5 and ξ ∈ {10, 15}.

One variable of interest was the bootstrap estimate of the variance of each predictor,

given in (E.13).

Figure 12 shows the estimation of the variance of ξ̂ and α̂ when ξ = 10 and 15

for various block lengths. Notice that the variance estimate stabilizes earlier for α̂,

although a block length around 25 seems adequate for the variance of ξ̂ to stabilize

as well. We have observed similar results for other parameter values.
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However, the larger ξ is, the longer the block length needs to be for the variance

estimate to stabilize, which can be seen by comparing Figure 12(a) to Figure 12(b).

Figure 13. Optimal block length using the Politis and White (2004) method for ξ = 15.

Figure 13 shows the optimal block length calculated via the method proposed by

Politis and White (2004) for ξ = 15. By comparing these results to Figure 12, it is

easily seen that the Politis and White method tends to produce block lengths which

allow for the stable bootstrap estimation of variance. Therefore, we recommend that

this method be used for future applications.

Figure 14 demonstrates the bias correction capabilities of the predictor in (E.11),

by comparing the bias of that predictor to the bias of the predictor in (E.7). Inter-

estingly, the bias of the bootstrap predictor appears very stable for all block lengths.

H. Proofs

Proof of Theorem F.1. We begin by observing that

s2
n =

1

ML

M∑
i=1

L∑
t=1

X2
it −

1

M

M∑
i=1

X̄2
i·,
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Figure 14. Bias of variance estimators in (E.7) and (E.11) for ξ = 10 and α = 0.5.

which implies that

s2
n − σ2 =

1

ML

M∑
i=1

L∑
t=1

(X2
it − σ2)− 1

L
· 1

M

M∑
i=1

(√
LX̄i·

)2

≡ 1√
ML

W1n +
1

L
W2n, say.

Suppose we can show that

W1n →d N(0, τ 2
1 ),

with τ 2
1 =

∑
k∈Z Cov(X2

11, X
2
1k), and that

W2n →p −

[∑
k∈Z

Cov(X11, X1k)

]
.

Since W2n has a degenerate limit, it follows that W1n

W2n

→d

 W1

W2

 ,
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where W1 and W2 are independent, W1 ∼ N(0, τ 2
1 ) and P (W2 = −τ) = 1.

The convergence of W2n to −τ 2 in probability follows from Chebychev’s inequal-

ity, Conditions (F.1.2) and (F.1.3), and the fact that

E
(√

LX̄i·

)2

=
1

L

L∑
t=1

L∑
s=1

C(t− s; θ)

=
1

L

L−1∑
k=−(L−1)

(L− k)C(k; θ)

→
∑
k∈Z

C(k; θ)

≡ τ 2.

Condition (F.1.1) can be proven using arguments similar to those used for proving

the Linedeberg-Feller Theorem. Here we provide the details for completeness. Let

τ 2
1 (L) = EZ2

1L, where

ZiL =
1√
L

L∑
t=1

(Y 2
it − σ2), 1 ≤ i ≤ M.

Note that by the independence of the {Xit}-series for i ≤ 1, {Z1n, . . . , ZMn} are also

independent. Fix t ∈ R, t 6= 0. There, for any ε > 0,∣∣∣∣∣E exp

(
ιt

M∑
i=1

ZIL/
√

M

)
− exp

(
−t2τ1(L)2/2

)∣∣∣∣∣
≤

M∑
i=1

∣∣∣E exp
(
ιtZiL/

√
M
)
− exp

(
−t2τ1(L)2/(2M)

)∣∣∣
≤

M∑
i=1

∣∣∣∣E exp
(
ιtZiL/

√
M
)
−
[
1− t2τ1(L)2

2M

]∣∣∣∣
+M

∣∣∣∣exp(−t2τ1(L/(2M))2)−
[
1− t2τ1(L)2

2M

]∣∣∣∣
≤

M∑
i=1

E

{
|ZiL|3

M3/2
∧ 2Z2

iL

M

}
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+
M

2

[
t2τ1(L)2

2M

]2

exp
(
t2τ1(L)2/(2M)

)
≤ ε

M∑
i=1

EZ2
iL(√

M
)L

+
2

M

M∑
i=1

EZ2
iL1l
(
|ZiL| > ε

√
M
)

+
t4

8M
τ1(L)4 exp

(
t2τ1(L)2

2M

)
≡ I1 + I2 + I3, say.

Under Conditions (F.1.2) and (F.1.3), τ1(L)2 → τ 2
1 as L → ∞. Hence, I3 = o(1) as

M, L → ∞. Also, by (F.1.2) and (F.1.3) and Denker (1986), {Z2
1L}L≥1 is uniformly

integrable. Hence, for any ε > 0,

I2 ≤ sup
L≥1

EZ2
1L1l

(
|Z1L| > ε

√
M
)

→ 0 as M →∞.

Further, lim supM,L I1 ≤ ετ 2
1 for every ε > 0. Since ε > 0 is arbitrary, and τ 2

1 (L) → τ 2
1 ,

this implies W1n →d N(0, τ 2
1 ).

Proof of Theorem F.2. We first give a proof of (b). Note that by the smoothness of

γ(·; θ) in θ, the WLS estimator

θ̂ ≡ argminθ

h0∑
h=1

ŵ(h)[2γ̂n(h)− 2γ(h; θ)]2

is also a solution to the estimating equation

h0∑
h=1

ŵ(h)
[
2γ̂n(h)− 2γ

(
h; θ̂
)]

2γ(1)
(
h; θ̂
)

= 0,

where γ(1)(·; θ) is the vector of partial derivatives of γ(·; θ) with respect to θ. Using

standard arguments from M -estimation theory, as in (Lahiri et al. (2002)), it follows

that
(
θ̂ − θ0

)
has the same asymptotic distribution as its linear approximation, given
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by (
θ̂ − θ0

)
= Γ̂−1

h0∑
h=1

ŵ(h)[2γ̂n(h)− 2γ(h; θ0)]2γ
(1)(h; θ0),

where

−Γ̂ =

h0∑
h=1

ŵ(h)[2γ̂n(h)− 2γ(h; θ0)]2γ
(2)(h; θ0)

−
h0∑

h=1

ŵ(h)2γ(1)(h; θ0)[2γ
(1)(h; θ0)]

′ (H.14)

and 2γ(2)(·; θ) denotes the Hessian matrix of second order partial derivatives of 2γ(·; θ)

with respect to θ. Next, note that for each h,

2γ̂n(h)− 2γ(h; θ0)

=
1

M(L− h)

M∑
i=1

L−h∑
t=1

(Xit −Xi(t+h))
2 − 2γ(h; θ0)

=
1

M(L− h)

M∑
i=1

L−h0∑
t=1

Uit(h) +
1

M(L− h)

M∑
i=1

L−h∑
t=L−h0+1

Uit(h)

where Uit(h) ≡ (Xit −Xi(t+h))
2 − 2γ(h; θ0), i ≥ 1, t ∈ Z, 1 ≤ h ≤ h0, and where, as a

convention, we set
∑b

t=a(·) = 0 if a > b.

Let Uit = (Uit(1), . . . , Uit(h0)). Then, by arguments similar to the proof of The-

orem F.1, as M, L →∞,

1√
ML

M∑
i=1

L−h∑
t=1

Uit →d N

(
0,
∑
k∈Z

EU11U
′
1k

)
.

Hence, it follows that as M, L →∞,

√
ML(2γ̂n(h)− 2γ(h; θ0) : h = 1, . . . , h0) →d N

(
0,
∑
k∈Z

EU11U
′
1k

)
. (H.15)

In particular, this, in conjunction with Condition (F.2.1), implies that Γ̂ → Γ0 in

probability as M, L → ∞. Now, part (b) of Theorem F.2 follows from (H.14) and
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(H.15). The proof of part (a) follows by (H.15) and the arguments in the proof of

Theorem 2.1 of Lahiri et al. (2002). We omit the routine details.
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CHAPTER IV

CONCLUSION

In this dissertation, we have introduced new resampling methods for the analysis of

dependent data. For time series data, we have introduced methods for the study of

estimates of covariance parameters, motivated by the study of line width roughness in

SEM images. In the area of spatial prediction, we have introduced bootstrap methods

for bias correction.

A. Trans-Gaussian Kriging

For Trans-Gaussian data, we have introduced two new Kriging predictors, with bias

correction factors calculated via parametric bootstrap methods. We have also dis-

cussed how bootstrap methods can be used to estimate the MSPE of these predictors,

as well as two existing predictors, the näıve biased predictor and a predictor with an

additive correction factor propsed by Cressie (1993).

We have shown that under certain regulatory conditions, the bias for the new

predictors is of order o(1), which is smaller than the bias for the existing predic-

tors. Through a simulation study, we have shown that the näıve predictor as well as

Cressie’s predictor fail as the transformation function φ(·) becomes more severe, and

are greatly outperformed by the bootstrap predictors in this case.

Finally, we have analyzed a real world data set, and seen how Trans-Gaussian

Kriging may be utilized to predict energy consumption, a growing concern in today’s

world.
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B. Replicated Time Series Data

For replicated time series data, we have shown how covariance parameters may be

estimated using weighted least squares subsampling. Further, we have discussed

various bias correction methods for the variance estimator, and demonstrated how

bootstrap methods may be used to estimate the variance of covariance estimators.

The effectiveness of the Politis and White (2004) method for block length selection

was demonstrated.

We discussed the asymptotic properties of the estimators, including discussion of

the conditions that made them asymptotically normal, and finally saw their behavior

through a simulation study.
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