
 

 

  

NONLINEAR DYNAMICS OF 

A ROTOR SUPPORTED BY HOMOPOLAR MAGNETIC BEARINGS 

WITH SATURATION 

 

 

A Dissertation 

by 

KYUNGDAE KANG  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

December 2010 

 

 

Major Subject: Mechanical Engineering 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear Dynamics of  

a Rotor Supported by Homopolar Magnetic Bearings 

with Saturation 

Copyright 2010 Kyungdae Kang  

 



 

 

 

NONLINEAR DYNAMICS OF 

A ROTOR SUPPORTED BY HOMOPOLAR MAGNETIC BEARINGS 

WITH SATURATION 

 

A Dissertation 

by 

KYUNGDAE KANG   

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,  Alan B. Palazzolo 
Committee Members, Darbha Swaroop 
 Reza Langari 
 Thomas W. Strganac 
Head of Department, Dennis L. O’Neal 

 

December 2010 

 

Major Subject: Mechanical Engineering 



iii 

 

ABSTRACT 

 

Nonlinear Dynamics of a Rotor Supported by Homopolar Magnetic Bearings 

with Saturation. (December 2010) 

Kyungdae Kang, B.S., Yonsei Universtiy; M.S., Korea Advanced Institute of Science 

and Technology; M.S., University of Texas at Austin 

Chair of Advisory Committee: Dr. Alan B. Palazzolo 

 

An objective in the design of high performance machinery is to minimize weight 

so magnetic bearings are often designed to operate slightly lower than the magnetic 

material saturation. Further weight reduction in the bearings requires operation in the 

nonlinear portion of the B-H curve. This necessitates a more sophisticated analysis at the 

bearing and rotordynamic system levels during the design stage. This dissertation 

addresses this problem in a unique manner by developing a fully nonlinear homopolar 

magnetic bearing model. 

The nonlinear dynamics of permanent magnet-biased homopolar magnetic 

bearing (PMB HoMB) system with 2-dof rigid and 4-dof flexible rotor is analyzed. The 

dynamic behavior of the rotor-bearing system is examined in the feedback control loop 

that includes low pass filter effects. 

An analytical magnetization curve model is proposed to predict the nonlinear 

magnetic force under the influence of the magnetic flux saturation more accurately. The 

modified Langmuir method with the novel correction terms for the weak flux region is 
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used to curve-fit the experimental magnetization data of Hiperco 50. A new curve fit 

model of the B-H curve is shown to have significantly better agreement with the 

measured counterpart than conventional piecewise linear and other models. PMB HoMB 

characteristics with flux saturation, such as forces depending on the rotor position and 

bearing stiffness, are compared with these other models.  

Frequency response curve, bifurcation diagram, Poincare plot, and orbit plot are 

utilized to demonstrate the effects of the nonlinearities included in the 2-dof rotor-

bearing system. 

Due to heavy static loads applied to the rotor, it operates within the magnetic flux 

saturation region at the bearing clearance. The voltage saturation in the power amplifier 

of the magnetic bearing introduces lag in the control loop and the response of the heavily 

loaded 4-dof rotor-bearing system shows that limit cycle stability can be achieved due to 

the magnetic flux saturation or current saturation in the amplifier; otherwise the system 

would experience a destructive instability. These simulation results provide the first 

explanation of this commonly observed limit cycle which is referred to as ‘virtual 

catcher bearings’. 
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CHAPTER I 

 INTRODUCTION AND LITERATURE LEVIEW 

1.1 Introduction 

Active magnetic bearings (AMB) have many advantages over conventional 

bearings such as ball bearings and journal bearings. The absence of lubrication system 

and mechanical wear that can cause any contamination makes it suitable for the 

application in the system required in vacuum and clean room. Energy storage flywheel 

exploits the magnetic bearing benefits of low power loss at high rotor speed and low 

maintenance requirement resulting from no mechanical friction. Also successful 

operation in industrial turbomachines with magnetic bearings was reported, such as 

compressors and turboexpanders in the oil and gas industry [1].  

AMB have two general categories according to the magnetic pole arrangement, 

i.e., homopolar or heteropolar type. Magnetic South pole(S) and North pole(S) alternates 

in heteropolar AMB, while the same poles are placed on one plane in homopolar AMB. 

Diagrams of these two types of AMB are shown in Fig. 1.1. Because of the pole 

arrangement, homopolar AMB has two stator planes. Opposite poles are located on each 

plane and the axial flow of magnetic flux is always involved, which makes the magnetic 

flux paths mixed in radial and axial directions, whereas in heteropolar AMB the flux 

paths are mainly radial. 

 

 

This thesis follows the style of Journal of Sound and Vibration. 
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The dissertation analyzes the nonlinear dynamics of permanent magnet-biased 

homopolar magnetic bearing (PMB HoMB) system. Because the static suspension forces 

are provided to the rotor primarily by permanent magnet flux, the electromagnetic forces 

from control current only handle the dynamic force compensation. PMB HoMB has 

advantages over heteropolar AMB from the aspect of power consumption; eddy current 

loss remains low since the rotor is not exposed to polar change when it rotates unlike the 

heteropolar type AMB and the current required for operation is less than heteropolar 

type AMB because of the permanent magnet bias flux[2, 3]. In addition, reliability can 

be increased by the extended lifetime of the power amplifier due to the reduced amount 

of power required for PMB HoMB. Disadvantages of PMB HoMB are the fixed bias 

flux level, a lower load capacity in some cases, or the necessity of two stator planes to  

utilize the axial flux[4]. 

Fig. 1.2 shows a magnetic bearing system that consists of several components 

such as controllers, power amplifiers, electromagnets, and position sensors. Because all 

these components possess some nonlinear behavior, the whole system is essentially 

Fig. 1.1   Pole arrangement of heteropolar and homopolar magnetic bearing 

Heteropolar 
type 

Homopolar 
type 
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nonlinear[5]. Among those nonlinearities, the most important ones are as follows: 

1. The nonlinear magnetic force to displacement and nonlinear force to coil current 

(or magnetic flux) relationship; 

2. The nonlinear magnetization B-H curve (the saturation of the ferromagnetic core 

material); 

3. The hysteresis of the magnetic core material; 

4. The saturation of the power amplifier (voltage / current); 

These nonlinearities are usually ignored to simplify the model and analysis, 

which makes only small motion around the operation point to be valid. In other words, 

with the nonlinear electromagnetic forces linearized about the operating point and 

considered to be linear functions of currents and air gaps, these linearized models can 

only be used to predict small rotor motions with small control current in the vicinity of 

the operating point. Thus, in order to utilize the full capacity of the magnetic bearings, 

nonlinear dynamic analysis with the model that includes the inherent nonlinearities of 

the magnetic bearing system is needed. The studies of the effect of nonlinearities on the 

dynamic behavior of magnetic bearing systems provide valuable insights into the system 

characteristics under variable operating cases that cannot be achievable with linear 

Fig. 1.2   Block diagram of a simple magnetic bearing system 

Controller 
Power 

Amplifier 
Electro-
Magnets 

Rotor 
Position 
Sensor 
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modeling. Also, more precise model leads to the controller design which delivers reliable 

and stable operation. 

 

1.2 Literature review 

Previously, various functions, including rational function, power series, 

exponential functions, etc., have been used to model the magnetization curve accurately. 

But all these attempts use the equation form of B as a function of H, which is not 

suitable to solve the simultaneous equations derived from the magnetic circuit model of 

homopolar magnetic bearing. The equation form of H as a function of B makes it easier 

to solve those equations, because they can be arranged in terms of fluxes, ϕ. Macfadyen 

[6] investigated the approximation of magnetization curves by an exponential series. 

One example of typical magnetization curve for silicon steel is presented and shows 

good agreement from the low to high flux region, but this example has a low initial 

slope.  

Widger [7] represented the magnetization curve by rational-fraction 

approximations. This approximations can be expressed either as H as a function of B or 

B as a function of H. With the relative or percentage errors minimized, the parameters of 

the approximation are found. A few examples of curve-fittings are shown, but the errors 

in the weak flux region are large. And this approximation method is not suitable for the 

magnetization curve that has very steep initial slope, sharp knee, and very shallow final 

slope, considering the example that shows almost 20% relative error in H. 

Simatani [8] approximated the magnetization curve by exponential functions. 
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Macfadyen’s function is modified to accommodate the magnetization curve in weak flux 

region. The magnetization curve is modeled with three equations in three different 

regions, but only one equation corresponding to the lowest part of the regions among 

these three regions is used to demonstrate the usefulness of the proposed method. 

Rivas et al. [9] investigated the approximation of the magnetization curve with a 

second-order rational fraction function whose coefficients are related to material 

constants. But the curve-fitting qualities with this approximation are only good for 

magnetization curves that rise slowly and in which the knee portion has a large 

curvature. 

Extensive research has been done in nonlinear dynamics analysis of rotor-AMB 

systems, but there are few publications dealing with the effect of magnetic saturation and 

amplifier voltage / current saturation on the nonlinear dynamic response of rotor. Maslen 

et al. [10] investigated the performance limits of heteropolar magnetic bearings, such as 

peak force, slew rate, and displacement sensitivity. He describes that peak force 

limitation is primarily due to the nonlinearity in the magnetization curve of the 

electromagnet core material and force slew rate limit is caused by the power amplifier 

voltage limit, which results in phase lag and reduction in both stiffness and damping in 

the bearing. For PMB HoMB, Lee et al. [11] studied similar performance limits. But 

these two papers do not deal with the effects of these limits on nonlinear dynamic 

response of a flexible rotor. They instead considered the magnetic core saturation in the 

maximum static force and the power amplifier voltage saturation in the force slew rate, 

respectively. 
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Antila [12] investigated the effect of power amplifier saturation on the large 

amplitude response at low frequency when high frequency disturbance that is added to 

this response saturates the amplifier. When the amplifier is saturated due to the high 

frequency large amplitude disturbance in the response, it is predicted that limit cycle 

oscillation may be possible, based on the reduced saturation effect and the phase 

increase which the large amplitude component at low frequency causes. But, it is not 

specified whether this is caused by voltage saturation, current saturation, or the both. 

Steinschaden et al. [13] investigated the dynamics of active magnetic bearing 

systems for the case of large rotor eccentricities. He modeled the nonlinearities such as 

magnetic saturation effect, saturation of the amplifier and limitations of the control 

current, but only showed the results from the control current limitation. Also, he 

mentioned that bilinear type model of magnetic saturation he used is not suitable for the 

case of very high value of the magnetic flux density far above the saturation level that is 

starting point of  the second linear part of the bilinear B-H curve. For specific parameter 

sets he used, symmetry breaking and quasiperiodic solution may occur from the effects 

of current saturation of the PID-controller.  

Zhang et al. [14] studied two-dof rotor-AMB with 8 pole legs system considering 

time-varying stiffness, quadratic and cubic nonlinearities. The time-varying periodic 

coefficient is introduced to the proportional gain in the PD controller. Because 

heteropolar type AMB is used, the flux in each pole is independent of each other and the 

electromagnetic force resultant in x and y direction are expanded in power up to third-

order terms. Using the method of multiple scales to obtain the averaged equations that 
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are solved numerically, it is found that there exist 2-period, 3-period, 4-period, 5-period, 

multi-period and quasiperiodic modulated amplitude oscillations. 

Chinta [15] investigated the forced response of a two-dof rigid rotor in one 

heteropolar magnetic bearing for one-frequency harmonic excitation. Also, a simple 

bilinear model of magnetic flux saturation is used to analyze the effects of flux 

saturation on the rotor dynamics of a simple flexible rotor. The flux saturation reduces 

the maximum excitation forces in different manner depending on the rotor speed of a 

flexible rotor. 

Nataraj [16] has discussed a nonlinear analysis of free and forced response of a 

simple rigid rotor supported on magnetic bearings that consists of four independent 

poles.  With only the proportional controller gain in the linearized system, a qualitative 

analysis is carried in nondimensional parameter space to determine the range of safe 

operation which means the rotor response is within the physical bearing clearance. A 

forced response analysis predict that unbalance response can cause several resonances at 

various frequencies. 

Satoh et al. [17] discussed the cause and mechanism of the self-exited vibration 

resulted from the interaction between voltage saturation of the power amplifier and the 

bearing support flexibility. The nonlinearity of force-to-displacement or force-to-current 

was not included. Stable regions of the rigid and flexible mode depending on the 

parameter φ at the operating point are found. The parameter φ is the ratio of the 

maximum voltage to the slope of the voltage limit plot. It is shown that the self-excited 

vibration contains two different frequency vibrations, and the rigid mode (low frequency 
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component) is caused by flexible mode (high frequency component). 

A review of the types of nonlinearities and their resulting motions for rotating 

machinery is found in [18]. 

 

1.3 Contributions of this research 

The development of a comprehensive model of magnetic bearing system is 

challenging but accurate model plays an important part in the dynamic analysis and 

controller design. Thus, including nonlinearities such as magnetic flux saturation, 

amplifier voltage / current saturation in the model may be critical to properly analyze the 

rotor magnetic bearing system in certain high performance applications.  

The analysis of nonlinear dynamics of the flexible rotor that operates in the 

magnetic flux saturation zone may make it practical to utilize the full load capacity of 

the magnetic bearings by predicting the rotor response for the large motions or with 

heavy static loads. 

The original contributions of this dissertation are: 

 (1) Modeling and simulation methodologies for including nonlinear effects in 

homopolar magnetic bearings. Prior methods focused on heteropolar 

magnetic bearings.  

(2) Development of an improved accuracy curve fit of the magnetization curve. 

This analytical model of the magnetization curve provides a more accurate 

force prediction when the bearing is operating dynamically with both weak 

and high magnetic fluxes. Heavy static and dynamic loads applied to the 
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rotor causes the magnetic bearings to operate within the regions of the 

magnetic bearing clearance that cause flux saturation. The standard bilinear 

magnetization curve approach may be unsuitable for the analysis over flux 

saturation limit[13], which is explained in SECTION 3.1.  Modeling error 

can be reduced by utilizing the new modified Langmuir method with 

correction terms for the weak flux region when Hiperco 50 experimental 

magnetization data is curve-fitted. 

(3) In addition to magnetic flux saturation, the investigation is made into the 

nonlinear dynamics of rotor-AMB system including a flexible rotor, the 

effects of controller gains, low pass filter, amplifier dynamics, and amplifier 

voltage/current saturation.  

(4) It is shown that the limit cycle is formed due to the magnetic flux saturation 

or the amplifier current saturation, even if the small motion, linearized 

feedback control loop is unstable. This explains experimental phenomenon 

observed. 

(5) Investigation into nonlinear dynamics of rotor-AMB system with the above 

characteristics demonstrates the feasibility of the stable operation when the 

rotor operates in the saturated zone of PMB HoMB actuator. This provides a 

support for increasing the rated load capacity of the magnetic bearings, which 

will reduce their size / weight / costs. 
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1.4 Chapter summary 

Chapter II presents Permanent magnet-biased homopolar magnetic bearing (PMB 

HoMB) and the rotor-bearing system model used through this dissertation, which is 

composed of the rotor model, the magnetic circuit model of PMB HoMB, the control 

system, the flux saturation model. Analytical magnetization curve for magnetic circuit 

equation is proposed to take the flux saturation into account. Chapter III presents PM 

HOMB characteristics such as forces and bearing stiffness. These characteristics with 

the proposed flux saturation model are compared with the cases of bilinear type flux 

saturation model. The case with the material reluctance excluded is also compared. The 

static force capacity of PMB HoMB with flux saturation is presented. Chapter IV 

presents the nonlinear dynamic responses of 2-dof rotor supported by PMB HoMB, 

when the flux saturation is considered in the magnetic circuit model. Heavy static load 

and large dynamic forces are assumed. Nonlinear system characteristics such as jump, 

bifurcation, and period-doubling path to chaos are clearly visible with the flux saturation 

model. The trigonometric collocation method is used to obtatin the periodic responses 

and the results are compared with the numerical integration as the benchmark. Chapter V 

investigates the effects of amplifier voltage / current saturation and flux saturation on the 

4-dof rotor bearing system with heavy static load. Chapter VI concludes the dissertation 

by summarizing the contents and by presenting the directions for future research on the 

topic. 
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CHAPTER II 

 ROTOR-BEARING SYSTEM MODEL 

The essential components of a magnetic bearing supported rotating machine are 

described below. Specific values are provided for some parameters which are later used 

in the results section.  

 

2.1 Permanent magnet-biased homopolar magnetic bearing 

A six-pole magnetic bearing consists of two stator lamination packs, 12 

permanent magnets, electric coils on each pole, and back irons. Six permanent magnets 

are placed circumferentially on each stator lamination pack. Those permanent magnets 

provide the bias magnetic flux that flows both axially radially and is commonly used to 

provide the reaction force to counter the static load applied to the bearing. The control 

flux is generated by the electric coils and is restricted to radial flow in the rotor and 

stator lamination stacks. This flux component is used to regulate the shaft position at the 

target location within the magnetic bearing clearance circle (gap), and to produce desired 

Rotor Laminations 

Back Irons 

Permanent Magnets 

Stator Laminations 

Bias Flux 

Fig. 2.1   Permanent magnet-biased homopolar magnetic bearing 
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stiffness, damping and disturbance cancellation forces. Fig. 2.1 shows the diagram of 

one permanent magnet-biased homopolar magnet bearing (PMB HoMB).  

Stator laminate and back irons are made of Hiperco 50. The dimensional 

parameters of the bearing are described in Table 2.1. The magnetic properties of 

permanent magnet at room temperature are described in Table 2.2[19]. 

 

Table 2.1  Dimensional parameters of radial magnetic bearing 

Pole 
length 

Nominal air 
gap length 

Inner radius 
of stator 

Outer radius 
of rotor 

Rotor length 
under bearing

Magnet 
length 

Pole 
area 

Air gap 
area 

Magnet 
area 

L
p
 (m) L

g
 (m) IR

stator
 (m) OR

rotor
 (m) Lr (m) L

m
 (m) A

p
(m

2
) A

g
(m

2
) A

m
(m

2
) 

3.81x10-2 5.08 x10-4 4.12 x10-2 4.06 x10-2 7.23 x10-2 1.83 x10-2 
1.15 
x10-3 

1.15  
x10-3 

2.68  
x10-3 

 

Table 2.2  Magnetic properties of permanent magnet 

Permeability of 
free space 

Permeability of 
permanent magnet 

Coercive field 
intensity of magnet 

Residual flux 
density of magnet 

µ
0
 (H/m) µ

pm
 (H/m) H

c
 (kA/m) B

r
 (T) 

4πE-7 1.350E-6 633 0.855 
 

 

2.2 Description of rotor-bearing system 

The solid model of a magnetic bearing supported rotor-bearing system is shown 

in Fig. 2.2. The rotor is suspended by two sets of radial PMB HoMB’s and a thrust 

bearing is used for axial position control. But the influence of the thrust bearing force is 

not included in the nonlinear analysis of the rotor-bearing system since it is typically the 

case that the radial and axial magnetic bearings are highly uncoupled. The rotor models 

of rigid 2-dof and flexible 4-dof are utilized in the analysis along with the PMB HoMB. 
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The magnetic bearing is modeled with 1-D magnetic circuit model including material 

reluctance and an analytical equation is proposed to curve fit to the experimental data of 

the BH magnetization curve of the material. The control system is described in detail at 

the SECTION 2.6. 

 

2.3 Analytical magnetization curve model for magnetic circuit equation 

Previous models[6-9] of the magnetization curve develop an equation for B as a 

function of H, however solution of a magnetic circuit model for flux requires a material 

description in the form of H as a function of B, which follows from Ampere’s law stated 

in terms of H. This approach easily permits the system of coupled magnetic circuit 

equations to be expressed in terms of a set of fluxes, which are made independent by 

applying conservation of flux. This is illustrated in the following analysis of a 

homopolar magnetic bearing with permanent magnet bias and material saturation effects.  

The Eq. (1) below is used for the initial curve fit to the experimental Hiperco 50 

BH magnetization data that was published in NASA technical report[20].   

Fig. 2.2    Solid model of rotor-bearing system 
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2

, 0 2.4,
(1 )R

P
H B

Q B
  

 
 (1) 

where H is the magnetic field intensity (A·turn/m); B is the magnetic flux density 

(Teslar); and P, Q, and R are the constants. 

It is listed in Lab Fit software[21] as a predefined curve-fit function. This curve 

fit equation, so called ‘modified Langmuir method’, is a isotherm model proposed for 

the adsorption of solutes in a liquid solution onto a solid surface[22]. It results in 

excellent fit to the experimental data as shown in Fig. 2.3 in semi logarithmic scale 

except for the lower flux density zone below 0.8T. Fig. 2.4 is the magnified plot for 

ranging from 0 to 1000 H. 

In the present work, the curve fitting equation is further modified to get better 

match with the experimental data and the final form of proposed function becomes a 

modified Langmuir method with a polynomial function multiplied by Gaussian function  

that acts as correction terms for the weak flux region, as Eq. (2).  

2

2 2 3 4 5 62
0 1 2 3 4 5 62 2

1
( ),

(1 ) 2

B

R

P
H P e a a B a B a B a B a B a B

Q B





         

 
(2) 

where H is the magnetic field intensity (A·turn/m); B is the magnetic flux density 

(Teslar) (0 ≤ B≤ 2.4); and P, Q, R, σ, a
0
~a

6
 are the constants.  

The constants in Eq. (2) can be determined by minimizing an appropriate cost 

function like Eq. (4).  
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Fig. 2.4   Curve fitting with modified Langmuir method to the experimental Hiperco 50 
data (Magnified for the range from 0 to 1000 H) 
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Fig. 2.3   Curve fitting with modified Langmuir method to the experimental Hiperco 
50 data 
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The relative deviation[23] iD  of the magnetic intensity ( )iH B  from the 

experimental values iH  appears in the cost function as: 

 
( )

,
( )

i i
i

i i

H B H
D

H B H

 
   

 (3) 

where iH  and iB  are the experimental magnetization data of Hiperco 50 and ( )iH B  is 

calculated from Eq. (2). 

The cost function has the form 

 cost
1

,
n

i i
i

F h D


   (4) 

where ih  is a weighting factor for i=1, …, n (n=13), and n is the number of experimental 

data points. The weighting factor ih =1 are selected for all data steps except for the data 

around the knee curve region, which are 7th, 8th, 9th, and 10th data. The weight factor of 2 

is given to these data.  

Thus, the constants in Eq. (2) are determined by minimizing the cost function 

with the test data as: 

 
1

3 3 4
0 1 2 3

4 4 4
4 5 6

0.994, 0.891, 0.124,

2.175 10 ,

1.223 10 , 5.729, 2.166 10 , 1.578 10 ,

5.107 10 , 7.814 10 , 5.064 10 .

P Q R

a a a a

a a a

 



   

 

        

      

 (5) 

At least three significant terms are needed after the decimal point to curve fit the data 

well until the saturation region. 

Fig. 2.5 shows the modified curve fit that matches the entire experimental BH 

data from 0 to 2.4T and Fig. 2.6 is the magnified plot for ranging from 0 to 1000 H. 
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Fig. 2.6   Curve fitting to the experimental Hiperco 50 data with final form of curve fit 
equation (Magnified for the range from 0 to 1000 H) 
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Fig. 2.5   Curve fitting to the experimental Hiperco 50 data with final form of curve fit 
equation  
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2.4 Magnetic circuit model 

Some assumptions are made to model the magnetic bearing and to derive the 

equations from it, which are as follows: 

1. Magnetic fluxes between two planes of the stator are symmetric. 

2. Constant flux density on every flux carrying cross section (No fringing at air 

gap). 

3. No leakage flux from permanent magnet. 

4. Magnetic flux saturation occurs only in magnetic bearing poles.  

The knowledge that the stator circumferential path is unlikely to saturate allows the 

stator circumferential reluctances to be removed [4]. This simplifies the model and also 

allows it to have just one element for the bias permanent magnet. 

An equivalent magnetic circuit model of PMB HoMB is presented in Fig. 2.7. It 

includes 6 independent fluxes, 6 gap and 6 pole reluctances, 6 NI current sources and a 

lumped permanent magnet source along with its reluctance. The right hand side plane of 

Fig. 2.7 has an identical magnetic circuit as the left hand side and operates 

• • • 

1p

1g

1

6NI

6p

6g

6

c mH L pmR

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Loop 6

2p

2g

2

3NI

3p

3g

3

4NI

4p

4g

4

5NI

5p

5g

5

6NI

6p

6g

6

2NI1NI

1

1NI

1p• • • 

• • • 

1g

Fig. 2.7   1-D magnetic circuit model of homopolar magnetic bearing with permanent 
magnet and electric coil sources
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symmetrically with identical sources, parameter values and fluxes. Hence the right hand 

side is only partially shown in Fig. 2.7. The magnetic circuit is a highly simplified, yet 

reasonably accurate representation of the actual 3-dimensional magnetic field that 

actually occurs in the real system. The circuit fluxes are typically reduced by a de-rate 

factor (typically 0.75 - 0.9) to account for fringing at air gaps and leakage around 

permanent magnets. For the sake of illustration, the model presented here utilizes unity 

de-rate factors and concentrates the material paths in the pole reluctance terms. 

Loops from 1 to 5 represent the radial flux paths, with each loop containing the 

reluctances of the air gaps and the stator poles and the magneto-motive forces from the 

coils for an adjacent set of poles. The pole reluctances represent the general causal 

relation between source and flux including the nonlinear B-H expression in Eq. (2) 

which incorporates flux saturation into the model. The pole reluctances increase with 

saturation since they are inversely proportional to the slope of the BH curve in Fig. 2.5. 

The axial flux path is expressed in loop 6 which contains the permanent magnet source 

and reluctance terms. In this paper, only pole material is assumed to be saturated for the 

illustration purpose. 

From Ampere’s law given by Eq. (6), a single equation of the magnetic field for 

each loop is generated. The air gap reluctances are linear in their source-flux causal 

relation and are dependent on the instantaneous air gaps determined by radial motions of 

the journal. This dependence and the Maxwell stress tensor force formula’s dependence 

on the square of flux, causes the magnetic bearing forces to become nonlinear functions 

of the displacement coordinates at the bearings. This holds even in the absence of 
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saturation in the material or in the feedback components. 

Ampere’s law Eq. (6) is applied to each loop to obtain 6 nonlinear algebraic Eq. 

(7) for the 6 unknown fluxes i  (i=1,…,6) and the Hpi-Bpi relation in Eq. (2) is 

substituted into Eq. (7). The magnetic bearing control currents and x and y gaps, in the 

air gap reluctance terms, change continuously as commanded by the controller when the 

magnetic bearing is operating. Therefore, in general Eq. (7) must be solved for the fluxes 

at each integration time step in the simulation of the entire rotor-bearing system.  

 ( )H dl NI   (6) 

 

1 2 1 1 2 2 1 2

2 3 2 2 3 3 2 3

3 4 3 3 4 4 3 4

4 5 4 4 5 5 4 5

5 6 5 5 6 6 5

Loop1: ( ) ( ),

Loop2 : ( ) ( ),

Loop3: ( ) ( ),

Loop 4 : ( ) ( ),

Loop5 : ( ) (

p p p g g g g

p p p g g g g

p p p g g g g

p p p g g g g

p p p g g g g
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    6
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, magnetic field intensity of the ith pole material, i= 1~6; 

i
pi

p

B
A


 , flux density of the ith pole material, i= 1~6;  

0

i
gi

g

H
A




 , magnetic field intensity of the ith air gap, i= 1~6;  

i
pm

pm m

H
A




 , magnetic field intensity of the permanent magnet (A·turn/m); 
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µ0: permeability of free space; 

µpm: permeability of the permanent magnet; 

Hc: coercivity of the permanent magnet; 

Lp: length of the pole;  

Lgi: instantaneous length of the ith air gap, i= 1~6;  

Lm: length of the permanent magnet; 

N: the number of coil turns on each pole;  

Ii: current applied to ith pole, i= 1~6

 
Air gap Lgi can be found by Eq. (8) 

 0 cos sin ,gi g i iL L x y     (8) 

where 0gL is the nominal air gap when the shaft is at the bearing center, 

30 60 ( 1)i i      degrees, i=1,…6. 

The PMB HoMB magnetic circuit model of Eq. (7) provides a means to calculate 

the 6 fluxes shown in Fig. 2.7 given the instantaneous currents in the 6 poles and the X 

and Y journal coordinates. The Levenberg-Marquardt algorithm[24] is used to solve the 

set of nonlinear algebraic Eq. (7), given that the solution for the fluxes from the previous 

time step are used as  initial guesses of their values for the present step. 

Fluxes from Eq. (7) are utilized in Eq. (9) to determine the X and Y forces.  

 
2 6 6

, ,
1 10

, 1,...,6, cos( ), sin( ),
2

i i
i x m i i y m i i

i ig

F i F F F F
A

   
  

      (9) 

where gA is the air gap area, 30 60 ( 1)i i      degrees, i=1,…6 (pole number). 
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The forces are modified by the derate factors i to correct the 1-D magnetic 

circuit model for 2-D and 3-D effects, including fringing and leakage. The derate factors 

are typically selected in the range 0.7~0.9, although for sake of illustration the results 

here are shown for 1i  . The poles are positioned 60 degrees apart and the pole #1 is 

located at 30 degrees counter clockwise from X axis, as shown in Fig. 2.1. 

 

2.5 Rotor model 

In this nonlinear dynamic analysis, the rotor is modeled as 2-dof rigid rotor with 

a radial PMB HoMB and as four-dof flexible rotor model with two, radial PBM HoMB. 

Fig. 2.8 shows the diagram of the two-dof rigid rotor model including the bearing and 

shaft lumped mass, static and imbalance loads, and bearing coordinates. Equation of 

motion for two-dof rotor model is represented in Eq. (10). In Fig. 2.9, the four-dof 

flexible rotor model is depicted with the bearings, central disk and bearing lumped 

masses, static imbalance loads, and bearing and disk coordinates. The flexible model 

,y staticF
,y imbalanceF

,y mF

bM

Fig. 2.8   Rigid rotor model with 2 dofs and Y direction static loading 
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neglects gyroscopic effects, and the resulting equations of motion with imbalance force 

and static force in the negative y direction are shown in Eq. (11). The shaft model is 

simplified relative to those of actual compressors, turbines, etc. in order to focus on the 

high fidelity, nonlinear magnetic bearing model and to make the system model more 

amenable to numerical integration based simulation.  The target positions for the 

journals in the magnetic bearings are intentionally set above the centers of the magnetic 

bearing clearance circles in order for the static load to be balanced by the permanent 

magnet bias flux. This commonly employed approach yields a significant reduction in 

coil currents and in the resulting ohmic losses. 
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where  

,

concentrated mass lumped at the bearing,

concentrated mass lumped at the central disc,

effective shaft stiffness connecting the bearings and the disc,

shaft spin rate in rad/sec,

eccentricity of disc mass center,

b

d

r

y sta

M

M

k

e

F













, ,

static load applied to central disc,

, magnetic bearing x and y forces.
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x m y mF F
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Fig. 2.9   Flexible shaft model with four dos and Y direction static loading 
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2.6 Control system 

Each magnetic bearing has 2 parallel stator and rotor stacks of laminations that 

are offset axially, and are sometimes referred to as "active planes". Axially adjacent 

poles in these stacks have identical coils, are wired in series and are powered by the 

same power amplifier to which the vertical and horizontal control voltages are divided 

into 6 voltages by the current distribution matrix (CDM) and supplied. This approach 

facilitates fault tolerant operation (FTO) of the PMB HoMBs as explained in [25].  

Implementation of FTO requires use of a "decoupling choke", as shown in Fig. 2.10, to 

electrically stabilize the magnetic bearing by converting a singular inductance matrix 

into a diagonal matrix with zero mutual inductances between the poles. This approach 

for FTO was first proposed in [26] for heteropolar magnetic bearings (HeMB). The 

model used here has fully operational coils since FTO is not of primary importance in 

this study.  

Power Amplifier

Power Amplifier

Power Amplifier

Power Amplifier

Power Amplifier

Power Amplifier

Decoupling Choke 

Fig. 2.10 Decoupling choke that is connected to power amplifiers and coils 
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The 6 power amplifiers in Fig. 2.11 drive currents through the 6 pole-coil pairs to 

produce x any y radial control forces at each bearing. The controller is composed of a 

proportional-derivative PD stage, lag compensation (LC) and a low pass filter (LPF) to 

represent input and output filters on a digital controller. This model is again simplified to 

focus primarily on the nonlinear aspects of the model, while utilizing credible 

components in other areas. Inclusion of the LC, LPF and power amplifier (PA) dynamics 

in the model accounts for the loss in phase margin that destabilizes real magnetic bearing 

systems. The LC is employed as a pseudo-finite gain integrator to reduce the static offset 

error (droop) caused by the static loading. The inductances of the coils are assumed to be 

constant. Transfer functions for the LC, LPF, and PA are described in Eqs. (8), (9), and 

(10), respectively. 
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Fig. 2.11 Diagram for journal motions feedback position control 
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 The X and Y control voltages are routed into a current distribution matrix 

(CDM) [25] which outputs linear combinations of the input voltages to the 6 power 

amplifiers (PA’s) that drive currents through the 6 pole/coil pairs, as shown in Fig. 2.11. 

The parameter values for CDM are as follows  

 

0.5615 0.3242

0 0.6484

0.5615 0.3242
.

0.5615 0.3242

0 0.6484

0.5615 0.3242

CDM

 
 
 
 

    
 
 

 

 (15)  

Any of the PA voltages or currents may saturate as indicated by Fig. 2.12, where 

,CDM iV is the output voltage from the CDM, ,amp iV is the voltage output and iI is the 

current output from PA (i=1, … ,6), and  is the current feedback gain (V/A).  

The possible disturbance input to the magnetic bearing is the sensor runout. The 

Fig. 2.12 Simplified power amplifier model with output voltage / current saturation 
limiters 
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unbalance force and static load is the disturbance input to the rotor model in this analysis. 

Different configurations are used for 2-dof and 4-dof rotor models. As shown in 

Fig. 2.11, the controller with LC, LPF, PA dynamics is used in the analysis involving 4-

dof rotor model, while all of which are not considered with 2-dof rotor model. Magnetic 

flux saturation is included in the component of magnetic bearing model in each rotor 

model analysis. 
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CHAPTER III 

 PMB HOMB CHARACTERISTICS WITH FLUX SATURATION 

In this chapter, the bearing forces generated from the proposed BH curve model 

is compared with the forces from a bilinear model. The bearing stiffness with the 

proportional gain from both the proposed BH model and material reluctance exclusion 

are compared. 

 

3.1  Force comparison between bilinear and modified Langmuir model 

The bilinear B-H curve model [13] shown in Eq. (16) provides the effective 

relative permeability values.  

 , ,0 ,max , ,0
, ,

,max

1 1
arctan ,

2
r mi mi mi r mi

r mi M mi
mi

B B
K

B

 



   

   
 

 (16) 

where , ,0r mi  is the relative permeability well below  the saturation value ,maxmiB , miB is the 

actual magnetic flux density, ,M miK is a shaping factor of the B-H curve, and i denotes the 

number of poles (i=1,…,6). Fig. 3.1 shows the Y direction force vs. Y direction journal 

position, as determined from the magnetic circuit model with the proposed B-H curve 

model from Eq. (2) and the bilinear type B-H curve model from Eq. (16).  

The control currents are all set to zero so the flux is driven only with the 

permanent magnets. The parameter values utilized in Eq. (16) are: , ,0 8000r mi  , ,max 2.0miB  , 

and , 100M miK  . The coercive field intensity of magnet (Hc) is 633 kA/m and the residual 

flux density of magnet (Br) is 0.855 T at room temperature. The air gap length of PMB 

HoMB is 5.080x10-4 m. Permanent magnet and magnetic bearing properties are listed in 
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Table 2.1 and Table 2.2.  

As seen in Fig. 3.1, the force generated when the bilinear type B-H curve model 

is used is not as large as the one with the proposed B-H curve model beyond 7.6x10-5m 

in the Y direction. The proposed B-H curve model closely follows the experimental data, 

thus the bilinear B-H curve model  is less suitable for rotor motion simulations involving 

magnetic fluxes that exceed saturation levels. Fig. 3.2 shows the flux density in each 

pole as a function of journal position in the Y direction utilizing the proposed and 

bilinear B-H curve model. 
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Fig. 3.1   Y direction force vs. Y direction journal position with the bilinear 
and proposed saturation model. Key: —, bilinear; -·-, proposed 
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3.2 Force comparison between model without flux saturation and modified 

Langmuir model 

The PMB HoMB force with the proposed flux saturation model is investigated 

compared to the force without flux saturation. Fig. 3.3 shows the Y direction force vs. Y 

direction journal position, as determined from the magnetic circuit model with the 

proposed B-H curve model, when the control currents are all set to zero so the flux is 

driven only with the permanent magnets. As the journal moves in Y direction, the air gap 

between the journal and bearing top three poles, or pole 1, pole 2, and pole 3 as shown in 

Fig. 2.8, decreases, and the fluxes at these poles are saturated as shown in Fig. 3.4. 

Therefore, the slope becomes gentle as the journal approaches the bearing clearance 

Fig. 3.2   Flux density in each pole vs. Y journal position. Key: —, bilinear; – -, 
proposed. (a) pole 1, (b) pole 2, (c) pole 3, (d) pole 4, (e) pole 5, and (f) 
pole 6 
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limit. On the contrary, the force determined from the magnetic circuit model without the 

material reluctance shows that the position stiffness grows as the journal gets close to the 

bearing top 3 poles and it deviates unreasonably from its counterpart found from the 

proposed flux saturation model. Fig. 3.5 shows the comparison between these two force 

characteristics and the corresponding poles flux density plots are in Fig. 3.6. 

By comparing these two models, it can be concluded that the nonlinear dynamic 

analysis with the force determined from the magnetic circuit model which includes the 

proposed B-H curve model is more appropriate when the large amplitude response is 

involved or the journal center is offset from the bearing center because of the heavy load 

applied to the journal. 
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Fig. 3.3   Y direction force vs. Y direction journal position with the proposed 
saturation model 
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Fig. 3.4   Flux density in each pole vs. Y journal position. (a) pole 1, (b) pole 2, (c) 
pole 3, (d) pole 4, (e) pole 5, and (f) pole 6 
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Fig. 3.5   Y direction force vs. Y direction journal position with the proposed 
saturation model and without the material saturation. Key: —, with 
saturation; - -, without saturation 
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3.3 Nonlinear bearing stiffness comparison 

The resultant magnetic forces in Y direction acting on the shaft with several 

cases of the proportional gain pG , setting 0dG  , are shown in Fig. 3.7, Fig. 3.8, and 

Fig. 3.9. The shaft is moved in Y direction and held at each step of position and the Y 

direction forces are numerically found with both the magnetic circuit model containing 

the proposed BH curve model and the model excluding the material reluctance. Because 

the control target position is at the bearing center coordinate, the forces at Y=0 is zero 

and positive Y displacements lead to stable restoring forces in negative Y direction, 

staring from zero at the bearing center.  
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Fig. 3.6   Flux density in each pole vs. Y journal position. Key: —, with saturation; - -, 
without saturation. (a) pole 1, (b) pole 2, (c) pole 3, (d) pole 4, (e) pole 5, 
and (f) pole 6 
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Fig. 3.7 with the proportion gain 33.68pG  shows a hardening spring 

characteristics. The forces generated with flux saturation are slightly less that the forces 

without flux saturation. The force difference is not significant with this amount of 

proportional gain within the half of the bearing clearance, 2.54x10-4m, though the 

difference gets larger as Y displacement approaches the clearance limit, 5.08x10-4m. The 

flux density calculated with flux saturation model remains less than 2 Tesla, shown in 

Fig. 3.10. 

The force with the proportional gain 60.39pG   and 96.01pG   is shown in Fig. 

3.8 and Fig. 3.9, respectively, and corresponding flux densities in each pole are plotted 

in Fig. 3.11 and Fig. 3.12. These two cases indicate that the bearing has hardening spring 

characteristics. With the hardening spring characteristics, the forces calculated from the 

model excluding the material reluctance shows large deviation from the forces including 

flux saturation and these comparisons along with the result in SECTIONS 3.1 and 3.2 

clearly manifests that the force model with the proposed BH curve is more suitable for 

the analysis involving rotor response with large amplitude or within flux saturation 

region. 

Fig. 3.13 is plotted with Y forces at each journal displacement step, including 

flux saturation for the different values of proportional gains. Fig. 3.14 shows how the 

bearing stiffness coefficients, yK , changes with the shaft displacement in Y direction for 

the different values of proportional gains. 
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Fig. 3.8   Y direction force vs. Y displacement with proportional gain Gp = 60.39. 
Key: —, with flux saturation; - -, without flux saturation 

Fig. 3.7   Y direction force vs. Y displacement with proportional gain Gp=33.68. Key: 
—, with flux saturation; - -, without flux saturation 
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Fig. 3.10 Flux density vs. Y journal position with Gp = 33.68. Key: —, with flux 
saturation; - -, without flux saturation. (a) pole 1, (b) pole 2, (c) pole 3, (d) 
pole 4, (e) pole 5, and (f) pole 6 
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Fig. 3.9   Y direction force vs. Y displacement with proportional gain Gp = 96. 
Key: —, with flux saturation; - -, without flux saturation 
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Fig. 3.12 Flux density vs. Y journal position with Gp = 96. Key: —, with flux  
saturation; - -, without flux saturation. (a) pole 1, (b) pole 2, (c) pole 3, (d) 
pole 4, (e) pole 5, and (f) pole 
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Fig. 3.11 Flux density vs. Y journal position with Gp = 60.39. Key: —, with flux 
saturation; - -, without flux saturation. (a) pole 1, (b) pole 2, (c) pole 3, (d) 
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Fig. 3.13 Y direction force vs. Y displacement with flux saturation for different 
proportional gains. (a) 33.68, (b) 39, (c) 60.39, (d) 96 
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3.4 Static load capacity of PMB HoMB with flux saturation 

Maximum static load capacity of PMB HoMB was measured through 

numerically integrated solutions. Each static force can be balanced by the forces from 

PMB HoMB and the static forces increase until the magnetic forces cannot hold them. 

The steady state deflection gets smaller with the increase in the proportional gain value, 

as shown in Fig. 3.15 and Fig. 3.16. A larger value of lag compensator ratio reduces 

static deflection at steady state.  

With the same static force applied, the magnetic forces that should compensate it 

are the same regardless of the proportional gain or lag compensator ratio. Thus, the 

magnetic fluxes generated in each pole are almost the same, given the static force. This 

is shown in Fig. 3.17. The currents that are needed to produce the required fluxes at the 

steady state deflection (which results in the air gap) are plotted in Fig. 3.18.  

Fig. 3.15 Static force vs. Y displacement plot. z/p=3. Key: o, Gp=33.68; *, Gp=39.02; 
□, Gp=60.39;  ◊, Gp=96.01 
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Usually, the B-H curve is modeled with a simple linear line that varies until the 

flux density of 2 Tesla. Based on this and the flux density in the pole 2, the forces from 

the flux saturation model in this research may predict 3 times more than those from the 

simple linear line B-H curve model.  

The benefits of moving the control target point to where the forces only from the 

bias flux can hold the static forces are well shown in Fig. 3.19 and Fig. 3.20. At the 

control target point (X, Y) = (0, 2.032x10-4)m, the control current at pole 2 is almost 

zero with the static force at steady state, because all the static force is supported by the 

force from the bias flux. If a proper control target point is selected according to the static 

force, the control currents that are needed for supporting it can be minimized. 

Fig. 3.16 Static force vs. Y displacement plot. z/p=9. Key: o, Gp=33.68; *, Gp=39.02; 
□, Gp=60.39;  ◊, Gp=96.01 

0 1000 2000 3000 4000 5000 6000 7000 8000

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
x 10

-4

Static force (N)

Y
 d

is
pl

ac
em

en
t 

(m
)



42 

 

  

Fig. 3.17 Static force vs. flux density plot. z/p=3. Key: o, Gp=33.68; *, Gp=39.02; □, 
Gp=60.39;  ◊, Gp=96.01. (a) pole 1, (b) pole 2, (c) pole 3, (d) pole 4, (e) 
pole 5, and (f) pole 6 
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Fig. 3.18 Static force vs. current plot. z/p=3. Key: o, Gp=33.68; *, Gp=39.02; □, 
Gp=60.39;  ◊, Gp=96.01. (a) pole 1, (b) pole 2, (c) pole 3, (d) pole 4, (e) 
pole 5, and (f) pole 6 
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Fig. 3.19 Static force vs. Y displacement plot. z/p=9. Gp=60.39. Key: □, control 
target Y=0m; o, control target Y=2.032x10-4m 
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Fig. 3.20 Static force vs. current plot (pole2). z/p=9. Gp=60.39. Key: □, control target 
Y=0m; o, control target Y=2.032x10-4m 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

Static force (N)

C
u

rr
e

n
t (

A
)



44 

 

CHAPTER IV 

 RIGID ROTOR AND FLUX SATURATION 

The effects of flux saturation on nonlinear characteristics in response are 

identified utilizing frequency response plots, bifurcation diagrams, and Poincaré maps. 

The responses of two-dof rotor supported by PMB HoMBs with flux saturation are 

investigated in closed loop employing PD controller.  

 

4.1 Natural frequencies of linearized close loop system 

Nonlinear force relationship to the instantaneous air gap and amplifier output 

current, along with flux saturation in the material and without it, is numerically 

linearized at the control target point to find out the natural frequencies of closed loop 

with 2-dof rotor model. 

Transfer function from input error to X and Y control voltage, as shown in Fig. 

4.1, can be expressed as 

 

,
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, ,

,
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k control
d p

k error

k error k ref s

V
G s G

V

V V G k

k x y

 

 



 (17) 

where dG is the derivative gain, pG is the proportional gain, ,k refV is the reference voltage 

(V) depending on the control target position, and sG is the sensor gain with the value of 

1969V/m.  

Converting the transfer function of Eq. (17) into the differential equation form 

with respect to time becomes 
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 , , , .k control d k error p k errorV G V G V   (18) 

The schematic of signal path between the output voltage from the controller and 

the input forces to the rotor is expressed in Fig. 4.2. Algebraic nonlinear (NL) Eq. (7) is 

solved at each time step and at static condition PA can be just expressed as its DC gain, 

1A/V. This nonlinear relation can be linearized into Equations  

Fig. 4.1   Partial control loop from input error voltage to output control voltage 

Fig. 4.2   Partial control loop from control voltage to X and Y forces 
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where , ,,x p y pK K are the position stiffness (N/m) in X and Y directions and , ,,x v y vK K are 

the voltage stiffness (N/V) in X and Y directions at the point of interest.  

Fig. 4.3 shows the Y direction force calculated from Eqs. (7) and (9) without X 

control current and material saturation when the shaft moves in Y direction from the 

center of bearing. Y voltage axis implies that Y control voltage is applied while Y 

position is fixed at each step. Fig. 4.4 is plotted with the same way including the 

proposed flux saturation model.  
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Fig. 4.3   Y force vs. shaft Y position vs. controller Y output voltage at each shaft Y 
position when flux saturation model is excluded 
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From Fig. 4.3 and Fig. 4.4, the position and voltage stiffness can be calculated 

numerically. For example, if the control target point is set at (x, y(j)) = (0, 1.016x10-4 ) 

m , taking finite difference of the values of Y force, Y control voltage, and Y 

displacement, 
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 (21) 

where  y j is the control target point,     5y j 1 y j   1.27x10 m   , j=1,...,n (total 
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Fig. 4.4   Y force vs. shaft Y position vs. controller Y output voltage at each shaft Y 
position when flux saturation model is included 
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displacement steps), and q=1,…,m (total voltage steps). The position and voltage 

stiffness in X direction can be derived similarly. These values that are numerically found 

by Eqs. (20) and (21) are described in Table 4.1 when the flux saturation model is not 

considered. Table 4.2 shows the values when the flux saturation model is taken into 

account. The position and voltage stiffness in X and Y directions are assumed to be the 

same.  

The natural frequencies of linearized closed loop system with the flux saturation 

model and without it can be derived from Eqs. (10), (18), and (19). 

,

,

,

,
2

equ v p s p

equ v d s

equ
n
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b n
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C K G G

K

M

C

M






 







                                                 (22) 

where equK  and equC  are the equivalent stiffness and damping of the linearized closed 

loop, n  and   are the natural frequency and damping ratio of the linearized closed loop.  

 

Table 4.1  Numerically calculated position stiffness and voltage stiffness at a target 
position (X, Y) when flux saturation model is excluded 

(X, Y) (m)  pK (N/m) 
vK (N/V) 

(0, 1.02x10‐4)  4.04x107  613 
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Table 4.2  Numerically calculated position stiffness and voltage stiffness at a target 
position (X, Y) when flux saturation model is included 

(X, Y) (m)  pK (N/m) 
vK (N/V) 

(0, 1.02x10‐4)  2.53x107  394 

 

  

4.2 Nonlinear frequency response 

The frequency response plot of a rigid rotor in a PMB HOMB is studied with the 

static load applied in negative Y direction. The case without flux saturation model is 

compared with the case with the proposed flux saturation model. The air gap fluxes are 

weakened by the inclusion of material path flux saturation leading to a loss of load 

capacity for counteracting the applied static load with the permanent magnet bias flux. 

The target (reference) position could be adjusted to compensate for this or the static load 

could be decreased to maintain the same target position in the Y direction. The latter 

approach was employed with a reduction of static applied load from a value of 3903.8 N 

to a value of 2939.6 N to keep the control target position at (X, Y) = (0, 1.016x10-4) m. 

Only PD controllers are included in the close loop and proportional gain (GP) and 

derivative gain (Gd) of the controller are the same in x and y direction, Gp = 97.07, Gd = 

0.0076. LCs and LPFs are excluded. PAs are simplified as having only DC gains, 1A/V. 

The Eq. (10) is numerically integrated using the fourth-order Runge-Kutta method and at 

each time step, the X and Y force are numerically calculated from the Eqs. (7) and (9), 

given the instantaneous currents in the 6 poles and the X and Y journal coordinates. The 

Levenberg-Marquardt algorithm[24] is used to solve the set of nonlinear algebraic Eq. 
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(7), given the solution for the fluxes from the previous time step are used as  initial 

guesses of their values for the present step. 

Amplitude at each spin speed is defined as the absolute distance value from the 

control target point to the point where the steady state shaft response returns at each 

period of time (periodic solution).  

With Gp = 97.07, the bearing has softening spring characteristics as shown inFig. 

3.13, and Fig. 4.5 shows this feature clearly. Fig. 4.5 plots the frequency response for 

both increasing and decreasing spin speed when the flux saturation model is considered. 

For increasing speed at 13600 rpm, there is sudden amplitude increase and the jump in a 

Fig. 4.5   Amplitude vs. spin speed plot. Gp=97.07, Gd=0.0076, e=3.8x10-5m. Flux 
saturation model is included. Key: o, increasing; *, decreasing 
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downward direction occurs at 12500 rpm for decreasing speed. The hysteresis region 

forms for speeds between 12500 rpm and 13600 rpm, where stable responses are 

difference depending on the increasing or decreasing spin speed, i.e., two stable 

solutions exist depending on which initial condition is selected.  

The jump and hysteresis result in Fig. 4.5 makes it clear that the analysis 

including the flux saturation model is more appropriate to predict the nonlinear system 

characteristics. For Comparison, the frequency response plot without the flux saturation 

model, shown in Fig. 4.6, does not indicate any jump or hysteresis region. The orbit 

plots in Fig. 4.7 and Fig. 4.8 shows two stable period-1 responses at the same spin speed, 

Fig. 4.6   Amplitude vs. spin speed plot. Gp=97.07, Gd=0.0076, e=3.8x10-5m. Flux 
saturation model is not included. Key: o, increasing; *, decreasing 
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13000 rpm. Fig. 4.7 is for increasing speed and Fig. 4.8 is for decreasing speed. The ‘+’ 

mark indicates the control target point and ‘o’, the returning point at each time period.  

The flux density variation at each air gap with decreasing speed at 13000 rpm is 

plotted in Fig. 4.9, Fig. 4.10, and Fig. 4.11 with the horizontal axis as time, X 

displacement, and Y displacement respectively. Because of the large amplitude response 

generated by the unbalance force, all the flux densities at air gaps swing from 0 to 2.4 

Tesla which is the maximum value of flux density in the flux saturation model.  

The forces in X and Y direction exerted by the magnetic poles on the shaft are 

obtained while the reluctances of air gap and pole material and flux saturation are taken 

into account. The X and Y forces with decreasing speed at 13000 rpm are plotted in Fig. 

4.12, Fig. 4.13, and Fig. 4.14 with the horizontal axis as time, X displacement, and Y 

displacement, respectively.  Nonlinear force characteristics due to the flux saturation are 

clearly shown in these figures. 
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Fig. 4.7   Orbit plot at 13000 rpm when spin speed increases. Gp=97.07, Gd=0.0076, 
e=3.8x10-5m. Flux saturation model is included. 
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Fig. 4.8   Orbit plot at 13000 rpm when spin speed decreases. Gp=97.07, Gd=0.0076, 
e=3.8x10-5m. Flux saturation model is included. 
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Fig. 4.9   Flux density at each air gap vs. time at 13000 rpm when spin speed 
decreases. Gp=97.07, Gd=0.0076, e=3.8x10-5m. Flux saturation model is 
included. (a) pole 1, (b) pole 2, (c) pole 3, (d) pole 4, (e) pole 5, (f) pole 6 
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Fig. 4.10 Flux density at each air gap vs. X displacement at 13000 rpm when spin 
speed decreases. Gp=97.07, Gd=0.0076, e=3.8x10-5m. Flux saturation 
model is included. (a) pole 1, (b) pole 2, (c) pole 3, (d) pole 4, (e) pole 5, 
(f) pole 6 
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Fig. 4.11 Flux density at each air gap vs. Y displacement at 13000 rpm when spin 
speed decreases. Gp=97.07, Gd=0.0076, e=3.8x10-5m. Flux saturation 
model is included. (a) pole 1, (b) pole 2, (c) pole 3, (d) pole 4, (e) pole 5, 
(f) pole 6 
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Fig. 4.12 Force vs. time at 13000 rpm when spin speed decreases. Gp=97.07, 
Gd=0.0076, e=3.8x10-5m. Flux saturation model is included. (a) X force, 
(b) Y force 
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Fig. 4.14 Force vs. Y displacement at 13000 rpm when spin speed decreases. 
Gp=97.07, Gd=0.0076, e=3.8x10-5m. Flux saturation model is included. (a) 
X force, (b) Y force
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Fig. 4.13 Force vs. X displacement at 13000 rpm when spin speed decreases. 
Gp=97.07, Gd=0.0076, e=3.8x10-5m. Flux saturation model is included. (a) 
X force, (b) Y force 
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4.3 Bifurcation diagram 

The subharmonic motion can be observed using Poincaré maps and bifurcation 

diagram. A simple Poincaré map can be obtained by sampling the rotor response once 

every rotor forcing period of time. A Poincaré map with n discrete points represents a 

‘period-n’ response, for which the lowest frequency is 1/n times the rotor spin speed. 

A bifurcation diagram provides the qualitative response behavior when a 

parameter of the system is varied. Poincaré points are plotted in the bifurcation diagram 

for certain range of the parameter such as mass unbalance eccentricity, e. 

For both bifurcation diagram and Poincaré map in this section, the control target 

point is set at (X, Y) = (0, 1.016x10-4) m to compensate the static load 2939.6 N with the 

force generated from the bias flux. The shaft spin speed is chosen at 13000 rpm. The 

proportional gain Gp of 97.07 and derivative gain Gd of 0.0076 are selected for the 

analysis in this section, i.e., the same as in SECTION 4.2. 

Fig. 4.15 and Fig. 4.16 show the X and Y bifurcation diagrams when the 

unbalance eccentricity is selected as a parameter. The tendency of the Poincaré points is 

similar in X and Y coordinates. The Poincaré points at the 4th quadrant jump to the 3rd 

quadrant as the unbalance eccentricity increases and are kept as the period-1 response 

until the unbalance eccentricity approaches 7.5x10-5 m. After that, the Poincaré points 

bifurcate into the period-2 response, as shown in Fig. 4.17 and Fig. 4.18 in detail.  

Fig. 4.19 and Fig. 4.20 show a zoomed view for Fig. 4.17 and Fig. 4.18 in the 

range from 7.811x10-5 m to 7.885x10-5 m. This reveals clearly the period doubling path 

to chaos. This plot was constructed with 60 steps of the unbalance eccentricities and 100 
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forcing periods per each e value are plotted after a delay period of 100 cycles. When the 

unbalance eccentricity passes 7.83x10-5 m, the Poincaré points become quasi-periodic 

and the number of periods keeps increasing. Chaos occurs in the band where the dots 

seem to be merged at random. Periodic windows within the chaotic bands can be seen as 

light vertical strips around the unbalance eccentricity 7.87x10-5 m. The response was 

unstable after e=7.885x10-5 m. 

Similar result in SECTION 4.2 was obtained when the bearing model does not 

include the flux saturation effect, i.e., the material reluctance is excluded. The nonlinear 

characteristics do not appear in the responses and the X and Y Poincaré points with 

unbalance eccentricity as a parameter does not exhibit any bifurcation, shown in Fig. 

4.21 and Fig. 4.22. 

The Poincaré points with e=7.833x10-5 m are plotted at Fig. 4.23 and Fig. 4.24 

for 500 forcing periods at 13000 rpm. At this unbalance eccentricity step, the period-2 

responses, shown at Fig. 4.19, are grown into larger periodic responses, and X Poincaré 

points indicate two closed curves that can be categorized as quasi-periodic responses. 

Fig. 4.25 shows the orbit plot with this unbalance eccentricity. 

The Poincaré points with e=7.885x10-5 m are plotted at Fig. 4.26 and Fig. 4.27 

for 5000 forcing periods at 13000 rpm. This unbalance step was the last before the shaft 

response became unstable, resulting from the numerical analysis with the flux saturation 

model. These figures clearly show strange attractors and along with the time response 

plots for 50 forcing periods at Fig. 4.28, confirm the chaotic behavior of the system. Fig. 

4.29 shows the orbit plot with this unbalance eccentricity.  



59 

 

 

  

Fig. 4.15 Bifurcation diagram with unbalance eccentricity as a parameter (X 
response). RPM = 13000 
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Fig. 4.16 Bifurcation diagram with unbalance eccentricity as a parameter (Y 
response). RPM = 13000 
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Fig. 4.17 Bifurcation diagram with unbalance eccentricity as a parameter (X 
response). Magnified region from period-2 to chaotic response  
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Fig. 4.18 Bifurcation diagram with unbalance eccentricity as a parameter (Y 
response). Magnified region from period-2 to chaotic response  
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Fig. 4.19 Bifurcation diagram with unbalance eccentricity as a parameter (X 
response), magnified chaotic response region 
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Fig. 4.20 Bifurcation diagram with unbalance eccentricity as a parameter (Y 
response), magnified chaotic response region 
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Fig. 4.21 X Poincaré points with unbalance eccentricity as a parameter. Flux 
saturation model is excluded 
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Fig. 4.22 Y Poincaré points with unbalance eccentricity as a parameter Flux 
saturation model is excluded  
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Fig. 4.23 Poincaré plot for X response. e=7.833x10-5, 500 forcing periods at 13000 
rpm 
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Fig. 4.24 Poincaré plot for Y response. e=7.833x10-5, 500 forcing periods at 13000 
rpm 
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Fig. 4.25 Orbit plot with e=7.833x10-5 for 500 forcing periods at 13000 rpm 
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Fig. 4.26 Poincaré plot for X response. e=7.885x10-5, 5000 forcing periods at 13000 
rpm 
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Fig. 4.27 Poincaré plot for Y response. e=7.885x10-5, 5000 forcing periods at 13000 
rpm 
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Fig. 4.29 Orbit plot with e=7.885x10-5 for 5000 forcing periods at 13000 rpm 
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Fig. 4.28 X and Y position vs. time plot with e=7.885x10-5 for 50 forcing periods at 
13000 rpm 
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4.4 Trigonometric collocation method (TCM) for periodic solutions 

Trigonometric collocation method may be used to solve nonlinear period 

systems, i.e. periodic solution of a periodically forced nonlinear dynamic system such as 

steady state response of an unbalanced rotor in a nonlinear magnetic bearing[15]. In this 

section, TCM is investigated for finding the periodic solutions of the nonlinear rotor-

bearing system that has flux saturation in the PMB HoMB model. 

The method is analytic because it uses trigonometric functions in approximating 

the periodic solution by a Fourier series in which the frequencies are multiples or 

fractions of the fundamental frequency. It is also numerical because trigonometric 

functions and the unknown Fourier coefficients which result from substituting the 

assumed solution into nonlinear differential equations are found by a nonlinear algebraic 

equation solver. Similar to the previous sections, the Levenberg-Marquardt algorithm[24] 

is used to solve the set of nonlinear algebraic equations. 

In the trigonometric collocation method (TCM), a periodic rotor orbit is 

approximated by Fourier series, 

  ,0 , ,
1

( ) cos( ) sin( ) ,
posH

x x q s x q s
q

x a a q b q    


    (23) 

  ,0 , ,
1

( ) cos( ) sin( ) ,
posH

y y q s y q s
q

y a a q b q    


    (24) 

where ,0 , ,, ,x x q x qa a b , ,0 , ,, ,y y q y qa a b are the coefficient to be solved for, and s is the smallest 

frequency of interest, posH is the number of harmonics of s , and  is the collocation 

time. And given that the power amplifier gain is 1A/V, the currents at each pole can be 
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determined from the control voltage after CDM in terms of x and y position and velocity 

(PD gains are used for the controller).  
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   (25) 

The magnetic forces are calculated from the fluxes while the nonlinear algebraic Eq. (7) 

are solved with the inputs as X and Y positions and currents. Because of the implicit 

relations in this set of equations, the fluxes also need to be approximated by Fourier 

series,  

  ,0 , ,
1

( ) cos( ) sin( ) , 1, ,6,
flux

k k k

H

k q s q s
q

a a q b q k       


      (26) 

where ,0 , ,, ,
k k kq qa a b   are the coefficients to be solved for, fluxH  is the number of 

harmonics of s , and  is the collocation time. The differential forms of Eqs. (23) and 

(24) are 
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For harmonic or superharmonic responses, s spin  , and if a subharmonic with 
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frequency a/b (a, b are integers) are of interest, spin
s b


  , where spin is the shaft spin 

frequency. Eqs. (23), (24), and (26) are substituted into the differential Eq. (10) and the 

nonlinear algebraic Eq. (7), and evaluated 2+1 collocation nodes that are equally 

spaced over the fundamental period, T (=
2

s




). Total number of unknowns from 

trigonometric collocation is: 

 2 (2 1) 6 (2 1).pos fluxH H      (29) 

If = pos fluxH H  total 8*(2+1) unknowns are solved for with the same 

number of nonlinear algebraic equations. 

The collocation method is applied to study the dynamics of a rotor in the PMB 

HoMB. The results are presented as a nonlinear frequency response curve, as shown in 

Fig. 4.30. In this figure, the results from both TCM and numerical integration are plotted 

for increasing (INC) and decreasing (DEC) spin speeds. The rotor-bearing system with 

2-dof is given by the equations of motion, Eq. (10). The control gains used are Gp 

=91.52, Gd= 0.00704, and the control target point (X, Y) = (0, 1.524x10-4) m is selected 

as the static force in negative Y direction 4094 N is compensated by the forces from the 

bias flux. The unbalance eccentricity e is 3.048x10-5m. The order of harmonics for the 

assumed solution in TCM is chosen to be 6.  

In order to obtain the period-1 response with TCM in the nonlinear frequency 

plot, the X and Y responses and the flux responses are assumed to have the same 

frequency as the rotor spin speed. With the collocation nodes chosen, for simplicity, all 
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initial guesses for the coefficients are taken as zeros for the first value of spin speed. The 

coefficients for the previous spin speed are substituted into the current initial guesses. 

The results from the numerical integration are also obtained to verify the results from 

TCM, and agree well with those from TCM. The results from TCM shown are stable.  

Fig. 4.31 shows the transient responses of the period-1 for 2 forcing periods 

obtained by both TCM and numerical integration when the spin speed is at 12500 rpm, 

decreasing. Flux density plots at Fig. 4.32 also presents the results from both methods 

that matches well. Thus, the period-1 responses can be predicted well by TCM even 

when the saturated fluxes need to be assumed for the solutions.  

For the period-2 responses, a bifurcation diagram is plotted with the same 

Fig. 4.30 Amplitude vs. spin speed plot. Gp = 91.52, Gd = 0.00704. Flux saturation 
model is included. Key: —, Numerical, INC; - -, Numerical, DEC; o, 
TCM, INC; □,TCM, DEC 
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parameters used in the nonlinear frequency curve, Fig. 4.30. With the spin speed at 

12500 rpm, the unbalance eccentricities as control parameter are varied in the range 

from 7.84x10-5 m to 8.103x10-5 m. Fig. 4.33 shows the period-2 responses at e=7.95x10-

5 m, and with this unbalance eccentricity, the period-2 responses are compared between 

numerical integration and TCM. The period-2 responses obtained by TCM are similar 

with those from the numerical integrations, however, they contain additional high 

frequency components, indicating that more terms are needed in the TCM to 

approximate the highly saturated flux responses, as shown in Fig. 4.34 and Fig. 4.35.  

 

Fig. 4.31 Transient X and Y response for 2 forcing periods. RPM (decreasing) = 
12500, e=3.048x10-5m. Key: —, Numerical; - -, TCM 
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Fig. 4.33 Bifurcation diagram with unbalance eccentricity as a parameter (Y 
response). RPM = 13200 
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Fig. 4.32 Transient flux density response for 2 forcing periods. RPM (decreasing) = 
12500, e=3.048x10-5m. Key: —, Numerical; - -, TCM. (a) pole 1, (b) pole 
2, (c) pole 3, (d) pole 4, (e) pole 5, (f) pole 6 
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Fig. 4.34 Transient X and Y response for 2 forcing periods. RPM = 13200, 
e=7.95x10-5m. Key: —, Numerical; - -, TCM 
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Fig. 4.35 Transient flux density response for 2 forcing periods. RPM = 13200, 
e=7.95x10-5m. Key: —, Numerical; - -, TCM. (a) pole 1, (b) pole 2, (c) 
pole 3, (d) pole 4, (e) pole 5, (f) pole 6 
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CHAPTER V 

 DYNAMICS OF FLEXIBLE ROTOR MODEL WITH SATURATION 

5.1 Natural frequencies of linearized close loop system 

Nonlinear force relationship to the bearing clearance and amplifier output current 

along with flux saturation or without it in the material is numerically linearized at the 

control target point to find out the natural frequencies of closed loop with 4-dof rotor 

model. 

Transfer function from input error to X and Y control voltage, as shown in Fig. 

5.1, can be expressed as 

 
   
  

,
2

,
1

p dk control

k

s z G G sV

E s p s

 


 
 (30) 

where is the derivative gain, is the proportional gain, z and p are LC constants, 

is ( : LPF cutoff frequency, rad/sec),   is the reference voltage (V) 

depending on the target position, and is the sensor gain with the value of 1969V/m.  

 Converting the transfer function of Eq. (30) into the differential equation form 

with respect to time becomes  

 
2

, , , ,

, , ,

(2 ) (1 2 )
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   (31) 

The schematic of signal path between the output voltage from the controller and 

the input forces to the rotor is expressed in Fig. 4.2. Algebraic nonlinear (NL) equations, 

Eq. (7), is solved at each time step and at static condition PA can be just expressed as its 

dG pG 

,

1

c LPF ,c LPF ,k refV

sG
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DC gain, 1A/V. This nonlinear relation can be linearized to be Eq. (19). 

 Fig. 4.3 shows the Y direction force calculated from Eqs. (7) and (9) without X 

control current and material saturation when the shaft moves in Y direction from the 

center of bearing. Y voltage line indicates that Y control voltage is applied while Y 

position is fixed at each step. Fig. 4.4 is plotted with the same way including the 

proposed flux saturation model. The position stiffness and voltage stiffness are 

calculated by Eqs. (20) and (21). The values in Table 4.1 are for the case where the flux 

saturation model is not considered. Table 4.2 shows the values when the flux saturation 

model is taken into account. The position and voltage stiffness in X and Y directions are 

assumed to be the same. 

State variables are defined as in (32) to obtain the state space equation, 

neglecting all the disturbance inputs.  

  , , , , , ,
.X

b b d d x control x control x control b b d d y control y control y control
x x x x V V V y y y y V V V         (32) 

The state space form of closed loop with linearized relationship between the 

control voltages and magnetic bearing forces is expressed combining Eqs. (11), (19), and 

(31) as 

Fig. 5.1   Partial control loop from input error voltage to output control voltage 
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 ,X AX  (33) 

where  is the ith row and jth column element of matrix A and 
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Therefore, the natural frequencies of linearized closed loop system can be 

derived from the eigenvalues of matrix A.   

,i jA
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5.2 LPF cutoff frequency effect on close loop system 

At next section, it is investigated how the flux saturation and power amplifier 

voltage / current saturation affect the unstable closed loop system with the flexible rotor 

model. And it is useful to determine linear models to provide a comparison with the 

nonlinear model cases that include the effects of magnetic flux saturation and amplifier 

voltage / current saturation. 

In order to set the LPF cutoff frequency that makes closed loop system unstable, 

it is necessary to investigate the natural frequency of linearized closed loop system, 

utilizing the way described in 5.1. As shown in Fig. 5.2 and Fig. 5.3, both the damped 

natural frequencies and stability depends on LPF cutoff frequencies. The linearized 
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Fig. 5.2   Shaft 1st damped natural frequency and damping ratio of linearized closed 
loop system vs. LPF cutoff frequency. Gp=75.17, Gd=0.0158 
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closed loop system is unstable if LPF cutoff frequency is selected less than 1600 Hz, 

given that the proportion gain pG is 75.17 and the derivative gain dG is 0.0158. Usually, 

high frequency mode is oscillated to diverge when a system is unstable, so the LPF 

cutoff frequency can be chosen to be maximum 2000 Hz to make an unstable system. 

The damped 2nd natural frequency at given LPF cutoff frequency is used to verify the 

rotor response that is calculated numerically when the system oscillates to be unstable. 
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Fig. 5.3   Shaft 2nd damped natural frequency and damping ratio of linearized closed 
loop system vs. LPF cutoff frequency. Gp=75.17, Gd=0.0158 
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5.3 Flexible shaft model with heavily loaded magnetic bearings 

This section illustrates the effects of flux and power amplifier current and voltage 

saturations on the nonlinear dynamic response of the flexible shaft model subjected to 

heavy static and dynamic loading. This is representative of a high load to weight ratio 

bearing with light to blade-out levels of imbalance. Fig. 2.9 and Fig. 2.11 show the 4-dof 

flexible shaft and feedback control models.  The parameters for the cases considered are 

shown in Table 5.1. 

The target (reference) point is offset from the centered position in the opposite 

static load direction by an amount of 1.016x10-4 m in order to reduce the demand for 

electric current by employing the permanent magnet flux force to counteract the static 

load. Proportional gain ( pG ) and derivative gain ( dG ) of the controller are the same in x 

and y direction and the effective shaft stiffness ( rk ) is 4.7x107 N/m. The pole path 

length is 3.81x10-2 m, the masses at the disk ( dM ) and bearing ( bM ) are 17.11 kg and 

3.421 kg respectively. The low pass filter (LPF) stage is typically included to suppress 

electrical noise, shaft runout or for anti-aliasing. Note the case 1 value 1900 Hz of LPF 

cutoff frequency causes an unstable response for the model configuration that omits 

amplifier dynamics and flux saturation, based on Fig. 5.3. This is illustrated in Fig. 5.4 

which shows the X and Y displacements at the disk and bearing locations. In reality 

these motions would cause impacts with the system’s catcher bearings which are outside 

of the area of interest of the present work. The response remains unstable in case 2.1 

where unsaturated amplifier dynamics are included in the model, as shown in Fig. 5.5. 

Cases 1 and 2.1 involve linear models to provide a comparison with the nonlinear model 
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cases that include the effects of magnetic flux saturation and amplifier voltage / current 

saturation.  

 

Table 5.1  Parameter sets for saturation effect examples 

Case 
PA 

Dynamics 
Voltage 

Saturation 
Current 

Saturation 
Magnetic Flux
Saturation 

LPF, PA  
cutoff (Hz) 

Static force 
(N, N mm

‐2
) 

Gp , Gd 

1  N  N  N  N  1900, N.A.  3903.8, 1.66  75.17, 0.0158

2 

2.1  Y  N  N  N  4000, 1000 3903.8, 1.66  75.17, 0.0403

2.2  Y  Y  N  N  4000, 1000 3903.8, 1.66  75.17, 0.0403

2.3  Y  N  Y  N  4000, 1000 3903.8, 1.66  75.17, 0.0403

3  N  N  N  Y  1900, N.A.  2939.6, 1.25  75.17, 0.0158

4  N  N  N  N  2500, N.A.  3903.8, 1.66  75.17, 0.0158

5  Y  Y  Y  Y  6000, 1000 2939.6, 1.25  75.17, 0.0158

 

 

The case 3 model includes material path flux saturation but excludes current and 

voltage saturation (limiting) effects in the power amplifiers. The air gap fluxes are 

weakened by the inclusion of material path flux saturation leading to a loss of load 

capacity for counteracting the applied static load with the permanent magnet bias flux. 

The target (reference) position could be adjusted to compensate for this or the static load 

could be decreased to maintain the same target position in the Y direction. The latter 

approach was employed with a reduction of static applied load from a value of 3903.8 N 

to a value of 2939.6 N.  Fig. 5.6 shows that the vibration becomes confined to a limit 

cycle similar with a Van der Pol type system, when magnetic flux saturation is included 

in the model. The magnitude of response is within the clearance of 5.08x10-4 m. This 

phenomenon of a limit cycle preventing destructive unstable motion has been observed 
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on several experimental rigs. The instability frequency 990 Hz in Fig. 5.4 indicates that 

the 2nd (shaft bending) mode is unstable which is consistent with the loss of phase 

margin caused by the power amplifier filter and LPF. 

Case 2.2 in Table 5.1 is identical to case 2.1 however power amplifier voltage 

saturation is included with limiting voltages of ±80 volts, and current and flux saturation 

is excluded from the model. Fig. 5.7 shows that a limit cycle does not result from 

including voltage saturation and the system diverges in instability. For case 2.3, 

including power amplifier current saturation (limiting) at a value of ±11 amps, while 

excluding both voltage and flux saturation, results in a stable, limit cycle response as 

shown in Fig. 5.8.  

 

Fig. 5.4   X and Y initial responses at (a) bearing and at (b) rotor, excluding flux 
saturation, power amplifier saturation and power amplifier dynamics effects
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Fig. 5.5   X and Y initial responses at (a) bearing and at (b) rotor, excluding flux 
saturation and power amplifier saturation and including power amplifier 
dynamic effects 
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Fig. 5.6   X and Y initial responses at (a) bearing and at (b) rotor, excluding power 
amplifier dynamics and saturation and including flux saturation 
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Fig. 5.8   X and Y initial responses at (a) bearing and at (b) rotor, excluding flux 
saturation and including power amplifier dynamics and current saturation 
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Fig. 5.7   X and Y initial responses at (a) bearing and at (b) rotor, excluding flux 
saturation and including power amplifier dynamics and voltage saturation 
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5.4 Stable response with heavy static load and flux saturation 

With the case 4 value 2500 Hz of LPF cutoff frequency in Table 5.1, the system 

model that omits amplifier dynamics and flux saturation remains stable at the control 

target position. And the system model of the case 5 that includes amplifier dynamics and 

flux saturation shows stable unbalance response when LPF cutoff frequency is set to 

6000 Hz. This is illustrated at Fig. 5.9 and Fig. 5.10 for 20 periods when the journal 

rotates at 10000 rpm with the eccentricity of 3.81x10-5 m and the journal orbital response 

at the bearing is within the half of the bearing clearance, 2.54x10-4 m. The flux density at 

top 3 poles vary over saturated region (2 T), as shown in Fig. 5.11, while stable 

operation is maintained.  

  

Fig. 5.9   Stable rotor response at (a) bearing and at (b) disk with the model that 
includes amplifier dynamics and flux saturation, when the journal rotates at 
10000 rpm with the eccentricity of 3.81x10-5 m 
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Fig. 5.11 Flux density in each pole with the model that includes amplifier dynamics 
and flux saturation, when the journal rotates at 10000 rpm with the 
eccentricity of 3.81x10-5 m. (a) pole 1, (b) pole 2, (c) pole 3, (d) pole 4, (e) 
pole 5, and (f) pole 6 
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Fig. 5.10 Orbit plot of stable response at (a) bearing and at (b) disk with the model that 
includes amplifier dynamics and flux saturation, when the journal rotates at 
10000 rpm with the eccentricity of 3.81x10-5 m 
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CHAPTER VI 

 SUMMARY AND CONCLUSION 

The analysis of nonlinear dynamics of the flexible rotor that operates in the 

magnetic flux saturation zone makes it practical to utilize the full capacity of the 

magnetic bearings and to predict the rotor response of large amplitude or in heavily 

loaded situation: 

 (1) Modeling and simulation methodologies for including nonlinear effects in 

homopolar magnetic bearings were developed. Prior methods focused on 

heteropolar magnetic bearings.  

(2) A systematic approach is made for modeling a permanent magnet-biased 

homopolar magnetic bearing (PMB HoMB) to express the magnetic field 

intensity H in terms of the flux density B, which is more suitable for solving 

the nonlinear algebraic equations generated from the magnetic circuit model. 

This analytical model of the magnetization curve provides a more accurate 

force prediction when the large rotor motion occurs to result the magnetic 

flux saturation within the bearing clearance. The standard bilinear 

magnetization curve approach may be unsuitable for the analysis over flux 

saturation limit[13], which is explained in SECTION 3.1.  Modeling error 

can be reduced by utilizing the new modified Langmuir method with 

correction terms for the weak flux region when Hiperco 50 experimental 

magnetization data is curve-fitted.  
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(3) In addition to magnetic flux saturation, the investigation is made into the 

nonlinear dynamics of rotor-AMB system including a flexible rotor, the 

effects of controller gains, low pass filter, amplifier dynamics, and amplifier 

voltage / current saturation.  

(4) The ability of actuator flux or power amplifier current saturation is 

demonstrated to arrest linear system instability to form a limit cycle response, 

a phenomena that has been observed experimentally on several experimental 

rigs. 

(5) Investigation into nonlinear dynamics of rotor-AMB system with the above 

characteristics demonstrates that a flexible rotor-bearing system is able to 

operate stably within the flux saturation region when the external disturbance, 

such as unbalance force, is introduced. 

 

This research can be extended by investigating the effect of another nonlinearity 

of AMB, such as eddy current [27, 28], on the dynamics of rotor-bearing system along 

with the amplifier dynamics and flux saturation. Also, the simulation results in this 

dissertation can be utilized as the basis for analysis when the experimental spin test, 

shown in Fig. 6.1, is performed and the data from the test are collected for comparison. 

Correlation between simulation and experimental data is the other valuable direction of 

future research.  
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Fig. 6.1   Experimental set up for PMB HoMB 
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