A Dissertation
by
\section*{ARNALDO LEOPOLDO ESPINEL DIAZ}

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

December 2010

Major Subject: Petroleum Engineering

GENERALIZED CORRELATIONS TO ESTIMATE OIL RECOVERY AND PORE VOLUMES INJECTED IN WATERFLOODING PROJECTS

A Dissertation
by
ARNALDO LEOPOLDO ESPINEL DIAZ

Submitted to the Office of Graduate Studies of Texas A\&M University
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Approved by:
Chair of Committee, Maria A. Barrufet Committee Members, Stephen A. Holditch

Daulat Mamora
Charles Glover
Head of Department, Stephen A. Holditch

ABSTRACT
Generalized Correlations to Estimate Oil Recovery and Pore Volumes Injected in Waterflooding Projects.

(December 2010)

Arnaldo Leopoldo Espinel Diaz, B.S., Universidad Jose Maria Vargas; M.S., Texas A\&M University
Chair of Advisory Committee: Dr. Maria A. Barrufet

When estimating a waterflood performance and ultimate recovery, practitioners usually prepare a plot of \log of water-oil ratio vs. cumulative production or recovery factor and extrapolate the linear section of the curve to a pre-established economic limit of water production. Following this practice, engineers take the risk of overestimating oil production and/or underestimating water production if the economic limit is optimistic. Engineers would be able to avoid that risk if they knew where the linear portion of the curve finishes. We called this linear portion the "straight-line zone" of simply SLZ.

In this research, we studied that "straight-line zone" and determined its boundaries (beginning and end) numerically using mathematics rules. We developed a new procedure and empirical correlations to predict oil recovery factor at any water/oil ratio.

The approach uses the fundamental concepts of fluid displacement under BuckleyLeverett fractional flow theory, reservoir simulation, and statistical analysis from multivariate linear regression.

We used commercial spreadsheet software, the Statistical Analysis Software, a commercial numerical reservoir simulator, and Visual Basic Application software.

We determined generalized correlations to determine the beginning, end, slope, and intercept of this line as a function of rock and fluid properties, such as endpoints of relative permeability curves, connate water saturation, residual oil saturation, mobility ratio, and the Dykstra-Parsons coefficient. Characterizing the SLZ allows us to estimate the corresponding recovery factor and pore volumes injected at any water-oil ratio through the length of the SLZ .

The SLZ is always present in the plot of \log of water-oil ratio vs. cumulative production or recovery factor, and its properties can be predicted. Results were correlated in terms of the Dykstra-Parsons coefficient and mobility ratio. Using our correlations, practitioners can estimate the end of the SLZ without the risk of overestimating reserves and underestimating water production. Our procedure is also a helpful tool for forecasting and diagnosing waterfloods when a detailed reservoir simulation model is not available.

DEDICATION

To God, for giving me the opportunity and the privilege of living, studying, and working in Aggieland for a second time.

To my wife and kids, for their dedication, support, and sacrifice giving me always a reason to work out this degree.

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Barrufet, for her unconditional help and advice, and for the honor of letting me work with her on this dissertation; and to my committee members, Dr. Holditch, Dr. Mamora, Dr. Glover, and Dr. Cobb, for their guidance and support throughout the course of this research.

Thanks also go to my friends and colleagues and the PETE department faculty and staff for making my time at Texas A\&M University a wonderful experience and for believing in me. I also want to extend my gratitude to Chevron Energy Technology Company, for the permission to use field data from reservoirs operated by Chevron Corporation Worldwide, and especially to its Vice-President, Dr. Ganesh Thakur, and the Global Advisory Team, Gustavo "Tuta" Fernandez, Syaiful Ma’rif, Khyati Rai, and Suryo "Yudo" Yudono, for their help and confidence, guidance and support while developing this research.

Special thanks to Darla Jean Weatherford from TAMU, and LaDonna FinnelsNeal and Therese Megan from Chevron-ETC, Global Advisory Team, for their advice and help, and for their painstaking efforts proofreading this document and improving the English.

Finally, thanks to my kids for their encouragement and to my wife for her patience and love.

TABLE OF CONTENTS

Page
ABSTRACT iii
DEDICATION v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES. ix
LIST OF TABLES xiv
CHAPTER
I INTRODUCTION 1
II METHODOLOGY 13
The Module for Homogeneous Reservoirs 18
Analysis of the log WOR vs. RF Plot 26
Multiple Linear Regression Application 29
Reservoir Simulation Model for Homogenous Reservoirs 40
Reservoir Simulation Model for Heterogeneous Reservoirs 43
The Module for Heterogeneous Reservoirs 50
III RESULTS 56
SLZ Characteristics and Correlations 57
Correlations for Homogeneous Reservoirs 57
Correlations for Heterogeneous Reservoirs 69
ANOVA Tables for Correlations 72
Field Cases 84
CHAPTER Page
IV CONCLUSIONS AND RECOMMENDATIONS 97
NOMENCLATURE 100
REFERENCES 104
APPENDIX A 107
APPENDIX B 118
APPENDIX C 138
APPENDIX D 140
APPENDIX E 147
APPENDIX F 153
APPENDIX G 162
APPENDIX H 218
APPENDIX I 233
APPENDIX J 244
VITA 249

LIST OF FIGURES

Page

Fig. 1-Data from simulation. The plot shows a \log WOR vs. RF plot, the curve stages, the SLZ zone, and the calculated slopes and intercepts for an example taken from the simulation runs with VDP $=0.9, M=3, S_{o i}=0.6$, $S_{o r}=0.35$ and $S_{w i}=0.4$

Fig. 2-Data from a real well. The SLZ is highlighted in red. This example shows the beginning of the SLZ between \log WOR -1.5 and -1 and the end of the SLZ close to 0.1 , with a RF $=42 \%$. WOR increases abruptly after this point.

Fig.3-Plot of the first derivative of WOR with respect to RF showing the constant slope zone. RF range from 0.5 to 0.57 indicates the boundaries for the SLZ

Fig. 4-Example of an oil saturation profile for a homogeneous reservoir at time 500 days, showing effective sweeping.42

Fig. 5-Comparison of ultimate recovery factors for a homogeneous case vs. the same reservoir including VDP $=0.9$ (including heterogeneity). A linear behavior is present. The case for VDP $=0.9$ presents lower RF43

Fig. 6-Oil saturation profile for a heterogeneous reservoir with a VDP $=0.9$. This figure shows irregular displacement at 500 days.44

Fig. 7-Example of SLZs observed from reservoir simulation for different degrees of heterogeneity expressed by the Dykstra-Parsons coefficient. These results were correlated with our correlations for homogeneous reservoirs to generate the heterogeneous correlations for RF

Fig. 8-Example of PVI observed from reservoir simulation for different degrees of heterogeneity expressed by the Dykstra-Parsons coefficient. These results were also correlated with our correlations for homogeneous reservoirs to generate the heterogeneous correlations for PVI.46

Fig. 9-Workflow used to generate our more than 200,000 runs for different cases, including correlations to estimate boundaries of the SLZs.54
Fig. 10-Structure and workflow of the regression codes 54

Page

$$
\begin{aligned}
& \text { Fig. } 11 \text { - Comparison of SLZ estimated with our correlations almost perfectly } \\
& \text { matched one obtained from simulation results for a hypothetical water- } \\
& \text { wet, homogeneous reservoir }(\mathrm{VDP}=0) \text { and } M=1 \ldots . .63
\end{aligned}
$$

Fig.12-Estimated ultimate recovery at the end of 720 SLZ obtained from our correlations and from the simulation runs. Results matched very well..... 64
Fig. 13-Our correlations reproduced the slopes determined from reservoir simulation (720 SLZs). 65
Fig.14-Our correlations captured intercepts determined from reservoir simulation (720 SLZs) 66
Fig.15-Final RF correlation from correlations and simulator for specific cases 67
Fig.16-Slope correlations from correlations and simulator for specific cases 67
Fig.17-Intercept correlation from correlations and simulator for specific cases 68Fig. 18-Ranges for WOR determined with our correlations for both thehomogeneous and the heterogeneous modules for water-wet rocks.77
Fig. 19-Ranges for WOR determined with our correlations for both thehomogeneous and the heterogeneous modules for oil-wet rocks77
Fig. 20-URF for different wettabilities and SLZ from our correlations and from reservoir simulation 79
Fig. 21-Ultimate PVI for different wettabilities and SLZ from our correlations and from reservoir simulation. 79
Fig. 22-Comparison of results from simulation and our correlations for an oil-wet rock with $M=5$ and $\mathrm{SLZ}=0.7$ 81
Fig. 23-Comparison of results from simulation to our correlations for an oil-wet rock with $M=5$ and VDP $=0.8$ 81

Fig. 24-Comparison of results from simulation and our correlations for an oil-wet rock with $M=5$ and VDP $=0.9$.82

Fig. 25-Comparison of results from simulation to our correlations for an oil-wet rock with $M=30$ and VDP $=0.7$82

Page

$$
\begin{aligned}
& \text { Fig. } 26 \text { - Comparison of results from simulation with our correlations for an oil- } \\
& \text { wet rock with } M=30 \text { and VDP }=0.8 \ldots . .
\end{aligned}
$$

Fig. 27-Comparison of results from simulation with our correlations for an oil- wet rock with $M=30$ and VDP $=0.9$. 83
Fig. 28-Screen shot of the VBA program to apply the new correlations. Run for Field A well case 87
Fig. 29-Comparison of performance of two different wells from Field A with our new correlations and with four different analytical methods: Craig-Geffen and Morse (CGM), Dykstra-Parsons (DP), Modified Buckley-Leverett (BL), and Stiles. 89
Fig. 30-RF calculated using our correlations and compared with the actual performance of Field A 89
Fig. 31-Comparison of hydrocarbon pore volumes injected and total pore volumeinjected, estimated with the correlations and actual performance in FieldA90
Fig. 32-Oil and water production rates per well estimated with the correlations. Field A. 91
Fig. 33-Screen shot of the VBA program applying the new correlations to Field B well. 94
Fig. 34- Comparison of performance of two different wells from Field B with our new correlations and with four different analytical methods: Craig-Geffen and Morse (CGM), Dykstra-Parsons (DP), Modified Buckley-Leverett (BL), and Stiles. 95
Fig. 35-RF vs. time calculated with our correlations for Field B 95
Fig. 36-Oil and water production rates per well estimated with the correlations. Field B 96
Fig. 37-Comparison of recovery factors obtained using different injection rates and $M=1$ for homogeneous reservoirs 219

Page

Fig. 38-Comparison of SLZs obtained using different injection rates and $M=1$ for homogeneous reservoirs 219
Fig. 39-Comparison of recovery factors obtained using different injection rates and $M=10$ for homogeneous reservoirs. 220
Fig. 40-Comparison of SLZs obtained using different injection rates and $M=10$ for homogeneous reservoirs. 220
Fig. 41-Comparison of recovery factors obtained using different injection rates and $M=1$ and VDP $=0.9$. 221
Fig. 42-Comparison of SLZs obtained using different injection rates and $M=1$ and VDP=0.9 221
Fig. 43-Comparison of recovery factors obtained using different injection rates and $M=10$ and $\mathrm{VDP}=0.9$. 222
Fig. 44-Comparison of SLZs obtained using different injection rates and $M=10$ and $\mathrm{VDP}=0.9$. 222
Fig. 45-Recovery comparison for different number of layers in the same reservoir. 223
Fig. 46-SLZ plot for heterogeneous cases (VDP $=0.9$) with $M=10$. No difference in behavior is shown for the number of layers used. 224
Fig. 47-Crossflow effect in homogeneous reservoir 226
Fig. 48—Log WOR vs. RF plot for homogeneous reservoir with and without crossflow 226
Fig. 49-Crossflow effect in heterogeneous reservoir (VDP $=0.93$) 227
Fig. 50-WOR vs. RF plot for heterogeneous reservoir with and without crossflow (VDP=0.93). 227
Fig. 51-Crossflow effect in heterogeneous reservoir (VDP $=0.85$). For larger VDP, if there is a "thief zone", the effect will be stronger. 228

Page

Fig. 52-WOR vs. RF plot for heterogeneous reservoir with and without crossflow $(\mathrm{VDP}=0.85)$ 228

Fig. 53-Oil saturation profile for no crossflow reservoir, with VDP $=0.85 \ldots \ldots \ldots .229$
Fig. 54-Oil saturation profile for reservoir with crossflow and VDP $=0.85 \ldots \ldots . .230$
Fig. 55-Example of fractional flow curve showing the breakthrough at a f_{w} of 0.93 and a S_{w} of 0.69 . The average water saturation at the breakthrough is 0.72

Fig. 56-Effects of viscosity ratio in fractional flow curves, maintaining the same relative permeability curves, $S_{w i}$ and $S_{o r}$

LIST OF TABLES

Page
Table 1—Stages in the waterflooding life cycle and their characteristics 16
Table 2—Parameters and ranges used in SAS to generate SLZs for homogeneous reservoirs in the homogeneous module 24
Table 3-Variables and ranges used to generate reservoir simulation cases for homogeneous reservoirs and validate results from our new correlations 26
Table 4-Generalized model description for the reservoir (homogeneous and heterogeneous cases) 41
Table 5-Variables and ranges used to generate simulation cases for heterogeneous reservoirs using 2 scenarios for water-wet rocks and 2 scenarios for oil-wet rocks 51
Table 6-Qualitative and relative comparison of the expected shapes and characteristics of the SLZ for different reservoir and fluid parameters combinations 58
Table 7—Parameter estimates for homogenous reservoirs (water-wet rocks).... 58
Table 8—Parameter estimates for homogenous reservoirs (oil-wet rocks) 59
Table 9—Parameter estimates for PVI in homogeneous reservoirs. This correlations work for water and oil-wet rocks. 59
Table 10—Reservoir data used for comparison 61
Table 11-Comparison of results using correlations and simulation for the homogeneous module. 62
Table 12—Parameter estimates for heterogeneous reservoirs for water-wet rocks. 69
Table 13-Parameter estimates for heterogeneous reservoirs for oil-wet rocks 70
Table 14—ANOVA for RF calculation for homogeneous, water-wet rocks 73
Table 15-ANOVA for RF calculation for homogeneous, oil-wet rocks 73

Page

Table 16-ANOVA for RF calculation for heterogeneous, water-wet rocks........ 74
Table 17—ANOVA for RF calculation for heterogeneous, oil-wet rocks............ 74
Table 18—ANOVA for PVI correlation statistics, water-wet rock.................... 74
Table 19—ANOVA for PVI correlation statistics, oil-wet rock........................ 74
Table 20-Minimum, maximum and mean values of WOR for different cases for water-wet and oil-wet reservoirs.78

Table 21 —Field A case. Real and simulation model data.............................. 85
Table 22—Field A case. Average data for each layer from the simulation model.. 85
Table 23—Field B Case. Real and original simulation model data.................... 92
Table 24—Field B Case. Average data for the only layer where the well is completed, taken from the original simulation model.....................92

Table 25-Data for heterogeneous reservoirs, example for water-wet systems..... 138
Table 26-Data for heterogeneous reservoirs, example for oil-wet systems. 139

Table 27-Example cases to evaluate the effect of different injection rates using the reservoir simulator characteristics as described in Table $2 \ldots \ldots \ldots$. 218

Table 28-Permeability values per layer used in the crossflow exercise 225

CHAPTER I

INTRODUCTION

For many years petroleum engineers plotted data on graph paper, and with a straightedge or a curve, drew average lines through the points or extrapolated those linear trends to estimate future performance. Now they use the same technique electronically.

A straight-line correlation is a linear correlation of several variables. Extrapolating a straight line in plots can be useful, especially when dealing with oil and water production data and recovery factors, but also may be dangerous, because recoverable oil may be overestimated.

Observing field data or simulation results from waterflooding projects, we can see that when no more movable oil is left in the reservoir, the curve of the widely used \log of water-oil ratio (WOR) vs. oil recovery factor (RF) plot abruptly bends up. Therefore, extrapolating the zone before the curve bends up to a pre-established economic limit may drive the practitioner to overestimate recoverable oil and underestimate water production.

The log WOR vs. RF plot is an important, powerful and reliable diagnostic and forecasting tool because its shape is affected by very important factors that determine a waterflooding project performance, such as areal $\left(E_{A}\right)$ and vertical $\left(E_{i}\right)$ sweep efficiencies, displacement efficiency $\left(E_{D}\right)$, rock properties, reservoir heterogeneity, fluid properties, and fluid saturations.
$\overline{\text { This dissertation follows the style of the SPE Journal. }}$

In this chapter we discuss briefly these important factors, the most relevant previous works related to the WOR vs. oil production and RF plots, our objectives, and our contributions with this research. In the following chapters we will discuss our methodology, results, conclusions and recommendation.
E_{A} is the fraction of the reservoir area contacted by injected water. This efficiency will depend upon the oil and water relative permeabilities ($k_{r o}$ and $k_{r w}$), Mobility Ratio (M), injection pattern, pressure distribution between the injector and the producer, and areal heterogeneity (including fractures and directional permeability). Experimental correlations have been published to estimate E_{A} for different mobility ratios (Craig, 1971).
E_{i} is the fraction of the reservoir's vertical plane contacted by water. Vertical heterogeneity will determine this efficiency. Published correlations are available to estimate E_{i} for different mobility ratio values (Dykstra and Parsons, 1950). E_{v}, or volumetric sweep efficiency, is the product of E_{A} and $E_{i} . E_{i}$ can be expressed in terms of the Dykstra-Parsons coefficient (VDP). This coefficient indicates the degree of heterogeneity of a reservoir. VDP equal to 0 would correspond to an ideal, completely homogeneous reservoir, and 1 to a completely heterogeneous reservoir. Most reservoirs have VDPs between 0.8 and 0.95 .

The Dykstra-Parsons coefficient is determined following these steps:

1. Divide permeability samples into layers of equal thickness.
2. Arrange the permeability data in decreasing order.
3. Determine for each value the percent of values with greater permeability and express each number as cumulative percentage, or "percent greater than."
4. Plot the data on log-probability scale, with permeability in the log scale and percent in the probability scale.
5. Estimate the best fit for a straight line and determine permeability values at 84.1% and at 50%.
6. Determine the Dykstra-Persons coefficient using the expression:

$$
\begin{equation*}
V D P=\frac{k_{50}-k_{84.1}}{k_{50}} . \tag{1}
\end{equation*}
$$

E_{D} is the ratio of displaced oil to the total flooded portion of the reservoir and can be estimated as function of water and oil saturation:

$$
\begin{equation*}
E_{D}=\frac{\overline{S_{w}}-S_{w c}-S_{g}}{1.0-S_{w c}-S_{g}} \tag{2}
\end{equation*}
$$

where
$\overline{S_{w}}=$ average water saturation behind the water front, fraction
$S_{w c}=$ connate water saturation, fraction
$S_{g}=$ gas saturation, fraction
and recovery efficiency $\left(E_{R}\right)$ will be defined as:

$$
\begin{equation*}
E_{R}=E_{A} \times E_{i} \times E_{D} . \tag{3}
\end{equation*}
$$

Relative permeability is the ratio of effective permeability (permeability to water, oil, or gas when more than one phase is present in the reservoir) to some reference permeability. The most used reference permeability is the effective permeability to oil
measured at the irreducible water saturation $\left(k_{o}\right)_{s w i}$. In this case, the value of the relative permeability of oil at $S_{w i}$ will always be 1.0. Sometimes we may find that the base permeability used is the permeability to air ($k_{\text {air }}$). This procedure is not incorrect, but makes comparison of different relative permeability curves more difficult.

Other very important concepts to take into account when planning or analyzing a waterflooding project follow. These concepts are basic knowledge for our research.

Based on the reservoir continuity, especially considering continuity of the floodable pore volume, the injection scheme may be peripheral or have a specific injection pattern. If the reservoir is continuous and no permeability barrier is present between injectors and producers, peripheral water injectors can begin in the reservoir flanks, which can be an excellent way of displacing oil with water while saving investments by minimizing the number of injection wells.

The injected water will move from the edges of the reservoir to the center, and oil will be displaced toward the producer wells. Initial peripheral injection usually is expanded to interior reservoir injection to either reach symmetry or not. If the existing well density is high and/or sealing faults or permeability barriers are present, the peripheral scheme may not work efficiently, so an injection pattern should be applied to achieve a better sweep efficiency.

Large rock permeability is desired to ensure adequate injectivity and productivity and, if feasible, to accelerate the production response with a higher injection rate. However, large permeability variation or large contrast between layers will increase the
risk of water channeling through large permeability intervals, leaving behind important oil volumes within zones of lesser permeability.

Mobility ratio (M) is defined as the ratio of the mobility of the displacing phase to the mobility of the displaced phase. M may be estimated using $k_{r w}$ evaluated at the maximum water saturation $\left(1-S_{o r}\right)$, and the oil relative permeability evaluated at the connate water saturation $\left(S_{w c}\right)$ (unflooded zone). This M is called the "endpoint" mobility ratio (see Eq. 4).

$$
\begin{equation*}
M=\frac{\lambda_{\text {Displacing }}}{\lambda_{\text {Displaced }}}=\frac{\frac{\left(k_{r w}\right)_{S_{w n a x}}}{\mu_{w}}}{\frac{\left(k_{r o}\right)_{S_{w c}}}{\mu_{o}}}, \tag{4}
\end{equation*}
$$

where
$\lambda_{\text {displacing }}=$ mobility of the displacing phase (water)
$\lambda_{\text {displaced }}=$ mobility of the displaced phase (oil)
$\left(k_{r w}\right)_{S w \max }=$ relative permeability to water at the maximum water saturation, fraction $\left(k_{r o}\right) s_{w c}=$ relative permeability to oil at the connate water saturation, fraction $\mu_{w}=$ water viscosity, cp
$\mu_{o}=$ oil viscosity, cp
This "endpoint" definition is used for simplicity in this work. Another definition for M uses $k_{r w}$ evaluated at the average water saturation in the flooded zone at the water breakthrough, instead of the $k_{r w}$ evaluated at the maximum water saturation (1-S $S_{o r}$). This definition better explains the fluid behavior in the porous media (Craig, 1971) but is less practical to use in developing our correlations.
M will remain constant before water breakthrough but will begin to increase after that point with the increase of average water saturation in the water-swept zone.

Unfavorable $M(\mathrm{M} \gg 1)$ may create some problems that may be handled with peripheral injection schemes. Large M values mean that water will move faster than oil; therefore, water fingering (water bypassing oil due to the higher mobility of the displacing phase) can occur and may cause early water breakthrough in producing wells. When the mobility ratio is much larger than one, injectivity will be larger than productivity, because water will flow through the porous medium easier than oil. To balance voidage and maintain pressure, more producers may be required than injectors. For very favorable mobility ratios $(\mathrm{M} \ll 1)$, productivity will be larger than injectivity because oil will be more mobile than water, and more injectors will be required than producers (Craig, 1971). Assuming steady-state, incompressible fluid behavior, and after gas fill-up is completed, we may neglect this effect in our forecasting since we will have one unit of produced liquid for each unit of injected water.

Initial free gas saturation may delay injection response due to the gas fill-up where injected water and displaced oil will fill the spaces previously occupied by free gas. To estimate oil and gas saturations at the beginning of the waterflood, the following expressions can be used (Craft and Hawkins, 1991):

$$
\begin{equation*}
S_{o}=\left(1.0-\frac{N_{p p}}{N_{o b}}\right)\left(\frac{B_{o}}{B_{o b}}\right)\left(1.0-S_{w c}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{g}=1.0-S_{o}-S_{w c} \tag{6}
\end{equation*}
$$

where
$S_{o}=$ oil saturation at the beginning of the waterflood, fraction
$N_{p p}=$ primary oil production from the bubblepoint pressure to the current reservoir pressure, STB
$N_{o b}=$ original oil in place at the bubblepoint pressure, STB
$B_{o}=$ oil formation volume factor at current average reservoir pressure, RB/STB
$B_{o b}=$ oil formation volume factor at the bubblepoint pressure, $\mathrm{RB} / \mathrm{STB}$
$S_{w c}=$ connate water saturation, fraction
$S_{g}=$ gas saturation at the beginning of the waterflood, fraction
During the last 50 years, several attempts have been made to forecast waterflood performance and ultimate oil recovery by modeling the sweeping process of water displacing oil through the porous medium.

The accuracy of the prediction is mostly affected by the knowledge about effects of reservoir heterogeneity, fluid saturations, and mobility ratio. These factors affect displacement and areal and vertical sweep efficiencies. Water channeling that bypasses mobile oil remaining within the rock, causing low displacement and early breakthrough in producing wells, will reduce ultimate recovery.

Reasonable forecasts of waterflood performance can improve decisions regarding a waterflooding candidate and project feasibility. Waterflood performance can be estimated by various analytical and empirical methods based upon several assumptions that many times are ignored or violated.

Reservoir simulation is now one of the most comprehensive and widely used waterflood prediction tools. When used properly, it can be a very useful tool for waterflood design, planning, and surveillance. Simulation is especially useful when used to develop forecasts of a complex reservoir, varying fluid properties, and a no uniform well pattern.

However, while simulation can yield results that are superior to and more detailed than other methods, it also generally requires a lot more data and time. A range of uncertainty in the input data leads to a resulting band of uncertainty in the output. A good understanding of the uncertainties, multiple realizations, and sensitivity analysis will significantly increase the value and usefulness of the simulation results.

Since reservoir simulation requires more data and time to produce good forecasts, we focused our research in analytical and empirical methods used to develop more general but reasonable waterfloods forecasts.

Baker et al. (2003) showed that in the plot of \log WOR vs. cumulative production, a linear extrapolation can be made of the linear region of the curve obtained up to a value of $\log \mathrm{WOR}=2(\mathrm{WOR}=100)$. The authors highlighted the possibility of errors (underestimation of ultimate recovery) if exponential decline is used. However, they did not offer a procedure to extrapolate the curve in terms of the linear portion boundaries, giving only rules of thumb based on observations made from simulation results.

Ershaghi and Omoregie (1978) developed a procedure to extrapolate watercut curves to estimate recovery after injected water breakthrough, using the " X-function"
(defined in Eq. 7) in an approach similar to the one used for the plot of \log WOR vs. cumulative production:

$$
\begin{equation*}
X=-\left[\ln (\mathrm{WOR})-\frac{1}{\mathrm{WOR}-1}\right] \ldots \tag{7}
\end{equation*}
$$

In Ershaghi and Omoregie's (1978) approach, the straight-line relationship between the " X " factor and cumulative production $\left(N_{p}\right)$ on a Cartesian plot may be extrapolated after WOR is equal to 1 . This plot assumes a 1D Buckley-Leverett model, does not consider stratification, and assumes E_{A} constant after water breakthrough. For values of WOR between 0.5 and unity, a linear relationship may be expected, but the abrupt increase of the WOR when oil saturation approaches $S_{o r}$ is not considered, so extrapolations to the economic limit should be done with extreme caution.

Lo (1990) presented a procedure to estimate recovery for mature fields using relative permeability curves and production data. The method is used to calculate the slope of the \log WOR vs. N_{p} curve from the relative permeability curve data and determine ultimate recovery by extrapolating that curve. However, the end of the SLZ and the capability to predict reservoir behavior before breakthrough is not defined. This method assumes homogenous reservoirs.

Lo (1990) demonstrated that for 1D, linear, immiscible, and incompressible displacement, \log WOR is linearly proportional to the cumulative oil production; therefore, a straight line will appear in a semilog plot of these variables. Lo used the 1D Buckley-Leverett analytical method and derived the slope of the curve from the relative permeability data, $S_{w c}, B_{o}$, and hydrocarbon pore volume (HCPV), using the expression:

$$
\begin{equation*}
\text { Slope }=\frac{\left(1-S_{w c}\right) b B_{O}}{\mathrm{HCPV}}, \tag{8}
\end{equation*}
$$

where:
$S_{w c}=$ connate water saturation
$b=$ slope of the \log of the best fit of the curve of water/oil relative permeability ratio vs. water saturation
$\mathrm{HCPV}=$ hydrocarbon pore volume $\left(V_{P}\left(1-S_{w c}\right) / V_{P}\right)$
Lo (1990) did not consider reservoir stratification (VDP), M, or sweep efficiencies in his study.

Despite all of the progress made by later researchers, Lo's work seemed to offer the best basis.

For our project, we incorporated the best contributions of other authors, as we modified Lo's approach to account for different reservoir and fluids properties and reservoir heterogeneity.

After studying the different authors and reviewing published information and case studies, we wanted to answer the following questions: How accurate is the extrapolated procedure using the \log WOR vs. RF curve to estimate RF and WOR? Is the SLZ always present? How long it is? Is it always correct to extrapolate it to find ultimate recovery at an assumed economic limit? What are the SLZ boundaries (where does the SLZ begin and where does it end)?

The specific objectives of this research are:

1. To prove or disprove the existence, formation, and boundaries of the linear (SLZ) portion of the \log WOR vs. RF plot as a function of reservoir
parameters, and to use this SLZ to estimate oil recoveries and water injection needs.
2. To develop generalized correlations using fractional flow theory, reservoir simulation, and field data to predict expected recovery factors for any WOR value.
3. To create a unique analytical and statistical tool that helps the user develop plans to maximize oil recovery and minimize water production and operating costs.
4. To validate our correlations and the tool developed in this project using field data from more than 80 reservoirs, including rock and fluid properties, production and injection rates, and recovery factors. That way we can ensure that our correlations and results are data driven. In this research we show two examples of forecasts using field cases results.

In summary, the purpose of our research is to characterize the linear portion (SLZ) of the plot of \log WOR vs. RF in terms of its beginning and end so that practitioners can predict oil recovery at any WOR with a reasonable degree of accuracy.

Using fractional flow theory, we determined the slopes and intercepts of the SLZ when linear behavior is maintained in the plots of \log WOR vs. RF for reasonable combinations of M, VDP $, S_{w c}, S_{o r w}$, and $k_{\text {roe }}, k_{r w e}$ for oil- and water-wet rocks. We applied reservoir simulation to create a database of results for different heterogeneous cases, we developed multiple linear correlations to predict waterflood performance using
basic production data, and we built a computer code to apply our newly developed correlations.

Our correlations estimate the beginning and the end of the SLZ to obtain recovery forecasts while avoiding the risk of extrapolating the WOR vs. RF line and overestimating reserves.

Our methodology includes recovery correlations that account for reservoir heterogeneity based on the VDP in a range of values from 0.5 to 0.99 .

All results were compared with field data and results obtained from the reservoir simulator to perform a control check with all estimates.

CHAPTER II

METHODOLOGY

A waterflood oil production profile considering only production due to water injection-that is, injecting from the first day of operation-will present four typical basic stages that we can identify using the plot of \log WOR vs. RF. These stages can be defined as (see Fig. 1):

Fig. 1-Data from simulation. The plot shows a \log WOR vs. RF plot, the curve stages, the SLZ zone, and the calculated slopes and intercepts for an example taken from the simulation runs with VDP $=0.9, M=3, S_{o i}=0.6, S_{o r}=0.35$ and $S_{w i}=0.4$.

1. Beginning of injection to water breakthrough: During this stage, oil banks are formed around the injection well. A water front is formed and advances through the reservoir layers.
2. Breakthrough to SLZ: This stage is the period of time from when injected water is first produced to when the SLZ begins to form. After a short period of stabilization, that according to our observations usually occurs between $\mathrm{WOR}=0$ and $\mathrm{WOR}=1.5$, the SLZ appears and the water production increases slowly, creating the SLZ in a semilog plot.
3. SLZ: Period when the change in the \log of WOR with respect of the RF is constant. Water cut is increasing relatively slowly.
4. Incline WOR: The SLZ ends and WOR begins to increase above the SLZ trend.

By applying linear regression, we can determine that the SLZ in the example has a slope of 16.05 and an intercept of -2.23 , with a regression coefficient (R2) higher than 0.99 .

From the SLZ analysis, we can see that when producing the well after a value of WOR equal to 110 , corresponding to a RF of approximately 28%, the water production will abruptly. The slope and the intercept of the SLZ will depend upon the reservoir and fluid characteristics.

From the example discussed above, we can see that an increase of more than one order of magnitude in WOR would be needed to obtain only 4% of additional recovery (32\%), with a large amount of additional water injected and produced, which may
increase costs and decrease economics of the project if this water production is not expected or planned.

Fig. 2 shows real data from an actual well in a field where waterflooding was conducted from the beginning of the field development. A sharp increase in WOR begins after the SLZ ends, just before reaching an RF of about 42%, as can be seen in the plot. This well is an example of the SLZ application.

Fig. 2-Data from a real well. The SLZ is highlighted in red. This example shows the beginning of the SLZ between log WOR -1.5 and -1 and the end of the SLZ close to 0.1 , with a $\mathrm{RF}=42 \%$. WOR increases abruptly after this point.

Table 1 presents a summary of the characteristics for each stage in a typical waterflooding project.

Table 1—Stages in the waterflooding life cycle and their characteristics.

STAGES	CHARACTERISTICS
Beginning of injection to water breakthrough (Stage 1).	Oil banks formation. Gas fill-up occurs. Pre-breakthrough stage. Secondary production begins.
Water breakthrough to SLZ(Stage 2).	Injection reaches the producer. Water breakthrough occurs.
SLZ (Stage 3).	Oil rate peak. Water production increases constantly.
incline WOR (Stage 4).	Oil production decreases and water production increases fast. High water cut is obtained.

The steps during this research can be summarized as follows:

1. Perform literature review of worldwide oil industry experiences and lessons learned from real waterflooding projects including waterflooding performance estimation.
2. Build a database using a computer spreadsheet, including proprietary data available from existing fields consisting on permeability, porosity, fluid viscosity, M, voidage ratio, PVI, relative permeability curves, and all other
available parameters that can contribute to evaluate waterflooding performance.
3. Identify waterflood performance estimation methods that can be used for heterogeneous reservoirs with unfavorable mobility ratios.
4. Develop a set of correlations based on fractional flow theory to accurately evaluate reservoir performance under waterflood including the effect of initial fluid saturations, wettability, heterogeneity, and different viscosity ratios.
5. Build up this automated procedure in the Statistical Analysis Software (SAS) to create correlations to estimate the beginning and the end of the SLZ for homogeneous reservoirs, using reservoir and fluid properties, including recovery factors and pore volume injected. Prove the theoretical existence of the SLZ in all cases.
6. Build simple reservoir simulation models using commercial reservoir simulation systems to create multiple heterogeneous cases and to determine the existence of the SLZ in these runs for several combinations of M and VDP.
7. Develop an easy-to-use, user-friendly tool in VBA that includes the new methodology.

We used field data to test our correlations. Reservoir and fluids properties of more than 100 reservoirs and fields were used. Among those properties, we collected oil rate $\left(q_{o}\right)$, water production rate $\left(q_{w}\right), N, N_{p}$ primary, N_{p} secondary, PV, processing rates
(PVI/year), $\mu_{o}, \mu_{w}, S_{o r}, S_{w c}$, relative permeability curves, cumulative water injection, wettability, PVT data and VDP.

Data quality check was performed. We tabulated all data collected and built log WOR vs. RF plots for each reservoir. To avoid the effects of errors in production measurements and specific operational problems in the data, we used a correlation coefficient $\left(\mathrm{R}^{2}\right)$ cutoff of 0.95 for the SLZs obtained from actual field data to select the curves to be used to calibrate our procedure. 84 reservoirs were used.

Data used is proprietary and restricted by Intellectual Property policies, therefore we did not obtain permission to publish all the results. However, we obtained permission to show two sets of data of two fields that we called Field A and Field B, both described in the Results section.

The Module for Homogeneous Reservoirs

We programmed and applied the conventional Buckley-Leverett (Buckley and Leverett, 1942) procedure using the Statistical Analysis Software (SAS) to calculate and differentiate the fractional flow $\left(d f_{w} / d S_{w}\right)$. Corey's relative permeability functions were used to estimate reasonable combinations of relative permeability curves using oil and water exponents (Molina, 1980). We called that code the "homogeneous module."

Corey's type functions (Molina, 1980) are expressed as:

$$
\begin{equation*}
k_{r w}=k_{r w e}\left[\frac{S_{w}-S_{w c}}{\left(1-S_{w c}-S_{o r}\right)}\right]^{n_{w}} . \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{r o}=k_{r o e}\left[\frac{1-S_{w}-S_{o r}}{\left(1-S_{w c}-S_{o r}\right)}\right]^{n_{o}} . \tag{10}
\end{equation*}
$$

where $k_{r w e}$ and $\boldsymbol{k}_{\text {roe }}$ are the water and oil relative permeability curves endpoints and n_{w} and n_{o} are the water and oil Corey exponents (Molina, 1980). The base relative permeability used to develop the calculations to define a range for the oil relative permeability endpoint was the air permeability.

For normalized relative permeability curves, the program uses the following expression for dimensionless water saturation:

$$
\begin{equation*}
S_{w D}=\frac{\left(S_{w}-S_{w c}\right)}{\left(S_{w \max }-S_{w c}\right)} . \tag{11}
\end{equation*}
$$

and the following expressions for relative permeability values:

$$
\begin{align*}
& k_{r w}=k_{r w e}\left[S_{w D}\right]^{n_{w}} \ldots . . \tag{12}\\
& k_{r o}=k_{r o e}\left[1-S_{w D}\right]^{n_{o}} . \tag{13}
\end{align*}
$$

Calculations at and after water breakthrough are computed to estimate the conditions at the flood front for all possible combinations of viscosity ratios (VR), M, and Corey's exponents for oil and water relative permeability endpoints, and $S_{w c}$ and $S_{o r w}$ (see the homogeneous module's code in Appendix A).

For homogeneous cases, we differentiated fractional curves to calculate slopes for each saturation step:

$$
\begin{equation*}
f_{w}^{\prime}=\left(\frac{d f_{w}}{d S_{w}}\right) . \tag{14}
\end{equation*}
$$

We calculated the water/oil ratio as the ratio of water rate to oil rate. Using Darcy's law for 1D, linear flow, we can express water and oil rate as follows:

$$
\begin{equation*}
q_{w}=-0.001127 \frac{k_{w} A}{\mu_{w}}\left[\frac{\partial P_{w}}{\partial s}+0.00694 \rho_{w} \sin \alpha\right] . \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{o}=-0.001127 \frac{k_{o} A}{\mu_{o}}\left[\frac{\partial P_{o}}{\partial s}+0.00694 \rho_{o} \sin \alpha\right], \tag{16}
\end{equation*}
$$

so an expression for WOR will be:

$$
\begin{equation*}
\mathrm{WOR}=\frac{q_{w}}{q_{o}} \tag{17}
\end{equation*}
$$

or substituting Eq. 15 and 16 into Eq. 17, ignoring capillary pressure, assuming a horizontal reservoir, and solving, we have:

$$
\begin{equation*}
\mathrm{WOR}=\frac{k_{r w}}{k_{r o}} \frac{\mu_{o}}{\mu_{w}} \tag{18}
\end{equation*}
$$

Recovery factor and cumulative production can be expressed as dimensionless functions of average oil and connate water saturations. Using these values, we can generate the plot of log WOR vs. RF and analyze the SLZ.

$$
\begin{equation*}
\mathrm{RF}=\frac{N_{P}}{N} . \tag{19}
\end{equation*}
$$

where
$N=$ original oil in place, STB
or

$$
\begin{equation*}
\mathrm{RF}=\frac{1-\overline{S_{o}}-S_{w c}}{1-S_{w c}} \frac{B_{o}}{B_{o i}} \tag{20}
\end{equation*}
$$

where $\overline{S_{o}}$ is average oil saturation, determined as:

$$
\begin{equation*}
\overline{S_{o}}=1-\overline{S_{w}} \tag{21}
\end{equation*}
$$

Dimensionless PVI in fractional flow theory is calculated as the inverse of the slopes for each saturation step as shown in Eq. 14.

This PVI is related to the well's floodable pore volume and is equivalent to the ratio of the quantity of water injected to the total floodable pore volume associated to the well when no gas is present in the reservoir:

$$
\begin{equation*}
\mathrm{PV}=\frac{N B_{o}}{\left(1-S_{w i}\right)} \tag{22}
\end{equation*}
$$

where
$N=$ original oil in place, STB
$B_{o}=$ oil formation volume factor, $\mathrm{RB} / \mathrm{STB}$
$S_{w i}=$ irreducible water saturation, fraction
Since PVI is related to the well floodable pore volume, we assume an analysis on a well-by-well basis. As long as the producer is receiving the complete effect of the injector, regardless the injection scheme, the method will produce a good forecast since it works according to the fractional flow equation for homogeneous reservoirs only.

Since our basic calculations are dimensionless, we can use the processing rate (PVI/year) and the following equations to calculate reservoir performance in terms of production rates and cumulative production in barrels:

$$
\begin{equation*}
t=\frac{\mathrm{PVI}}{\mathrm{PVI} / y} \tag{23}
\end{equation*}
$$

where
$t=$ time, years
$\mathrm{PVI}=$ pore volume injected, fraction
$\mathrm{PVI} / y=$ Pore Volume Injected per year

$$
\begin{equation*}
i_{w}=\frac{W_{i}-W_{i-1}}{\Delta t} \tag{24}
\end{equation*}
$$

where
$i_{w}=$ water injection rate, $\mathrm{STB} /$ day
$W_{i}=$ total water injected at the evaluated time step, STB
$W_{i-1}=$ total water injected at previous time step, STB
$\Delta t=$ time difference, days

$$
\begin{equation*}
W_{i}=\frac{\mathrm{PVI} \times \mathrm{PV}}{B_{w}} \tag{25}
\end{equation*}
$$

where
$\mathrm{PV}=$ reservoir pore volume, RB
$B_{w}=$ water formation volume factor, $\mathrm{RB} / \mathrm{STB}$

$$
\begin{equation*}
q_{o}=\frac{i_{w} B_{o}}{\mathrm{WOR} \times B_{w}+B_{o}} \tag{26}
\end{equation*}
$$

where
$q_{o}=$ oil rate, $\mathrm{STB} / \mathrm{D}$
$B_{o}=$ oil formation volume factor, $\mathrm{RB} / \mathrm{STB}$
and

$$
\begin{equation*}
q_{w}=\frac{\left(i_{w} B_{w}\right)-\left(q_{o} B_{o}\right)}{B_{o}} \tag{27}
\end{equation*}
$$

where
$q_{w}=$ water rate, $\mathrm{STB} / \mathrm{D}$
The assumptions and limitations of this module are the following:

1. Buckley-Leverett displacement, 1D linear flow
2. Horizontal, homogeneous, isotropic reservoir
3. Incompressible fluids
4. Initial gas saturation is zero
5. Neglect capillary pressure $(P c)$

Flow performance at and after breakthrough for recovery factors and water/oil ratio for each saturation step were calculated. All ranges and steps used in the homogeneous module to calculate each fractional flow case and each straight line are shown in Table 2.

Table 2-Parameters and ranges used in SAS to generate SLZs for homogeneous reservoirs in the homogeneous module.

RANGES - FRACTIONAL FLOW			RUNS
Input data	Range	Steps	Combinations
Viscosity ratio	0.1 to 1	0.2	5
Oil exponent	1 to 5	1.0	5
Water exponent	1 to 5	1.0	5
Residual oil sat	0.1 to 0.5	0.1	5
Connate water sat	0.1 to 0.5	0.1	5
Oil relative permeability endpoint	0.3 to 1.0	0.1	8
Water relative permeability endpoint	0.3 to 1.0	0.1	8
Total runs (SLZ)			200,000

Our homogeneous module performs all the fractional flow calculations. A total of 200,000 different runs were made with SAS to generate the same number of SLZs for homogeneous cases.

All the SLZs were correlated, and general correlations for all the possible combinations of reservoir and fluid properties shown in Table 2 were obtained.

After all SLZs from the statistical model and all correlations for the homogeneous module were obtained, we needed to validate these results with reservoir simulation results and ensure that the SLZ was also present in simulation results and that its characteristics were reasonably similar to those estimated with the Buckley-Leverett 1D procedure. If results were consistent and similar in terms of RF at the end of the SLZ, and in terms of slopes and intercepts, we would be able to continue using reservoir simulation to estimate SLZs for different VDPs and build our heterogeneous module.

Fractional flow is a 1D model, where areal and vertical sweep efficiencies are assumed to be unity. In a reservoir simulator, we built a 3D model with an injection
scheme of a 5-spot pattern. Comparing 1D model results with 3D model results would not be consistent, and 1D model results will overestimate recovery. However, we analyzed SLZ results from simulation for homogeneous cases (VDP $=0$), and checked that areal sweep efficiency at the end of the SLZ was already unity in all cases. From simulation results, EA at the breakthrough was between 0.70 and 0.72 .

Since our objective in this comparison (1D vs. 3D) was only to test the existence of the SLZ and not to produce RF estimates including VDP (we developed correlations for heterogeneous reservoirs later) we recognized our results as consistent, concluding that the SLZ existence was theoretically proved.

We compared fractional flow and reservoir simulation results in terms only of ultimate recoveries (recovery at the end of the SLZ), and slopes and intercepts, just to ensure that SLZs obtained from simulation were consistent with those obtained from fractional flow theory-in other words, just to be sure that the SLZ s was present in all cases and that the SLZs finished at the same points (same WOR and same RF), and they did. Consistency in results is shown later in Chapter III.

Thus, reservoir simulation models were built to validate the SAS results, for M of 0.6 to 5 , for water- and oil-wet reservoirs, and for combinations of other variables. We made 720 runs for the homogeneous reservoir cases using reservoir simulation. These runs are summarized in Table 3.

Table 3-Variables and ranges used to generate reservoir simulation cases for homogeneous reservoirs and validate results from our new correlations.

RANGES - SIMULATION RUNS			Range
Input Data	0.6 to 5	Steps	Combinations
Mobility ratio	2 to 5	1	5
Oil exponent	2 to 5	3	2
Water exponent	0.0 to 0.5	0.25	2
Residual oil sat	0.25 to 0.5	0.25	3
Connate water saturation	0.3 to 1.0	0.7	2
Oil relative permeability endpoint	0.3 to 0.5	0.1	2
Water relative permeability endpoint			720
Total runs (SLZ)			

All straight lines were correlated together to obtain the final expressions for the slope- and-intercept generalized correlations. Water saturation steps for all calculations are taken as $\Delta S_{w}=0.001$.

Analysis of the \log WOR vs. RF Plot

The application of the fractional flow equation and the frontal advance theory permits us to estimate waterflood performance, including the construction of the log WOR vs. RF plot.

We propose that calculating slopes and intercepts for all possible \log WOR vs. RF plots from our correlations and generating a statistical solution for slopes and intercepts as a function of mobility and viscosity ratios, endpoints of oil and water relative permeability curve, Corey's function exponents for oil and water, and oil and water saturations, we can predict ultimate recovery and PVI for any combination of reservoir and fluid properties with a single equation for homogenous reservoirs, and we
can use simulation runs to generate correlations to calculate RF and PVI for heterogeneous reservoirs as well, using different VDP and M ranges.

Prior to determining the correlations, we estimated the extent of the SLZ in a general form. For that purpose we used the definition of a straight line knowing that the slope (first derivative) of a line is constant and its second derivative is zero. We computed the first and second derivatives numerically and excluded points that had second derivatives greater than $|0.01|$ using an automated instruction on the computer code. Our set of correlations provides the RF at the end of the SLZ, when the second derivative is greater than $|0.01|$ and advises the user to avoid extrapolations of the SLZ and overestimation of reserves. Fig. 3 shows an example plot of the first derivative vs. RF. The first derivative is called DWOR in the plot, which is expressed as:

$$
\begin{equation*}
\mathrm{DWOR}=\frac{d \log (\mathrm{WOR})}{d(\mathrm{RF})} \tag{28}
\end{equation*}
$$

Using this set of correlations, we can forecast the expected behavior of the waterflood performance for a homogeneous reservoir in terms of the SLZ by predicting the curves' slopes and intercepts as functions of the variables defined earlier. Once each slope and intercept is calculated, recovery factors may be determined using the straightline properties as shown in the next section.

Fig.3-Plot of the first derivative of WOR with respect to RF showing the constant slope zone. RF range from 0.5 to 0.57 indicates the boundaries for the SLZ.

Applying the fractional flow theory and the frontal advance equation, we can forecast the expected behavior of the log WOR vs. RF plot for a homogeneous reservoir in terms of the SLZ by predicting the curves' slopes and intercepts and using only the same five rock and fluid parameters. In the next section, we present the statistical principles used to develop the correlations for any homogeneous reservoir using simple linear and multiple regressions. We also calculate water saturation at the water breakthrough $\left(S_{w B T}\right)$, water cut at the breakthrough $\left(f_{w B T}\right)$, and PVI correlations and represent them in tables and graphically. We can determine PVI for any RF provided that both variables are within the SLZ.

Multiple Linear Regression Application

Regression analysis establishes a mathematical relation between two or more variables that can determine a response, or set of dependent variables, from a given set of independent (or control variables). This statistical technique is useful to construct correlations for predicting trends of physical phenomena.

Using multiple linear regressions, we can analyze linear relationships among several variables, determining the slope and the intercept (numbers also called regression coefficients) of a straight line. The mean value of the data will be a function of the predictor (independent variable, usually plotted in the x axis in a graph and called $x)$. We need to describe the expected value of the mean of that independent variable, called Y, as the mean value of the function plus a random error term, as:

$$
\begin{equation*}
Y=\beta_{o}+\beta_{1} x+\varepsilon \tag{29}
\end{equation*}
$$

where
$\beta_{0}=$ intercept (unknown regression coefficient)
$\beta_{1}=$ slope (unknown regression coefficient)
$x=$ independent variable, or "regressor"
$\varepsilon=$ random error term
When the set of correlations has only one regressor, it is called a "simple linear regression model." In this research, since we are using several regressors to understand the SLZ behavior, we will be using a "multiple linear regression model."

Technically, if we assume normal distribution of errors and that the mean and the variance of the random error term ε, are 0 and σ^{2} respectively, we can say:

$$
\begin{equation*}
E(Y, x)=\beta_{o}+\beta_{1} x, \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
V(Y, x)=\sigma^{2} \tag{31}
\end{equation*}
$$

with E being the expected value of the mean of Y for each x, and V the variance of Y with respect to x.

So the regression model can be defined as:

$$
\begin{equation*}
\mu_{Y, x}=\beta_{o}+\beta_{1} x . \tag{32}
\end{equation*}
$$

The model is a line of mean values where the height of the regression line at any value of x is the expected value of Y for that x. The slope β_{1} is the change in the mean of Y for a unit change of x, and the variability of Y at a particular value of x is defined by the error variance σ^{2}. So there is a distribution of values of Y at each x value, and the variance of this distribution is the same at each x. If σ^{2} is small, the observed values of Y will fall close to the straight line. Is σ^{2} is large, the observed values may deviate too much from the straight line. Since σ^{2} is constant, the variability of Y at any value of x is the same (Montgomery and Runger, 2007).

In real-world problems, the values of slopes, intercepts, and error variance must be estimated from data, and future observations of Y from possible values of x are estimated using the statistical model.

Regression relationships are only valid for values of the regressor within the range of the original data, so large extrapolations are usually not accurate, or at least, more uncertainty is introduced in the process. For that reason, we developed a set of correlations using the SLZ boundaries to avoid extrapolations.

To estimate the unknown regression coefficients, or the slope and the intercepts for our \log WOR vs. RF curves, we need to obtain the "best fit" of the data available, obtained from the application of the fractional flow equation and frontal advance theory, which are the first results from our SAS correlations.

Estimating these parameters is easy if we minimize the sum of the squares of the vertical deviations of the variance for each data set. This is the method of the "least squares."

If we use Eq. 29 to express n observations in the sample, we may define the following equations to determine the least-squares estimates as:

$$
\begin{equation*}
\hat{\beta}_{o}=\bar{y}-\hat{\beta}_{1} \bar{x} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} y_{i} x_{i}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)\left(\sum_{i=1}^{n} x_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}, \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{y}=\left(\frac{1}{n}\right) \sum_{i=1}^{n} y_{i} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{x}=\left(\frac{1}{n}\right) \sum_{i=1}^{n} x_{i} \tag{36}
\end{equation*}
$$

So using these equations, we can determine the fitted or estimated regression line
as:

$$
\begin{equation*}
\bar{y}=\hat{\beta}_{o}+\hat{\beta}_{1} x . \tag{37}
\end{equation*}
$$

and the residual, which describes the error in the fit of the correlations to the $i^{\text {th }}$ observation y_{i} and helps to determine the adequacy of the fitted model is described by

$$
\begin{equation*}
e_{i}=y_{i}-\hat{y_{i}} \tag{38}
\end{equation*}
$$

which is used to estimate σ^{2} as

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2} \tag{39}
\end{equation*}
$$

Application of these formulas is really tedious, particularly for multiple regressions, and the possibilities for mistakes are really high, but they are all built into the SAS system and are the basis of our approach.

Using SAS we not only determined the best fit but also the estimated standard error of the slope and the intercept, which provides good guidance to examine the accuracy of the correlations.

Another important parameter to be taken into account is the $P_{\text {-value }}$, which is the lowest value that would lead to rejection of the null hypothesis H_{0} of a given data, if H_{1}
is the hypothesis to be tested. In other words, the $P_{\text {-value }}$ is the probability that the test statistic will take on a value that is at least as extreme as the observed value of the statistic when the null hypothesis is true. The $P_{\text {-value }}$ gives information about the weight of evidence against H_{0} and it allows us to make conclusions about the level of significance. In summary, the data used will be significant if the null hypothesis is rejected. Based on that, we may give a clearer definition of $P_{\text {-value, }}$, saying that this is the smallest level at which the data is significant. The $P_{\text {-value }}$ must be as low as possible so we can ensure a good fit of the model.

The P-value is computed with the expression:

$$
\begin{equation*}
P_{- \text {value }}=1-P\left(x_{1}<\bar{X}<x_{2}\right), \tag{40}
\end{equation*}
$$

where
$P=$ probability
$x_{1}=$ lower value of the range analyzed
$x_{2}=$ higher value of the range analyzed
$\bar{X}=$ mean of the distribution
If the probability that the mean value within the observed values is high, 1-P will be small; therefore, our correlation is making good predictions.

The $P_{\text {-value }}$ is calculated for each regressor, and a high $P_{\text {-value }}$ will mean that that specific regressor is not necessary to improve the accuracy of the correlation. Good regressors will show $P_{\text {-values }}$ less than 0.0001 .

We used the $P_{\text {-value }}$ as our main indicator for significance for each parameter estimator, since a low value ($P<0.0001$) tells us that the slope and the intercept are good
values. We rejected any parameter estimator with a P-value over the degree of confidence used (95% or $\alpha=0.05$).

Finally, we used the correlation coefficient, or coefficient of determination, R^{2}, which is the square of the correlation coefficient between x and Y. This value may be dangerous, since it will increase artificially if more terms are added to the correlations, although some of these terms may exhibit low standard errors but may not be significant or necessary. In this case, their inclusion will increase the error. We used the adjusted R^{2}, which increases only if a new variable reduces the error mean square. This indicator penalizes the user for adding unnecessary terms to the correlations, trying to over-fit the model.

Further applications and details regarding these estimators can be found in Montgomery and Runger (2007) and Bain and Engelhardt (1992).

In this research we wanted to measure the effects of several parameters on the determination of the slope and intercept of the general correlations, so we now needed to consider the multiple linear correlation procedure.

For a multiple regression model, we built our correlation using a relationship with the following form:

$$
\begin{equation*}
Y=\beta_{o}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots . . \beta_{n} x_{n}+\varepsilon, \tag{41}
\end{equation*}
$$

where the subscripts 1 to n represent the number of variables used as regressors. This model describes a hyperplane in the n-dimensional space of the regressor variables. The multiple regression model developed here is used as an approximating function since the true functional relationship between Y and $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ will remain
unknown, but over an adequate range of independent variables, the linear regression model is an adequate approximation.

Our correlations include interaction effects, represented as cross-products of two or more variables, where applying the linear regression principles requires a variable transformation.

The regression coefficients can also be estimated from the method of least squares, where the parameter solution vector is obtained from a matrix of equal numbers of rows and columns.

The next step was to determine which variables were good for the correlations. We first selected those variables that were used to perform the fractional flow calculations. Based on the initial correlation coefficients (around 0.86), we tested some transformed variables, using those that intervene in the calculation of other variables such as mobility ratio and relative permeability curves, (for example, oil viscosity divided by Corey's oil exponent), until we obtained good initial R^{2} results (above 0.9). However, we needed to improve the correlations methodically, so we used some built-in SAS procedures.

Four procedures are available: the stepwise regression, the forward selection, the backward elimination, and the R-squared selection. Use of the four methods is recommended so the analyst can compare results and make the best choice regarding which variables better fit the new model (Montgomery and Runger, 2007).

We used step-wise regression to build a sequence of regression models by adding and removing variables one at a time, finding the highest R^{2} and the smallest P-value that define the strongest model.

The forward selection method will add variables like in the previous method, trying to maximize R^{2}, but will not eliminate added variables.

The backward elimination method begins with all variables included and will delete the worst regressors one at a time.

The R-squared method selects the combination of variables that reaches the highest correlation coefficient $\left(R^{2}\right)$.

We ran all four methods and also checked our correlations for the lowest P-value for each statistic and with the covariance matrix (see outputs in Appendix G).

Correlation coefficients measure the extent of the association between two variables. Each such coefficient must lie between -1 and +1 , inclusive. A positive coefficient indicates a positive association: a greater-than-expected outcome for one variable is likely to be associated with a greater-than-expected outcome for the other, while a smaller-than-expected outcome for one is likely to be associated with a smaller-than-expected outcome for the other. A negative coefficient indicates a negative association: a greater-than-expected outcome for one variable is likely to be associated with a smaller-than-expected outcome for the other, while a smaller-than-expected outcome for one is likely to be associated with a greater-than-expected outcome for the other. A coefficient of zero indicates no correlation at all.

The covariance matrix in our analysis indicated that all the variables could be used to develop the different correlations, but the variable selection procedures helped us to define the improvement of R^{2} we can obtain with each variable. Both procedures were complementary.

The determination of influential points (outlier observations that do not improve the model and a few values too far from the mean) and possible variable transformations were studied.

All possible combinations for the input variables used were run and analyzed using variable selection procedures in SAS. Each SLZ boundary was defined, and for each SLZ, a slope and an intercept were obtained. All correlations presented a R^{2} value around 0.99 with a maximum difference of about 2%.

Once each slope and intercept is calculated, recovery factors may be determined using the straight line properties as:

$$
\begin{equation*}
\log \mathrm{WOR}=R F \times m+I \tag{42}
\end{equation*}
$$

where m is the slope and I is the intercept.
Also, we can define these slopes and intercept as $m=f_{1}\left(M, n_{o}, n_{w}, S_{w c}, S_{o r}, k_{r o e}\right.$, $\left.k_{r w e}\right)$ and $I=f_{2}\left(M, n_{o}, n_{w}, S_{w c}, S_{o r}, k_{r o e}, k_{r w e}\right)$. Eq. 42 can be used to determine RF, and solving for RF we have:

$$
\begin{equation*}
R F=\frac{\operatorname{LogWOR}-I}{m} . \tag{43}
\end{equation*}
$$

Therefore, to obtain the calculated recovery factor, only the WOR value was necessary as an input, since the correlations will give the boundaries of the SLZ from the
second derivative analysis described before and the maximum WOR value to keep the RF results within the SLZ boundaries.

However, our objective was to obtain a generalized correlation to calculate unique slope and intercept expressions as functions of the previously determined variables to be used in all cases, so all obtained slopes and intercepts were correlated again to determine a general set of correlations to be used in any kind of reservoirs and conditions. Regressors used for correlations were viscosity ratio (VR), endpoint mobility ratio (M), Corey's oil and water exponents (n_{o} and n_{w}), connate water saturation ($S_{w c}$), and residual oil saturation $\left(S_{o r}\right)$.

Many combinations were tested with the different correlation variables to optimize the correlation coefficient R^{2} and obtain a value over 0.99 for the general correlation.

After analyzing and trying several variables that might affect the correlation coefficients, we realized that for combinations of $n_{o}, S_{o r}$, and $S_{w c}$ parameters, the correlation coefficients we obtained were not acceptable values $\left(R^{2}<0.80\right)$. Therefore, we decided to separate the calculations and build two different correlations for waterand oil-wet rocks, suspecting that the oil-wet rocks would not be able to produce a good correlation because of the wettability effects in sweep efficiency discussed above. We analyzed the wettability impact based on the effects of each calculated variable.

Using the rules of thumb published by Craig (1971) that consider rocks waterwet when relative permeability curves cross each other after water saturation values of 0.5 , and oil-wet when the curves cross before that value, our correlations separate and
correlate SLZs based on wettability. To consider each type of rock, we created two codes: One code performs calculations for water-wet rocks and the other for oil-wet rocks, based on the values of $S_{w c}, S_{o r}, k_{r w e}, k_{r o e}, n_{o}$, and n_{w} that affect the point where the relative permeability curves cross each other. If they crossed after $S_{w}=0.5$, we considered the rock to be water-wet. If the crossing point was before $S_{w}=0.5$, we considered the rock to be oil-wet.

The correlation variable x_{1} considering $V R$ and n_{o} is defined as:

$$
\begin{equation*}
x_{1}=\frac{\mathrm{VR}}{n_{o}}, . \tag{44}
\end{equation*}
$$

where
$\mathrm{VR}=$ viscosity ratio $\left(\mu_{\text {water }} / \mu_{\text {oil }}\right)$ $n_{o}=$ oil exponent from Corey's function

We used the variables described earlier and the \log of mobility ratio to generate the correlations for homogeneous, water- and oil-wet reservoirs, and to calculate $f_{w B T}$ and $S_{w B T}$, slopes and intercepts, for the general log WOR vs. RF plot. Tables in Chapter III present the SAS output for the obtained correlations.

Putting it all together, the partial set of correlations for a homogeneous reservoir has the form:

$$
\begin{align*}
\log W O R= & R F \times m\left(M, \mathrm{VR}, n_{o}, n_{w}, S_{o r}, S_{w c}, k_{r o} k_{r w}\right) \\
& +I\left(M, \mathrm{VR}, n_{o}, n_{w}, S_{o r}, S_{w c}, k_{r o}, k_{r w}\right), \ldots \tag{45}
\end{align*}
$$

Reservoir Simulation Model for Homogeneous Reservoirs

A simple, synthetic reservoir simulation model was built to control and calibrate our correlations. A general description of the simulation model can be seen in Table 4 (see Appendix C).

Our simulation two-phase model (oil and water) has grid dimensions of 19 x 19 x 10 with 3,610 cells. The lengths are 20 ft in the x and y directions, and 10 ft in the z direction. It is $1 / 4$ of a 5 -spot pattern with one producer and one injector, completed in all layers. Production and injection rates are constant at $2,000 \mathrm{STB} / \mathrm{D}$. The production control method is by reservoir voidage, and the waterflood strategy is pressure maintenance. The solution method is fully implicit. OOIP, PV, and production and injection in barrels need to be multiplied by four to obtain the total pattern area values.

Reservoir and fluid properties were changed and tested according to the ranges shown before in Table 2, corresponding to each run evaluated in our new correlations. Fig. 4 shows a 3D screen example for the homogeneous reservoir model.

Table 4-Generalized model description for the reservoir (homogeneous and heterogeneous cases).

PROPERTY	VALUE/DESCRIPTION
Grid dimensions, number (x,y,z)	$19,19,10-50$
Grid size, cells	3610
$D x, D y, D z$, feet	$20,20,10$
Layers	10
Number of wells (i / p)	$1 / 1$
Producer completions	$19191-10$ (all layers)
Injector completions	$111-10$ (all layers)
Production rate, BBL/D (not critical)	2000
Injection rate, BBL/D (not critical)	2000
Production control methods	Reservoir voidage (RESV)
Waterflood strategy	Pressure maintenance
Relative permeability curves	Variable - Corey's functions
Solution method	Implicit (AIM)
Porosity, fraction	0.3
Ave layer permeability, md	200
Phases(oil and water)	2
Water viscosity, cp	Variable
Oil viscosity, cp	Variable
Sor, fraction	Variable
$S w i$, fraction	Variable
$k v / k h$	$0.1-1$
Pattern	5 -spot
Reservoir pressure, psi (constant)	3665

Fig. 4-Example of an oil saturation profile for a homogeneous reservoir at time 500 days, showing effective sweeping.

Once our correlations from the homogeneous module were determined, we applied those correlations to the same input we used in the simulation runs for each corresponding SLZ case to compare ultimate recovery results using both approaches for homogeneous reservoirs. Comparisons are shown in Chapter III.

To determine if a linear relationship existed between the two recovery factor calculations, we also compared ultimate recovery factor results (at the end of the SLZ) from the homogeneous module with the ultimate recovery factors estimated from the end of the SLZ obtained from the simulation results.

As we can see in the example shown in Fig. 5, we obtained straight lines in all cases. These lines however, had different slopes, intercepts, and lengths than those of corresponding homogeneous cases.

Fig. 5-Comparison of ultimate recovery factors for a homogeneous case vs. the same reservoir including VDP $=0.9$ (including heterogeneity). A linear behavior is present. The case for VDP $=0.9$ presents lower RF.

Reservoir Simulation Model for Heterogeneous Reservoirs

Since the fractional flow equation applies for homogeneous reservoirs only, we used the reservoir simulation model to generate results with different VDP values and correlated them linearly with their correspondent model's results for the homogeneous reservoir case for input data set. The observations included the whole length of each SLZ.

Permeability values were changed to provide different VDP cases and a new data file was built with recovery factors, PVI, and \log WOR values calculated for different M.

Fig. 6 is a 3D capture of the new model. See details of data files in Appendix D.
Heterogeneous module results will be discussed in Chapter III and in the module for heterogeneous reservoir section, later in this chapter. Runs for heterogeneous cases are shown in Fig. 7 and Fig. 8.

Injection expressed as PVI has an economic significance, since maximized recovery with a minimum of water injected will maximize net present value (NPV).

In this research, even when the \log WOR vs. RF curve is independent of the injection rate, we wanted to understand the effect of different water injection rates on the ultimate recovery, so several exercises were run, in different scenarios of homogeneous and heterogeneous systems, with favorable and unfavorable mobility ratios.

Fig. 6-Oil saturation profile for a heterogeneous reservoir with a VDP $=0.9$. This figure shows irregular displacement at 500 days.

In Appendix H we include simulation run results where total fluid production and injection rates for each case were kept constant during the simulation runs to maintain reservoir pressure. Different scenarios were analyzed to determine if injecting more water per unit of time would affect the ultimate recovery and the correlations to be determined for heterogeneous reservoirs. Injection rates do not affect results in terms of plots of RF vs. PVI or log WOR vs. RF. The only important effect we found is the acceleration of recovery when higher rates are used.

Fig. 7-Example of SLZs observed from reservoir simulation for different degrees of heterogeneity expressed by the Dykstra-Parsons coefficient. These results were correlated with our correlations for homogeneous reservoirs to generate the heterogeneous correlations for RF.

Fig. 8-Example of PVI observed from reservoir simulation for different degrees of heterogeneity expressed by the Dykstra-Parsons coefficient. These results were also correlated with our correlations for homogeneous reservoirs to generate the heterogeneous correlations for PVI.

For a homogenous reservoir, in the presence of a favorable M, we expected that increasing the injection and production rate [using a higher processing rate, but maintaining a voidage replacement ratio (VRR) close to one] should not affect the ultimate recovery, so an acceleration of production instead of an increase of reserves would take place in the field. However, we wanted to investigate if the higher probability of water fingering and oil left behind by high injection rates in the presence of a high VDP and/or an unfavorable M would lead to different results.

The same reservoir model used for each of the heterogeneous cases was used to determine the effect of different injection rates in the waterflood performance. We used
a base injection rate of $200 \mathrm{STB} / \mathrm{D}$ as the lower rate, and $2,000 \mathrm{STB} / \mathrm{D}$ (one order of magnitude higher) as the higher rate.

Responses for all analyzed cases were similar in terms of the recovery factors and PVI obtained. Injection and production rates, VDP, and M were changed, one at a time, and compared to determine possible impacts. The base case has the following combination of properties: $n_{o}=3, n_{w}=5, S_{o r}=0.2, S_{w c}=0.4, k_{r o e}=0.9, k_{r w e}=0.55, \mathrm{VR}=0.06$ (for $M=10$) and VR=0.6 (for $M=1$). Cases with the same values of VDP and mobility ratio were compared to each other to isolate the effect of injection rate change. We needed to avoid including the already known heterogeneity and mobility ratio effects in this analysis. Keeping all other parameters unchanged, we changed the injection rates and compared recovery factors with PVI and \log WOR values.

We can conclude that the most important effect of a higher injection rate, assuming no injectivity problems, is the acceleration or delay in production (see higher recovery for the same period of time for injection rate of $2,000 \mathrm{STB} / \mathrm{D}$), which is not always favorable, because the impact of water injection costs must be taken into account.

However, at $M=10$ and VDP $=0.9$, a higher recovery can be seen in the 200B/D injection rate curve, a difference of less than 2%, if enough time is provided for that case. In this run, we allowed 135,000 days, which is an extremely long period of time for this kind of project.

After approximately 10 PVI, we can see recoveries of 0.414 for water injection rates $\left(i_{w}\right)$ of $2,000 \mathrm{STB} / \mathrm{D}$ and 0.430 for water injection rates $\left(i_{w}\right)$ of $200 \mathrm{STB} / \mathrm{D}$. Also,
for a recovery factor of 0.48 using i_{w} of $200 \mathrm{STB} / \mathrm{D}$, a \log WOR of 3.0 is reached, while for the higher injection rate, a similar log WOR is obtained faster. (See Appendix H.)

In practice, at unfavorable M and high VDP, low injection rates may help to increase recovery and avoid the risk of water fingering, applying a sound reservoir management strategy. PVI would be smaller in time, so economics can also be improved.

The difference in recoveries using different injection rates may not be considered a limitation of the new procedure presented here, since the deviation is small and the impact is reached after very large amounts of water have been injected and when the WOR is away from the SLZ.

For areal heterogeneity, lower injection rates may be beneficial, but we will consider this issue as a design matter, due to the high degree of uncertainty and complexity involved.

The effect of high heterogeneity and mobility ratio are manifested in the lower recovery and earlier breakthrough times. Rate dependency of water coning was not studied.

Another variable we wanted to evaluate is the effect of the number of layers on the new correlation's results.

We used the same approach of comparing simulation results for different layer models, and we determined that no effect was important enough to consider. Ultimate recovery factors (URF) and slopes and intercepts of SLZ had no change. We used VDP
$=0.9$ and $M=10$ to account for unfavorable effects and ran cases for 10 and 50 layers (see Appendix H for more details).

Another important variable we wanted to assess was the effect of crossflow in the recoveries of waterflood performance.

Craig (1971) discussed some experimental approaches regarding incremental recovery due to crossflow between layers. For homogeneous systems and at favorable mobility ratios (M), the results show that only a very small amount of additional recovery is obtained in those experiments. At unfavorable M, the same crossflow will produce less recovery than the one obtained when no or lower crossflow is present. As expected, high M will produce fingering and bypassed oil in the rock that will reduce recovery. Under this situation, crossflow will hold back the advance of the front in the low-permeability layers.

At favorable M, crossflow values will tend to increase recovery efficiency, but at unfavorable M, efficiency will be reduced.

Thakur and Satter (1998) analyzed several crossflow levels in terms of vertical to horizontal permeability ratios. Simulation shows that ultimate recovery increases slightly with crossflow, about 0.5%; PVI may be slightly lower and breakthrough may occur later than in no-crossflow scenarios.

Even when these conclusions seem to be enough to understand the phenomenon, we wanted to use our reservoir simulation model to evaluate the effect of heterogeneity and the presence of "thief zones" in the system and determine if those situations could limit the applicability of our correlations. We performed runs for several scenarios to
model crossflow effects. We used $M=1.0$ since the effects of fluctuations in that parameter had been discussed in previous works.

We used the same data file presented in Table 4 but we changed values for k_{v} and k_{h}. Crossflow values ranged from 0 to 1 . The value selected for M was 1.0. Again, no important effect was found when considering crossflow in the reservoir. Results and some published references are shown in Appendix H.

For a homogeneous reservoir with a favorable M, crossflow will not affect performance or ultimate recovery. For the case of high VDP but low- to moderatepermeability values in all layers, the difference in oil and water rates, breakthrough time, and ultimate recovery will not affect estimates from our correlations with the log WOR vs. RF plot. However, when high-permeability layers are present, even when the VDP may be not too high, the system with no crossflow will present an earlier breakthrough in "thief zones," a higher watercut in early times, delayed production peak, and possibly a negative effect on the net present value due to the delayed production and water cycling, together with some oil left behind in the rock, especially in low-permeability zones.

Thief zones will reduce vertical sweep efficiency, so gel slugs may be used in the wellbore to divert flow and reduce permeability on thief zones, and/or to isolate thief zones. Water will bypass oil in high-permeability layers with high M.

The Module for Heterogeneous Reservoirs

The new correlations for heterogeneous reservoirs were built using multiple
linear regression to create specific correlations for heterogeneous cases. Correlations were developed for VDP, M, RF, and WOR obtained from the simulation models for heterogeneous reservoir cases, for two scenarios of water-wet rocks (extreme and medium), two scenarios of oil-wet rocks, and their corresponding recovery factors obtained from the homogeneous reservoir model. Table 5 shows the variables and ranges used to estimate a total of 144 SLZs.

Table 5-Variables and ranges used to generate simulation cases for heterogeneous reservoirs using 2 scenarios for water-wet rocks and 2 scenarios for oil-wet rocks.

RANGES	Range	Steps	RUNS
Variables	0.6 to 5	1	12
M (water-wet)	0.5 to 1	0.1	6
VDP (water-wet)	0.6 to 5	1	72
Total cases (SLZ) water-wet	12		
M (oil-wet)	0.5 to 1	0.1	6
VDP (oil-wet)			72
Total cases (SLZ) oil-wet			144
Total runs (SLZ)			

We used transformed variables to improve correlation coefficients, and determined the best correlation variables using "Stepwise", "Backward", and "Forward" variable analysis procedures.

Two multiple linear correlations were developed, one for water-wet systems and other for oil-wet rocks. These correlations do not use fractional flow theory for the
heterogeneous cases, but calculate recovery factors and PVI for any value of VDP and M using correlated results from the simulator model and fractional flow results from the homogeneous cases (see Appendix E).

The program generated the correlations using two data files, one for water-wet and another for oil-wet systems, which contains all data to be correlated for both sets.

Each data file had the following fields: mobility ratio, \log WOR, recovery factor for homogeneous reservoir (output from the homogeneous correlations), PVI correspondent to the correlated homogeneous reservoir recovery factor, and recovery factors for VDPs of $0.5,0.6,0.7,0.8,0.9$ and 0.99 with their corresponding PVI, all for each value of log WOR. (See Appendixes B and C for the programs and result tables and examples of data files, respectively.)

Mobility ratio and WOR are independent variables, or predictors, because they are usually known (measured or calculated); and we set recovery factor and PVI as dependent variables. The regressors we used are M and \log WOR, but we needed transformed variables to better fit the correlations, since the log WOR curve has an exponential behavior when plotted against PVI, and a linear behavior (in the SLZ) when compared to RF for each VDP case. To determine the heterogeneous cases' recovery factors, we defined the new transformed variables (regressors) as:

$$
\begin{equation*}
x_{11}=R F_{\text {hom }}^{2} \tag{46}
\end{equation*}
$$

where
$R F^{2}{ }_{\text {hom }}=$ square of the correlated recovery factor for homogeneous reservoirs,

$$
\begin{equation*}
x_{12}=e^{\log W O R}, \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{13}=10^{\log W O R} \tag{48}
\end{equation*}
$$

The correlations we obtained (Appendix B) all show R^{2} higher than 0.99 . Results and all variables are shown and discussed in the next chapter.

Fig. 9 shows the workflow we used to generate our correlations using SAS, reservoir simulation, and VBA. Fig. 10 shows how the codes work for each module.

Fig. 9-Workflow used to generate our more than 200,000 runs for different cases, including correlations to estimate boundaries of the SLZs.

Fig.10—Structure and workflow of the regression codes.

Assumptions and limitations for the heterogeneous module are:

- Confined $1 / 4$ of a 5 -spot pattern
- Multilayered reservoir
- No crossflow between layers
- Uniform permeability per layer
- Permeability k changes with each layer
- Relative permeability curves are the same for all layers and are estimated using Corey-type equations
- Constant injection and production volumetric rates, $q_{i}=q_{p}$
- Initial $S_{g}=0$

CHAPTER III

RESULTS

A new procedure and statistical correlations have been developed to predict oil recovery at any WOR and ultimate recovery for reservoirs under water injection, using the fractional flow equation and multiple linear regressions. We developed correlations to estimate the slopes and intercepts of the SLZs in the \log WOR vs. RF plots for all reasonable combinations of $S_{o r}, S_{w c}, n_{o}, n_{w}, M$, and VR, including the SLZ boundaries for homogenous reservoirs, and also correlations to estimate recovery for heterogeneous reservoirs within a range of VDP from 0.5 to 0.99 and M from 0.1 to 10 .

Limitations include that no dip angle, no capillary pressure, no initial gas saturation, and no gravity effects were considered. However, this methodology can be extended to include these cases and other special cases such as extra-heavy oil reservoirs and naturally fractured reservoirs.

After applying our correlations to cases with initial gas saturations from 1% to 16%, we observed that for waterfloods with small initial gas saturations ($S_{g i}<0.04$), RF results are reasonably acceptable, with error less than 2% compared with recovery factors at the end of the SLZ found in simulation runs.

SLZ Characteristics and Correlations

The log WOR vs. RF plot shows an SLZ that is present in all studied cases. The correlations produced parameter estimates that multiply rock and fluid properties values used for regressions to calculate RF, WOR, and PVI for any value of VDP.

Typical behaviors relative to the effect of different values of rock and fluid properties in the SLZ are shown in Table 6.

Compensation can be seen if crossed effects. Descriptions of each variable and parameter estimates of correlations for homogeneous (ideal) cases are included in Table 7, Table 8 and Table 9 . These correlations calculate water cut ($\mathrm{f}_{\mathrm{wBT}}$) and water saturation $\left(\mathrm{S}_{\mathrm{wBT}}\right)$ at the water breakthrough and the slope and the intercept of each SLZ for homogeneous reservoirs. Parameters are slightly different for oil-wet rocks but having different correlations improves the correlation coefficients for both types of rock.

Correlation for Homogeneous Reservoirs

Four correlations were obtained for the homogeneous module to estimate the beginning and the end of the SLZ in terms of the minimum and maximum WOR corresponding to each SLZ boundary (WOR at the beginning and at the end of the SLZ), both estimated as functions of the input data used.

Table 6-Qualitative and relative comparison of the expected shapes and characteristics of the SLZ for different reservoir and fluid parameters combinations.

PROPERTY CHARACTERISTIC	WATER BREAKTHROUGH	SLZ LENGTH	SLOPE	RF	WOR @ GIVEN RF
Water-wet rock	late	short	steep	high	low
Oil-wet rock	early	long	moderate	low	high
High viscosity ratio $(\mu \mathrm{w} / \mu \mathrm{o})$	late	short	steep	high	low
Low viscosity ratio $(\mu \mathrm{w} / \mu \mathrm{o})$	early	long	moderate	low	high
High VDP	early	long	moderate	low	high
Low VDP	late	short	steep	high	low
High mobility ratio	early	long	moderate	low	high
Low Mobility ratio	late	short	steep	high	low
High $S_{o r}$	early	long	moderate	low	high
Low $S_{o r}$	late	short	steep	high	low
High $S_{w c}$	early	long	moderate	low	high
Low $S_{w c}$	late	short	steep	high	low

Table 7—Parameter estimates for homogenous reservoirs (water-wet rocks).

GUIDE		WATER-WET ROCKS			
Regressor	Variable	$\mathrm{f}_{\mathrm{wBT}}$	$\mathrm{S}_{\mathrm{wBT}}$	Slope	Intercept
Independent	Intercept	0.71084	0.64301	1.29383	-1.56680
x_{1}	VR / n_{o}	0.20212	0.23901	27.81540	-30.39900
x_{2}	VR	-0.08234	-0.10030	-6.79110	8.83008
x_{3}	n_{o}	0.01779	-0.0302	0	0
x_{4}	n_{w}	0.03932	0.03722	2.08358	-1.50080
x_{5}	$S_{w c}$	0	0.34619	4.76521	-0.10520
x_{6}	$S_{o r}$	0	-0.65380	22.31420	-0.58340
x_{7}	$\log \mathrm{M}$	-0.09479	-0.15480	-4.7940	4.03107

Table 8-Parameter estimates for homogenous reservoirs (oil-wet rocks).

GUIDE		OIL-WET ROCKS			
Regressor	Variable	$f_{w} B T$	$S_{w} B T$	Slope	Intercept
Independent	Intercept	0.65980	0.56187	0.77519	-3.42540
x_{1}	VR / n_{o}	0.11888	0.16777	8.93439	-11.94000
x_{2}	VR	-0.04844	-0.06870	-3.36470	4.78633
x_{3}	n_{o}	0.02099	-0.02200	0	0
x_{4}	n_{w}	0.05127	0.04494	2.67364	-1.41670
x_{5}	$S_{w c}$	0	0.41472	0	-0.33000
x_{6}	$S_{o r}$	0	-0.58530	28.23280	-0.06060
x_{7}	$\log \mathrm{M}$	-0.09342	-0.14540	-8.40360	5.30721

Table 9—Parameter estimates for PVI in homogeneous reservoirs. This correlations work for water and oil-wet rocks.

REGRESSOR	VARIABLE	WATER-WET	OIL-WET
Independent	Intercept	-0.81246	-0.86240
x_{8}	M	0.35196	0.41381
x_{12}	$e^{\log \text { WOR }}$	0.21624	0.24178
x_{13}	$10^{\log \text { WOR }}$	0.00800	0.00194

The correlations for maximum and minimum WOR to estimate the beginning and the end of the SLZ, for water-wet and oil-wet rocks in homogeneous reservoirs are the following.

Water-wet

$$
\mathrm{R}^{2}=0.96
$$

$$
\operatorname{logWOR} \max =1.31556-0.24884(\mathrm{VR})+0.60999\left(n_{o}\right)+0.06739\left(n_{w}\right)
$$

$$
-0.66761\left(S_{o r}\right)-1.25442\left(S_{w c}\right)-0.0454\left(k_{r o e}\right)-0.24884\left(k_{r w e}\right)
$$

$$
\begin{equation*}
+0.06416(M) \tag{50}
\end{equation*}
$$

$$
\mathrm{R}^{2}=0.98
$$

Oil-wet

$$
\begin{align*}
\operatorname{logWOR} \\
\min
\end{align*}=-0.10923+0.36546(\mathrm{VR})+0.06644\left(n_{o}\right)+0.18869\left(n_{w}\right) .
$$

$$
\mathrm{R} 2=0.96
$$

$$
\operatorname{logWOR} \max =2.15118-0.85163(\mathrm{VR})+0.68975\left(n_{o}\right)+0.0229\left(n_{w}\right)
$$

$$
-1.14131\left(S_{o r}\right)-0.70038\left(S_{w c}\right)-1.29377\left(k_{\text {roe }}\right)+0.74267\left(k_{r w e}\right)
$$

$$
\begin{equation*}
-0.12195(M) \tag{52}
\end{equation*}
$$

$\mathrm{R} 2=0.99$
Different runs were made to test the correlation results and compare against simulator results to ensure that the fractional flow theory supported the procedure. Applying our correlations to the simulation results would support the quality of predictions and the results from the heterogeneous module. Correlations to estimate the

$$
\begin{align*}
& \operatorname{logWOR} \text { min }=0.10547+0.31449(\mathrm{VR})+0.08504\left(n_{o}\right)+0.18375\left(n_{w}\right) \\
& +0.56262\left(S_{o r}\right)+0.15521\left(S_{w c}\right)+0.10024\left(k_{\text {roe }}\right)+0.11893\left(k_{r w e}\right) \\
& -0.01843(M) \tag{49}
\end{align*}
$$

end of the SLZ were always more accurate, presenting an error less than 2% compared to errors up to 4% in the beginning of the SLZ. However, determining the end of the SLZ was the main objective because we wanted to avoid overestimation of reserves and underestimation of the WOR through the extrapolation of the plot's curve.

Table 10 shows examples of input variables used to run this test. Table 11 shows the matches obtained for ultimate recovery, since at the end of the SLZ, E_{A} is one in all results from the simulation runs.

Table 10—Reservoir data used for comparison.

RESERVOIR	VR	n_{o}	n_{w}	$S_{o r}$	$S_{w c}$	$k_{\text {roe }}$	$k_{\text {rwe }}$	M
1	1.0	3	5	0.20	0.40	0.90	0.55	0.6
2	1.0	2	2	0.50	0.25	0.90	0.90	1.0
3	0.06	3	5	0.20	0.40	0.90	0.55	10.2
4	0.2	2	2	0.50	0.25	0.90	0.90	5.0

Table 11-Comparison of results using correlations and simulation for the homogeneous module.

RESULTS COMPARISON								
	Water-wet, $M=0.6$		Oil-wet, $M=1.0$		Water-wet, $M=10.0$		Oil-wet, $M=5$	
	Correlations	Simulator	Correlations	Simulator	Correlations	Simulator	Correlations	Simulator
RF	0.62	0.63	0.41	0.40	0.57	0.57	0.31	0.30
Log WOR	2.3	2.3	1.7	1.7	1.7	1.7	2.0	2.0
Slope	22.5	22.0	21.0	23.0	15.4	15.4	15.0	15.3
Intercept	-11.8	-11.9	-6.8	-6.0	-6.3	-6.5	-2.6	-2.6
PVI.	2	2	1	1	4	4	3	3

Bigger differences in RF are obtained for oil-wet reservoirs but only are about 1% of ultimate recovery. Different wettabilities and M were run for two different homogeneous, synthetic reservoirs. The correlations matched the simulator, and trends for less recovery for unfavorable M are present. Fig. 11 presents one of the examples in the form of an SLZ plot.

Fig.11-Comparison of SLZ estimated with our correlations almost perfectly matched one obtained from simulation results for a hypothetical water-wet, homogeneous reservoir $(\mathrm{VDP}=0)$ and $M=1$.

Comparisons of results for homogeneous reservoirs were made for RF, slopes, and intercepts for four different reservoirs-with favorable and unfavorable mobility ratios and water-wet rocks, and with favorable and unfavorable mobility ratios but oilwet rocks.

When comparing our correlations results with the reservoir simulation results, excellent matches were obtained with our new model results, as can be seen in Fig.12. In that figure, we compare only the ultimate recovery (RF at the end of the SLZ) obtained with our correlations with the one obtained from the SLZ in the corresponding simulation.

Fig.12-Estimated ultimate recovery at the end of 720 SLZ obtained from our correlations and from the simulation runs. Results matched very well.

The objective of this comparison is to verify that the SLZ obtained using fractional flow, the theoretical basis behind the SLZ, applies to the 3D simulation results. Since results matched, we can feel confident applying the correlations developed for heterogeneous reservoirs using only simulation.

We can see in Fig. 12 that results from correlations developed for homogeneous reservoirs using fractional flow are reasonably close to those obtained for the same cases with simulation for homogeneous $(\mathrm{SLZ}=0)$ reservoirs. Some outlier observations are located a little far from the Slope-1 trend line (in red) because of their oil-wet nature. The maximum error was 3% for water-wet systems and 4% for oil-wet systems. The same trend was found for the corresponding PVI.

The same comparison was made between the correlated slopes and intercepts of all SLZs calculated with our correlations for all combinations of cases and those calculated with the simulator. Fig. 13 and Fig. 14 show those results. Slope trends close to 1 can be seen in both plots.

Fig.13-Our correlations reproduced the slopes determined from reservoir simulation (720 SLZs).

Fig.14-Our correlations captured intercepts determined from reservoir simulation (720 SLZs).

More results are shown in Fig.15, Fig.16, and Fig.17. As can be seen, the correlation matches the simulator runs results.

Fig.15-Final RF correlation from correlations and simulator for specific cases.

Fig.16-Slope correlations from correlations and simulator for specific cases.

Fig.17-Intercept correlation from correlations and simulator for specific cases.

Correlation for Heterogeneous Reservoirs

Regressors and parameter estimates for heterogeneous reservoirs are shown in
Table 12 and Table 13.

Table 12—Parameter estimates for heterogeneous reservoirs for water-wet rocks.

GUIDE		WATER-WET ROCKS								
Regressor	Variable	VDP $=0.6$		VDP $=0.7$		VDP $=0.8$		VDP $=0.9$		
		RF	PVI.	RF	PVI.	RF	PVI.	RF	PVI.	
Independent		- 0.1802	- 1.05462	0.19068	-1.2156	0.09829	-2.0651	0.1718	-0.4536	
x_{8}	M	0	0.46384	-0.0037	0.47344	-0.0075	0.58703	-0.0144	0.08084	
x_{9}	$R F$ hom	1.2751 1	0	0	0	0	0	0	0	
x_{10}	\log WOR	0	0	0.02336	0	0.05354	0	0.0722 7	0	
x_{11}	$R F^{2}{ }_{\text {hom }}$	0	0	0.91971	0	0.88719	0	0.4411 7	0	
x_{12}	$e^{\log \text { WOR }}$	0	0.28413	0	0.31097	0	0.57103	0	0.19269	
x_{13}	$10^{\log \text { WOR }}$	0	0.00912	0	0.01136	0	0.01217	0	0.02353	

Table 13-Parameter estimates for heterogeneous reservoirs for oil-wet rocks.

GUIDE		OIL-WET ROCKS							
Regressor	Variable	$\mathrm{VDP}=0.6$		$\mathrm{VDP}=0.7$		$\mathrm{VDP}=0.8$		$\mathrm{VDP}=0.9$	
		RF	PVI.	RF	PVI.	RF	PVI.	RF	PVI.
Independent		-0.0988	$\begin{gathered} 1.2680 \\ 5 \end{gathered}$	0.09036	-1.1147	0.06727	-1.2674	0.0748	-0.6497
x_{8}	M	0	$\begin{gathered} \hline 0.4976 \\ 9 \\ \hline \end{gathered}$	-0.0023	0.43417	-0.0049	0.45081	-0.0054	0.18524
X9	$R F$ hom	1.27817	0	0	0	0	0	0	0
x_{10}	\log WOR	0	0	0.01459	0	0.03839	0	0.04112	0
x_{11}	$R F^{2}$ hom	0	0	1.78812	0	1.27549	0	0.88482	0
x_{12}	$e^{\log W O R}$	0	$\begin{gathered} 0.3737 \\ 6 \end{gathered}$	0	0.30144	0	0.32235	0	0.22142
x_{13}	$10^{\log W O R}$	0	$\begin{gathered} 0.0023 \\ 8 \end{gathered}$	0	0.00691	0	0.01279	0	0.0137

We developed different correlations for RF and PVI to simplify application of our correlation.

Parameter estimates for water-wet and oil-wet rocks were correlated independently; therefore, a better R^{2} (higher than 0.9) is obtained using the two different correlations. Bigger differences are observed in values corresponding to higher SLZ, because oil-wet rocks show lower RF and higher PVI with higher heterogeneity than water-wet rocks. Using the tables above, application of the correlations can be easily programmed in a spreadsheet. However, a basic VBA program is provided in Appendix G for immediate application of the correlation.

Correlations to estimate RF and PVI for different VDPs in water-wet and oil-wet, heterogeneous reservoirs are the following.

Water-wet and heterogeneous calculations:

VDP >0.55 and VDP $<=0.65$

$$
\begin{align*}
& \mathrm{RF}=-0.18015+1.27511\left(x_{9}\right) \ldots \ldots . ~ \tag{53}
\end{align*} .
$$

VDP >0.65 and VDP $<=0.75$

$$
\begin{align*}
& \mathrm{RF}=0.19068-0.00368\left(x_{8}\right)+0.02336\left(x_{10}\right)+0.91971\left(x_{11}\right) \tag{55}\\
& \text { PVI }=-1.2156+0.47344\left(x_{8}\right)+0.31097\left(x_{12}\right)+0.01136\left(x_{13}\right) . \tag{56}
\end{align*}
$$

VDP >0.75 and VDP $<=0.85$

$$
\begin{equation*}
\mathrm{RF}=0.09829-0.00751\left(x_{8}\right)+0.05354\left(x_{10}\right)+0.88719\left(x_{11}\right) \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{PVI}=-2.06505+0.58703\left(x_{8}\right)+0.57103\left(x_{12}\right)+0.01217\left(x_{13}\right) \tag{58}
\end{equation*}
$$

VDP >0.85 and VDP $<=0.99$

$$
\begin{equation*}
\mathrm{RF}=0.1718-0.0144\left(x_{8}\right)+0.07227\left(x_{10}\right)+0.44117\left(x_{11}\right) \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
\text { PVI }=-0.45357-0.08084\left(x_{8}\right)+0.19269\left(x_{12}\right)+0.02353\left(x_{13}\right) \tag{60}
\end{equation*}
$$

Oil-wet and heterogeneous calculations:
VDP >0.55 and VDP $<=0.65$

$$
\begin{equation*}
R F=-0.0988+1.27817\left(x_{9}\right) \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{PVI}=-1.26805+0.49769\left(x_{8}\right)+0.37376\left(x_{12}\right)+0.00238\left(x_{13}\right) . \tag{62}
\end{equation*}
$$

VDP >0.65 and VDP $<=0.75$

$$
\begin{align*}
& \mathrm{RF}=0.09036-0.00226\left(x_{8}\right)+0.01459\left(x_{10}\right)+1.78812\left(x_{11}\right) \ldots . \tag{63}\\
& \mathrm{PVI}=-1.11471+0.43417\left(x_{8}\right)+0.30144\left(x_{12}\right)+0.00691\left(x_{13}\right) . \tag{64}
\end{align*}
$$

$\mathrm{VDP}>0.75$ and VDP $<=0.85$
$\mathrm{RF}=0.06727-0.00489\left(x_{8}\right)+0.03839\left(x_{10}\right)+1.27549\left(x_{11}\right)$
$\mathrm{PVI}=-1.26744+0.45081\left(x_{8}\right)+0.32235\left(x_{12}\right)+0.01279\left(x_{13}\right)$

VDP >0.85 and VDP $<=0.99$

$$
\begin{align*}
& \mathrm{RF}=0.0748-0.00535\left(x_{8}\right)+0.04112\left(x_{10}\right)+0.88482\left(x_{11}\right) \ldots \tag{67}\\
& \mathrm{PVI}=-0.64968+0.18524\left(x_{8}\right)+0.22142\left(x_{12}\right)+0.0137\left(x_{13}\right) . \tag{68}
\end{align*}
$$

ANOVA Tables for Correlations

Analysis of variance (ANOVA) is a powerful technique to check for adequacy of correlations, which is determined by the information provided from four statistical indicators: correlation coefficient $\left(R^{2}\right)$, mean square error $(\sigma 2), F$-statistic, and $P_{\text {-value }}$. A high value for R^{2} (higher than 0.9) means that an accurate explanation of the behavior of the dependent variable will be obtained by studying the behavior of the independent variable. Our goal was to obtain R^{2} as close as possible to 0.99 . The mean square error is a measure of the error between the predicted value and the mean of the dependent variable, so a small value of the error means that the calculated value is closer to the mean. The $P_{\text {-value }}$ is related to the adequacy of the correlation to be used to predict values of the dependent variable within the range of investigation (sample). When the $P_{\text {-value }}$ is small, the correlation is also adequate (see explanations in Chapter II). Analysis of variances (ANOVA) tables follow.

Table 14—ANOVA for RF calculation for homogeneous, water-wet rocks.

ANOVA TABLE				
RF variable	$\mathrm{f}_{\mathrm{wBT}}$	$\mathrm{S}_{\mathrm{wBT}}$	Slope	Intercept
R^{2}	0.8537	0.9408	0.9223	0.9444
σ^{2}	0.00053	0.00045	1.19005	0.54696
$P_{\text {-Value }}$	<0.0001	<0.0001	<0.0001	<0.0001

For homogeneous, water- and oil-wet reservoirs, Table 14 and Table 15 show R^{2} numbers for $f_{w B T}$ and $S_{w B T}$, the slope and intercept correlations. These correlations are strong and can be used to calculate water cuts and saturations at breakthrough and slopes and intercepts to determine recoveries at any WOR, including ultimate recovery.

Table 15—ANOVA for RF calculation for homogeneous, oil-wet rocks.

ANOVA TABLE				
$R F$ variable	$\mathrm{f}_{\mathrm{wBT}}$	$\mathrm{S}_{\mathrm{wBT}}$	Slope	Intercept
R^{2}	0.8751	0.9516	0.8627	0.9352
σ^{2}	0.00057	0.00051	1.07414	0.20607
$P_{\text {-Value }}$	<0.0001	<0.0001	<0.0001	<0.0001

For heterogeneous reservoirs, statistics are shown in Table 16 and
Table 17.

Table 16—ANOVA for RF calculation for heterogeneous, water-wet rocks.

ANOVA TABLE				
RF variable	$\mathrm{VDP}=0.6$	$\mathrm{VDP}=0.7$	$\mathrm{VDP}=0.8$	$\mathrm{VDP}=0.9$
R^{2}	0.9836	0.9966	0.9953	0.9987
σ^{2}	$6.6 \mathrm{E}-05$	0.000017	$4 \mathrm{E}-06$	0.000001
$P_{\text {-Value }}$	<0.0001	<0.0001	<0.0001	<0.0001

Table 17—ANOVA for RF calculation for heterogeneous, oil-wet rocks.

ANOVA TABLE				
RF variable	$\mathrm{VDP}=0.6$	$\mathrm{VDP}=0.7$	$\mathrm{VDP}=0.8$	$\mathrm{VDP}=0.9$
R^{2}	0.971	0.9881	0.9926	0.9938
σ^{2}	0.00008	0.00003	0.00003	0.00002
$P_{\text {-value }}$	<0.0001	<0.0001	<0.0001	<0.0001

Table 18—ANOVA for PVI correlation statistics, water-wet rock.

ANOVA TABLE	HETEROGENEOUS-WATER-WET ROCK				
PVI variable	Homog	VDP $=0.6$	VDP $=0.7$	VDP $=0.8$	VDP $=0.9$
R^{2}	0.9727	0.9691	0.965	0.9503	0.9963
σ^{2}	0.30927	0.50905	0.81395	2.11876	0.19934
P-Value	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$

Table 19—ANOVA for PVI correlation statistics, oil-wet rock.

ANOVA TABLE	HETEROGENEOUS-OIL-WET ROCK				
PVI variable	Homog	VDP $=0.6$	VDP $=0.7$	VDP $=0.8$	VDP $=0.9$
R^{2}	0.9149	0.9239	0.9486	0.9511	0.9919
σ^{2}	0.33022	0.61156	0.65109	1.33752	0.18589
P-Value	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

Table 18 and Table 19 present very good correlation coefficients for the PVI correlations.

Consistently with previous results, four correlations were obtained to estimate the beginning and the end of the SLZ for the heterogeneous module. The expressions shown below are called "WOR min " and "WOR \max " variables, referring to the minimum and maximum \log WOR acceptable to ensure that the results are still within the SLZ area for heterogeneous reservoirs. These expressions are functions of M and SLZ:

Water-Wet - SLZ beginning:

$$
\begin{align*}
\mathrm{WOR}_{\min }= & 4.91690+0.01738(M)-10.83657(\mathrm{VDP}) \\
& +9.73473\left(\mathrm{VDP}^{2}\right)-0.33856\left(10^{\mathrm{VDP}}\right) \tag{69}
\end{align*}
$$

Oil-Wet - SLZ beginning

$$
\begin{align*}
\mathrm{WOR}_{\min }= & 2.37473+0.02337(M)-2.99912(V D P) \\
& +2.88892\left(V D P^{2}\right)-0.22364\left(10^{V D P}\right) \tag{70}
\end{align*}
$$

Water-Wet - SLZ end

$$
\mathrm{WOR}_{\max }=5.15914+0.13366(M)-9.6964(\mathrm{VDP})+0.62073\left(10^{\mathrm{VDP}}\right)
$$

Oil-Wet - SLZ end

$$
\begin{equation*}
\mathrm{WOR}_{\max }=1.93449+0.02621(M)-0.45239(\mathrm{VDP})-0.00594\left(10^{\mathrm{VDP}}\right) \tag{72}
\end{equation*}
$$

\qquad

Minimum and maximum WOR value ranges within the different SLZs were determined with our correlations for the homogeneous and heterogeneous modules. We obtained a range of minimum WOR values (beginnings of the SLZ) for water-wet rocks from WOR $=1$ to WOR $=15$, and maximum WOR values (ends of the SLZ) from WOR $=30$ to 489 , all for SLZ values between 0.5 and 0.99 . The mean values were $\mathrm{WOR}=5$
and $\mathrm{WOR}=72$, respectively. We defined ranges for oil-wet zones between $\mathrm{WOR}=1$ and $\mathrm{WOR}=251$ for heterogeneous cases.

For homogeneous cases, WOR ranges between 4 and 59 (min WOR) and 87 and 3090 (max WOR). Such extreme, unrealistic values for max WOR were obtained because the homogeneous module only considers the ideal case of $\mathrm{SLZ}=0$.

Fig. 18 presents ranges for each minimum and maximum WOR for homogeneous and heterogeneous cases for water-wet rocks. Fig. 19 shows ranges for oil-wet rocks. Table 20 shows minimum, maximum, and mean values for beginnings and ends of all SLZs for water- and oil-wet rocks, for both homogenous and heterogeneous reservoirs.

As can be seen, WOR ranges tend to be shorter for oil-wet rocks, as expected. Also, SLZs will finish earlier for heterogeneous rocks since they show shorter max WOR than the homogeneous cases.

Fig. 18-Ranges for WOR determined with our correlations for both the homogeneous and the heterogeneous modules for water-wet rocks.

Fig. 19-Ranges for WOR determined with our correlations for both the homogeneous and the heterogeneous modules for oil-wet rocks.

Table 20-Minimum, maximum and mean values of WOR for different cases for water-wet and oil-wet reservoirs.

WOR	WATER-WET			OIL-WET		
	Min	Mean	Max	Min	Mean	Max
Min Homogeneous	4	17	58	9	22	59
Min Heterogeneous	1	5	15	1	3	8
Max Homogeneous	93	308	3090	87	352	977
Max Heterogeneous	30	72	489	29	58	251

Comparisons of results for heterogeneous reservoirs are shown for ultimate RF (at the end of the SLZ) and its corresponding PVI for two different reservoirs-with favorable and unfavorable mobility ratios and water-wet rocks, and with favorable and unfavorable mobility ratios but oil-wet rocks. Results are shown in Fig. 20 and Fig. 21. As can be seen, using these extreme reservoir property values, and for all SLZs used, the correlations again match the simulator runs results for URF (at the end of the SLZ) and PVI.

Fig. 20-URF for different wettabilities and SLZ from our correlations and from reservoir simulation.

Fig. 21-Ultimate PVI for different wettabilities and SLZ from our correlations and from reservoir simulation.

Since comparing the correlations results with the simulator results was successful, we wanted to validate the correlations using field data to ensure the applicability of the correlations in real-life situations.

Two extreme cases were run to ensure that the correlations for the heterogeneous module were consistent with the reservoir simulation results in terms of predicting the SLZ behavior.

The first case presented is for an oil-wet rock reservoir with $M=5$ and variations of SLZ from 0.7 to 0.9 . These results permitted us to corroborate the accuracy of the correlations, as we can see in Fig. 22, Fig. 23 and Fig. 24.

The second case is for another oil-wet rock reservoir with $M=30$ and variations of SLZ from 0.7 to 0.9. Results can be seen in Fig. 25, Fig. 26, and Fig. 27.

Results show that our correlations reproduced the SLZ behavior; therefore, the beginning and end of the SLZ can be predicted reasonably accurately.

Fig. 22-Comparison of results from simulation and our correlations for an oil-wet rock with $M=5$ and $\operatorname{SLZ}=0.7$.

Fig. 23-Comparison of results from simulation to our correlations for an oil-wet rock with $M=5$ and VDP $=0.8$.

Fig. 24-Comparison of results from simulation and our correlations for an oil-wet rock with $M=5$ and VDP $=0.9$.

Fig. 25-Comparison of results from simulation to our correlations for an oil-wet rock with $M=30$ and VDP $=0.7$.

Fig. 26-Comparison of results from simulation with our correlations for an oil-wet rock with $M=30$ and VDP $=0.8$.

Fig. 27-Comparison of results from simulation with our correlations for an oil-wet rock with $M=30$ and VDP $=0.9$.

Field Cases

Eighty-four field cases were analyzed with our correlations. Two different field cases (called Field A and Field B) and several well performances are presented. Reservoir properties for the Field A case are shown in Table 21 and Table 22.

These reservoir data correspond to infill wells with no primary production. Runs were made with the original reservoir simulator and our new correlations. This example has a favorable M value of 0.76 .

To apply our methodology, we developed a computer program in VBA that simplifies the correlation application (see Appendix F). A screen shot of the program illustrates the interface used by our code with input and output for all variables in Fig. 28.

Table 21—Field A case. Real and simulation model data.

DATA FOR FIELD A	VALUE	UNITS
Connate water saturation, S_{wc}	0.38	
Residual oil saturation, S_{or}	0.23	
Residual gas saturation, S_{gr}	0.01	
Initial gas saturation, S_{gi}	0.01	
Water viscosity, μ_{w}	0.9	cp
Oil viscosity, μ_{o}	1.2	cp
Oil formation factor, B_{o}	1.15	RB/STB
Water formation factor, B_{w}	1	RB/STB
Area	35	Acres
Injection pressure	2500	psi
Reservoir pressure	1200	psi
Wellbore radius, r_{w}	0.3	ft
End-point oil relative perm, $\mathrm{k}_{\text {roe }}$	0.96865	
End-point water relative perm, $\mathrm{k}_{\mathrm{rwe}}$	0.551	
Oil Corey's function exponent, n_{o}	3.017	
Water Corey's function exponent, n_{w}	1.8045	
Oil in place (from simulation) OOIP	$4,633,054$	STB
N_{p} from simulation)	$1,861,397$	STB
URF - end of the SLZ (from simulation)	40.18	fraction
VDP	0.8	

Table 22—Field A case. Average data for each layer from the simulation model.

LAYERS DATA		
Net h, ft	k,md	Porosity, \%
85	175	0.19
41	44	0.14
10.5	190	0.15
15	43	0.17
9.5	31	0.13
12	13	0.12
48	15	0.12
Totals:		
221	73	0.15

Fig. 28 presents the input module where the user inputs the fluid and rock properties, the SLZ, and the WOR. The user must input the first 12 items requested (cells colored in white in Fig. 28) and run the case. When the program runs, it calculates the slope, the intercept, $M, f_{w B T}, S_{w B T}, \mathrm{PVI}$, and RF for homogeneous cases, and the max WOR recommended, RF, and PVI for heterogeneous cases. A warning will be given if the user approaches the recommended max WOR or obtains a PVI higher than 2.5 for homogeneous cases, but the calculation will still be allowed so the user can adapt the program for any case and sensitivity.

A final RF of 39.6% is calculated at the end of the SLZ, based on the given log WOR. If a higher \log WOR is used, PVI will increase rapidly while the RF will increase slowly. Since the correlations will calculate the end of the SLZ, the program will warn the user when too-high WOR values are used and linear extrapolation is are being done or when high PVI is required to obtain RF values.

Input your data before running:	Enter Data here:
Reservoir Name	Field A
Oil Viscosity, cP	1.2
Water Viscosity, cP	0.9
Corey exponent for oil(no)	3.017
Corey exponent for water(nw)	1.8045
Oil rel perm curve end-point (kroe)	0.96865
Water rel perm curve end-point (krwe)	0.551
Residual oil saturation (Sor)	0.23
Connate water saturation (Swc)	0.38
Dykstra-Parsons coeff. (VDP)	0.8
Water wet=1 or Oil wet=2	1
Estimated max operational WOR	26.3
Results:	
Slope	14.39
Intercept	-5.87
fwBT	0.835
SwBT	0.603
Max WOR	26.3
Min WOR	0.360
Mobility Ratio	0.758
RF	0.396
PVI	1.062

Fig. 28-Screen shot of the VBA program to apply the new correlations. Run for Field A well case.

One of the most important observations we can make at this point is that other analytical methods and the new methodology will offer reasonably similar results, with the difference that the traditional methods need more data and perform more calculations than the new correlations.

To compare our estimates with other analytical methods, we calculated and present results from all the methods, including our new correlations and field data (Fig. 29). We included Craig-Geffen-Morse (CGM), modified Buckley-Leverett (BL) to
account for E_{A} at the breakthrough, Dykstra-Parsons (DP), and Stiles (see Appendix J for definitions, assumptions and limitations of these methods).

Our new methodology shows an end of the SLZ similar to the field data's. Our ultimate recovery factor (at the end of the SLZ) is 39.6\% (less than 1% different from the field data).

In Fig. 29 we can see that the two wells have an abrupt water production increase at the end of our SLZ and water production for both wells are far from the other analytical methods in terms of WOR or RF. Also, the SLZs found in the field data have slopes and beginnings similar to the one estimated with our correlations. Results from other analytical methods are too optimistic.

Fig. 29-Comparison of performance of two different wells from Field A with our new correlations and with four different analytical methods: Craig-Geffen and Morse (CGM), Dykstra-Parsons (DP), Modified Buckley-Leverett (BL), and Stiles.

Fig. 30—RF calculated using our correlations and compared with the actual performance of Field A.

Comparing actual field performance with our correlations results, we see that our predictions match the actual behavior in terms of RF vs. hydrocarbon pore volumes injected (HCPVI), as seen in Fig. 30.

Fig. 31 shows a comparison of calculated and actual HCPVI and PVI estimated with the correlations, and Fig. 32 presents calculations of oil and water production rates using our correlations.

Fig. 31-Comparison of hydrocarbon pore volumes injected and total pore volume injected, estimated with the correlations and actual performance in Field A.

Fig. 32-Oil and water production rates per well estimated with the correlations. Field A.

Case 2, called Field B, presents a reservoir with unfavorable M and medium heterogeneity or SLZ (see Table 23 and Table 24). RF from simulation is 41.5% with high water cut, since the operator can handle water cuts above 98%. Layer data are average values.

Table 23-Field B Case. Real and original simulation model data.

DATA FOR FIELD A	VALUE	UNITS
Connate water saturation, S_{wc}	0.17	
Residual oil saturation, $\mathrm{S}_{\text {or }}$	0.25	
Residual gas saturation, S_{gr}	0	
Initial gas saturation, S_{gi}	0	
Water viscosity, $\mu_{\text {w }}$	0.25	cp
Oil viscosity, μ_{o}	2.54	cp
Oil formation factor, B_{0}	1.108	RB/STB
Water formation factor, B_{w}	1	RB/STB
Area	340	Acres
Injection pressure	1540	psi
Reservoir pressure	500	psi
Wellbore radius, r_{w}	0.583	ft
End-point oil relative perm, $\mathrm{k}_{\text {roe }}$	1.0	
End-point water relative perm, $\mathrm{k}_{\text {rwe }}$	0.25	
Oil Corey's function exponent, n_{0}	3	
Water Corey's function exponent, n_{w}	2	
Oil in place (from simulation) OOIP	45,000,000	Bbls
N_{p} (from simulation)	18,660,768	Bbls
URF - end of the SLZ (from simulation)	41.47	fraction
VDP	0.8	

Table 24—Field B Case. Average data for the only layer where the well is completed, taken from the original simulation model.

LAYERS DATA		
Net h, ft	k, md	Porosity, $\%$
55.5	340	0.17

Fig. 33 shows the tool's input and output for this case. High initial oil saturation and medium SLZ help to obtain good recovery at high production rates.

Using our methodology, recovery at 2.98 PVI is 37%. Fig. 34 shows data from two different wells, and even when the curves may be slightly different, the reservoir and fluid properties are similar and the SLZ estimated from our correlations matched the real data observations reasonably well. Results from other analytical methods are too optimistic.

Fig. 35 and Fig. 36 show performance estimations and oil and water production rates per well estimated from our correlation results.

In general, our methodology presents more realistic results than other methods, and can be used as an additional tool to support more detailed reservoir studies and simulations in later stages of planning and development.

Input your data before running:	Enter Data here:
Reservoir Name	Field B
Oil Viscosity, cP	2.54
Water Viscosity, cP	0.25
Corey exponent for oil(no)	3
Corey exponent for water(nw)	2
Oil rel perm curve end-point (kroe)	1
Water rel perm curve end-point (krwe)	0.25
Residual oil saturation (Sor)	0.25
Connate water saturation (Swc)	0.17
Dykstra-Parsons coeff. (VDP)	0.8
Water wet=1 or Oil wet=2	1
Estimated max operational WOR	45.5
Results:	10.15
Slope	-3.23
Intercept	0.803
fwBT	0.458
SwBT	45.50
Max WOR	0.360
Min WOR	2.540
Mobility Ratio	0.373
RF	2.977
PVI	

Fig. 33-Screen shot of the VBA program applying the new correlations to Field B well.

Fig. 34- Comparison of performance of two different wells from Field B with our new correlations and with four different analytical methods: Craig-Geffen and Morse (CGM), Dykstra-Parsons (DP), Modified Buckley-Leverett (BL), and Stiles.

Fig. 35-RF vs. time calculated with our correlations for Field B.

Fig. 36-Oil and water production rates per well estimated with the correlations. Field B.

CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

On the basis of these research results, we offer the following conclusions and recommendations.

1. The plot of \log WOR vs. RF always presents an SLZ for all reasonable combinations of M, fluid saturations, and relative permeability curves developed using Corey-type functions.
2. We characterized the SLZ by developing generalized empirical correlations using fractional flow theory and numerical reservoir simulation. These correlations may be used to estimate reservoir performance, ultimate recovery factors, water/oil ratio, and pore volumes injected for reservoirs under a waterflood. This procedure is faster than reservoir simulation and other analytical methods.
3. The correlations were developed using multivariate linear regression analysis. Our correlations provide the boundaries, slopes, and intercepts of the SLZ. The software also produces results in plots and tables, all in one report and query.
4. Using the automated tool we developed in this research that calculates the SLZ for any combination of mobility ratio, fluid saturations, and oil and water Corey exponents, we can estimate RF and PVI up to the ultimate recovery, avoiding the risks of extrapolating the SLZ beyond its boundary, overestimating reserves, and underestimating WOR .
5. This analysis must be performed on a well-by-well basis since production data will be affected by different operational problems such as well stimulations, infill drilling, and pattern changes. These may all mask net injection effects in performance and recovery. However, by detecting these deviations of the estimated SLZ, we can determine the effects of interference from one well to another, so the correlations can be used as a diagnostic tool.
6. Our correlations can be used accurately with multilayered or heterogeneous reservoirs, with or without crossflow, and with any value of injection rates. Initial gas saturation should not be higher than 4% to avoid overestimation of reserves.
7. Our procedure estimates results that can be compared and benchmarked with other analytical methods and simulation results. Also, these results can be used in most companies to support reserves calculation processes, to benchmark simulation results, and to generate first estimates of water injection requirements and production rates, facilities, and costs.
8. This procedure simplifies early identification of opportunities for the oil industry and supports existing reservoir simulation models.
9. Using our correlations as a diagnostic tool, the user may compare actual performance with the expected performance for the parameters given (for example, too-early breakthrough may indicate higher heterogeneity, water channeling, fractures, or thief zones). Other problems such as water loss or completions problems may be inferred.
10. This procedure may be used to generate correlations for special cases: extraheavy oil fields and dip-angled, naturally fractured reservoirs. Cases with high initial gas saturations may be analyzed with this procedure, when good quality, comprehensive databases are available. Using the software, the practitioner can develop adjusted correlations based on the specific databases and analogies the practitioner may want to analyze.
11. Data required to use the correlations are usually available production data. This makes the analysis easy and fast to achieve, and results will be accurate and reliable without the need of additional and more expensive and timeconsuming processes, such as reservoir simulation, at early stages of planning, contributing to cost and time efficiency.

NOMENCLATURE

$$
\begin{aligned}
& \mathrm{A}=\text { area, acres } \\
& B_{o}=\text { oil formation volume factor, } \mathrm{RB} / \mathrm{STB} \\
& B_{o b}=\text { oil formation volume factor at the bubblepoint pressure, RB/STB } \\
& B_{w}=\text { water formation volume factor, RB/STB } \\
& e=\text { base of the natural logarithm }(\approx 2.71828) \\
& E(Y, x)=\text { expected value of the mean of variable } Y \text { for each value of } x \\
& E_{A}=\text { areal sweep efficiency, percentage } \\
& E_{D}=\text { Displacement Efficiency, fraction } \\
& e_{i}=\text { residual, or error in the fit of the correlations } \\
& E_{i}=\text { Vertical Sweep Efficiency, fraction } \\
& E_{R}=\text { Recovery Efficiency, fraction } \\
& E_{v}=\text { volumetric sweep efficiency after waterflood, fraction } \\
& f_{w}=\text { water fraction on the fractional flow calculation, fraction } \\
& f_{w B T}=\text { water fraction at breakthrough, fragment } \\
& H_{l}=\text { hypothesis to be tested } \\
& \mathrm{HCPV}=\text { hydrocarbon pore volume, fraction of PV } \\
& \mathrm{HCPVI}=\text { hydrocarbon pore volume injected, fraction of PV } \\
& H_{o}=\text { null hypothesis } \\
& I=\text { intercept, dimensionless } \\
& i_{w}=\text { injection rate, STBW/D } \\
& k_{a i r}=\text { Permeability to air, mD } \\
& \text { He }
\end{aligned}
$$

```
        ki}=\mathrm{ permeability to oil in a percentile (i) in the log-probability plot of
            permeability to estimate VDP, cp (as in Eq. 1)
    ko = effective permeability to oil, fraction
    kro = oil relative permeability
    kroe }=\mathrm{ oil relative permeability endpoint
    krw}=\mathrm{ water relative permeability
    krwe = water relative permeability endpoint
    kw}=\mathrm{ effective permeability to water, fraction
        M = mobility ratio
        m = slope of the SLZ, fraction
        N = original oil in place, RB
        no = Corey oil exponent
    Nob}=\mathrm{ original oil in place at the bubblepoint pressure, STB
        N
    N Np}=\mathrm{ primary cumulative production, STB
NPV = Net Present Value, $
    nw
        P = probability
        Po}=\mathrm{ pressure in the oil phase, psi
        PV = reservoir pore volume, fraction
P-value }=\mathrm{ smallest level of data significance
    PVI = pore volume injected, dimensionless
```

$$
\begin{aligned}
& P_{w}=\text { pressure in the water phase, psi } \\
& q_{o}=\text { oil production, bbl/day } \\
& q_{p}=\text { total fluid production rate, STB } \\
& q_{w}=\text { water production, bbl/day } \\
& R^{2}=\text { statistical correlation coefficient, fraction } \\
& R F=\text { recovery factor, dimensionless } \\
& R F_{\text {heter }}=\text { recovery factor for heterogeneous reservoirs, dimensionless } \\
& R F_{\text {homog }}=\text { recovery factor for homogeneous reservoirs, dimensionless } \\
& s=\text { fluids saturation, fraction } \\
& S_{g}=\text { gas saturation, fraction } \\
& S_{g i}=\text { initial gas saturation, fraction } \\
& \mathrm{SLZ}=\text { Straight-line zone in the logwor vs. RF plot } \\
& S_{o r}=\text { residual oil saturation after waterflood, fraction } \\
& S_{w}=\text { water saturation, fraction } \\
& S_{w ~ m a x ~}=\text { max water saturation, fraction } \\
& S_{w B T}=\text { water saturation at the breakthrough, fraction } \\
& S_{w c}=\text { connate water saturation at the moment of discovery, fraction } \\
& S_{w D}=\text { dimensionless water saturation } \\
& S_{w i}=\text { irreducible water saturation, fraction } \\
& \overline{S_{o}}=\text { average oil saturation, fraction } \\
&=\text { average water saturation in the flooded zone, fraction } \\
& \text { time }
\end{aligned}
$$

```
        URF = Ultimate Recovery Factor, fraction
    V(Y,x) = variance of Y with respect to x
    VDP = Dykstra-Parsons Coefficient
    VR = viscosity ratio, }\mp@subsup{\mu}{w}{}/\mp@subsup{\mu}{o}{
        VRR = Voidage Replacement Ratio, fraction
        Wi
        WOR = water/oil ratio, ratio
        xi = correlation regressor (i=1 to 14, in tables in Chapter III)
        \varepsilon = random error term
        \Deltat = time difference, days
        \alpha = reservoir dip angle, degrees
        \betal}=\mathrm{ intercept as an unknown regression coefficient in statistics notation
    \betao}=\mathrm{ slope as an unknown regression coefficient in statistics notation
\lambdadisplaced }=\mathrm{ mobility of the displaced phase
\lambdadisplacing}= mobility of the displacing phas
    \mu}= oil viscosity, cp
    \mu
    \mu
    \rhoo = oil density
    \rhow
        \sigma = standard error
```


REFERENCES

Ahmed, T. 2002. Reservoir Engineering Handbook. 2nd. Ed. Boston: Gulf Professional Publishing.

Avery, M., Gruenenfelder, M.A., Tariton, J.M. 1987. Design Factors and Their Influence on Profile Modification Treatments for Waterfloods. Paper SPE 15751 presented at the Middle East Oil Conference of the Society of Petroleum Engineers of AIME, Bahrain, 7-10 March.

Bain, L. and Engelhardt, M. 1992. Introduction to Probability and Mathematical Statistics. $2^{\text {nd }}$. Ed. Belmont, California, USA. Duxbury Press.

Baker, R. O., Sandhu, K., Anderson, T. 200. Using Decline Curves to Forecast Waterflooded Reservoirs: Fundamentals and Field Cases. Paper JCPT 2003-181 presented at the Petroleum Society's Canadian International Petroleum Conference, Calgary, Alberta, Canada, 10-13 June.

Buckley, S.E. and Leverett, M.C. Mechanisms of Fluid Displacement in Sands. 1942. Trans. AIME 146, 107.

Craft, B.C. and Hawkins, M. (revised by Terry, R) 1991. Applied Petroleum Reservoir Engineering. New Jersey, New Jersey: Prentice Hall PTR. ${ }^{\text {nd }}$. Edition.

Craig, F. 1971. The Reservoir Engineering Aspects of Waterflooding. Monograph Series, SPE, Richardson, Texas.

Craig, F. 1954. Oil Recovery Performance of Pattern Gas of Water Injection Operations for Model Tests. Paper SPE 413-G presented at the AIME Petroleum Branch Fall Meeting, San Antonio, Texas, 17-20 October.

Dykstra, H and Parsons, H.L. 1950. The Prediction of Oil Recovery by Waterflooding in Secondary Recovery of Oil in the United States. 160-174. New York, New York: American Petroleum Institute.

Ershaghi, I. and Omoregie, O. 1978. A Method for Extrapolation of Cut vs. Recovery Curves. J. Pet Tech 203-204.

Kumar, M., Hoang, V., Satik, C., Rojas, D.H. 2005. High Mobility Ratio Waterflood Performance Prediction: Challenges and New Insights. Paper SPE 97671 presented at the SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malaysia. 5-6 December.

Lo, K.K. 1990. A Study of the Post-Breakthrough Characteristics of Waterfloods. Paper SPE 20064 presented at the SPE California Regional Meeting, Ventura, California, USA, 4-6 April.

Molina, N.N. 1980. A Systematic Approach to the Relative Permeability in Reservoir Simulation. Paper SPE 9234 presented at the SPE 55th Annual Fall Technical Meeting of AIME, Dallas, Texas, 21-24 September.

Montgomery, D. and Runger, G. 2007. Applied Statistics and Probability for Engineers. $4^{\text {th }}$. Ed. Hoboken, New Jersey: Wiley.

Thakur, G, and Satter, A. 1998. Integrated Waterflood Asset Management. $1^{\text {st }}$. Ed. Tulsa, Oklahoma: PennWell Corporation.

Willhite, G.P. 1986. Waterflooding. Textbook Series, SPE, Richardson, Texas, Vol. 3.

Yang, Z. and Ershaghi, I. 2005. A Method for Pattern Recognition of WOR Plots in Waterflood Management. Paper SPE 93870 presented at the SPE Western Regional Meeting, Irvine, California, USA, 30 March - 1 April.

APPENDIX A

BASIC PROGRAMS FOR HOMOGENEOUS RESERVOIRS

```
SAS general program to estimate homogeneous reservoir waterflood
performance. This example is for water-wet systems. For oil-wet
systems, only change section 4. For the following lines:
```

```
data BT;
* for BT:
begin counter for saturation and evaluation of relative permeabilities
and fractional flow;
    dsw= 0.001;
        bo= 1;
        boi= 1;
            e=2.7182818284590452353603;
*ranges estimated from the relative perm curves analized and the Craig
approximation for wettability;
    Do uwuo= 0.1 To 1 by 0.2;
        Do po= 2 To 3.0 by 1;
            Do pw= 2 To 5.0 by 1;
                Do swc= 0.15 To 0.4 by 0.1;
                    Do sor= 0.1 To 0.2 by 0.1;
                        Do kroe=0.7 to 1 by 0.1;
                        Do krwe=0.55 to 0.8 by 0.1;
    swmax= 1 - sor;
    sw=swc;
    do sw=swmax To swc by -dsw;
        *normalized water saturation;
        swd = (sw - swc) / (swmax - swc);
    If swd = 1 Then
    kro = 0.000000001;
            else kro = kroe*(1 - swd) ** po;
If swd = 1 Then
            krw = krwe*(swd) ** pw;
            else krw = krwe*(swd) ** pw;
If swd = 1 Then
            fw = 1;
            else fw = 1 / (1 + (kro / krw) * (uwuo));
If swd = 1 Then
            dfw_1 = 1;
            else}dfw_1 = (fw - 0) / (sw - swc)
if swd=1 then
    dfw_2 = 0;
    krod = kroe*(1 - (swd + 0.0001)) ** po;
    krwd = krwe*(swd + 0.0001) ** pw;
```

```
    fwd = 1 / (1 + krod / krwd * uwuo);
    dfw_3 = (fwd - fw) / 0.0001;
*Compare two successive slopes;
    diff = dfw_1 - dfw_2;
    If diff <= O Then
    fwbt = fw;
        If diff <= 0 Then
    swbt = sw;
        If diff <= O Then
    p_inj1 = 1 / (dfw_3+00000.1);
            If diff <= 0 and p_inj1>0 or p_inj1<1 Then
    swav1 = (1 - fw) / dfw - }1 + sw
        If diff <= 0 and p_inj1>0 or p_inj1<1 Then
    soav1 = 1 - swav1;
        If diff <= 0 and p_inj1>0 or p_inj1<1 Then
    RF a = ((1 - soav1 - swc) / (1 - swc)) * bo / boi;
        WOR = (krw/kro)*(1/uwuo);
        LWOR =log10(WOR o+0.0000001);
        WOR O=WOR ;
        M=(krwe/kroe)/uwuo;
        lM=log10(M);
        output;
If diff <= 0 and p_inj1>0 Then
Sw = swC;
*If diff <= 0 Then;
        dfw_2 = dfw_1;
        *output;
        end;
            end;
                end;
                end;
                    end;
                                end;
                end;
                                    end;
data Work.BT;
set Work.BT;
rename po=no pw=nw uwuo=VR;
if diff>=0 then delete;
if p_injl<=0 then delete;
if p_inj1>1 then delete;
proc sort; by VR no nw swc sor kroe krwe M;
data Work.BT;
set Work.BT;
e=2.7182818284590452353603;
x1=(VR/no);
x2=VR;
x3=no;
```

```
x4=nw;
x5=swc;
x6=sor;
x7=log10(M);
proc reg;model fwbt= x1 x2 x3 x4 x7 ;
*proc reg;*model fwbt= no nw lM /vif;
output out=front P=Predicted R=Residual;
proc reg;model swbt= x1 x2 x3 x4 x5 x6 x7 ;
*proc reg;*model swbt= no nw swc sor lM /vif;
output out=satur P=Predicted R=Residual;
*proc gplot; *plot fwbt*lM;*by VR no nw swc sor ;
*plot swbt* lM;*by VR no nw swc sor ;
*plot fwbt * swbt;*by VR no nw swc sor;*run;
data recovery1;
* This program performs Fractional Flow Theory calculations to
determine recovery factors and
WOR values based upon the LogWOR vs. RF plot. The staight line zone is
determined fron the "nose" region to the
beginning of the change in slope more than 1%, using the second
derivative approach.
Following module (data recoveryl) performs the calculation described
above.;
* Loop for different water saturation values, relative perm curves, and
fractional flow curve:;
    dsw= 0.001;
    bo= 1;
    boi= 1;
            e=2.7182818284590452353603;
*ranges estimated from the relative perm curves analized and the Craig
approximation for wettability;
    Do uwuo= 0.1 To 1 by 0.2;
        Do po= 2 To 3.0 by 1;
            Do pw= 2 To 5.0 by 1;
            Do swc= 0.15 To 0.4 by 0.1;
                Do sor= 0.1 To 0.2 by 0.1;
                    Do kroe=0.7 to 1 by 0.1;
                        Do krwe=0.55 to 0.8 by 0.1;
    swmax= 1 - sor;
    sw=Swc;
    do sw=swc To swmax by dsw;
    *normalized water saturation;
    swd= (sw - swc) / (1 - sor - swc) + 0.0000001;
    kro= kroe*(1 - swd) ** po;
    krw= krwe*(swd) ** pw;
    *evaluates incremental for derivatives;
    krod= kroe*(1 - (swd + 0.0001)) ** po;
```

```
    krwd= krwe*(swd + 0.0001) ** pw;
    fwd= 1 / (1 + krod / krwd * uwuo);
    *evaluates fractional flow curve;
    fw= 1 / (1 + kro / krw * uwuo);
*Evaluates derivative of the fractional flow curve as well as
derivative from Swc;
    If sw = swc Then
        dfw_1 = 100;
                                Else dfw_1= (fwd - fw) / 0.0001;
        If sw = swc Thēn
    dfw_2 = 0.1;
                        Else dfw_2= (fw - 0) / (sw - swc);
        If sw= swc Then
    swav1= 100;
                Else swav1= (1 - fw) / dfw_2 + sw;
        If sw= swc Then
    nose= 100;
                Else nose= (RF a - RF al) / (WOR - WOR o+.0001);
            If sw= swc Then
                RF a= 0 ;
                    Else RF a= ((1 - soav1 - swc) / (1 - swc)) * bo / boi;
            soav1= 1 - swav1;
            WOR = (krw / kro) * (1 / uwuo);
            RF a= ((1 - soav1 - swc) / (1 - swc)) * bo / boi;
            RF a2= RF a - RF a1;
            * PVI SLZ :;
            LWOR = log10(WOR O + 0.000001);
            LWOR 2 = LWOR - LWOR 1;
            dzero = LWOR 2 / (RF a2+.00001);
            SLZ = dzero - dzero1;
            SLZ 2 = SLZ / (dzero + 0.001);
            p_inj1= 1 / (dfw_1 + 0.000001);
    p_inj2}=1 / dfw_2
    p_inj12 = p_inj\overline{1}-PVI.;
            dzeroPVI. = p_inj12 /(RF a2 + 0.00001);
            SLz PVI = dzeroPVI. - dzero1PVI. ;
            SLZ PVI.2 = SLZ PVI / (dzeroPVI. + 0.001);
    LWOR = log10(WOR O + 0.000001);
            nose= (RF a - RF al) / (WOR - WOR O);
            M=(krwe/kroe)/uwuo;
            lM=log10(M);
    *stores old value of recovery factor to evaluate nose derivative and
increase counter
    *write all other values in generic results spreadsheet;
    RF al= RF a;
    WOR O= WOR ;
    LWOR 1= LWOR ;
        PVI= p_inj1;
    dzerol= dzēro;
```

```
dzero1PVI. = dzeroPVI.;
                output ;
```

 end;
 end;
 end;
 end;
 end;
 end;
 end;
 end;
 *proc print; *var nose RF RF 1 lWOR lWOR 1 lWOR 2 dzero dzerol SLZ SLZ
 2 p_inj1 RF 2; *by uwuo po pw sor swc;

* This module deletes negative noses and fixes the tolerance for the
SLZ region;
data Work.recovery1;
set Work.recovery1;
rename $\mathrm{po=no} \mathrm{pw}=\mathrm{nw}$ uwuo=VR;
if nose < 0 or nose > 50 then delete;
if RF a > 1 then delete;
IF SLZ $2<-0.01$ or SLZ $2>0.01$ then delete;
* Activate the following instruction to determine the optimim RF vs PVI
only. If not activated, the program will determine the critical RF and
PVI.;
*IF SLZ PVI.2<-0.01 or SLZ PVI. $2>0.01$ then delete;
proc sort; by VR no nw swc sor kroe krwe M;
data Work.bt;
set Work.bt;
proc sort; by VR no nw swc sor kroe krwe M;
data merged;
merge Work.recovery1
Work.Bt;
by VR no nw swc sor kroe krwe M;
* This module calculates and creates a table with the slopes and
intercepts for LWOR vs. RF plots for each VR, no, nw, sor, swc case;
proc reg data= merged outest=slopes; by VR no nw swc sor kroe krwe M;
model LWOR = RF a;
run;
data Work.slopes;
set Work.slopes;
*rename RF =Slope;
$\mathrm{e}=2.7182818284590452353603$;
$\mathrm{x} 1=(\mathrm{VR} / \mathrm{no})$;
$x 2=V R$;
$\mathrm{x} 3=\mathrm{no}$;
$\mathrm{x} 4=\mathrm{nw}$;
x5=swc;
x6=sor;
$x 7=\log 10(M)$;
*proc reg; *model Slope= x2 x3 no nw sor swc lM /vif;;* kroe krwe
M/vif;
proc reg; model Slope $=\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 4 \mathrm{x} 5 \mathrm{x} 6 \mathrm{x} 7$;* kroe krwe M/vif;

```
output out=sloperes P=predicted1 R=residual1;
*This procedure performs the regression for the intercepts and creates
a table for calculated values;
proc reg; model Intercept= x1 x2 x4 x5 x6 x7 ;* kroe krwe M/vif;
*proc reg; *model Intercept= x2 x3 no nw sor swc lM /vif;
output out=interres P=predicted2 R=residual2;
run;
data merged2;
merge Work.merged
    Work.interres;
by VR no nw swc sor kroe krwe M;
data Work.merged2;
set Work.merged2;
x1=VR/no;
slopecalc=predicted1;
interceptcalc=predicted2;
logWOR calc=slopecalc*RF al+interceptcalc;
RF acalc=(lWOR -interceptcalc)/slopecalc;
diflogWOR = (logWOR calc-lWOR )/lWOR ;
difRF =(RF acalc-RF a1)/RF al;
output;
run;
data Work.merged2;
set Work.merged2;
x1=VR/no;
if difRF > 0.05 then delete;
proc reg; model Slope= x1 x2 x4 x5 x6 x7 ; * kroe krwe M/vif;
output out=sloperes P=predicted3 R=residual3;
*This procedure performs the regression for the intercepts and creates
a table for calculated values;
proc reg; model Intercept= x1 x2 x4 x5 x6 x7 ;* kroe krwe M/vif;
*proc reg; *model Intercept= x2 x3 no nw sor swc lM /vif;
output out=interres P=predicted4 R=residual4;
run;
data Work.merged2;
set Work.merged2;
proc reg;model Slope= x1 x2 x4 x5 x6 x7 /selection=forward slentry=0.05
details; run;
proc reg;model Slope= x1 x2 x4 x5 x6 x7 /selection=backward slstay=0.05
details; run;
proc reg;model Slope= x1 x2 x4 x5 x6 x7 /selection=stepwise
slentry=0.08 details; run;
proc reg;model Slope= x1 x2 x4 x5 x6 x7 /selection=rsquare cp mse; run;
proc corr data=merged2 cov out=outcov (type=cov)nocorr noprint;
var x1 x2 x4 x5 x6 x7;
run;
proc print data=merged2(obs=12);
run;
proc mianalyze data=merged2 edf=30 mult;
var x1 x2 x4 x5 x6 x7;
run;
```


Results from the Water-wet model:

The REG Procedure Mode 1: MODEL 1
Dependent Variable: fwbt

| Number of Observations Read | 2880 |
| :--- | :--- | :--- |
| Number of Observations Used | 2880 |

Analysis of Variance						
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Mode 1		5	8.84325	1.76865	3355.12	<.0001
Error		2874	1.51503	0.00052715		
Corrected	Total	2879	10.35828			
	Root MSE		0.02296	R-Square	0.8537	
	Dependent	Mean	0.86652	Adj R-Sq	0.8535	
	Coeff Var		2.64964			

Variable	DF	Parameter Estimate
Intercept	1	0.71084
$\times 1$	1	0.20212
$\times 2$	1	-0.08234
$\times 3$	1	0.01779
$\times 4$	1	0.03932
$\times 7$	1	-0.09479

Standard Error	t Value	Pr $>$ Iti
0.00543	130.99	$<.0001$
0.01815	11.14	$<.0001$
0.00858	-9.60	$<.0001$
0.00174	10.24	$<.0001$
0.00038266	102.76	$<.0001$
0.00330	-28.71	$<.0001$

Results from the Oil-wet model:

APPENDIX B

EXAMPLE OF BASIC PROGRAMS FOR HETEROGENEOUS RESERVOIRS

```
Water-wet system program:
Recovery:
data allMandVDP;
set allMandVDP;;
x2=homo**2;
proc reg;model vdp06= homo /vif r clm cli alpha=.05;
run;
proc reg;model vdp07= M lwor x2 /vif r clm cli alpha=.05;
run;
proc reg;model vdp08= M lwor x2 /vif r clm cli alpha=.05;
output out=vdp08i P=predicted8i R=residual8i;
run;
proc reg;model vdp09= M lwor x2 /vif r clm cli alpha=.05;
run;
*proc gplot;
*plot vdp08 * predicted8i;
*plot lwor * predicted8i;by M;
*plot lwor * (vdp06 vdp07 vdp08 vdp09);
*run;
```

```
PVI :
```

PVI :
option ls=120 ps=75 nocenter nodate;
option ls=120 ps=75 nocenter nodate;
title 'Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and
title 'Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and
0.6';
0.6';
data allMandVDPandPVI;
data allMandVDPandPVI;
infile "c:\0001 My Research\Tesis Total\Writings and Calculations\ Nov
infile "c:\0001 My Research\Tesis Total\Writings and Calculations\ Nov
19\heterwaterwetPVIdata" ;
19\heterwaterwetPVIdata" ;
input M lwor rfhomo PVIhomo rf06 PVI06 rf07 PVI07 rf08 PVI08 rf09 PVI09;
input M lwor rfhomo PVIhomo rf06 PVI06 rf07 PVI07 rf08 PVI08 rf09 PVI09;
*cards;
*cards;
data allMandVDPandPVI;
data allMandVDPandPVI;
set allMandVDPandPVI;
set allMandVDPandPVI;
e=2.7182818284590452353603;
e=2.7182818284590452353603;
x9=M;
x9=M;
x13=e**(lwor);
x13=e**(lwor);
x14=10**(lwor);
x14=10**(lwor);
proc reg;model PVIhomo= x8 x12 x13 /r clm cli alpha=.05;
proc reg;model PVIhomo= x8 x12 x13 /r clm cli alpha=.05;
output out=homo P=predictedh R=residualh;
output out=homo P=predictedh R=residualh;
run;
run;
proc reg;model PVI06= x8 x12 x13 /r clm cli alpha=.05;
proc reg;model PVI06= x8 x12 x13 /r clm cli alpha=.05;
output out=vdp06 P=predicted6 R=residual6;
output out=vdp06 P=predicted6 R=residual6;
run;
run;
proc reg;model PVI07= x8 x12 x13 /r clm cli alpha=.05;
proc reg;model PVI07= x8 x12 x13 /r clm cli alpha=.05;
output out=vdp07 P=predicted7 R=residual7;
output out=vdp07 P=predicted7 R=residual7;
run;
run;
proc reg;model PVI08= x8 x12 x13 /r clm cli alpha=.05;
proc reg;model PVI08= x8 x12 x13 /r clm cli alpha=.05;
output out=vdp08 P=predicted8 R=residual8;
output out=vdp08 P=predicted8 R=residual8;
run;
run;
proc reg;model PVIO9= x8 x12 x13 /r clm cli alpha=.05;
proc reg;model PVIO9= x8 x12 x13 /r clm cli alpha=.05;
output out=vdp09 P=predicted9 R=residual9;run;

```
output out=vdp09 P=predicted9 R=residual9;run;
```


Results from the Water-wet model, Recovery Factors:

Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with $M=1$, 3 and 0.6 129

The REG Procedure
Model: MODEL1
Dependent Variable: vdp07
$\begin{array}{ll}\text { Number of Observations Read } & 82 \\ \text { Number of Observations Used } & 82\end{array}$

Source	Analysis of Variance			F Value	Pr $>\mathrm{F}$
	DF	Sum of Squares	Mean Square		
Model	3	0.37584	0.12528	7560.63	<. 0001
Error	78	0.00129	0.00001657		
Corrected Total	81	0.37713			
Root MSE	0.00407	R-Square	0.9966		
Dependent Mean	0.50843	Adj R-Sq	0.9964		
Coeff Var	0.80063				

Variable	Parameter Estimates				
	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	0.19068	0.01494	12.76	$<.0001$
X8	1	-0.00368	0.00127	-2.89	0.0050
X10	1	0.02336	0.00354	6.59	$<.0001$
X11	1	0.91971	0.06093	15.10	$<.0001$

Gral corr behavior, Homo, VDP $0.6,0.7,0.8$, and 0.9 with $M=1$, 3 and 0.6 133

The REG Procedure
Model: MODEL1
Dependent Variable: vdp08

Number of Observations Read	82
Number of Observations Used	82

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	3	0.67749	0.22583	5539.75	$<.0001$
Error	78	0.00318	0.00004077		
Corrected Total	81	0.68067			
Root MSE	0.00638	R-Square	0.9953		
Dependent Mean	0.45022	Adj R-Sq	0.9951		
Coeff Var	1.41814				

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	0.09829	0.02344	4.19	$<.0001$
X8	1	-0.00751	0.00200	-3.76	0.0003
X10	1	0.05354	0.00556	9.64	$<.0001$
X11	1	0.88719	0.09556	9.28	$<.0001$
Sum of Residuals			0		
Sum of Squared Residuals			0.00318		
Predicted Residual SS (PRESS)			0.00350		

Results from the Water-wet model, PVI:

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and 0.6
161
The REG Procedure
Model: MODEL1
Dependent Variable: PVIhomo
Number of Observations Read 
```

Analysis of Variance

	Sum of	Mean	Square	F Value	Pr
Source	DF	Squares			
Model	3	849.00414	283.00138	915.07	
Error	77	23.81351	0.30927		

Root MSE	0.55612	R-Square	0.9727
Dependent Mean	2.73765	Adj R-Sq	0.9717
Coeff Var	20.31364		

Parameter Estimates

	Parameter Estimate					
Variable	DF	Standard Error	t Value	Pr $>$ \|t		
Intercept	1	-0.81246	0.18097	-4.49	$<.0001$	
X8	1	0.35196	0.05886	5.98	$<.0001$	
X12	1	0.00800	0.00076159	10.50	$<.0001$	
X13	1	0.21624	0.03685	5.87	$<.0001$	

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and 0.6
165
The REG Procedure
Model: MODEL1
Dependent Variable: PVI06
Number of Observations Read 81
Number of Observations Used 81
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & Pr \(>\mathrm{F}\) \\
\hline Model & 3 & 1230.20736 & 410.06912 & 805.56 & \(<.0001\) \\
\hline Error & 77 & 39.19689 & 0.50905 & & \\
\hline Corrected Total & 80 & 1269.40425 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrll} 
Root MSE & 0.71348 & R-Square & 0.9691 \\
Dependent Mean & 3.36284 & Adj R-Sq & 0.9679
\end{tabular}
Coeff Var
Parameter Estimates
\begin{tabular}{lrrrrr} 
Variable & DF & \begin{tabular}{c} 
Parameter \\
Estimate
\end{tabular} & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & t Value & Pr \(>\) |t| \\
Intercept & 1 & -1.05462 & 0.23218 & -4.54 & \(<.0001\) \\
X8 & 1 & 0.46384 & 0.07551 & 6.14 & \(<.0001\) \\
X12 & 1 & 0.00912 & 0.00097710 & 9.34 & \(<.0001\) \\
X13 & 1 & 0.28413 & 0.04727 & 6.01 & \(<.0001\)
\end{tabular}
```

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and 0.6
1 6 9
The REG Procedure
Model: MODEL1
Dependent Variable: PVIO7
Number of Observations Read 81
Number of Observations Used 81
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & Pr \(>\mathrm{F}\) \\
\hline Model & 3 & 1725.72439 & 575.24146 & 706.73 & <. 0001 \\
\hline Error & 77 & 62.67400 & 0.81395 & & \\
\hline Corrected Total & 80 & 1788.39839 & & & \\
\hline Root MSE & 0.90219 & R-Square & 0.9650 & & \\
\hline Dependent Mean & 3.81432 & Adj R-Sq & 0.9636 & & \\
\hline Coeff Var & 23.65272 & & & & \\
\hline
\end{tabular}
\begin{tabular}{lccccc} 
& \multicolumn{5}{c}{ Parameter Estimates } \\
Variable & DF & \begin{tabular}{c} 
Parameter \\
Estimate
\end{tabular} & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & t Value & Pr \(>\) |t| \\
Intercept & 1 & -1.21560 & 0.29359 & -4.14 & \(<.0001\) \\
X8 & 1 & 0.47344 & 0.09548 & 4.96 & \(<.0001\) \\
X12 & 1 & 0.01136 & 0.00124 & 9.20 & \(<.0001\) \\
X13 & 1 & 0.31097 & 0.05978 & 5.20 & \(<.0001\)
\end{tabular}
```

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and 0.6
173
The REG Procedure
Model: MODEL1
Dependent Variable: PVI08
Number of Observations Read 81
Number of Observations Used 81
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & Pr \(>\mathrm{F}\) \\
\hline Model & 3 & 3120.38902 & 1040.12967 & 490.92 & \(<.0001\) \\
\hline Error & 77 & 163.14421 & 2.11876 & & \\
\hline Corrected Total & 80 & 3283.53322 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrll} 
Root MSE & 1.45559 & R-Square & 0.9503 \\
Dependent Mean & 5.17494 & Adj R-Sq & 0.9484
\end{tabular}
Coeff Var
28.12777
Parameter Estimates
\begin{tabular}{lccccc} 
& \multicolumn{5}{c}{\begin{tabular}{c} 
Parameter \\
Estimate
\end{tabular}} \\
Variable & DF & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & t Value & Pr \(>\) |t| \\
Intercept & 1 & -2.06505 & 0.47368 & -4.36 & \(<.0001\) \\
X8 & 1 & 0.58703 & 0.15405 & 3.81 & 0.0003 \\
X12 & 1 & 0.01217 & 0.00199 & 6.10 & \(<.0001\) \\
X13 & 1 & 0.57103 & 0.09645 & 5.92 & \(<.0001\)
\end{tabular}
```

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and 0.6
177
The REG Procedure
Model: MODEL1
Dependent Variable: PVIO9
Number of Observations Read 81
Number of Observations Used 81
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & \begin{tabular}{l}
Mean \\
Square
\end{tabular} & F Value & Pr \(>\mathrm{F}\) \\
\hline Model & 3 & 4122.74491 & 1374.24830 & 6894.11 & \(<.0001\) \\
\hline Error & 77 & 15.34892 & 0.19934 & & \\
\hline Corrected Total & 80 & 4138.09384 & & & \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Root MSE & 0.44647 & R-Square & 0.9963 \\
Dependent Mean & 5.29914 & Adj R-Sq & 0.9961 \\
Coeff Var & 8.42536 & &
\end{tabular}
Coeff Var
Parameter Estimates
\begin{tabular}{lccccc} 
& \multicolumn{5}{c}{\begin{tabular}{c} 
Parameter \\
Estimate
\end{tabular}} \\
Variable & DF & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & t Value & Pr \(>\) |t| \\
Intercept & 1 & -0.45357 & 0.14529 & -3.12 & 0.0025 \\
X8 & 1 & 0.08084 & 0.04725 & 1.71 & 0.0911 \\
X12 & 1 & 0.02353 & 0.00061143 & 38.48 & \(<.0001\) \\
X13 & 1 & 0.19269 & 0.02958 & 6.51 & \(<.0001\)
\end{tabular}
```

Oil-wet system program:

```
Recovery:
data allMandVDP;
set allMandVDP;;
x2=homo**2;
proc reg;model vdp06= homo /r clm cli alpha=.05;
run;
proc reg;model vdp07= M lwor x2 /r clm cli alpha=.05;
run;
proc reg;model vdp08= M lwor x2 /r clm cli alpha=.05;
run;
proc reg;model vdp09= M lwor x2 /r clm cli alpha=.05;
run;
*proc gplot;
*plot homo * (vdp06 vdp07 vdp08 vdp09);
*run;
PVI:
option ls=120 ps=75 nocenter nodate;
title 'Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and
0.6';
data allMandVDPandPVI;
infile "c:\0001 My Research\Tesis Total\Writings and Calculations\ultimos a Nov
19\heterwaterwetPVIdata" ;
input M lwor rfhomo PVIhomo rf06 PVI06 rf07 PVIO7 rf08 PVI08 rf09 PVIO9;
data allMandVDPandPVI;
set allMandVDPandPVI;
e=2.7182818284590452353603;
x9=M;
x11=e**(lwor);
x12=10**(lwor);
proc reg;model PVIhomo= x8 x12 x13 /r clm cli alpha=.05;
run;
proc reg;model PVIO6= x8 x12 x13 /r clm cli alpha=.05;
run;
proc reg;model PVIO7= x8 x12 x13 /r clm cli alpha=.05;
run;
proc reg;model PVIO8= x8 x12 x13 /r clm cli alpha=.05;
run;
proc reg;model PVIO9= x8 x12 x13 /r clm cli alpha=.05;
run;
*proc gplot;
*plot homo * (vdp06 vdp07 vdp08 vdp09);
*run;
```


Results from the Oil-wet model, Recovery Factor:

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and 0.6
1 9 7
```

The REG Procedure
Model: MODEL1
Dependent Variable: vdp06
Number of Observations Read 84

Number of Observations Used 84

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr $>\mathrm{F}$
Model	1	0.21885	0.21885	2746.83	$<.0001$
Error	82	0.00653	0.00007967		
Corrected Total	83	0.22538			
Root MSE	0.00893	R-Square	0.9710		
Dependent Mean	0.26381	Adj R-Sq	0.9707		
Coeff Var	3.38349				

Parameter Estimates						
		Parameter	Standard			
Variable	DF	Estimate	Error	t Value	Pr $>$ \|t	
Intercept	1	-0.09880	0.00699	-14.14	$<.0001$	
homo	1	1.27817	0.02439	52.41	$<.0001$	

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and 0.6
201
The REG Procedure
Model: MODEL1
Dependent Variable: vdp07
Number of Observations Read 84
Number of Observations Used 84
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & Pr \(>\mathrm{F}\) \\
\hline Model & 3 & 0.21292 & 0.07097 & 2206.41 & \(<.0001\) \\
\hline Error & 80 & 0.00257 & 0.00003217 & & \\
\hline Corrected Total & 83 & 0.21549 & & & \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Root MSE & 0.00567 & R-Square & 0.9881 \\
Dependent Mean & 0.25536 & Adj R-Sq & 0.9876 \\
Lef Var & 2.22102 & &
\end{tabular}
Coeff Va
Parameter Estimates
\begin{tabular}{lccccc} 
& \multicolumn{5}{c}{\begin{tabular}{c} 
Parameter \\
Estimate
\end{tabular}} \\
Variable & DF & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & \(t\) Value & Pr \(>\) |t| \\
Intercept & 1 & 0.09036 & 0.01160 & 1.06 & 0.2907 \\
X8 & 1 & -0.00226 & 0.00052347 & -6.90 & \(<.0001\) \\
X10 & 1 & 0.01459 & 0.00217 & 10.92 & \(<.0001\) \\
X11 & 1 & 1.78812 & 0.04889 & 15.37 & \(<.0001\)
\end{tabular}
```

Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with $M=1$, 3 and 0.6 205

The REG Procedure
Model: MODEL1
Dependent Variable: vdp08

Number of Observations Read	84
Number of Observations Used	84

Source	Analysis of Variance			F Value	Pr $>\mathrm{F}$
	DF	Sum of Squares	Mean Square		
Model	3	0.30137	0.10046	3562.41	$<.0001$
Error	80	0.00226	0.00002820		
Corrected Total	83	0.30362			
Root MSE	0.00531	R-Square	0.9926		
Dependent Mean	0.22262	Adj R-Sq	0.9923		
Coeff Var	2.38536				

	Parameter Estimates				
	DF	Parameter Estimate	Standard Error	t Value	Pr
Variable	DF				
Intercept	1	0.06727	0.00627	10.73	$<.0001$
X8	1	-0.00489	0.00055858	-8.76	$<.0001$
X10	1	0.03839	0.00260	14.77	$<.0001$
X11	1	1.27549	0.11041	11.55	$<.0001$

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and 0.6
209
The REG Procedure
Model: MODEL1
Dependent Variable: vdp09
Number of Observations Read 
```

Source	Analysis of Variance			F Value	Pr $>\mathrm{F}$
	DF	Sum of Squares	Mean Square		
Model	3	0.24670	0.08223	4306.13	<. 0001
Error	80	0.00153	0.00001910		
Corrected Total	83	0.24823			
Root MSE	0.00437	R-Square	0.9938		
Dependent Mean	0.20143	Adj R-Sq	0.9936		
Coeff Var	2.16950				

	Parameter Estimates					
	Parameter	Standard				
Variable	DF	Estimate	Error	t Value	Pr	
Intercept	1	0.07480	0.00516	14.50	$<.0001$	
X8	1	-0.00535	0.00045967	-11.63	$<.0001$	
X10	1	0.04112	0.00214	19.23	$<.0001$	
X11	1	0.88482	0.09086	9.74	$<.0001$	

Results from the OIL-wet model, PVI:

Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with $M=1,3$ and $0.6 \quad 9609$

The REG Procedure
Model: MODEL1
Dependent Variable: PVIhomo
Number of Observations Read 87
Number of Observations Used 87

Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Value
$\mathrm{Pr}>\mathrm{F}$				
Model	3	294.48907	98.16302	297.26
<. 0001				
Error	83	27.40850	0.33022	
Corrected Total	86	321.89757		
Root MSE	0.57465	R -Square	0.9149	
Dependent Mean	1.75655	Adj R-Sq	0.9118	
Coeff Var	32.71468			

Variable	Parameter Estimates				$\operatorname{Pr}>\|t\|$
	DF	Parameter Estimate	Standard Error	t Value	
Intercept	1	-0.86243	0.17016	-5.07	$<.0001$
X8	1	0.41381	0.05868	7.05	$<.0001$
X12	1	0.00194	0.00075435	2.57	0.0119
X13	1	0.24178	0.03561	6.79	<.0001

Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with $M=1,3$ and 0.6 9610

The REG Procedure
Model: MODEL1
Dependent Variable: PVI06

Number of Observations Read	87
Number of Observations Used	87


```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and
0.6
9614
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and
0.6 9617
The REG Procedure
Model: MODEL1
Dependent Variable: PVIO7
Number of Observations Read 87
Number of Observations Used 87
```



```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and
0.6
9618
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and
0.6 9621
The REG Procedure
Model: MODEL1
Dependent Variable: PVIO8
Number of Observations Read 87
Number of Observations Used 87
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Analysis of Variance} \\
\hline \multirow[b]{2}{*}{Source} & & Sum of & Mean & \\
\hline & DF & Squares & Square & F Value \\
\hline \multicolumn{5}{|l|}{Pr \(>\mathrm{F}\)} \\
\hline Model & 3 & 2157.88326 & 719.29442 & 537.78 \\
\hline \multicolumn{5}{|l|}{<.0001} \\
\hline Error & 83 & 111.01378 & 1.33752 & \\
\hline Corrected Total & 86 & 2268.89704 & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Root MSE \\
Dependent Mean \\
Coeff Var
\end{tabular}} & 1.15651 & \multirow[t]{3}{*}{\begin{tabular}{l}
R-Square \\
Adj R-Sq
\end{tabular}} & \multicolumn{2}{|l|}{0.9511} \\
\hline & 3.77747 & & 0.9493 & \\
\hline & 30.61598 & & & \\
\hline & \multicolumn{2}{|l|}{Parameter Estimates} & & \\
\hline & Parameter & Standard & & \\
\hline Variable DF & Estimate & Error & t Value & \(\operatorname{Pr}>|t|\) \\
\hline Intercept 1 & -1.26744 & 0.34246 & -3.70 & 0.0004 \\
\hline X8 1 & 0.45081 & 0.11810 & 3.82 & 0.0003 \\
\hline X12 1 & 0.01279 & 0.00152 & 8.42 & \(<.0001\) \\
\hline X13 1 & 0.32235 & 0.07167 & 4.50 & <.0001 \\
\hline
\end{tabular}
```

```
Gral corr behavior, Homo, VDP 0.6, 0.7, 0.8, and 0.9 with M= 1, 3 and
0.6
9625
The REG Procedure
Model: MODEL1
Dependent Variable: PVIO9
Number of Observations Read 87
Number of Observations Used 87
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Analysis of Variance} \\
\hline Source & \multirow[t]{2}{*}{DF} & Sum of Squares & \multirow[t]{2}{*}{Mean Square} & \multirow[t]{2}{*}{F Value} \\
\hline \(\mathrm{Pr}>\mathrm{F}\) & & & & \\
\hline Model & 3 & 1888.85706 & 629.61902 & 3387.07 \\
\hline \multicolumn{5}{|l|}{<. 0001} \\
\hline Error & 83 & 15.42881 & 0.18589 & \\
\hline Corrected Total & 86 & 1904.28586 & & \\
\hline Root MSE & 0.43115 & R -Square & 0.9919 & \\
\hline Dependent Mean & 3.44690 & Adj R-Sq & 0.9916 & \\
\hline Coeff Var & 12.50832 & & & \\
\hline
\end{tabular}
\begin{tabular}{lccccc} 
& \multicolumn{5}{c}{ Parameter Estimates } \\
& & Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>\) |t| \\
Intercept & 1 & -0.64968 & 0.12767 & -5.09 & \(<.0001\) \\
X8 & 1 & 0.18524 & 0.04403 & 4.21 & \(<.0001\) \\
X12 & 1 & 0.01370 & 0.00056597 & 24.20 & \(<.0001\) \\
X13 & 1 & 0.22142 & 0.02672 & 8.29 & \(<.0001\)
\end{tabular}
```


APPENDIX C

EXAMPLE OF BASIC DATA FILES FOR HETEROGENEOUS RESERVOIRS

Table 25-Data for heterogeneous reservoirs, example for water-wet systems.

M	LogWOR	RF homo	PVI homo	RF 0.6	PVI 0.6	RF 0.7	PVI 0.7
0.6	0.0	0.49	0.30	0.45	0.35	0.43	0.30
0.6	0.3	0.50	0.32	0.47	0.38	0.45	0.32
0.6	0.6	0.53	0.35	0.48	0.39	0.46	0.37
0.6	0.7	0.53	0.35	0.48	0.41	0.47	0.39
0.6	0.8	0.54	0.37	0.49	0.42	0.47	0.42
0.6	0.9	0.54	0.39	0.49	0.46	0.48	0.46
0.6	1.0	0.54	0.42	0.51	0.52	0.49	0.49
0.6	1.1	0.55	0.46	0.51	0.59	0.49	0.55
0.6	1.2	0.55	0.52	0.52	0.65	0.50	0.59
0.6	1.3	0.56	0.55	0.53	0.79	0.51	0.72
0.6	1.4	0.56	0.65	0.54	0.85	0.51	0.79
0.6	1.5	0.56	0.71	0.54	0.92	0.52	0.98
0.6	1.6	0.57	0.78	0.55	1.18	0.53	1.18
0.6	1.7	0.58	1.04	0.56	1.31	0.54	1.44
0.6	1.8	0.58	1.18	0.56	1.44	0.55	1.77
0.6	1.9	0.59	1.44	0.57	1.71	0.56	2.10
0.6	2.0	0.59	1.70	0.57	2.10	0.56	2.50
0.6	2.1	0.60	2.09	0.58	2.50	0.57	3.03
0.6	2.2	0.60	2.49	0.59	3.03	0.58	3.62
0.6	2.3	0.60	3.01	0.59	3.55	0.58	4.28
0.6	2.4	0.61	3.53	0.60	4.34	0.59	5.07
0.6	2.5	0.61	4.32	0.60	5.13	0.59	6.06
0.6	2.6	0.62	5.11	0.60	6.19	0.60	7.24
0.6	2.7	0.62	6.15	0.61	7.37	0.60	8.63
0.6	2.8	0.62	7.33	0.61	8.69	0.61	10.21
0.6	2.9	0.62	8.64	0.61	10.41	0.61	12.05
0.6	3.0	0.63	9.56	0.62	11.46	0.61	13.24

Table 26-Data for heterogeneous reservoirs, example for oil-wet systems.

M	LogWOR	RF homo	PVI homo	RF 0.6	PVI 0.6	RF 0.7	PVI 0.7
0.6	0.0	0.23	0.20	0.17	0.16	0.20	0.18
0.6	0.1	0.23	0.21	0.19	0.17	0.20	0.18
0.6	0.3	0.25	0.22	0.19	0.18	0.20	0.19
0.6	0.4	0.25	0.23	0.20	0.21	0.21	0.21
0.6	0.5	0.26	0.26	0.22	0.23	0.21	0.22
0.6	0.6	0.27	0.28	0.22	0.26	0.22	0.26
0.6	0.8	0.27	0.30	0.23	0.33	0.23	0.32
0.6	0.9	0.28	0.35	0.25	0.39	0.24	0.39
0.6	1.0	0.28	0.39	0.25	0.44	0.25	0.42
0.6	1.1	0.28	0.42	0.26	0.52	0.25	0.45
0.6	1.2	0.29	0.47	0.27	0.58	0.26	0.52
0.6	1.3	0.29	0.52	0.27	0.65	0.26	0.65
0.6	1.4	0.30	0.56	0.28	0.78	0.27	0.71
0.6	1.5	0.30	0.65	0.28	0.91	0.27	0.84
0.6	1.6	0.31	0.78	0.29	1.04	0.28	0.97
0.6	1.7	0.31	0.91	0.30	1.30	0.28	1.10
0.6	1.8	0.31	1.04	0.30	1.43	0.29	1.30
0.6	1.9	0.31	1.17	0.30	1.69	0.29	1.56
0.6	2.0	0.32	1.30	0.31	1.95	0.29	1.88
0.6	2.1	0.32	1.43	0.31	2.21	0.30	2.33
0.6	2.2	0.32	1.69	0.31	2.46	0.30	2.79
0.6	2.3	0.32	1.95	0.32	2.85	0.31	3.37
0.6	2.4	0.32	2.21	0.32	3.24	0.31	4.02
0.6	2.5	0.32	2.46	0.32	3.63	0.31	4.73
0.6	2.6	0.32	2.85	0.32	4.15	0.32	5.58
0.6	2.7	0.33	3.24	0.32	4.67	0.32	6.42
0.6	2.8	0.33	3.63	0.32	5.32	0.32	7.33
0.6	2.9	0.33	4.15	0.32	6.10	0.32	8.30
0.6	3.0	0.33	4.41	0.33	6.62	0.32	8.89

APPENDIX D

SIMULATION MODEL FOR HOMOGENEOUS RESERVOIR

-- Black Oil model for waterflooding process.
-- This model is only for WATER INJECTION.
-- Grid 19x19x10 = 3610 cells

RUNSPEC
TITLE
350204 homogeneo vs heterogeneo $\mathrm{VR}=0.1$
DIMENS
-- NX NY NZ
$191910 /$
NONNC
-- NOSIM

OIL
WATER

FIELD
IMPLICIT
EQLDIMS
$110050150 /$
TABDIMS
--\# of sat \#of PVT max \# sat max \# press max \# of max \# Rs
--tables tables nodes nodes FIP regions nodes
$\begin{array}{llllll}1 & 1 & 100 & 100 & 1 & 100\end{array}$
WELLDIMS
--max \# \#of conn max \# max \# wells
--wells per well groups per group
550 2 /
START
19 'JUL' 2006 /
-- Specifies the size of the stack for Newton iterations
NSTACK
10 /
UNIFOUT

UNIFIN

```
DEBUG
200000 1/
```


GRID

-- PERMX,Y CONSTTE $=120$

```
EQUALS
'DX' 20/
'DY' 20/
'DZ' 10/
'PORO' 0.3/
'TOPS' 8325 119119 1 1/
'PERMX' 200 119119 1 1 /
'PERMX' 200 119119 2 2 /
'PERMX' 200 119119 3 3 /
'PERMX' 200 1 191194 4 /
'PERMX' 200 119119 5 5 /
'PERMX' 200 119119 6 6 /
'PERMX' 200 11911977 /
'PERMX' 200 119119 8 8 /
'PERMX' 200 1 19119 9 9 /
'PERMX' 200 119119 1010 /
/
COPY
    'PERMX' 'PERMY' 1 19 1 19110/
    'PERMX' 'PERMZ' 119119110/
/
```

MULTIPLY
-- Kv/Kh
PERMZ $0.1119119110 /$
1

INIT

SWOF
-- Sw Krw Kro PCwo
-- Sat water int $=0.4$

0.40000	0.00000	0.90000	0.00000
0.40667	0.00000	0.85575	0.00000
0.41333	0.00000	0.81297	0.00000
0.42000	0.00000	0.77164000000	
0.42667	0.00000	0.731730 .00000	
0.43333	0.00000	0.69323	0.00000
0.44000	0.00001	0.65610	0.00000

0.44667	0.00001	0.620320 .00000
0.45333	0.00002	0.585870 .00000
0.46000	0.00004	0.552710 .00000
0.46667	0.00007	0.520830 .00000
0.47333	0.00011	0.490200 .00000
0.48000	0.00018	0.460800 .00000
0.48667	0.00026	0.432600 .00000
0.49333	0.00038	0.405570 .00000
0.50000	0.00054	0.379690 .00000
0.50667	0.00074	0.354930 .00000
0.51333	0.00100	0.331280 .00000
0.52000	0.00134	0.308700 .00000
0.52667	0.00175	0.287170 .00000
0.53333	0.00226	0.266670 .00000
0.54000	0.00289	0.247160 .00000
0.54667	0.00365	0.228630 .00000
0.55333	0.00455	0.211050 .00000
0.56000	0.00563	0.194400 .00000
0.56667	0.00691	0.178650 .00000
0.57333	0.00840	0.163770 .00000
0.58000	0.01015	0.149740 .00000
0.58667	0.01217	0.136530 .00000
0.59333	0.01451	0.124130 .00000
0.60000	0.01719	0.112500 .00000
0.60667	0.02025	0.101620 .00000
0.61333	0.02373	0.091470 .00000
0.62000	0.02768	0.082010 .00000
0.62667	0.03214	0.073230 .00000
0.63333	0.03715	0.065100 .00000
0.64000	0.04277	0.057600 .00000
0.64667	0.04905	0.050700 .00000
0.65333	0.05604	0.044370 .00000
0.66000	0.06382	0.038590 .00000
0.66667	0.07243	0.033330 .00000
0.67333	0.08195	0.028580 .00000
0.68000	0.09244	0.024300 .00000
0.68667	0.10398	0.020470 .00000
0.69333	0.11665	0.017070 .00000
0.70000	0.13052	0.014060 .00000
0.70667	0.14568	0.011430 .00000
0.71333	0.16222	0.009150 .00000
0.72000	0.18022	0.007200 .00000
0.72667	0.19980	0.005550 .00000
0.73333	0.22103	0.004170 .00000
0.74000	0.24404	0.003040 .00000
0.74667	0.26892	0.002130 .00000
0.75333	0.29579	0.001430 .00000
0.76000	0.32477	0.000900 .00000
0.76667	0.35598	0.000520 .00000
0.77333	0.38954	0.000270 .00000
0.78000	0.42558	0.000110 .00000
0.78667	0.46424	0.000030 .00000
0.79333	0.50567	0.000000 .00000

```
0.80000 0.55000 0.00000 0.00000
-- Sat oil res = 0.2
/
-- PVT PROPERTIES OF WATER
-- REF. PRES. REF. FVF COMPRESSIBILITY REF VISCOSITY VISCOSIBILITY
PVTW
    4014.7 1.0 3.13D-6 1.0 0/
ROCK
-- REF. PRES COMPRESSIBILITY
    14.7 3.0D-6 /
DENSITY
-- OIL WATER GAS
    49.1 62.428 0.06054 /
PVDO
--to be updated
--Press Bo Visc
4 0 0 1 . 0 0 0 4 5 . 1 6 0
1200 1.0003 5.164
2000 1.0002 5.167
2800 1.0001 5.550
3600 1.0000 5.000
4400 0.9999 5.0001
5200 0.9998 5.0002
60000.99975.0003
7000 0.9996 5.0004
8000 0.9995 5.0005
90000.9994 5.0006
/
SOLUTION =======================
-- DATA FOR INITIALISING FLUIDS TO POTENTIAL EQUILIBRIUM
--
-- DATUM DATUM OWC OWC GOC GOC RSVD RVVD SOLN
-- DEPTH PRESS DEPTH PCOW DEPTH PCOG TABLE TABLE METH
EQUIL
    8400 3665.3518 15000 0 /
RPTRST
    BASIC=2 /
SUMMARY =============
--REQUEST PRINTED OUTPUT OF SUMMARY FILE DATA
```

```
RUNSUM
-- FIELD OIL PRODUCTION, Cumulative oil prod. for field and for every well
FOPR
FOPT
WOPT
/
WOPR
/
-- FIELD WATER INJ. RATE, Cumulative water inj. for field and for every well
FWIR
FWIT
WWIT
/
WWIR
/
--INSTANTANEOUS WATER CUTS FOR FIELD AND FOR EVERY WELL.
FWCT
WWCT
/
FWPR
WWPR
/
--OIL IN PLACE for field and for every FIP Region
FOIP
ROIP
/
--Water in place for field and for every FIP region
FWIP
RWIP
/
--Average PRESSURE for field and for every FIP region
FPR
RPR
/
-- WELL BOTTOM-HOLE PRESSURE
WBHP
/
TCPU
ELAPSED
SEPARATE
RPTONLY
```

SCHEDULE ===1

```
-- WELL SPECIFICATION DATA
--
--WELL GROUP LOCATION BHP PI
--NAME NAME I J DEPTH DEFN
WELSPECS
'INJ1' 'G' 1 1 1* 'WATER' 1* 'STD' 'SHUT' 'NO' /
'PROD1' 'G' 19 19 1*'WATER' 1* 'STD' 'SHUT' 'NO' /
/
```

-- COMPLETION SPECIFICATION DATA
--
--WELL -LOCATION- OPEN/ SAT CONN WELL
--NAME I J K1 K2 SHUT TAB FACT DIAM
COMPDAT
'PROD1' 1919110 'OPEN' 2* 0.5 /
'INJ1' $11110{ }^{\prime} \mathrm{OPEN}^{\prime} 2^{*} 0.5$ /
/
-- SELECCIONAR WCONPROD Y WCONINJE SEGUN LA SENSIBILIDAD QUE QUERA (PCTTE
O DECL)
WCONPROD
--WELL OPEN/ CNTL OIL WATER GAS LIQU RES BHP
--NAME SHUT MODE RATE RATE RATE RATE RATE
'PROD1' 'OPEN' 'RESV' 4* 2000 4* /
/
WCONINJE
-- PARA RECORDAR: PARA MANTENER PRESION CONTROLAR RESV. SI CONTROLO LRAT O
RATE Y QUIERO MANTENER PRESION
-- DEBO AJUSTAR POR FACTORES VOLUMETRICOS BW Y BO.
--WELL INJ OPEN/ CNTL SURF. FLOW RESV. FLOW BHP
--NAME TYPE SHUT MODE RATE RATE RATE UPPER
'INJ1' 'WATER' 'OPEN' 'RESV' 1* 2000 4* /
/
-- WCONPROD
-- 'PROD1' 'OPEN' 'LRAT' 3* 20 5* /
-- /
--
-- WCONINJE
-- 'INJ1' 'WATER' 'OPEN' 'RATE' 20 5*/
-- /
RPTSCHED
FIP=2 WELLS=4 /
TUNING
1* 10 /
/

TSTEP
-- 25 years
900*50

END

APPENDIX E

EXAMPLE OF SIMULATION MODEL FOR HETEROGENEOUS RESERVOIR

-- Black Oil model for waterflooding process.
-- This model is only for WATER INJECTION.
-- Grid 19x19x10 = 3610 cells

RUNSPEC
TITLE
350204 homogeneous vs. heterogeneous VR=0.1
DIMENS
-- NX NY NZ
$191910 /$
NONNC
OIL

WATER
FIELD
IMPLICIT
EQLDIMS
$110050150 /$
TABDIMS
--\# of sat \#of PVT max \# sat max \# press max \# of max \# Rs
--tables tables nodes nodes FIP regions nodes
$\begin{array}{llllll}1 & 1 & 100 & 100 & 1 & 100\end{array}$
WELLDIMS
--max \# \#of conn max \# max \# wells
--wells per well groups per group
$55025 /$
START
19 'JUL' 2006 /
-- Specifies the size of the stack for Newton iterations NSTACK
10 /
UNIFOUT
UNIFIN
DEBUG

```
200000 1/
```


GRID

EQUALS
'DX' 20 /
'DY' 20 /
'DZ' 10 /
'PORO' 0.3 /
'TOPS' $832511911911 /$
'PERMX' $20011911911 /$
'PERMX' 14011911922 /
'PERMX' 11011911933 /
'PERMX' $8011911944 /$
'PERMX' $6011911955 /$
'PERMX' 40 11911966/
'PERMX' 1011911977 /
'PERMX' $511911988 /$
'PERMX' 111911999 /
'PERMX' $0.21191191010 /$
/
COPY
'PERMX' 'PERMY' 119119110 /
'PERMX' 'PERMZ' 119119110 /
/

```
MULTIPLY
-- Kv/Kh
PERMZ 0.1 1 19119110/
/
```

INIT

PROPS $=============$
SWOF
-- Sw Krw Kro PCwo
-- Sat water int $=0.4$
0.25
0.254166667
$0 \quad 0.9 \quad 0$
$0.00025 \quad 0.870250$
0.258333333
$0.001 \quad 0.841 \quad 0$
$0.00225 \quad 0.812250$
$0.004 \quad 0.784 \quad 0$
0.266666667
0.270833333 $0.00625 \quad 0.756250$
0.275
0.279166667
$0.009 \quad 0.729 \quad 0$
0.283333333
$0.01225 \quad 0.702250$
0.2875
$0.016 \quad 0.676 \quad 0$
$0.02025 \quad 0.650250$
$\begin{array}{llll}0.291666667 & 0.025 & 0.625 & 0\end{array}$

0.295833333	0.03025	0.600250
0.3	0.0360 .576	0
0.304166667	0.04225	0.552250
0.308333333	$0.049 \quad 0.529$	0
0.3125	0.05625	0.506250
0.316666667	$0.064 \quad 0.484$	0
0.320833333	0.07225	0.462250
0.325	$0.081 \quad 0.441$	0
0.329166667	0.09025	0.420250
0.333333333	0.10 .4	0
0.3375	0.11025	0.380250
0.341666667	$0.121 \quad 0.361$	0
0.345833333	0.13225	0.342250
0.35	$0.144 \quad 0.324$	0
0.354166667	0.15625	0.306250
0.358333333	$0.169 \quad 0.289$	0
0.3625	0.18225	0.272250
0.366666667	0.1960 .256	0
0.370833333	0.21025	0.240250
0.375	$0.225 \quad 0.225$	0
0.379166667	0.24025	0.210250
0.383333333	0.2560 .196	0
0.3875	0.27225	0.182250
0.391666667	0.2890 .169	0
0.395833333	0.30625	0.156250
0.4	$0.324 \quad 0.144$	0
0.404166667	0.34225	0.132250
0.408333333	$0.361 \quad 0.121$	0
0.4125	0.38025	0.110250
0.416666667	0.40 .1	0
0.420833333	0.42025	0.090250
0.425	$0.441 \quad 0.081$	0
0.429166667	0.46225	0.072250
0.433333333	$0.484 \quad 0.064$	0
0.4375	0.50625	0.056250
0.441666667	0.5290 .049	0
0.445833333	0.55225	0.042250
0.45	0.5760 .036	0
0.454166667	0.60025	0.030250
0.458333333	$0.625 \quad 0.025$	0
0.4625	0.65025	0.020250
0.466666667	0.6760 .016	0
0.470833333	0.70225	0.012250
0.475	0.7290 .009	0
0.479166667	0.75625	0.006250
0.483333333	0.7840 .004	0
0.4875	0.81225	0.002250
0.491666667	0.8410 .001	0
0.495833333	0.87025	0.000250
0.5	0.90	0
-- Sat oil res $=0.2$		
,		

```
-- PVT PROPERTIES OF WATER
-- REF. PRES. REF. FVF COMPRESSIBILITY REF VISCOSITY VISCOSIBILITY
PVTW
    4014.7 1.0 3.13D-6 3.0 0/
ROCK
-- REF. PRES COMPRESSIBILITY
    14.7 3.0D-6 /
DENSITY
-- OIL WATER GAS
    49.1 62.428 0.06054 /
PVDO
--to be updated
--Press Bo Visc
400 1.0004 5.160
12001.00035.164
2000 1.0002 5.167
2800 1.0001 5.550
3600 1.0000 5.000
4 4 0 0 0 . 9 9 9 9 5 . 0 0 0 1
5200 0.9998 5.0002
6000 0.9997 5.0003
70000.9996 5.0004
80000.99955.0005
90000.9994 5.0006
/
SOLUTION =======================
-- DATA FOR INITIALIZING FLUIDS TO POTENTIAL EQUILIBRIUM
--
-- DATUM DATUM OWC OWC GOC GOC RSVD RVVD SOLN
-- DEPTH PRESS DEPTH PCOW DEPTH PCOG TABLE TABLE METH
EQUIL
    8400 3665.3518 15000 0 /
RPTRST
BASIC=2 /
SUMMARY =============
--REQUEST PRINTED OUTPUT OF SUMMARY FILE DATA
RUNSUM
-- FIELD OIL PRODUCTION, Cumulative oil prod. for field and for every well FOPR
```

```
FOPT
WOPT
/
WOPR
/
-- FIELD WATER INJ. RATE, Cumulative water inj. for field and for every well
FWIR
FWIT
WWIT
/
WWIR
/
--INSTANTANEOUS WATER CUTS FOR FIELD AND FOR EVERY WELL.
FWCT
WWCT
/
FWPR
WWPR
/
--OIL IN PLACE for field and for every FIP Region
FOIP
ROIP
/
--Water in place for field and for every FIP region
FWIP
RWIP
/
--Average PRESSURE for field and for every FIP region
FPR
RPR
/
-- WELL BOTTOM-HOLE PRESSURE
WBHP
/
TCPU
ELAPSED
SEPARATE
RPTONLY
```

SCHEDULE

```
--WELL GROUP LOCATION BHP PI
--NAME NAME I J DEPTH DEFN
WELSPECS
'INJ1' 'G' 1 1 1* 'WATER' 1* 'STD' 'SHUT' 'NO' /
'PROD1' 'G' 19 19 1*'WATER' 1* 'STD' 'SHUT' 'NO' /
/
-- COMPLETION SPECIFICATION DATA
--
--WELL -LOCATION- OPEN/ SAT CONN WELL
--NAME I J K1 K2 SHUT TAB FACT DIAM
COMPDAT
'PROD1' 19 19 1 10'OPEN' 2* 0.5 /
'INJ1' 1 1110'OPEN' 2* 0.5 /
/
WCONPROD
--WELL OPEN/ CNTL OIL WATER GAS LIQU RES BHP
--NAME SHUT MODE RATE RATE RATE RATE RATE
'PROD1' 'OPEN' 'RESV' 4* 2000 4* /
/
WCONINJE
--WELL INJ OPEN/ CNTL SURF.FLOW RESV. FLOW BHP
--NAME TYPE SHUT MODE RATE RATE RATE UPPER
'INJ1' 'WATER' 'OPEN' 'RESV' 1* 2000 4* /
/
-- WCONPROD
-- 'PROD1' 'OPEN' 'LRAT' 3* 20 5* /
-- /
--
-- WCONINJE
-- 'INJ1' 'WATER' 'OPEN' 'RATE' 20 5*/
-- /
RPTSCHED
FIP=2 WELLS=4 /
TUNING
    1* 10 /
/
TSTEP
-- 25 years
900*50 / END
```


APPENDIX F

APPLICATION IN VBA FOR QUICK SLZ AND RECOVERY CALCULATIONS

```
Arnaldo Espinel
' This procedure calculates Waterflooding projects performance
' Part one:
' Declaration of Variables
Option Explicit
' Fractional Flow Calculations
Sub homogeneous()
    Dim i, j, moil, mwater, no, nw, kroe, krwe, sor, swc, M, x8, VDP, WOR, logM, lWOR, e, x1, x12, x13,
VR, Slope, Intercept, RF, RFprev, RFheter, PVI, PVIhomo, PVIhomorev, PVIrev, fwBT, SwBT, maxlog,
wet As Double
    Dim maxlog05, maxlog06, maxlog07, maxlog08, maxlog09, maxlog05a, maxlog06a, maxlog07a,
maxlog08a, maxlog09a, minwor As Double
    Dim points, sw(10000), kro(10000), krw(10000), swd(10000), fw(10000), pointsVDP(10000), RFheter2,
RFheterx, RFhetery, PVI2 As Double
    Dim x2, x3, x4, x5, x6, x7, x9, x10, x11, x120, x130, lwor2, RFprev2, RF2, worhomomin,
worhomomina, worhomomax, worhomomaxa As Double
' Data Table construction
With ThisWorkbook.Worksheets("Calculations")
    Range("d1,d200:n1,n200").ClearContents
    Cells(1,1) = "Input your data before running:"
    Cells(2, 1) = "Reservoir Name"
    'Name = .Cells(2, 2)
    Cells(3, 1) = "Oil Viscosity, cP"
    moil = Cells(3, 2)
    Cells(4, 1) = "Water Viscosity, cP"
    mwater = Cells(4, 2)
    Cells(5, 1) = "Corey exponent for oil(no)"
    no=Cells(5, 2)
    Cells(6, 1) = "Corey exponent for water(nw)"
    nw = Cells(6, 2)
    Cells(7, 1) = "Oil rel perm curve end-point (kroe)"
    kroe = Cells(7, 2)
    Cells(8, 1) = "Water rel perm curve end-point (krwe)"
    krwe = Cells(8, 2)
    Cells(9, 1) = "Residual oil saturation (Sor)"
    sor = Cells(9, 2)
    Cells(10, 1) = "Connate water saturation (Swc)"
    swc = Cells(10, 2)
    Cells(11, 1) = "Dykstra-Parsons coeff. (VDP)"
    VDP = Cells(11, 2)
    Cells(12,1) = "Water-wet=1 or Oil-wet=2"
    wet = Cells(12, 2)
    Cells(13, 1) = "Estimated max operational WOR"
    WOR = Cells(13, 2)
```

```
'wettability according to kr's plot:
points \(=10\)
For \(\mathrm{i}=1\) To points +1
    If \(\mathrm{i}=1\) Then
        \(\operatorname{sw}(\mathrm{i})=\mathrm{swc}\)
        Else
        \(\operatorname{sw}(\mathrm{i})=\mathrm{swc}+(1-\mathrm{swc}-\mathrm{sor}) *(\mathrm{i}-1) /\) points
    End If
    'normalizing
    \(\operatorname{swd}(i)=(\operatorname{sw}(i)-s w c) /(1-\operatorname{sor}-s w c)\)
    \(\operatorname{kro}(\mathrm{i})=\operatorname{kroe} *(1-\operatorname{swd}(\mathrm{i}))^{\wedge}\) no
    \(\operatorname{krw}(\mathrm{i})=\operatorname{krwe} * \operatorname{swd}(\mathrm{i})^{\wedge} \mathrm{nw}\)
    If \(\operatorname{krw}(i)=0\) Then
        \(\mathrm{fw}(\mathrm{i})=0\)
        Else
        \(\mathrm{fw}(\mathrm{i})=1 /(1+\operatorname{kro}(\mathrm{i}) *\) mwater \(/(\operatorname{krw}(\mathrm{i}) *\) moil \())\)
    End If
    \(\operatorname{Cells}(1,10)=" S w "\)
    'Cells(1, 11) = "SwD"
    Cells(1, 11) \(=\) "Kro"
    Cells \((1,12)=\) "Krw"
    Cells(1, 13) = "fw"
    \(\operatorname{Cells}(\mathrm{i}+1,10)=\operatorname{sw}(\mathrm{i})\)
    'Cells \((\mathrm{i}+1,11)=\operatorname{swd}(\mathrm{i})\)
    Cells \((\mathrm{i}+1,11)=\operatorname{kro}(\mathrm{i})\)
    \(\operatorname{Cells}(\mathrm{i}+1,12)=\operatorname{krw}(\mathrm{i})\)
    \(\operatorname{Cells}(\mathrm{i}+1,13)=\mathrm{fw}(\mathrm{i})\)
```


Next i

' Parameters calculations
$\mathrm{M}=$ (krwe / mwater) / (kroe / moil)
x8 = M
$\log M=\log (M) / \log (10)$
$\mathrm{e}=2.71828182845905$
$\mathrm{x} 1=($ mwater $/$ moil $) /$ no
$\mathrm{x} 2=($ mwater $/$ moil $)$
x3 $=$ no
$\mathrm{x} 4=\mathrm{nw}$
$\mathrm{x} 5=\mathrm{swc}$
$\mathrm{x} 6=$ sor
$\mathrm{x} 7=\log M$
'Homogeneous oil-wet:
If wet = 2 Then
Slope $=0.77519+8.93429 * x 1-3.36474 * x 2+2.67364 * x 4+28.2328 * x 6-8.40355 * x 7$
Intercept $=-3.4254-11.94 * x 1+4.78633 * x 2-1.4167 * x 4-0.33004 * x 5-0.0606 * x 6+5.30721 *$ x7
$\mathrm{fwBT}=0.6598+0.11888 * \mathrm{x} 1-0.04844 * \mathrm{x} 2+0.02099 * \mathrm{x} 3+0.05127 * \mathrm{x} 4-0.09342 * \mathrm{x} 7$

```
    SwBT = 0.56187 + 0.16777 * x1-0.0687* x2 - 0.022 * x 3 + 0.04494 * x 4 + 0.41472 * x5 - 0.5853 *
x6-0.1454* x7
'Homogeneous water-wet
Else
    Slope = 1.29383+27.8154*x1-6.7911* x2 + 2.08358 * x4 + 4.76521 * x5 + 22.3142* x6-4.794*
x7
    Intercept = -1.5668-30.399*x1 + 8.83008*x2-1.5008*x4-0.5834*x6-0.1052*x5 + 4.03107*
x7
    fwBT = 0.71084 + 0.20212 * x1 - 0.08234 * x2 + 0.01779 * x3 + 0.03932 * x4 - 0.09479 * x7
    SwBT = 0.64301 + 0.23901 * x1-0.1003 * x2 - 0.0302 * x 3 + 0.03722 * x4 + 0.34619 * x5 - 0.6538 *
x6-0.1548 * x7
End If
```

'All max log general:
'If wet = 2 Then
' maxlog $=1.82775+0.0629 * x 8-0.47157 *$ VDP
'Else
'maxlog $=5.15914+0.13366 * x 8-9.6964 * V D P+0.62073 *\left(10^{\wedge} \mathrm{VDP}\right)$
'End If
$1 *$
'All max log with constrains for case dependent cases
$\mathrm{VR}=$ mwater / moil
'maxwor and minwor homo:
'water-wet:
If wet $=1$ Then
worhomomina $=10^{\wedge}(0.10547+0.31449 * \mathrm{VR}+0.08504 *$ no $+0.18375 * \mathrm{nw}+0.56262 *$ sor + 0.15521 * swc +0.10024 * kroe $+0.11893 *$ krwe $-0.01843 *$ M)
worhomomaxa $=10^{\wedge}(1.31556-0.24884 * V R+0.60999 *$ no $+0.06739 *$ nw $-0.66761 *$ sor -1.25442 * swc -0.0454 * kroe -0.24884 * krwe +0.06416 * M)

Else
'oil-wet:
worhomomina $=10^{\wedge}(-0.10923+0.36546 * \mathrm{VR}+0.06644 *$ no $+0.18869 * \mathrm{nw}+0.41633 *$ sor + 0.17015 * swc +0.23567 * kroe -0.04279 * krwe +0.01746 * M)
worhomomaxa $=10^{\wedge}(2.15118-0.85163 * \mathrm{VR}+0.68975 *$ no $+0.0229 *$ nw $-1.14131 *$ sor $-0.70038 *$ swc $-1.29377 *$ kroe $+0.74267 *$ krwe $-0.12195 *$ M)
End If

If wet $=2$ Then
$\max \log 05=1.93449+0.02621 * x 8-0.45239 *(0.5)-0.00594 *\left(10^{\wedge}(0.5)\right)$
Else
$\max \log 05=5.15914+0.13366 * x 8-9.6964 *(0.5)+0.62073 *(10 \wedge(0.5))$
End If

```
If wet = 2 Then
    maxlog06a}=1.93449+0.02621*x8-0.45239*(0.6)-0.00594* (10^(0.6)
Else
    maxlog06a = 5.15914 + 0.13366*x8-9.6964*(0.6) + 0.62073 * (10^(0.6))
End If
If wet = 2 Then
    maxlog07a = 1.93449 + 0.02621 * x8-0.45239 * (0.7) - 0.00594 * (10^ (0.7))
Else
    maxlog07a}=5.15914+0.13366*x8-9.6964*(0.7) + 0.62073* (10^(0.7)
End If
If wet = 2 Then
    maxlog08a = 1.93449 + 0.02621 * x8-0.45239 * (0.8)-0.00594 * (10^ (0.8))
Else
    maxlog08a}=5.15914+0.13366*x8-9.6964*(0.8)+0.62073* (10^(0.8)
End If
If wet = 2 Then
    maxlog09a = 1.93449 + 0.02621 * x8 - 0.45239 * (0.9)-0.00594 * (10^ (0.9))
Else
    maxlog09a = 5.15914 + 0.13366*x8-9.6964*(0.9) + 0.62073 * (10^(0.9))
End If
If maxlog06a >= maxlog05 Then
maxlog06 = maxlog05 - (maxlog05 * 0.1)
Else
maxlog06 = maxlog06a
End If
If maxlog07a >= maxlog06a Then
maxlog07 = maxlog06a - (maxlog06a * 0.1)
Else
maxlog07 = maxlog07a
End If
If maxlog08a >= maxlog07a Then
maxlog08 = maxlog07a - (maxlog07a * 0.1)
Else
maxlog08 = maxlog08a
End If
If maxlog09a >= maxlog08a Then
maxlog09 = maxlog08a-(maxlog08a * 0.1)
Else
maxlog09 = maxlog09a
End If
If VDP <= 0.5 Then
    maxlog= maxlog05
    Else
    If VDP > 0.5 And VDP <= 0.65 Then
    maxlog= maxlog06
    End If
    If VDP > 0.65 And VDP <= 0.75 Then
    maxlog= maxlog07
```

End If
If VDP >0.75 And VDP $<=0.85$ Then
$\operatorname{maxlog}=m a x \log 08$
End If
If VDP >0.85 And VDP $<=1$ Then
$\operatorname{maxlog}=\max \log 09$
End If
End If
If VDP >0.5 Then
If wet $=1$ Then
'minwor $=10^{\wedge}(5.14786 *(\mathrm{VDP} \wedge 2)-8.44063 *(\mathrm{VDP})+3.81754)$
minwor $=10^{\wedge}\left(0.01738 * M+9.73473 *\left(\mathrm{VDP}{ }^{\wedge} 2\right)-10.83657 *(\mathrm{VDP})+4.9169-0.33856 *\left(10^{\wedge}\right.\right.$
VDP))
Else
'minwor $=10^{\wedge}(1.27008-1.27427 *(\mathrm{VDP} \wedge 2))$
minwor $=10^{\wedge}(2.37473+0.02337 * \mathrm{M}-2.99912 * \mathrm{VDP}-0.22364 *(10 \wedge \mathrm{VDP})+2.88892 * \mathrm{VDP} \wedge 2)$
End If
Else
If wet $=1$ Then
minwor $=10^{\wedge}\left(0.01738 * M+9.73473 *\left(0.5^{\wedge} 2\right)-10.83657 *(0.5)+4.9169-0.33856 *\left(10^{\wedge} 0.5\right)\right)$
Else
minwor $=10^{\wedge}\left(2.37473+0.02337 * M-2.99912 * 0.5-0.22364 *\left(10^{\wedge} 0.5\right)+2.88892 * 0.5 \wedge 2\right)$
End If
End If
If $\mathrm{VDP}=0.9$ And wet $=2$ Then
minwor $=5$
End If

If worhomomina $>\left(10^{\wedge}\left(2.37473+0.02337 * \mathrm{M}-2.99912 * 0.5-0.22364 *\left(10^{\wedge} 0.5\right)+2.88892 * 0.5 \wedge\right.\right.$ 2)) Then
worhomomin = worhomomina
Else
worhomomin $=\left(10^{\wedge}\left(2.37473+0.02337 * \mathrm{M}-2.99912 * 0.5-0.22364 *\left(10^{\wedge} 0.5\right)+2.88892 * 0.5 \wedge 2\right)\right)$

* 1.3

End If

If worhomomaxa $>10^{\wedge}(\max \log 05)$ Then
worhomomax = worhomomaxa
Else
worhomomax $=10^{\wedge}(\max \log 05) * 1.3$
End If

Cells $(26,1)=$ "WOR homo min"
$\operatorname{Cells}(26,2)=$ worhomomin
Cells $(27,1)=$ "WOR homo max"
Cells $(27,2)=$ worhomomax
$1 *$
'Recovery Calculations
lWOR $=\log ($ WOR $) / \log (10)$
RFprev $=($ lWOR - Intercept $) /$ Slope
' RF constrain
If RFprev > $(1-x 6)$ Then
RF $=(1-x 6)$
Else
RF $=$ RFprev
End If

```
x12 = e^ (lWOR)
x13 = 10^^ (IWOR)
lwor2 = Log(0.1) / Log(10)
x120 = e ^ ((Log(worhomomax) / Log(10)))
x130 = 10^ ((Log(worhomomax) / Log(10)))
```

Cells(14, 4) = "Message:"
Cells(14, 1) = "Results:"
Cells $(15,1)=$ "Slope"
$\operatorname{Cells}(15,2)=$ Slope
Cells(16, 1) = "Intercept"
$\operatorname{Cells}(16,2)=$ Intercept
$\operatorname{Cells}(17,1)=$ "fwBT"
$\operatorname{Cells}(17,2)=\mathrm{fwBT}$
Cells $(18,1)=$ "SwBT"
Cells $(18,2)=$ SwBT
Cells $(19,1)=$ "Max WOR"
$\operatorname{Cells}(19,2)=10 \wedge$ maxlog
Cells $(20,1)=$ "Min WOR"
$\operatorname{Cells}(20,2)=$ minwor
Cells $(21,1)=$ "Recovery Factor homogeneous"
$\operatorname{Cells}(21,2)=\mathrm{RF}$
Cells $(22,1)=$ "PVI homogeneous"
Cells $(23,1)=$ "Mobility Ratio"
$\operatorname{Cells}(23,2)=x 8$
' Calculation of SLZ end:
If VDP <0.5 Then
RFheter $=$ RF
Else
'water-wet and heterogeneous calculations
If VDP $>=0.5$ And VDP $<=0.65$ And wet $=1$ Then
RFheter $=-0.18015+1.27511 * R F$
$\mathrm{PVI}=-1.05462+0.46384 * \mathrm{x} 8+0.00912 * \mathrm{x} 13+0.28413 * \mathrm{x} 12$
End If
If VDP >0.65 And VDP $<=0.75$ And wet $=1$ Then
RFheter $=0.19068-0.00368 * \mathrm{x} 8+0.02336 * \mathrm{lWOR}+0.91971 * \mathrm{RF}^{\wedge} 2$

```
PVI \(=-1.2156+0.47344 * x 8+0.01136 * \mathrm{x} 13+0.31097 * \mathrm{x} 12\)
End If
If VDP \(>0.75\) And VDP \(<=0.85\) And wet \(=1\) Then
RFheter \(=0.09829-0.00751 * x 8+0.05354 * 1 W O R+0.88719 * R F \wedge 2\)
PVI \(=-2.06505+0.58703 * x 8+0.01217 * x 13+0.57103 * x 12\)
End If
If VDP \(>0.85\) And VDP \(<=1\) And wet \(=1\) Then
RFheter \(=0.1718-0.0144 * x 8+0.07227 *\) lWOR \(+0.44117 * R^{\wedge}{ }^{\wedge} 2\)
\(\mathrm{PVI}=-0.45357-0.08084 * \mathrm{x} 8+0.02353 * \mathrm{x} 13+0.19269 * \mathrm{x} 12\)
End If
End If
```

 'oil-wet and heterogeneous calculations
 If VDP $<=0.5$ Then
RFheter $=$ RF
Else
If VDP >0.5 And VDP $<=0.65$ And wet $=2$ Then
RFheter $=-0.0988+1.27817$ * RF
PVI $=-1.26805+0.49769 * x 8+0.00238 * \mathrm{x} 13+0.37376 * \mathrm{x} 12$
End If
If VDP >0.65 And VDP $<=0.75$ And wet $=2$ Then
RFheter $=0.09036-0.00226$ * x $8+0.01459$ * $1 \mathrm{WOR}+1.78812$ * RF ^ 2
$\mathrm{PVI}=-1.11471+0.43417 * \mathrm{x} 8+0.00691 * \mathrm{x} 13+0.30144 * \mathrm{x} 12$
End If
If VDP >0.75 And VDP $<=0.85$ And wet $=2$ Then
RFheter $=0.06727-0.00489 * x 8+0.03839 * 1 W O R+1.27549 * R F \wedge 2$
PVI $=-1.26744+0.45081 * x 8+0.01279 * \mathrm{x} 13+0.32235 * \mathrm{x} 12$
End If
If VDP >0.85 And VDP <= 1 And wet $=2$ Then
RFheter $=0.0748-0.00535 * x 8+0.04112 *$ lWOR $+0.88482 * R F ~ \wedge 2$
PVI $=-0.64968+0.18524 * x 8+0.0137 * x 13+0.22142 * \mathrm{x} 12$
End If
End If

If wet = 1 Then
PVIhomo $=-0.81246+0.35196 * x 8+0.008 * x 13+0.21624 * x 12$
Else
PVIhomo $=-0.86243+0.41381 * \mathrm{x} 8+0.00194 * \mathrm{x} 13+0.24178 * \mathrm{x} 12$
End If

If PVIhomo < 0.2 Then
PVIhomorev $=0.2$
Else
PVIhomorev = PVIhomo
End If

Cells(22, 2) = PVIhomorev

If VDP $<=0.5$ Then
PVIrev $=$ PVIhomorev

```
    Else
    PVIrev = PVI
End If
If PVI < 0.1 Then
    PVIrev = 0.1
    Else
    PVIrev = PVI
End If
If RFheter > RF Then
RFheterx = RF * 0.9
Else
RFheterx = RFheter
End If
If RFheter < 0 Then
RFhetery = RF * 0.9
Else
RFhetery = RFheter
End If
```

If RFheter <0 Then
Cells $(24,1)=$ "RF heterogeneous"
Cells $(24,2)=$ RFhetery
Else
Cells $(24,1)=$ "RF heterogeneous"
Cells $(24,2)=$ RFheterx
End If

Cells(25, 1) = "PVI Heterogeneous"
If VDP $<=0.5$ Then
Cells(25, 2) $=$ PVIhomorev
Else
Cells(25, 2) = PVIrev
End If
If PVIhomo $>=3$ Or lWOR $>$ maxlog Then
Cells $(15,4)=$ "Warning: due to the high WOR used, your RF value may be close to or beyond he end of the SLZ"
Cells $(16,4)=$ "Correlations are defined only for the SLZ so higher values of max WOR must be ingnored"
Cells $(17,4)=$ "If you obtain recovery factors for heterogeneous reservoirs higher than the correspondent"
Cells $(18,4)=$ "homogeneous recovery factor, you are extrapolating the SLZ and overestimating reserves"
Cells $(19,4)=$ "if that is the case, please try a lower WOR value (please check suggested Max Log WOR)"
Else

Cells $(15,4)=$ "No problem has been detected. Please continue your evaluation"
End If

Cells $(24,1)=$ "RF heterogeneous"
Cells $(24,2)=$ RFheter

End With

End Sub

APPENDIX G

VARIABLES SELECTION PROCESSES AND COVARIANCE MATRIX RESULTS
 Variable Selection and Covariance Matrix for the water-wet homogeneous model (Slope)

The REG Procedure
Model: MODEL1
Dependent Variable: slope
Number of Observations Read 226977
Number of Observations Used 226977
Forward Selection: Step 1
Statistics for Entry
DF $=1,226975$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$
$\mathrm{x} 1 \quad 1.000000 \quad 0.4993 \quad 226317<.0001$
$\begin{array}{lllll}\mathrm{x} 2 & 1.000000 & 0.4417 & 179557 & <.0001\end{array}$
$\begin{array}{lllll}\mathrm{x} 4 & 1.000000 & 0.3137 & 103754<.0001\end{array}$
$\begin{array}{lllll}\mathrm{x} 5 & 1.000000 & 0.0042 & 964.74<.0001\end{array}$
x6 $\quad 1.000000 \quad 0.0127 \quad 2919.78<.0001$
$\mathrm{x} 7 \quad 1.000000 \quad 0.4748 \quad 205174<.0001$
Variable x1 Entered: R-Square $=0.4993$ and $C(p)=1235459$
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value $\operatorname{Pr}>F$
Model $\quad 1 \quad 1735328 \quad 1735328 \quad 226317<.0001$
Error $2269751740372 \quad 7.66768$
Corrected Total 2269763475700
Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $8.325730 .010195114987667084<.0001$
x1 $23.96600 \quad 0.05038 \quad 1735328 \quad 226317<.0001$
Bounds on condition number: 1,1

Forward Selection: Step 2
The SAS System 09:56 Saturday, October 3, 20092888
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Forward Selection: Step 2

```
        Statistics for Entry
        DF=1,226974
            Model
Variable Tolerance R-Square F Value Pr > F
\begin{tabular}{lllll}
x 2 & 0.121152 & 0.4993 & \(17.78<.0001\) \\
x4 & 0.999971 & 0.8173 & \(394957<.0001\) \\
x5 & 0.990126 & 0.4993 & 12.160 .0005 \\
x6 & 0.977372 & 0.5483 & \(24657.2<.0001\) \\
x7 & 0.222493 & 0.5188 & \(9233.19<.0001\)
\end{tabular}
\[
\text { Variable } x 4 \text { Entered: R-Square }=0.8173 \text { and } C(p)=306744.1
\]
```

Analysis of Variance

Sum of Mean					
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	2	2840550	1420275	507543	$<.0001$
Error	226974	635150	2.79834		
Corrected Total	226976	3475700			

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>$ F
Intercept $1.93459 \quad 0.01189 \quad 74098 \quad 26479.2<.0001$
x1 $24.06865 \quad 0.03043 \quad 1750175 \quad 625434<.0001$
$2.00145 \quad 0.00318 \quad 1105223 \quad 394957<.0001$

Bounds on condition number: 1, 4.0001

Forward Selection: Step 3 The SAS System 09:56 Saturday, October 3, 20092889

The REG Procedure
Model: MODEL1
Dependent Variable: slope
Forward Selection: Step 3
Statistics for Entry
$\mathrm{DF}=1,226973$

Model Tolerance				
Variable	R-Square F Value Pr			
x2	0.120862	0.8177	566.47	$<.0001$
x5	0.985080	0.8193	2606.96	$<.0001$
x6	0.972575	0.8857	135979	$<.0001$
x7	0.221813	0.8291	15755.4	$<.0001$

$$
\text { Variable } \times 6 \text { Entered: R-Square }=0.8857 \text { and } C(p)=106791.5
$$

Analysis of Variance

```
Model 3 3078507 1026169 586397 <.0001
Error 226973 397193 1.74996
Corrected Total 226976 3475700
```

 Parameter Standard
 Variable Estimate Error Type II SS F Value Pr > F
 Intercept -1.63770 \(0.01350 \quad 2575514717.4<.0001\)
 x1 \(25.42569 \quad 0.02435 \quad 19084731090583<.0001\)
 $\begin{array}{llllll}\mathrm{x} 4 & 2.06667 & 0.00252 & 1172641 & 670097 & <.0001\end{array}$
$\begin{array}{llllll}\mathrm{x} 6 & 20.77006 & 0.05633 & 237957 & 135979<.0001\end{array}$
Bounds on condition number: $1.0282,9.1697$

Forward Selection: Step 4

 The SAS System 09:56 Saturday, October 3, 20092890The REG Procedure Model: MODEL1
Dependent Variable: slope
Forward Selection: Step 4
Statistics for Entry
$\mathrm{DF}=1,226972$

Variable | Model |
| :--- |
| Tolerance | R-Square F Value $\mathrm{Pr}>\mathrm{F}$

x2	0.120806	0.8865	$1458.51<.0001$	
x5	0.950012	0.8951	20208.0	$<.0001$
x7	0.221782	0.8969	24655.3	$<.0001$

Variable x 7 Entered: R-Square $=0.8969$ and $C(p)=74090.55$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	4	3117425	779356	493733	$<.0001$
Error	226972	358275	1.57850		
Corrected Total	226976	3475700			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $0.51508 \quad 0.01877 \quad 1188.54656 \quad 752.96<.0001$
x1 $18.69810 \quad 0.04869 \quad 232816 \quad 147492<.0001$
$\begin{array}{llllll}\mathrm{x} 4 & 2.04557 & 0.00240 & 1145224 & 725515<.0001\end{array}$
x6 $20.67050 \quad 0.05350 \quad 235648 \quad 149286<.0001$
$\begin{array}{lllll}\mathrm{x} 7 & -2.35963 & 0.01503 & 38918 & 24655.3<.0001\end{array}$
Bounds on condition number: 4.537, 44.33

[^0]
Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	6	3205594	534266	448942	$<.0001$
Error	226970	270106	1.19005		
Corrected Total	226976	3475700			

Bounds on condition number: 14.526, 203.73

All variables have been entered into the model.

The SAS System 09:56 Saturday, October 3, 20092893
The REG Procedure
Model: MODEL1
Dependent Variable: slope

Summary of Forward Selection

Variable Number Partial Model
Step Entered Vars In R-Square R-Square $C(p)$ F Value $\operatorname{Pr}>F$

x 1	1	0.4993	0.4993	1235459	226317	$<.0001$
x 4	2	0.3180	0.8173	306744	394957	$<.0001$
x 6	3	0.0685	0.8857	106792	135979	$<.0001$
x 7	4	0.0112	0.8969	74090.5	24655.3	$<.0001$
x 2	5	0.0163	0.9132	26468.8	42651.0	$<.0001$
x 5	6	0.0091	0.9223	7.0000	$26463.8<.0001$	
The SAS System	$09: 56$ Saturday, October 3, 2009 2894					
The REG Procedure						
Model: MODEL1						
Dependent Variable: slope						

Number of Observations Read 226977
Number of Observations Used 226977

Backward Elimination: Step 0

All Variables Entered: R-Square $=0.9223$ and $C(p)=7.0000$

Analysis of Variance

Sum of Mean					
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	6	3205594	534266	448942	$<.0001$
Error	226970	270106	1.19005		
Corrected Total	226976	3475700			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $1.293830 .021744214 .708783541 .61<.0001$
x1 $\quad 27.81540 \quad 0.05745 \quad 278940 \quad 234393<.0001$
$\begin{array}{lllll}\mathrm{x} 2 & -6.79106 & 0.03085 & 5768448472.0<.0001\end{array}$
$\begin{array}{llllll}\mathrm{x} 4 & 2.08358 & 0.00209 & 1178686 & 990447<.0001\end{array}$
x5 $4.76521 \quad 0.029293149326463 .8<.0001$
x6 $\quad 22.31418 \quad 0.04731 \quad 264688 \quad 222417<.0001$
x7 $\quad-4.79404 \quad 0.01729 \quad 9154476924.2<.0001$
Bounds on condition number: $14.526,203.73$

Backward Elimination: Step 1

The SAS System 09:56 Saturday, October 3, 20092895
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Backward Elimination: Step 1
Statistics for Removal
$\mathrm{DF}=1,226970$
Partial Model
Variable R-Square R-Square F Value $\mathrm{Pr}>\mathrm{F}$

x1	0.0803	0.8420	234393	$<.0001$
x2	0.0166	0.9057	48472.0	$<.0001$
x4	0.3391	0.5832	990447	$<.0001$
x5	0.0091	0.9132	26463.8	$<.0001$
x6	0.0762	0.8461	222417	$<.0001$
x7	0.0263	0.8959	76924.2	$<.0001$

All variables left in the model are significant at the 0.0500 level.
The SAS System 09:56 Saturday, October 3, 20092896
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Number of Observations Read 226977
Number of Observations Used 226977
Stepwise Selection: Step 1

> Statistics for Entry
> $\mathrm{DF}=1,226975$

Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$
$\mathrm{x} 1 \quad 1.000000 \quad 0.4993 \quad 226317<.0001$

| x2 | 1.000000 | 0.4417 | $179557<.0001$ |
| :--- | :--- | :--- | :---: | :---: |
| x4 | 1.000000 | 0.3137 | $103754<.0001$ |
| x5 | 1.000000 | 0.0042 | $964.74<.0001$ |
| x6 | 1.000000 | 0.0127 | $2919.78<.0001$ |
| x7 | 1.000000 | 0.4748 | $205174<.0001$ |

Variable x1 Entered: R-Square $=0.4993$ and $C(p)=1235459$

Analysis of Variance

Sum of Mean					
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	1	1735328	1735328	226317	$<.0001$
Error	226975	1740372	7.66768		
Corrected Total	226976	3475700			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $8.325730 .010195114987667084<.0001$
x1 $23.96600 \quad 0.05038 \quad 1735328 \quad 226317<.0001$

Bounds on condition number: 1,1

Stepwise Selection: Step 2
The SAS System 09:56 Saturday, October 3, 20092897
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Stepwise Selection: Step 2
Statistics for Entry
DF $=1,226974$

Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$
$\begin{array}{lllll}\mathrm{x} 2 & 0.121152 & 0.4993 & 17.78 & <.0001\end{array}$
$\begin{array}{lllll}\mathrm{x} 4 & 0.999971 & 0.8173 & 394957 & <.0001\end{array}$
$\mathrm{x} 5 \quad 0.990126 \quad 0.4993 \quad 12.160 .0005$
x6 $0.977372 \quad 0.5483 \quad 24657.2<.0001$
$\mathrm{x} 7 \quad 0.222493 \quad 0.5188 \quad 9233.19<.0001$

Variable x 4 Entered: R-Square $=0.8173$ and $C(p)=306744.1$

Analysis of Variance

Sum of Mean					
Source	DF	Squares	Square F Value $\operatorname{Pr}>\mathrm{F}$		
Model	2	2840550	1420275	507543	$<.0001$
Error	226974	635150	2.79834		
Corrected Total	226976	3475700			

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>$ F

```
    Intercept \(1.934590 .011897409826479 .2<.0001\)
\(\begin{array}{llllll}\mathrm{x} 1 & 24.06865 & 0.03043 & 1750175 & 625434<.0001\end{array}\)
\(\begin{array}{llllll}\mathrm{x} 4 & 2.00145 & 0.00318 & 1105223 & 394957<.0001\end{array}\)
    Bounds on condition number: 1, 4.0001
```

 Stepwise Selection: Step 3
 The SAS System 09:56 Saturday, October 3, 20092898
 The REG Procedure
 Model: MODEL1
 Dependent Variable: slope
 Stepwise Selection: Step 3
 Statistics for Removal
 \(\mathrm{DF}=1,226974\)
 Partial Model
 Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	0.5035	0.3137	$625434<.0001$	
x 4	0.3180	0.4993	394957	<0001

 Statistics for Entry
 \(\mathrm{DF}=1,226973\)
 Model
 Variable Tolerance R -Square F Value $\mathrm{Pr}>\mathrm{F}$

x2	0.120862	0.8177	566.47	$<.0001$
x5	0.985080	0.8193	2606.96	$<.0001$
x6	0.972575	0.8857	135979	$<.0001$
x7	0.221813	0.8291	15755.4	$<.0001$

Variable x6 Entered: R-Square $=0.8857$ and $C(p)=106791.5$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	3	3078507	1026169	586397	$<.0001$
Error	226973	397193	1.74996		
Corrected Total	226976	3475700			

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>\mathrm{F}$
Intercept $-1.63770 \quad 0.01350 \quad 2575514717.4<.0001$
x1 $25.42569 \quad 0.02435 \quad 19084731090583<.0001$
$\begin{array}{llllll}\mathrm{x} 4 & 2.06667 & 0.00252 & 1172641 & 670097 & <.0001\end{array}$
x6 $20.77006 \quad 0.05633 \quad 237957 \quad 135979<.0001$
The SAS System 09:56 Saturday, October 3, 20092899
The REG Procedure
Model: MODEL1
Dependent Variable: slope

Stepwise Selection: Step 3
Bounds on condition number: $1.0282,9.1697$

Stepwise Selection: Step 5

Statistics for Removal

$$
\mathrm{DF}=1,226972
$$

Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x1	0.0670	0.8299	147492	$<.0001$
x4	0.3295	0.5674	725515	$<.0001$
x6	0.0678	0.8291	149286	$<.0001$
x7	0.0112	0.8857	24655.3	$<.0001$

Statistics for Entry
DF $=1,226971$

Model

Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$
x2 $\quad 0.068854 \quad 0.9132 \quad 42651.0<.0001$
x5 $\quad 0.9492260 .9057 \quad 21107.9<.0001$

Variable x2 Entered: R-Square $=0.9132$ and $C(p)=26468.81$

The SAS System 09:56 Saturday, October 3, 20092901

The REG Procedure
Model: MODEL1
Dependent Variable: slope
Stepwise Selection: Step 5
Analysis of Variance

| Sum of
 Source
 DF | | | | | Squares |
| :--- | :---: | :---: | :---: | :---: | :---: | Square F Value $\operatorname{Pr}>$ F

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $2.854790 .02061 \quad 2548319177.6<.0001$
$\begin{array}{lllll}\mathrm{x} 1 & 27.14027 & 0.06055 & 266957 & 200900<.0001\end{array}$
x2 $\quad-6.73090 \quad 0.03259 \quad 5667542651.0<.0001$
$\begin{array}{llllll}\mathrm{x} 4 & 2.05376 & 0.00220 & 1154038 & 868479<.0001\end{array}$
$x 6 \quad 20.85748 \quad 0.04909 \quad 239849 \quad 180500<.0001$
x7 $\quad-4.83303 \quad 0.01826 \quad 9305770030.7<.0001$
Bounds on condition number: 14.523, 164.04

Stepwise Selection: Step 6

Statistics for Removal
$\mathrm{DF}=1,226971$
Partial Model
Variable R-Square R-Square F Value $\mathrm{Pr}>\mathrm{F}$

```
x1 0.0768 0.8364 200900<.0001
x2 0.0163 0.8969 42651.0<.0001
```

x4	0.3320	0.5812	868479	$<.0001$
x6	0.0690	0.8442	180500	$<.0001$
x7	0.0268	0.8865	70030.7	$<.0001$

The SAS System 09:56 Saturday, October 3, 20092902

The REG Procedure
Model: MODEL1
Dependent Variable: slope
Stepwise Selection: Step 6
Statistics for Entry
DF $=1,226970$

Model

Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$
x5 $0.9490890 .922326463 .8<.0001$

Variable $\times 5$ Entered: R-Square $=0.9223$ and $C(p)=7.0000$

Analysis of Variance

Sum of Mean					
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	6	3205594	534266	448942	$<.0001$
Error	226970	270106	1.19005		
Corrected Total	226976	3475700			

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>\mathrm{F}$
Intercept $1.293830 .021744214 .708783541 .61<.0001$
x1 $27.81540 \quad 0.05745 \quad 278940234393<.0001$
$\mathrm{x} 2 \quad-6.79106 \quad 0.03085 \quad 5768448472.0<.0001$
$\begin{array}{lllll}\mathrm{x} 4 & 2.08358 & 0.00209 & 1178686 & 990447<.0001\end{array}$
x5 $\quad 4.76521 \quad 0.029293149326463 .8<.0001$
x6 $22.31418 \quad 0.04731 \quad 264688 \quad 222417<.0001$
x7 $\quad-4.79404 \quad 0.01729 \quad 9154476924.2<.0001$
Bounds on condition number: $14.526,203.73$

Stepwise Selection: Step 7

The SAS System 09:56 Saturday, October 3, 20092903
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Stepwise Selection: Step 7
Statistics for Removal
$\mathrm{DF}=1,226970$
Partial Model
Variable R-Square R-Square F Value $\mathrm{Pr}>\mathrm{F}$

x1	0.0803	0.8420	234393	$<.0001$
x2	0.0166	0.9057	48472.0	$<.0001$
x4	0.3391	0.5832	990447	$<.0001$
x5	0.0091	0.9132	26463.8	$<.0001$
x6	0.0762	0.8461	222417	$<.0001$
x7	0.0263	0.8959	76924.2	$<.0001$

All variables left in the model are significant at the 0.1500 level.
All variables have been entered into the model.

Summary of Stepwise Selection

```
Variable Variable Number Partial Model
Step Entered Removed Vars In R-Square R-Square C(p) F Value Pr > F
1 x1 1 0.4993 0.4993 1235459 226317 <.0001
2 x4 2 0.3180
3 x6 < 3 0.0685 0.8857 106792 135979 <.0001
4 x7 4
5 x2 5 0.0163 0.9132 26468.8 42651.0<.0001
6 x5 6
    The SAS System 09:56 Saturday, October 3, 20092904
        The REG Procedure
        Model: MODEL1
        Dependent Variable: slope
        R-Square Selection Method
        Number of Observations Read 226977
        Number of Observations Used }22697
```

Number in
Model R-Square C(p) MSE Variables in Model
$\begin{array}{lll}0.4993 & 1235459 & 7.66768\end{array}$
$1 \quad 0.4748 \quad 1307009 \quad 8.04283 \times 7$
$\begin{array}{llll}1 & 0.4417 & 1403672 & 8.54964 \times 2\end{array}$
$1 \quad 0.3137 \quad 1777411 \quad 10.50920 \mathrm{x} 4$
$10.0127 \quad 2656558 \quad 15.11866 \times 6$
$1 \quad 0.00422681290 \quad 15.24833 \times 5$
$0.8173306744 .1 \quad 2.79834 \times 1 \times 4$
$0.7724437832 .0 \quad 3.48565 \times 4 \times 7$
$0.7466513178 .3 \quad 3.88070 \times 2 \times 4$
$\begin{array}{lll}0.5483 & 1092158 & 6.91636 \times 1 \times 6\end{array}$
$0.51881178295 \quad 7.36799$ x1 x7
$\begin{array}{lll}0.5161 & 1186372 & 7.41034 \times 6 \times 7\end{array}$
$0.49931235346 \quad 7.66712 \times 1$ x2
$0.49931235382 \quad 7.66731 \times 1 \times 5$
$0.48331281987 \quad 7.91166 \times 2 \times 6$
$0.4782 \quad 1297127 \quad 7.99104 \times 2 \times 7$
$\begin{array}{lll}0.4749 & 1306603 & 8.04072 \times 5 \times 7\end{array}$
$0.4417 \quad 1403500 \quad 8.54877 \times 2 \times 5$
$0.3366 \quad 1710476 \quad 10.15828 \times 4 \times 6$
$0.3144177549410 .49918 \times 4 \times 5$
$2 \quad 0.0149 \quad 2650073 \quad 15.08471 \times 5 \times 6$
$\begin{array}{llll}3 & 0.8857 & 106791.5 & 1.74996 \times 1 \times 4 \times 6\end{array}$
$3 \quad 0.8299 \quad 269723.4 \quad 2.60423 \times 4 \times 6 \times 7$
$\begin{array}{llll}3 & 0.8291 & 272103.0 & 2.61671 \times 1 \times 4 \times 7\end{array}$

```
3 0.8193 300685.6 2.76657 x1 x4 x5
0.8177 305417.4 2.79138 x1 x2 x4
0.8051 342254.6 2.98453 x2 x4 x6
0.7773 423370.6 3.40983 x2 x4 x7
0.7730 435871.8 3.47537 x4 x5 x7
0.7475 510399.1 3.86613 x2 x4 x5
0.5674 1036418 6.62413 x1 x6 x7
0.5505 1085862 6.88337 x1 x5 x6
0.5483 1092145 6.91632 x1 x2 x6
0.5317 1140650 7.17063 x1 x2 x7
0.5205 1173480 7.34277 x2 x6 x7
    The SAS System 09:56 Saturday, October 3, 20092905
    The REG Procedure
    Model: MODEL1
Dependent Variable: slope
R-Square Selection Method
```

Number in
Model R-Square C(p) MSE Variables in Model

3	0.5189	1178284	$7.36795 \times 1 \times 5 \times 7$
3	0.5167	1184622	$7.40119 \times 5 \times 6 \times 7$
3	0.4993	1235273	$7.66676 \times 1 \times 2 \times 5$
3	0.4842	1279493	$7.89861 \times 2 \times 5 \times 6$
3	0.4783	1296864	$7.98969 \times 2 \times 5 \times 7$
3	0.3366	1710478	$10.15833 \times 4 \times 5 \times 6$

4	0.896974090 .55	$1.57850 \mathrm{x} 1 \times 4 \times 6 \times 7$
4	0.895179507 .26	1.60690 x 1 x4 x5 x6
4	0.8865104662 .5	1.73879 x1 x2 x4 x6
4	0.8442228011 .3	$2.38553 \times 1 \times 2 \times 4 \times 7$
4	0.8364250790 .2	$2.50496 \times 2 \times 4 \times 6 \times 7$
4	0.8350255078 .8	$2.52745 \times 4 \times 5 \times 6 \times 7$
4	0.8309266771 .3	$2.58876 \times 1 \times 4 \times 5 \times 7$
4	0.8198299222 .5	2.75890 x1 x2 x4 x5
4	0.8110325047 .6	$2.89431 \times 2 \times 4 \times 5 \times 6$
4	0.7782420941 .5	$3.39710 \times 2 \times 4 \times 5 \times 7$
4	0.5812996202 .7	$6.41329 \times 1 \times 2 \times 6 \times 7$
4	0.56931030980	$6.59563 \times 1 \times 5 \times 6 \times 7$
4	0.55051085860	6.88338 x1 x2 x5 x6
4	0.53171140627	$7.17053 \times 1 \times 2 \times 5 \times 7$
4	0.52131171244	$7.33107 \times 2 \times 5 \times 6 \times 7$
5	0.913226468 .81	$1.32880 \times 1 \times 2 \times 4 \times 6 \times 7$
5	0.905748476 .95	$1.44420 \times 1 \times 4 \times 5 \times 6 \times 7$
5	0.895976929 .19	$1.59338 \mathrm{x} 1 \times 2 \mathrm{x} 4 \times 5 \times 6$
5	0.8461222422 .2	$2.35623 \times 1 \times 2 \times 4 \times 5 \times 7$
5	0.8420234398 .2	$2.41902 \mathrm{x} 2 \mathrm{x} 4 \times 5 \times 6 \mathrm{x} 7$
5	0.5832990452 .4	$6.38316 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 5 \times 6 \mathrm{x} 7$

$6 \quad 0.9223 \quad 7.0000 \quad 1.19005 \times 1 \times 2 \times 4 \times 5 \times 6 \times 7$

The SAS System 09:56 Saturday, October 3, 20092906
The CORR Procedure
6 Variables: x1 x2 \quad x4 \quad x5 \quad x6 \quad x7

Covariance Matrix, DF $=226976$
$\mathrm{x} 1 \quad \mathrm{x} 2 \quad \mathrm{x} 4 \quad \mathrm{x} 5 \quad \mathrm{x} 6 \quad \mathrm{x} 7$

```
x1 0.013310993 0.030600508 -0.000682703 -0.000919871 -0.000867544-0.037908526
x2 0.030600508 0.080044782 0.003738304 -0.001959494 -0.001905864 -0.098515099
x4 -0.000682703 0.003738304 1.215603899 -0.006237114 -0.003772409 -0.008763795
x5 -0.000919871 -0.001959494 -0.006237114 0.006438250-0.000661045 0.002311448
x6 -0.000867544 -0.001905864 -0.003772409 -0.000661045 0.002498730 0.002401774
x7 -0.037908526 -0.098515099 -0.008763795 0.002311448 0.002401774 0.138854170
```

Simple Statistics

6 Variables: $\mathrm{x} 1 \quad \mathrm{x} 2 \mathrm{x} 4$ x5 $\quad \mathrm{x} 6 \quad \mathrm{x} 7$

Covariance Matrix, DF $=226976$
$\mathrm{x} 1 \quad \mathrm{x} 2 \quad \mathrm{x} 4 \quad \mathrm{x} 5 \quad \mathrm{x} 6 \quad \mathrm{x} 7$
$\begin{array}{lllllll}x 1 & 0.013310993 & 0.030600508 & -0.000682703 & -0.000919871 & -0.000867544 & -0.037908526\end{array}$ x2 $0.0306005080 .0800447820 .003738304-0.001959494-0.001905864-0.098515099$ x4 $-0.0006827030 .0037383041 .215603899-0.006237114-0.003772409-0.008763795$ x5 -0.000919871 $-0.001959494-0.0062371140 .006438250-0.0006610450 .002311448$ x6 $-0.000867544-0.001905864-0.003772409-0.0006610450 .0024987300 .002401774$ x7 -0.037908526 $-0.098515099-0.0087637950 .0023114480 .0024017740 .138854170$

Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum

x 1	226977	0.16623	0.11537	37731	0.03333	0.45000

x 2	226977	0.41589	0.28292	94397	0.10000	0.90000
x 4	226977	3.18472	1.10254	722859	2.00000	5.00000
x 5	226977	0.23984	0.08024	54439	0.15000	0.35000
x 6	226977	0.15113	0.04999	34303	0.10000	0.20000
x 7	226977	0.40354	0.37263	91594	-0.21388	1.02996

Pearson Correlation Coefficients, $\mathrm{N}=226977$
Prob $>|r|$ under H0: Rho $=0$

x 1	x 2	x 4	x 5	x 6	x 7

$\begin{array}{lllllll}\mathrm{x} 1 & 1.00000 & 0.93747 & -0.00537 & -0.09937 & -0.15043 & -0.88176\end{array}$ $<.00010 .0106<.0001<.0001<.0001$
$\begin{array}{lllllll}\mathrm{x} 2 & 0.93747 & 1.00000 & 0.01198 & -0.08632 & -0.13476 & -0.93445\end{array}$ $<.0001<.0001<.0001<.0001<.0001$
$\begin{array}{lllllll}\mathrm{x} 4 & -0.00537 & 0.01198 & 1.00000 & -0.07050 & -0.06845 & -0.02133\end{array}$ $0.0106<.0001<.0001<.0001<.0001$
$\begin{array}{lllllll}\mathrm{x} 5 & -0.09937 & -0.08632 & -0.07050 & 1.00000 & -0.16481 & 0.07731\end{array}$ $<.0001<.0001<.0001<.0001<.0001$
$\begin{array}{lllllll}\mathrm{x} 6 & -0.15043 & -0.13476 & -0.06845 & -0.16481 & 1.00000 & 0.12894\end{array}$
$<.0001<.0001<.0001<.0001<.0001$
$\begin{array}{lllllll}\mathrm{x} 7 & -0.88176 & -0.93445 & -0.02133 & 0.07731 & 0.12894 & 1.00000\end{array}$ $<.0001<.0001<.0001<.0001<.0001$

Variable Selection and Covariance Matrix for the water-wet homogeneous model (Intercept)

Analysis of Variance

Source	Sum of DF	f Mean Squares		F Value	
Model	11	1391052	1391052	374538	<. 0001
Error	226975	842995	3.71404		
Corrected	Total 2	226976	2234047		

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>\mathrm{F}$
Intercept $-2.64708 \quad 0.00709 \quad 517052 \quad 139215<.0001$
x1 $\quad-21.45737 \quad 0.03506 \quad 1391052 \quad 374538<.0001$
Bounds on condition number: 1,1

Forward Selection: Step 2
The SAS System 09:56 Saturday, October 3, 20095795
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 2
Statistics for Entry
$\mathrm{DF}=1,226974$

Variable | | Model | |
| :--- | :--- | :--- |
| Tolerance | | |
| R-Square | F Value | $\mathrm{Pr}>\mathrm{F}$ |

| x2 | 0.121152 | 0.6332 | $6545.48<.0001$ |
| :--- | :--- | :--- | :---: | :---: |
| x4 | 0.999971 | 0.8988 | $619402<.0001$ |
| x5 | 0.990126 | 0.6240 | $833.80<.0001$ |
| x6 | 0.977372 | 0.6237 | $598.29<.0001$ |
| x7 | 0.222493 | 0.6280 | $3259.17<.0001$ |

Variable x4 Entered: R-Square $=0.8988$ and $C(p)=186344.4$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	2	2007980	1003990	1008016	$<.0001$
Error	226974	226067	0.99601		
Corrected Total	226976	2234047			

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>$ F
Intercept $2.127890 .00709 \quad 8964490003.7<.0001$
$\mathrm{x} 1 \quad-21.53406 \quad 0.01816 \quad 14009731406592<.0001$
$\begin{array}{lllll}\mathrm{x} 4 & -1.49533 & 0.00190 & 616928 & 619402<.0001\end{array}$
Bounds on condition number: 1, 4.0001

Forward Selection: Step 3

The SAS System 09:56 Saturday, October 3, 20095796
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 3
Statistics for Entry
DF $=1,226973$

Model Tolerance				R-Square F Value $\operatorname{Pr}>$
Variable				
x2	0.120862	0.9154	$44413.1<.0001$	
x5	0.985080	0.8988	0.28	0.5970
x6	0.972575	0.8988	63.73	$<.0001$
x7	0.221813	0.9008	$4451.07<.0001$	

$$
\text { Variable } \times 2 \text { Entered: R-Square }=0.9154 \text { and } C(p)=118706.2
$$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	3	2044976	681659	818308	$<.0001$
Error	226973	189071	0.83301		
Corrected Total	226976	2234047			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $2.046640 .00650 \quad 8263799203.0<.0001$
$\begin{array}{lllll}\mathrm{x} 1 & -30.97117 & 0.04776 & 350305 & 420530<.0001\end{array}$
x2 $4.10467 \quad 0.01948 \quad 3699744413.1<.0001$
$\begin{array}{llllll}\mathrm{x} 4 & -1.51325 & 0.00174 & 630295 & 756648\end{array}<.0001$
Bounds on condition number: $8.2739,52.648$

Forward Selection: Step 4

The SAS System 09:56 Saturday, October 3, 20095797
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 4
Statistics for Entry
DF $=1,226972$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

| x5 | 0.984545 | 0.9154 | $30.18<.0001$ |
| :--- | :--- | :--- | :--- | :--- |
| x6 | 0.972117 | 0.9154 | $177.11<.0001$ |
| x7 | 0.126408 | 0.9443 | $118198<.0001$ |

Variable x7 Entered: R-Square $=0.9443$ and $C(p)=337.3204$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	4	2109721	527430	962883	$<.0001$
Error	226972	124327	0.54776		
Corrected Total	226976	2234047			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $-1.69538 \quad 0.01209 \quad 1076719655.7<.0001$
x1 $\quad-30.33430 \quad 0.03877 \quad 335280 \quad 612090<.0001$
$\begin{array}{llllll}\mathrm{x} 2 & 8.82201 & 0.02092 & 97393 & 177801<.0001\end{array}$
x4 $\quad-1.49834 \quad 0.00141 \quad 6173491127040<.0001$
$\mathrm{x7} \quad 4.03128 \quad 0.01173 \quad 64744 \quad 118198<.0001$
Bounds on condition number: $14.518,126.9$

Forward Selection: Step 5

The SAS System 09:56 Saturday, October 3, 20095798
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 5
Statistics for Entry
DF $=1,226971$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 5	0.984346	0.9444	3.57	0.0590
x 6	0.972108	0.9444	306.22	$<.0001$

Variable x6 Entered: R-Square $=0.9444$ and $C(p)=33.0606$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	5	2109888	421978	771403	$<.0001$
Error	226971	124159	0.54703		
Corrected Total	226976	2234047			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $-1.60130 \quad 0.013238017 .7312514656 .9<.0001$
$\begin{array}{lllll}\mathrm{x} 1 & -30.38399 & 0.03885 & 334582 & 611638<.0001\end{array}$
$\begin{array}{llllll}\mathrm{x} 2 & 8.82875 & 0.02091 & 97509 & 178252<.0001\end{array}$

```
x4 -1.50009 0.00141 615684 1125512<.0001
x6 -0.55121 0.03150 167.51209 306.22<.0001
x7 4.03193 0.01172 64764 118394<.0001
```

Bounds on condition number: 14.523, 164.04

Forward Selection: Step 6

The SAS System 09:56 Saturday, October 3, 20095799
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 6
Statistics for Entry
DF $=1,226970$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$
$x 5 \quad 0.949089 \quad 0.9444 \quad 28.06<.0001$

Variable $x 5$ Entered: R-Square $=0.9444$ and $C(p)=7.0000$

Analysis of Variance

| Sum of
 Source
 DF | | | | | Squares |
| :--- | :---: | :---: | :---: | :---: | :---: | Square F Value $\operatorname{Pr}>$ F

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>$ F
Intercept $-1.566840 .014746181 .0519311300 .7<.0001$
$\begin{array}{llllll}\mathrm{x} 1 & -30.39889 & 0.03895 & 333163 & 609116<.0001\end{array}$
$\begin{array}{llllll}\mathrm{x} 2 & 8.83008 & 0.02091 & 97524 & 178302<.0001\end{array}$
$\begin{array}{lllll}\mathrm{x} 4 & -1.50075 & 0.00142 & 6115021118000<.0001\end{array}$
$\begin{array}{lllll}x 5 & -0.10520 & 0.01986 & 15.34805 & 28.06<.0001\end{array}$
$\begin{array}{llllll}\mathrm{x} 6 & -0.58337 & 0.03208 & 180.90739 & 330.75<.0001\end{array}$
$\begin{array}{lllll}\mathrm{x} 7 & 4.03107 & 0.01172 & 64724 & 118334<.0001\end{array}$
Bounds on condition number: $14.526,203.73$

All variables have been entered into the model.

The SAS System 09:56 Saturday, October 3, 20095800
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept

Summary of Forward Selection

All Variables Entered: R-Square $=0.9444$ and $C(p)=7.0000$

Analysis of Variance

Sum of Mean					
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	6	2109903	351651	642917	$<.0001$
Error	226970	124144	0.54696		
Corrected Total	226976	2234047			

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>$ F
Intercept $-1.566840 .014746181 .0519311300 .7<.0001$
$\begin{array}{llllll}\mathrm{x} 1 & -30.39889 & 0.03895 & 333163 & 609116<.0001\end{array}$
x2 $\quad 8.83008 \quad 0.02091 \quad 97524 \quad 178302<.0001$
$\begin{array}{llll}\mathrm{x} 4 & -1.50075 & 0.00142 & 6115021118000<.0001\end{array}$
x5 $\quad-0.10520 \quad 0.01986 \quad 15.34805 \quad 28.06<.0001$
$\begin{array}{llllll}\mathrm{x} 6 & -0.58337 & 0.03208 & 180.90739 & 330.75<.0001\end{array}$
x7 $4.03107 \quad 0.01172 \quad 64724 \quad 118334<.0001$
Bounds on condition number: $14.526,203.73$

Backward Elimination: Step 1

The SAS System 09:56 Saturday, October 3, 20095802
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Backward Elimination: Step 1
Statistics for Removal
$\mathrm{DF}=1,226970$
Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x1	0.1491	0.7953	609116	$<.0001$
x2	0.0437	0.9008	178302	$<.0001$
x4	0.2737	0.6707	$118000<.0001$	
x5	0.0000	0.9444	$28.06<.0001$	
x6	0.0001	0.9444	$330.75<.0001$	
x7	0.0290	0.9155	$118334<.0001$	

All variables left in the model are significant at the 0.0500 level.
The SAS System 09:56 Saturday, October 3, 20095803
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Number of Observations Read 226977
Number of Observations Used 226977
Stepwise Selection: Step 1

Statistics for Entry
DF $=1,226975$

Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	1.000000	0.6227	374538	$<.0001$
x 2	1.000000	0.4955	222965	$<.0001$
x4	1.000000	0.2717	84678.4	$<.0001$
x5	1.000000	0.0133	3062.80	$<.0001$
x6	1.000000	0.0225	5212.99	$<.0001$
x7	1.000000	0.5333	259349	$<.0001$

Variable x 1 Entered: R-Square $=0.6227$ and $C(p)=1314262$

Analysis of Variance

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F

Intercept -2.64708 $0.00709517052 \quad 139215<.0001$
$\begin{array}{lllll}\mathrm{x} 1 & -21.45737 & 0.03506 & 1391052 & 374538<.0001\end{array}$
Bounds on condition number: 1,1

Stepwise Selection: Step 2
The SAS System 09:56 Saturday, October 3, 20095804
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 2

Statistics for Entry$\mathrm{DF}=1,226974$					
Model					
Variabl	le Toleran	ce R-S	quare F	Value Pr	$\mathrm{Pr}>\mathrm{F}$
x 2	0.121152	0.6332	6545.48	<. 0001	
x4	0.999971	0.8988	619402	<.0001	
x5	0.990126	0.6240	833.80	<. 0001	
x6	0.977372	0.6237	598.29	<. 0001	
x7	0.222493	0.6280	3259.17	<. 0001	

$$
\text { Variable } \mathrm{x} 4 \text { Entered: R-Square }=0.8988 \text { and } \mathrm{C}(\mathrm{p})=186344.4
$$

Analysis of Variance

Sum of Mean				
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$	
Model	2	2007980	1003990	1008016

Parameter Standard
Variable Estimate Error Type II SS F Value $\operatorname{Pr}>$ F
Intercept $2.12789 \quad 0.00709 \quad 8964490003.7<.0001$
x1 -21.53406 $0.01816 \quad 14009731406592<.0001$
$\begin{array}{lllll}\mathrm{x} 4 & -1.49533 & 0.00190 & 616928 & 619402<.0001\end{array}$
Bounds on condition number: 1, 4.0001

Stepwise Selection: Step 3

The SAS System 09:56 Saturday, October 3, 20095805
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 3
Statistics for Removal
$\mathrm{DF}=1,226974$
Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

```
x1 0.6271 0.2717 1406592<.0001
x4 0.2761 0.6227 619402<.0001
```

Statistics for Entry
$\mathrm{DF}=1,226973$
Model
Variable Tolerance R-Square F Value $\mathrm{Pr}>\mathrm{F}$

x2	0.120862	0.9154	44413.1	$<.0001$
x5	0.985080	0.8988	0.28	0.5970
x6	0.972575	0.8988	63.73	$<.0001$

```
x7 0.221813 0.9008 4451.07<.0001
```

Variable x2 Entered: R-Square $=0.9154$ and $C(p)=118706.2$

Analysis of Variance

Sum of Mean					
Source	DF	Squares	Square F Value	$\operatorname{Pr}>F$	
Model	3	2044976	681659	818308	$<.0001$
Error	226973	189071	0.83301		
Corrected Total	226976	2234047			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $2.04664 \quad 0.00650 \quad 8263799203.0<.0001$
x1 $\quad-30.97117 \quad 0.04776 \quad 350305420530<.0001$
$\begin{array}{lllll}\mathrm{x} 2 & 4.10467 & 0.01948 & 3699744413.1<.0001\end{array}$
x4 $\quad-1.51325 \quad 0.00174 \quad 630295 \quad 756648<.0001$
The SAS System 09:56 Saturday, October 3, 20095806
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 3
Bounds on condition number: $8.2739,52.648$

Stepwise Selection: Step 4

Statistics for Removal $\mathrm{DF}=1,226973$

Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x1	0.1568	0.7586	420530	$<.0001$
x2	0.0166	0.8988	44413.1	$<.0001$
x4	0.2821	0.6332	756648	$<.0001$

Statistics for Entry
DF $=1,226972$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

| x 5 | 0.984545 | 0.9154 | $30.18<.0001$ |
| :--- | :--- | :--- | :--- | :--- |
| x 6 | 0.972117 | 0.9154 | $177.11<.0001$ |
| x 7 | 0.126408 | 0.9443 | $118198<.0001$ |

$$
\text { Variable } \times 7 \text { Entered: R-Square }=0.9443 \text { and } C(p)=337.3204
$$

Analysis of Variance

```
Model 4 2109721 527430 962883 <.0001
Error 226972 124327 0.54776
Corrected Total 226976 2234047
                The SAS System 09:56 Saturday, October 3, 20095807
                The REG Procedure
                Model: MODEL1
        Dependent Variable: Intercept Intercept
        Stepwise Selection: Step 4
        Parameter Standard
    Variable Estimate Error Type II SS F Value Pr > F
    Intercept -1.69538 0.01209 10767 19655.7 <.0001
    x1 -30.33430 0.03877 335280 612090<.0001
    x2 8.82201 0.02092 97393 177801<.0001
    x4 -1.49834 0.00141 617349 1127040<.0001
    x7 4.03128 0.01173 64744 118198<.0001
        Bounds on condition number: 14.518, 126.9
```

 Stepwise Selection: Step 5
 Statistics for Removal
 \(\mathrm{DF}=1,226972\)
 Partial Model
 Variable R-Square R-Square F Value $\mathrm{Pr}>\mathrm{F}$

| x1 | 0.1501 | 0.7943 | $612090<.0001$ |
| :--- | :--- | :--- | :---: | :---: |
| x2 | 0.0436 | 0.9008 | $177801<.0001$ |
| x4 | 0.2763 | 0.6680 | $1127040<.0001$ |
| x7 | 0.0290 | 0.9154 | $118198<.0001$ |

 Statistics for Entry
 DF \(=1,226971\)
 Model
 Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$
$\begin{array}{lllll}x 5 & 0.984346 & 0.9444 & 3.57 & 0.0590\end{array}$
$\begin{array}{lllll}\mathrm{x} 6 & 0.972108 & 0.9444 & 306.22 & <.0001\end{array}$
Variable x6 Entered: R-Square $=0.9444$ and $C(p)=33.0606$

The SAS System 09:56 Saturday, October 3, 20095808

The REG Procedure

Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 5
Analysis of Variance

Source $\begin{array}{cc}\text { Sum of Mean } \\ \text { DF } & \text { Squares } \\ \text { Square } F \text { Value } \operatorname{Pr}>F\end{array}$
Model $\quad 5 \quad 2109888 \quad 421978 \quad 771403<.0001$

Error $226971 \quad 124159 \quad 0.54703$
Corrected Total 2269762234047

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $-1.60130 \quad 0.013238017 .7312514656 .9<.0001$
$\begin{array}{lllll}\mathrm{x} 1 & -30.38399 & 0.03885 & 334582 & 611638<.0001\end{array}$
$\begin{array}{llllll}\mathrm{x} 2 & 8.82875 & 0.02091 & 97509 & 178252<.0001\end{array}$
x4 $\quad-1.50009 \quad 0.00141 \quad 6156841125512<.0001$
$6 \quad-0.55121 \quad 0.03150 \quad 167.51209 \quad 306.22<.0001$
$4.03193 \quad 0.01172 \quad 64764 \quad 118394<.0001$
Bounds on condition number: $14.523,164.04$

Stepwise Selection: Step 6

Statistics for Removal
DF $=1,226971$
Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

| x1 | 0.1498 | 0.7947 | $611638<.0001$ |
| :--- | :--- | :--- | :--- | :--- |
| x2 | 0.0436 | 0.9008 | $178252<.0001$ |
| x4 | 0.2756 | 0.6688 | $1125512<.0001$ |
| x6 | 0.0001 | 0.9443 | $306.22<.0001$ |
| x7 | 0.0290 | 0.9154 | $118394<.0001$ |

The SAS System 09:56 Saturday, October 3, 20095809
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 6
Statistics for Entry
DF $=1,226970$
Model
Variable Tolerance R-Square F Value $\mathrm{Pr}>\mathrm{F}$
$x 5 \quad 0.949089 \quad 0.9444 \quad 28.06<.0001$

Variable x5 Entered: R-Square $=0.9444$ and $C(p)=7.0000$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	6	2109903	351651	642917	$<.0001$
Error	226970	124144	0.54696		
Corrected Total	226976	2234047			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F

```
Intercept -1.56684 0.01474 6181.05193 11300.7<.0001
x1 -30.39889 0.03895 333163 609116<.0001
x2 
x4 -1.50075 0.00142 611502 1118000<.0001
x5 -0.10520}00.01986 15.34805 28.06<.0001
x6 -0.58337 0.03208 180.90739 330.75<.0001
x7 4.03107 0.01172 64724 118334<.0001
```

Bounds on condition number: $14.526,203.73$

Stepwise Selection: Step 7

The SAS System 09:56 Saturday, October 3, 20095810
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 7
Statistics for Removal
DF $=1,226970$
Partial Model
Variable R-Square R-Square F Value $\mathrm{Pr}>\mathrm{F}$

x1	0.1491	0.7953	609116	$<.0001$
x2	0.0437	0.9008	178302	$<.0001$
x4	0.2737	0.6707	$118000<.0001$	
x5	0.0000	0.9444	$28.06<.0001$	
x6	0.0001	0.9444	$330.75<.0001$	
x7	0.0290	0.9155	$118334<.0001$	

All variables left in the model are significant at the 0.1500 level.
All variables have been entered into the model.

Summary of Stepwise Selection

Variable Variable Number Partial Model
Step Entered Removed Label Vars In R-Square R-Square C(p) F Value Pr $>\mathrm{F}$

1 x 1	$10.62270 .62271314262374538<.0001$
2×4	$2 \begin{array}{lllllll}2 & 0.2761 & 0.8988 & 186344 & 619402<.0001\end{array}$
3 x 2	$300.01660 .915411870644413 .1<.0001$
4×7	$40.02900 .9443337 .320118198<.0001$
5 x 6	$500.00010 .944433 .0606306 .22<.0001$
6×5	$60.00000 .94447 .0000 \quad 28.06<.0001$
	The SAS System 09:56 Saturday, October 3, 20095811
	The REG Procedure
	Model: MODEL1
	Dependent Variable: Intercept
	R-Square Selection Method

Number of Observations Read 226977
Number of Observations Used 226977

Model R-Square C(p) MSE Variables in Model

0.6227	1314262	3.71404×1	
0.5333	1679313	4.59374×7	
0.4955	1833463	4.96521×2	
0.2717	2747720	7.16837	$\times 4$
0.0225	3765798	9.62172	$\times 6$
0.0133	3803119	9.71165	$\times 5$

| 2 | 0.8988 | 186344.4 | 0.99601 | x 1 x 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.7891 | 634398.7 | 2.07572 | x 4 x 7 |
| 2 | 0.7586 | 759162.2 | 2.37638 | x 2 x 4 |
| 2 | 0.6332 | 1271063 | 3.60996 | x 1 x 2 |
| 2 | 0.6280 | 1292446 | 3.66148 | x 1 x 7 |
| 2 | 0.6240 | 1308623 | 3.70047 | $\mathrm{x} 1 \times 5$ |
| 2 | 0.6237 | 1310212 | 3.70430 | x 1 x 6 |
| 2 | 0.5369 | 1664351 | 4.55770 | $\mathrm{x} 2 \times 7$ |
| 2 | 0.5368 | 1665044 | 4.55937 | $\mathrm{x} 5 \times 7$ |
| 2 | 0.5364 | 1666439 | 4.56273 | $\mathrm{x} 6 \times 7$ |
| 2 | 0.4986 | 1820893 | 4.93493 | $\mathrm{x} 2 \times 6$ |
| 2 | 0.4986 | 1821186 | 4.93564 | $\mathrm{x} 2 \times 5$ |
| 2 | 0.2848 | 2694241 | 7.03952 | $\mathrm{x} 4 \times 6$ |
| 2 | 0.2779 | 2722338 | 7.10723 | $\mathrm{x} 4 \times 5$ |
| 2 | 0.0426 | 3683411 | 9.42322 | $\mathrm{x} 5 \times 6$ |

0.9154118706 .2	$0.83301 \times 1 \times 2 \times 4$
0.9008178397 .0	$0.97685 \times 1 \times 4 \times 7$
0.8988186230 .4	$0.99573 \times 1 \times 4 \times 6$
0.8988186345 .9	$0.99601 \times 1 \times 4 \times 5$
0.7943613321 .7	$2.02494 \times 2 \times 4 \times 7$
0.7897632002 .7	$2.06996 \times 4 \times 5 \times 7$
0.7896632299 .9	$2.07067 \times 4 \times 6 \times 7$
0.7590757374 .4	$2.37208 \times 2 \times 4 \times 6$
0.7589757672 .1	$2.37279 \times 2 \times 4 \times 5$
0.66801129025	$3.26768 \times 1 \times 2 \times 7$
0.63451266022	$3.59782 \times 1 \times 2 \times 5$
0.63411267479	$3.60133 \times 1 \times 2 \times 6$
0.62951286306	$3.64670 \times 1 \times 5 \times 7$
0.62901288245	$3.65137 \times 1 \times 6 \times 7$
The SAS System	09:56 Saturday, October 3, 20095812

The REG Procedure
Model: MODEL1
Dependent Variable: Intercept
R-Square Selection Method
Number in
Model R-Square C(p) MSE Variables in Model

3	0.6256	1302430	$3.68556 \times 1 \times 5 \times 6$	
3	0.5414	1646347	4.51433	$\times 5 \times 6 \times 7$
3	0.5402	1651197	$4.52602 \times 2 \times 5 \times 7$	
3	0.5398	1652556	$4.52929 \times 2 \times 6 \times 7$	
3	0.5030	1803208	$4.89233 \times 2 \times 5 \times 6$	
3	0.2948	2653561	$6.94152 \times 4 \times 5 \times 6$	

$4 \quad 0.9443 \quad 337.3204 \quad 0.54776 \times 1 \times 2 \times 4 \times 7$
$4 \quad 0.9154118438 .7 \quad 0.83236 \times 1 \times 2 \times 4 \times 6$
$4 \quad 0.9154118662 .30 .83290 \times 1 \times 2 \times 4 \times 5$
$4 \quad 0.9008 \quad 178304.6 \quad 0.97663 \times 1 \times 4 \times 6 \times 7$
$4 \quad 0.9008 \quad 178396.4 \quad 0.97685 \times 1 \times 4 \times 5 \times 7$
$0.8988186224 .6 \quad 0.99572 \times 1 \times 4 \times 5 \times 6$
$4 \quad 0.7947 \quad 611473.9 \quad 2.02049 \times 2 \times 4 \times 5 \times 7$
$4 \quad 0.7947611741 .9 \quad 2.02113 \times 2 \times 4 \times 6 \times 7$
$4 \quad 0.7905 \quad 628903.6 \quad 2.06249 \times 4 \times 5 \times 6 \times 7$

```
4 0.7595 755145.2 2.36671 x2 x4 x5 x6
4 0.6694 1123323 3.25395 x1 x2 x5 x7
4 0.6688 1125677 3.25962 x1 x2 x6 x7
4 0.6358 1260526 3.58459 x1 x2 x5 x6
4
4 0.5444 1633980 4.48454 x2 x5 x6 x7
5 0.9444 33.0606 0.54703 x1 x2 x4 x6 x7
5}00.9444335.7502 0.54776 x1 x2 x4 x5 x7
5 0.9155 118339.3 0.83212 x1 x2 x4 x5 x6
5
5 0.7953 609121.1 2.01482 x2 x4 x5 x6 x7
5 0.6707 1118005 3.24114 x1 x2 x5 x6 x7
```

$6 \quad 0.9444 \quad 7.0000 \quad 0.54696 \times 1 \times 2 \times 4 \times 5 \times 6 \times 7$

The SAS System 09:56 Saturday, October 3, 20095813

The CORR Procedure
6 Variables: $\mathrm{x} 1 \quad \mathrm{x} 2 \mathrm{x} 4$ x5 $\quad \mathrm{x} 6 \quad \mathrm{x} 7$

Covariance Matrix, DF $=226976$
$\mathrm{x} 1 \quad \mathrm{x} 2 \mathrm{x} 4 \quad \mathrm{x} 5 \quad \mathrm{x} 6 \quad \mathrm{x} 7$
$\begin{array}{lllllll}x 1 & 0.013310993 & 0.030600508 & -0.000682703 & -0.000919871 & -0.000867544 & -0.037908526\end{array}$ x2 $0.0306005080 .0800447820 .003738304-0.001959494-0.001905864-0.098515099$ x4 $-0.0006827030 .0037383041 .215603899-0.006237114-0.003772409-0.008763795$ x5 $-0.000919871-0.001959494-0.0062371140 .006438250-0.0006610450 .002311448$ x6 $-0.000867544-0.001905864-0.003772409-0.0006610450 .0024987300 .002401774$ x7 $-0.037908526-0.098515099-0.0087637950 .0023114480 .0024017740 .138854170$

Simple Statistics

Variable N		Mean	Std Dev	Sum M	Minimum	Maximum
x 1	226977	0.16623	0.11537	37731	0.03333	0.45000
x 2	226977	0.41589	0.28292	94397	0.10000	0.90000
x4	226977	3.18472	1.10254	722859	2.00000	5.00000
x5	226977	0.23984	0.08024	54439	0.15000	0.35000
x6	226977	0.15113	0.04999	34303	0.10000	0.20000
x7	226977	0.40354	0.37263	91594	-0.21388	1.02996
Pearson Correlation Coefficients, $\mathrm{N}=226977$ Prob $>\|r\|$ under H0: Rho $=0$						
x 1	$\begin{aligned} & 1.00000 \\ & <.0001 \end{aligned}$	$\begin{array}{r} 0.93747 \\ 1 \quad 0.0106 \end{array}$	$\begin{aligned} & -0.00537 \\ & <.0001 \end{aligned}$	$\begin{aligned} & -0.09937 \\ & <.0001 \end{aligned}$	$\begin{gathered} 7-0.15043 \\ >.0001 \end{gathered}$	-0.88176
x 2	$\begin{aligned} & \quad 0.93747 \\ & <.0001 \end{aligned}$	$\begin{array}{r} 1.00000 \\ <.0001 \end{array}$	$\begin{aligned} & 0.01198 \\ & <.0001 \end{aligned}$	$\begin{aligned} & -0.08632 \\ & <.0001 \end{aligned}$	$\begin{array}{cl} 2 & -0.13476 \\ <.0001 \end{array}$	-0.93445
x4	-0.00537	0.01198	1.00000	-0.07050	$0-0.06845$	-0.02133
	$0.0106<$.	<. 0001	<. 0001	<. 0001	<. 0001	
x5	-0.09937	-0.08632	-0.07050	1.00000	-0.16481	0.07731
	<. $0001<$.	<.0001 <.	0001	<. 0001	<. 0001	
x6	-0.15043	-0.13476	-0.06845	-0.16481	11.00000	0.12894

$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$		
x7	-0.88176	-0.93445	-0.02133	0.07731	0.12894	1.00000
	$<.0001$	$<.0001$	$<.0001$	$<.0001$	$<.0001$	

Variable Selection and Covariance Matrix for the oil-wet homogeneous model (Slope)

The REG Procedure
Model: MODEL1
Dependent Variable: slope
Number of Observations Read 804144
Number of Observations Used 804144
Forward Selection: Step 1

Statistics for Entry
DF $=1,804142$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	1.000000	0.1396	130519	$<.0001$
x 2	1.000000	0.1680	162387	$<.0001$
x4	1.000000	0.3387	411943	$<.0001$
x5	1.000000	0.0025	1977.47	$<.0001$
x6	1.000000	0.0880	77621.3	$<.0001$
x7	1.000000	0.2200	226815	$<.0001$

Variable x 4 Entered: R-Square $=0.3387$ and $C(p)=5475160$

Analysis of Variance

| Sum of
 Source | | | | | DF |
| :--- | :---: | :---: | :---: | :---: | :---: | Squares \quad Square F Value $\operatorname{Pr}>$ F

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $7.644020 .010054855739578915<.0001$
$\begin{array}{lllll}\mathrm{x} 4 & 1.85608 & 0.00289 & 3455232 & 411943\end{array}<.0001$
Bounds on condition number: 1,1

Forward Selection: Step 2
The SAS System 11:24 Saturday, October 3, 20099654
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Forward Selection: Step 2

```
            Statistics for Entry
            DF=1,804141
                Model
Variable Tolerance R-Square F Value Pr > F
\begin{tabular}{lllrl} 
x1 & 0.999919 & 0.4745 & 207755 & \(<.0001\) \\
x2 & 0.999585 & 0.4972 & 253513 & \(<.0001\) \\
x5 & 0.999993 & 0.3414 & 3180.42 & \(<.0001\) \\
x6 & 0.915514 & 0.5758 & 449401 & \(<.0001\) \\
x7 & 0.999529 & 0.5472 & 370089 & \(<.0001\)
\end{tabular}
```

Variable x6 Entered: R-Square $=0.5758$ and $C(p)=3224002$

Analysis of Variance					
	Sum of	Mean			
Source	DF	Squares	Square	F Value $\operatorname{Pr}>\mathrm{F}$	
Model	2	5873298	2936649	545780	$<.0001$
Error	804141	4326797	5.38064		
Corrected Total	804143	10200095			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $-0.374850 .014423637 .70377 \quad 676.07<.0001$
x4 $2.32777 \quad 0.00242 \quad 4975388 \quad 924683<.0001$
x6 $\quad 18.71166 \quad 0.02791 \quad 2418067449401<.0001$
Bounds on condition number: $1.0923,4.3691$

Forward Selection: Step 3

The SAS System 11:24 Saturday, October 3, 20099655
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Forward Selection: Step 3
Statistics for Entry
DF $=1,804140$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x1	0.963891	0.7962	869279	$<.0001$
x2	0.964070	0.8246	1141135	$<.0001$
x5	0.995161	0.5830	13964.4	$<.0001$
x7	0.954563	0.9039	2746752	$<.0001$

Variable x 7 Entered: R-Square $=0.9039$ and $\mathrm{C}(\mathrm{p})=108082.3$

Analysis of Variance
Sum of Mean
Source
DF Squares \quad Square F Value $\operatorname{Pr}>\mathrm{F}$

Forward Selection: Step 4

The SAS System 11:24 Saturday, October 3, 20099656
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Forward Selection: Step 4
Statistics for Entry
$\mathrm{DF}=1,804139$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x1	0.391421	0.9059	$16448.8<.0001$	
x2	0.265209	0.9044	3784.50	$<.0001$
x5	0.994818	0.9131	84836.7	$<.0001$

Variable x 5 Entered: R-Square $=0.9131$ and $C(p)=21029.47$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	4	9313752	2328438	2112486	$<.0001$
Error	804139	886343	1.10223		
Corrected Total	804143	10200095			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $1.624040 .00688 \quad 6141255715.9<.0001$
x4 $\quad 2.41514 \quad 0.00110 \quad 53435794847987<.0001$
x5 $\quad 6.50617 \quad 0.02234 \quad 9350984836.7<.0001$
x6 $\quad 23.760920 .0129637045093360933<.0001$
x7 $\quad-7.25876 \quad 0.00415 \quad 33665993054362<.0001$

Bounds on condition number: $1.1497,17.191$

The SAS System 11:24 Saturday, October 3, 20099657
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Forward Selection: Step 5
Statistics for Entry
DF $=1,804138$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	0.391415	0.9150	17900.7	$<.0001$
x 2	0.265179	0.9135	3789.78	$<.0001$

Variable x1 Entered: R-Square $=0.9150$ and $C(p)=3062.767$

Analysis of Variance

| Sum of
 Source | | | | | DF |
| :--- | :---: | :---: | :---: | :---: | :---: | Squares \quad Square F Value $\operatorname{Pr}>$ F

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $0.725990 .009566220 .219335768 .94<.0001$
x1 $2.03790 \quad 0.01523 \quad 1930117900.7<.0001$
$\begin{array}{lllll}\mathrm{x} 4 & 2.41858 & 0.00109 & 5355805 & 4967239<.0001\end{array}$
x5 $6.49437 \quad 0.02209 \quad 9316986409.5<.0001$
$\begin{array}{lllll}\mathrm{x} 6 & 23.82882 & 0.01283 & 37198813450002<.0001\end{array}$
x7 $\quad-6.59415 \quad 0.00645 \quad 11283751046511<.0001$

Bounds on condition number: 2.5803, 41.936

Forward Selection: Step 6

The SAS System 11:24 Saturday, October 3, 20099658

The REG Procedure
Model: MODEL1
Dependent Variable: slope
Forward Selection: Step 6
Statistics for Entry
DF $=1,804137$

Model
Variable Tolerance R-Square F Value $\mathrm{Pr}>\mathrm{F}$
$\begin{array}{llllll}\mathrm{x} 2 & 0.119539 & 0.9153 & 3057.77 & <.0001\end{array}$

Variable x2 Entered: R-Square $=0.9153$ and $C(p)=7.0000$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	6	9336338	1556056	1448650	$<.0001$
Error	804137	863758	1.07414		
Corrected Total	804143	10200095			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $1.016760 .010899357 .773638711 .85<.0001$
$\begin{array}{lllll}\mathrm{x} 1 & 2.96582 & 0.02264 & 18428 & 17155.8<.0001\end{array}$
x2 $\quad-0.65198 \quad 0.011793284 .477493057 .77<.0001$
x4 $\quad 2.42011 \quad 0.00108 \quad 53590864989175<.0001$
x5 $\quad 6.50844 \quad 0.02205 \quad 9356187102.5<.0001$
x6 $23.84656 \quad 0.0128137230843466099<.0001$
$\begin{array}{lllll}\mathrm{x} 7 & -6.83971 & 0.00782 & 822256 & 765500\end{array}<.0001$

Bounds on condition number: $8.3655,126.58$

All variables have been entered into the model.

The SAS System 11:24 Saturday, October 3, 20099659

The REG Procedure
Model: MODEL1
Dependent Variable: slope

Summary of Forward Selection

Variable Number Partial Model
Step Entered Vars In R-Square R-Square C (p) F Value $\operatorname{Pr}>F$

1	x 4	1	0.3387	0.3387	5475160	411943	$<.0001$
2	x 6	2	0.2371	0.5758	3224002	449401	$<.0001$
3	x 7	3	0.3281	0.9039	108082	2746752	$<.0001$
4	x 5	4	0.0092	0.9131	21029.5	84836.7	$<.0001$
5	x 1	5	0.0019	0.9150	3062.77	17900.7	$<.0001$
6	x 2	6	0.0003	0.9153	7.0000	3057.77	$<.0001$
	The SAS System	$11: 24$ Saturday, October 3, 2009 9660					

Number of Observations Read 804144
Number of Observations Used 804144
Backward Elimination: Step 0

All Variables Entered: R-Square $=0.9153$ and $C(p)=7.0000$

Sum of					Mean
Source	DF	Squares	Square F Value $\operatorname{Pr}>F$		
Model	6	9336338	1556056	$1448650<.0001$	
Error	804137	863758	1.07414		
Corrected Total	804143	10200095			
Parameter					

Bounds on condition number: $8.3655,126.58$

Backward Elimination: Step 1

The SAS System 11:24 Saturday, October 3, 20099661
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Backward Elimination: Step 1
Statistics for Removal $\mathrm{DF}=1,804137$

Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	0.0018	0.9135	17155.8	$<.0001$
x 2	0.0003	0.9150	3057.77	$<.0001$
x 4	0.5254	0.3899	4989175	$<.0001$
x5	0.0092	0.9061	87102.5	$<.0001$
x6	0.3650	0.5503	3466099	$<.0001$
x7	0.0806	0.8347	$765500<.0001$	

All variables left in the model are significant at the 0.0500 level. The SAS System 11:24 Saturday, October 3, 20099662

The REG Procedure
Model: MODEL1
Dependent Variable: slope
Number of Observations Read 804144
Number of Observations Used 804144
Stepwise Selection: Step 1

Statistics for Entry
DF $=1,804142$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	1.000000	0.1396	130519	$<.0001$
x2	1.000000	0.1680	162387	$<.0001$
x4	1.000000	0.3387	411943	$<.0001$
x5	1.000000	0.0025	1977.47	$<.0001$
x6	1.000000	0.0880	77621.3	$<.0001$
x7	1.000000	0.2200	226815	$<.0001$

Variable x4 Entered: R-Square $=0.3387$ and $C(p)=5475160$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	1	3455232	3455232	411943	$<.0001$
Error	804142	6744864	8.38765		
Corrected Total	804143	10200095			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $7.644020 .010054855739578915<.0001$
$\begin{array}{lllll}\mathrm{x} 4 & 1.85608 & 0.00289 & 3455232 & 411943<.0001\end{array}$
Bounds on condition number: 1,1

Stepwise Selection: Step 2
The SAS System 11:24 Saturday, October 3, 20099663
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Stepwise Selection: Step 2
Statistics for Entry
$\mathrm{DF}=1,804141$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x1	0.999919	0.4745	207755	$<.0001$
x2	0.999585	0.4972	253513	$<.0001$
x5	0.999993	0.3414	3180.42	$<.0001$
x6	0.915514	0.5758	449401	$<.0001$
x7	0.999529	0.5472	370089	$<.0001$

Variable x6 Entered: R-Square $=0.5758$ and $C(p)=3224002$

Analysis of Variance

Source	Sum of DF	f Mean Squares	Square F	F Value	
Model	25	5873298	2936649	545780	<. 0001
Error	804141	4326797	75.3806		
Correcte	Total 8	8041431	10200095		

```
Variable Estimate Error Type II SS F Value Pr > F
Intercept -0.37485 0.01442 3637.70377 676.07<.0001
x4 2.32777 0.00242 4975388 924683<.0001
x6 18.71166 0.02791 2418067 449401<.0001
```

Bounds on condition number: 1.0923, 4.3691

Stepwise Selection: Step 3

The SAS System 11:24 Saturday, October 3, 20099664
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Stepwise Selection: Step 3
Statistics for Removal
$\mathrm{DF}=1,804141$
Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 4	0.4878	0.0880	924683	$<.0001$
x 6	0.2371	0.3387	449401	$<.0001$

Statistics for Entry
DF $=1,804140$

Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

| | | 0.9691 | 0.7962 | 869279 |
| :--- | :--- | :--- | :--- | :--- |$<.0001$

Variable x7 Entered: R-Square $=0.9039$ and $C(p)=108082.3$

Analysis of Variance

Sum of					Mean
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>\mathrm{F}$
Model	3	9220243	3073414	2522273	$<.0001$
Error	804140	979853	1.21851		
Corrected Total	804143	10200095			

Parameter Standard
Variable Estimate Error Type II SS F Value Pr $>$ F
Intercept $2.105940 .0070210960189947 .1<.0001$
x4 $2.40763 \quad 0.00115 \quad 53133444360526<.0001$
x6 $23.48963 \quad 0.0135936391932986593<.0001$
x7 $\quad-7.23629 \quad 0.0043733469442746752<.0001$
The SAS System 11:24 Saturday, October 3, 20099665

The REG Procedure
Model: MODEL1

Dependent Variable: slope

Stepwise Selection: Step 3
Bounds on condition number: 1.1437, 9.8566

Stepwise Selection: Step 4

Statistics for Removal
DF $=1,804140$
Partial Model
Variable R-Square R-Square F Value $\mathrm{Pr}>\mathrm{F}$

x 4	0.5209	0.3830	4360526	$<.0001$
x6	0.3568	0.5472	2986593	$<.0001$
x7	0.3281	0.5758	2746752	$<.0001$

Statistics for Entry

DF $=1,804139$

Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	0.391421	0.9059	16448.8	$<.0001$
x 2	0.265209	0.9044	3784.50	$<.0001$
x 5	0.994818	0.9131	84836.7	$<.0001$

Variable x5 Entered: R-Square $=0.9131$ and $C(p)=21029.47$

Analysis of Variance	
Source	Sum of Mean DF Squares Square F Value $\operatorname{Pr}>\mathrm{F}$
Model	$4931375223284382112486<.0001$
Error	8041398863431.10223
Corrected Total 80414310200095	
The SAS System 11:24 Saturday, October 3, 20099666	
The REG Procedure	
Model: MODEL1	
Dependent Variable: slope	
Stepwise Selection: Step 4	
Parameter Standard	
Variable Estimate Error Type II SS F Value Pr $>$ F	
Intercept 1.62404 $0.00688 \quad 6141255715.9<.0001$	
x4	$2.415140 .0011053435794847987<.0001$
x5	6.50617 0.02234 $9350984836.7<.0001$
x6	$23.760920 .0129637045093360933<.0001$
x7	-7.25876 $0.0041533665993054362<.0001$
Bounds on condition number: 1.1497, 17.191	

```
        Statistics for Removal
        DF=1,804139
        Partial Model
Variable R-Square R-Square F Value Pr}>\textrm{F
x4 0.5239 0.3892 4847987<.0001
x5 0.0092 0.9039 84836.7<.0001
x6 0.3632 0.5499 3360933<0001
x7 0.3301 0.5830 3054362<.0001
Statistics for Entry
DF = 1,804138
            Model
Variable Tolerance R-Square F Value Pr > F
\begin{tabular}{lllll}
x 1 & 0.391415 & 0.9150 & 17900.7 & \(<.0001\) \\
x 2 & 0.265179 & 0.9135 & 3789.78 & \(<.0001\)
\end{tabular}
Variable x1 Entered: R-Square = 0.9150 and C(p)=3062.767
        The SAS System 11:24 Saturday, October 3, 20099667
        The REG Procedure
        Model: MODEL1
        Dependent Variable: slope
        Stepwise Selection: Step 5
        Analysis of Variance
\begin{tabular}{lccccc}
\multicolumn{5}{c}{ Sum of Mean } & Mare \\
Source & DF & Squares & Square F Value \(\operatorname{Pr}>\mathrm{F}\) \\
& & & & \\
Model & 5 & 9333053 & 1866611 & 1731187 & \(<.0001\) \\
Error & 804138 & 867042 & 1.07823 \\
Corrected Total & 804143 & 10200095
\end{tabular}
Parameter Standard
    Variable Estimate Error Type II SS F Value Pr > F
    Intercept 0.72599 0.00956 6220.21933 5768.94<.0001
    x1 2.03790 0.01523 19301 17900.7<.0001
    x4 2.41858 0.00109 5355805 4967239<.0001
    x5 6.49437 0.02209 93169 86409.5<.0001
    x6 23.82882 0.01283 3719881 3450002<.0001
    x7 -6.59415 0.00645 1128375 1046511<.0001
    Bounds on condition number: 2.5803,41.936
```

Stepwise Selection: Step 6

Statistics for Removal DF $=1,804138$

Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$
$\begin{array}{lllll}\mathrm{x} 1 & 0.0019 & 0.9131 & 17900.7 & <.0001\end{array}$

x4	0.5251	0.3899	4967239	$<.0001$	
x5	0.0091	0.9059	86409.5	$<.0001$	
	x6	0.3647	0.5503	3450002	$<.0001$
	x7	0.1106	0.8044	1046511	$<.0001$

The SAS System 11:24 Saturday, October 3, 20099668
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Stepwise Selection: Step 6
Statistics for Entry
DF $=1,804137$

	Model				
Variable	Tolerance	R-Square	F Value	$\operatorname{Pr}>$ F	
x 2	0.119539	0.9153	3057.77	$<.0001$	

Variable x2 Entered: R-Square $=0.9153$ and $C(p)=7.0000$

Analysis of Variance

	Sum of		Mean		
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	6	9336338	1556056	1448650	$<.0001$
Error	804137	863758	1.07414		
Corrected Total	804143	10200095			

Parameter				Standard	
Variable	Estimate	Error	Type II SS F Value Pr $>\mathrm{F}$		
Intercept	1.01676	0.01089	9357.77363	$8711.85<.0001$	
x1	2.96582	0.02264	18428	$17155.8<.0001$	
x2	-0.65198	0.01179	3284.47749	$3057.77<.0001$	
x4	2.42011	0.00108	5359086	$4989175<.0001$	
x5	6.50844	0.02205	93561	$87102.5<.0001$	
x6	23.84656	0.01281	3723084	$3466099<.0001$	
x7	-6.83971	0.00782	822256	$765500<.0001$	

Stepwise Selection: Step 7

The SAS System 11:24 Saturday, October 3, 20099669
The REG Procedure
Model: MODEL1
Dependent Variable: slope
Stepwise Selection: Step 7
Statistics for Removal DF $=1,804137$

Partial Model
Variable R-Square R-Square F Value $\mathrm{Pr}>\mathrm{F}$

x 1	0.0018	0.9135	17155.8	$<.0001$
x 2	0.0003	0.9150	3057.77	$<.0001$
x 4	0.5254	0.3899	4989175	$<.0001$
x 5	0.0092	0.9061	87102.5	$<.0001$
x 6	0.3650	0.5503	3466099	$<.0001$
x 7	0.0806	0.8347	765500	$<.0001$

All variables left in the model are significant at the 0.1500 level.
All variables have been entered into the model.

Summary of Stepwise Selection

| Number in
 Model | R-Square | C(p) |
| :---: | :---: | :---: | :---: | :--- | MSE \quad Variables in Model

3	0.7962	1131535	2.58560	$\mathrm{x} 1 \mathrm{x} 4 \times$
3	0.5830	3155247	5.28881	$\mathrm{x} 4 \times 5 \mathrm{x} 6$
3	0.5499	3469833	5.70902	$\mathrm{x} 4 \times 5 \mathrm{x} 7$
3	0.5476	3492287	5.73901	$\mathrm{x} 1 \times 4 \mathrm{x}$
3	0.5473	3494410	5.74185	$\mathrm{x} 2 \mathrm{x} 4 \times 7$
3	0.4997	3946501	6.34574	x 2 x 4 x 5
3	0.4975	3967227	6.37342	x 1 x 2 x
3	0.4771	4161801	6.63333	x 1 x 4 x 5
3	0.3892	4995766	7.74731	x $5 \times 6 \mathrm{x} 7$
3	0.3837	5047906	7.81696	x1 x6 x7
3	0.3835	5050579	7.82053	x 2 x 6 x 7
3	0.3176	5676075	8.65604	x 2 x 5 x 6
The SAS System 11:24 Saturda				
The REG Procedure				
Model: MODEL1				
Dependent Variable: slope				
R-Square Selection Method				

Number in				
Model	R-Squa	are $\mathrm{C}(\mathrm{p})$	MSE	Variables in Model
3	0.3125	5724356	8.72054	$\mathrm{x} 1 \mathrm{x} 2 \times 6$
3	0.2834	6000599	9.08953	$\mathrm{x} 1 \times 5 \times 6$
3	0.2228	6575874	9.85796	$\mathrm{x} 2 \times 5 \times 7$
3	0.2228	6576446	9.85873	x1 $\times 5 \times 7$
3	0.2202	6600487	9.89084	$\mathrm{x} 1 \times 2 \times 7$
3	0.1704	7074144	10.52354	$\mathrm{x} 1 \times 2 \times 5$
4	0.9131	21029.47	1.10223	$\mathrm{x} 4 \times 5 \times 6 \mathrm{x} 7$
4	0.9059	89798.73	1.19409	$\mathrm{x} 1 \mathrm{x} 4 \times 6 \mathrm{x} 7$
4	0.9044	103811.2	1.21280	$\mathrm{x} 2 \mathrm{x} 4 \times 6 \mathrm{x} 7$
4	0.8328	783788.8	2.12110	$\mathrm{x} 2 \mathrm{x} 4 \times 5 \times 6$
4	0.8265	843183.3	2.20043	$\mathrm{x} 1 \mathrm{x} 2 \times 4 \times 6$
4	0.8044	1053550	2.48143	$\mathrm{x} 1 \mathrm{x} 4 \times 5 \times 6$
4	0.5503	3466177	5.70414	$\mathrm{x} 1 \mathrm{x} 4 \times 5 \mathrm{x} 7$
4	0.5501	3468315	5.70700	$\mathrm{x} 2 \mathrm{x} 4 \times 5 \mathrm{x} 7$
4	0.5476	3492239	5.73895	x 1 x 2 x 4 x 7
4	0.5000	3943632	6.34191	$\mathrm{x} 1 \times 2 \times 4 \times 5$
4	0.3899	4989181	7.73852	$\mathrm{x} 1 \times 5 \times 6 \mathrm{x} 7$
4	0.3896	4991999	7.74229	$\mathrm{x} 2 \mathrm{x} 5 \times 6 \mathrm{x} 7$
4	0.3837	5047888	7.81694	$\mathrm{x} 1 \times 2 \times 6 \mathrm{x} 7$
4	0.3179	5672741	8.65160	$\mathrm{x} 1 \times 2 \times 5 \times 6$
4	0.2228	6575825	9.85791	$\mathrm{x} 1 \mathrm{x} 2 \times 5 \mathrm{x} 7$
5	0.9150	3062.767	1.07823	$\mathrm{x} 1 \mathrm{x} 4 \times 5 \times 6 \times 7$
5	0.9135	17160.85	1.09706	$\mathrm{x} 2 \mathrm{x} 4 \times 5 \times 6 \times 7$
5	0.9061	87107.50	1.19049	$\mathrm{x} 1 \times 2 \times 4 \times 6 \times 7$
5	0.8347	765505.2	2.09667	$\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 4 \times 5 \mathrm{x} 6$
5	0.5503	3466104	5.70405	$\mathrm{x} 1 \times 2 \mathrm{x} 4 \times 5 \times 7$
5	0.3899	4989180	7.73853	$\mathrm{x} 1 \mathrm{x} 2 \times 5 \times 6 \times 7$
6	0.9153	7.0000	1.07414	x1 x2 x4 x5 x6 x 7

The SAS System 11:24 Saturday, October 3, 20099672
The CORR Procedure

6 Variables: x 1 x2 x 4 x 5 x 6 x 7

$$
\text { Covariance Matrix, } \mathrm{DF}=804143
$$

x 1	x 2	x 4	x 5	x 6	x 7

x1	0.014765359	0.031255086	0.001222166	0.000010498	-0.002168265	-0.027338461
x2	0.031255086	0.080380462	0.006449020	0.000045538	-0.005114094	-0.070126382
x4	0.001222166	0.006449020	1.247236758	-0.000152301	-0.031440474	-0.006994508
x5	0.000010498	0.000045538	-0.000152301	0.002761387	-0.000334695	0.000051812
x6	-0.002168265	-0.005114094	-0.031440474	-0.000334695	0.009380917	0.005847031
x7	-0.027338461	-0.070126382	-0.006994508	0.000051812	0.005847031	0.083268051

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
x1	804144	0.22587	0.12151	181635	0.06667	0.50000
x2	804144	0.55709	0.28351	447984	0.20000	1.00000
x4	804144	3.28964	1.11680	2645347	2.00000	5.00000
x5	804144	0.05796	0.05255	46606	0	0.15000
x6	804144	0.34562	0.09686	277931	0.20000	0.50000
x7	804144	0.60734	0.28856	488388	0.05799	1.22185

Pearson Correlation Coefficients, $\mathrm{N}=804144$
Prob $>|r|$ under H0: Rho=0

Variable Selection and Covariance Matrix for the oil-wet homogeneous model (Intercept)

The SAS System 11:24 Saturday, October 3, 20099673
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Number of Observations Read 804144
Number of Observations Used 804144
Forward Selection: Step 1

Statistics for Entry
$\mathrm{DF}=1,804142$

Mode

Variable	Tolerance	R-Square	F Value	$\mathrm{Pr}>\mathrm{F}$
x1	1.000000	0.3622	456589	$<.0001$
x 2	1.000000	0.3171	373441	$<.0001$
x4	1.000000	0.4968	793944	$<.0001$
x5	1.000000	0.0001	50.51	$<.0001$
x6	1.000000	0.1311	121300	$<.0001$
x7	1.000000	0.4244	592931	$<.0001$

Variable x4 Entered: R-Square $=0.4968$ and C $(p)=8087357$

Analysis of Variance						
	Sum of		Mean			
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>$ F	
Model	1	1809024	1809024	793944	$<.0001$	
Error	804142	1832260	2.27853			
Corrected Total	804143	3641284				

Parameter Standard

Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$		
Intercept	-0.50232	0.00524	20969	$9202.79<.0001$	
x 4	-1.34302	0.00151	1809024	$793944<.0001$	

Bounds on condition number: 1,1

Forward Selection: Step 2
The SAS System 11:24 Saturday, October 3, 20099674
The REG Procedure Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 2
Statistics for Entry
DF $=1,804141$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	0.999919	0.8514	1918851	$<.0001$
x 2	0.999585	0.7981	1199963	$<.0001$
x 5	0.999993	0.4968	59.39	$<.0001$
x 6	0.915514	0.5238	45559.8	$<.0001$
x 7	0.999529	0.9017	3312667	$<.0001$

Variable x7 Entered: R-Square $=0.9017$ and $C(p)=932648.9$

Analysis of Variance

Source
Sum of Mean

Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	2	3283387	1641693	3688633	$<.0001$
Error	804141	357898	0.44507		

Corrected Total 8041433641284

Parameter								Standard			
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$								
Intercept	-3.43947	0.00282	661458	1486194	$<.0001$						
x4	-1.31669	0.00066631	1737991	3905000	$<.0001$						
x7	4.69352	0.00258	1474362	3312667	$<.0001$						

Bounds on condition number: $1.0005,4.0019$

Forward Selection: Step 3

The SAS System 11:24 Saturday, October 3, 20099675
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 3
Statistics for Entry
DF $=1,804140$
Model
Variable Tolerance R-Square F Value $\mathrm{Pr}>\mathrm{F}$

x 1	0.392046	0.9269	276818	$<.0001$
x 2	0.265256	0.9018	378.32	$<.0001$
x 5	0.999982	0.9017	128.12	$<.0001$
x 6	0.874328	0.9026	7418.51	$<.0001$

Variable x1 Entered: R-Square $=0.9269$ and $C(p)=487884.8$

Analysis of Variance					
	Sum of		Mean		
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	3	3375039	1125013	3397876	$<.0001$
Error	804140	266245	0.33109		
Corrected Total	804143	3641284			

Parameter					Standard
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$		
Intercept	-1.53964	0.00435	41395	125024	$<.0001$
x1	-4.43726	0.00843	91652	276818	$<.0001$
x4	-1.32052	0.00057474	1747821	5278941	$<.0001$
x7	3.23636	0.00355	274849	$830126<.0001$	

Bounds on condition number: 2.5517, 18.309

Forward Selection: Step 4

The SAS System 11:24 Saturday, October 3, 20099676
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept

Forward Selection: Step 4
Statistics for Entry
DF $=1,804139$
Model
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 2	0.119625	0.9541	476347	$<.0001$
x 5	0.999935	0.9269	279.86	$<.0001$
x 6	0.872932	0.9274	6201.80	$<.0001$

Variable x2 Entered: R-Square $=0.9541$ and $C(p)=7248.815$

Analysis of Variance					
Source	Sum of		Mean		
	DF	Squares	Square	F Value	$\operatorname{Pr}>\mathrm{F}$
Model	4	3474084	868521	4177085	<. 0001
Error	804139	167201	0.20793		
Corrected Total		$43 \quad 364$	1284		

Parameter					Standard
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$		
Intercept	-3.17965	0.00419	119759	$575970<.0001$	
x1	-9.52673	0.00995	190529	$916333<.0001$	
x2	3.57900	0.00519	99044	$476347<.0001$	
x4	-1.32651	0.00045554	1763070	$8479352<.0001$	
x7	4.57904	0.00342	372360	$1790836<.0001$	

Bounds on condition number: 8.3594, 75.147

Forward Selection: Step 5

The SAS System 11:24 Saturday, October 3, 20099677
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 5

Statistics for Entry $\mathrm{DF}=1,804138$						
	Model					
Variable	Tolerance	R-Square	F Value	$\mathrm{Pr}>\mathrm{F}$		
x5	0.999840	0.9541	206.53	$<.0001$		
x6	0.872418	0.9545	6824.93	$<.0001$		

Variable x6 Entered: R-Square $=0.9545$ and $C(p)=422.3553$

Analysis of Variance
Sum of Mean

Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	5	3475491	695098	3371391	$<.0001$
Error	804138	165794	0.20618		
Corrected Total	804143	3641284			

Parameter Standard

Parameter					Standard
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$		
Intercept	-3.36277	0.00472	104464	$506674<.0001$	
x1	-9.49002	0.00992	188683	915159	$<.0001$
x2	3.56864	0.00517	98414	$477331<.0001$	
x4	-1.31499	0.00047456	1583102	$7678420<.0001$	
x6	0.46240	0.00560	1407.13254	$6824.93<.0001$	
x7	4.55087	0.00342	364145	$1766189<.0001$	

Bounds on condition number: $8.3644,100.41$

Forward Selection: Step 6

The SAS System 11:24 Saturday, October 3, 20099678
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Forward Selection: Step 6

Statistics for Entry$\mathrm{DF}=1,804137$				
Model				
Variable	Tolerance	R-Square	F Value	$\operatorname{Pr}>\mathrm{F}$
x5	0.994669	0.9545	$417.36<$	001

Variable $x 5$ Entered: R-Square $=0.9545$ and $C(p)=7.0000$

Analysis of Variance

	Sum of		Mean		
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>$ F
Model	6	3475577	579263	2811017	$<.0001$
Error	804137	165708	0.20607		
Corrected Total	804143	3641284			

Parameter					Standard
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$		
Intercept	-3.37660	0.00477	103204	$500823<.0001$	
x1	-9.48883	0.00992	188630	$915372<.0001$	
x2	3.56742	0.00516	98334	$477189<.0001$	
x4	-1.31476	0.00047457	1581662	7675406	$<.0001$
x5	0.19733	0.00966	86.00390	$417.36<.0001$	
x6	0.47064	0.00561	1450.20388	7037.47	$<.0001$
x7	4.54955	0.00342	363805	$1765456<.0001$	

Bounds on condition number: $8.3655,126.58$

All variables have been entered into the model.

The SAS System 11:24 Saturday, October 3, 20099679
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept

Summary of Forward Selection

Variable		Number Partial Model					
Step	Entered	Label	Vars In R	R -Square	R-Square	C(p)	F Value $\operatorname{Pr}>\mathrm{F}$
1	x4		0.4968	0.4968	8087357	793944	<. 0001
2	x7	2	0.4049	0.9017	932649	3312667	<. 0001
3	x 1		0.0252	0.9269	487885	276818	<. 0001
4	x 2		0.0272	0.9541	7248.82	476347	<. 0001
5	x6		0.0004	0.9545	422.355	6824.93	<. 0001
6	x5	6	0.0000	0.9545	7.0000	417.36	<. 0001
		The SAS System 11:24 Saturday, October 3, 20099680					
	The REG Procedure						
	Model: MODEL1						
		Dependent Variable: Intercept Intercept					
		Number of Observations Read			804144		
		Number of Observations Used			804144		

Backward Elimination: Step 0

All Variables Entered: R-Square $=0.9545$ and $C(p)=7.0000$

Analysis of Variance						
Sum of	Mean					
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>$ F	
Model	6	3475577	579263	2811017	$<.0001$	
Error	804137	165708	0.20607			
Corrected Total	804143	3641284				

Parameter					Standard
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$		
Intercept	-3.37660	0.00477	103204	$500823<.0001$	
x1	-9.48883	0.00992	188630	$915372<.0001$	
x2	3.56742	0.00516	98334	$477189<.0001$	
x4	-1.31476	0.00047457	1581662	$7675406<.0001$	
x5	0.19733	0.00966	86.00390	$417.36<.0001$	
x6	0.47064	0.00561	1450.20388	$7037.47<.0001$	
x7	4.54955	0.00342	363805	$1765456<.0001$	

Backward Elimination: Step 1

Stepwise Selection: Step 1

Statistics for Entry
$\mathrm{DF}=1,804142$
Variable Tolerance R-Square F Value $\operatorname{Pr}>\mathrm{F}$

x 1	1.000000	0.3622	456589	$<.0001$
x 2	1.000000	0.3171	373441	$<.0001$
x 4	1.000000	0.4968	793944	$<.0001$
x 5	1.000000	0.0001	50.51	$<.0001$
x 6	1.000000	0.1311	121300	$<.0001$
x 7	1.000000	0.4244	592931	$<.0001$

Variable $x 4$ Entered: R-Square $=0.4968$ and $C(p)=8087357$

Analysis of Variance

	Sum of		Mean		
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>$ F
Model	1	1809024	1809024	793944	$<.0001$
Error	804142	1832260	2.27853		
Corrected Total	804143	3641284			

Parameter Standard

| Variable | Estimate | Error | Type II SS F Value $\operatorname{Pr}>\mathrm{F}$ | |
| :--- | :--- | :--- | ---: | :--- | :--- |
| | | | | |
| Intercept | -0.50232 | 0.00524 | 20969 | $9202.79<.0001$ |
| x 4 | -1.34302 | 0.00151 | 1809024 | $793944<.0001$ |

Bounds on condition number: 1,1

Stepwise Selection: Step 2 The SAS System 11:24 Saturday, October 3, 20099683

The REG Procedure Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 2

Statistics for Entry						
	$\mathrm{DF}=1,804141$					
	Model					
	Variable	Tolerance	R-Square	F Value		

Variable x7 Entered: R-Square $=0.9017$ and $C(p)=932648.9$

Analysis of Variance

	Sum of		Mean		
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	2	3283387	1641693	3688633	$<.0001$
Error	804141	357898	0.44507		
Corrected Total	804143	3641284			

Parameter					Standard	
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$			
Intercept	-3.43947	0.00282	661458	1486194	$<.0001$	
x4	-1.31669	0.00066631	1737991	3905000	$<.0001$	
x7	4.69352	0.00258	1474362	3312667	$<.0001$	

Bounds on condition number: $1.0005,4.0019$

Stepwise Selection: Step 3

The SAS System 11:24 Saturday, October 3, 20099684
The REG Procedure Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 3
Statistics for Removal $\mathrm{DF}=1,804141$

Partial Model
Variable R-Square R-Square F Value $\operatorname{Pr}>\mathrm{F}$

Variable x1 Entered: R-Square $=0.9269$ and $C(p)=487884.8$

Analysis of Variance

Source	DF	Squares	Square	F Value	$\operatorname{Pr}>F$
Model	3	3375039	1125013	3397876	$<.0001$
Error	804140	266245	0.33109		
Corrected Total	804143	3641284			

Parameter Standard			
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>$ F
Intercept	-1.53964	0.00435	$41395125024<.0001$
x 1	-4.43726	0.00843	$91652276818<.0001$
x4	-1.32052 0	0.00057474	$17478215278941<.0001$
x7	3.23636	0.00355	$274849830126<.0001$
The SAS System 11:24 Saturday, October 3, 20099685			
The REG Procedure			
Model: MODEL1			
Dependent Variable: Intercept Intercept			
Stepwise Selection: Step 3			

Bounds on condition number: $2.5517,18.309$

Stepwise Selection: Step 4

Variable	Statistics for Removal$\mathrm{DF}=1,804140$				
	Partial Model				
	R -Square	R -Square F		e $\operatorname{Pr}>\mathrm{F}$	
x 1	0.0252	0.9017	276818	<. 00	
x4	0.4800	0.4469	5278941	<. 00	
x7	0.0755	0.8514	830126	<. 00	
Statistics for Entry$\mathrm{DF}=1,804139$					
Model					
Variable	Tolerance	$\mathrm{R}-\mathrm{Sq}$	uare F V	alue	$\operatorname{Pr}>\mathrm{F}$

x 2	0.119625	0.9541	476347	$<.0001$
x 5	0.999935	0.9269	279.86	$<.0001$
x 6	0.872932	0.9274	6201.80	$<.0001$

Variable x2 Entered: R-Square $=0.9541$ and $C(p)=7248.815$

Analysis of Variance

Stepwise Selection: Step 5

Variable	Statistics for Removal$\mathrm{DF}=1,804139$				
	Partial Model				
	R-Square	R-Squ	are F Va	lue	$\operatorname{Pr}>\mathrm{F}$
x 1	0.0523	0.9018	916333	<. 00	
x2	0.0272	0.9269	476347	<. 00	
x4	0.4842	0.4699	8479352	<. 000	
x7	0.1023	0.8518	1790836	<. 00	
Statistics for Entry$\mathrm{DF}=1,804138$					
Model					
Variable	Tolerance	R-Squ	uare F Va	alue	$\operatorname{Pr}>\mathrm{F}$
x5	0.999840	0.9541	206.53	<. 0	001
x6	0.872418	0.9545	6824.93	<. 0	001

Variable x6 Entered: R-Square $=0.9545$ and $C(p)=422.3553$

The SAS System 11:24 Saturday, October 3, 20099687
$\left.\begin{array}{llllll}\text { The REG Procedure } \\ \text { Model: MODEL1 } \\ \text { Dependent Variable: Intercept Intercept } \\ \text { Stepwise Selection: Step 5 }\end{array}\right]$

Bounds on condition number: $8.3644,100.41$

Stepwise Selection: Step 6

Statistics for Removal$\mathrm{DF}=1,804138$					
Variable	Partial Model				
	R -Square	R-Sq	uare F V		$\operatorname{Pr}>\mathrm{F}$
x1	0.0518	0.9027	915159	<. 00	
x 2	0.0270	0.9274	477331	<. 00	
x4	0.4348	0.5197	7678420	<. 0	001
x6	0.0004	0.9541	6824.93	<. 00	
x7	0.1000	0.8545	1766189	<. 0	001
The SAS System 11:24 Saturday, Octob					
The REG ProcedureModel: MODEL1Dependent Variable: Intercept Intercept					
Stepwise Selection: Step 6					
Statistics for Entry$\mathrm{DF}=1,804137$					
Model					
Variable	Tolerance	R-Sq	uare F V	alue	$\operatorname{Pr}>\mathrm{F}$
x5	0.994669	0.954	417.3	<.	001

Analysis of Variance

	Sum of		Mean		
Source	DF	Squares	Square	F Value	$\operatorname{Pr}>$ F
Model	6	3475577	579263	2811017	$<.0001$
Error	804137	165708	0.20607		
Corrected Total	804143	3641284			

Parameter					Standard
Variable	Estimate	Error	Type II SS F Value $\operatorname{Pr}>\mathrm{F}$		
Intercept	-3.37660	0.00477	103204	$500823<.0001$	
x1	-9.48883	0.00992	188630	$915372<.0001$	
x2	3.56742	0.00516	98334	$477189<.0001$	
x4	-1.31476	0.00047457	1581662	$7675406<.0001$	
x5	0.19733	0.00966	86.00390	$417.36<.0001$	
x6	0.47064	0.00561	1450.20388	$7037.47<.0001$	
x7	4.54955	0.00342	363805	$1765456<.0001$	

Bounds on condition number: $8.3655,126.58$

Stepwise Selection: Step 7

The SAS System 11:24 Saturday, October 3, 20099689
The REG Procedure
Model: MODEL1
Dependent Variable: Intercept Intercept
Stepwise Selection: Step 7

| Statistics for Removal | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{DF}=1,804137$ | | | |
| | Partial | Model | | |
| Variable | R -Square | R-Square | F Value | Pr $>\mathrm{F}$ |
| | | | | |
| x1 | 0.0518 | 0.9027 | 915372 | $<.0001$ |
| x2 | 0.0270 | 0.9275 | 477189 | $<.0001$ |
| x4 | 0.4344 | 0.5201 | 7675406 | $<.0001$ |
| x5 | 0.0000 | 0.9545 | 417.36 | $<.0001$ |
| x6 | 0.0004 | 0.9541 | 7037.47 | $<.0001$ |
| x7 | 0.0999 | 0.8546 | 1765456 | $<.0001$ |

All variables left in the model are significant at the 0.1500 level.
All variables have been entered into the model.

Summary of Stepwise Selection

The REG Procedure
Model: MODEL1
Dependent Variable: Intercept
R-Square Selection Method

Number of Observations Read 804144
Number of Observations Used 804144

| Number in
 Model | R-Square | C(p) | MSE | Variables in Model |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| 3 | 0.4469 | 8968818 | 2.50442 | x1 x5 x7 |
| 3 | 0.4283 | 9297823 | 2.58873 | $\mathrm{x} 1 \times 2 \times 6$ |
| 3 | 0.4281 | 9300776 | 2.58948 | $\mathrm{x} 1 \times 5 \times 6$ |

3	0.4245	9364605	2.60584	$\mathrm{x} 2 \times 5 \times 7$
3	0.3864	10038927	2.77864	$\mathrm{x} 2 \times 5 \times 6$
3	0.3639	10435745	2.88033	$\mathrm{x} 1 \times 2 \times 5$
4	0.9541	7248.815	0.20793	$\mathrm{x} 1 \times 2 \mathrm{x} 4 \times 7$
4	0.9274	477998.5	0.32856	$\mathrm{x} 1 \mathrm{x} 4 \times 6 \mathrm{x} 7$
4	0.9269	487437.3	0.33098	$\mathrm{x} 1 \mathrm{x} 4 \times 5 \times 7$
4	0.9027	916053.0	0.44082	$\mathrm{x} 2 \mathrm{x} 4 \times 6 \mathrm{x} 7$
4	0.9026	916113.5	0.44083	$\mathrm{x} 4 \times 5 \times 6 \times 7$
4	0.9018	931548.3	0.44479	$\mathrm{x} 2 \mathrm{x} 4 \times 5 \mathrm{x} 7$
4	0.8545	1767524	0.65901	x 1 x 2 x 4 x 6
4	0.8542	1771502	0.66003	$\mathrm{x} 1 \mathrm{x} 4 \times 5 \times 6$
4	0.8519	1813309	0.67075	$\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 4 \times 5$
4	0.8021	2693222	0.89623	$\mathrm{x} 2 \mathrm{x} 4 \times 5 \times 6$
4	0.5197	7682816	2.17487	$\mathrm{x} 1 \times 2 \times 6 \times 7$
4	0.4984	8059903	2.27150	$\mathrm{x} 1 \times 5 \times 6 \times 7$
4	0.4782	8416141	2.36279	$\mathrm{x} 2 \times 5 \times 6 \times 7$
4	0.4699	8562496	2.40029	$\mathrm{x} 1 \times 2 \times 5 \times 7$
4	0.4290	9285872	2.58567	$\mathrm{x} 1 \mathrm{x} 2 \times 5 \mathrm{x} 6$
5	0.9545	422.3553	0.20618	$\mathrm{x} 1 \mathrm{x} 2 \times 4 \times 6 \times 7$
5	0.9541	7042.474	0.20787	$\mathrm{x} 1 \times 2 \times 4 \times 5 \times 7$
5	0.9275	477194.0	0.32835	$\mathrm{x} 1 \mathrm{x} 4 \times 5 \times 6 \times 7$
5	0.9027	915376.7	0.44064	$\mathrm{x} 2 \mathrm{x} 4 \times 5 \times 6 \times 7$
5	0.8546	1765461	0.65849	$\mathrm{x} 1 \mathrm{x} 2 \times 4 \times 5 \times 6$
5	0.5201	7675411	2.17297	$\mathrm{x} 1 \mathrm{x} 2 \times 5 \mathrm{x} 6 \mathrm{x} 7$
6	0.9545	7.0000	0.20607	$\mathrm{x} 1 \times 2 \mathrm{x} 4 \times 5 \times 6 \times 7$

The SAS System 11:24 Saturday, October 3, 20099692
The CORR Procedure
6 Variables: $\mathrm{x} 1 \quad \mathrm{x} 2 \mathrm{x} 4 \quad \mathrm{x} 5 \quad \mathrm{x} 6 \quad \mathrm{x} 7$

Covariance Matrix, DF $=804143$

	x 1	x 2	x 4	x 5	x 6	x 7		
x1	0.014765359	0.031255086	0.001222166	0.000010498	-0.002168265	-0.027338461		
x2	0.031255086	0.080380462	0.006449020	0.000045538	-0.005114094	-0.070126382		
x4	0.001222166	0.006449020	1.247236758	-0.000152301	-0.031440474	-0.006994508		
x5	0.000010498	0.000045538	-0.000152301	0.002761387	-0.000334695	0.000051812		
x6	-0.002168265	-0.005114094	-0.031440474	-0.000334695	0.009380917	0.005847031		
x7	-0.027338461	-0.070126382	-0.006994508	0.000051812	0.005847031	0.083268051		

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
x1	804144	0.22587	0.12151	181635	0.06667	0.50000
x2	804144	0.55709	0.28351	447984	0.20000	1.00000
x4	804144	3.28964	1.11680	2645347	2.00000	5.00000
x5	804144	0.05796	0.05255	46606	0	0.15000
x6	804144	0.34562	0.09686	277931	0.20000	0.50000
x7	804144	0.60734	0.28856	488388	0.05799	1.22185

Pearson Correlation Coefficients, $\mathrm{N}=804144$
Prob $>|r|$ under $\mathrm{H} 0: \mathrm{Rho}=0$

x 1	x 2	x 4	x 5	x 6	x 7

x 1	1.00000	0.90724	0.00901	0.00164	-0.18423	-0.77967
		<. 0001	$00010.1404<$		<. 0001	
x 2	0.90724	1.00000	0.02037	0.00306	$6-0.18624$	-0.85717
	<. 0001	<. 00010.		. $0061<.0001<$.		<. 0001
x4	0.00901	0.02037	1.00000	-0.00260	$0-0.29066$	-0.02170
	<. 0001	<. 0001	$0.0200<$		$1<.0001$	
x5	0.00164	0.00306	-0.00260	1.00000	$0-0.06576$	0.00342
	0.1404	0.0061	0.0200	<. $0001 \quad 0.0$		0.0022
x6	-0.18423	-0.18624	-0.29066	-0.06576	661.00000	0.20921
	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001	
x7	-0.77967	-0.85717	-0.02170	0.00342	20.20921	1.00000
	<. 0001	<. 0001	<. 0001	0.0022	<. 0001	

APPENDIX H

EVALUATION OF THE INJECTION RATES, CROSSFLOW AND LAYERS NUMBER IN THE RECOVERY FACTOR AND PVI RESULTS USING THE SIMULATION MODEL

Injection Rates Effect

Table 27-Example cases to evaluate the effect of different injection rates using the reservoir simulator characteristics as described in Table 2.

Case \#	Heterogeneity (VDP)	Mobility Ratio	Injection Rate $(\mathrm{B} / \mathrm{D})$
1	0.0	1	200
2	0.0	10	200
3	0.0	1	2000
4	0.0	10	2000
5	0.9	1	200
6	0.9	10	200
7	0.9	1	2000
8	0.9	10	2000

Fig. 37-Comparison of recovery factors obtained using different injection rates and $M=1$ for homogeneous reservoirs.

Fig. 38-Comparison of SLZs obtained using different injection rates and $M=1$ for homogeneous reservoirs.

Fig. 39-Comparison of recovery factors obtained using different injection rates and $M=10$ for homogeneous reservoirs.

Fig. 40-Comparison of SLZs obtained using different injection rates and $M=10$ for homogeneous reservoirs.

Fig. 41-Comparison of recovery factors obtained using different injection rates and $M=1$ and VDP $=0.9$.

Fig. 42-Comparison of SLZs obtained using different injection rates and $M=1$ and VDP $=0.9$.

Fig. 43-Comparison of recovery factors obtained using different injection rates and $M=10$ and $\mathrm{VDP}=0.9$.

Fig. 44-Comparison of SLZs obtained using different injection rates and $M=10$ and VDP $=0.9$.

Number of Layers Effect

Fig. 45-Recovery comparison for different number of layers in the same reservoir.

Fig. 45 shows the same behavior for both cases, so we can infer that not an important effect is observed, considering that only at high PVI a difference will be obtained. Also, Fig. 46 shown the SLZ behavior and no important effect is noticed.

Fig. 46-SLZ plot for heterogeneous cases (VDP=0.9) with $M=10$. No difference in behavior is shown for the number of layers used.

Crossflow Effect

Three scenarios of the same 10-layers reservoirs in Table 28 were evaluated:

Scenario 1: Homogeneous reservoir (VDP $=0$), no crossflow ($k_{v}=0$) and crossflow $\left(k_{v}=k_{h}\right)$.

Scenario 2: Heterogeneous reservoir (VDP $=0.93$), no extreme values of permeability (k from 0.1 to 200 mD), no crossflow and crossflow.

Scenario 3: Heterogeneous reservoir (VDP $=0.85$), 3 theft zones (k from 10 to 3000 mD), no crossflow and crossflow.

Table 28-Permeability values per layer used in the crossflow exercise.

Layer	Scenario 1	Scenario 2	Scenario 3
1	200	200	2000
2	200	100	100
3	200	80	800
4	200	60	60
5	200	0.1	2000
6	200	0.2	100
7	200	10	10
8	200	150	150
9	200	100	3000
10	200	50	50
VDP	0	0.93	0.85

Table 28 shows the VDP input data and figures present the simulation runs results. In Fig. 47, RF vs. PVI curve behavior for the homogenous reservoir is presented. We cannot see any difference in performances. Fig. 48 presents a plot of WOR vs. RF. In any of them we can see a difference. We can conclude that crossflow will not affect homogeneous reservoir behavior.

Fig. 47-Crossflow effect in homogeneous reservoir.

Fig. 48-Log WOR vs. RF plot for homogeneous reservoir with and without crossflow.

Same set of plots are presented for Scenario 2, with a VDP of 0.93 but with relatively low permeability values in all layers. No important difference can be detected in the plots due to crossflow effects.

Fig. 49—Crossflow effect in heterogeneous reservoir (VDP=0.93).

Fig. 50-WOR vs. RF plot for heterogeneous reservoir with and without crossflow (VDP=0.93).

Fig. 51-Crossflow effect in heterogeneous reservoir (VDP $=0.85$). For larger VDP, if there is a "thief zone", the effect will be stronger.

Fig. 52-WOR vs. RF plot for heterogeneous reservoir with and without crossflow ($\mathrm{VDP}=0.85$).

In Fig. 52 we can see a little difference in the two SLZs. However ultimate recovery does not show an important difference that may affect results in our statistical model. This case has "thief zones". Vertical permeability contrast is less than Scenario 2, but high permeability layers represent a sort of "channels" that are expected to take most of the water injected since horizontal permeability values are extremely high. This situation can be seen in many reservoirs. Thief zones with higher permeability will increase the difference in recovery, WOR and PVI.

In these cases, earlier breakthrough may happen for the no-crossflow case. High permeability layers are acting as theft zones, taken more water and bypassing oil in the reservoir, leaving low permeability zones with less sweep efficiency (red in Fig. 53 and Fig. 54) showing oil saturation profiles at a water cut of 99%.

Fig. 53-Oil saturation profile for no crossflow reservoir, with VDP $=0.85$.

OilSat

Fig. 54-Oil saturation profile for reservoir with crossflow and VDP $=0.85$.

Some Published Works Regarding Crossflow Effect

According to Kumar (2005), factors controlling recovery and fingering are high average permeability and M. In these cases, depletion will cause important increments of M since at lower pressures the oil will be more viscous, so the presence of thief zones may affect recovery and water cycling. Heterogeneity affects recovery more for high M (less resistance to flow for water) so thief zones will contribute to recovery mostly during primary depletion. Accurate M and relative permeability measurements for each
layer will be essential to optimize operations and maximize recovery. Highly correlated (continuous), thin, thief zones will reduce recovery for high M. Mechanical or chemical blocking of thief zones on the injection or production side may be a remedy needed in these cases (Yang and Ershaghi, 2005).

Willhite (1986) explains that oil and water can move between layers depending on relative permeability relationships and potential differences, but because permeability differences, the front in the high permeability zone (HPZ) will move faster than in the low permeability zone ($L P Z$). Viscous crossflow can occur from $L P Z$ to $H P Z$ because mobility ratio may be higher in the $H P Z$.

Also, capillary forces can cause crossflow: if the rock is water-wet, water from $H P Z$ can imbibe into $L P Z$ and some oil from $L P Z$ can go to $H P Z$ where is displaced.

Craig (1971) explains that when $k_{v} \ll k_{h}$: Reservoir can perform as one with very little or no crossflow (30 mD vs. $3000 \mathrm{mD}=0.01$).

Ahmed (2002) says that "substantial reservoir uniformity is one of the major physical criterions for successful waterflooding. For example, if the formation contains a stratum of limited thickness with a very high permeability (i.e., thief zone), rapid channeling and bypassing will develop. Unless this zone can be located and shut off, the producing water-oil ratios will soon become too high for the flooding operation to be considered profitable. The lower depletion pressure that may exist in the highly permeable zones will also aggravate the water-channeling tendency due to the high
permeability variations".

Ultimate recovery in previous plots in this section are very similar, including same slopes and intercepts in both trend lines, which may drive us to conclude that our model will still Work properly in those cases. Also, all these findings confirm conclusions from other authors commented above.

For cases with extremely high Mobility Ratios, the user must be careful applying any prediction method, including reservoir simulation, because even simulators may have problems accounting for high Mobility Ratio effects (Avery et al., 1987). Techniques such as simulators based on nine-point finite difference, or the use of a preselected grid orientation, will improve forecast when an unfavorable M is present.

APPENDIX I

Fractional Flow and Frontal Advance Theory

In waterflooding projects, water displaces oil through the rock in an immiscible process. This process is desired to be efficient, meaning that we want the water to displace as much oil as possible. The term "Displacement Efficiency" $\left(E_{D}\right)$ is then referred to the fraction of oil saturations swept by water from the reservoir that can be explained using the principles of the Frontal Advance Theory and the Fractional Flow (Buckley-Leverett) Equation as a 1-D process.

Beginning with the Darcy's law, and following the derivation process shown by Craig (1971), we can write this expression in consistent units, for oil and water separately as follows:

$$
\begin{equation*}
u_{o}=-\frac{k_{o}}{\mu_{o}}\left(\frac{\partial P_{o}}{\partial x}+g \rho_{o} \sin \alpha\right) . \tag{I.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{w}=-\frac{k_{w}}{\mu_{w}}\left(\frac{\partial P_{w}}{\partial x}+g \rho_{w} \sin \alpha\right) . \tag{I.2}
\end{equation*}
$$

where:
$u_{o}=$ oil phase velocity
$u_{w}=$ water phase velocity
$k_{o}=$ effective permeability to oil
$k_{w}=$ effective permeability to water
$\mu_{o}=$ oil viscosity, cP
$\mu_{w}=$ water viscosity, cP
$P_{o}=$ pressure in oil phase
$P_{w}=$ pressure in water phase
$x=$ distance along direction of movement
$g=$ acceleration due to gravity
$\rho_{o}=$ oil density
$\rho_{w}=$ water density
$\alpha=$ angle of the reservoir dip with the horizontal
Rearranging Eq. I. 1 and I. 2 and substituting, we obtain:

$$
\begin{equation*}
u_{o} \frac{\mu_{o}}{k_{o}}=-\frac{\partial P_{o}}{\partial x}-g \rho_{o} \sin \alpha \tag{I.3}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{w} \frac{\mu_{w}}{k_{w}}=-\frac{\partial P_{w}}{\partial x}-g \rho_{w} \sin \alpha . \tag{I.4}
\end{equation*}
$$

Subtracting Eq. I. 3 from Eq. I. 4 we obtain:

$$
\begin{equation*}
u_{w} \frac{\mu_{w}}{k_{w}}-u_{o} \frac{\mu_{o}}{k_{o}}=-\left(\frac{\partial P_{w}}{\partial x}-\frac{\partial P_{o}}{\partial x}\right)-g\left(\rho_{w}-\rho_{o}\right) \sin \alpha . \tag{I.5}
\end{equation*}
$$

Since the difference of the pressure in the oil phase minus the pressure in the water phase is defined as Capillary Pressure $\left(P_{c}\right)$, and the density difference is the difference between the water density and the oil density, we can write:

$$
\begin{equation*}
u_{w} \frac{\mu_{w}}{k_{w}}-u_{o} \frac{\mu_{o}}{k_{o}}=\frac{\partial P_{C}}{\partial x}-g \Delta \rho \sin \alpha . \tag{I.6}
\end{equation*}
$$

but we can express Eq. I. 6 in terms of the total velocity $\left(u_{t}\right)$ as:

$$
\begin{equation*}
u_{w} \frac{\mu_{w}}{k_{w}}-\left(u_{t}-u_{w)}\right) \frac{\mu_{o}}{k_{o}}=\frac{\partial P_{C}}{\partial x}-g \Delta \rho \sin \alpha \tag{I.7}
\end{equation*}
$$

and solving Eq. I. 7 and dividing both members by u_{t} :

$$
\begin{align*}
& u_{w}\left(\frac{\mu_{w}}{k_{w}}+\frac{\mu_{o}}{k_{o}}\right)-u_{t} \frac{\mu_{o}}{k_{o}}=\frac{\partial P_{C}}{\partial x}-g \Delta \rho \sin \alpha \ldots . \tag{I.8}\\
& \frac{u_{w}}{u_{t}}\left(\frac{\mu_{w}}{k_{w}}+\frac{\mu_{o}}{k_{o}}\right)-\frac{\mu_{o}}{k_{o}}=\frac{1}{u_{t}}\left(\frac{\partial P_{C}}{\partial x}-g \Delta \rho \sin \alpha\right) . \tag{I.9}
\end{align*}
$$

and solving for the fraction of water velocity of the total velocity ($f w$):

$$
\begin{equation*}
\frac{u_{w}}{u_{t}}=f_{w}=\frac{\frac{\mu_{o}}{k_{o}}+\frac{1}{u_{t}}\left(\frac{\partial P_{C}}{\partial x}-g \Delta \rho \sin \alpha\right)}{\frac{\mu_{w}}{k_{w}}+\frac{\mu_{o}}{k_{o}}} . \tag{I.10}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{w}=\frac{1+\frac{k_{o}}{u_{t} \mu_{o}}\left(\frac{\partial P_{C}}{\partial x}-g \Delta \rho \sin \alpha\right)}{1+\frac{\mu_{w}}{\mu_{o}} \frac{k_{o}}{k_{w}}} . \tag{I.11}
\end{equation*}
$$

Which is the Fractional Flow Equation including Capillary Pressure, fluids density and dip angle of the reservoir.

We assumed Capillary Pressure negligible and a horizontal reservoir. We simplify our equation as:

$$
\begin{equation*}
f_{w}=\frac{1}{1+\frac{\mu_{w}}{\mu_{o}} \frac{k_{o}}{k_{w}}} \ldots \tag{I.12}
\end{equation*}
$$

With the Fractional Flow Equation, we can determine the water cut $\left(f_{w}\right)$ at any point in the reservoir where water saturation is known.

Frontal Advance Equation (Craig, 1971), makes two main assumptions: mass transfer between phases does not exist and fluids are incompressible. We also consider an infinitesimal element of rock with a constant porosity (ϕ) and area (A) in the direction of flow with distance x. Applying the Mass Conservation and Material Balance principles we can define the water mass rate entering and leaving the element at point x, and the water accumulation in the element as:

$$
\begin{align*}
& \left(q_{w} \rho_{w}\right)_{x} \cdots \cdots \cdots \tag{I.13}\\
& \left(q_{w} \rho_{w}\right)_{x+\Delta x} \cdots \cdots \tag{I.14}\\
& A \phi \Delta x \frac{\partial}{\partial t}\left(S_{w} \rho_{w}\right) . \tag{I.15}
\end{align*}
$$

and we can express water accumulation = water in - water out as:

$$
\begin{equation*}
\left(q_{w} \rho_{w}\right)_{x}-\left(q_{w} \rho_{w}\right)_{x+\Delta x}=A \phi \Delta x \frac{\partial}{\partial t}\left(S_{w} \rho_{w}\right) \tag{I.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(q_{w} \rho_{w}\right)+A \phi \frac{\partial}{\partial t}\left(S_{w} \rho_{w}\right)=0 \tag{I.17}
\end{equation*}
$$

eliminating density difference:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(q_{w}\right)+A \phi \frac{\partial}{\partial t}\left(S_{w}\right)=0 \tag{I.18}
\end{equation*}
$$

and solving for changes in water saturation with time:

$$
\begin{equation*}
\left(\frac{\partial S_{w}}{\partial t}\right)_{x}=-\frac{1}{A \phi}\left(\frac{\partial q_{w}}{\partial x}\right)_{t} \tag{I.19}
\end{equation*}
$$

but q_{w} is a function of both water saturation and time, so:

$$
\begin{equation*}
d q_{w}=\left(\frac{\partial q_{w}}{\partial S_{w}}\right)_{t} d S_{w}+\left(\frac{\partial q_{w}}{\partial t}\right)_{S_{w}} d t \tag{I.20}
\end{equation*}
$$

Taking the derivative with respect to x at a fixed time and solving for the change of water saturation with respect to length:

$$
\begin{equation*}
\left(\frac{\partial S_{w}}{\partial x}\right)_{t}=\frac{\left(\frac{\partial q_{w}}{\partial x}\right)_{t}}{\left(\frac{\partial q_{w}}{\partial S_{w}}\right)_{t}} \tag{I.21}
\end{equation*}
$$

Water saturation is a function of x and t , so giving the same treatment we gave to q_{w} we have:

$$
\begin{equation*}
d S_{w}=\left(\frac{\partial S_{w}}{\partial x}\right)_{t} d x+\left(\frac{\partial S_{w}}{\partial t}\right)_{x} d t=0 \tag{I.22}
\end{equation*}
$$

We made $d S_{W}=0$ because we are looking at a plane of constant x where S_{W} changes. Thus

$$
\begin{equation*}
\left(\frac{\partial x}{\partial t}\right)_{S_{w}}=\frac{-\left(\frac{\partial S_{w}}{\partial t}\right)_{L}}{\left(\frac{\partial S_{w}}{\partial x}\right)_{t}} \tag{I.23}
\end{equation*}
$$

and substituting Eq. I. 19 into Eq. I. 21 we have:

$$
\begin{equation*}
\left(\frac{\partial x}{\partial t}\right)_{S_{w}}=\frac{1}{A \phi}\left(\frac{\partial q_{w}}{\partial S_{w}}\right)_{t} . \tag{I.24}
\end{equation*}
$$

but we also have that

$$
\begin{equation*}
q_{w}=f_{w} q_{t} \tag{I.25}
\end{equation*}
$$

and differentiating with respect to S_{W} at a constant t :

$$
\begin{equation*}
\left(\frac{\partial q_{w}}{\partial S_{w}}\right)_{t}=f_{w}\left(\frac{\partial q_{t}}{\partial S_{w}}\right)_{t}+q_{t}\left(\frac{\partial f_{w}}{\partial S_{w}}\right)_{t} . \tag{I.26}
\end{equation*}
$$

but the change of velocity with respect to S_{W} at any time is zero because the fluids are incompressible, so we finally have, substituting Eq. I. 26 into Eq. I. 24 :

$$
\begin{equation*}
\left(\frac{\partial x}{\partial t}\right)_{S_{w}}=\frac{q_{t}}{A \phi}\left(\frac{\partial f_{w}}{\partial S_{w}}\right)_{t} . \tag{I.27}
\end{equation*}
$$

This is the linear Frontal Advance Equation for water, based upon conservation of mass and assuming incompressible fluids. It states that the rate of advance (velocity= distance /time) of the saturation front inside the reservoir will be equal to superficial velocity of the total fluid, times the change of the fractional flow with water saturation. We can also say that particular water saturation propagates through a porous rock at a constant velocity. To determine that velocity, we need to apply the Fractional Flow Equation.

Some limitations of the frontal advance solution are related to the basic assumptions, such as:

1. The two immiscible fluids are considered incompressible.
2. Linear or radial flow in only one direction is assumed.
3. Initial fluids saturations are uniform.
4. Applies only to stabilized displacement processes.
5. Layers are assumed to be homogeneous and isotropic. Constant rock properties except permeability per layer, layer thickness and porosity in the reservoir.
6. Layer-cake mode with no crossflow between layers.
7. Steady State flow.
8. Gravity segregation, dip angle and capillary pressure are neglected.
9. The vertical efficiency is unity within each layer.

General Application

In this section, we summarize a typical application of the fractional flow equation and the Frontal Advance Theory. In later sections we will show the approach developed in this research.

Rewriting Eq. I. 12 in terms of the oil and water relative permeabilities ratios we have:

$$
\begin{equation*}
f_{w}=\frac{1}{1+\frac{\mu_{w}}{\mu_{o}} \frac{k_{r o}}{k_{r w}}} \ldots \tag{I.28}
\end{equation*}
$$

Since the relative permeabilities are functions of the water saturation $\left(S_{w}\right), f_{w}$ is also a function of the water saturation. It is used to construct a plot of water front $\left(f_{w}\right)$ vs. water saturation $\left(S_{w}\right)$ to determine displacement performance.

To construct the plot, we need a set of relative permeability curves generated from a model or determined by special core analysis and oil and water viscosity values.

For computation of performance at water breakthrough, the plot needed is shown in Fig. 55, where an example of a fractional flow performance with water saturation can be seen. According to Welge procedure, a tangent drawn from the initial water saturation ($S_{w c}$) touches the curve at $S_{w}=0.69$ and at $f_{w}=0.93$. These are the values of those variables at the water front, and will be the values at the water breakthrough when the injected water front reaches the producer well.

The stabilized zone includes all water saturations from $S_{w c}$ to $S_{W B T}=0.69$ and water saturations will increase after breakthrough up to the maximum water saturation $\left(1-S_{o r}\right)$. Reading the point where the tangent reaches $f_{w}=1$, we can determine the average water saturation behind the front. In Fig. 55, this value is 0.72 .

Fig. 55-Example of fractional flow curve showing the breakthrough at a f_{w} of 0.93 and a S_{w} of 0.69 . The average water saturation at the breakthrough is 0.72 .

To determine performance after breakthrough (the non-stabilized portion of fractional flow curve), several tangents to the portion of the fractional flow curve after breakthrough can be determined to identify the f_{w} value for each water saturation value, until we reach the maximum water saturation $\left(1-S_{o r}\right)$. The extrapolation of these tangents to the value of $f_{w}=1$ provide the values of $S_{\text {Wave }}$.

Even when the Welge's graphical method is useful, in some cases it may be difficult to determine where the tangent intersects the curve. High viscous oils can present a stepped curve where the tangent cannot be identified properly. A numerical approach is better than the graphical method and using Fractional Flow Theory we obtain Eq. I.29:

$$
\begin{equation*}
\overline{S_{w}}=S_{w f}+\frac{1-f_{w f}}{\left(\frac{d f_{w}}{d S_{w}}\right)_{S_{w f}}} \ldots \tag{I.29}
\end{equation*}
$$

Using this information (just the appropriate water-oil relative permeability curves and the oil and water viscosities), cumulative oil production and water injection, injection and production rates, and WOR can be computed.

Wettability is an important factor that control displacement efficiency in the waterflooding process. A decrease of water-wetness will make water permeability increase (more water flow) and oil permeability decrease (less oil flow). The fractional flow curve for an oil-wet rock is steeper than the water-wet one. That will make displacement of oil by water in an oil-wet rock less efficient than that in a water-wet rock, or more PVI will be needed to achieve an equivalent recovery factor.

The viscosity ratio will also affect displacement since the more viscous the oil, the stepper the slope of the fractional flow curve after breakthrough, so more PVI will be required to produce oil, because the expression for PVI for linear systems is:

$$
\begin{equation*}
P V I=\frac{1}{\left(\frac{d f_{w}}{d S_{w}}\right)_{S_{w f}}} \tag{I.30}
\end{equation*}
$$

The same effect will be obtained for high or unfavorable mobility ratio, since water mobility will be higher than oil mobility and this parameter is affected by the oil viscosity (see Fig. 56).

Gravity forces will affect also when the dip angle is high. In that case, the dip angle component in the fractional flow curve must be considered. Usually oil density is
less than water density, so water should move slower or faster than oil, depending on where the water is injected in the reservoir, down dip or up dip, respectively.

Fig. 56-Effects of viscosity ratio in fractional flow curves, maintaining the same relative permeability curves, $S_{w i}$ and $S_{o r}$.

APPENDIX J

ANALYTICAL METHODS FOR ESTIMATING WATERFLOOD RECOVERY

Analytical and Empirical Forecasting Procedures

During the last 50 years, several attempts have been made to forecast waterflood performance and ultimate oil recovery by modeling the sweeping process of water displacing oil through the porous medium.

The accuracy of the prediction is mostly affected by the knowledge about effects of reservoir heterogeneity, fluid saturations, and mobility ratio. These factors affect displacement and areal and vertical sweep efficiencies. Water channeling that bypasses mobile oil remaining within the rock, causing low displacement and early breakthrough in producing wells, will reduce ultimate recovery.

Reasonable forecasts of waterflood performance can improve decisions regarding a waterflooding candidate and project feasibility. Waterflood performance can be estimated by various analytical methods based upon several assumptions that many times are ignored or violated.

A brief description of the most used analytical and empirical forecasting methods follows:

Craig-Geffen-Morse Method

The Craig-Geffen-Morse prediction method (CGM) can be used to estimate waterflood performance (Craig, 1971). It is based on the Buckley-Leverett theory that is
concerned with displacement mechanisms and considers oil displacement by water in either a linear or a radial system. The method estimates oil recovery with the required volume of water injected for that recovery in a waterflood system as a function of time. CGM considers multilayered systems, variable injection rate, and areal sweep efficiency as main parameters.

In addition to displacement in the swept area, CGM uses experimental correlations that account for areal sweep efficiency at water breakthrough and relates the areal sweep efficiency after breakthrough to the cumulative injected water. The method accounts for a gradual improvement in areal sweep efficiency with continued water injection and for increasing displacement of oil behind the front in the contacted zone until areal sweep efficiency is equal to unity.

The method performs all calculations for a single layer. Results of injection and production rates for the other layers can be extrapolated in proportion to the flow capacity $(k h)$ values and pore volumes of the other layers. The vertical sweep efficiency is considered unity. The summation process accounts for vertical sweep of the multilayered system.

The total oil production is the sum of the oil displaced from the initial swept region and the additional oil produced as a result of the increase in areal sweep. Oil production begins before water breakthrough, just after gas fill-up. The water production is then the water injected minus the oil produced.

The method discussed in the original paper (Craig, 1954) did not consider multilayer reservoirs, but a revised version was extended to stratified reservoirs (Craig 1971).

The main assumptions of the CGM method are:

1. Multilayered reservoirs with no crossflow between layers. Each layer is homogeneous but the method accounts for vertical heterogeneity.
2. Linear or radial flow can be explained using Darcy's law. Applies for , incompressible fluids and isothermal process.
3. Steady-state flow.
4. Only rock properties that change per layer are permeability, layer thickness, and porosity.
5. Gravity segregation between oil and water, dip angle, and capillary pressure are neglected.
6. Gas fill-up per zone is completed before production begins.
7. Areal sweep efficiency is calculated with experimental correlations and increases up to 100%. Also 100% vertical sweep efficiency is assumed for each layer.

Dykstra-Parsons Method

Dykstra-Parsons' method (Dykstra and Parsons, 1950) is concerned mostly with reservoir stratification. Used for predicting waterflood behavior in stratified systems, the method combines laboratory results with theoretical studies. This method requires the use of VDP, M, the initial or connate water saturation $\left(S_{w c}\right)$, and fractional oil recovery at
a specified water/oil ratio. Dykstra and Parsons introduced the vertical coverage $\left(C_{v}\right)$ parameter, determined experimentally, to account for vertical sweep efficiency. This parameter is determined using VDP, M, and C_{v} correlations, and later C_{v} is multiplied times the areal sweep efficiency, determined using Craig's correlations (1971). The main assumptions of this method are:

1. Multilayered reservoirs with no crossflow between layers.
2. Linear flow; incompressible fluids; isothermal process; can be explained using Darcy's law.
3. Steady-state flow.
4. Only rock properties that change per layer are permeability, layer thickness, and porosity.
5. Gravity segregation between oil and water is ignored.
6. Piston-like displacement with no oil production from behind the front, ignoring relative permeability effects.

The results obtained from this method tend to be optimistic, related mainly to the assumption of piston-like displacement, but the method is accurate for highly heterogeneous reservoirs with any M.

Stiles Method

The Stiles method handles reservoir heterogeneity and is used in stratified reservoirs. The method is subject to the following assumptions (Stiles, 1949):

1. Multilayered reservoirs with no crossflow between layers.
2. Linear flow; incompressible fluids; isothermal process; can be explained using Darcy's law.
3. Steady-state flow.
4. Only rock properties that change per layer are permeability, layer thickness, and porosity.
5. Gravity segregation between oil and water is ignored.
6. Piston-like displacement with no oil production from behind the front.
7. Flood front penetration into each layer is proportional to the capacity of the layer (thickness \times permeability). This is equivalent to assuming the mobility ratio is unity.

Stiles' method is more realistic for multilayered reservoirs. The method calculates permeability distribution from capacity distribution and considers the physical structure of the reservoir better than Dykstra-Parsons, which is based on statistical and experimental correlations. Running both methods and comparing results can be a good approach to estimate recovery when high VDP and M are present. Input data and reservoir characteristics will dictate which method should be used in each case.

Other practical approaches include the work published by Craig (1971), which presents different graphic correlations for areal sweep efficiencies as a function of M. Graphic, experimental correlations are used to determine areal and vertical sweep efficiency and to determine displacement efficiency and cumulative production $\left(N_{p}\right)$. This method provides accurate results for more favorable $M(M<1)$.

VITA

Name:
Address:

Arnaldo Leopoldo Espinel Diaz
Department of Petroleum Engineering c/o Dr. Maria Barrufet

Texas A\&M University
College Station, TX 77843-3116

Email Address: arnaldo_e@hotmail.com

Education:

- Petroleum Engineering, Instituto Universitario de Nuevas Profesiones, Caracas, Venezuela, 1984
- B.S., Business Administration, Universidad Jose Maria Vargas, Caracas, Venezuela, 1993
- M.S., Petroleum Engineering, Texas A\&M University, 1998
- Certification, Higher Education Professional Post-Graduate Program, Universidad de Oriente, Barcelona, Venezuela, 2004.
- Ph.D., Petroleum Engineering, Texas A\&M University, 2010

[^0]: Variable $x 5$ Entered: R-Square $=0.9223$ and $C(p)=7.0000$

