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ABSTRACT

Adaptive Resource Allocation for Statistical QoS Provisioning in Mobile Wireless

Communications and Networks. (December 2010)

Qinghe Du, B.S., Xi’an Jiaotong University, Xi’an, China;

M.S., Xi’an Jiaotong University, Xi’an, China

Chair of Advisory Committee: Dr. Xi Zhang

Due to the highly-varying wireless channels over time, frequency, and space

domains, statistical QoS provisioning, instead of deterministic QoS guarantees, has

become a recognized feature in the next-generation wireless networks. In this disserta-

tion, we study the adaptive wireless resource allocation problems for statistical QoS

provisioning, such as guaranteeing the specified delay-bound violation probability,

upper-bounding the average loss-rate, optimizing the average goodput/throughput,

etc., in several typical types of mobile wireless networks.

In the first part of this dissertation, we study the statistical QoS provisioning for

mobile multicast through the adaptive resource allocations, where different multicast

receivers attempt to receive the common messages from a single base-station sender

over broadcast fading channels. Because of the heterogeneous fading across different

multicast receivers, both instantaneously and statistically, how to design the efficient

adaptive rate control and resource allocation for wireless multicast is a widely cited

open problem. We first study the time-sharing based goodput-optimization problem

for non-realtime multicast services. Then, to more comprehensively characterize the

QoS provisioning problems for mobile multicast with diverse QoS requirements, we

further integrate the statistical delay-QoS control techniques — effective capacity

theory, statistical loss-rate control, and information theory to propose a QoS-driven

optimization framework. Applying this framework and solving for the corresponding



iv

optimization problem, we identify the optimal tradeoff among statistical delay-QoS

requirements, sustainable traffic load, and the average loss rate through the adaptive

resource allocations and queue management. Furthermore, we study the adaptive

resource allocation problems for multi-layer video multicast to satisfy diverse sta-

tistical delay and loss QoS requirements over different video layers. In addition,

we derive the efficient adaptive erasure-correction coding scheme for the packet-level

multicast, where the erasure-correction code is dynamically constructed based on mul-

ticast receivers’ packet-loss statuses, to achieve high error-control efficiency in mobile

multicast networks.

In the second part of this dissertation, we design the adaptive resource alloca-

tion schemes for QoS provisioning in unicast based wireless networks, with emphasis

on statistical delay-QoS guarantees. First, we develop the QoS-driven time-slot and

power allocation schemes for multi-user downlink transmissions (with independent

messages) in cellular networks to maximize the delay-QoS-constrained sum system

throughput. Second, we propose the delay-QoS-aware base-station selection schemes

in distributed multiple-input-multiple-output systems. Third, we study the queue-

aware spectrum sensing in cognitive radio networks for statistical delay-QoS provision-

ing. Analyses and simulations are presented to show the advantages of our proposed

schemes and the impact of delay-QoS requirements on adaptive resource allocations

in various environments.
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CHAPTER I

INTRODUCTION

A. Background and Motivations

1. Challenges of Statistical QoS Provisioning in Mobile Wireless Networks

With the rapid evolution of communication techniques in mobile wireless networks,

more and more mobile wireless services have been implemented in our daily lives,

such as the traffic-avoidance navigation, web browsing, e-mail access, online gaming,

text chatting, teleconferencing, on-demand video streaming, etc. As various mobile

wireless services have different requirements on quality-of-service (QoS), QoS pro-

visioning over wireless networks has become one of the well-recognized features in

next-generation wireless networks.

Unlike wireline networks, the qualities of wireless fading channels are highly-

varying over time, frequency, and space domains. As a result, deterministic QoS

provisioning, such as hard delay bound, steady transmission/service rate, etc., is

unrealistic to implement in practical wireless communications systems. Alternatively,

statistical QoS guarantees have become one of the major objectives and guidelines

for the design of wireless networks.

Adaptive resource allocation is one of the effective approaches for statistical

QoS provisioning of mobile wireless services, which can dynamically allocate wire-

less resources, such as power, time slots, and frequency bandwidths, to control the

service-rate process based on the channel quality and QoS requirements. However, the

statistical QoS provisioning over wireless networks still faces many challenges. First,

The journal model is IEEE Journal on Selected Areas in Communications.
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various mobile wireless services are interested in different statistical QoS metrics. For

example, non-real-time services expect high average system throughput/goodput and

low average loss rate, while not addressing the delay bound of each data packet. In

contrast, real-time services not only require high system throughput, but also specify

the delay bound constraint for the transmitted data stream with a small violation

probability. Second, for delay-sensitive services, the delay-bound constraints vary sig-

nificantly with different applications. The delay bound for video teleconferencing is

typically hundreds of milliseconds [1]; but the delay bound live for text chatting may

be much longer. How to accurately characterize and guarantee different levels of delay

constraints over wireless channels through a systematic and unified approach is still

an open problem. Third, a mobile wireless service often has requirements on multiple

QoS metrics. For instance, real-time services can sacrifice certain loss to meet the

delay constraint, but the loss rate needs to be controlled in a low level. As a result,

the joint design over multiple QoS metrics significantly increases difficulty and com-

plexity for networks design and implementation. Finally, with the emergence of new

wireless technologies such as cognitive radio networks (CRN), there is the urgent need

to develop new QoS-aware adaptive resource allocation schemes to efficiently use the

scarce wireless spectrum resources. Motivated by the above challenges, in this disser-

tation we tackle the statistical QoS provisionings through adaptive resource allocation

in several types of wireless networks, with emphasis on: 1) throughput/goodput op-

timization for wireless multicast services with statistical delay-QoS and/or loss-QoS

provisioning; 2) statistical delay-QoS provisioning in downlink transmissions in cellu-

lar networks, distributed multi-input-multi-output (MIMO) systems, and Cognitive

Radio networks, respectively.
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2. Statistical Delay-QoS Guarantees through Adaptive Resource Allocations

Delay bound is one of the most important QoS metric for delay-sensitive mobile wire-

less services. However, the highly time-varying properties of wireless channels makes

it impractical to guarantee a deterministic delay bound, as mentioned in Section A-1.

Consequently, statistical delay-QoS metrics, featured with queue-length-bound vio-

lation probability, buffer-overflow probability, and delay-bound violation probability

have been widely used to characterize the delay-QoS guarantees.

The pioneer research works [2–7] of statistical delay-QoS guarantees mainly fo-

cused on effective bandwidth theory in asynchronous transfer mode (ATM) networks,

where the traffic arrival-rate processes are typically time-varying and network service

rates are constant. The effective bandwidth theory shows that the queue-length-

bound/delay-bound violation probabilities can be approximated as a exponentially

decaying function of the specified bound, which provides us a powerful yet convenient

approach for analyzing statistical delay-QoS guarantees.

In [8], the authors proposed the dual concept of effective bandwidth, namely, ef-

fective capacity, to analyze the queue-length-bound/delay-bound violation probabili-

ties in wireless networks. The effective capacity theory concentrates on the queueing

systems with the constant arrival-rate and time-varying service-rate process, address-

ing the capability of wireless channels, which are often time-varying and bottlenecks in

network transmissions, in supporting delay-QoS constrained mobile wireless services.

More specifically, the effective capacity defines the maximum traffic load that can be

supported by a time-varying service process subject to the statistical delay-QoS con-

straints. One of the major advantages of the dual concepts of effective bandwidth and

effective capacity is to establish the general model which can conveniently character-

ize delay-QoS with fine-grained delay bounds and violation probabilities. Moreover,
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for queueing system with both time-varying arrival-rate and service-rate processes,

the analyses on statistical delay-QoS guarantees can be tackled through decomposing

the queuing system to two virtual sub-queuing-systems. One sub-queueing-system

consists of a time-varying arrival-rate process and a constant departure rate, falling

into the framework of effective bandwidth theory; the other is composed of a time-

varying service-rate process and a constant arrival rate, which can be described by

using the effective capacity theory. Accordingly, we can first study the two sub-

queuing-systems separately. Then, the statistical delay-QoS provisioning status for

the original queuing system can then be readily obtained by comparing the effective

bandwidth and effective capacity of the two sub-queuing-systems, respectively. The

details of the effective bandwidth and effective capacity theories will be introduced

in Chapter II.

To efficiently use the scarce wireless resources, it is expected that the adaptive re-

source allocation is aware of not only the variation of the channel conditions, but also

the delay-QoS requirements for various mobile wireless services. However, many re-

search works for adaptive resource allocations in wireless networks mainly focused on

the following two types of applications: 1) which can tolerate infinite delay; 2) which

can not tolerate any delay. The first and the second scenarios are associated with the

ergodic capacity [9–15] and outage capacity [16–18], respectively, in information the-

ory. The resource allocation to achieve the ergodic capacity aims at maximizing the

average information transmission rate (average throughput). The resource allocation

that achieves the outage capacity maximizes the constant information transmission

rate under a certain outage probability. Clearly, these two frameworks cannot accu-

rately characterize the diverse delay-QoS requirements, thus resulting in inefficient

design for many delay-sensitive services. Moreover, the outage capacity cannot really

guarantee zero delay due to the existence of outage state, expect that the outage
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probability is equal to zero. Therefore, there are urgent needs to develop QoS-driven

adaptive resource allocation schemes for mobile wireless services with diverse delay-

QoS requirements in wireless networks.

A great deal of research has been devoted to the QoS-driven resource allocation

in wireless networks. In [19] and [20], the authors developed the delay-QoS-driven

power and rate adaptation schemes for the single-channel and multi-channel wire-

less links, respectively. In [21], the authors derived the optimal delay-QoS driven

adaptive resource allocation for the wireless link with imperfect CSI. In [22], the au-

thors proposed the delay-QoS driven schemes for cooperative relay networks. These

works mainly studied the single point-to-point wireless link, which cannot be applied

for the cases with coexistence of multi-links, such as downlink multi-user transmis-

sions with independent messages and multicast transmissions (distribute common

message) in cellular wireless networks. The authors of [23] proposed the resource

allocation schemes for multi-user downlink transmissions with different QoS require-

ments. However, advanced wireless techniques such as power control and MIMO are

not addressed. Moreover, the emergence of cognitive radio technologies requires new

statistical delay-QoS provisioning strategies. To address the above problem, we study

the statistical delay-QoS provisioning issues through adaptive resource allocation in

several different types of wireless networks. In particular, we derive the statistical

delay-QoS guaranteed adaptive resource allocation schemes for wireless multicast,

downlink multi-user communications with independent messages, base-station selec-

tions in distributed MIMO systems, and spectrum sensing techniques of CRNs, in

Chapters IV-V, VII, VIII, and IX, respectively.
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3. Adaptive Resource and Rate Allocation for Mobile Multicast

Mobile multicast, which provides a highly efficient way of distributing common data

from one source to multiple location-independent receivers [24], has been considered

as one of the key techniques for current and future wireless communications systems

and networks [25, 26]. In this dissertation, we mainly focus on the mobile multicast

services through downlink transmissions in cellular networks, where a base station

(BS) is responsible to distribute the same data content to all multicast receivers

through broadcast fading channels.

The heterogeneous fading properties across different multicast receivers imposes

many challenges in implementing efficient adaptive resource allocation/control for

multicast transmissions. A commonly used strategy for wireless multicast is to reg-

ulate the resource allocation strategy and the transmission rate based only on the

worst-case channel quality among all multicast receivers at any time instant. This

strategy has been shown to be inefficient to achieve high system throughput when

the number of multicast receivers becomes large [27]. However, increasing the trans-

mission rate for multicast may cause data loss for receivers with poorer instantaneous

channel qualities. How to optimize the system throughput while upper-bounding the

loss rate over the entire multicast group is still a widely cited open problem.

Despite throughput/goodput optimization and the loss-rate control, delay-QoS

provisioning are the other important issues for mobile multicast, because many mul-

ticast applications are towards delay-sensitive applications such as teleconferencing

and on-line video streaming. As mentioned in Section A-1, for real-time services,

we can often sacrifice certain loss to guarantee delay QoS. Consequently, there ex-

ists fundamental tradeoff among the delay-QoS provisioning, loss-rate control, and

throughput/goodput optimization for mobile multicast over wireless networks, which
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need to be thoroughly studied to implement highly-efficient multicast. To overcome

the above problems, in this dissertation we develop a set of adaptive resource/rate

allocation and erasure-correction coding schemes for mobile multicast services under

various delay and loss QoS requirements.

There has been a great deal of research devoted to adaptive resource allocation

and rate allocation for mobile multicast services. The authors of [28] developed a

beamforming scheme for the multiple-input single-output (MISO) multicast system,

which optimizes the worst-case combined signal-to-noise ratio (SNR) for multicast

receivers through the sequential quadratic programming. In [29], the authors applied

the semi-definite relaxation techniques for transmit beamforming in MISO multicast

systems to minimize the transmit power subject to the minimum received SNR con-

straint. The work of [30] developed a rate-adaptive multimedia multicasting protocol

over IEEE 802.11 Wireless LANs. The transmission rate of this scheme is determined

by the worst-case channel quality among all receivers. These works mainly aimed

at optimizing the worst-case performance across all multicast receivers at any time

instant. From information theory perspective, the authors of [27] investigated the

physical-layer multicast capacity with multiple transmit antennas equipped at the

sender, which goes to zero as the multicast group size becomes very large. In [31],

the authors discussed the throughput-delay tradeoff problem for cellular multicast.

Specifically, for a multicast session, the transmission rate is determined by the SNR

which is in a fixed position in the ordered SNR sequence among all multicast receivers.

However, we can expect that the dynamic rate-control strategy will be more efficient

and flexible as compared to this fixed multicast strategy.

Moreover, many works towards QoS provisionings for multicast services have

been proposed [32–36]. In [32–34], the authors developed the scalable flow control

protocols and proposed the comprehensive delay analyses for multicast services over
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heterogeneous multicast receivers. To handle the heterogeneous channels while effi-

ciently distributing video data, multi-layer video distributions have proven to be one

of the efficient ways. The authors of [35] proposed the efficient receiver-driven lay-

ered multicast over Internet. However, these multicast strategies in Internet cannot

be directly applied into wireless networks due to the highly and rapidly varying wire-

less channel qualities. This may result in unstable bandwidths and thus unsatisfied

loss and delay QoS, if the multicast rate adaptation is solely driven by the receivers.

In [37], the authors implemented multi-layer video multicast through minimizing the

maximum penalty function such that the overall quality can be guaranteed for all

wireless multicast receivers. The authors of [38] proposed a cross-layer approach with

adaptive power allocation and channel coding strategies for multi-layer video mul-

ticast to improve the peak signal-to-noise ratio (PSNR) QoS. However, these works

do not systematically reveal how to efficiently tradeoff among the delay, loss, and

throughput QoS requirements. Differen from the above previous work, our major

goal in this dissertation is to design efficient adaptive resource allocation schemes to

guarantee the specified statistical loss and/or delay QoS requirements while optimiz-

ing the desired system throughput performance for mobile multicast services.

4. Adaptive Resource Allocation for Downlink Multiuser Transmission with

Independent Messages in Cellular Wireless Networks

The cellular wireless network is one of the most popular wireless network structure.

In cellular wireless networks, the base station can simultaneously communicate with

multiple mobile users with independent messages over broadcast fading channels.

Correspondingly, adaptive resource allocation needs to be designed towards differ-

ent users’ QoS requirements. Extensive research works have been dedicated to re-

source allocation downlink multiuser communications from information theory per-
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spective [10, 15, 18, 39]. In [10, 15], the authors derived the ergodic capacity region,

which corresponds to the scenario without any delay constraints, and the correspond-

ing optimal power and/or time-slot allocation schemes for transmitting different in-

formation to multiple users. On the other hand, the authors of [18] proposed the

optimal resource allocation for outage capacities. This work guarantees a constant

service rate for each user with a certain outage probability. Clearly, these results

cannot effectively characterize and support fine-grained delay QoS requirements in

future wireless networks. Moreover, these works assume that all mobile users have

the same delay constraint. Correspondingly, how to use a unified approach to char-

acterize different delay-QoS requirements over different mobile users is still a widely

cited open problem. Using the effective capacity theory, the authors of [23] proposed

the downlink multiuser resource allocation schemes with satisfied delay-QoS require-

ments for all mobile users. However, the adaptive power control, which is one of the

major approach to combat random wireless fading for efficient QoS provisioning, is

not addressed in [23]. To overcome these problems, we apply the effective capacity

theory to derive the QoS-driven power and time-slot allocation schemes for downlink

multi-user transmissions, while also addressing the fairness problem across multiple

mobile users, which will be detailed in Chapter VII.

5. Base Station Selections in Distributed MIMO Systems

Distributed multiple-input-multiple-output (MIMO) [40–44] is an advanced tech-

niques in wireless networks. Specifically, the distributed MIMO techniques are re-

sponsible for organizing multiple location-independent BS’s to build the distributed

MIMO system, such that high data transmission throughput can be achieved for mo-

bile users. Similar to the conventional centralized MIMO system [45–47], the system

capability can be significantly improved by applying the distributed MIMO tech-
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niques. Accordingly, the quality-of-service (QoS) performance is also considerably

enhanced as compared to the single antenna system. Recently, the works of [41, 44]

have demonstrated the feasibility of the efficient synchronization techniques over

distributed MIMO links through both experimental tests and theoretical analyses.

Therefore, distributed MIMO techniques are promising to increase the coverage of

broadband wireless networks, and thus has become a major component in wireless

networks design.

In distributed MIMO system, BS’s are also a type of precious resources to ef-

fectively improve delay-QoS performances. However, the computational complexity

for MIMO signal processing and coding also grow rapidly as more BS’s are involved.

Also, as the power is allocated across location-independent BS’s, the interfering area

caused by the distributed MIMO transmissions drastically increases. This effect may

severely degrade the spatial frequency-reuse efficiency for the entire network. Thus,

it is critically important to minimize the BS usage in distributed MIMO systems, i.e.,

reducing the number of distributed BS’s used for data transmissions.

In centralized MIMO systems, the antenna selection techniques [46, 47] can ef-

fectively reduce the complexity. It is straightforward that the antenna selection tech-

niques can be also extended to distributed MIMO systems for the BS selection. How-

ever, most previous works for BS/antenna selections mainly focused on the scenarios

of selecting a subset of BS’s/antennas with the fixed number of BS’s/antennas [42,43].

Clearly, by applying the dynamic BS selection strategy, we can further reduce the com-

plexity and interfering range caused by the distributed MIMO transmissions. More

importantly, note that distributed MIMO techniques are often applied for high-rate

data transmissions towards multimedia applications. Thus, the efficient BS selection

schemes needs to be driven by not only by the channel qualities between the BS

transmitters and mobile users, but also diverse delay-QoS requirements imposed by
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the mobile users. In this dissertation, to address the above problems for distributed

MIMO systems, we develop the delay-QoS aware BS selection schemes for single-user

and multi-user scenarios, respectively, as elaborated on in Chapter VIII.

6. Spectrum Accesses in Cognitive Radio Networks

Due to the increasing demands on wireless services and considerable underutiliza-

tion of the licensed spectrums [48], cognitive radio techniques have been extensively

studied to improve the utilization of wireless spectrum resources. In cognitive radio

networks, unlicensed users, also known as secondary users (SU) are allowed to use

the licensed spectrums when the licensed users, also called primary users (PU), do

not occupy these spectrum bandwidths [48–51]. Moreover, the access opportunities

of secondary users are discovered by using spectrum sensing techniques which can

detect the spectrum holes across licensed radio bands.

Among various spectrum sensing techniques, energy detection with the threshold-

based decision is widely applied [50–52]. The traditional energy-detection based

schemes typically compare the received energy with the fixed threshold to decide

whether the spectrum is occupied. The threshold is selected such that the probabil-

ity of causing interference to the PUs does not exceed a specified small value. In such

a case, the PUs will not feel the existence of the SUs. However, the traditional energy-

detection based spectrum-sensing strategy uses the fixed threshold, which does not

adapt to the queueing status of the SUs. As a result, the spectrum resources cannot

be efficiently used for SUs, to support the statistical QoS requirements [3,8,53] such

as the queue-length-bound violation probability or buffer-overflow probability.

To effectively decrease the queue-length-bound violation or buffer-overflow prob-

abilities, we can take into account the queueing status of SU sender for spectrum

sensing. When the queue length is small, the SUs can use a relatively conservative
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strategy which causes interference to PUs with a lower probability. On the other

hand, when the queue length is approaching the upper limit, SUs will apply more

aggressive strategies to reduce the chances of buffer overflow or queue-length-bound

violation. Then, we can significantly reduce the queue-length-bound violation prob-

ability or buffer-overflow probability can be decreased while still upper-bounding the

average interfering probability to the PUs. Following this strategy, we develop the

efficient QoS-aware spectrum sensing techniques for CRNs in Chapter IX.

B. Contributions of the Dissertation

In the first part of this paper:

1. We propose to maximize average multicast goodput QoS over all multicast

receivers through time-sharing based rate allocation. We obtain the optimal

rate adaptation scheme when all multicast receivers’ wireless channels are in-

dependent and identically distributed (i.i.d.). Our results show that in order

to achieve high average goodput, the transmission rate cannot be always deter-

mined by the worst-case channel quality over all receivers. Also, we design a

sub-grouping strategy, which applies the optimal scheme for the i.i.d. scenario

into the non-i.i.d. scenario to achieve suboptimal yet efficient multicast rate

control.

2. By integrating the effective capacity theory, information theory, and statis-

tical loss-rate control, we develop the optimal time-sharing (TS) based and

superposition-coding (SPC) based adaptive resource allocation schemes, respec-

tively, to maximize the multicast effective capacity under various delay and loss

QoS requirements. The TS and SPC based multicast transmissions use time-

slot allocation and power allocation, respectively, to handle the different fading
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statuses of different receivers for efficient yet flexible rate adaptation. Our re-

sults reveal the fundamental tradeoff among multicast throughput, loss-rate of

multicast receivers, and the statistical delay-QoS provisioning for mobile mul-

ticast services. Also, we obtain the optimal multicast policies under the two

limiting scenarios of delay-QoS constraints: 1) the scenario which can tolerate

infinite delay; 2) the scenario which cannot tolerate any delay.

3. We propose the statistical delay-QoS provisioning framework for multi-layer

video unicast/multicast, where unicast can be treated as a special case of multi-

cast with only one multicast receiver. The framework imposes different loss rates

for different video layers due to their different importance levels. Meanwhile, the

synchronous transmissions are required across all video layers, implying that all

video layers have the same delay-bound and the associated violation-probability

constraints. We derive the optimal time-slot allocations scheme over different

video layers, which minimizes the total time-slot resource consumption while

guaranteeing the specified delay and loss QoS constraints.

4. We propose an adaptive hybrid automatic repeat request-forward error cor-

rection (ARQ-FEC) erasure correcting scheme for quality of service (QoS)-

driven mobile multicast services over wireless networks. Our proposed scheme

can dynamically construct the erasure-correction code based on the packet-loss

statuses of multicast receivers, which can achieve high error-control efficiency

for mobile multicast networks while imposing low error-control complexity and

overhead for mobile multicast networks.

In the second part of the dissertation:

1. We formulate and solve the sum effective capacity maximization problem in
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downlink multiuser transmissions with independent message subject to the pro-

portional fairness across different mobile users, where the effective capacity of a

user represents the delay-QoS-constrained sustainable traffic loads. Our derived

schemes can efficiently support downlink communications where coexisting mo-

bile users have different statistical delay QoS requirements.

2. We propose the statistical delay-QoS-aware base station selection framework for

distributed MIMO systems, which aims at minimizing the BS usage to reduce

the complexity and interfering range caused by distributed MIMO transmis-

sions. We develop the corresponding adaptive BS selection schemes for the

single-user and multi-user scenarios, respectively. Our derived results can effec-

tively satisfy diverse statistical delay QoS requirements of mobile users, while

significantly decreasing the BS usage and the interfering range as compared to

the fixed BS selection schemes.

3. We develop the queue-aware spectrum sensing scheme with statistical delay-QoS

provisionings for secondary users in CRNs. Different from traditional energy-

detection based spectrum-sensing schemes, where the threshold to detect the

occupancy of the spectrum is fixed, our proposed energy-detection scheme uses

a dynamic threshold varying with the queue-length of the SUs. Under the same

interfering constraints to the PUs and the same statistical delay-QoS require-

ments, our proposed scheme can support higher traffic loads as compared to the

traditional energy-detection based spectrum sensing schemes.

C. Outline of the Dissertation

The reminder of this dissertation is organized as follows.

In Chapter II, we give an introduction to the theory of statistical delay-QoS
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guarantees and the dual concepts of effective capacity and effective bandwidth, which

serves as the foundation theory for our works in Chapters IV, V, VII, VIII, and IX.

In Chapter III, we propose the rate-adaptation schemes for non-real-time multi-

casting over fading channels for mobile wireless networks. Specifically, the proposed

schemes aim at achieving high system goodput for the entire multicast group. We first

derive the optimal time-sharing (OPTS) rate policy for scenarios with independent

and identically distributed (i.i.d.) channel fading across different multicast receivers.

We also derive the optimal policy for two-receiver case with non.-i.i.d. channel dis-

tributions. Then, taking into account the practical considerations for more realistic

systems, where the statistical information on fading channels is not available and the

channel conditions are not i.i.d. over mobile users, we develop the sub-grouping (SG)

based suboptimal rate-control policy. Chapter III is in part a reprint of the material

in papers [54, 55].

In Chapter IV, applying the theory of statistical-delay QoS, we propose an

effective-capacity optimization framework to develop the multicast rate-adaptation

schemes over broadcast fading channels with the guaranteed statistical-delay QoS

and loss-rate QoS. In particular, we employ the time-sharing (TS) and superposition-

coding (SPC) techniques, respectively, to adapt the multicast transmission rates to

the heterogeneous channel qualities across multicast receivers at each time instant.

We further develop a queue-management scheme, called the pre-drop algorithm, and

incorporate it with our optimization framework to implement the more efficient QoS-

driven wireless multicast. Under our proposed framework, we derive the optimal

TS-based and SPC-based adaptive multicast policies, respectively. Chapter IV is in

part a reprint of the material in papers [56–58].

In Chapter V, we propose an efficient framework to model the statistical delay

QoS guarantees, in terms of QoS exponent, effective bandwidth/capacity, and delay-
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bound violation probability, for multi-layer video transmissions over wireless fading

channels. We develop a set of optimal adaptive transmission schemes to minimize the

resource consumption while satisfying the diverse delay-QoS requirements under var-

ious scenarios, including video unicast/multicast with and/or without loss tolerance.

Chapter V is in part a reprint of the material in paper [59].

In Chapter VI, we propose an adaptive hybrid automatic repeat request-forward

error correction (ARQ-FEC) erasure correcting scheme for quality of service (QoS)-

driven mobile multicast services over wireless networks. Specifically, we propose the

non-uniformed adaptive coding structures to achieve high error-control efficiency.

Furthermore, we develop a loss covering strategy to determine the balanced error-

control redundancy in each adaptation step and derive the corresponding incremental

error-control redundancy as a function of the packet-loss level. Using the proposed

two-dimensional adaptive error-control scheme, we design an efficient hybrid ARQ-

FEC protocol for mobile multicast services with diverse loss-rate QoS requirements.

Chapter VI is in part a reprint of the material in paper [60].

In Chapter VII, we propose the adaptive power and time-resource allocation

schemes for multiuser downlink quality-of-service (QoS) provisionings over broadcast

fading channels in cellular wireless networks. Subject to the proportional-effective-

capacity constraint and the diverse statistical delay-QoS requirements over different

downlink users, we formulate the sum effective capacity maximization problem via

channel-aware power and time-slot allocation. Simulation results show the perfor-

mance gain as compared to the suboptimal allocation schemes and the impact of

delay-QoS requirements on resource allocations. Chapter VII is in part a reprint of

the material in paper [61].

In Chapter VIII, we propose the QoS-aware BS-selection schemes for the dis-

tributed wireless MIMO links, which aim at minimizing the BS usages, while satisfying
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diverse statistical delay-QoS constraints characterized by the delay-bound violation

probability and the effective capacity technique. We develop the efficient scheme for

both single-user case and multi-user case, which are demonstrated to be capable of

significantly decreasing the BS-usage and the interfering range. Chapter VIII is in

part a reprint of the material in paper [62].

In Chapter IX, we propose the queue-aware spectrum sensing schemes for interference-

constrained opportunistic transmissions of secondary users (SUs) in cognitive radio

networks. It is shown that under the specified statistical QoS requirements and in-

terference constraints, our proposed schemes can support higher data traffic loads

for SUs than the traditional energy-detection based scheme. Chapter IX is in part a

reprint of the material in paper [63].

In Chapter X, we summarize the dissertation and discuss future research direc-

tions.
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CHAPTER II

STATISTICAL DELAY-QOS GUARANTEES: EFFECTIVE BANDWIDTH AND

EFFECTIVE CAPACITY

A. Queue-Length Distribution

The theory on statistical delay-QoS guarantees [2, 3, 8], featured with queue-length-

bound violation probability, delay-bound violation probability, and buffer-overflow

probability, provides a powerful approach in analyzing the queueing behavior for

time-varying arrival and/or service processes. Specifically, consider a stable queueing

system with the stationary and ergodic arrival and service processes. Asymptotic

analyses [2] based on Large Deviation Principle show that with sufficient conditions,

the queue length process Q[t] converges to a random variable Q[∞] in distribution

such that

− lim
Qth→∞

log (Pr {Q[∞] > Qth})
Qth

= θ (2.1)

for a certain θ > 0, where Qth is the queue-length bound. Moreover, the queue-length

bound violation probability can be approximated by

Pr{Q > Qth} ≈ e−θQth, (2.2)

where we remove the index [t] for Q[t] to simplify notations. In the above two equa-

tions, θ is called QoS exponent.

B. Effective Bandwidth Versus Effective Capacity

Effective bandwidth [3] and effective capacity [8] are a pair of dual concepts. Given a

stationary discrete-time arrival-rate process A[t], effective bandwidth of A[t], denoted
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by A(θ) (nats/frame), is defined as the minimum constant service rate required to

guarantee a specified QoS exponent θ, i.e., Eqs. (2.1)-(2.2) are satisfied for the given

θ. In contrast, given a stationary discrete-time service-rate process C[t], effective

capacity of C[t], denoted by C(θ) (nats/frame), is defined as the maximum constant

arrival rate which can be supported by C[t] subject to the specified QoS exponent θ.

Moreover, effective bandwidth [3] and effective capacity [8] can be expressed by

A(θ) = lim
k→∞

1

θk
log
(
E
{
eθSA[t]

})
(2.3)

and

C(θ) = lim
k→∞

− 1

θk
log
(
E
{
e−θSC [t]

})
, (2.4)

respectively, where E{·} denotes the expectation and⎧⎪⎨⎪⎩ SA[t] �
∑k

i=1A[i],

SC [t] �
∑k

i=1C[i].
(2.5)

Note that if A[t] is equal to a constant A over all t, we have A(θ) = A for all θ.

Similarly, if C[t] is equal to a constant C, we have C(θ) = C for all θ.

Now, consider a queueing system with arrival-rate process A[t] and service-rate

process C[t], which are both time-varying. If Eq. (2.1) holds for θ = θ∗, we have [3,53]

A(θ∗) = C(θ∗). (2.6)

Eq. (2.6) implies a convenient approach to design service process to meet statistical

delay-QoS requirements. Assume that the certain targeted queue-length-bound Qth

and violation probability Pth are specified for a queueing system, where we know

the properties of the arrival process A[t] and need to design the service process to

guarantee the specified Qth and Pth. First, plugging Pr{Q > Qth} = Pth and θ = θ∗
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into Eq. (2.2) and solving for the targeted θ∗, we get

θ∗ = − 1

Qth
log(Pth). (2.7)

Second, we can determine the effective bandwidth A(θ∗) based on the properties of

A[t]. Finally, the criterion for designing the service rate C[t] to meet the specified

queue-length-bound violation probability is to guarantee that the effective capacity

C(θ∗) is equal to A(θ∗).

We can see that the above approach first studies the arrival process and the

service process separately, and then connect them through θ∗, which leads to equal

effective capacity and effective bandwidth. Since our objective in this dissertation is

to design service process through adaptive resource allocation over wireless channels,

we will mainly focus on the effective capacity, which characterizes the capability of

wireless channel to support data traffic with guaranteed QoS satisfaction.

C. Properties of Effective Capacity

Based on previous discussions, we can see that the targeted QoS exponent reflect

delay QoS requirements. The larger θ corresponds to the more stringent QoS require-

ment, while the smaller θ imposes the looser delay constraint. Then, we can use QoS

exponent θ as the metric to characterize the statistical delay-QoS requirements. More-

over, to comprehensively understand the effective capacity, we summarize a number

of main properties of effective capacity [53] as follows. 1) For a given service-rate

process, the effective capacity C(θ) is a monotonically decreasing function of θ, which

implies that a more stringent QoS requirement results in a lower supportable services

rate. 2) As θ approaches 0, the effective capacity converges to the average throughput

E{C[t]}. This case corresponds to the scenario where arbitrarily long delay can be
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tolerated. 3) In contrast, when θ approaches ∞ the effective capacity degrades to the

minimum service rate over all time. This case is associated with the scenario which

cannot tolerate any delay.

Furthermore, when the service-rate process C[t] is time-uncorrelated, the effective

capacity expression can be converted to

C(θ) = −1

θ
log
(
E
{
e−θC[t]

})
. (2.8)

Note that in wireless channels, block-fading model is widely used to characterize the

variation of wireless channels, where the channel state does not change within a time

frame with fixed length, but varies independently from one frame to the other frame.

Thus Eq. (2.8) provides great convenience to design the delay-QoS-driven service

process (equivalently, adaptive resource allocation) over wireless channels. In this

dissertation, we mainly focus on the block-fading channel model. For the scenario

with time-correlated channel, please refer to [19, 53].

D. Delay-Bound Violation Probability

Previous sections show that QoS exponent θ plays an important role in QoS character-

ization and provisioning. It can be also used to characterize the delay-bound violation

probability. Specifically, for effective capacity and effective bandwidth scenarios, the

delay-bound violation probability can be approximated [3, 8] as:

Pr{D > Dth} ≈ e−θC(θ)Dth , for effective capacity; (2.9)

and

Pr{D > Dth} ≈ e−θA(θ)Dth , for effective bandwidth, (2.10)
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where D denotes the queuing delay andDth is the delay bound. Note that the delay in

wireless transmissions may result from multiple factors such as propagation, queueing,

and decoding. In this dissertation, we mainly focus on queueing delay, because the

wireless channel is often the bottleneck for data transmissions.

Equations (2.2), (2.9), and (2.10) are good approximations for relatively largeQth

and Dth as shown in [8,64]. When Qth and Dth are relatively small, the more accurate

approximations expressions than Eqs. (2.2), (2.9), and (2.10) are given in [8, 64] as

follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pr{Q > Qth} ≈ �e−θQth ;

Pr{D > Dth} ≈ �e−θC(θ)Dth ;

Pr{D > Dth} ≈ �e−θA(θ)Dth ,

where � denotes the probability that the queue is nonempty. These approximations

are upper-bounded by the corresponding approximations given in Eqs. (2.2)-(2.10).

Thus, directly using Eqs. (2.2)-(2.10) for the system design often guarantees more

stringent QoS than the specified requirements. Moreover, for typical mobile ser-

vices with stringent delay-QoS requirements such as wireless video transmissions,

the delay bound Dth is typically hundreds of milliseconds (ms), which are thus much

larger than the adaptive-transmission period scale (e.g., the physical-layer time-frame

length) of the wireless transmission system, where the adaptive-transmission period

typically varies from a few milliseconds (ms) to tens of milliseconds (ms). Therefore,

Eqs. (2.2)-(2.10) are good approximating expressions in designing efficient wireless

video-transmission schemes with statistical QoS guarantees.
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CHAPTER III

ADAPTIVE RATE ALLOCATION FOR AVERAGE GOODPUT OPTIMIZATION

OF NON-REAL-TIME MULTICAST SERVICES OVER FADING CHANNELS

A. Introduction

As more and more broadband wireless network services are getting widely used, they

impose the great motivations and challenges in developing the new and highly-efficient

wireless communications paradigms with the limited wireless resources. One of the

emerging highly efficient wireless communication techniques is the mobile multicast,

which disseminates the common data/infomation to multiple location-independent

receivers over broadcast wireless channels. As a result, in wireless networks mobile

multicast has received a great deal of research attention [25–27, 31, 65]. In addi-

tion, due to its wide spectrum of applications, including wireless data downloading,

highway mobile traffic monitoring, air traffic control, and remote teleconferencing,

mobile multicast has been already considered as one of the key techniques in the

current/future wireless communications systems such as 3G [25] and 802.16x [26]

networks.

In wireless communication environments, the time-varying fading nature of physical-

layer channels has significant impact on supporting the wideband services. However,

the physical-layer techniques to improve performances for mobile multicast, despite

their vital importance, have been neither well understood nor thoroughly studied. For

time-varying fading channels, the sender can usually adapt the data rate according

to the variation of channel qualities to implement efficient and high-rate transmission

by using, e.g., the adaptive modulation and coding (AMC) techniques [66]. However,

the diverse fading properties across different multicast receivers prevent the adaptive
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transmission from being efficiently implemented. Consider a multicast session in a

cellular-structured network, where the sender transmits a single data stream to all

mobile multicast receivers through broadcast wireless channels. Since all multicast

receivers must receive the same data signal, a straightforward strategy is to deter-

mine the transmission rate based only on the worst-case instantaneous channel quality

among all multicast receivers, which is called the instantaneous worst-case dominat-

ing strategy. As a result, the achieved throughput is typically very low due to the

heterogeneous fading of different send-receiver pairs, especially when the multicast

group size gets large [27]. Thus, to achieve the higher multicast transmission rate,

the multicast sender needs to apply the better transmission-rate control policies than

the instantaneous worst-case dominating strategy. While this causes data losses for

receivers with poorer channel qualities, we can apply sophisticated erasure-correcting

techniques [67,68] at the upper protocol layers to recover the lost data packets. How-

ever, if the losses level is too high, the effective/useful data rate achieved by multicast

receivers will also be very low, which leads to poor transmission efficiency and can-

not support wideband services for mobile users. Consequently, in order to provide

high-speed wideband services for multicast receivers, it is critically important to opti-

mize the effective/userful data rate achieved by multicast receivers. Therefore, in this

chapter we characterize the effective/userful data rate achievable for the entire multi-

cast group by the average multicast goodput, and build up the framework to optimize

the physical-layer average multicast goodput via transmission rate adaptation.

In [31], the authors investigated the scaling law of throughput-delay tradeoff for

cellular multicast under a cross-layer structure. For single multicast session with

independent and identically distributed (i.i.d.) fading across different receivers, the

static rate-scheduling algorithm was studied, where a fixed portion of receivers can

decode the transmitted data in each fading state. In their schemes, the transmission
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rate is determined by the signal-to-noise ratio (SNR) which is in a fixed quantile of

the ordered sequence of the instantaneous SNR’s received from all receivers. It can be

shown that their static rate control scheme is less efficient than the dynamic adaptive

rate control algorithms in optimizing the average multicast goodput. In addition, their

schemes did not consider the non-i.i.d. receiving channel fading scenarios, which are

more general but more challenging in deriving the optimal rate control for multicast

receivers.

It should be noted that although many literatures on information theory have

studied various schemes to efficiently communicate through broadcast fading chan-

nels, they do not offer any insightful guidance on rate adaptation for mobile multicast.

For instance, while a great deal of researches considered scenarios of distributing inde-

pendent information to different receivers, e.g., [13, 15], mobile multicast is a special

service to transmit the common information to multiple different mobile receivers.

Authors of [11,12] studied resource allocation schemes for scenarios where both com-

mon and different information are simultaneously transmitted to multiple receivers

over Gaussian broadcast channels. However, the rate for the common data part is

still controlled by the instantaneous worst-case channel quality among all receivers,

resulting in very low average throughput/goodput over fading channels.

To overcome the above problems, we propose the adaptive rate control schemes

for mobile multicast. Specifically, we focus on non-real-time multicast services and

our proposed schemes aim at achieving high system goodput. First, we formulate the

time-sharing based goodput-optimization problem over block-fading channels to de-

rive the optimal rate adaptation policies. Second, under the formulated optimization

problem, we solve for the optimal time-sharing (OPTS) policy under the i.i.d. fading

environments across multicast receivers. Third, by developing the SNR-plane parti-

tion technique, we derive the OPTS policy for two-receiver cases with the non-i.i.d.
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fading channels. Finally, taking into account the practical considerations for more

realistic systems, where the statistical information of fading channels is not available,

we develop a sub-grouping (SG) based suboptimal rate-control policy.

The rest of this chapter is organized as follows. Section B describes the system

model. Section C formulates the time-sharing based multicast goodput-optimization

problem. Section D derives the optimal rate-control policies for the scenarios with

i.i.d. fading conditions over different receiving channels. Section E develops the OPTS

policy for two-receiver cases with non-i.i.d. fading channels towards the multicast

receivers. Section F proposes the SG based suboptimal rate-control policy without

the knowledge of channel distributions. Section G evaluates the performance through

numerical and simulation analyses. The chapter concludes with Section H.

B. System Model

1. System Description

We consider a discrete-time mobile multicast scenario in wireless networks as shown in

Fig. 1. The multicast sender transmits a single data stream to all N (multicast group

size) mobile multicast receivers through wireless broadcast fading channels. The

sender uses single antenna to transmit the multicast signals, and each receiver also

uses single antenna to receive these signals. We use the flat-fading channel models,

and thus the signal transmitted can be expressed by yn = hnx+ νn, where hn is the

channel gain between the sender and the nth receiver, x is the complex multicast signal

with spectral bandwidth B and constant power P , yn denotes the signal received by

the nth receiver, and νn’s are independent complex additive white Gaussian noise

(AWGN) with power spectral density N0/2 per dimension. Then, the channel-state

information (CSI) received at the multicast receivers can be characterized by the
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N

Fig. 1. System model for mobile multicast over fading channels.

received instantaneous SNR, which is defined by γn � P |hn|2/(N0B), n = 1, 2, . . . , N ,

where B denotes the system spectral-bandwidth. We also model the discrete-time

fading channel by an ergodic and stationary block-fading process, which is widely

used for wireless channels. In particular, {γn}Nn=1 are invariant within a time frame

of length T , but vary independently from time frame to time frame. The time-

frame length T is sufficiently long such that the information-theoretic assumption

of infinitely-long code-block length is meaningful [69]. Moreover, the CSI can be

perfectly estimated at each receiver and then be reliably fed back to the sender without

delay through the dedicated control channels.

We use fΓn(γ) and FΓn(γ) to represent the probability density function (pdf) and

cumulative distribution function (CDF) of γn, respectively. The joint pdf and CDF

of {γn}Nn=1 are denoted by fΓ(γ) and FΓ(γ), respectively, where γ � (γ1, γ2, . . . , γN)τ

represents a particular fading state and (·)τ denotes transpose. In addition, we sort

the SNR vector γ = (γ1, γ2, . . . , γN)τ and then denote the ordered instantaneous SNR

vector by γ̂ � (γ̂1, γ̂2, . . . , γ̂N)τ , where γ̂1 ≥ γ̂2 ≥ . . . ≥ γ̂N . We assume that FΓ(γ) is

continuous over (R+)N , where R
+ denotes the domain of nonnegative real numbers.

Note that the most widely used fading models such as Rayleigh, Rician, and Nakagami

distributions [70] satisfy this assumption. In this chapter, we use Rayleigh distribu-
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Fig. 2. Time-sharing based rate allocation.

tion [70] as the typical example for numerical and simulation analyses. For Rayleigh

fading channels, we have fΓn(γ) = exp(−γ/γn)/γn and FΓn(γ) = 1 − exp(−γ/γn),
where γn is the mean of γn.

2. The Time-Sharing Based Rate-Adaptation Policy

Given the CSI vector γ, the sender selects the transmission rate, denoted by r, which

is selected from a discrete set R(γ) � {r1, r2, . . . , rN}, where rn = B log(1+γn) is the

Shannon capacity for the given SNR γn. In order to build up a more general frame-

work, we apply the time-sharing strategy [71] among these N possible transmission

rates of R(γ) = {r1, r2, . . . , rN}. In particular, as shown in Fig. 2, the sender divides

each time-frame into N sub-slots with lengths of T1(γ), T2(γ), . . . , TN(γ), correspond-

ing to N multicast receivers, and
∑N

i=1 Ti(γ) = T . The transmission rate in the nth

sub-slot is set equal to r = rn. Accordingly, we denote the time proportion of the nth

sub-slot by λn(γ), n = 1, 2, . . . , N , where λn(γ) � Tn(γ)/T . Since
∑N

n=1 Tn(γ) = T ,

we have
∑N

n=1 λn(γ) = 1. Then, we can control time proportions of the N sub-slots

to implement the time-sharing strategy, and characterize the time-sharing policy by

a vector function

λ(γ) �
(
λ1(γ), λ2(γ), . . . , λN(γ)

)τ
. (3.1)
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It is worth noting that through the time-sharing strategy, we can continuously con-

trol the average multicast transmission rate within a time frame, although the in-

stantaneous transmission rate can be selected only from the discrete set R(γ). For

convenience of presentation, we define r̂i � B log(1 + γ̂i) with i = 1, 2, . . . , N , and

denote the time proportion of the sub-slot having multicast transmission rate r = r̂i

by λ̂i(γ). Thus, we can also characterize the time-sharing rate-control policy by a

new vector defined by λ̂(γ) �
(
λ̂1(γ), λ̂2(γ), . . . , λ̂N(γ)

)τ
, which corresponds to the

ordered SNR vector γ̂ = (γ̂1, γ̂2, . . . , γ̂N)τ .

C. Formulating Optimization Problem for Maximizing Average Goodput

Under the time-sharing policies, we can formulate an optimization problem to derive

the optimal rate-control policies which can maximize the average multicast goodput

at the physical layer with the CSI feedback γ. We assume that the capacity-achieving

codes are used. Thus, if the Shannon capacity for γn is higher than or equal to the

transmission rate r, the nth receiver can correctly decode the received signal in a sub-

slot; otherwise, the nth receiver cannot correctly decode the received signals. Given

that the selected multicast transmission rate is r and the nth receiver’s SNR is γn,

the instantaneous multicast rate achieved by the nth receiver, denoted by c(γn, r), is

expressed as

c(γn, r) =

⎧⎪⎨⎪⎩ r, if B log(1 + γn) ≥ r;

0, if B log(1 + γn) < r.
(3.2)

We then define the average multicast goodput as follows.

Definition 1. The nth receiver’s achieved average rate, denoted by Rn

(
λ(γ)

)
, is

the expectation of the instantaneous rate achieved by the nth receiver over all fading
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states, which is determined by

Rn

(
λ(γ)

)
� E{cn(γ)τλ(γ)} =

∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

cn(γ)τλ(γ)fΓ(γ)dγ1dγ2 · · ·dγN , (3.3)

where cn(γ) �
(
c(γn, r1), c(γn, r2), . . . , c(γn, rN)

)τ
, rn = B log(1 + γn), and E{·} de-

notes expectation.

Definition 2. The average multicast goodput of a multicast group under a time-

sharing policy λ(γ), denoted by R
gp(
λ(γ)

)
, or R

gp
in short, is defined as the mini-

mum Rn

(
λ(γ)

)
among all multicast receivers as follows:

R
gp

= min
1≤n≤N

{
Rn

(
λ(γ)

)}
, (3.4)

where Rn

(
λ(γ)

)
is the nth receiver’s achieved average rate given by Eq. (3.3). Cor-

respondingly, R
gp
/B is called the normalized average multicast goodput.

We can then derive the optimal rate-control policies by solving the following

goodput-optimization problem:

λ∗(γ) = arg max
λ(γ)

{
R

gp
}

= arg max
λ(γ)

{
min

1≤n≤N

{
Rn

(
λ(γ)

)}}
,

s.t.: λi(γ) ≥ 0, 1 ≤ i ≤ N ;
N∑
i=1

λi(γ) = 1. (3.5)

Since our proposed framework aims at optimizing the average multicast good-

put other than guaranteeing the transient performance, this framework is particularly

suitable for data services such as wireless data downloading. While the average multi-

cast goodput defines the data rate achievable for all multicast receivers at the physical

layer, different multicast receivers usually lose different part of the transmitted signals

due to the highly-varying and heterogenous wireless channels. To provide reliability

for all multicast receivers, we can apply the sophisticated erasure-correcting codes
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Fig. 3. The equivalent erasure channel at the upper protocol layer.

at the upper protocol layer. Specifically, consider an example of multicasting a data

file with very large size. The original data file is first encoded by using the erasure-

correcting codes. Then, the sender passes the encoded data to the physical layer and

multicasts them to all receivers, where the amount of the encoded data transmitted

in each frame is determined by the rate-adaptation policy λ(γ). The physical-layer

signal transmission model given by Eq. (3.2) can be viewed as an equivalent erasure

channel at the upper protocol layer, as illustrated in Fig. 3. The average loss proba-

bility of the erasure channel of the nth receiver, denoted by ρn(λ(γ)), is determined

by the average multicast goodput and average transmission rate as follows:

ρn(λ(γ)) =

E

{
N∑
n=1

rnλn(γ)

}
− R

gp
(λ(γ))

E

{
N∑
n=1

rnλn(γ)

} , (3.6)

where E

{∑N
n=1 rnλn(γ)

}
is the average transmission rate. Accordingly, the capacity

for the above equivalent erasure channel, denoted by Cn, n = 1, 2, . . . , N , is deter-

mined by

Cn = E

{
N∑
n=1

rnλn(γ)

}(
1 − ρn(λ(γ)

)
= Rn(λ(γ)), nats/s, (3.7)

We assume that the capacity-achieving erasure-correcting code is used and the code

rate is set equal to min1≤n≤N{1 − ρn(λ(γ)}. Then, the information rate included in
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the encoded data is equal to

min
1≤n≤N

{1 − ρn(λ(γ)} × E

{
N∑
n=1

rnλn(γ)

}
= R

gp
(λ(γ)).

As a result, all receivers can successfully recover the original data file because their

equivalent erasure channels’ capacities Cn, n = 1, 2, . . . , N , are all beyond the infor-

mation rate included in the encoded data, which is also equal to the average multicast

goodput R
gp

(λ(γ)). Based on the above analyses, we can see that the encoding at

high protocol layer is across many time frames, and thus this model is for the non-

realtime data services. Correspondingly, we need to optimize the average multicast

goodput, which can also minimize the average delay to download large-size data.

The above erasure-correcting model is also meaningful and can provide insightful

guidance for realistic systems, because there are many near capacity-achieving codes

with low implementation complexity. Fountain codes [68] are well-known as a type of

powerful codes for reliable multicast transmissions with the following properties. (i)

The encoding at upper protocol layer can be performed online in each time frame with

low complexity. (ii) The maximum supportable error-control redundancy is virtually

not upper-bounded. The sender can keep on generating encoded data packets as long

as there are requests from receivers. (iii) How to encode is independent of the loss

status and channel status. (iv) A multicast receiver can recover the original uncoded

file with a certain number of correctly-received encoded data packets, regardless of

which parts of the transmitted packets are received. (v) The amount of the encoded

data required for successful file-recovering is only slightly higher than the size of

the original file. With the above properties, we can see that the physical-layer rate

adaptation can be effectively applied with the help from fountain codes. Properties

(iv) and (v) show that fountain codes are a type of near capacity-achieving erasure-

correcting codes. Thus, the average multicast goodput presents a tight upper-bound
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for the data rate achievable for the entire multicast group in realistic systems. More

importantly, property (ii) implies that how to construct fountain codes does not need

the information of the loss probability ρn(λ(γ)) or channel status. As a result, the

physical-layer rate adaptation and upper protocol layer encodings can be designed

separately, and the physical layer only needs to tell the upper protocol layer how

many encoded data are required in each frame. Therefore, we can focus on physical-

layer rate adaptation while leaving the error control to upper protocol layer.

D. Optimal Rate-Control Policy for I.I.D. Fading across Multicast Receivers

1. The Optimal Time-Sharing Rate-Adaptation Policy in I.I.D. Fading Channels

We first focus on scenarios where the instantaneous SNR’s {γn}Nn=1 are i.i.d. in this

section. The more practical but more complex non-i.i.d. fading scenarios will be

studied in Sections E and F. Proposition 1 given below derives the OPTS policy

which maximizes the average multicast goodput in the i.i.d. fading environments.

Proposition 1. Assume that {γn}Nn=1 are i.i.d. The optimal time-sharing policy

λ∗(γ) to the goodput-optimization problem formulated by Eq. (3.5) is given in its

equivalent form λ̂
∗
(γ) as follows:

λ̂∗i (γ) =

⎧⎪⎨⎪⎩ 1, if i = i∗;

0, if i �= i∗, 1 ≤ i ≤ N,
(3.8)

where

i∗ = arg max
1≤i≤N

⎧⎨⎩B ∑
∀ k,γk≥γ̂i

log(1 + γ̂i)

⎫⎬⎭ = arg max
1≤i≤N

{
iB log(1 + γ̂i)

}
. (3.9)

If there exist multiple indices i1, i2, . . . , iS (S is an integer, 1 ≤ S ≤ N) such that

isB log(1 + γ̂is) = max1≤i≤N{iB log(1 + γ̂i)} holds for all s = 1, 2, . . . , S, i∗ is set to
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be i∗ = max{i1, i2, . . . , iS}. Also, the OPTS policy λ∗(γ) yields

R
gp

= R1

(
λ∗(γ)

)
= R2

(
λ∗(γ)

)
= · · · = RN

(
λ∗(γ)

)
. (3.10)

Proof. The proof is provided in Appendix A.

Based on Proposition 1, for a given γ the sender only uses the transmission rate

r̂i∗ = B log(1 + γ̂i∗) within the entire time frame. Also, different γ’s with the same

ordered version γ̂ yield the same transmission rate. Since λ∗(γ) determines transmis-

sion rate only based on the ordered CSI vector γ̂, λ∗(γ) benefits all multicast receivers

evenly in the i.i.d. fading environments. Consequently, all multicast receivers achieve

the same average rate as shown in Eq. (3.10). Furthermore, the objective function in

Eq. (3.9) can be rewritten as

B
∑

∀ k,γk≥γ̂i

log(1 + γ̂i) =
N∑
k=1

c(γk, r̂i), (3.11)

which calculates the sum of achieved rates over all multicast receivers, or the sum of

achieved rates in short, with r = r̂i. Thus, Proposition 1 implies that maximizing

the goodput R
gp

is equivalent to maximizing the sum of achieved rate in each fading

state independently.

For a given γ, the optimal time-sharing rate-adaptation policy selects the possible

transmission rate r only from the finite set R(γ) � {r̂1, r̂2, . . . , r̂N}. We show below

that any transmission rate r′ /∈ R(γ) cannot maximize the sum of achieved rate.

Define γ̂0 = ∞ and γ̂N+1 = 0. Without loss of generality, given any transmission

rate r′ /∈ R(γ) we can write r′ as r = B log(1 + γ ′) with a certain γ ′ satisfying

γ̂j > γ ′ > γ̂j+1 for some j, 0 ≤ j < N . Then, we derive

N∑
k=1

c
(
γk, B log(1 + γ ′)

)
= jB log(1 + γ ′) < jB log(1 + γ̂j) =

N∑
k=1

c
(
γk, r̂j

)
(3.12)
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which verifies the above claim. Since r′ /∈ R(γ) cannot maximize the sum of achieved

rates in each fading state, it cannot maximize the average multicast goodput, either.

2. Performance Analyses and Case Investigations for I.I.D. Fading Channels

Under the OPTS policy given by Proposition 1, we first derive the closed-form ex-

pression of the average multicast goodput for the two-receiver case (N = 2) over i.i.d.

Rayleigh fading channels. Plugging Eqs. (3.8) and (3.9) into Eqs. (3.3) and (3.4), we

get

R
gp

=Be
2
γ

[
G
(

0,
2

γ

)
− 1

γ
H

(
1,

1

2
,
1

γ
,
1

γ

)
− 2

γ
H

(
1, 2,

1

γ
,
1

γ

)]
+Be

1
γG
(

0,
1

γ

)
, (3.13)

where γ = γ1 = · · · = γN , G(w, z) �
∫∞
z
tw−1e−tdt, w, z ≥ 0, is the incomplete

Gamma function [72], and H(w, z, u, v) �
∫∞
w
e−ut−vt

z
log tdt with w, z, u, v ≥ 0 and

u + v > 0. The numerical results of these two functions can be obtained by using

many math softwares, e.g., Mathematica. Usually, there are no simple closed-form

expressions for the cases with N ≥ 3. In contrast, we focus on studying the monotonic

property which is summarized by Proposition 2 as follows.

Proposition 2. Assume that {γn}Nn=1 are i.i.d. Under λ∗(γ) given in Proposition 1,

the average multicast goodput R
gp

is a monotonic decreasing function of the multicast

group size N .

Proof. The proof is provided in Appendix B.

Next, we will study the asymptotic performance of the average multicast goodput

to exam the scalability of the OPTS rate-control policy.

Proposition 3. Assume that {γn}Nn=1 are i.i.d. and denote the CDF of each γn by

FΓ(γ). As the multicast group size N → ∞, the OPTS rate-control policy λ∗(γ) given
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in Proposition 1 converges to a constant rate policy r = B log(1 + γ∗∞) almost surely

(a.s.), where

γ∗∞ � arg max
0<γ<∞

{(1 − FΓ(γ)) log(1 + γ)} (3.14)

Correspondingly, the average multicast goodput R
gp

is determined by

lim
N→∞

R
gp

= B(1 − FΓ(γ∗∞)) log(1 + γ∗∞), a.s. (3.15)

Proof. Under the OPTS policy λ∗(γ), we have r = r̂i∗ = B log(1 + γ̂i∗), where γ̂i∗ is

obtained through Eq. (3.9). Define N (γ) as the number of receivers with SNR higher

than or equal to a given γ. Following Eqs. (3.9) and (3.12), we get

γ̂i∗ = arg max
γ̂i,1≤i≤N

⎧⎨⎩ ∑
∀ k,γk≥γ̂i

log(1 + γ̂i)

⎫⎬⎭
= arg max

0<γ<∞

{
1

N

∑
∀ k,γk≥γ

log(1 + γ)

}
= arg max

0<γ<∞

{N (γ)

N
log(1 + γ)

}
. (3.16)

Letting N → ∞, we get

lim
N→∞

N (γ)

N

(a)
= Pr{Γ ≥ γ} = 1 − FΓ(γ) a.s. (3.17)

where (a) holds according to [73, Proposititon 4.24].

Defining γ∗∞ � arg max0<γ<∞ {(1 − FΓ(γ)) log(1 + γ)} and plugging Eq. (3.17)

into Eq. (3.16), we get limN→∞ γ̂i∗ = γ∗∞ a.s., also implying limN→∞ r̂i∗ = B log(1 +

γ∗∞) a.s. Moreover,

lim
N→∞

Rn

(
λ∗(γ)

)
=

∫ ∞

γ∗∞
B log(1 + γ∗∞)fΓ(γ)dγ = B(1 − FΓ(γ∗∞)) log(1 + γ∗∞), a.s.(3.18)

for all 1 ≤ n ≤ N . By using Eqs. (3.4) and (3.18), we obtain Eq. (3.15), which

completes the proof of Proposition 3.
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The above propositions show that although the average multicast goodput is

a monotonic decreasing function of multicast group size N , the degradation speed

is limited. As N → ∞, the goodput converges to a non-zero constant. In con-

trast, if the transmission rate is determined by the worst-case SNR among all re-

ceivers, the transmission rate and the goodput approaches to 0 with N → ∞.

This indicates that our derived OPTS policy has good scalability in avoiding good-

put degradation. Moreover, we derive the closed-form asymptotic average multi-

cast goodput in Rayleigh fading channels. Applying Eq. (3.14), we obtain γ∗∞ =

max0<γ<∞
{

exp
(
−γ
γ

)
log(1 + γ)

}
= γ/W (γ) − 1, where for z �= 0 W (z) is the

Lambert W-function [74].1 Correspondingly, the transmission rate r converges to

a constant rate B log(γ/W (γ)), and then through Eq. (3.15), the average multicast

goodput is determined by R
gp

= B exp (−1/W (γ) + 1/γ) (log γ − logW (γ)).

E. Two-Receiver Cases with Non-I.I.D. Fading across Multicast Receivers

The rate adaptation policy given in Proposition 1 is not optimal policy when {γn}Nn=1

are non-i.i.d. This is because the policy only maximizes sum of achieved rates over

the entire multicast group. However, it cannot guarantee to maximize the average

multicast goodput in non-i.i.d. fading environments and thus may cause severe good-

put degradation. In the following, we focus on two-receiver scenarios with non-i.i.d.

{γn}Nn=1 and derive the corresponding OPTS policy. Note that in this section, we

assume that the channel distribution information is available at the sender.

1Lambert W-function is the inverse function of Z(w) = wew.
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1. Problem Reformulation for Goodput Optimization with Non-I.I.D. Fading

For two-receiver cases, we can reformulate the goodput optimization problem given

by Eq. (3.5) as follows:

λ∗(γ) = arg max
λ(γ)

{
R1

(
λ(γ)

)}
,

s.t.: λ1(γ), λ2(γ) ≥ 0, λ1(γ) + λ2(γ) = 1,

R1

(
λ(γ)

)
= R2

(
λ(γ)

)
. (3.19)

The above reformulation is obtained based on the following arguments. Consider

any policy λ(γ) with unequal Rn

(
λ(γ)

)
’s. Without loss of generality, we assume

R1

(
λ(γ)

)
< R2

(
λ(γ)

)
. Then from Eq. (3.4), the goodput R

gp
of the multicast group

is equal to R1

(
λ(γ)

)
. Next, we reallocate time proportions by increasing λ1(γ) to

improve R1

(
λ(γ)

)
such that R

gp
can be also improved. Correspondingly, we define

μn(γ), n = 1, 2, as

μn(γ) � c(γn, r1) − c(γn, r2) = c(γn, B log(1 + γ1)) − c(γn, B log(1 + γ2)), (3.20)

which evaluates the increment of the nth receiver’s instantaneously achieved rate if

changing the transmission rate from r2 to r1 (see Eq. (3.2) for the definition of c(·, ·)).
In particular, we get

0 ≤ μ1(γ) =

⎧⎪⎨⎪⎩ B log(1 + γ1) − B log(1 + γ2), if γ1 ≥ γ2;

B log(1 + γ1), if γ1 < γ2,
(3.21)

0 ≥ μ2(γ) =

⎧⎪⎨⎪⎩ −B log(1 + γ2), if γ1 > γ2;

B log(1 + γ1) − B log(1 + γ2), if γ1 ≤ γ2.
(3.22)

Then in fading state γ, if the increment of λ1(γ) is given by δ(γ) > 0, the improvement

ofR1

(
λ(γ)

)
andR2

(
λ(γ)

)
, denoted by I1(γ) and I2(γ), respectively, can be expressed
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as ⎧⎪⎨⎪⎩ I1(γ) = δ(γ)μ1(γ)fΓ(γ)dγ1dγ2 ≥ 0;

I2(γ) = δ(γ)μ2(γ)fΓ(γ)dγ1dγ2 ≤ 0.
(3.23)

Equation (3.23) shows that under the time-proportion reallocation procedure, R1

(
λ(γ)

)
always increases while R2

(
λ(γ)

)
always decreases. Consequently, we can keep on en-

larging δ(γ) to increase R1

(
λ(γ)

)
(or, equivalently, R

gp
) until R1

(
λ(γ)

)
= R2

(
λ(γ)

)
is satisfied. Then, a new time-sharing policy with R1

(
λ(γ)

)
= R2

(
λ(γ)

)
and a larger

R
gp

is obtained.

The existence of such a new policy satisfying R1

(
λ(γ)

)
= R2

(
λ(γ)

)
can be

explained as follows. If we eventually reallocate all time proportions to r1, we get

λ1(γ) = 1 for all γ’s, which results in R1

(
λ(γ)

)−R2

(
λ(γ)

) ≥ 0. On the other hand,

we originally have R1

(
λ(γ)

) − R2

(
λ(γ)

) ≤ 0 as assumed previously. Then, since

δ(γ) can be tuned up continuously, such a new policy must exist.

2. Compensation Efficiency

The strategy to obtain the time-sharing rate-adaptation policy discussed in Section E-

1 actually increases the goodput R
gp

or, equivalently, the first receiver’s achieved av-

erage rate R1

(
λ(γ)

)
at the cost of degrading R2

(
λ(γ)

)
. Hence, in order to achieve a

high R
gp

, we need to use the minimum degradation of R2

(
λ(γ)

)
to obtain the max-

imum improvement of R1

(
λ(γ)

)
. To evaluate the efficiency of improving R1

(
λ(γ)

)
in each fading state and determine how to reallocate corresponding time proportions,

we introduce a metric which is called compensation efficiency and denoted by η(γ)

(or η for simplicity). Specifically, we define η(γ) as the ratio of the increment I1(λ)

of R1

(
λ(γ)

)
to the decrement (−I2(λ)) of R2

(
λ(γ)

)
when the sender reallocates a
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Fig. 4. Compensation efficiency η as a function of θ.

higher time proportion to transmission rate r1. Using Eq. (3.23), we get

η(γ) � I1(γ)

−I2(γ)
=

μ1(γ)

−μ2(γ)
≥ 0, if γ1 �= γ2. (3.24)

Note that for γ1 = γ2, we set η(γ) = 0 without loss of generality.

To better understand the compensation efficiency, we introduce an auxiliary vari-

able θ(γ) (or θ in short), which is defined as the ratio of instantaneous Shannon ca-

pacity between the two receivers and expressed by θ(γ) � log(1 + γ2)/ log(1 + γ1).

Then using the definition of θ and Eqs. (3.21)-(3.22), we can express η(γ) in terms

of θ(γ) as

η(γ) =

⎧⎪⎨⎪⎩
1−θ(γ)
θ(γ)

, if θ(γ) ∈ (0, 1];

1
θ(γ)−1

, if θ(γ) ∈ (1,∞).
(3.25)

We plot the compensation efficiency η as a function of θ in Fig. 4, which shows that η

is a piece-wise decreasing function of θ. As θ increases from 0 to 1, η decreases from ∞
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to 0. At θ = 1, there is a discontinuity for η with limθ→1− η = 0 and limθ→1+ η = ∞.2

When θ keeps increasing from 1 to ∞, η again decreases from ∞ to 0.

Furthermore, through the definition of θ, the SNR-plane formed by γ1 and γ2 (as

shown in Fig. 5) can be considered as a set of curves. Each curve is characterized by

the single parameter θ, 0 ≤ θ <∞, and is expressed as

γ2 = (1 + γ1)
θ − 1. (3.26)

Note that any two curves intersect only at the origin. Also, the points on the same

curve correspond to the same θ, and thus have the same compensation efficiency η.

As shown in Fig. 5, all curves with θ ∈ (0, 1] form the region where γ1 ≥ γ2. When θ

varies from 0 to 1, the corresponding curve changes from γ2 = 0 to γ2 = γ1 along the

direction marked with an arrow. In the meantime, η decreases from ∞ to 0 (also see

2The notations limw→(·)− f(w) and limw→(·)+ f(w) are the left limit and right limit
of a given function f(w), respectively, as w approaches a specified number.
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Fig. 4). In contrast, all curves with θ ∈ (1,∞) form the region where γ1 < γ2. As

θ varies from 1 to ∞, the corresponding curve changes from γ2 = γ1 to γ2 = ∞ and

again η decreases from ∞ to 0.

3. The OPTS Policy Obtained through the Compensation-Efficiency Based

SNR-Plane Partition

We use the SNR-plane partition to derive the OPTS policy for two-receiver cases.

Given any compensation efficiency η = η0, η0 ∈ (0,∞), we obtain two solutions

θ = θ1 and θ = θ2 to Eq. (3.25) as shown in Fig 4, which are determined by

θ =

⎧⎪⎨⎪⎩ θ1 = 1
1+η0

, if γ1 > γ2;

θ2 = 1+η0
η0
, if γ1 < γ2.

(3.27)

The points on the curves γ2 = (1 + γ1)
θ1 − 1 and γ2 = (1 + γ1)

θ2 − 1 correspond

to the same η0. That is, these two curves are contours for η = η0. The curve

γ2 = (1+γ1)
θ1 −1 lies in the region where γ1 ≥ γ2, while the curve γ2 = (1+γ1)

θ2 −1

lies in the region where γ1 < γ2. Then, as shown in Fig. 5, the curves γ2 = (1+γ1)
θ2−1,

γ2 = (1 + γ1)
θ1 − 1, and γ2 = γ1 divide the SNR-plane into four exclusive regions,

denoted by Va, Vb, Vc, and Vd, respectively. Moreover, these regions are expressed by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Va �
{
γ|(1 + γ1)

θ2 − 1 ≤ γ2

}
;

Vb �
{
γ|γ1 ≤ γ2 < (1 + γ1)

θ2 − 1
}
;

Vc �
{
γ|(1 + γ1)

θ1 − 1 ≤ γ2 < γ1

}
;

Vd �
{
γ|0 < γ2 < (1 + γ1)

θ1 − 1
}
.

(3.28)

Clearly, we have η ≤ η0 for γ ∈ Va ∪ Vc and η(γ) > η0 for γ ∈ Vb ∪ Vd.
As discussed in Section E-2, in order to achieve high R

gp
, we need to use the min-

imum degradation of R2

(
λ(γ)

)
to obtain the maximum improvement of R1

(
λ(γ)

)
.
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That is, time proportions in the fading states that correspond to higher compensation

efficiency need to be reallocated to transmission rate r1 = B log(1 + γ1) with higher

priority. Following this principle, we set λ1(γ) = 1 for all γ’s in Vb and Vd, while

setting λ1(γ) = 0 for all γ’s in Va and Vc. We call the above strategy SNR-partition

based policy, and summarize it by λ̃(γ) given as follows:

λ̃(γ) =

⎧⎪⎨⎪⎩ (1, 0)τ , if γ ∈ Vb ∪ Vd
(0, 1)τ , if γ ∈ Va ∪ Vc.

(3.29)

That is, the transmission rate r is equal to r1 if γ falls into Vb or Vd, but is equal to

r2 if γ falls into Va or Vc. Equivalently, r is determined by the worst-case SNR when

γ ∈ Vb ∪ Vc, however, is determined by the best-case SNR when γ ∈ Va ∪ Vd. Thus,

we can see that receiver 1 can correctly receive the data in regions Vb, Vc, and Vd,

while receiver 2 can achieve the transmission rate r in regions Va, Vb, and Vc.

Without loss of generality, we initially set λ̃1(γ) = 0 for all γ’s, which is equiv-

alent to η0 = ∞. We then gradually decreases η0 until the constriction R1

(
λ̃(γ)

)
=

R2

(
λ̃(γ)

)
in Eq. (3.19) is satisfied, where the η0 satisfying this constriction is denoted

by η∗0. When η0 decreases, the boundaries γ2 = (1+γ1)
θ1−1 and γ2 = (1+γ1)

θ2−1 both

vary along the direction indicated by the dash-lined arrow in Fig. 5. Correspondingly,

the areas of Vb and Vd get larger and more time proportions are reallocated to rate

r1. Thus, R1

(
λ̃(γ)

)
is a decreasing function of η0, while R2

(
λ̃(γ)

)
is an increasing

function of η0. Moreover, define⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Λa �
∫ ∫

Va
r2fΓ(γ)dγ1dγ2;

Λb �
∫ ∫

Vb
r1fΓ(γ)dγ1dγ2;

Λc �
∫ ∫

Vc
r2fΓ(γ)dγ1dγ2;

Λd �
∫ ∫

Vd
r1fΓ(γ)dγ1dγ2,

(3.30)
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which evaluate the average transmission rate r over the regions Va, Vb, Vc, and Vd,

respectively. Then, according to the discussions of Eq. (3.29), R1

(
λ̃(γ)

)
= R2

(
λ̃(γ)

)
implies Λb + Λc + Λd = Λa + Λb + Λc. Eliminating Λb and Λc and using η0 to express

the integral region (see Eqs. (3.27) and (3.28)), we get

Λd =

∫ ∞

0

∫ (1+γ1)
1

1+η0 −1

0

log(1 + γ1)fΓ(γ)dγ2dγ1

=

∫ ∞

0

∫ (1+γ1)
η0

1+η0 −1

0

log(1 + γ2)fΓ(γ)dγ1dγ2 = Λa. (3.31)

Since FΓ(γ) is a continuous function over (R+)N as assumed in Section B-1, Λd and

Λa are both continuous functions of η0. Also, it is not difficult to derive Λd < Λa

if η0 = ∞ and Λd > Λa if η0 = 0. Thus, the solution η∗0 to Eq. (3.31) must exist.

Furthermore, the following Proposition 4 shows that the policy λ̃(γ) is also the OPTS

policy to Eq. (3.5).

Proposition 4. For two-receiver cases, the OPTS policy to the goodput-optimization

problem formulated in Eq. (3.5) is given by λ∗(γ) = λ̃(γ)|η0=η∗0 , where η∗0 is the

solution of η0 to Eq. (3.31), and λ̃(γ) is determined by Eqs. (3.27)-(3.29).

Proof. The proof is provided in Appendix C.

Note that if {γn}Nn=1 have discrete distributions, i.e., FΓ(γ) is not a continuous

function. There may not exist the solution η0 = η∗0 satisfying Eq. (3.31). In contrast,

there must exist a certain ηdis satisfying (i) R1

(
λ̃(γ)

) ≤ R2

(
λ̃(γ)

)
with η0 → η+

dis;

(ii) R1

(
λ̃(γ)

) ≥ R2

(
λ̃(γ)

)
with η0 → η−dis, where λ̃(γ) follows Eqs. (3.27)-(3.29).

Accordingly, the OPTS should be modified as

λ∗(γ) =

⎧⎪⎨⎪⎩ λ̃(γ)|η0=ηdis
, for γ with η �= ηdis

(λdis, 1 − λdis)
τ , for γ with η = ηdis,

(3.32)
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where we set

λdis =

lim
η0→η+dis

R1

(
λ̃(γ)

)
− lim

η0→η+dis

R2

(
λ̃(γ)

)
(1 + ηdis)

∫ ∫
γ:η(γ)=ηdis

μ2(γ)fΓ(γ)dγ1dγ2

(3.33)

to achieve R1

(
λ∗(γ)

)
= R2

(
λ∗(γ)

)
. The proof of Eqs. (3.32) and (3.33) is similar to

that of Proposition 4.

4. Case Investigation

Consider Rayleigh fading channels and assume that γ1 and γ2 are independent. Then,

using Eqs. (3.27)-(3.28) and (3.30), we derive

Λa = Be
1

γ2 G
(

0,
1

γ2

)
− B

γ2

e
1

γ1
+ 1

γ2H

(
1,

η0

1 + η0

,
1

γ2

,
1

γ1

)
; (3.34)

Λb = Be
1

γ1
+ 1

γ2

[
γ2

γ1 + γ2

G
(

0,
1

γ1

+
1

γ2

)
− 1

γ1

H

(
1,

1 + η0

η0
,

1

γ1

,
1

γ2

)]
; (3.35)

Λc = Be
1

γ1
+ 1

γ2

[
γ1

γ1 + γ2

G
(

0,
1

γ1

+
1

γ2

)
− 1

γ2

H

(
1, 1 + η0,

1

γ2

,
1

γ1

)]
; (3.36)

Λd = Be
1

γ1 G
(

0,
1

γ1

)
− B

γ1

e
1

γ1
+ 1

γ2H

(
1,

1

1 + η0

,
1

γ1

,
1

γ2

)
. (3.37)

According to the discussion of Eq. (3.29), the goodput is given by

R
gp

= R2 = R1 = (Λb + Λc + Λd)|η0=η∗0 . (3.38)

(i) When γ1 and γ2 are i.i.d., we have γ1 = γ2 and use γ to denote the average

SNR. To obtain Λa = Λd, the equation 1/(1 + η0) = η0/(1 + η0) is required according

to Eqs. (3.34) and (3.37). We solve this equation and get η∗0 = 1. Then, using

Eqs. (3.34)-(3.38), we can get the same results as Eq. (3.13). Also, it is easy to verify

that λ̃(γ) given in Eq. (3.29) with η∗0 = 1 is equal to the policy given in Proposition 1.

(ii) We fix γ2 = 10 dB and varies γ1 from 9 dB to 11 dB. We numerically calculate

η∗0 and plot the SNR-plane partition in Fig. 6. In Fig. 6, with the decreasing of γ1,
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gradually move along the directions of arrows, respectively. Thus, more and more

time proportions are allocated to the transmission rate r1, which implies that the

receiver with poorer statistical channel quality usually gets more time proportions

(result in a smaller η∗0) to determine the transmission rate.

F. A Sub-Grouping Based Suboptimal Rate-Adaptation Policy

Sections D and E derive the OPTS policies for goodput-maximization in some specific

fading channels. However, the optimal time-sharing policy to maximize the average

multicast goodput of a multicast group with any number of receivers and non-i.i.d.

fading channels is still difficult to obtain. Also, the knowledge of channel distribution

is usually unavailable for realistic systems. To solve above problems, we derive a

simple sub-grouping based suboptimal rate-adaptation policy which can achieve good

performance without the knowledge of channel distribution.

The multicast transmission begins at the 1st time interval and we use �, � ≥ 1,
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to index the time intervals. Similarly to Propositions 1 and 4, we only use one trans-

mission rate within each time interval. The transmission rate r and instantaneous

SNR γn in the �th time interval are denoted by r[�] and γn[�], respectively. Note that

under the max-min definition of the average multicast goodput (see Eq. (3.4)), we

usually need to allocate more time proportion to the transmission rate determined by

CSI’s from receivers with statistically poorer channels. However, because the channel

distribution is unknown, we cannot get the statistical channel qualities in advance. To

solve this problem, we introduce a metric termed accumulative rate, which is defined

as follows.

Definition 3. The accumulative rate of the nth receiver until the �th time interval,

denoted by ζn[�], is this receiver’s average achieved data rate over the 1st time interval

through the �th time interval. In particular, ζn[�] is determined by

ζn[�] � 1

�

�∑
j=1

c
(
γn[j], r[j]

)
, n = 1, 2, . . . , N. (3.39)

Furthermore, we define ζmin[�] � min1≤n≤N{ζn[�]} and

Ω[�] � {n| ζn[�] − ζmin[�] ≤ ω ζmin[�]} , (3.40)

where ζn[�]−ζmin[�]
ζmin[�]

evaluates the difference level between ζn[�] and ζmin[�] and ω is a

small positive real number termed difference-level threshold. In the �th time interval,

we construct a new NΩ[�]×1 vector by using all γn[�], n ∈ Ω[�−1], where NΩ[�] is the

cardinality of Ω[�− 1] and we denote this new vector by γΩ[�]. Note that eventually,

the nth receiver’s average achieved data rate and the average multicast goodput of the

multicast group are given by Rn

(
λ(γ)

)
= lim�→∞{ζn[�]} and R

gp
= lim�→∞{ζmin[�]},

respectively.

Based on Eq. (3.40), the set Ω[�] includes multicast receivers with lower accumu-
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lative rates, which usually implies that their statistical channel qualities are poorer.

Consequently, we need to efficiently benefit these receivers such that the high aver-

age multicast goodput can be obtained. Following this principle, we determine the

transmission rate r[�] in the �th time interval by CSI from receivers belonging to

Ω[�− 1]. In particular, using NΩ[�] instead of N , we apply the policy λ∗(γ) given in

Proposition 1 to γΩ[�] to determine r[�]. More specifically, we set

r[�] = B log
(
1 + γ̂Ω

i∗ [�]
)
, (3.41)

where

i∗ = arg max
1≤i≤NΩ[�]

{
iB log

(
1 + γ̂Ω

i [�]
)}
. (3.42)

The policy given in Eqs. (3.41) and (3.42) attempts to maximize the sum of achieved

rates over receivers with lower accumulative rates. While Eq. (3.40) removes the

receivers with higher accumulative rates from the set Ω[�], which usually have statis-

tically better channel qualities. As a result, this strategy benefits receivers with lower

accumulative rate and thus can effectively improve the average multicast goodput.

Since the above policy dynamically constructs a sub-group of receivers within the

entire multicast group in each time-interval, we call the above strategy sub-grouping

(SG) based rate-control policy, which is summarized as follows.

Operation in the �th time interval:

Step 1) Determine Ω[�− 1] by using Eq. (3.40).

Step 2) Determine the transmission rate r[�] by using Eqs. (3.41) and (3.42).

Step 3) Multicast data at rate r[�]; update

ζn[�+ 1] :=
�ζn[�] + c(γn[�], r[�])

�+ 1
.

The above policy is a special time-sharing rate-adaptation policy. This policy can ef-
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fective apply the algorithm derived in i.i.d. fading environments into non-i.i.d. fading

environments across multicast receivers. If the differences among all receivers’ accu-

mulative rates are small enough, this policy reduces to λ∗(γ) for i.i.d. fading channels.

The value of ω will affect the goodput performance, which will be investigated through

simulations In Section G.

G. Numerical and Simulation Evaluations

We evaluate the performance of our proposed time-sharing policies through numerical

and simulation evaluations. We also compare the performance of our proposed policies

with other existing schemes, which are described as follows.

(i) The mth largest SNR-dominating (m-LSD) policy

The m-LSD policy is a simple rate adaptation policy with a static strategy, where

the transmission rate is determined by r = B log(1 + γ̂m). When m = 1, we get the

best-case SNR-dominating (BSD) policy. When m = N , we get the worst-case SNR-

dominating (WSD) policy. In i.i.d. fading channels, we also exam m∗-LSD policy,

where m∗ maximize goodput over all m-LSD policies, 1 ≤ m ≤ N . In [31], The

m-LSD scheme was studied for the scaling law of the throughput-delay tradeoff. In

this chapter, we simulate the average multicast goodput of these schemes.

(ii) The constant-rate (CR) policy

The CR policy is a nonadaptive policy. Also, it is usually not a time-sharing

policy. The constant transmission rate r is equal to B log(1 + γth), where γth is

selected to maximize R
gp

over all constant rates and is determined by

γth = arg max
γ

{
min

1≤n≤N
{
(1 − FΓn(γth))B log(1 + γth)

}}
.

It is clear that r and R
gp

only depend on the marginal distributions of {γn}Nn=1.
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Fig. 7. The impact of ω on the normalized average multicast goodput R
gp
/B

achieved by using the SG rate-adaptation policy.

Through Proposition 3, in i.i.d. fading channels, the OPTS policy converges to the

CR policy as N → ∞.

We use Rayleigh fading model as the typical example for numerical and simu-

lation evaluation. In particular, we test various policies under the following three

environment settings.

Setting I: The instantaneous SNR {γn}Nn=1 are i.i.d. with 0 dB ≤ γ ≤ dB and

N = 1, 2, . . . , 20, where γ = γ1 = · · · = γN .

Setting II: N = 2. γ1 and γ2 are independent with γ2 = 10 dB. γ1 varies from 5

dB to 15 dB.

Setting III: {γn}Nn=1 are independent and N = 3, 6, 9, 12, 15, 18. All receivers are

divided into three small groups, each including N/3 receivers with the

same average SNR. The average SNR’s for the three groups are 7 dB,

10 dB, and 13 dB, respectively.

For the OPTS policies under Setting I with N ≤ 2 and those under Setting II,

m-LSD policies under Settings I and II, and the CR policy under Settings I and II,

the average multicast goodput are numerically calculated. The results for all other

scenarios are obtained by using simulations.
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group size N under Setting I with γ = 10 dB.

We first investigate the selection of the difference-level threshold ω in Eq. (3.40)

for our proposed SG rate-adaptation policy. Fig. 7 plots the impact of ω on the

average multicast goodput. We can see from Fig. 7 that either a too large or too

small ω may lead to goodput degradation. If ω approaches 0, the receiver with

the minimum accumulative data rate will determine the transmission rate r, which,

however, cannot efficiently benefit the entire multicast group (the sum of achieved

rates). When ω gets too large, the suboptimal policy reduces to the policy given in

Proposition 1, which cannot efficiently improve the average achieved rate of receivers

with statistically poor channels. We also observe that when ω falls into [0.001, 0.03],

the suboptimal policy can achieve relatively better goodput and the performance is

not sensitive to the variation of ω. Thus, we simply set ω = 0.01 for the SG rate-

adaptation policy under all three environment settings.

Fig. 8 plots the average multicast goodput versus the multicast group size N

under Setting I with γ = 10 dB. As discussed in Section D-1, in order to maximize

goodput in i.i.d. fading channels, we need to maximize the sum of achieved rates

in each fading independently, which can be attained by neither the CR policy nor
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Fig. 9. The normalized average multicast goodput R
gp
/B versus the average

SNR γ under Setting I with N = 10.

the m-LSD policy. Consequently, we can see from Fig. 8 that our derived OPTS

policy achieves the highest goodput over all other policies. Moreover, our proposed

SG rate-adaptation policy can achieve almost the same performance as the OPTS

policy. In addition, we observe that all time-sharing policies’ goodput are decreasing

functions of N , which confirms our claim for the OPTS policy in Proposition 2. As

N gets larger, the average multicast goodput of our derived OPTS policy approaches

that of the CR policy, which verifies our claim in Proposition 3. Fig. 9 plots the

average multicast goodput versus the average SNR under Setting I with N = 10

dB. From Fig. 9, we see that with the increasing of channel qualities, the average

multicast goodputs under all policies also increase, while our proposed OPTS and SG

rate-adaptation policies outperform all others. More importantly, the performance

improvement gained by our proposed policies will also increase as γ becomes larger.

Under Setting II, Fig. 10 plots the average multicast goodput as the first receiver’s

average SNR varies. As shown in Fig. 10, our derived OPTS policy outperforms all

other rate-adaptation policies. Moreover, our proposed SG rate-adaptation policy

can achieve the performance very close to the OPTS policy. Also note that except for
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gp
/B versus the first re-

ceiver’s average SNR γ1 under Setting II.

the CR policy and the BSD policy, all other policies can achieve higher goodput as

γ1 increases. In particular, the average multicast goodput of the CR policy remains

unchanged when γ1 > γ2. This is expected since the goodput of the CR policy

only depends on marginal distributions of γn’s such that the goodput performance is

determined by the receiver with lower statistical channel qualities. More surprisingly,

the average multicast goodput of the BSD policy even degrades when γ1 becomes

larger than γ2. This phenomenon can be explained as follows. Under the BSD policy,

only the receiver with the best-case instantaneous SNR can correctly receive the data.

Thus, as long as the average SNR’s of different receivers are unequal, the receiver with

higher average SNR will occupy more opportunities for reliable data reception while

other receivers’ suffer severe data losses.

Fig. 11 plots the average multicast goodput as a function of multicast group size

N , respectively, for various policies under a non-i.i.d. environment – Setting III. Since

all receivers are divided into three smaller groups according to the average SNR, we

test m = N/3, m = 2N/3, and m = N for the m-LSD policy. We can see from

Fig. 11(a) that our proposed SG rate-adaptation policy achieve at least 25% perfor-
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group size N under Setting III.

mance improvement over all other policies when 6 ≤ N ≤ 18, which again verifies

the effectiveness of our proposed SG rate-adaptation policy. In contrast, the m-LSD

policies, e.g., m = 2N/3 and m = N/3, result in significant goodput degradation,

which can be explained by using the similar arguments for the performance of BSD

in Fig. 10. When m = N , the m-LSD policy reduces to the WSD policy and the aver-

age multicast goodput degrades quickly as N increases. In addition, our proposed SG

rate-adaptation policy can achieve more goodput gain over the CR policy in non-i.i.d.

fading channels than in i.i.d. fading channels.

H. Summary

In this chapter, we derived the optimal time-sharing rate-adaptation policy for mobile

multicast with i.i.d. fading channels. In i.i.d. fading environments, to maximize

average multicast goodput is equivalent to maximizing the sum of achieved rates over

receivers in each fading state independently. The derived optimal policy has good

scalability in term of the multicast group size. As the multicast group size approaches

infinity, the derived optimal policy converges to a constant rate policy with a non-



55

zero goodput. By using a SNR-plane partition based method, we also derived the

optimal time-sharing policy for two-receiver cases with non-i.i.d. fading channels. To

solve the problem that the statistical channel information is usually unavailable to the

sender, we developed a sub-grouping based suboptimal rate-adaptation policy, which

can effective apply the algorithm derived in i.i.d. fading environments into non-i.i.d.

fading environments across multicast receivers. Simulation and numerical analyses

show that our proposed policies significantly outperform the existing rate adaptation

schemes.
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CHAPTER IV

EFFECTIVE CAPACITY OF MULTICAST OVER FADING CHANNELS IN

WIRELESS NETWORKS

A. Introduction

While mobile multicast has received a great deal of research attention [27–29,31,58,75,

76], the design of efficient wireless multicast schemes for diverse QoS-constrained ser-

vices still faces many challenges. One the one hand, due to the heterogeneous channel-

fading status across multicast receivers, it is difficult to achieve high throughput

and reliability simultaneously. On the other hand, the provisionings of deterministic

quality-of-service (QoS) requirements such as hard delay bounds are usually unrealis-

tic because of the highly-varying wireless channels. Correspondingly, statistical-QoS

guaranteed approaches need to be developed for wireless multicast services with di-

verse QoS requirements.

As discussed in Chapters I and III, in order to achieve high system throughput

for wireless multicast, the multicast transmission rate cannot be always limited by the

worst-case channel quality. Identifying that there is a fundamental tradeoff between

multicast service rate and the reliability, in [76] we investigated the impact of the

average loss-rate requirements on optimizing the average multicast throughput over

broadcast fading channels, where for any given time instant the multicast transmission

rate is not necessarily determined by the minimum achievable rate among all multicast

receivers. Further note that optimizing the average multicast throughput cannot

effectively characterize the QoS provisionings for delay-sensitive services, such as video

and audio multimedia multicasting. For these services, the delay-bound guarantee is

even more important than the optimization for average throughput. Thanks to the
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effective capacity theory developed by the authors of [8], we can use it to develop

efficient rate-adaptation techniques in wireless networks and to examine the system

throughput subject to the diverse statistical delay-QoS constraint. However, it still

remains as one of major challenges to integrate the effective capacity approaches into

the design of efficient rate-adaptation schemes for wireless multicast with diverse QoS

requirements.

To overcome the aforementioned problems, we propose an efficient framework

for developing multicast rate-adaptation schemes over broadcast fading channels with

statistical-delay and loss-rate QoS constraints. For rate adaptation, we employ the

time-sharing (TS) and superposition-coding (SPC) techniques, respectively, to han-

dle the heterogeneous qualities over channels across multicast receivers. We also

develop a pre-drop scheme to implement the more efficient QoS-driven wireless multi-

casting. Then, given the statistical delay-QoS requirement and the average loss-rate

threshold, we formulate the effective capacity maximization problem to derive the

optimal channel-aware rate adaptation and pre-drop schemes. The optimal TS-based

and SPC-based multicast policies are derived respectively. Extensive simulations are

also conducted to evaluate the effective-capacity performance of our derived optimal

schemes.

The rest of the paper is organized as follows. Section B presents the system

model. Section C proposes the framework of effective capacity optimization with sta-

tistical delay and loss QoS constraints for multicast over fading channels in wireless

networks. Section D develops the optimal TS-based adaptive multicast transmission

policies. Section E obtains the optimal TS-based multicast policies under two limit-

ing scenarios of delay-QoS constraints. Section F solves for the optimal SPC based

adaptive multicast transmission policies. Section G compares the performances of

our derived optimal adaptive multicast policies with the suboptimal policies through
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Fig. 12. The system model for mobile multicast with adaptive multicast trans-

missions over broadcast fading channels in wireless networks.

simulation evaluations. The chapter concludes with Section H.

B. System Model

We consider a discrete-time one-to-many multicast system as illustrated in Fig. 12,

where the base-station sender transmits a single data stream to N multicast receivers

over broadcast fading channels. The sender employs a single antenna for transmission

and each multicast receiver uses a single antenna to receive data. We focus on the

flat-fading channels. Then, the physical-layer multicasting model can be given by

yn[k] = hn[k]x[k] + vn[k], (4.1)

where [k] is the index for consecutive time frames each with the fixed length equal to T .

In Eq. (4.1), x[k] is the complex multicast signal with the spectral bandwidth B, hn[k]

is the complex channel gain between the sender and the nth multicast receiver, yn[k]

denotes the nth receiver’s received signal, and vn[k]’s are circular complex additive

white Gaussian noise (AWGN) with power spectral density σ0. We model the time-
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varying channel gain hn[k] as an ergodic and stationary block-fading process, where

hn[k], n = 1, 2, . . . , N , is invariant within a time frame, but varies independently from

frame to frame. When the context is clear, we will drop the time index [k] to simplify

notations.

The transmit power E{x2} within each time frame is equal to a constant denoted

by P , where E{·} denotes the expectation. Then, we characterize the channel-state

information (CSI) by the instantaneous SNR received at each multicast receiver,

which is denoted by γn and defined as γn � P |hn|2/(σ0B), n = 1, 2, . . . , N . The

SNR vector is formed as γ � (γ1, γ2, . . . , γN)τ , representing a fading state, where

(·)τ denotes the transpose operator. Unless otherwise mentioned, we assume that the

SNR’s {γn}Nn=1 follow independent and identically distributed (i.i.d.) distribution,

and denote the average SNR of γn, n = 1, 2, . . . , N , by γ. We further sort the

elements of γ in the decreasing order and get an ordered SNR vector denoted by

γπ � (γπ(1), γπ(2), . . . , γπ(N))
τ , where π(·) is the sorting operator such that γπ(1) ≥

γπ(2) ≥ . . . ≥ γπ(N). We suppose that CSI information are available at both the

sender and multicast receivers.

C. Framework of Effective Capacity Optimization for Mobile Multicast

1. Rate Adaptation for Multicast Transmissions

The multicast receivers’ channel qualities are different at each time instant. Then,

in order to efficiently regulate the multicast transmission rate based on all multicast

receivers’ CSI, we divide the multicast data to be transmitted within each time frame

into N parts. The transmission rate of the nth data part, denoted by rn (nats/frame),

is set just within the capability of γn for correctly decoding. Accordingly, only the

receivers with SNR higher than or equal to γn can correctly decode this part of data.
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We define the transmission-rate vector for the N data parts as r � (r1, r2, . . . , rN)τ .

In addition, we use rπ(i) to denote the transmission rate associated with the ordered

SNR γπ(i). The above rate-adaptation strategy for wireless multicast can be imple-

mented by either the time-sharing (TS) or superposition-coding (SPC) techniques, as

illustrated in Fig. 12. The details for the TS-based and SPC-based rate-adaptation

policies are elaborated on as follows.

a. Time-sharing (TS) based rate-adaptation policy

The sender divides each time-frame intoN time slots with lengths equal to T1, T2, . . . , TN ,

which are associated with γ1, γ2, . . . , γN , respectively, where
∑N

i=1 Ti = T . We suppose

that the capacity-achieving codes are used within each frame, and then the transmis-

sion rate rn in the nth time slot is set equal to the Shannon capacity TB log(1 + γn)

of γn. We denote the time proportion of the nth time slot by λn, n = 1, 2, . . . , N ,

where λn � Tn/T , 0 ≤ λn ≤ 1, and
∑N

n=1 λn = 1. Then, we can control time pro-

portions of the N time slots to regulate the TS strategy, and we can characterize

the TS rate-adaptation policy by a vector function denoted by λ � (λ1, λ2, . . . , λN)τ .

Also, the time proportion associated with γπ(i) is denoted by λπ(i), and we define

λ̃ � (λ̃1, λ̃2, . . . , λ̃N)τ . In addition, if we have γπ(i) = γπ(k) for some i < k, implying

rπ(i) = rπ(k), we set λπ(i) = 0 without loss of generality.

b. Superposition-coding (SPC) based rate-adaptation policy

For SPC [71] based rate-adaptation policy, signals of different data parts are super-

imposed to each other within the entire time frame. The power allocated to the nth

layer is denoted by Pn, n = 1, 2, . . . , N , where
∑N

n=1 Pn = P . We further denote

the power proportion of the nth data part by μn � Pn/P , n = 1, 2, . . . , N , where∑N
n=1 μn = 1. Information theory results [13, 71] have shown that by using the SPC,
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the achievable region of the rate vector r is a convex region given by{
r

∣∣∣∣∣ rπ(i) = BT log

(
1 +

μπ(i)γπ(i)

1 + γπ(i)

∑i−1
j=1 μπ(j)

)
,

i = 1, 2, . . . , N, μπ(i) ∈ [0, 1],
N∑
n=1

μπ(i) ≤ 1

}
, (4.2)

where μπ(i) is the power proportion for the data part associated with γπ(i). With∑N
i=1 μπ(i) = 1, the achieved rate vector falls onto the boundary of the region [13]

given by Eq. (4.2). Accordingly, for the nth multicast receiver, it can successfully

decode all data parts associated with SNR lower than or equal to γn by using the

successive interference cancellation (SIC) technique [13,71]. Then, in SPC-based mul-

ticast systems, we can control the rate adaptation through regulating the power vector

μ, where μ � (μ1, μ2, . . . , μN)τ . Similarly to the TS-based multicast transmissions, if

we have γπ(i) = γπ(k) for some i < k, we set μπ(i) = 0 without loss of generality, where

μπ(i) denotes the power proportion corresponding to γπ(i). For the details of SPC and

SIC techniques, please refer to [13, 71].

2. Pre-Drop Scheme

To implement the more flexible adaptive multicast transmissions with statistical QoS

provisionings, we develop an adaptive queue-management scheme, called the pre-drop

scheme, as follows. In each frame, the sender can drop some data from the head of

the queue. Then, the pre-drop rate is defined as the amount of data dropped in a

frame, which is denoted by Rd (nats/frame). We employ this strategy because of

the following reasons. For delay-sensitive services, once the delay-bound has been

violated for the data in the front end of the queue, these data are usually useless

for receivers, and the attempt to keep transmitting these data will further delay

other data backlogged in the queue. When the channel qualities becomes poorer, we
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can predict that more data will be backlogged in the queue, and the possibilities of

violating the delay/queue-length bound will increase accordingly. To suppress the

rapid growth of queue length and achieve the more robust queuing behaviors, we

can drop some data from the queue head in each time frame. In order to efficiently

decrease the violating probability for the delay/queue-length bound, we can expect

that more data need to be dropped under the poorer channel qualities and vice versa.

Since this strategy uses the channel quality to predict future queuing behaviors, we

term this scheme the pre-drop scheme. We treat the dropped data as the transmitted

data, but count them as losses to all receivers. Clearly, we need to carefully choose

Rd based on the CSI such that the loss level will not violate the loss-QoS constraint

(the loss-QoS constraint is detailed in Section B-4).

3. Statistical Metrics for Multicast Rate Adaptation

Before getting into the details of the effective-capacity optimization for multicast

transmissions, we need to define a set of statistical metrics in the followings. Note

that some metrics defined in this chapter have the same meaning as those defined in

Chapter III. However, to avoid confusions due to the differences between the frame-

works in these two chapters, we redefine all corresponding metrics in this chapter.

Definition 4. The sending rate for mobile multicast, denoted by Rs, is the total

transmission rate averaged within a time frame, which is determined by

Rs �

⎧⎪⎨⎪⎩
∑N

i=1 λπ(i)rπ(i), for TS-based policy;∑N
i=1 rπ(i), for SPC-based policy,

(4.3)
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where

rπ(i) �

⎧⎪⎨⎪⎩
BT log(1 + γπ(i)), for TS-based policy;

BT log

(
1 +

μπ(i)γπ(i)

1+γπ(i)

∑i−1
j=1 μπ(j)

)
, for SPC-based policy

(4.4)

as described in Section C-1. Then, the instantaneous throughput, denoted by R, is

defined as the sum of pre-drop rate Rd and sending rate Rs:

R � Rs +Rd, (4.5)

which characterizes the total service (departure) rate of multicast data within a time

frame. Moreover, Eγ{R} is called the average throughput, where Eγ{·} denotes the

expectation over γ.

Definition 5. The instantaneous goodput of the nth multicast receiver, denoted by

gn, is the sum rate over the data which can be correctly decoded by the nth receiver’s

within a time frame, which is determined by

gn �

⎧⎪⎨⎪⎩
∑N

i=1 λπ(i)δ(γn ≥ γπ(i))rπ(i), for TS-based policy;∑N
i=1 δ

(
γn ≥ γπ(i)

)
rπ(i), for SPC-based policy,

(4.6)

where δ(·) is the indication function (for a given statement u, δ(u) = 1 if u is true,

and 0 otherwise). The expectation Eγ{gn} is the nth receiver’s average goodput.

Definition 6. The instantaneous sum goodput, denoted by gsum, is defined as the

sum of gn over all multicast receivers:

gsum �
N∑
n=1

gn =

⎧⎪⎨⎪⎩
∑N

i=1 λπ(i)vπ(i)rπ(i), for TS-based policy;∑N
i=1 vπ(i)rπ(i), for SPC-based policy.

(4.7)

where vπ(i) denotes the number of receivers whose SNR is higher than or equal to γπ(i).

The expectation Eγ{gsum} is then called the average sum goodput.



64

Definition 7. The average loss rate of the nth receiver, denoted by qn, is the fraction

of the average throughput which cannot be correctly decoded by the nth receiver. Then,

qn is given by

qn � Eγ{R} − Eγ{gn}
Eγ{R} = 1 − Eγ{gn}

Eγ{R} . (4.8)

Definition 8. We define the average group loss rate, denoted by q0, as

q0 � 1

N

N∑
n=1

qn = 1 − Eγ{gsum}
NEγ{Rd +Rs} , (4.9)

which is the loss rate averaged over all multicast receivers.

4. The Framework for Effective Capacity Optimization

We use the effective capacity (see Chapter II for the detailed definition of effective

capacity) for multicast as the main performance metric and explain the QoS exponent

θ as the delay-QoS constraint. Moreover, we use a loss-rate threshold, denoted by qth,

0 ≤ qth < 1, to characterize the tolerable loss-rate threshold, where qn ≤ qth needs

to be satisfied for all n = 1, 2, . . . , N . The rationale of setting a tolerable loss level

in multicast transmissions is explained as follows. For delay-sensitive services, some

data loss is usually acceptable in order to meet the delay-QoS constraint. Moreover,

for multicast services, a certain amount of redundancy is often injected into upper

layer data (e.g., the application layer) to combat data loss caused by the heterogenous

channel qualities across different multicast receivers [67]- [68]. Therefore, it is reason-

able to setup a tolerable loss-rate threshold, depending on the specific requirements

from various applications. Given the above delay and loss QoS constraints, we focus

on developing the optimal adaptive multicast transmission schemes to maximize the
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effective capacity of multicast transmissions over the wireless fading channels. It can

be expected that more stringent QoS requirements, such as the larger θ and smaller

qth, will degrade the effective capacity, implying the existence of fundamental trade-

offs between effective capacity and these QoS metrics. Then, we identify the optimal

tradeoff and derive the optimal adaptive multicast schemes by solving the following

optimization problems:

IV-P1 : TS-based effective capacity maximization:

max
(λ,Rd)

{
C (θ)

}
= max

(λ,Rd)

{
−1

θ
log
(
Eγ

{
e−θR

})}
s.t.: (i) λn ≥ 0, n = 1, 2, . . . , N,

∑N
n=1λn = 1, ∀ γ;

(ii) Rd ≥ 0, ∀ γ;

(iii) qn ≤ qth, ∀ 1 ≤ n ≤ N.

IV-P2 : SPC-based effective capacity maximization:

max
(μ,Rd)

{
C (θ)

}
= max

(μ,Rd)

{
−1

θ
log
(
Eγ

{
e−θR

})}
s.t.: (i) μn ≥ 0, n = 1, 2, . . . , N,

∑N
n=1μn = 1, ∀ γ;

(ii) Rd ≥ 0, ∀ γ;

(iii) qn ≤ qth, ∀ 1 ≤ n ≤ N,

where R is defined by Eqs. (4.3)-(4.5), qn is given by Eq. (4.8), and C (θ) is the effective

capacity of the multicast service-rate process under the specified QoS exponent θ.

D. Optimal TS-Based Adaptive Transmission Policy for Wireless Multicast

1. Effective Capacity Optimization Under the Relaxed Loss-Rate Constraint

It is difficult to solve problem IV-P1 directly due to the complicated loss-rate con-

straint of IV-P1. In contrast, we can simplify IV-P1 through the following approach.
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Specifically, we derive

qn ≤ qth, ∀ n (a)
=⇒ q0 ≤ qth (4.10)

(b)⇐⇒ Eγ

{
ρ(Rs +Rd) − gsum

}
≤ 0, (4.11)

where ρ � N(1−qth) and (a) and (b) hold by applying Eq. (4.9). The above derivations

imply that the constraint given by Eq. (4.11) is weaker than the original loss-rate

constraint of IV-P1. Correspondingly, we call the inequality given by Eq. (4.11) the

relaxed loss-rate constraint (or the group loss-rate constraint). Next, we replace the

original constraint (iii) of problem IV-P1 by the relaxed loss-rate constraint, and

then get a new optimization problem IV-P1-a as follows:

IV-P1-a : min
(λ,Rd)

{
Eγ

{
e−θ(Rs+Rd)

}}
s.t.: (i) λn ≥ 0, n = 1, 2, . . . , N,

∑N
n=1λn = 1, ∀ γ;

(ii) Rd ≥ 0, ∀ γ;

(iii) Eγ

{
ρ(Rs +Rd) − gsum

}
≤ 0,

where the optimal multicast policy of IV-P1-a is denoted by (λ
, R

d). Since con-

straint (iii) of IV-P1 is stronger than the relaxed loss-rate constraint, the feasible

solution set for IV-P1 is a subset of that for IV-P1-a. We will show later that

(λ
, R

d) is also feasible for IV-P1, which suggests that (λ
, R


d) is also optimal to

IV-P1. Consequently, we can concentrate on how to derive (λ
, R

d) rather than to

solve IV-P1 directly. In order to obtain (λ
, R

d), we further formulate the other
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problem IV-P1-b as follows:

IV-P1-b : min
(Rs,Rd)

{
Eγ

{
e−θ(Rs+Rd)

}}
s.t.: (i) Eγ

{
ρ(Rs +Rd) − g̃sum(Rs)

}
≤ 0;

(ii) Rd ≥ 0, Rs ∈
[
rπ(N), rπ(1)

]
, ∀ γ,

where we denote the optimal solution by (R∗
s, R

∗
d) and define

g̃sum(Rs) � max
λ:λπ(i)≥0, ∀ i

{
gsum

}
. (4.12)

s.t. :

N∑
i=1

λπ(i)rπ(i) = Rs,

N∑
i=1

λπ(i) = 1. (4.13)

In the above formulation, we combine constraints (i) and (iii) of IV-P1-a into con-

straint (i) of IV-P1-b through the function g̃sum(Rs). Accordingly, the numbers of

optimization variables and constraints are decreased, and thus IV-P1-b is easier to

solve. In Section D-3, we will show how to obtain (λ
, R

d) through (R∗

s, R
∗
d). Before

further proceeding, we need to identify the properties of g̃sum(Rs), which play an

important role in deriving the optimal TS-based adaptive multicast policy.

2. Properties of g̃sum(Rs)

Consider any fading state γ and a sending rate Rs ∈ [rπ(N), rπ(1)]. There may exist

many different TS policies generating this sending rate. Among all these TS poli-

cies, g̃sum(Rs) represents the maximum achievable instantaneous sum goodput, which

equivalently minimizes the total data loss over all multicast receivers. Next, we focus

on deriving the analytical expression for the TS policy which achieves g̃sum(Rs). Given

any TS policy λ satisfying
∑N

i=1 λπ(i) = 1, we can obtain a two-dimensional (2-D)

point A � (Rs, gsum) in the “instantaneous sending rate – instantaneous sum goodput”

(ISR-ISG) plane, where the horizontal and vertical axes represent the instantaneous
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where N = 5, γπ = (14.08, 7.56, 5.45, 4.48,−8.03) dB, B = 104 Hz,

and T = 1 ms.

sending rate and instantaneous sum goodput, respectively. Then, defining N points

{Aπ(i)}Ni=1 by

Aπ(i) �
(
rπ(i), vπ(i)rπ(i)

)
=
(
BT log(1 + γπ(i)), vπ(i)BT log(1 + γπ(i))

)
(4.14)

and applying Eqs. (4.3) and (4.7), we can write the point A as a convex combina-

tion [77] of {Aπ(i)}Ni=1:

A =

N∑
i=1

λπ(i)Aπ(i), (4.15)

where
∑N

i=1 λπ(i) = 1. As a result, the point set yielded by all TS policies with∑N
i=1 λπ(i) = 1 form the convex hull [77] of {Aπ(i)}Ni=1. Since Aπ(i)’s are discrete

points, the convex hull must be in the form of a polygon. An example of {Aπ(i)}Ni=1

with N = 5 and the corresponding convex hull is illustrated in Fig. 13. For efficient

algorithms to determine the vertices of a convex hull, please refer to [78].
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Because g̃sum(Rs) is the maximum gsum under the specified Rs, (Rs, g̃sum(Rs))

must be on the boundary of the convex hull. Accordingly, we define the upper bound-

ary of the convex hull, denoted by G̃, as G̃ �
{
(Rs, g̃sum(Rs))|rπ(N) ≤ Rs ≤ rπ(1)

}
.

The points in G̃ are called upper-boundary points. We denote the convex hull’s ver-

tices which are on the upper boundary by Aα(j) =
(
rα(j), iα(j)rα(j)

)
, j = 1, 2, . . . ,N ,

where N is cardinality of G̃, the subscript α(·) is the permuting operator such that

rα(1) > rα(2) > · · · > rα(N ), and iα(j) represents the number of receivers whose current

Shannon capacity is higher than or equal to the transmission rate rα(j). In addition, it

is clear that we have Aα(1) = Aπ(1) and Aα(N ) = Aπ(N), and all other {Aπ(i)}N−1
i=2 must

be the vertices lying beyond the straight line Aα(1)Aα(N ). Because the upper bound-

ary consists of connected polygon edges of the convex hull, g̃sum(Rs) is a continuous

and piecewise linear function, which can be expressed by

g̃sum(Rs)=

⎧⎪⎨⎪⎩ iα(j)rα(j), if Rs = rα(j), 1 ≤ j ≤ N
iα(j)rα(j) + ηα(j)

(
Rs − rα(j)

)
, if rα(j) < Rs < rα(j−1), 2 ≤ j ≤ N ,

(4.16)

where ηα(j), j = 2, 3, . . . ,N , is the slope of the straight line Aα(j)Aα(j−1). Based on

Eqs. (4.12)-(4.13), it follows immediately that g̃sum(Rs) is a concave function over Rs,

implying that the slope ηα(j) strictly increases as j gets larger. In addition, it is easy

to verify ηα(j) < N for all j. For presentational convenience, we define ηα(1) � −∞
and ηα(N+1) � N , and then get

−∞ = ηα(1) < ηα(2) < · · · < ηα(N ) < ηα(N+1) = N. (4.17)

According to the piecewise linearity of g̃sum(Rs), any TS policy generating an

upper-boundary point with Rs ∈ [rα(j), rα(j−1)) is implemented by time sharing only

between Aα(j−1) and Aα(j). Denoting the time proportion allocated to Aα(j−1) and
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Aα(j) by λα(j−1) and λα(j), respectively. we have⎧⎪⎨⎪⎩
λα(j−1)rα(j−1) + λα(j)rα(j) = Rs;

λα(j−1) + λα(j) = 1.

(4.18)

Solving Eq. (4.18), we obtain⎧⎪⎨⎪⎩
λα(j−1) =

Rs−rα(j)

rα(j−1)−rα(j)
;

λα(j) =
rα(j−1)−Rs

rα(j−1)−rα(j)
.

(4.19)

Using Eq. (4.19), we can express the TS policy corresponding to the upper-boundary

point as a function ofRs, which is denoted by λ(Rs), as follows. ForRs ∈
[
rα(j), rα(j−1)

)
,

we have

λ̃π(i)(Rs) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rα(j−1)−Rs

rα(j−1)−rα(j)
, if rπ(i) = rα(j) ∧

(
rπ(i) > rπ(i+1) ∨ i = N

)
;

Rs−rα(j)

rα(j−1)−rα(j)
if rπ(i) = rα(j−1) ∧

(
rπ(i) > rπ(i+1) ∨ i = N

)
;

0, otherwise.

(4.20)

In Eq. (4.20), λ̃π(Rs) �
(
λ̃π(1)(Rs), λ̃π(2)(Rs), . . . , λ̃π(N)(Rs)

)τ
is the ordered version

of λ(Rs), where λ̃π(i)(Rs) is the time proportion associated with the transmission rate

BT log(1 + γπ(i)).

Obtaining the analytical expression of λ(Rs), we further define a useful variable

R̃s as

R̃s � arg max
Rs

{
g̃sum(Rs)

}
, ∀γ, (4.21)

which maximizes the achievable instantaneous sum goodput among all sending rates.

Since g̃sum(Rs) is a piecewise linear function, it is not differentiable over the entire do-

main. Then, we need to introduce the concepts of subgradient and subdifferential [79]

in Definition 9 to derive R̃s. Further applying Definition 9, we obtain a number of
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properties of R̃s which are summarized in Lemma 1.

Definition 9. Consider a convex function h : D → R, where R denotes the set of

real numbers and D ⊂ R
n is a convex set. Then, an n × 1 vector ξ, for ξ ∈ R

n, is

called a subgradient [79] at d ∈ D if h(d′) ≥ h(d) + ξT(d′ −d) for all d′ ∈ D, where

(·)T represents the transpose. The collection of subgradients at d form a set called

the subdifferential [79] of h(·) at d, denoted by ∂h(d). If h(·) is differentiable at

d, the subgradient at d is unique and becomes the gradient. Moreover, the sufficient

and necessary condition that d∗ minimizes h(d) is that 0 ∈ ∂h(d∗). When h(·)
is a concave function, the subgradient and subdifferential at h(d) is defined in the

similar way as the convex case, except that the required inequality becomes h(d′) ≤
h(d) + ξτ (d′ − d) for all d′ ∈ D.

Lemma 1. Given any fading state γ and the corresponding point set {Aα(j)}Nj=1, the

following Claims hold.

Claim 1: The subdifferential of g̃sum(Rs) w.r.t. Rs, denoted by ∂g̃sum(Rs), is given by

∂g̃sum(Rs) =

⎧⎪⎨⎪⎩
{
ηα(j)

}
, if rα(j) < Rs < rα(j−1) & N ≥ j ≥ 2;[

ηα(j), ηα(j+1)

]
, if Rs = rα(j) & N ≥ j ≥ 1.

(4.22)

Claim 2: There exists the unique k, 1 < k ≤ N , such that

ηα(k+1) > 0 ≥ ηα(k), (4.23)

If ηα(k) < 0, R̃s is unique and equal to rα(k); if ηα(k) = 0, any Rs within [rα(k), rα(k−1)]

maximizes g̃sum(Rs).

Proof. The proof is provided in Appendix D.

When R̃s is not unique as addressed in Claim 2, we set R̃s = rα(k) without loss of

generality, which also causes the minimum loss among all Rs ∈ [rα(k), rα(k−1)]. Then,
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R̃s can be written through a unified expression as:

R̃s = rα(k), ∀γ (4.24)

where the integer k is the unique solution to Eq. (4.23).

3. Derivations of the Optimal Solutions

Lemma 2 below characterizes the optimal multicast policy of IV-P1-a through (R∗
s, R

∗
d)

of IV-P1-b.

Lemma 2. The optimal adaptive multicast policy (λ
, R

d) of IV-P1-a can be ob-

tained by using the optimal solution (R∗
s, R

∗
d) to IV-P1-b, which is derived as⎧⎪⎨⎪⎩ λ
 = λ̃(R∗

s);

R

d = R∗

d

for all γ, where λ̃(Rs) is given by Eq. (4.20).

Proof. The proof is provided in Appendix E.

In light of Lemma 2, we only need to focus on solving IV-P1-b. Note that: 1)

the objective function of IV-P1-b is convex over (Rs, Rd); 2) the constraint function

Eγ{ρ(Rs +Rd) − g̃sum(Rs)} of IV-P1-b is convex over (Rs, Rd) due to the concavity

of g̃sum(Rs); 3) constraint (ii) is a linear constraint. Therefore, IV-P1-b is a convex

optimization problem [77, pp. 136-137], and we can obtain the optimal solution

through the Lagrangian method. In particular, the Lagrangian function for problem

IV-P1-b, denoted by L(Rs, Rd;ψ), is constructed as

L(Rs, Rd;ψ) = Eγ {�(Rs, Rd;ψ)} (4.25)
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where

�(Rs, Rd;ψ) � e−θ(Rs+Rd) + ψ (ρ(Rs +Rd) − g̃sum(Rs)) (4.26)

and ψ ≥ 0 is the Lagrangian multiplier associated with constraint (i) of IV-P1-b.

We denote the subdifferentials of �(Rs, Rd;ψ) with respect to (w.r.t.) Rs and Rd by

∂�Rs(Rs, Rd;ψ) and ∂�Rd
(Rs, Rd;ψ), respectively. Then, the optimal (R∗

s , R
∗
d) and

the optimal Lagrangian multiplier, denoted by ψ∗, are the solution to the following

equations [79]:

0 ∈ ∂�Rs(R
∗
s , R

∗
d;ψ

∗); (4.27)

0 ∈ ∂�Rd
(R∗

s , R
∗
d;ψ

∗); (4.28)

0 = Eγ

{
ρ(R∗

s +R∗
d) − g̃sum(R∗

s)
}
. (4.29)

Applying Definition 9 and Eq. (4.16) into Eq. (4.26), we derive

∂�Rs(Rs, Rd;ψ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
ψ(ρ− ηα(j)) − θe−θ(Rs+Rd)

}
, if rα(j) < Rs < rα(j−1) & N ≥ j ≥ 2;[

ψ(ρ− ηα(j+1)) − θe−θ(Rs+Rd), ψ(ρ− ηα(j)) − θe−θ(Rs+Rd)
]
,

if Rs = rα(j) & N ≥ j ≥ 1,

(4.30)

and

∂�Rd
(Rs, Rd;ψ) =

⎧⎪⎨⎪⎩
(
−∞, ψρ− θe−θ(Rs+Rd)

]
, if Rd = 0;{

ψρ− θe−θ(Rs+Rd)
}
, if Rd > 0.

(4.31)

Plugging Eqs. (4.30)-(4.31) into Eqs. (4.27)-(4.29) and solving these equations, we

obtain the optimal sending rate and pre-drop rate in Theorem 1.

Theorem 1. The optimal sending rate and pre-drop rate of problem IV-P1-b are



74

given by

R∗
s =

(
min

{
R̂s, R̃s

})∣∣∣
ψ=ψ∗

∀γ, (4.32)

and

R∗
d =

[
−1

θ
log

(
ψ∗ρ
θ

)
− R∗

s

]+

, ∀γ, (4.33)

respectively, for all γ, where [·]+ = max{·, 0}, R̂s is the solution to

0 ∈ ∂LRs(R̂s, 0;ψ), ∀γ, (4.34)

and R̃s is defined by Eq. (4.23)-(4.24). Moreover, the parameter ψ∗ > 0 is a constant,

which is selected such that the group loss rate satisfies:

q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth (4.35)

Proof. The proof is provided in Appendix F.

Based on Theorem 1, in each fading state the optimal policy can be determined

through the following three-step procedures: 1) calculate the values of R̂s and R̃s

based on Eq. (4.34) and Eqs. (4.23)-(4.24), respectively; 2) set the sending rate equal

to the minimum between R̃s and R̂s; 3) determine the optimal pre-drop rate by using

Eq. (4.33). In the above results, R̂s and R̃s used in Eq. (4.32) play the major role

in determining the optimal sending rate. As mentioned previously, R̃s maximizes the

instantaneous sum goodput among all feasible sending rates. Based on Eq. (4.34),

R̂s is the optimal sending rate on condition that no data is dropped. If R̂s < R̃s,

the system performance is optimized without applying the pre-drop strategy. By

contrast, if R̂s > R̃s, R̂s actually provides a service rate higher than R̃s at the cost of
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more data loss. In such a case, we need to set Rs = R̃s to avoid unnecessary data loss,

which also achieves the largest sum goodput. In the meanwhile, a positive pre-drop

rate determined by Eq. (4.33) has to be adopted to compensate for the degradation

total service rate. Having derived the optimal solution to IV-P1-b, we then obtain

the optimal multicast policy for IV-P1 in the following Theorem 2.

Theorem 2. Problems IV-P1 and IV-P1-a share the same optimal solution given

by (λ
, R

d), where (λ
, R


d) is derived by Lemma 2.

Proof. As discussed in Section D-1, the feasible solution set for IV-P1 is a subset of

that for IV-P1-a. Then, to prove Theorem 2 we only need to prove qn|(λ,Rd)=(λ�,R�
d) ≤

qth for all n. Since Lemma 2 shows that the policy (λ
, R

d) can be uniquely charac-

terized by using (R∗
s , R

∗
d), we only need to prove

qn|(Rs,Rd)=(R∗
s ,R

∗
d) ≤ qth, ∀n. (4.36)

Given any ordered CSI vector γπ, there are total N ! different fading states corre-

sponding to this γπ. We denote the set of unordered CSI vectors for these N ! fading

states by H(γπ). Clearly, the point sets {Aπ(i)}Ni=1 (defined by Eq. (4.14)) in these

N ! fading states are identical, resulting in the same function g̃sum(Rs) for problem

IV-P1-b. Therefore, in these N ! fading states IV-P1-b we get the identical (R∗
s , R

∗
d).

Further noting that the fading channels are i.i.d. across all multicast receivers, we

obtain

∑
γ∈H(γπ)

g1 =
∑

γ∈H(γπ)

g2 = · · · =
∑

γ∈H(γπ)

gN , ∀γ, (4.37)

and thus

Eγ{gn} = Eγπ

⎧⎨⎩ 1

N !

∑
γ∈H(γπ)

gn

⎫⎬⎭ , ∀n = 1, 2, . . . , N. (4.38)
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Eqs. (4.37) and (4.38) imply that under the policy (λ
, R

d), we have

Eγ

{
g1

}
= Eγ

{
g2

}
= · · · = Eγ

{
gN

}
.

Since all multicast receivers have the same average goodput, their loss rates are equal,

i.e., q1 = q2 = · · · = qN . Applying Eqs. (4.9) and (4.35), we get qn = q0 = qth for all

n, which verifies Eq. (4.36), and thus Theorem 2 follows.

E. The Optimal TS-Based Multicasting Policy under the Limiting Scenarios of

Delay-QoS Constraints

While section D developed the general form of the optimal TS-based multicast policy

with θ > 0, in this section we aim at deriving the optimal policies to IV-P1 under

the special cases with θ → 0 and θ → ∞, respectively. As mentioned in Chapter II,

θ → 0 corresponds to the scenario which can tolerate infinite delay, while any delay

is intolerable as θ → ∞. Since the optimal multicast policy can be completely

characterized by the solution (R∗
s , R

∗
d) to IV-P1-b based on Lemma 2 and Theorem 2,

we mainly focus on the characteristics of (R∗
s , R

∗
d) in this section.

1. The Limiting Case of θ → 0

As θ → 0, there is no delay constraint imposed to the multicast transmissions. Ac-

cordingly, the effective capacity reduces to the average throughput of the service

process [53]. Thus, problem IV-P1 is to maximize the average multicast throughput

given the loss-rate constraint. We first define

q̃0 = q0
∣∣
(Rs,Rd)=(R̃s,0). (4.39)
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We will then derive (R∗
s, R

∗
d) with qth < q0 and qth ≥ q0 in Theorems 3 and Theorem 4,

respectively.

Theorem 3. As θ → 0, the optimal solution (R∗
s, R

∗
d) to IV-P1-b under the con-

straint qth < q̃0 reduces to the following form:

R∗
d = 0; (4.40)

R∗
s =

⎧⎪⎨⎪⎩
rα(k), if ηth > ηα(k);

ςγrα(k) + (1 − ςγ)rα(k−1), if ηth = ηα(k).

(4.41)

for all γ, where ςγ ∈ [0, 1] and the integer k in each fading state is uniquely determined

by the following inequality:

ηα(k+1) > ηth ≥ ηα(k). (4.42)

In the above equations, ηth ≥ 0 is a constant parameter over all fading states but ςγ

may vary with γ. Moreover, ηth ≥ 0 and ςγ need to be selected such that the equation

q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth holds.

Proof. In order to prove Theorem 3, we first introduce Lemma 3 in the following.

The rest of the proof for Theorem 3 is provided in Appendix G.

Lemma 3. Denote by q0(ηth, ςγ) the group loss rate attained under the multicast policy

characterized by Eqs. (4.40)-(4.42). For any (η′th, ς
′
γ) and (η′′th, ς

′′
γ) with η′th > η′′th > 0,

the inequality

q0(η
′
th, ς

′
γ) ≤ q0(η

′′
th, ς

′′
γ) (4.43)

holds. Moreover, we have⎧⎪⎨⎪⎩ limηth→N q0(ηth, ςγ) = 0;

limηth→N(R∗
s , R

∗
d) = (rπ(N), 0)

(4.44)
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and ⎧⎪⎨⎪⎩ limηth→0 q0(ηth, 1) = q̃0;

limηth→0(R
∗
s , R

∗
d) = (R̃s, 0).

(4.45)

Proof. The proof of Lemma 3 is provided in Appendix H.

If γ has continuous CDF, the probability Pr
{
∃ k, s.t.: ηth = ηα(k)

}
is equal to

zero for any ηth, suggesting that how to select ςγ does not affect the group loss rate

and the average throughput. Consequently, when γ has continuous CDF, such as

typical Rayleigh, Rician, and Nakagami-m channel fading models, we can set ςγ = 1

without loss of generality. Eqs. (4.41) and (4.42) suggest that ηth is a subgradient of

g̃sum(Rs) at Rs = R∗
s for all γ. Consequently, ηth can be interpreted as the increase

rate of the average sum goodput w.r.t. the average throughput. Since g̃sum(Rs) is a

concave function, the lower ηth corresponds to the higher loss rate, as demonstrated

in Lemma 3.

As θ → 0, our effective-capacity optimization framework is similar to the prob-

lem studied in our previous work [76], where we aimed at maximizing the average

multicast throughput under the specified loss-rate constraint. However, in [76] we

did not incorporate the pre-drop strategy. Despite the differences between the two

frameworks, it turns out that the optimal solution derived in Theorem 3 reduces to

the multicast policy derived in [76]. This is expected based on the following reasons.

When θ → 0, the multicast receivers can tolerate infinite long delay. Therefore, there

is no need to drop data from the queue to decrease the queuing delay. Lemma 3 fur-

ther suggests that given qth → q̃0, the optimal policy converges to (R∗
s, R

∗
d) = (R̃s, 0),

which already achieves the maximum average goodput with q0 = q̃0. Then, when the

tolerable loss-level gets lower (i.e., qth < q̃0), the only way to meet the loss-rate con-
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straint is to decrease Rs, such that more multicast receivers can successfully decode

the data in each fading state. Since the pre-drop strategy clearly cannot help suppress

the loss rate, we need to set R∗
d equal to zero for this scenario. Following the above

discussions, the multicast policy derived in [76] is a special case of our derived optimal

policies for the multicast effective-capacity optimization framework. Lemma 3 also

shows that R∗
s → rπ(N) as qth → 0 (see Eq. (4.44)), implying that the sending rate is

determined by the worst-case SNR among all multicast receivers under qth = 0.

Theorem 4. As θ → 0, the optimal solution (R∗
s, R

∗
d) to IV-P1-b under the con-

straint qth ≥ q̃0 is determined by

(R∗
s, R

∗
d) =

(
R̃s, [κ− R̃s]

+
)
, ∀γ, (4.46)

where κ is a constant and is selected such that q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth holds.

Proof. The proof of Theorem 4 is provided in Appendix I.

Eq. (4.46) shows that the sending rate is always set equal to R̃s, and the nonzero

pre-drop rate will be applied in some fading states. The above strategy is also ex-

pected based on the following arguments. Recall that if qth → q̃0, the optimal policy

converges to (R∗
s, R

∗
d) = (R̃s, 0), which maximizes the average sum goodput. When

the higher loss rate is tolerable, we can further increase the service rate. However, a

sending rate higher than R̃s will decrease the sum goodput. In contrast, increasing

the pre-drop rate does not affect the sum goodput. As a result, the best strategy is

to increase the pre-drop rate while letting R∗
s stay at R̃s to avoid unnecessary data

loss. Also note that this case is mainly for the mathematical completeness. For a

multicast session without delay constraints, the loss rate threshold usually will not

be set larger than q̃0 and the pre-drop strategy will not be applied. This is because

the purpose of the pre-drop strategy is to decrease the queuing delay. Thus, when
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there is no delay constraint, we do not need to improve the throughput at the cost of

pure data loss caused by the pre-drop strategy.

2. The Limiting Case of θ → ∞

Theorem 5. As θ → ∞, the optimal solution (R∗
s, R

∗
d) to IV-P1-b is determined by

(R∗
s, R

∗
d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(R̃s, ξ − R̃s), if R̃s < ξ;

(ξ, 0), if Rρ ≤ ξ ≤ R̃s;

(Rρ, 0), if ξ < Rρ

(4.47)

for all γ, where ξ is a constant, which is selected such that q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth

holds. In Eq. (4.47), Rρ is given by

Rρ =

⎧⎪⎨⎪⎩
rα(k̂), if ηth > ηα(k̂);

χγrα(k̂) + (1 − χγ)rα(k̂−1), for certain χγ ∈ [0, 1], if ηth = ηα(k̂),

(4.48)

where k̂ in each fading state is uniquely derived by solving

ηα(k̂+1) > N(1 − qth) ≥ ηα(k̂), (4.49)

and χγ can be any real number within [0, 1].

Proof. The proof of Theorem 5 is provided in Appendix J.

As θ → ∞, any queueing delay is intolerable. Accordingly, the effective capacity

is determined by the minimum service rate over all fading states [53]. Theorem 5

shows that the total service rate (the sum of sending rate and pre-drop rate) is lower

bounded by ξ. Clearly, given qth �= 0, ξ is a positive real number. Therefore, our

derive adaptive multicast transmission policy can achieve a nonzero effective capacity

even when the delay-QoS requirement is extremely stringent. This also demonstrates

the importance of the pre-drop strategy, which can guarantee a departure rate for the
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queue even when the channel is in deep fade status. The optimal TS policy under

each specific case given in Eq. (4.47) will be further explained as follows.

a. If R̃s < ξ

With the similar arguments in the discussions for Theorem 4, in this case we need to

set R∗
s = R̃s to avoid unnecessary data loss; on the other hand, some data has to be

dropped to guarantee the minimum service rate ξ.

b. If ξ < Rρ

An interesting observation in this case is that the total service rate Rρ is larger than

the minimum requirement ξ, which is expected because of the following reasons. Note

that N(1 − qth) is a subgradient of g̃sum(Rs) at Rs = Rρ. Then, the increase rate of

g̃sum(Rs) w.r.t. Rs is always larger than N(1−qth) for Rs ≤ Rρ based on the concavity

of g̃sum(Rs). Because N(1 − qth) is just the ratio of the average sum goodput to the

average throughput under the optimal policy, setting Rs = Rρ maximizes the amount

of correctly received data without degrading the loss-QoS satisfaction. In addition,

since Rs = Rρ already exceeds the minimum required service rate, the data-drop

operation is not needed.

c. If Rρ ≤ ξ ≤ R̃s

Under this condition, we have to set Rs = ξ to meet the delay constraint, although

the subgradient of g̃sum(Rs) becomes lower than N(1−qth) for Rs > Rρ, which causes

negative impact to meet the loss-rate threshold qth. Also, because the minimum

required service rate has been satisfied, pre-drop rate will be set to zero to prevent

further data loss.
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F. Optimal SPC-Based Adaptive Multicast Transmission Policy

Unlike TS-based multicast, which controls time-slot lengths for diverse transmission

rates in every fading states, SPC-based multicast uses dynamic power allocation to

adapt the transmission rates to the heterogenous CSI across multicast receivers. How-

ever, we can solve the multicast effective-capacity optimization problems in these two

scenarios through the similar way. In particular, the following the strategy used in

Section D-1, we formulate problems IV-P2-a and IV-P2-b for SPC-based multicast

as follows:

IV-P2-a : min
(μ,Rd)

{
Eγ

{
e−θ(Rs+Rd)

}}
s.t.: (i) Rd ≥ 0, ∀γ;

(ii) Eγ

{
ρ(Rs +Rd) − gsum

}
≤ 0;

(iii) μn ≥ 0, n = 1, 2, . . . , N,
∑N

n=1μn = 1, ∀γ.

IV-P2-b : min
(Rs,Rd)

{
Eγ

{
e−θ(Rs+Rd)

}}
s.t.: (i) Eγ

{
ρ(Rs +Rd) − g̃sum(Rs)

}
≤ 0;

(ii) Rd ≥ 0, Rs ∈
[
rπ(N), rπ(1)

]
, ∀ γ,

where

g̃sum(Rs) � max
μ:μπ(i)≥0, ∀ i

{
gsum

}
(4.50)

s.t.:

N∑
i=1

rπ(i) = Rs,

N∑
i=1

μπ(i) = 1. (4.51)

Note that IV-P2-a and IV-P2-b for SPC-based multicast play the same roles as

IV-P2-a and IV-P2-b for TS-based multicast, respectively. Specifically, IV-P2-a

replaces constraint (iii) of IV-P2 by using the relaxed loss-rate constraint. Problem
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Table I. Greedy Algorithm to Determine μ̃(�) under CSI γ.

Step 1: Calculate utility function:

Uπ(i)(p) =
(i−�)γπ(i)
1+pγπ(i)

, for all 1 ≤ i ≤ N .

Step 2: Determine U∗
π(p) = max�≤i≤N

{
Uπ(i)(p)

}
.

Step 3: Identify Mπ(i) =
{
p ∈ [0, 1] : Uπ(i)(p) = U∗

π(p)
}
.

Step 4: Obtain μ̃π(i)(�) =
∫
Mπ(i)

dp.

Step 5: End.

IV-P2-b combines constraints (i) and (iii) of IV-P2-a by using g̃sum(Rs) to reduce

the number of optimization variables. Accordingly, we can focus on problems IV-P2-b

instead of solving problem IV-P2 directly. Also, g̃sum(Rs) defined by Eqs. (4.50)-

(4.51) functions similarly as its counterpart of TS-based multicast. Among all SPC-

based policies with the given sending rate Rs in a fading state, g̃sum(Rs) represents

the maximum achievable instantaneous sum goodput. The derivation and properties

of g̃sum(Rs) will be elaborated on in Section F-1 below.

1. Derivation of g̃sum(Rs) and Its Properties

The Lagrangian function, denoted by ν(μ; �,Rs), for the optimization problem for-

mulated in Eqs. (4.50)-(4.51) is constructed as

ν(μ; �,Rs) =

N∑
i=1

irπ(i) + �

(
Rs −

N∑
i=1

rπ(i)

)

=

w∑
i=1

(i− �) rπ(i) + �Rs, (4.52)

where
∑N

i=1 μπ(i) = 1. In the above equation, � is the Lagrangian multiplier associ-

ated with the constraint
∑N

i=1 rπ(i) = Rs given in Eq. (4.51). The Lagrangian dual

function [77, 79], denoted by z(�;Rs), is then given by

z(�;Rs) � max
μ:

∑N
i=1 μπ(i)=1, μπ(i)≥0,∀ i

{
ν(μ; �,Rs)

}
. (4.53)
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Based on Eq. (4.52), the maximization results does not vary with Rs when � is

specified. We express the maximizer as a function of �, which is denoted by μ̃(�).

Eq. (4.52) further implies that maximizing ν(μ; �,Rs) is equivalent to maximizing

the sum
∑N

i=1(i − �)rπ(i), which has the same form as the problem to optimize the

weighted sum capacity over broadcast channels [13]. Accordingly, we can derive μ̃(�)

by using the Greedy algorithm developed by the authors of [13,14]. For completeness

of this chapter, we describe the greedy algorithm in Table I. Please refer to [13] for

the detailed information. The power-allocation vector μ̃(�) is unique according to the

results in [13]. Then, we denote the instantaneous sending rate and the instantaneous

sum goodput achieved under μ̃(�) by Rs(�) and Gsum(�), respectively, which are

expressed by ⎧⎪⎪⎨⎪⎪⎩
Rs(�) �

(∑N
i=1 rπ(i)

)∣∣∣
μ=μ̃(�)

;

Gsum(�) � gsum

∣∣∣
μ=μ̃(�)

=
(∑N

i=1 irπ(i)

)∣∣∣
μ=μ̃(�)

.

(4.54)

Correspondingly, we can rewrite z(�;Rs) as:

z(�;Rs) = Gsum(�) + �(Rs −Rs(�)), ∀ �. (4.55)

After obtaining μ̃(�), Lemma 4 below solves for the expression of g̃sum(Rs) of SPC-

based multicast transmissions.

Lemma 4. Given Rs ∈ [BT log(1 + γπ(N)), BT log(1 + γπ(1))], there exists the real

number � such that

Rs(�) = Rs. (4.56)

Then, the maximizer for Eqs. (4.50)-(4.51) is equal to μ̃(�) and we have

g̃sum(Rs) = z(�;Rs). (4.57)
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Fig. 14. Instantaneous sum goodput g̃sum(Rs) versus instantaneous sum send-

ing rate Rs for TS-based multicast and SPC-based multicast in

example fading states, where N = 6. (a) The case with

γ = (13.63, 10.71, 4.89, 2.29, 2.12, 0.87) dB. (b) The case with

γ = (9.58, 9.01, 8.21, 7.62, 2.39,−0.88) dB.

Proof. The proof of Lemma 4 is provided in Appendix K.

Figure 14 plots g̃sum(Rs)’s for TS-based and SPC-based multicast, respectively, in

the example fading states. As shown in Fig. 14, g̃sum(Rs) of the SPC-based multicast

is always larger than or equal to that of the TS-based multicast. Then, it can be

expected that the SPC-based multicast outperforms the TS-based multicast in terms

of the effective-capacity performance. Further note that g̃sum(Rs) of the SPC-based

multicast may be also non-differentiable at some point. An example is illustrated in

Fig. 14(b), where g̃sum(Rs) is not differentiable at Aπ(4), which is marked with a hollow

circle. Thus, we need to derive the subdifferential of g̃sum(Rs), which will be used to

characterize the optimal solution of problem IV-P2-b. Lemma 5 below proves the

concavity of g̃sum(Rs) and derives the corresponding subdifferential.

Lemma 5. For SPC-based multicast transmissions, g̃sum(Rs) is a concave function
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of Rs within Rs ∈ [BT log(1 + γπ(N)), BT log(1 + γπ(1))]. Its subdifferential ∂g̃sum(Rs)

is given by

∂g̃sum(Rs) = { � |Rs (�) = Rs} , (4.58)

where Rs (�) is defined by Eq. (4.54).

Proof. The proof of Lemma 5 is provided in Appendix L.

We also use R̃s to denote the maximizer of g̃sum(Rs) as defined in Eq. (4.21).

Because g̃sum(Rs) for SPC-based multicast still concave, 0 ∈ ∂g̃sum(R̃s) must hold [79,

pp. 128]. Further applying Lemma 5, we get

R̃s = Rs(0). (4.59)

2. The Optimal Solutions Obtained by Applying g̃sum(Rs)

Problem IV-P2-b can be also solved through the Lagrangian method. The La-

grangian of problem P2-b, denoted by W (Rs, Rd;φ), is constructed by

W (Rs, Rd;φ) = φ
(
E {ρ(Rs +Rd)} − E {g̃sum(Rs)}

)
+ E

{
e−θ(Rs+Rd)

}
= E {w} ,

(4.60)

where

w(Rs, Rd;φ) � φρ(Rs +Rd) − φg̃sum(Rs) + e−θ(Rs+Rd). (4.61)

and φ ≥ 0 is the Lagrangian multiplier associated with the group loss-rate constraint.

Clearly, W (Rs, Rd;φ) is a convex function. Then, the optimal multicast policy of
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IV-P2-b, denoted by (R∗
s , R

∗
d), is the solution to the following equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ∈ ∂wRs(R
∗
s , R

∗
d;φ

∗);

0 ∈ ∂wRd
(R∗

s , R
∗
d;φ

∗);

0 = Eγ

{
ρ(R∗

s +R∗
d) − g̃sum(R∗

s)
}
,

(4.62)

where ∂wRs(Rs, Rd;φ
∗) and ∂wRs(Rs, Rd;φ

∗) are the subdifferentials of w(Rs, Rd;φ
∗)

w.r.t. Rs and Rd, respectively. Based on Eqs. (4.61) and (4.58), we derive

∂wRd
(R∗

s, R
∗
d;φ

∗) =

⎧⎪⎨⎪⎩
(−∞, φ∗ρ− θe−θ(R

∗
s+R∗

d)
]
, if R∗

d = 0;{
φ∗ρ− θe−θ(R

∗
s+R∗

d)
}
, if R∗

d > 0;

(4.63)

∂wRs(Rs, Rd;φ) =
{
u | u = φ∗ρ− θe−θ(R

∗
s+R∗

d) − φ∗�̂, ∀ �̂ ∈ ∂g̃sum(Rs)
}
. (4.64)

Plugging Eqs. (4.63)-(4.64) into Eq. (4.62) and solving these equations, we derive the

optimal solution to IV-P2-b and summarize it in Theorem 6. Through (R∗
s, R

∗
d), the

optimal solutions of IV-P2 and IV-P2-a is also derived in Theorem 6.

Theorem 6. For SPC-based multicast transmissions, the following Claims hold.

Claim 1: The optimal solution of IV-P2-b is given by⎧⎪⎨⎪⎩
R∗
s = Rs ([�̂]+) ;

R∗
d =

[
−1

θ
log

(
φ∗ρ
θ

)
−R∗

s

]+ (4.65)

for all γ, where �̂ in a given fading state is the solution to

φ∗(ρ− �̂) − θe−θRs(�̂) = 0. (4.66)

In the above equations, Rs(�̂) represents the sending rate under the policy μ̃(�̂), which

is generated by the greedy algorithm given in Table I. Moreover, φ∗ is a constant which

needs selected such that q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth holds.

Claim 2: Problems IV-P2 and IV-P2-a share the same optimal SPC-based multicast
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policy, which is given by ⎧⎪⎨⎪⎩ μ
 = μ̃
(
[�̂]+

)
;

R

d = R∗

d

(4.67)

for all γ.

Proof. Note that the Lagrangian function of IV-P2-b, which is given by Eqs. (4.60)-

(4.61), has the same form as that of IV-P2-a, which is characterized by Eqs. (4.25)-

(4.25). Moreover, the function g̃sum(Rs) is concave in both of these two cases. Then,

following the same procedures used in the proof for Theorem 1, we obtain⎧⎪⎨⎪⎩ R∗
s = min

{
R̃s, R̂s

}
;

R∗
d =

[−1
θ
log
(
φ∗ρ
θ

)−R∗
s

]+
.

(4.68)

where R̂s is the solution to 0 ∈ ∂wRs(R
∗
s, 0;φ∗). Applying Eq. (4.58) into Eq. (4.64),

we can see that the condition 0 ∈ ∂wRs(R
∗
s, 0;φ∗) is equivalent to finding a �̂ to

satisfy Eq. (4.66). With such a �̂, we get R̂s = Rs(�̂). Comparing R̃s = Rs(0) (see

Eq. (4.59)) with R̂s = Rs(�̂), we have

min
{
R̃s, R̂s

}
= Rs

(
max {�̂, 0} ), (4.69)

which holds because Rs(�) is a decreasing function of � as shown in the proof of

Lemma 5. Eq. (4.65) then follows by plugging Eq. (4.69) into Eq. (4.68). Further-

more, q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth is equivalent to the third condition in Eq. (4.62), and

thus Claim 1 holds. Given Rs ([�]+), the corresponding power allocation policy is

determined by the greedy algorithm characterized in Table I and is thus expressed

by μ̃ ([�]+). Then, following the same arguments used for the proofs of Lemma 2 and

Theorem 2, we can prove the optimality of (μ̃ ([�]+) , R∗
d) for IV-P2 and IV-P2-a,

respectively. The proof of Theorem 6 is completed.
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Based on Eq. (4.68) in the proof of Theorem 6 and Eqs. (4.32)-(4.33) in Theo-

rem 2, the optimal TS-based and SPC-based multicast polices can be characterized

through a unified expression. This is because through the function g̃sum(Rs), we con-

vert the effective-capacity optimization problem for these two scenarios to the same

form (see IV-P1-a and IV-P2-b). However, due to the diverse properties of g̃sum(Rs)

in TS-based and SPC-based multicast, the specific expressions of the optimal send-

ing rates are different. Further using the similar derivations in Theorems 3-4 and 5,

we obtain the optimal SPC-based multicast policies in limiting cases as θ → 0 and

θ → ∞, respectively, as follows.

a. θ → 0 with qth < q̃0:

As θ → 0, the optimal solution (R∗
s , R

∗
d) of IV-P2-b under qth < q̃0 is given by⎧⎪⎨⎪⎩ R∗

d = 0;

R∗
s = Rs(�th),

where q̃0 for SPC-based multicast is defined as q̃0 � q0|(Rs,Rd)=(Rs(0),0) and �th is a

constant which needs to be selected to satisfy qth = q0|(Rs,Rd)=(R∗
s ,R

∗
d).

b. θ → 0 with qth ≥ q̃0:

As θ → 0, the optimal SPC-based multicast policy under qth ≥ q̃0 reduces to

(R∗
s , R

∗
d) =

(
Rs(0),

[
κ̃−Rs(0)

]+)
,

where κ̃ is a constant and is selected to guarantee qth = q0|(Rs,Rd)=(R∗
s ,R

∗
d).
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c. θ → ∞:

As θ → ∞, the optimal SPC-based multicast policy reduces to

(R∗
s, R

∗
d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Rs(0), ξ̃ −Rs(0)

)
, if Rs(0) < ξ̃;(

ξ̃, 0
)
, if Rs(ρ) ≤ ξ̃ ≤ Rs(0);

(Rs(ρ), 0), if ξ̃ < Rs(ρ)

where ξ̃ is a constant and is selected such that qth = q0|(Rs,Rd)=(R∗
s ,R

∗
d) holds.

G. Simulation Evaluations

We use simulation experiments to evaluate the effective-capacity performances of our

derived optimal TS-based and SPC-based adaptive multicast transmission policies.

In simulations, the signal bandwidth B is equal to 5 × 104 Hz and the time-frame

length T is set to 2 ms. We use Rayleigh-fading channel model as the typical example

for simulations. For comparative analyses, we also investigate some straightforward

adaptive multicast schemes as the baseline to demonstrate the superiority of our

derived optimal policies. These baseline multicast schemes are described as follows.

1. Baseline Multicast Schemes

a. Fixed-dominating-position based policy (MFDP)

The fixed-dominating-position (FDP) based scheme, which was studied in [58, 76],

determines the sending rate based on the jth largest SNR among multicast receivers in

each time instant, where j is fixed for all γ. In particular, the send rate is determined

by Rs = log(1+γπ(j)). In order to satisfy the loss-rate constraint, the constant j is set

equal to �N (1 − qth)�. For fair comparisons, we also introduce the pre-drop strategy

into the FDP scheme. Specifically, the pre-drop rate is equal to a constant Rd, which
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Fig. 15. Normalized effective capacity (C (θ)/TB) versus QoS exponent θ in

Raleigh fading channels, where N = 5, γ = 10 dB, and qth = 0.1.

is selected such that the loss rate just reaches qth. We term this scheme the modified

FDP (MFDP) policy.

b. Constant-rate policy

The constant rate policy is a non-adaptive transmission scheme, where the sending

rate does not vary with instantaneous channel-fading status. The constant sending

rate is denoted by Rs, which needs to be determined such that the average loss rate

is equal to qth. Correspondingly, the pre-drop strategy will not be applied and the

effective capacity of the constant-rate policy is just equal to Rs.

2. Simulation Results

Figure 15 plots the normalized effective capacity C(θ) versus the QoS exponent θ

with qth = 0.1. Fig. 15 shows that the effective capacities of both TS-based and SPC-

based multicast policies decrease as θ increases. This is expected since with the fixed
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Fig. 16. Normalized multicast effective capacity C (θ)/(BT ) versus QoS expo-

nent θ, where γ = 10 dB and N = 5. (a) qth = 0.05. (b) qth = 0.1. (c)

qth = 0.2.

amount of wireless resources, the more stringent QoS requirement (corresponding to

larger θ) can only support the lower traffic load. Thus, the effective capacity achieves

its upper-bound as θ → 0, implying that no delay constraint is imposed. Accordingly,

we can obtain the upper-bounds for TS-based and SPC-based multicast through the

optimal policies given by Eqs. (4.40)-(4.42) and Eq. (4.70), respectively, which are

depicted in Fig. 15. On the other hand, the effective capacity will converge to its

lower bound as θ → ∞, where any delay is intolerable. We can then determine
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Fig. 17. Normalized multicast effective capacity C (θ)/(BT ) versus multicast

group size N , where γ = 10 dB and qth = 0.1.

the lower-bounds for TS-based and SPC-based multicast from Eqs. (4.47)-(4.49) and

Eq. (4.70), respectively, which are also plotted in Fig. 15.

Figure 16 compares the normalized effective capacities among different adaptive

multicast policies. As shown in Fig. 16, our derived optimal policies significantly

outperform the MFDP and the constant-rate policies. The optimal SPC-based policy

can achieve better effective-capacity performance than the optimal TS-based policy.

The difference between their effective-capacity performances are not large. However,

when either θ or qth gets larger, the superiority of the SPC-based policy over the

TS-based policy will become more significant. Fig. 16 also shows that the effective

capacities of all policies are decreasing functions of θ except for the constant-rate

policy. This is because the service rate of the constant-rate policy does not vary with

either the instantaneous channel quality nor the delay-QoS requirement θ. However,

comparing Fig. 16(b) with Fig. 15, which have the same simulation setup, we can

see that even the lower-bounds for the optimal TS-based and SPC-based multicast

policies significantly outperform the effective capacity achieved under the constant-

rate policy.
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Fig. 18. Normalized multicast effective capacity C (θ)/(BT ) versus the average

SNR γ, where N = 6 and qth = 0.1.

Figures 17(a) and 17(b) plot the dynamics of the effective capacity against the

multicast group size N under θ = 0.01 and θ = 0.5, respectively. As shown in Fig. 17,

our derived TS-based and SPC-based optimal policies also significantly outperform

other policies. Fig. 17 shows that the effective capacity of the constant-rate policy

does not vary with N , but the effective capacities of other policies decrease as N

gets larger. We can also see from Fig. 17 that when N or θ gets large, the effective

capacity of the MFDP policy degrades very quickly and become much lower than that

of the constant-rate policy. In contrast, our derived optimal policies decrease slowly

with the increase of N and θ and outperform the constant-rate policy under various

conditions. Note that when N → ∞, the constant-rate policy can be treated as a

special form of the TS-based policy (also a special form of the SPC-based policy).

Then, we can expect that our derived optimal TS-based and SPC-based multicast

policies both dominate the constant-rate policy even as N → ∞. Fig. 18 depicts the

effective capacity as a function of the average SNR γ. We observe from Fig. 18 that

all schemes’ effective capacities are increasing functions of the average SNR. When

the average SNR gets larger, the superiority of our derived optimal policies over
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other policies becomes more significant. Moreover, as the average SNR decreases, the

difference between the effective capacities of the optimal TS-based and SPC-based

policies gradually vanishes.

Figure 19 plots the pre-drop ratio of the optimal TS-based and SPC-based poli-

cies versus the QoS exponent θ, where the pre-drop ratio is defined as the ratio of

the average pre-drop rate E{Rd} to the average throughput E{Rs + Rd}. As shown

in Fig. 19, the pre-drop ratios of both policies increases as θ becomes larger. This

is because the major purpose to introduce the pre-drop rate is to meet the delay-

QoS requirement when the instantaneous channel quality is poor. Thus, when θ gets

larger, implying that the delay constraint becomes more stringent, more data then

have to be dropped when channel quality is poor. Moreover, we can see that the

ratio of the SPC-based policy is smaller than that of the TS-based policy. This is

also expected since with the same loss-constraint, the SPC-based scheme can support

higher sending rate than the TS-based scheme. As a result, lower pre-drop ratio is

required to meet the delay-QoS constraint.
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H. Summary

We proposed the efficient framework for mobile multicast over broadcast fading chan-

nels by integrating the effective-capacity theory, multicast rate adaptation, and loss-

rate control. Subject to the QoS exponent and average loss-rate constraint, we for-

mulated an effective-capacity maximization problem via channel-aware rate adapta-

tion. For rate adaptation, we employed the time-sharing and superposition-coding

techniques, respectively, to handle the heterogeneous qualities over channels across

multicast receivers. We also developed a novel pre-drop scheme to implement the

more efficient QoS-driven wireless multicasting. Under the developed framework, we

derived the optimal time-sharing based and superposition-coding adaptive multicast

policies. Simulation evaluations demonstrated the tradeoff between the effective ca-

pacity and QoS metrics and showed the superiority of our derived optimal policies

over the fixed-dominating-position based policy and the constant-rate policies.
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CHAPTER V

STATISTICAL DELAY-QOS PROVISIONINGS FOR WIRELESS

UNICAST/MULTICAST OF MULTI-LAYER VIDEO STREAMS

A. Introduction

Recently, supporting real-time video services with diverse QoS constraints has be-

come one of the essential requirements for wireless communications networks. Con-

sequently, how to efficiently guarantee QoS for video transmission attracts more and

more research attention [2, 3, 8, 19, 32, 35, 36, 53, 56, 76, 80, 81]. However, the unstable

wireless environments and the popular layer-structured video signals [35, 36, 81] im-

pose a great deal of challenges in delay QoS provisionings. As discussed in Chapters I

and II of this dissertation, due to the highly-varying wireless channels, the determin-

istic delay QoS requirements are usually hard to guarantee. As a result, statistical

delay QoS guarantees [2, 3, 8, 19, 53, 56, 76], in terms of effective bandwidth/capacity

and queue-length-bound/delay-bound violation probabilities, have been proposed and

demonstrated as the powerful way to characterize delay QoS provisionings for wireless

traffics. While many related existing research works mainly focused on the scenarios

with single-layer streams [8, 19, 53, 56], the modern video coding techniques usually

generate layer-structured traffics [35, 36, 81]. Unfortunately, how to design efficient

schemes to support statistical delay QoS for layered video traffics over wireless net-

works has been neither well understood nor thoroughly studied.

In video transmissions, video source is usually encoded into a number of data

layers [35,36,81] in the application protocol layer. By applying layered video coding,

the receivers under poorer channel conditions can get only lower video quality, while

those under better channel conditions can achieve higher video quality. Although the
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layered coding techniques are efficient in handling diverse channel conditions, they

also raise new challenges for statistical delay QoS guarantees, which are not encoun-

tered in single-layer video transmissions. First, we need to keep the synchronous

transmissions across different video layers, implying the same delay-bound violation

probability for all layers. Second, for multi-layer video stream, it is a natural re-

quirement that different video layers can tolerate different loss levels. Therefore, the

scheduling and resource allocation need to be aware of the diverse loss constraints.

Third, how to minimize the consumption of scarce wireless-resources while satisfying

the specified delay QoS requirements is a widely cited open problem.

Besides the general challenges in statistical delay QoS guarantees for the unicast

transmission of layered video, multicasting layered video over wireless networks fur-

ther complicates the problem significantly due to the heterogeneous channel qualities

across multicast receivers at each time instant. Unlike in the wireless multicast, there

are relatively more research results for the multicast over wireline networks. A num-

ber of multicast protocols were proposed over wireline networks. The authors of [35]

developed the efficient receiver-driven layered multicast over the Internet, where the

video source is encoded to a hierarchical signal with different layers. Each layer cor-

responds to a multicast group and multicast receivers can join/leave the group based

on their bandwidths. In [32], the authors proposed a novel flow control scheme for

multicast services over the asynchronous transfer mode (ATM) networks. The kernel

parts of this scheme include the optimal second-order rate control algorithm and the

feedback soft-synchronization protocol [33, 34], which can achieve scalable and adap-

tive multicast flow control over bandwidth and buffer occupancies and utilizations.

The above designs are shown to be efficient in the wireline networks. However, the

multicast strategies in wireline networks cannot be directly applied into wireless net-

works. This is because highly and rapidly time-varying wireless-channels qualities
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result in unstable bandwidths and thus unsatisfied loss and delay QoS. For wireless

video multicast, at the multicast sender we need to design the transmission scheme

to control the loss and/or delay performance for all multicast receivers at each video

layer based on their instantaneous channel qualities.

In Chapter IV of this dissertation, we applied the effective capacity theory to

propose and evaluate rate-adaptation schemes for statistical delay QoS guarantees in

mobile multicast. However, the analyses only focused on single-layer stream. It re-

mains one of the major challenges to extend the statistical QoS theory into multi-layer

video multicast in developing QoS-driven transmission strategies. In [36], the authors

proposed a cross-layer architecture for adaptive video multicast over multirate wireless

LANs. In particular, two-layer video signals are considered, which include the base

layer (more important) and enhancement layer (less important). The authors derived

the transmission rate for the base layer according to the worst-case signal-to-noise

ratio (SNR) among all receivers, while dynamically regulating the transmission rate

for the enhancement layer based on the best-case SNR to benefit receivers with bet-

ter channel qualities. However, under this strategy, the loss rate of the enhancement

layer will vary significantly with the statistical characteristics of wireless channels,

and thus is hard to control.

To overcome the above problems, in this chapter we propose an efficient frame-

work to model the statistical delay QoS guarantees, in terms of QoS exponent, effec-

tive bandwidth/capacity, and delay-bound violation probability, for multi-layer video

transmission over wireless networks. In particular, a separate queue is maintained for

each video layer, and the same delay bound and the corresponding violation prob-

ability are set up for all video layers. We then develop a set of optimal adaptive

transmission schemes to minimize the resource consumption while satisfying the di-

verse QoS requirements under various scenarios, including video unicast/multicast
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Fig. 20. The system modeling framework for layered-video transmission over

wireless networks: (a) The layered-video arrival stream and the

sender’s processing. (b) Unicast scenario. (c) Multicast scenario.

with and/or without loss tolerance.

The rest of this chapter is organized as follows. Section B describes the system

model. Section C proposes the framework of statistical delay QoS guarantees for

multi-layer video unicast and multicast. Sections D and E derive the optimal adaptive

transmission schemes for video unicast and multicast, respectively. Section F presents

the simulation evaluations. The chapter concludes with Section G.

B. The System Model

We consider the unicast/multicast system model for multi-layer video distribution

in wireless networks, as shown in Fig. 20. Specifically, the base station sender is

responsible for transmitting a multi-layer video stream to a single receiver (unicast)

or multiple receivers (multicast) over broadcast fading channels. The video stream

generated by upper protocol layers (e.g., application layer) consists of L video layers,

each having the specific QoS requirements. The L-layer video stream will be injected

to the physical (PHY) layer. Then, as depicted in Fig. 20(a), we aim at develop-
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ing strategies to efficiently allocate limited wireless resources for multi-layer video

transmission while satisfying the specified QoS requirements for each video layer.

At the PHY layer, the sender uses a constant transmit power with the signal

bandwidth equal to B Hz. The wireless broadcast channels are assumed to be flat fad-

ing. Then, we can use an SNR vector γ � (γ1, γ2, . . . , γN) to characterize the channel

state information (CSI) of receivers, whereN denotes the number of unicast/multicast

receivers, γn is the received SNR of the nth receiver for n = 1, 2, . . . , N , and {γn}Nn=1

are independent and identically distributed (i.i.d.) for the cases of N > 1. When

N is equal to 1, the scenario reduces to video unicast,1 as illustrated in Fig. 20(b);

while N is larger than 1, we get the multicast scenario depicted in Fig. 20(c). The

CSI γ is modeled as an ergodic and stationary block-fading process, where γ does

not change within a time-frame with the fixed length T , but varies independently

from frame to frame. Moreover, γ follows Rayleigh fading model, which is one the

most generally used models to characterize wireless fading channels. In addition, we

assume that γ can be perfectly estimated by the receivers and reliably fed back to

the sender without delay through the dedicated feedback control channels.

C. Modeling Framework for Wireless Unicast/Muticast of Multi-Layer-Video

We propose the following framework for transmitting multi-layer video over fading

channels by integrating the adaptive resource allocations, statistical QoS guarantees,

and loss constraints.

1When N = 1, we write SNR as γ instead of γ1 to simplify notation.
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1. Multi-Queue Model for Multi-Layer Video Arrival Processes

The modern video coding techniques [81] usually encode the video source into a

number of video layers with different relevance and importance. The most impor-

tant layer is called based layer and the other layers are called enhancement layers.

Because of the diverse importance, different strategies need to be proposed for the

corresponding video layers in the PHY-layer transmission, depending on the specified

QoS requirements (to be detailed in Sections C-2 and C-4). Then, to achieve the ef-

ficient video transmission, the sender manages a separate queue for each video layer.

As shown in Fig. 20(a), the data arrival rate of the �th video layer is characterized by

a discrete-time process, denoted by A�[k] (nats/frame), where � = 1, 2, . . . , L, and [k],

k = 1, 2, . . ., is the index of time frames; the service rate process (departure process)

of the �th layer is denoted by C�[k] (nats/frame). Moreover, we determine C�[k] based

on CSI, total available wireless resources, and QoS constraints.

2. Statistical Delay QoS Guarantees for Video Transmissions

For video transmissions, delay is one of the most important QoS metrics. However,

due to the highly varying wireless channels, usually the hard delay bound cannot

be guaranteed. Therefore, the statistical metric, namely delay-bound violation prob-

ability [2, 3, 8, 53], has been widely applied in QoS evaluations for real-time services.

In our framework, we also use the delay-bound violation probability to statistically

characterize the delay QoS provisionings for each video layer. In particular, a queue-

ing delay bound, denoted by Dth, is specified. Accordingly, over all video layers, the

delay-bound violation probability cannot exceed the threshold denoted by Pth:

Pr{D� > Dth} ≤ Pth, Pth ∈ (0, 1), (5.1)
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for all � ∈ {1, 2, . . . , L}, where D� denotes the queueing delay at the �th video layer.

The delay-bound violation probability in Eq. (5.1) is evaluated over the entire trans-

mission process, which is assumed to be long enough. Note that Dth and Pth are

application-dependent parameters. Moreover, the pair of Dth and Pth is set to be the

same for all video layers, because the synchronous transmission across different video

layers is usually required. Also note that the delay in wireless video transmissions

may result from multiple factors such as transmissions, queueing, and decoding. In

this chapter, we mainly focus on queueing delay, which reflects the capability of the

wireless channel (transmission bottleneck) in supporting video distributions.

3. Adaptive Resource Allocation and Transmissions

To efficiently use the limited wireless resources for video unicast/multicast, we em-

ploy the adaptive transmission strategy (based on the CSI), consisting of three folds:

transmission rate adaptation, dynamic time-slot allocation, and adaptive pre-drop

queue management strategy, as detailed below.

a. Time slot allocation for video layers

Each time frame is divided into L time slots, the lengths of which are denoted by

{T�[k]}L�=1, where 0 ≤ T�[k] ≤ T and
∑L

�=1 T�[k] ≤ T . The time slot with length T�[k]

is used for transmitting data of the �th video layer. For convenience of presentation,

we further define time proportion t�[k] � T�[k]/T , and thus we have
∑L

�=1 t�[k] ≤
1. Notice that our target is to minimize the wireless-resource consumption while

satisfying the QoS requirements imposed by video qualities. Thus,
∑L

�=1 t�[k] may be

smaller than 1 for some γ.
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b. Rate adaptation of unicast/multicast

We denote the total amount of transmitted data at the �th video layer in the kth

time frame by R�[k] (with the unit nats/frame). Moreover, we use the normalized

transmission rate, denoted by R�[k] (nats/s/Hz), to characterize the transmission rate

adaptation, where R�[k] � R�[k]/(BT ). We assume that capacity-achieving codes

are used for transmission at the PHY layer. Accordingly, for unicast, the normalized

transmission rate of the �th video layer is set equal to the Shannon capacity under

the current SNR γ:

R�[k] = log(1 + γ) (nats/s/Hz). (5.2)

Clearly, R�[k] does not vary with �, and thus we only focus on time-slot allocation for

unicast.

For the multicast case, the rate adaptation becomes more complicated. In partic-

ular, the time slot for video layer � is further partitioned into N sub-slots. The length

of the nth sub-slot, denoted by T�,n[k], is equal to T�[k]t�,n[k], where 0 ≤ t�,n[k] ≤ 1

and
∑N

n=1 t�,n[k] = 1. Within the nth sub-slot, the transmission rate is set equal to

the Shannon capacity under SNR γn, and thus the data transmitted in this sub-slot

can be correctly decoded only by receivers with SNR higher than or equal to γn.

Then, the normalized transmission rate R�[k] for the �th video layer becomes

R�[k] =
N∑
n=1

t�,n[k]R�,n[k]

=
N∑
n=1

t�,n[k] log(1 + γn) (nats/s/Hz), (5.3)

where R�,n[k] � log(1 + γn) is the normalized transmission rate for the nth sub-slot

of the �th video layer. As a result, we need to not only adjust t�[k]’s for each layer,
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but also regulate t�,n[k]’s within every time slot.

Unlike the wireline multicast networks, in this chapter we focus on the layered

video transmissions over wireless networks, which has a single-hop cellular network

structure. Due to the broadcast nature of wireless channels, the sender only needs to

transmit a single copy of data and all multicast receivers can hear the transmitted

signal for each video layer. Under this model, our scheme employs the sender-oriented

multicast approach because the sender needs to dynamically adjust the transmissions

rate in controlling the loss rate (to be detailed in Section C-4) and guaranteeing the

delay-QoS requirements (see Section C-2) across different multicast receivers.

c. Pre-drop strategy

In [56], for multicasting single-layer-data we developed the pre-drop strategy to gain

a more robust queueing behavior. In this chapter, we further extend the pre-drop

strategy to multi-layer video transmission. Specifically, based on the CSI, in each

time frame the sender can drop some data (see Fig. 20(a)) from the head of each

queue, but treat them as if they were transmitted. We denote the amount of dropped

data in �th video layer by Z�[k] (nats/frame) and define the normalized drop rate,

denoted by z�[k], as z�[k] � Z�[k]/(BT ) (nats/s/Hz). Then, the service process C�[k]

of the �th video layer is given by

C�[k] = BT (t�[k]R�[k] + z�[k]) (nats/frame). (5.4)

Clearly, the pre-drop strategy suppresses the growing speed of the queue for a more

robust queueing behavior, but this strategy also causes data loss to all multicast

receivers. As a result, z�[k] needs to be determined by not only the CSI, but also the

loss constraints (see Section C-4).
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4. Loss Rate Constraint

Although a certain loss is usually tolerable for delay-sensitive services, the loss level

cannot be arbitrarily high. Consequently, we require the loss rate of the �th video

layer for each receiver to be limited lower than or equal to an application-dependent

threshold, denoted by q
(�)
th . The loss rate of the �th video layer for the nth receiver,

denoted by q�,n, is defined as the ratio of the amount of data correctly received

by this receiver to that of the data transmitted at this video layer. Data loss for

unicast will be caused only by the pre-drop strategy, while data loss for multicast will

be introduced by both pre-drop operation and heterogeneous channel fading across

multicast receivers.

Since various efficient forward-error control (FEC) codes [60,67,68,82,83] at up-

per protocol layers were proposed and widely applied to multicast communications in

wired and/or wireless networks, in our framework we suppose that FEC mechanisms

are already employed at the upper protocol layers. The error-control redundancies

added in the FEC codes at different video layers are inherently related among video

layers and are jointly determined by the targeted video-delivery qualities at different

video layers. Correspondingly, the tolerable loss-rate levels q
(�)
th ’s for different video

layers (indexed by �) are jointly specified based on the video delivery quality require-

ments and the error control redundancy degrees across different video layers. Under

this framework, we then mainly focus on how to use the minimum wireless resources

with QoS guarantees to unicast/multicast multi-layer video over wireless channels.
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5. Design Procedures for Transmitting Layered Video with Statistical QoS

Guarantees

As addressed in Chapter II, for a dynamic queueing system, in order to guarantee the

QoS exponent θ given in Eqs. (2.1)-(2.2), the following equation need to be satisfied [3,

53]:

C(θ) = A(θ), (5.5)

where C(θ) denotes the effective capacity of the service-rate process under the specified

QoS exponent θ and A(θ) represents the effective bandwidth of the arrival-rate process

of the queueing system. Inspired by this property, the statistical delay QoS guarantees

can be characterized through the arrival process and service process separately. As

shown in Fig. 21, the queueing system for the �th video layer can be decomposed to

two virtual queueing systems. The one on the left-hand side of Fig. 21 is composed by

the true arrival process A�[k] and one virtual constant-rate service process, the rate

of which is equal to the effective bandwidth A�(θ�) of A�[k]; the right one consists of

the true service process C�[k] and one constant-rate virtual arrival process, the rate
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Table II. The Design Procedures to Provide Statistical Delay QoS Guarantees

for Transmitting Multi-Layer Video Stream.

Step 1: Determine effective bandwidth functions A�(θ) for the arrival processes A�[k], � = 1, 2, . . . , L.
Step 2: Apply Eq. (2.9) or Eq. (2.10) to find the solution θ� to the equation Pr{D� > Dth} = Pth

and get the corresponding effective bandwidth A�(θ�).

Step 3: Set the target effective capacity C� = A�(θ�) for the service processes of each video layer.

Step 4: Jointly design adaptive service process C�[k] for each video layer, such that C�(θ�) ≥ C� is
satisfied while minimizing the total consumed wireless resources.

of which is equal to the effective capacity C�(θ�) of C�[k]. Using the above concept,

we develop the design procedures to provide statistical delay QoS guarantees for

transmitting multi-layer video stream as shown in Table II.

Among the procedures in Table II, Steps 1 and 2 first identify the effective

bandwidth A�(θ�) and QoS exponent θ� required to satisfy the delay-bound Dth and

its violation probability Pth. Then, to satisfy the delay QoS in Eq. (5.1), we need

to either satisfy Eq. (5.5) or guarantee that the effective capacity is larger than the

effective bandwidth, which results in Steps 3 and 4.

The analytical expressions of effective bandwidth for many typical arrival pro-

cesses, such as constant-rate process, autoregressive (AR) process, and Markovian

process, can be found in [3]. Note that if A�[k] is time varying, in Step 2 we can

determine θ� through Eq. (2.10). However, if A�[k] is a constant-rate process equal

to A�, we have A�(θ) = A� for all θ, implying that the delay-bound violation proba-

bility of the virtual queueing system on the left-hand side of Fig. 21 is always equal

to 0. Therefore, we cannot derive θ� directly through Eq. (2.10). In contrast, the

QoS exponent θ� to guide the adaptive transmission needs to be determined by using

Eq. (2.9) under the condition of C�(θ�) = A�(θ�) = A�.
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D. Unicasting Multi-Layer Video Stream

Assuming that the target effective capacity
{C�}L�=1

and QoS exponent θ� have been

determined, we next focus on developing the optimal adaptive time-slot allocation

and pre-drop strategy to satisfy the QoS requirements while minimizing the wireless-

resource consumption. Unless otherwise mentioned, we drop the time-frame index

[k] for the corresponding variables in the rest of this chapter to simplify notations.

As discussed in Chapter II, if a stationary and ergodic service rate process C� is

uncorrelated across different time frames, we can write its effective capacity as follows:

C�(θ�) = − 1

θ�
log
(
E
{
e−θ�C�

})
nats/frame. (5.6)

Since the block-fading channel process described in Section B is time uncorrelated,

we can apply Eq. (5.6) for our framework to derive the adaptive unicast/mutlicast

schemes with the statistical QoS guarantees.

1. Unicasting Layered Video Stream Without Loss Tolerance

We first consider the cases without loss tolerance for multi-layer video transmissions,

i.e., q
(�)
th = 0 for all � and the pre-drop strategy will not be applied. Thus, we only

need to focus on regulating the time-slot proportion {t�}L�=1 for each video layer.

Following the design target and QoS constraints characterized in Section C, we derive

the adaptive transmission strategy by solving the following optimization problem.

V-P1 : Unicast without loss tolerance

min
t

{
L∑
�=1

Eγ {t�}
}

(5.7)

s.t.: C�(θ�) ≥ C�, ∀ �, (5.8)
L∑
�=1

t� − 1 ≤ 0, 0 ≤ t� ≤ 1, ∀ γ, (5.9)



110

where t � (t1, t2, . . . , tL) and Eγ{·} denotes the expectation over the random variable

γ.

Using Eq. (5.6), the constraint in (5.8) can be equivalently rewritten as

Eγ

{
e−β�t� log(1+γ)

}− V� ≤ 0, (5.10)

where β� � θ�TB is termed normalized QoS exponent and V� � e−θ�C� . It is not

difficult to see: 1) the objective function in V-P1 is convex over t; 2) the functions

on the left-hand side of all inequality constraints (Eqs. (5.9) and (5.10)) are convex

over t. Therefore, V-P1 is a convex problem [77] and the optimal solution can

be obtained by using the Lagrangian method and the Karush-Kuhn-Tucker (KKT)

conditions [77], which is summarized in Theorem 7.

Theorem 7. The optimal solution t∗ to problem V-P1, if existing, is determined by

t∗� = t�(γ, λ
∗
� , ψ

∗
γ) �

⎡⎣− log
(

1+ψ∗
γ

β�λ
∗
� log(1+γ)

)
β� log(1 + γ)

⎤⎦+

, (5.11)

where [·]+ � max{·, 0}. The parameters ψ∗
γ and {λ∗�}L�=1 are the optimal Lagrangian

multipliers associated with Eqs. (5.9) and (5.10), respectively. Given SNR γ in a

fading state and {λ∗�}L�=1, if

L∑
�=1

t�(γ, λ
∗
� , 0) ≥ 1 (5.12)

holds, ψ∗
γ is the unique solution to

L∑
�=1

t�(γ, λ
∗
� , ψ

∗
γ) = 1, ψ∗

γ ≥ 0; (5.13)

otherwise, we get

ψ∗
γ = 0. (5.14)
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Under the above strategy to determine t∗ and ψ∗
γ, the optimal {λ∗�}L�=1 are selected to

satisfy

Eγ

{
e−β�t

∗
� log(1+γ)

}− V� = 0, ∀ �. (5.15)

Proof. We construct the Lagrangian function for V-P1, denoted by J , as follows:

J = Eγ

{
L∑
�=1

t�

}
+ Eγ

{
ψγ

(
L∑
�=1

t� − 1

)}

+

L∑
�=1

λ�

(
Eγ

{
e−β�t� log(1+γ)

}− V�

)
, (5.16)

where ψγ ≥ 0 and λ� ≥ 0, � = 1, 2, . . . , L, are Lagrangian multipliers associated with

Eqs. (5.9) and (5.10), respectively. Then, the optimal t∗ and Lagrangian multipliers

of optimization problem V-P1 satisfy the following KKT conditions [77]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂J
∂t�

∣∣
t�=t

∗
�

= 0, ∀ �, ∀ γ

ψ∗
γ ≥ 0 and λ∗� ≥ 0;

ψ∗
γ

(∑L
�=1 t

∗
� − 1

)
= 0, ∀ �, γ;

λ∗�
(
Eγ

{
e−β�t

∗
� log(1+γ)

}− V�
)

= 0, ∀ �.

(5.17)

Taking the derivative of J with respect to (w.r.t.) t�, we get

∂J

∂t�
=
(
1 + ψγ − λ�β�(1 + γ)−β�t� log(1 + γ)

)
fΓ(γ)dγ (5.18)

where fΓ(γ) is the probability density function (pdf) of γ. Plugging Eq. (5.18) into

the first line of Eq. (5.17) and solving for t∗� under the boundary condition t� ≥ 0, we

get Eq. (5.11).

According to Eq. (5.11), t�(γ, λ
∗
� , ψγ) is a strictly decreasing function of ψγ for

t�(γ, λ
∗
� , ψγ) > 0, and ψ∗

γ → ∞ leads to t∗� → 0. Therefore, if Eq. (5.12) holds,
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we can always find the unique ψ∗
γ to satisfy Eq. (5.14); otherwise, the inequality∑L

�=1 t�(γ, λ
∗, ψγ) − 1 < 0 follows for any ψγ ≥ 0, implying ψ∗

γ = 0 by applying the

third line of Eq. (5.17). Through Eq. (5.11), λ∗� = 0 results in t� = 0 for all γ, and thus

the constraint in Eq. (5.8) will be violated, implying an infeasible solution. Therefore,

λ∗� has to be positive. Then, to satisfy the fourth line of Eq. (5.17), Eq. (5.15) must

hold and thus Theorem 7 follows.

Note that given {λ∗�}L�=1, ψ
∗
γ is easy to solve because t�(γ, λ

∗
� , ψγ) is a decreasing

function of ψγ. However, how to find {λ∗�}L�=1 is still unknown. Moreover, Theorem 7

does not state whether the optimal solution exists. Next, we discuss how to get

{λ∗�}L�=1 and examine the existence of the optimal solution, which can be performed

either off-line or on-line. Based on the optimization theory [77, 79], the Lagrangian

dual problem to V-P1 is given by

max
(λ,ψγ)

{
J̃(λ, ψγ)

}
, (5.19)

where λ � (λ1, λ2, . . . , λL) and J̃(λ, ψγ) is the Lagrangian dual function defined

by J̃(λ, ψγ) � mint{J} = J |t�=t�(γ,λ�,ψγ). We can further convert Eq. (5.19) into

max(λ,ψγ)

{
J̃(λ, ψγ)

}
= maxλ

{
J̃(λ, ψγ(λ))

}
, where ψγ(λ) denotes the maximizer of

J̃(λ, ψγ) given λ. Moreover, we can obtain ψγ(λ) by using the same procedures as

those used in determining ψ∗
γ , which are given by Eqs. (5.12)-(5.14) in Theorem 7.

Since problem V-P1 is convex, there is no duality gap between V-P1 and its

dual problem given by Eq. (5.19) if the optimal solution exists. Thus, the optimal

Lagrangian multipliers {λ∗�}L�=1 and ψ∗
γ to problem V-P1 also maximize the objective

function J̃(λ, ψγ) in Eq. (5.19). Consequently, we can obtain {λ∗�}L�=1 through maxi-

mizing J̃(λ, ψγ). Following convex optimization theory [77], J̃(λ, ψγ(λ)) is a concave

function over λ, and thus we can track the optimal λ∗ by using the subgradient
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method [77]:

λ� := λ� + ε
(
Eγ

{
e−β�t� log(1+γ)

}− V�
)∣∣
t�=t�(γ,λ�,ψγ(λ))

(5.20)

where ε is a positive real number close to 0. and
(
Eγ

{
e−β�t� log(1+γ)

}− V�
)

in the

above equation is a subgradient of J̃(λ, ψγ(λ)) w.r.t. λ� [79] (see the definition of

subgradient in Definition 9). If the optimal solution to V-P1 exists, the above itera-

tion will converge to the optimal λ∗ with properly selected ε because of the concavity

of J̃(λ, ψγ(λ)). Correspondingly,
(
Eγ

{
e−β�t� log(1+γ)

}− V�
)

will converge to 0. If the

optimal solution to V-P1 does not exist, we cannot support such a statistical QoS

requirement even we use up all time slots. Then, (Eγ

{
e−β�t� log(1+γ)

}− V�) is always

larger than 0 for some �. As a result, λ� will approach infinity. So, if any λ� does not

converge and keeps increasing, we can conclude that the optimal solution does not

exist and current wireless resources are not enough to support the specified statistical

delay QoS for the incoming multi-layer video stream.

To find the optimal λ∗, we need the pdf of γ. In realistic systems, although the

pdf of γ is usually unknown, we can still apply Eq. (5.20) to implement online tracking.

In particular, the iterative update of Eq. (5.20) will be performed in each time frame.

However, the expectation of e−β�t� log(1+γ) in Eq. (5.20) needs to be substituted by its

estimation obtained based on the statistics from previous time frames. Denoting the

estimation of Eγ

{
e−β�t� log(1+γ)

}
in the kth time frame by S�[k], we obtain S�[k + 1]

through a first-order autoregressive filter (low-pass filter) as follows:

S�[k + 1] := (1 − α)S�[k] + αe−β�t�[k+1] log(1+γ[k+1]), (5.21)

where � = 1, 2, . . . , L and α ∈ (0, 1) is a small positive number close to 0. If the

optimal solution exists, the online tracking method converges with properly selected

α and ε. Section F will present some examples of tracking the optimal Lagrangian
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multipliers through simulations.

2. Unicasting Layered Video Stream With Loss Tolerance

When q
(�)
th > 0, the transmission strategy becomes more complicated, but will use less

wireless resources. After integrating the pre-drop strategy, the loss rate q� of the �th

layer is derived as

q� = 1 − BTEγ{t�R�}
Eγ{C�} = 1 − Eγ{t�R�}

Eγ{t�R� + z�} . (5.22)

Next, we identify the adaptive transmission policy by solving optimization prob-

lem V-P2:

V-P2 : Unicast with loss tolerance

min
(t,z)

{
L∑
�=1

Eγ {t�}
}

(5.23)

s.t.: Eγ

{
e−β�(z�+t� log(1+γ))

}− V� ≤ 0, z� ≥ 0, ∀ �, (5.24)

q� ≤ q
(�)
th , ∀ � (5.25)

L∑
�=1

t� ≤ 1, 0 ≤ t� ≤ 1, ∀ γ, (5.26)

where z � (z1, z2, . . . , z�).

Applying Eq. (5.22), we can rewrite Eq. (5.25) as follows:

(
1 − q

(�)
th

)
Eγ {z�} − q

(�)
th Eγ {t� log(1 + γ)} ≤ 0, ∀ �. (5.27)

It is also not hard to prove that problem V-P2 is still a convex problem and the La-

grangian method is still effective in finding the optimal solutions, which is summarized

in Theorem 8.

Theorem 8. The optimal solution (t∗, z∗), if existing, is expressed by a set of func-
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tions of γ, {λ�}L�=1, {φ�}L�=1, and ψγ as follows:

t∗� = t�(γ, λ
∗
� , φ

∗
� , ψ

∗
γ), z∗� = z�(γ, λ

∗
� , φ

∗
� , ψ

∗
γ), ∀ �, (5.28)

where

t�(γ, λ�, φ�, ψγ)

�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞, if −∞ < 1+ψγ

log(1+γ)
≤ φ�q

(�)
th ;[

− 1
β� log(1+γ)

log

(
1+ψγ−q(�)th φ� log(1+γ)

β�λ� log(1+γ)

)]+

, if φ�q
(�)
th < 1+ψγ

log(1+γ)
< φ�;

0, if φ� ≤ 1+ψγ

log(1+γ)
<∞,

(5.29)

and

z�(γ, λ�, φ�, ψγ) �

⎧⎪⎨⎪⎩
0, if −∞ < 1+ψγ

log(1+γ)
< φ� ;[

− 1
β�

log

(
φ
(
1−q(�)th

)
β�λ�

)]+

, if φ� ≤ 1+ψγ

log(1+γ)
<∞.

(5.30)

Given γ, {λ∗�}L�=1, and {φ∗
�}L�=1, if

∑L
�=1 t�(γ, λ

∗
� , φ

∗
� , 0) ≥ 1, ψ∗

γ is selected such that

the equation
∑L

�=1 t�(γ, λ
∗
� , φ

∗
� , ψ

∗
γ) = 1 holds; otherwise, we have ψ∗

γ = 0. The optimal

{λ∗�}L�=1 and {φ∗
�}L�=1 need to be jointly selected such that “=” holds in both Eqs. (5.24)

and (5.27).

Proof. The proof of Theorem 8 can be readily obtained by using the standard Lagrangian-

multiplier based method and KKT conditions.

In order to search for the optimal Lagrangian multipliers and check the existence

of the optimal solution, we can also design the adaptive tracking method similar to

problem V-P1.
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E. QoS Guarantees for Multicasting Layered-Video Stream

We consider the multicast scenario in this section. If no loss is tolerated, the trans-

mission rate in each time frame is limited by the worst-case SNR among all multicast

receivers. Thus, the system throughput will be degraded very quickly as the multicast

group size increases. Therefore, we mainly focus on the multicast scenario with loss

tolerance.

1. Problem Formulation for Multicast Scenario

Under the multicast rate-adaptation strategy given in Section C, the loss rate of the

nth receiver at the �th video layer becomes

q�,n = 1 −
Eγ

{
t�
∑N

i=1 t�,i log(1 + γi)δγn≥γi

}
Eγ {z� + t�R�} , (5.31)

where Eγ{·} denotes the expectation over all fading states of the random vector

variable γ, δγn≥γi
is the indication function (for a given statement �, δ(�) = 1 if � is

true, and δ(�) = 0 otherwise), and R� =
∑N

i=1 t�,i log(1 + γi) is the total normalized

transmission rate in a time frame (see Eq. (5.3)). Accordingly, the following loss-rate

constraint needs to be satisfied for each multicast receiver at every video layer, which

is specified by the inequality as follows:

q�,n ≤ q
(�)
th , ∀n, ∀ �. (5.32)

To simplify the derivations, we first use a relaxed constraint to replace Eq. (5.32) by:

q�,0 � 1

N

N∑
n=1

q�,n ≤ q
(�)
th , ∀ � (5.33)

where q�,0 is called group loss rate (average loss rate over receivers) at the �th video

layer. We will show later that the optimal adaptation policy derived under the group-
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loss-rate constraint given in Eq. (5.33) does not violate Eq. (5.32), and thus is also

optimal under the original loss-rate constraint given by Eq. (5.32). Plugging Eq. (5.31)

into Eq. (5.33), we have

q�,0 = 1 −
Eγ

{
t�
∑N

i=1 t�,imi log(1 + γi)
}

NEγ {z� + t�R�} , (5.34)

where mi is the number of receivers with SNR higher than or equal to γi. In addition,

it is clear that R� falls in the following range:

R� ∈
[
Rπ(N), Rπ(1)

]
, (5.35)

where Rπ(N) � min1≤n≤N{log(1 + γn)} and Rπ(1) � max1≤n≤N{log(1 + γn)}. Note

that when we attempt to use a normalized transmission rate equal to R� in a time

frame, there are many different choices for {t�,n}Nn=1 to get the same R�. In order to

minimize the loss for the entire multicast group, among all these choices we need to

select the one which maximizes the numerator of the second term on the right-hand

side of Eq. (5.34), which represents the sum rate of data correctly received by each

multicast receiver. Accordingly, we define

g̃s(R�) � max
t�:

∑N
i=1 t�,i=1

{
N∑
i=1

t�,imi log(1 + γi)

}

s.t.:
N∑
i=1

t�,i log(1 + γi) = R� (5.36)

where t� � (t�,1, t�,2, . . . , t�,N).

Therefore, g̃s(R�) denotes the maximum sum of achieved rates over all multicast

receivers under the given normalized transmission rate R�. In Chapter IV, we showed

that g̃s(R�) can be derived through the concept of convex hull [77]. Using the prop-

erties of convex hull, in [76] we proved that g̃s(R�) is a continuous, piecewise linear,
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Fig. 22. An example for the function g̃s(R�) against R�, where N = 6 and

γ = (1.98, 6.07, 18.71, 29.63, 45.43, 96.93).

and concave function over R�. Thus, we can obtain g̃s(R�) as follows:

g̃s(R�)=

⎧⎪⎨⎪⎩
g̃s(ri) + ηi(R� − ri), if R� ∈ [ri, ri−1), 2 ≤ i ≤ N ;

g̃s(r2) + η2(r1 − r2), if R� = r1,

(5.37)

where Rπ(1) = r1 > r2 > · · · > rN = Rπ(N). Fig. 22 depicts an example for the

function g̃s(R�). As shown in Fig. 22, within each interval [ri, ri−1), g̃s(R�) is a linear

function of R� with the slope equal to ηi, and (N − 1) is equal to the number of such

intervals. Note that {(ri, g̃s(ri))}Ni=1 are actually the vertices on the upper boundary

of the convex hull of the 2-dimensional point set
{
(log(1+γi), mi log(1+γi))

}N
i=1

(see

Chapter IV). For the complete procedures to identify g̃s(R�) and the corresponding

time slot allocation policy, please refer to Chapter IV. The above discussions imply

that we need to consider only the transmission policies yielding g̃s(R�), because only

these policies can minimize the total loss for the entire multicast group. Moreover,

Eqs. (5.36)-(5.37) suggest that we can focus on regulating the scalar R� instead of the

N -dimension time-proportion vector t�. After R� is determined, we can use Eq. (5.36)

to obtain t�.
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Following previous analyses in this section, we formulate problem V-P3 to derive

the adaptation policy for multi-layer video multicast as follows:

V-P3 : Multicast with loss tolerance

min
(t,R,z)

{
L∑
�=1

Eγ {t�}
}

(5.38)

s.t.: Eγ

{
e−β�(z�+t�R�)

}− V� ≤ 0, z� ≥ 0, ∀ �, (5.39)

N
(
1 − q

(�)
th

)
Eγ {t�R� + z�} − Eγ {t�g̃s(R�)} ≤ 0, ∀ �, (5.40)

L∑
�=1

t� − 1 ≤ 0, 0 ≤ t� ≤ 1, ∀γ, (5.41)

where R � (R1, R2, . . . , RL) and Eq. (5.40) is the group-loss-rate constraint (equiva-

lent to Eq. (5.33)) for the policies corresponding to g̃s(R�).

2. Derivation of the Optimal Solution for Multicast Video

Notice that Problem V-P3 is not convex, because the functions on the left-hand

side of Eqs. (5.39) and (5.40) are not convex over (t,R, z). However, we show in

the following that the optimal solution can still be obtained through Lagrangian dual

problem.

2.1 Lagrangian Characterization of Problem V-P3

The Lagrangian function of V-P3, denoted by W , is constructed as

W = Eγ{w} (5.42)

where

w�
L∑
�=1

t� + ψγ

(
L∑
�=1

t� − 1

)
+

L∑
�=1

λ�

(
e−β�(z�+t�R�) − V�

)
+

L∑
�=1

φ�

(
N
(
1 − q

(�)
th

)
(t�R� + z�) − t�g̃s(R�)

)
. (5.43)
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In Eq. (5.43), ψγ ≥ 0, φ� ≥ 0, and λ� ≥ 0 are the Lagrangian multipliers associ-

ated with the constraints given by Eqs. (5.41), (5.40), and (5.39), respectively. The

Lagrangian dual function, denoted by U , is then determined by

U(λ,φ, ψγ) � min
(t,z,R)

{
W
}

= Eγ

{
u(λ,φ, ψγ)

}
, (5.44)

where φ � (φ1, φ2, . . . , φL) and

u(λ,φ, ψγ) � min
(t,z,R)

{
w
}
. (5.45)

It is clear that u(λ,φ, ψγ) is a concave function over (λ,φ, ψγ), and so is U(λ,φ, ψγ)

Moreover, the Lagrange dual problem is defined as:

V-P3-Dual : U
 � U(λ
,φ
, ψ
γ) = max
(λ,φ,ψγ )

{
U(λ,φ, ψγ)

}
, (5.46)

where
(
λ
,φ
, ψ
γ

)
is the maximizer. We then solve for the optimal adaptation strat-

egy to V-P3 through the dual problem. If the optimal solution to V-P3 exists, we

will show later that there is no duality gap between the primal problem V-P3 and the

dual problem V-P3-Dual. As a result, the optimal solution to V-P1 must minimize

the Lagrangian function W under the optimal Lagrangian multipliers
(
λ
,φ
, ψ
γ

)
.

2.2 Derivation of the Lagrangian Dual Function U(λ,φ, ψγ) = Eγ

{
u(λ,φ, ψγ)

}
Since g̃s(R�) is nondifferentiable at some R� (as shown in Fig. 22), w is also

nondifferentiable at some R�. Alternatively, we need to use the subgradient and sub-

differential (see Definition 9) instead of gradient to derive the minimizer to Eq. (5.45),

which is denoted by (t∗, z∗,R∗).
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Then, using Eq. (5.36) and Definition 9, we obtain

∂g̃s(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ηN ,∞

]
, if r = rN ;{

ηi
}
, if ri < r < ri−1, 2 ≤ i ≤ N ;[

ηi, ηi+1

]
, if r = ri, 2 ≤ i ≤ N − 1;[−∞, η1

]
, if r = r1.

(5.47)

Applying Eq. (5.43) into Definition 9, we get the subdifferential of w w.r.t. R�,

denoted by ∂wR�
, as:

∂wR�
=
{
y
∣∣∣ y = t�

(
φ�N

(
1 − q

(�)
th

)
− λ�β�e

−β�(z�+t�R�)

−φ�x
)
, ∀x ∈ ∂g̃s(R�)

}
, ∀ �,γ. (5.48)

It is clear that w is differentiable w.r.t. t� and R�. Taking the derivative of w w.r.t.

t� and z�, respectively, we get

∂w

∂t�
= 1 + ψγ − λ�β�R�e

−β�(z�+t�R�) − φ�g̃s(R�) + φ�N
(
1 − q

(�)
th

)
R�, ∀ �,γ; (5.49)

∂w

∂z�
= φ�N

(
1 − q

(�)
th

)
− λ�β�e

−β�(z�+t�R�), ∀ �,γ. (5.50)

Clearly, the minimization of w can be performed separately for each video layer. Now

consider the �th video layer. Since the function w is not convex over the 3-tuple

(t�, z�, R�), the equations ∂w/t� = 0, ∂w/z� = 0, and 0 ∈ ∂wR�
are only the necessary

conditions for (t∗� , z
∗
� , R

∗
�). However, if t∗� is given, w becomes a convex function over

the 2-tuple (z�, R�). Using this property, we can decompose the minimization of w

into several easier sub-problems. Applying the above principle, we discuss the cases

with the fixed t∗� = 0 and t∗� > 0, respectively, as follows.
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a. t∗� = 0

The variable R� vanishes in Eq. (5.43) when t� = 0. Then, we only need to find the

minimizer z∗� . By solving ∂w/∂z� = 0 under the condition z� ≥ 0, we get

z∗� =

[
− 1
β�

log

(
φ�N

(
1−q(�)th

)
λ�β�

)]+

. (5.51)

b. t∗� > 0

We jointly solve ∂w/∂z� = 0 and 0 ∈ ∂wR�
under the condition z� ≥ 0 and R� ≥ 0,

and then get the minimizer, which is summarized in Eqs. (5.52)-(5.53) as follows:

if R̂� > R̃, then⎧⎪⎨⎪⎩
R∗
� = R̃;

z∗� =

[
− 1
β�

log

(
φ�N

(
1−q(�)th

)
λ�β�

)
− t∗�R

∗
�

]+

;
(5.52)

if R̂� ≤ R̃, then⎧⎪⎨⎪⎩R
∗
� = R̂�;

z∗� = 0,
(5.53)

where R̂� is the unique solution to

0 ∈ (∂wR�
) |z�=0 (5.54)

under the given t�, and

R̃ � arg max
r

{
g̃s(r)

}
. (5.55)

The detailed derivations for Eqs. (5.52) and (5.53) are provided in Appendix M.

Note that R̃ depends only on g̃s(r), but not on t∗� . Then, through Eqs. (5.52)-

(5.53), we can see that with t∗� > 0, the minimizer must satisfy either z∗� = 0 or

R∗
� = R̃. Further note that the above results provide not only the mathematical
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convenience, but also the insightful observations for the adaptive multicast transmis-

sion. For multicast, zero loss can be achieved only when setting transmission rate

R� = Rπ(N), which is determined by the worst-case SNR over all multicast receivers.

The higher the transmission rate or the higher the drop rate we use, the higher the

loss rate we get (observed from Eq. (5.34)). Therefore, when not violating the sta-

tistical delay QoS guarantees, we need to choose the transmission rate R� and the

drop rate z� as small as possible. Moreover, R� and z� need to be jointly derived for

performance optimization. Following the above strategies, we first derive R̂� which

optimizes the system performance (equivalently, minimizes the Lagrangian function)

given the zero drop rate. However, if R̂� > R̃, we can see that the achieved sum

rate g̃s(R�) over all multicast receivers under R� = R̂� decreases when R̂� increases,

as depicted in Fig. 22. When this happens, we need to set R� = R̃ and apply the

nonzero drop rate to avoid the degradation of g̃s(R�) while supporting the satisfied

service rate.

Based on the above results for t∗� = 0 and t∗� > 0, the minimizer (t∗� , R
∗
� , z

∗
� ) at

the �th video layer must fall into one of the following three Sub-domains:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Sub-domain 1: t� = 0, R� ≥ 0, z� ≥ 0;

Sub-domain 2: t� ≥ 0, R� = R̃, z� ≥ 0;

Sub-domain 3: t� ≥ 0, R� ≥ 0, z� = 0.

(5.56)

In Eq. (5.56), Sub-domain 1 is associated with the case of t∗� = 0. For the case with

t∗� > 0, Sub-domains 2 and 3 correspond to the conditions R̂� ≥ R̃ and R̂� < R̃,

respectively. In order to get the minimizer (t∗� , R
∗
� , z

∗
� ) of w, we can first find the

minimizer within each Sub-domain, which is denoted by
(
t
(j)
� , R

(j)
� , z

(j)
�

)
, j = 1, 2, 3.

After identifying the minimizers of each Sub-domain, (t∗� , R
∗
� , z

∗
� ) can then be obtained
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through

(t∗� , R
∗
� , z

∗
� ) =

(
t
(j∗)
� , R

(j∗)
� , z

(j∗)
�

)
∀ �, (5.57)

where

j∗ = arg min
j=1,2,3

{
w
∣∣
(t�,R�,z�)=

(
t
(j)
� ,R

(j)
� ,z

(j)
�

)} .
In Sub-domains 1, 2, and 3, the variables t�, R�, and z� are fixed, respectively, implying

that there are only two optimization variables in each Sub-domain. Therefore, the

minimization problem within each Sub-domain becomes tractable. For Sub-domain 1,

the minimizer
(
0, R

(1)
� , z

(1)
�

)
is given in Eq. (5.51). For Sub-domain 2, since R� is fixed,

deriving the minimizer
(
t
(2)
� , R

(2)
� , z

(2)
�

)
is equivalent to solving a convex problem.

For Sub-domain 3, the optimization problem can be readily solved by applying the

piecewise linear property of g̃(R�). The detailed derivations for
(
t
(2)
� , R

(2)
� , z

(2)
�

)
and(

t
(3)
� , R

(3)
� , z

(3)
�

)
are given in Appendix N.

2.3. The Optimal Solution to V-P3

In Section E-2.2, we have obtained the minimizer (t∗, z∗,R∗) for w. Then, based

on the optimization theory [79], the necessary and sufficient conditions for zero duality

gap are as follows: there exists the feasible policy (t∗, z∗,R∗)|{φγ=φ�
γ ,λ�=λ

�
� ,φ�=φ

�
� , ∀ �,γ}

such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
γ

(∑L
�=1 t

∗
� − 1

)
= 0, ∀ �, γ;

λ
�
(
Eγ

{
e−β�(z

∗
� +t∗�R

∗
� )
}− V�

)
= 0, ∀ �;

φ
�Eγ

{
N
(
1 − q

(�)
th

)
(t∗�R

∗
� + z∗� ) − t∗� g̃s(R

∗
�)
}

= 0, ∀ �;
ψ
γ ≥ 0, λ
� ≥ 0, φ
� ≥ 0.

(5.58)
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Then, the optimal policy to V-P3 is given by

(t∗, z∗,R∗)|{φγ=φ�
γ ,λ�=λ

�
� ,φ�=φ

�
� , ∀ �,γ}. (5.59)

We can solve for the optimal Lagrangian multipliers by using the similar arguments in

the proof of Theorem 7. Specifically, for each channel realization if
∑L

�=1 t
∗
� |ψγ =0 ≤ 1,

we have ψ
γ = 0; otherwise, ψ
γ is the unique solution to
∑L

�=1 t
∗
� = 1. Moreover,

{φ
�}L�=1 and {λ
�}L�=1 will be selected such that “=” holds for constraints given in

Eqs. (5.39)-(5.40). Furthermore, we can design the adaptive tracking method similar

to problem V-P1 to examine the existence of the optimal solution and find the

optimal Lagrangian multipliers.

Note that under the above optimal solution, different {γn}Nn=1, which have the

same ordered permutation, will generate the same function g̃s(R�) defined by Eq. (5.36)

and thus the same adaptation policy. Then, since γn’s are i.i.d. (as assumed in Sec-

tion B), this policy will benefit all receivers evenly, implying q�,0 = q�,1 = q�,2 = · · · =

q�,N = q
(�)
th . Therefore, the original loss-rate constraint is not violated for all multi-

cast receivers. Moreover, since the group-loss-rate constraint given by Eq. (5.40) in

problem V-P3 is a relaxed version of the original loss-rate constraint for each mul-

ticast receiver (given by Eq. (5.32)), the optimal solution to problem V-P3 is also

optimal even if we replace Eq. (5.40) by using the original loss-rate constraint given

by Eq. (5.32).

F. Simulation Evaluations

We use simulation experiments to evaluate the performances of our proposed optimal

adaptive transmission schemes and to investigate the impact of QoS requirements on

resource allocations. Note that the metric “delay” investigated/simulated in simu-
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Fig. 23. Illustration of tracking the optimal Lagrangian multiplier λ∗� for unicast

with zero loss, where the average SNR is γ = 10 dB, the required delay

bound is Pth = 10−4, and the required threshold for the delay-bound

violation probability is Dth = 250 ms.

lations represents the queueing delay, as addressed previously in Section C-2 for the

framework of this chapter. In simulations, we set the signal bandwidth B and time-

frame length T equal to 2× 105 Hz and 10 ms, respectively. The arrival video stream

includes two layers, both of which have constant arrival rates, where A1[k] = 250

Kbps and A2[k] = 150 Kbps. Then, the effective bandwidths of A1[k] and A2[k] are

determined by A1(θ1) = 1.733 × 103 nats/frame A2(θ2) = 1.040 × 103 nats/frame,

respectively. The values of θ1 and θ2 can be derived from solving Eq. (2.9), depending

on the QoS requirements specified by Dth and Pth, � = 1, 2, . . . , L. The wireless chan-

nel follows the Rayleigh fading model and we denote the average SNR by γ. Fig. 23

plots the iterative on-line tracking of the optimal Lagrangian multipliers λ∗� ’s based

on the method used in Section D-1 with ε = 0.01 and α = 0.02. As shown in Fig. 23,

the Lagrangian multipliers quickly converge to the optimal value and oscillate slightly

within the small dynamic ranges, which demonstrates the effectiveness of our tracking

method.

We also investigate some straightforward time-slot allocation schemes as the
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Fig. 24. The complementary cumulative distribution function (CCDF), de-

noted by Pr{D� > d}, of the queueing delay for the unicast scenario

with zero loss for video layer 1 and video layer 2, respectively, where

γ = 15 dB, Pth = 10−4, and the required delay-bound is Dth = 250 ms.

baseline schemes for comparative analyses. We will compare the average resource

consumption between our derived optimal schemes and these baseline schemes under

the same QoS satisfactions.

Fixed time-slot allocation for unicast without loss:

This scheme uses constant time-slot length t�[k] = t�, k = 1, 2, . . . , in all fading

states. The normalized transmission rate is set to R� = log(1 + γ) nats/s/Hz for

the �th video layer. The parameters t�, � = 1, 2, are selected such that the effective

capacity C�(θ�) of the �th video layer’s service process is just equal to C�:

C�(θ�) = − 1

θ�
log
(

E

{
e−θ�t�BT log(1+γ)

})
= C�, (5.60)

where C� = A�(θ�) and � = 1, 2, . . . , L. We can obtain the unique t�’s by numerically

solving the above equation. If we get
∑L

�=1 t� > 1, this scheme cannot guarantee

the QoS requirements under current channel conditions, even using up all time-slot

resources.

Fixed time-slot allocation for unicast with loss tolerance:
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Fig. 25. The CCDF Pr{D� > d} of the queueing delay for the unicast sce-

nario with loss tolerance for video layer 1 and video layer 2, re-

spectively, where γ = 15 dB, Pth = 10−4, Dth = 250 ms, and(
q
(1)
th , q

(2)
th

)
= (0.01, 0.02).

This scheme uses both the constant time-slot length t�[k] = t� and the constant

per-drop rate z�[k] = z� in all fading states. The normalized transmission rate is also

set to R� = log(1 + γ) nats/s/Hz for the �th video layer. The parameters t� and z�

are can be obtained by solving

C�(θ�)=− 1

θ�
log
(
E

{
e−θ�(t�BT log(1+γ)+BTz�)

})
=C� (5.61)

and q� = q
(�)
th for all video layers, where � = 1, 2, . . . , L.

Fixed dominating position scheme for multicast with loss tolerance:

The fixed dominating position (FDP) scheme always sets R� = log(1 + γπ(i�))

nats/s/Hz, where γπ(i) denotes the ith largest instantaneous SNR among all multicast

receivers. The index i� is fixed at i� =
⌈
N
(
1 − q

(�)
th

)⌉
such that the loss-rate QoS is

not violated. Moreover, the FDP scheme also adopts the constant time-slot length

t�[k] = t� and the constant per-drop rate z�[k] = z�, which can be obtained by solving

C�(θ�)=− 1

θ�
log
(
E

{
e−θ�(t�BT log(1+γπ(i�))+BTz�)

})
=C� (5.62)
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Fig. 26. The CCDF Pr{D� > d} of the queueing delay for multicast sce-

nario with loss tolerance for video layer 1 and video layer 2, respec-

tively, where N = 20 receivers, γ = 20 dB,
(
q
(1)
th , q

(2)
th

)
= (0.01, 0.05),

Pth = 10−4, and Dth = 250 ms.

and q�,0 = q
(�)
th for all video layers, where � = 1, 2, . . . , L.

Figures 24, 25, and 26 depict the complementary cumulative distribution func-

tion (CCDF) of the queueing delay, i.e., the probability Pr{D� > d} given a threshold

d, for unicast with zero loss, unicast with loss tolerance, and multicast with loss tol-

erance, respectively. We can observe from Figs. 24-26 that the CCDF’s of all schemes

agree well with the modeling results (see Eqs. (7)-(8)) at each video layer, where the

delay-bound violation probability decreases exponentially against the delay bound.

Moreover, for the required delay bound Dth = 250 ms, the violation probability of all

schemes can be upper-bounded by the targeted Pth = 10−4 for each video layer, which

demonstrates the validity of all schemes in terms of statistical delay-QoS guarantees.

Having shown that all schemes can meet the same QoS requirements, we then focus

on the performance of the average time-slot consumption.

Figures 27 and 28 illustrate the impact of delay-bound Dth and its violation prob-

ability Pth on the resource consumption, respectively. As shown in Figs. 27 and 28,

either smaller Dth or Pth will cause more resource consumption, which is expected
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{∑L
�=1 t�

}
versus

delay-bound requirement Dth, where γ = 15 dB, Pth = 10−4, and(
q
(1)
th , q

(2)
th

)
= (0.01, 0.05).

because the smaller Dth or Pth implies the more stringent delay QoS requirement.

Moreover, under various QoS conditions, our proposed optimal schemes always use

much less wireless resources than the baseline schemes. For multicast services, our

derived optimal scheme consumes at least 15% of total resources less than the FDP

scheme. For unicast services, more resources can be saved by using the optimal

scheme when delay QoS becomes looser, while less resources are saved under the

more stringent QoS constraints.

After demonstrating the superiority of our proposed optimal schemes over the

baseline schemes, Fig. 29(a) plots the average time-slot consumption versus the aver-

age SNR for multi-layer video unicast and multicast. We observe from Fig. 29(a) that

under the same channel conditions, video unicast uses much less time-slot resources

than multicast. When the average SNR is relatively low around 7-8 dB, video unicast

does not need to consume all available time-slot resources. In contrast, video multi-

cast almost uses up all resources even with γ = 13.5 dB for the 6-receiver case. For

the 10-receiver case, the average SNR needs to be larger than 15 dB to provide the



131

10
−6

10
−5

10
−4

10
−3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold for delay−bound volation probability

N
or

m
al

zi
ed

 t
im

e−
sl

ot
 r

es
ou

rc
es

Unicast with zero loss, optimal scheme
Unicast with zero loss, fixed allocation
Unicast with loss tolerance, optimal scheme
Unicast with loss tolerance, fixed allocation
Multicast with loss tolerance, optimal scheme
Multicast with loss tolerance, FDP scheme

Unicast

Multicast, 6 receivers
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versus

the threshold Pth for the delay-bound violation probability, where

γ = 15 dB, Dth = 250 ms, and
(
q
(1)
th , q

(2)
th

)
= (0.01, 0.02).

QoS-guaranteed multicast services. The above observations reflect the key challenges

on wireless multicast. In wireless broadcast channels, since all receivers can hear the

sender, it is ideal that only one copy of data is transmitted such that sizable resources

can be saved. However, due to the heterogeneous fading channels across multicast

receivers, the transmission rate has to be limited within the relatively low range to

avoid too much data loss for receivers with poorer instantaneous channel qualities.

As a result, more time-slot resources are consumed to meet the QoS requirements. In

addition, more multicast receivers result in more resource consumption, as depicted

in Fig. 29(a). But note that although the wireless multicast faces many challenges, it

still uses much less wireless resources than the strategy which uses multiple unicast

links to implement wireless multicast. For example, if using multiple unicast links

to implement multicast, we need the time-slot resources at least N times as much as

the resource consumption for a unicast link. Clearly, for environments simulated in

Fig. 29(a), even with γ = 18 dB, we still do not have enough resources for such a

unicast-based multicast scheme with just 6 receivers. Fig. 29(b) shows the resource
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Fig. 29. (a) The normalized time-slot resource consumption Eγ

{∑L
�=1 t�

}
ver-

sus γ, where Pth = 10−4, Dth = 250 ms,
(
q
(1)
th , q

(2)
th

)
= (0.01, 0.05).

(b) Eγ {t�} for each video layer versus γ, where Pth = 10−4,

Dth = 250 ms,
(
q
(1)
th , q

(2)
th

)
= (0.01, 0.05).

consumption for each video layer. We can see that video layer 1 requires more re-

sources than video layer 2, which is because in our settings the traffic load of layer 1

is higher and the loss-rate QoS of layer 1 is more stringent. Furthermore, in multicast

the difference of resource consumption between the two video layers is larger than the

difference in unicast.

Figure 30 shows the impact from loss-rate constraints on video multicast. As

shown in Fig. 30, even slightly increasing q
(�)
th can significantly reduce the total con-

sumed wireless resources. This is because the higher loss-tolerance level will enable

larger multicast transmission rate and thus consume less time-slot resources. The

above observations suggest that there exists a tradeoff between loss-rate control at

the physical layer and error recovery at the upper protocol layers. As mentioned pre-

viously, the loss-rate q
(�)
th depends largely on the capability of erasure-correction codes

used at upper protocol layers, especially for multicast services. Thus, Fig. 30 sug-
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gests that using more redundancy for forward error-control at upper protocol layers

can effectively decrease the total wireless-resource consumption with QoS guarantees,

while enabling the repair of more data losses at the physical layer.

G. Summary

We proposed a framework to model the wireless transmission of multi-layer video

stream with statistical delay QoS guarantees. A separate queue is maintained for

each video layer and the same statistical delay QoS-requirement needs to be satisfied

by all video layers, where the statistical delay QoS is characterized by the delay-bound

and its corresponding violation probability through the effective bandwidth/capacity

theory. Under the proposed framework, we derived a set of optimal rate adaptation

and time-slot allocation schemes for video unicast/multicast with and/or without

loss tolerance, which minimizes the time-slot resource consumption. We also con-

ducted extensive simulation experiments to demonstrate the impact of statistical QoS

provisionings on wireless resource allocations by using our derived optimal adaptive

transmission schemes.
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CHAPTER VI

ADAPTIVE LOW-COMPLEXITY ERASURE-CORRECTING CODE-BASED

PROTOCOLS FOR QOS-DRIVEN MOBILE MULTICAST SERVICES

A. Introduction

As in wired and/or unicast networks, error-control not only plays an important role

for reliable mobile multicast services over wireless networks, but also provides an

efficient means of supporting QoS diversities for different mobile multicast services

over different mobile users. However, mobile-multicast imposes many new challenges

in error-control for supporting diverse QoS, which are not encountered in wired and/or

unicast networks. First, mobile multicast itself causes feedback implosion problems

in error-control protocols [32–34]. Second, retransmission-based error-control is not

scalable with multicast group size since the retransmission overhead and unnecessary

retransmissions grow up quickly as the number of multicast receivers increases [84,

85]. Third, the packets-loss probabilities over wireless-channels vary dramatically

when user mobility vary significantly and hand-offs occur frequently. Finally, wireless

channels are highly asymmetric where the energy/processing power on uplink from

mobile users are much less than that on downlink from the base station. Clearly,

the problem on how to efficiently integrate the error control with supporting the QoS

diversity for mobile multicast, despite its vital importance, has been neither well

understood nor thoroughly studied.

There are mainly two categories of error-control techniques - Automatic Repeat

request (ARQ) and Forward Error Correction (FEC) erasure coding. ARQ attempts

to retransmit the lost packets while FEC adds the error-control redundancy into the

packet flow such that the receivers recover from packet losses without sending error-
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control feedback to the sender for retransmission. Clearly, FEC is more suitable to the

error-control over mobile multicast services since it can avoid feedback implosion, scale

well with multicast-tree size, and significantly reduce the feedback cost of precious

energy-/processing- power at mobile users. In addition, with FEC any one repairing

packet can repair the loss of different data packets at different multicast receivers [67]

since FEC is a type of packet sequence-number independent error control. As a result,

a significant amount of research for error-control in multicast has mainly focused on

the FEC-based schemes [67].

Most previous FEC-based multicast error-control schemes for multicasting adap-

tations mainly focused on the use of the Reed-Solomon Erasure (RSE) codes [67,86].

However, there are several severe problems inherently associated with RSE-based

schemes when they are applied in mobile multicast. First, the error-control redun-

dancy level needs to be dynamically regulated according to the variation of wireless-

channels’ qualities. Second, the maximum error-control redundancy is upper-bounded

by the RSE-code symbol size, which may lead to decoding failures when the wireless-

channel loss probabilities increases tremendously. Third, RSE codes’ fixed code struc-

tures and decoding algorithm cannot be adjusted according to the QoS variations of

multicast mobile users. Finally and more importantly, the implementation complex-

ity of RSE coding is too high, particularly when RSE block and symbol sizes are

large, to be applicable to the mobile multicast networks where both energy and pro-

cessing powers are severely constrained at mobile users. To overcome these aforemen-

tioned problems, we propose a new adaptive low-complexity graph-code-based hybrid

ARQ-FEC scheme for QoS-driven mobile multicast services. The main features of

our proposed scheme are two-fold: the low complexity and dynamic adaptation to

the variations of packet-loss level and QoS requirements of multicast mobile users.

In addition, unlike the existing RSE-code-based schemes, our proposed scheme can
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Fig. 31. (a) Iterative decoding for graph codes. (b) Employing graph codes in

packet level, where D forms a transmission group (TG).

automatically adjust the error-control redundancy level according to different QoS

requirements.

This chapter is organized as follows. Section B introduces the low-complexity

graph-codes used for erasure-error corrections. Section C describes the system model

for the QoS-driven Section D the QoS-driven Section D proposes the two-dimensional

(2-D) adaptive mobile multicast error-control scheme and presents its analytical and

numerical analyses. Section E evaluates the performance of our proposed schemes

through simulations. The chapter concludes with Section F.

B. Low-Complexity Erasure Graph Codes

The principle and structure of the graph code [87] can be described by a bipartite

graph shown in Fig. 31(a). A bipartite graph consists of two disjoint classes of nodes.

Two nodes in different classes can be connected by an edge, but there are no edges

connecting any two nodes within the same class. The number of edges connected to

a node is called degree of that node. In a bipartite graph, each node on the left-hand

side, representing a data bit, is called a data node. Each node on the right-hand
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side, representing a parity-check bit, is called a check node. Consider a graph code of

length n with k data nodes and (n−k) check nodes in a bipartite graph. Let di denote

the ith data bit and cj denote the jth check bit. We call the edge-connection pattern

between data nodes and check nodes in the bipartite graph the mapping structure of

the graph code, each of which determines a specific graph code structure.

As shown in Fig. 31(a), each check bit is calculated as the sum in GF(2) (Galois

Fields) of all the data bits connected to it. Graph codes can iteratively correct/repair

the erasure errors by decoding through simple modulo-2 additions [87] (we use “+”

to represent modulo-2 additions in all encoding/decoding operations throughout this

chapter) as follows.

Step 1: Search for the check bits which are connected with only one lost data bit.

Step 2: Recover corresponding lost data bits according to this code mapping struc-

ture.

Step 3: Go back to Step 1 until all the lost data bits are repaired or no more can

be repaired.

Fig. 31(a) shows an example of this procedure. First, assume d1 and d2 are the only

lost bits as only lost bits as shown in Fig. 31(a)–(i). Thus, repaired by d1 = dj +cn−k.

Following this, d2 can be iteratively repaired by d2 = d1 + dk + c1 as shown in

Fig. 31(a)–(ii). Clearly, it is possible some lost Fig. 31(a)–(ii). Clearly, it is possible

some lost data bits still cannot be repaired even after the iterative decoding procedure

ends, depending on the code’s mapping structure used and which/how many data bits

are lost.

The graph code mapping structures can be algebraically expressed by the code-

structure matrix P = (pij)k×(n−k) with pij ∈ {0, 1}, where pij equals 1 (0) if the ith

data bit is (not) connected to the jth check bit in the bipartite graph. Then, we can

obtain the (n − k)-bit long check-bit vector c by the simple encoding procedure as
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follows:

c � [c1 c2 . . . cn−k] = dPk×(n−k) (6.1)

in GF(2) from the k-bit long data-bit vector d � [d1 d2 . . . dk]. Considering the sys-

tematic graph codes, the generator matrix of graph codes can be expressed as Gk×n =

[Ik×k Pk×(n−k)], and an n-bit long code word can be generated by w = dGk×n. Then,

the degrees of the ith data node, denoted by αi, and jth check node, denoted by γj,

are equal to the number of 1’s in the ith row and jth column of P, respectively. We

also call αi and γj the weights of the ith row and jth column, respectively. Generally,

in order to increase the probability of successful decoding/repairing and reduce the

computational complexity, αi and γj are designed to be much smaller than k. This

implies that a sparse P is usually required.

The most important advantage of the graph-code-based error-control schemes [87,

88] is that the encoding/decoding time-complexity is much lower as compared to the

RSE-code-based schemes. Consequently, the graph-code-based error-control scheme

has been applied into the asynchronous reliable multicast transmission [68] to achieve

high efficiency while keeping the error-control complexity low. In addition, the de-

coding procedures for graph codes can be iteratively performed with any number of

check packets correctly received instead of having to wait until at least k distinct

packets (including both data and check packets) are correctly received, like in the

decoding of RSE codes. This can help save a significant amount of bandwidth for

QoS-driven mobile multicast services. Moreover, graph-code-based schemes enable

the code structures to be adaptive for improving the error-control efficiency.

To extend graph codes to the packet level in implementing hybrid ARQ-FEC-

based multicast services over wireless networks, we divide the source data packet

stream into blocks each consisting of k consecutive data packets, which form trans-
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mission groups (TG) [see Fig. 31(b)]. The number k is called TG size. Assuming the

packet length is L bits, we denote a data packet by an L× 1 column vector �di where

i = 1, 2, . . . , k, as shown in the solid-lined box on the left-hand side in left-hand side

in Fig. 31(b). Let k data packets form DL×k, as shown in Fig. 31(b), where the jth

column comes from the jth data packet and the ith row consists of the ith bit of

all k data packets. Then, the encoding procedure given by Eq. (6.1) can be used to

generate a 1 × (n − k) check-bit vector in the ith row of the check matrix C. The

data bits in a row and corresponding check bits forms a code word as shown in a

dash-lined box in Fig. 31(b). All the jth check bits in each row of C form the jth

check packet with L bits long, denoted as �cj , where j = 1, 2, . . . , (n − k), as shown

in the solid-lined box on the right-hand side in Fig. 31(b). Fig. 31(b). The above

encoding procedure at the packet level can be algebraically expressed in GF(2) by

CL×(n−k) = DL×kPk×(n−k), (6.2)

which is virtually the same as the encoding procedure given by Eq. (6.1) at the bit

level.

C. System Model of Hybrid ARQ–FEC-Based Mobile Multicast

1. The Hybrid ARQ–FEC-Based Mobile-Multicast Transmission Model

We model the mobile multicast transmission system by a multicast tree, which con-

sists of one sender and a number of mobile multicast receivers. The sender multicasts

a stream of data packets to each receiver with the required packet-loss-rate QoS, de-

noted by ξ [see Eq. (6.3)]. We assume that the packet losses are independent and

identically distributed (i.i.d.) in terms of time (for different packets) and space (for

different receivers). The assumption of i.i.d. loss for different packets is particularly
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suitable for wireless networks, where the random loss often happens, unlike the wired

networks, where the data loss usually occurs in the bursty fashion due to the conges-

tion in bottlenecks. It should be also noted that FEC codes usually have much higher

erasure-correcting capability for random loss than for bursty loss. The integrated

ARQ-FEC error-control scheme is implemented through closed-loop information ex-

changes by using forward and feedback control packets between the sender and the

receivers in the mobile multicast tree. Also, we assume that all control informa-

tion can be reliably transmitted. The error-control information is exchanged in each

transmission round (TR), which is defined as follows. To implement the adaptive

error-control, a TG of data packets are usually transmitted through a number of

TR’s. Each TR begins with the sender multicasting k data packets (i.e., data-packet

TR or retransmission round) or a certain number of check packets (i.e., check-packet

TR) and ends with the sender having received consolidated feedbacks from all mul-

ticast receivers. So, TR is also the basic control period of adaptation, where TR is

indexed by t = 1, 2, . . ..

The packet stream from the data source is divided into a number of TG’s each

with k data packets. For each TG, the sender multicasts the k data packets in the first

TR. Then, the sender waits until all feedback packets arrive, which carry the error-

control information from the mobile receivers. Based on the feedback error-control

information (e.g., the packet-loss level, to be detailed later), the sender determines

to transmit either a new next TG or a number of parity-check packets to repair

losses for the current TG. Specifically, unless the reliability-QoS [to be detailed later

in Eq. (6.3) and Section C-2] is satisfied by all receivers, the sender must generate a

number of check packets from the k data packets of the current TG and then multicast

them to all mobile receivers for loss repairing. This loss-repairing procedure repeats

until the reliability-QoS requirement is satisfied by all mobile receivers. However, if
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the reliability-QoS fails to be satisfied after all the available check packets have been

generated and transmitted, the retransmission of the current TG must be executed

by the sender. In addition, we assume that the control information such as the packet

sequence number and the packet-loss transmitted between the sender and receivers.

To achieve excellent performance, several parameters need to be selected carefully. A

set of parameter selection algorithms are presented in Section D.

2. Different QoS Requirements for Mobile Multicast Services

While there are a wide range of QoS metrics, we mainly focus on the QoS metrics

closely associated with the error-control for mobile multicast, which include the re-

liability and transmission delays. To efficiently use the limited resources in mobile

wireless networks while supporting QoS requirements, the error-control parameters

need to be adjusted dynamically according to the different QoS requirements for

different mobile multicast services. In particular, the real-time (e.g., video/audio)

mobile multicast services must upper bound the transmission delay, but can tolerate

a certain packet losses, implying that a relatively higher packet-loss rate is allowed

than that for reliable services. Furthermore, this required loss-rate QoS threshold

can be increased (or decreased) as the required quality of the received audio/video

streams decreases (or increases). On the other hand, the data mobile multicast ser-

vices must have zero loss while tolerating a certain transmission delay. As a result,

the various QoS requirements of interest in this chapter can be characterized by the

reliability QoS. We define the required reliability-QoS by packet-loss rate, denoted by

ξ. To complete the transmission of a TG with the required packet-loss rate QoS ξ in

the t-th TR, the following condition must be satisfied by all receivers:

fr(t)

k
≤ ξ, ∀ 1 ≤ r ≤ R, (6.3)
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where fr(t) is the number of lost/unrepaired data packets of a TG for the rth re-

ceiver after completing decoding procedures in the t-th (t = 1, 2, . . .) TR. Note that

reliability-QoS is not the only QoS measure in this chapter. On the condition that

reliability-QoS requirements must be satisfied, we also consider other QoS metrics

such as the average delay and so on, which are defined in Section C-4. For our

proposed error-control scheme, once the condition given in Eq. (6.3) is Eq. (6.3)

is satisfied for a certain number t of loss repairing TR’s, the sender stops sending

check/repairing packets for the current TG and then immediately starts transmitting

the next new TG. As a result, a significant amount of bandwidth can be saved for

graph-code-based error-control schemes where the decoding procedure can proceed

iteratively and cumulatively with any number of correctly received check packets. By

contrast, RSE-code-based schemes do not have this advantage because the decod-

ing procedure cannot start for a mobile multicast receiver until at least k distinct

data/check packets have been correctly received at this receiver. Note that through-

out this chapter, we use two similar terms which have different meanings, namely, 1)

packet-loss rate, denoted by ξ, represents the required reliability-QoS; (2) packet-loss

probability p, denoted by p, represents the channel quality.

3. The Cost-Effective Feedback Signaling Algorithms

To solve the feedback explosion and synchronous problems, we propose to use the

Soft-Synchronous Protocol developed by [32–34] (SSP) in this adaptive protocol for

mobile multicast services, which consolidates the numbers fr(t), r ∈ {1, 2, . . . , R}, of

lost data packets for the rth receiver in the t-th TR by selecting/feeding back the

maximum number θmax(t) of lost packets among all receivers as:

θmax(t) � max
r∈{1,2,...,R}

{fr(t)}. (6.4)
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in the t-th TR with t = 1, 2, . . .. Note that the feedback consolidation procedure given

by Eq. (6.4) is just the general procedure, which in fact is iteratively implemented at

each branch-node within that multicast sub-trees. Thus, Eq. (6.3) can be equivalently

rewritten as

θmax(t)

k
=

max
r∈{1,2,...,R}

{fr(t)}
k

≤ ξ, ∀ 1 ≤ r ≤ R. (6.5)

By using SSP, the packet-sequence-independent error-control schemes can be effi-

ciently applied. The feedbacks only contain information of the number of lost packets

rather than a series of the sequence numbers of lost packets during each TR. Con-

sequently, the feedback bandwidth overhead is significantly reduced. Note that by

using SSP, the sender adjusts error-control parameters for each next TR only based

on the worst packet-loss level among all receivers. For the detailed SSP, see [32–34].

4. Performance Metrics

For the FEC based error-control protocols/schemes used in mobile multicast, we use

the following metrics to evaluate their performance.

4.1. Bandwidth Efficiency η:

To complete the transmission for a TG with k data packets, the sender usually

needs to transmit a random number M (M ≥ k) of packets until Eq. (6.5) is satisfied.

We define the bandwidth efficiency η by

η � k

E{M} , (6.6)

where E{M} is the expectation of M . Clearly, we have 0 ≤ η ≤ 1. The high

bandwidth efficiency implies the high error-control efficiency for the error-control

schemes. Since the RSE code has almost the highest error-control efficiency/capability

for erasure channels (the RSE code is a type of maximum-distance separable (MDS)
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code [88]), the performance of a new FEC-based protocol (not RSE-code-based) can

be evaluated by comparing its η with that of the RSE code in terms of following

criteria: 1) For reliable services, η should be close to ηRS, which is the bandwidth

efficiency for RSE-code-based error-control schemes; 2) η dose not decrease quickly

when packets loss probability increases; 3) η does not decrease quickly when the

number of receivers increases and thus the protocol has good scalability.

4.2. Average number E{Q} of TR’s to Reach the Reliability-QoS Requirement ξ:

We denote the number of TR’s to complete the transmission of a TG and its

expectation by Q and E{Q}, respectively. Clearly, to obtain the feedbacks in each

TR, the sender needs to wait at least a round-trip-time (RTT), which is the major

contributor to the delay. Thus, a multicast protocol needs to keep a low E{Q}
to achieve the low delay. Also, a low E{Q} represents low overhead introduced to

multicast services.

4.3. Average delay QoS to Reach the Reliability-QoS Requirement ξ:

The average delay, denoted by τ , to complete the transmission of a TG between

the sender and the receivers is expressed by using Eq. (6.6) as

τ =
LE{M}

B
+ (RTT )E{Q} =

kL

ηB
+ (RTT )E{Q}, (6.7)

where L is the packet length (we assume fixed packet length throughout the chapter),

B is the bottleneck bandwidth among all receivers, and RTT is the maximum end-

to-end round trip time among all the sender-receiver pairs. From Eq. (6.7), our error-

control scheme has two factors affecting the delay QoS. One is bandwidth efficiency η

and the other is total average number E{Q} of TR’s. Either increasing η or decreasing

E{Q} will improve the delay QoS. However, increasing η may lead to a higher E{Q}.
Thus, this introduces a tradeoff between η and E{Q}.
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D. The Two-dimensional Adaptive Error-Control Design Based on Graph Codes

Unlike RSE based FEC multicast error control, where the sender only dynamically ad-

justs the code redundancy according to the packet-loss levels while the coding scheme

(RSE codes) stays the same, to further improve error-control efficiency and sup-

port the QoS diversity, we propose the two-dimensional graph-code-based multicast

error-control schemes that regulate not only the code redundancy, but also the code

structures, dynamically, based on different packet-loss levels fed back from multicast

mobile receivers. This is motivated by our analyses of the graph-code-based schemes,

which indicate that besides adapting error-control redundancy in each TR, the loss-

repairing efficiency can also be significantly improved by using the nonuniformed code

mapping structures corresponding to different packet-loss levels. The key components

and principles of our proposed two-dimensional adaptive graph-code-based scheme for

providing the QoS-driven mobile multicast services are detailed below in terms of code

mapping-structure adaption and error-control redundancy adaption, respectively.

In particular, for the transmission of each TG, the matrix P characterizing

the graph code (see Section B) is composed of (Q − 1) sub-matrices denoted by

P1,P2, . . . ,PQ−1, where P = [P1 P2 · · · PQ−1]. The sub-matrix Pt−1 represents the

mapping structure for the check packets generated in the t-th TR (the 1st TR is the

data transmission round). In the t-th TR, t ≥ 2, the sender dynamically generates

Pt−1 for loss-repairing according to the packet-loss level θmax(t). Also, the error-

control redundancy in the t-th TR (the number of check packets or, equivalently, the

number of columns of Pt−1) is dynamically determined according to θmax(t). How to

determine the mapping structure of Pt−1 and the error-control redundancy in each

TR will be elaborated on in Sections D-1 and D-2, respectively.
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1. Code Mapping Structure Adaptation

The construction of the graph code’s mapping structure for one check packet (one

column of Pt−1) includes two parts. One is the selection of check-node degree (the

numbers of 1’s in each column of Pt−1), denoted by γ. The other is the selection of

which γ data packets are connected to the check packet (edge-connection pattern) in

the bipartite graph. Consider one single receiver. We denote the packet-loss level by

θ. Because losses are i.i.d. for different packets, then given the packet-loss level θ,

the probabilities of the occurrence for each loss pattern (loss pattern refers to which

θ data packets are lost) are equal. Consequently, the probability of repairing one lost

data packet by one single check packet does not depends on edge-connection pattern,

but only on the check-node degree γ. Thus, we select the check-node degree and

edge-connection pattern separately.

In this chapter, we propose to use the random mapping structure for the con-

struction of each check packet. In particular, for each check packet, we randomly

choose γ distinct data packets and then connect them with this check packet in the

bipartite graph. Note that each data packet is equally likely to be chosen. In ad-

dition, because a TR is the adaptation cycle, we let all check packets in a TR have

the same check-node degree. Also, we assume that the random selections of edge-

connection pattern for different check packets are independent. The random mapping

structure described above has the following characteristics. First, it is easy for im-

plementation. Second, the supported maximum error-control redundancy is virtually

not upper-bounded. Third, by using the same random-number generating algorithm

and setting the same initial random-number seed, both the sender and all receivers

can construct the exactly same mapping structure in each TR based on the same

control information, e.g., the packet-loss level. Thus, the sender needs to transmit
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Table III. Parameters and Metrics to Evaluate the Repairing Efficiency

k Size of a transmission group.
θ The number of lost/unrepaired data packets out of k data packets, also called packet-loss

level.
γ Check-node degree.
� The number of data packets which are successfully repaired by m received check packets.

0 ≤ � ≤ min{m, θ}.
ψm(k, θ, γ, �) Given k, θ and γ, the probability that total � data packets are successfully repaired by m

(m ≥ 1) received check packets.
Nm(k, θ, γ) Given k, θ and γ, the average number of successfully repaired data packets by m (m ≥ 1)

received check packets, which is defined to characterize the loss-repairing efficiency.
γ∗m(k, θ) Given the number of received check packets m and packet-loss level θ, the optimal check-node

degree maximizing the loss-repairing efficiency.

only a small amount of control information instead of the entire mapping structure

to all receivers.

Next, we discuss how to select the check-node degree in each TR to achieve high

error-control efficiency. Note that in this section, the derived parameter selection

algorithms are based on the single receiver case. However, these algorithms are also

efficient for multiple receiver cases. Because the consolidated θmax(t) represents the

highest packet-loss level among all receivers’, thus the derived algorithms actually aim

at efficiently improving the error-control efficiency for the receiver with the worst-case

losses.

For the given check-node degree γ, packet-loss level θ, and m correctly received

check packets, we derive the average number Nm(k, θ, γ) of successfully repaired data

packets to characterize the loss-repairing efficiency, which is expressed as

Nm(k, θ, γ) =

min{θ,m}∑
�=1

� ψm(k, θ, γ, �), (6.8)

where ψm(k, θ, γ, �) is the probability that total � data packets are successfully re-

paired by m (m ≥ 1) received check packets under given k, θ and γ. All the related

parameters are defined in Table III. Also, we define the optimal check-node degree by

γ∗m(k, θ) � arg max
1≤γ≤k

Nm(k, θ, γ), (6.9)
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which maximizes the average number of successfully repaired data packets.

a. Single check packet case m = 1

We first discuss the single check packet case (m = 1). Note that with a single

check packet (m = 1), at most one lost data packet can be repaired. Thus, loss-

repairing efficiency becomes N1(k, θ, γ) which actually equals the loss-repairing prob-

ability ψ1(k, θ, γ, 1). Theorem 9 introduced below derives the equations and criteria

to determine the optimal check-node degree γ∗ for any given code size k and the

number θ of lost packets with the single (m = 1) check packet.

Theorem 9. If a graph code has k data packets in which θ data packets are lost

randomly with i.i.d. distributions, then the following claims hold for k ≥ 1 and

θ = 1, 2, . . . , k.

Claim 1. The probability, denoted by ψ1(k, θ, γ, 1), that one (� = 1) lost packet can

be repaired by one (m = 1) received parity-check packet with check-node degree γ is

determined by

ψ1(k, θ, γ, 1) = N1(k, θ, γ) =

⎧⎪⎨⎪⎩
θγ(k−θ) !(k−γ)!
(k−γ−θ+1) !k !

, if γ ≤ k − θ + 1;

0, if γ > k − θ + 1.
(6.10)

Claim 2. For any given (k, θ) satisfying k ≥ 1 and 1 ≤ θ ≤ k, there exists the max-

imum for N1(k, θ, γ) as the function of γ, and the maximizer γ∗1(k, θ) is determined

by

γ∗1(k, θ) � arg max
1≤γ≤k

N1(k, θ, γ)

= arg max
1≤γ≤k

ψ1(k, θ, γ, �)
∣∣∣
�=1

=

⌈
(k + 1) − θ

θ

⌉
, (6.11)
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where �w� denotes the least integer number that is larger than or equal to w.

Claim 3. The dynamics of ψ1(k, θ, γ, 1) is symmetric with respect to θ and γ such

that ψ1(k, θ, γ, 1) = ψ1(k, γ, θ, 1), and if and only if (θ = 1, γ∗1(k, 1) = k) or (θ =

k, γ∗1(k, k) = 1), ψ1(k, θ, γ, 1) attains its least upper bound ψ∗
1

(
k, θ, γ∗1(k, θ), 1

)
deter-

mined by

ψ∗
1

(
k, θ, γ∗1(k, θ), 1

)
= sup

1≤θ≤k
1≤γ≤k

{ψ1(k, θ, γ, 1)}

=ψ1

(
k, θ, γ∗1(k, θ), 1

)|(θ=1,γ∗1 (k,1)=k) or (θ=k,γ∗1 (k,k)=1)

=1. (6.12)

Proof. The detailed proof is provided in Appendix O.

Remarks on Theorem 9. Claim 1 derives general expressions for loss-repairing

probability/efficiency with a single check packet. Claim 2 states the existence and

gives the closed-form expression of γ∗1(k, θ). For any given (k, θ), a γ either much

larger, or much smaller, than γ∗1(k, θ) is undesired. This is expected since a γ much

larger than γ∗1(k, θ) can increase the cases of having two or more than two edges

of the same check packet to be connected to the lost data packets, while a γ much

smaller than γ∗1(k, θ) can yield more cases where all edges of the check packet are only

connected to the correctly received data packets. Equation (6.11) makes the critical

observation packets. Equation (6.11) makes the critical observation decreasing func-

tion of the number θ of lost data packets. More importantly, Eq. (6.11) provides the

network designers with a closed-form analytical expression to calculate the optimal

value γ∗1(k, θ) of check-node degree according to feedback of packet-loss level θ for any

given graph code block size k. Claim 3 implies that variables θ and γ are function-



150

1 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Check-node degree 

R
ep

ai
ri

ng
 p

ro
ba

bi
lit

y 
1(k

,
,

, 1
)

1
* ( k,  )k = 255

 = 1

 = 2

 = 3
 = 4

 = 20

Fig. 32. Repairing probability ψ1(k, θ, γ, 1) versus check-node degree γ.

θ = 1, 2, . . . , 20 and k = 255.

ally equivalent or exchangeable. In addition, this claim derives the conditions when

ψ1(k, θ, γ, 1) attains its globally absolute maximum. When θ = 1, i.e., at most one

data packet is lost for any multicast receivers, the optimal check-node degree satis-

fies γ∗1(k, θ) = k based on Claim 2. Thus, the check packet actually is the modulo-2

addition of all the data packets (in this case, the code reduces to the well-known

single parity check code [89, Chapter 3.8.1]) and its loss-repairing probability attains

its upper bound 1 according to Claim 3. It is clear that this mapping structure can

repair the lost packet for any loss pattern with θ = 1. Since this case corresponds to

the possible last mapping structure to be selected for θ = 1 immediately before all

lost packets are repaired, we call this mapping structure the final protocol, which has

the highest loss-repairing efficiency with a single check packet. Under this condition,

the multicast system reaches a special state, where the sender only needs to keep on

transmitting the check packet generated by the final protocol until all the lost data

packets have been repaired. On the other hand, if θ = k (all data packets are lost),

γ∗1(k, k) = 1 should be selected to guarantee repairing one lost packet. Thus, the

protocol effectively reduces to the retransmission protocol.

Fig. 32 numerically plots the loss-repairing probability ψ1(k, θ, γ, 1) against check-
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Fig. 33. Check-node degree γ∗1(k, θ) versus the number θ of lost-data packets.

k = 127, 255, 511, 1023.

node degree check-node degree γ. We can see from Fig. 32 packet-loss level θ, there is

the optimal γ∗1(k, θ) which maximizes ψ1(k, θ, γ, 1), as marked with a circle in Fig. 32,

verifying the as marked with a circle in Fig. 32, verifying the Eq. (6.11), Fig. 33

plots the optimal check-node degree γ∗1(k, θ) against the packet losses θ with different

code-block sizes k = 127, 255, 511, 1023, which show γ∗1(k, θ) is a decreasing function

of θ. So, we should select small check-node degree if packet-loss level is high and

vice versa. Also, we observe that the smaller θ is, the faster γ∗1(k, θ) increases as θ

decreases. All the above observations suggest that the nonuniformed code structures

should be used to achieve the high error-control efficiency. In addition, for any given

θ, Fig. 33 shows that the larger the block-size k, the higher the optimal check-node

degree γ∗1(k, θ). This is also expected since a large k implies that we need to have

more repairing edges from the check nodes connected to the data packets to cover the

lost data packets, and vice versa.

b. Multiple check packet case (m > 1)

In realistic systems, we usually need to send multiple check packets in each TR rather

than only a single check packet. However, the derivations of Nm(k, θ, γ) and γ∗m(k, θ)
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Fig. 34. Check-node degree γ∗m(k, θ) versus packet-loss level θ. m = 1, 2, 3 and

k = 255, 511.

become much more complicated as m increases. For simplicity, we still select the

check-node degree as γ = γ∗1(k, θ) even for m ≥ 2. To investigate the impact of m

on the selection of γ∗m(k, θ), we derive the analytical expressions of ψm(k, θ, γ, �)’s for

m = 2, 3, which are summarized by Eqs. (6.13) through (6.17). Correspondingly,

Nm(k, θ, γ) can be derived by using Eq. (6.8) and ψm(k, θ, γ, �) given in Eqs. (6.13)-

(6.17). Then, we can obtain γ∗m(k, θ) through Eq. (6.9).

Fig. 34 plots the numerical results of γ∗m(k, θ) against θ for m = 1, 2, 3. From

m = 1, 2, 3. From Fig. 34, we observe that the very close to each other for all θ.

Thus, it can be expected that setting the check-node degree equal to γ∗1(k, θ) will not

cause significant performance loss for multiple check packet cases. Based on the above

discussions, we only use Eq. (6.11) to select the check-node degree in our proposed

adaptive protocol.
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ψ2(k, θ, γ, 1)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ(k−θ

γ−1)

(k
γ)

2

[
2
(
k
γ

)
+ (1 − 2θ)

(
k−θ
γ−1

)− 2(θ − 1)
(
k−θ
γ−2

)]
, if 2 ≤ γ ≤ k − θ + 1, θ ≥ 1;

(1+2k)θ−2θ2

k2 , if γ = 1, θ ≥ 1;

0, otherwise,

(6.13)

ψ2(k, θ, γ, 2)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2(k−θ+γ)(θ

2)(
k−θ
γ−1)(

k−θ+1
γ−1 )

(k−θ+1)(k
γ)

2 , if 2 ≤ γ ≤ k − θ + 1, θ ≥ 2;

2
k2

(
θ
2

)
, if γ = 1, θ ≥ 2;

0, otherwise,

(6.14)

ψ3(k, θ, γ, 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(k−θ
γ−1)

(k
γ)

3

{
3
[(

k
γ

)− θ
(
k−θ
γ−1

)− (θ − 1)
(
k−θ
γ−2

)] · [(k
γ

)− (θ − 1)
(
k−θ+1
γ−1

)]
+
(
k−θ
γ−1

)2}
,

if 2 ≤ γ ≤ k − θ + 1, θ ≥ 1;

θ
k3

[
3(k − θ)2 + 3(k − θ) + 1

]
, if γ = 1, θ ≥ 1;

0, otherwise,

(6.15)
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ψ3(k, θ, γ, 2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6(θ
2)(

k−θ
γ−1)

(k
γ)

3

{(
k−θ+1
γ−1

) [
k−θ+γ
k−θ+1

((
k
γ

)− θ
(
k−θ
γ−1

)− (2θ − 3)
(
k−θ
γ−2

)− (θ − 2)
(
k−θ
γ−3

))
+(2 − γ−1

k−θ+1
)
(
k−θ
γ−2

)]
+
(
k−θ
γ−1

)2}
, if 3 ≤ γ ≤ k − θ + 1, θ ≥ 2;

6(θ
2)

(k
2)

3

{
(1 − θ)(k − θ)3 +

[(
k
2

)− 4θ + 5
]
(k − θ)2 +

[
2
(
k
2

)− 4θ + 7
]
(k − θ)

}
,

if 2 = γ ≤ k − θ + 1, θ ≥ 2;

6
k3 (k − θ + 1)

(
θ
2

)
, if γ = 1, θ ≥ 2;

0, otherwise,

(6.16)

ψ3(k, θ, γ, 3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6(θ
3)(

k−θ
γ−1)

(k
γ)

3

[(
k−θ
γ−1

)2
+ 6
(
k−θ
γ−1

)(
k−θ
γ−2

)
+ 3
(
k−θ
γ−1

)(
k−θ
γ−3

)
+ 9
(
k−θ
γ−2

)2
+ 6
(
k−θ
γ−2

)(
k−θ
γ−3

)]
,

if 3 ≤ γ ≤ k − θ + 1, θ ≥ 3;

6(θ
3)

(k
2)

3

[
(k − θ)3 + 6(k − θ)2 + 9(k − θ)

]
, if 2 = γ ≤ k − θ + 1, θ ≥ 3;

6
k3

(
θ
3

)
, if γ = 1, θ ≥ 3;

0, otherwise.

(6.17)

2. Error-Control Redundancy Adaptation

After the check-node degree is selected in each TR, we need to determine an ap-

propriate error-control redundancy (the number of check packets constructed and

transmitted) in each TR based on the current packet-loss level θ. We denote the

error-control redundancy in a TR by T . Consider the case where we select a very

large T for the current TR. During the iterative decoding/repairing procedures in the

current TR, the packet-loss level θ decreases gradually such that the selected γ∗1(k, θ)

cannot achieve near optimal loss-repairing probability with the changed θ. That is,
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if T is too large, the loss-repairing efficiencies of a majority of check packets received

in the corresponding TR drop with the gradually decreasing packet-loss level. Conse-

quently, more check packets are required because of the low loss-repairing efficiency,

which severely degrades the bandwidth efficiency. If T is too small, although we can

avoid the problems mentioned above, the improvement of the bandwidth efficiency is

achieved at the cost of a higher Q, which may lead a long delay. Thus, we need to

select a balanced T in each TR.

We develop a loss-covering strategy to determine T . For a given graph code, if a

data node/packet is connected to one or more check nodes/packets, we say that this

data node/packet is covered. In order for a lost data packet to be repaired, it must be

covered. Under this principle, we develop the following covering criterion to obtain

a balanced T with the given TG size k, check-node degree γ, and packet-loss level θ.

Covering Criterion: Using the random mapping structure, we let T in a TR

equal the average number T (k, θ, γ) of check packets required to cover at least one

lost data packet or, equivalently, to cover at least (k − θ + 1) data packets.

Clearly, under the above covering criterion, the error-control redundancy T (k, θ, γ)

is affected by both γ and θ. The following Theorem 10 derives the closed-form solution

to T (k, θ, γ) for the above developed covering criterion.

Theorem 10. Using the random mapping structure, if the TG size is equal to k, the

check-node degree is equal to γ, 1 ≤ γ ≤ k, and the packet-loss level is equal to θ,

1 ≤ θ ≤ k, then the average number T (k, θ, γ) of check packets required to cover at

least one lost packet or, equivalently, at least (k − θ + 1) data packets is given by,

T (k, θ, γ) =

⎧⎪⎨⎪⎩ 1, if γ ≥ k − θ + 1;

h0, if γ < k − θ + 1,
(6.18)
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where h0 is determined by the following iterative equations:⎧⎪⎪⎨⎪⎪⎩
hi =

1

1 − ρi,i

(
1 +

k−θ+1∑
j=i+1

ρi,jhj

)
, if 0 ≤ i ≤ k − θ;

hk−θ+1 = 0,

(6.19)

and ρi,j, for 0 ≤ i, j ≤ k − θ + 1, is given by

ρi,j=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i

γ−j+i
)(
k−i
j−i
)
/
(
k
γ

)
, if 0 ≤ j − i ≤ γ ≤ j and j < k − θ + 1;

min{i+γ,k}∑
v=k−θ+1

(
i

γ−v+i
)(
k−i
v−i
)
/
(
k
γ

)
, if j = k − θ + 1 and i+ γ ≥ j;

0, otherwise.

(6.20)

Proof. This Theorem is proved by using the Markov Chain model as described in

Appendix P.

Note that
(
u
v

)
= u!/((u−v)!v!) for nonnegative integers u and v, u ≥ v ≥ 0. Also,

T (k, θ, γ) may not be an integer. Then, we let T = �T (k, θ, γ)� to determine the error-

control redundancy in each TR. Fig. 35 numerically plots the error-control redundancy

T (k, θ, γ∗1(k, θ)) in a TR against the packet-loss level θ. Through Fig. 35, we level θ.

Through Fig. 35, we have the T (k, θ, γ∗1(k, θ)) increases (decreases) with the increasing

of packet-loss level θ when θ is relatively small (large). This is because packet-loss

level θ and check-node degree γ∗1(k, θ) jointly determine T (k, θ, γ∗1(k, θ)). On the one

hand, if θ becomes large, the check packets need to cover a smaller number (k−θ+1)

of data packets such that fewer check packets can satisfy the covering criterion. On

the other hand, a smaller γ∗1(k, θ) is selected if θ becomes large. Thus, each check

packet covers fewer data packets and thus more check packets are required to satisfy

the covering criterion. When θ is relatively small, γ∗1(k, θ) decreases quickly (see

Fig. 33) and then the change of γ∗1(k, θ) dominates the variation of T (k, θ, γ∗1(k, θ)).
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Fig. 35. Error-control redundancy T (k, θ, γ∗1(k, θ)) in a TR versus packet-loss

level θ under the covering criterion.

As a result, the envelop of T (k, θ, γ∗1(k, θ)) increases as θ increases. In contrast, when

θ is relatively large, γ∗1(k, θ) decreases very slowly, then, the change of packet-loss level

θ dominates the variation of T (k, θ, γ∗1(k, θ)). Thus, the envelop of T (k, θ, γ∗1(k, θ))

decreases as θ increases when θ is large. (ii) We observe that T (k, θ, γ∗1(k, θ)) oscillates

as θ increases, which can be explained as follows. From (6.11), all the packet-loss levels

can be divided into a number of regions resulted from the �·� operation, within each

of which γ∗1(k, θ) remains the same. Consequently, T (k, θ, γ∗1(k, θ)) is a decreasing

function of θ within each region because with more losses, we need fewer check packets

to satisfy the covering criterion. However, because γ∗1(k, θ) is the decreasing function

of θ (see Fig. 33), the value of γ∗1(k, θ) drops between the boundary points of two

neighboring regions. Then, more check packets are required in a TR to satisfy the

covering criterion because each check packet covers fewer data nodes. According to

the above analyses, the covering criterion is jointly controlled by θ and γ such that

we can achieve the balanced error-control redundancy.
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Table IV. Variables Used in Pseudo Codes

k The number of data packets in each TG.
γ Check-node degree which is dynamically adjusted in each TR.
T Error-control redundancy which is dynamically adjusted in each TR.
ξ Reliability-QoS requirement. See (6.3).
D L× k matrix denoting data packets of a TG. See Section B.
Ct L× T matrix denoting the check packets generated and multicast by the sender in the t-th TR.

See Section B.
Pt−1 k×T mapping structure matrix, which is used to generate Ct in the t-th TR, where Ct = DPt−1.
state The random-number seed which is used to randomly construct mapping structures. It is initial-

ized with the same value in the sender and all receivers.
P P = [P1 P2 · · · Pt−1] for the t-th TR, t ≥ 2.

Table V. Pseudo Code for the Sender.

00. Initial data transmission for a new TG:
01. t := 1; Initialize random-number seed state;

! Both the sender and all receivers initialize state to the same value.
02. Update D; Multicast D.
03. On receipt of feedbacks of the t-th TR from all receivers:
04. θmax(t) := maxr=1,2,...,R{fr(t)};
05. if (θmax(t)/k ≤ ξ) goto line-00; ! QoS requirement is satisfied.
06. else { t := t+ 1; ! Next TR.
07. (Pt−1, state) :=Construct(θmax(t − 1), , state);

! Adaptively construct mapping structure matrix
08. Ct := DPt−1; Multicast θmax(t − 1) and Ct; ! Loss repairing.}

3. The Adaptive Graph-Code-Based Hybrid ARQ-FEC Protocol for Error-Control

of Multicast

We describe our proposed adaptive two-dimensional hybrid ARQ-FEC protocol for

error control of multicast by using the pseudo codes presented in Tables V-VII. The

variables used in pseudo codes are defined in Table IV. We explain the pseudo codes

as follows.

1) Protocol for the sender:

The sender multicasts a data TG D in the first TR. Then, the sender waits

for feedbacks fr(t) from all receivers, where r = 1, 2, . . . , R. After having received

all feedbacks, the sender gets the maximum number of lost data packets θmax(t).
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Table VI. Pseudo Code for the rth Receiver.

00. Initialization, on receipt of a new TG:
01. t := 1; θmax(0) := k; fr(0) := k;
02. Initialize random-number seed state.

! Both the sender and all receivers initialize state to the same value.
03. On receipt of packets from the sender in the t-th TR:
04. if (fr(t − 1)/k ≤ ξ) {Update fr(t) := fr(t− 1); goto line-13; }

! Required reliability-QoS is satisfied
05. if (t = 1) {Save correctly received data packets; Update fr(t);}

! Initial data transmission
06. else { ! Receipt of check packets
07. Save θmax(t − 1) and correctly received check packets;
08. (Pt−1, state) := Construct(θmax(t− 1), state);

! Adaptively construct the mapping structure matrix
09. if (t = 2) P := P1;
10. else P := [P Pt−1];
11. Decode based on P and all correctly received packets;
12. Update fr(t); }
13. Feed back fr(t) to the sender; t := t+ 1;

Table VII. Pseudo Code for the Mapping Structure Construction Function.

00. Function Construct(θmax(t − 1), state);
01. if (θmax(t − 1) := 1) {Pt−1 := (1, 1, . . . , 1)τ ; T := 1;
02. γ := k; } ! Final protocol, Pt−1 is a k × 1 column vector
03. else {
04. Set γ := γ∗1 (k, θmax(t − 1)) by using (6.11);
05. T := 
T (k, θmax(t − 1), γ)� by using (6.18)-(6.20);

! Select check-node degree and error-control redundancy
06. Randomly build Pt−1 with γ, T , and state; Update state; }
07. return (Pt−1, state); }

If θmax(t)/k ≤ ξ, the reliability-QoS requirement is satisfied and the sender starts

to multicast the next new TG. If θmax(t)/k > ξ, the sender needs to execute loss-

repairing procedures in the next TR. Set t := t + 1. The sender constructs the

mapping structure Pt−1 in the t-th TR according to packet-loss level θmax(t − 1).

After that, the sender multicasts Ct = DPt−1 and θmax(t− 1) to all receivers. Then,

the sender goes into the state waiting for feedbacks.

2) Protocol for the rth receiver where r = 1, 2, . . . , R:

The rth receiver receives a data TG D in the first TR. Then, the rth receiver
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calculates fr(t), feeds it back to the sender, and set t := t + 1. On condition that

θmax(t − 1)/k > ξ, the rth receiver will receive θmax(t − 1) and a number of check

packets in the current t-th TR. If the reliability-QoS requirement for the rth receiver is

already satisfied, i.e., fr(t−1)/k ≤ ξ, the rth receiver will ignore the received packets,

simply set fr(t) := fr(t− 1) and feed fr(t) back. If the reliability-QoS requirement is

not satisfied, i.e., fr(t−1)/k > ξ, the rth receiver will construct the mapping structure

Pt−1 for the current TR and start the iterative decoding (repairing) procedures. Note

that although Pt−1 is constructed according to the loss status in last TR, the decoding

is performed based on the all Pu, u = 1, 2, . . . , t−1, and all packets correctly received

for the current TG to fully make use of the received redundancy. After the repairing

procedure, the rth receiver feeds the updated fr(t) back to the sender. Having sent

the feedback information fr(t), the rth receiver sets t := t+ 1 and goes into the state

waiting for new packets from the sender.

3) Protocol for the mapping structure construction function:

In the data TR, no mapping structure will be constructed. In loss-repairing

TR’s, if θmax(t − 1) = 1, the final protocol will be selected. If θmax(t − 1) > 1, the

check-node degree γ and error-control redundancy T are selected based on (6.11) and

(6.18)-(6.20). By using the same random number generating algorithm, the sender

and corresponding mapping structures for the t-th TR with the selected parameters

γ and T . Note that the sender and all receiver initialize the random-number seed

state to the same value in the first TR as described in Tables V and VI. Also, as

assumed in the packet-loss level θmax(t− 1) can be reliably transmitted between the

sender and receivers in each TR. Thus, the sender and all receivers can always get the

same parameters T and γ in each TR and then construct the exactly same mapping

structure.
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Fig. 36. Bandwidth efficiency η versus packet-loss probability p for reliable ser-

vices.

E. Performance Evaluations

Using simulations, we evaluate the performance of our proposed adaptive graph-

code-based multicast protocol for mobile multicast services. We also compare the

performances of the adaptive graph-code-based protocol with those using RSE codes,

non-adaptive graph codes (also using random mapping-structure) and pure ARQ-

based approach. The TG size k is set to 255. For RSE-code-based schemes, the

sender sends θmax(t) check packets in each repairing TR. We simulate the RSE codes

(509,255) and (291,255) with the symbol size of 10 bits, the corresponding code rates

of which are 0.501 and 0.876, respectively. Note that the two RSE codes can support

maximum 254 and 36 check packets, respectively. For non-adaptive graph-code-based

schemes, the sender uses the constant γ and T in each repairing TR. We simulate

two sets of parameters, (γ = 7, T = 74) and (γ = 15, T = 47). In the simulation,

we consider the packet-loss probability p equal to 0.001 through 0.1, which typically

covers a wide range of channel quality for mobile wireless networks.

Figure 36 compares bandwidth efficiency for reliable services (ξ = 0) under dif-
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Fig. 37. Bandwidth efficiency η with different number R of receivers for reliable

services.

ferent packet-loss probabilities. As shown in Fig. 36, the Fig. 36, the adaptive graph-

code-based protocol can gain at least 10% higher bandwidth efficiency than those us-

ing non-adaptive graph codes. Moreover, for low packet-loss probability, bandwidth

efficiency of the adaptive scheme is very close to that of RSE-code-based schemes.

Under high packet-loss probability, RSE codes with high code rate (e.g., 0.876) cannot

provide enough error-control redundancy and thus lead to decoding failure, retrans-

mission, and the very low η. In contrast, our proposed adaptive scheme can support

sufficient error-control redundancy to avoid this problems by using the random map-

ping structure for graph codes. Fig. 37 shows that the bandwidth efficiency of the

adaptive graph-code-based scheme is not sensitive to the increasing of the number R

of receivers. This indicates that our proposed adaptive scheme has good scalability.

Fig. 38 gives the average number E{Q} of TR’s to complete the transmission of a

TG for each scheme. We can see that E{Q} of our proposed adaptive scheme is usu-

ally lower as compared to the non-adaptive graph-code-based schemes and the pure

ARQ-based approach. This implies that the adaptive scheme imposes a relatively low

overhead to multicast services.
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Figure 39 compares the bandwidth efficiency for various protocols under different

reliability-QoS requirements ξ from 0.0 to 0.1. As shown in shown in Fig. 39, when

the requirement ξ becomes larger (more losses are tolerated), the bandwidth efficiency

of the adaptive graph-code-based protocol improves significantly and becomes much

closer to the performance of RSE-code-based approaches. This phenomenon can be

explained as follows. Using the adaptive graph codes, receivers can dynamically up-

date packet-loss status in each TR because the iterative decoding procedure can be

executed as long as any number of check packets are received. Thus, for various

reliability-QoS requirements, our proposed adaptive scheme can efficiently avoid un-

necessary repairing packet transmission for perfect reliability. In contrast, because

the decoding of RSE codes can be performed only after k or more distinct data/check

packets having been correctly received, RSE codes cannot further improve bandwidth

efficiency η when reliability-QoS requirement ξ increases.

Figure 40 shows the average number E{Q} of TR’s with different ξ. We can see

that our proposed adaptive scheme has much lower E{Q} than those of RSE-based

schemes when ξ is high. Fig. 41 illustrates a comprehensive Fig. 41 illustrates a
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Fig. 39. Bandwidth efficiency η versus the reliability-QoS requirement ξ.

k = 255 and p = 0.05, 0.1.

comprehensive effect of the reliability-QoS requirement on the average delay. In the

simulation, we assume that packet length L = 1000 bits, bandwidth B = 1 Mbps and

the maximum RTT among all the sender-receiver pairs equal 80 ms. With the same

channel quality, we can observe that our proposed adaptive scheme can achieve even

lower average delay than those of RSE-code-based schemes as ξ increases. This again

verifies that our proposed adaptive protocol can efficiently avoid unnecessary repairing

packet transmission such that performances can be further improved. In contrast,

although RSE codes have the best erasure-correcting capability, its inflexible structure

and high complexity severely limit its applicability to QoS-driven mobile multicast

services. By contrast, our proposed adaptive scheme can flexibly and dynamically

adjust coding structures to achieve high error-control efficiency for highly-diverse

QoS requirements.

F. Conclusion

To provide flexible and efficient error-control schemes for QoS diverse multicast ser-

vices, we developed and analyzed an adaptive hybrid ARQ-FEC graph-code-based
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erasure-correcting protocol for the QoS-driven multicast services over mobile wireless

networks. The key features of our proposed scheme are two-fold: the low complex-

ity and dynamic adaptation to packet-loss levels. The low complexity is achieved

by using the graph code. In addition, the accumulatively iterative decoding proce-

dures of graph codes can flexibly adapt to the variations of reliability-QoS require-

ments. To increase the error-control efficiency, we proposed a two-dimensional adap-

tive error-control scheme, which dynamically adjusts both the error-control redun-

dancy and code-mapping structures in each adaptation step according to packet-loss

levels. By deriving and identifying the closed-form nonlinear analytical expression

between the optimal check-node degree and the packet-loss level for any given code-

block length, we proposed the nonuniformed adaptive coding structures to achieve

high error-control efficiency. Furthermore, we developed a loss covering strategy to

determine the error-control redundancy in each transmission round and derive the

corresponding analytical expressions of the error-control redundancy. Using the pro-

posed two-dimensional nonuniformed adaptive error-control scheme, we developed an

efficient hybrid ARQ-FEC protocol for multicast. We evaluated the proposed proto-
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col through simulation experiments. The simulation results show that our proposed

adaptive scheme can achieve high error-control efficiency for QoS-driven multicast

services while introducing low computational complexity and implementation over-

head.
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CHAPTER VII

RESOURCE ALLOCATION FOR DOWNLINK STATISTICAL MULTIUSER

DELAY-QOS PROVISIONINGS IN CELLULAR WIRELESS NETWORKS

A. Introduction

The rapidly increasing demands on wireless orientated applications accelerate the

evolution of next-generation wireless networks. In this chapter, we focus on down-

link multiuser delay quality-of-service (QoS) provisionings via dynamic resource al-

location in cellular networks. Although there have been a great deal of research

on resource allocation for this scenario from multiuser information theory perspec-

tive [10,15,18,39], these works are not comprehensive to characterize a wide range of

delay QoS requirements. In [10, 15], the authors derived the ergodic capacity region

for distributing independent information to multiple users over broadcast fading chan-

nels, which corresponds to the scenario without any delay constraints. On the other

hand, the authors of [18] proposed the optimal power allocation for outage capacities

over broadcast fading channels, where the service rate for each user is a constant

with a certain outage probability. This framework imposes extremely stringent de-

lay requirements for wireless services. Likewise, there have been many references

focusing only on the above two extreme cases. However, because one of the most

attractive features of the next-generation networks is the capability of supporting the

diverse delay QoS requirements, we need to take various delay QoS constraints into

consideration to develop the new resource allocation schemes.

To achieve efficient wireless communications while supporting diverse delay QoS

requirements, we employ the effective capacity as the main performance metric in

this chapter. The effective capacity was defined in [8] to evaluate the capability of a
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wireless service process in supporting data transmission subject to a statistical delay

QoS requirement metric, called QoS exponent and denoted by θ. The higher θ cor-

responds to the more stringent delay constraint. Also, θ can continuously vary from

0 to ∞, and thus a wide spectrum of QoS constraints can be readily characterized

by a general model. Moreover, the authors of [19] showed that the effective capacity

model can also yield insightful observation from the information theory perspective.

In [19], by integrating the information theory with the effective capacity approach, we

proposed a framework to maximize the effective capacity of a point-to-point wireless

link via power adaptation, where we adopts the QoS exponent θ as the delay con-

straint. We showed that the effective capacity builds connections between the ergodic

capacity and zero-outage capacity through θ. As θ approaches 0, our study becomes

to obtain the ergodic capacity. When θ goes to ∞, the framework reduces to deriving

the zero-outage capacity.

However, incorporating the effective capacity model into multiuser communica-

tions still faces significant challenges, which are not encountered in the single wireless

links. First, the effective-capacity optimization over a single link addressed in [19]

only deals with the fixed time slots and/or bandwidths, but the multiuser systems

often have to dynamically allocate these resources based on mobile users’ channel

state information (CSI). Second, the multiuser systems usually need to balance the

performances among all mobile users where the single-link based strategies are not

applicable. How to allocate resources among mobile users depends closely on the

users’ QoS requirements and their priorities to receive the wireless services.

To overcome the above problems, we formulate the sum effective capacity maxi-

mization problem via power and time-slot length adaptation subject to the proportional-

effective-capacity constraint and the diverse statistical delay QoS requirements. To

effectively deal with the non-additive objective function, we decompose the original
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optimization problem into two sub-problems and then derive the optimal power and

time-slot adaptation policy. We also develop a suboptimal equal-length TD policy.

We simulate our proposed schemes to show the impact of QoS provisionings on the

resource allocation across different users and on the network performance.

The rest of the chapter is organized as follows. Section B describes the sys-

tem model. Section C formulates the optimization problem for adaptive resource

allocation. Section D derives the optimal power and time-slot length adaption pol-

icy. Section E evaluates our proposed schemes through simulations. The chapter

concludes with Section F.

B. The System Model

We consider the scenario where the base station (BS) transmits independent messages

to N different mobile users over broadcast fading channels in a cellular wireless net-

work, as shown in Fig. 42. The fading channels are assumed to be ergodic, stationary,

and flat block-fading processes. In particular, the complex channel gains for the link

between the BS and mobile users are invariant within a time frame with length T ,

but vary independently from frame to frame. We index the time frames by k for

k = 1, 2, . . .. The BS employs time division (TD) for multiple user access, where

each time frame of length T is divided into N time slots. In the kth time frame, we

denote the length of the nth time-slot by Tn[k], which is allocated to the nth mobile

user, where
∑N

n=1 Tn[k] = T . In our derivations, we use the more general constraint∑N
n=1 Tn[k] ≤ T by taking the outage transmission states into account. Also, we

denote the time proportion of the nth time slot by ϕn[k], where ϕn[k] = Tn[k]/T .

Then, in the nth mobile user’s time slot, the physical-layer model for the above sys-

tem can be expressed by yn[k] = hn[k]xn[k] + zn[k], n = 1, 2, . . . , N , where xn[k] is
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the complex signal transmitted to the nth mobile user with signal bandwidth B,

hn[k] is the complex channel gain between the BS and the nth mobile user, yn[k] is

the corresponding received signal, and zn[k] is the complex additive white Gaussian

noise (AWGN) with power spectral density σ0/2. The transmit power used in the

nth time slot, denoted by μn[k], is given by μn[k] � E{|xn[k]|2}, where E{·} de-

notes the expectation. Furthermore, we define νn[k] � μn[k]ϕn[k], which is the total

power consumed by the nth mobile user within the kth frame. For the convenience

of presentation, we further define the vectors: ϕ[k] � (ϕ1[k], ϕ2[k], . . . , ϕN [k]) and

ν[k] � (ν1[k], ν2[k], . . . , νN [k]).

Without loss of generality, we characterize the channel state information (CSI)

by γn[k] � |hn[k]|2P/(σ0B), which is called the reference SNR, where P is the average

power threshold (to be detailed later). Correspondingly, we define the CSI vector as

γ[k] � (γ1[k], γ2[k], . . . , γN [k]) to represent a fading state. Inspired by the stationary

properties of the fading channels, we use γn to represent the mean of γn[k], and

denote the joint probability density function (pdf) of γ[k] by fΓ(γ). Throughout this

chapter, we assume that CSI γn[k], n = 1, 2, . . . , N , can be estimated accurately at

the receivers and reliably fed back to the BS without delay. When the context is

clear, we drop the frame index [k] to simplify the notation.

The BS maintains a separate queue for each mobile user, as shown in Fig. 42,

and regulates the resource allocation, including the time-slot and power allocation,

based on the CSI, such that the QoS requirements for each user can be efficiently

supported. Clearly, the power and time-slot allocation can be characterized by the

pair (ϕ,ν), where ϕ is the time-proportion vector and ν is the power vector. In

addition, the adaptive transmission needs to satisfy the average power constraint,

which is given by Eγ{
∑N

n=1 νn} ≤ P, where Eγ{·} is the expectation over all γ and P
is the average power threshold. Moreover, we assume that the adaptive modulation
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Fig. 42. The downlink communication model in a cellular wireless network.

and coding (AMC) technique is used with the capacity-achieving codes, such that the

Shannon capacities for all mobile users in each frame can be achieved. Accordingly,

given (ϕ,ν), we set the data transmission rate (bits/frame) for the nth mobile user,

denoted by Rn, equal to

Rn =

⎧⎨⎩ BTϕn log2

(
1 + νnγn

ϕn

)
, if ϕn > 0, νn > 0;

0, if ϕn = 0, νn = 0,
(7.1)

where n = 1, 2, . . . , N .

C. The Optimization Problem Formulation

1. Statistical QoS Requirements

As discussed in Chapter II, the effective capacity [8] is a powerful approach to evaluate

and devise the capability of a wireless channel to support data transmissions with

diverse statistical quality of service (QoS) guarantees. In this chapter, we use QoS

exponent θn as the QoS requirements from the nth mobile users.
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2. Framework for Adaptive Resource Allocation with Statistical QoS Provisionings

We denote the QoS exponent for the nth mobile user by θn, 0 < θn < ∞, n =

1, 2, . . . , N . Based on Eq. (2.8), the nth mobile user’s effective capacity, denoted by

Cn(θn), is equal to

Cn(θn) = − 1

θn
log
(

Eγ

{
e−θnRn

})
, bits/frame. (7.2)

Correspondingly, the normalized effective capacity (bits/s/Hz) of the nth receiver,

denoted by Cn(βn), is defined as Cn(βn) � Cn(θn)/(TB), where βn � θnTB/ log 2 is

the normalized QoS exponent. To optimize the overall network throughput achievable

by the entire cellular system, we propose to optimize the sum effective capacity over

all mobile users, which is denoted by Csum(θ) and expressed as

Csum(θ) �
N∑
n=1

TBCn(βn), (7.3)

where θ � (θ1, θ2, . . . , θN). Also, the normalized sum effective capacity, denoted

by Csum(θ) is defined by Csum(β) � Csum(θ)/(TB), where β � (β1, β2, . . . , βN).

Moreover, we have the following system constraints:

Constraint 1. Time slot constraint: in any fading state,
∑N

n=1 ϕn ≤ 1 needs to be

satisfied.

Constraint 2. Average power constraint: as aforementioned in the above, the av-

erage sum power over all mobile users needs to be upper-bounded by a specified

threshold P, i.e.,
∑N

n=1 Eγ {νn} ≤ P.

Constraint 3. Proportional-effective-capacity constraint: each user is allocated a

service-class label, denoted by ρn (0 < ρn < ∞, n = 1, 2, . . . , N), under which

Cn(βn)’s need to satisfy C1(β1)/ρ1 = C2(β2)/ρ2 = · · · = CN(βN )/ρN . Clearly, the

higher ρn implies the higher priority and the user with higher ρn achieves the larger
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effective capacity. We further define ρ � (ρ1, ρ2, . . . , ρN).

To optimize the sum effective capacity, the time-slot and power allocation policy

(ϕ,ν) needs to be the function of not only the CSI γ, but also the QoS parameters

θ and ρ. Then, we derive the optimal resource allocation scheme by solving the

following Problem VII-A.

VII-A : Sum effective capacity optimization

max
(ϕ,ν)

{
Csum(β)

}
(7.4)

s.t. : 1).
C1(β1)

ρ1
=

C2(β2)

ρ2
= · · · =

CN(βN )

ρN
, (7.5)

2).
∑N

n=1 Eγ {νn} ≤ P, νn ≥ 0, (7.6)

3).
∑N

n=1 ϕn ≤ 1, ϕn ≥ 0. (7.7)

Accordingly, the optimal adaptation policy to Problem VII-A is denoted by

(ϕopt,νopt).

D. The Optimal Power and Time-Slot Length Adaptation Policy

1. Decomposition of Problem VII-A

Since Csum(β) is not an additive objective function over all fading states, it is in-

tractable to process each fading state separately, and thus it is hard to directly derive

the optimal solution for Problem VII-A. To overcome this problem, we decompose
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Problem VII-A into two sub-problems (SP) as follows.

SP I : min
(ϕ,ν)

{
N∑
n=1

Eγ {νn}
}

(7.8)

s.t. : 1). An
(
ϕn, νn

)− 2−βnρnC0 ≤ 0, ∀n, (7.9)

2).
∑N

n=1 ϕn − 1 ≤ 0, ϕn ≥ 0, ∀γ, (7.10)

where

An
(
ϕn, νn

)
�Eγ

{
e−θnRn

}
=Eγ

{(
1 + νnγn

ϕn

)−βnϕn
}

(7.11)

and C0 ≥ 0 is a specified constant. Clearly, SP I minimizes the average power

required to guarantee Cn(βn) ≥ ρnC0, n = 1, 2, . . . , N , with the given C0. We denote

the optimal adaptation policy to SP I by (ϕ∗,ν∗), and denote the average power

consumed under (ϕ∗,ν∗) by P
∗
(C0). Next, consider SP II give by

SP II : Solve for C ∗
0 such that

P
∗
(C ∗

0 ) = P. (7.12)

With the obtained C ∗
0 , we then get the solution to Problem VII-A as νopt = ν∗|C0=C ∗

0

and ϕopt = ϕ∗|C0=C ∗
0
. The proof for the optimality of solution obtained through the

above decomposition method is provided in the following sections.

2. The Optimal Solution to Sub-Problem I

Define Sn � {(0, 0)} ∪ R
2
++, n = 1, 2, . . . , N , which is a convex set, where R++

denotes the set of positive real numbers. According to the definition of convex func-

tion [77, Chapter 3.14], we can easily prove that (1 + νnγn/ϕn)
−βnϕn is strictly convex

over (ϕn, νn) ∈ Sn. Then, SP I is a convex problem based on the criteria in [77, Chap-

ter 4.2.1]. Thus, we can solve SP I by applying the standard Lagrangian method and
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the Karush-Kuhn-Tucker (KKT) conditions, and derive the optimal adaptation policy

in Theorem 11 as follows.

Theorem 11. The optimal adaptation policy (ϕ∗,ν∗) to SP I is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕ∗
n=

1

βn

⎡⎣ log (βnγnψ
∗
n)

1 +W
(
γnε∗γ−1

e

) − 1

⎤⎦+

;

ν∗n=
ϕ∗
n

γn

{
exp

(
1 +W

(
γnε

∗
γ − 1

e

))
− 1

}
,

(7.13)

where W (z) is the Lambert-W function [74], ψ∗
n, for n = 1, 2, . . . , N , is fixed in all

fading states, and ε∗γ varies with γ. In fading state γ, if γn ≤ 1/(βnψ
∗
n) for all

1 ≤ n ≤ N , we have ε∗γ = 0; otherwise, ε∗γ is the solution to the equation

∑N
n=1 ϕ

∗
n = 1. (7.14)

Moreover, ψ∗
n, for n = 1, 2, . . . , N , needs to be selected such that

An
(
ϕn, νn

)− 2−βnρnC0 = 0, ∀ 1 ≤ n ≤ N. (7.15)

Proof. Construct the Lagrangian function, denoted by L(ϕ,ν;ψ, εγ), as

L(ϕ,ν;ψ, εγ) =

N∑
n=1

Eγ{νn} + Eγ

{
εγ

(
N∑
n=1

ϕn − 1

)}

+

N∑
n=1

ψn

(
An
(
ϕn, νn

)− 2−βnρnC0

)
, (7.16)

where ψ � (ψ1, ψ2, . . . , ψN), ψn ≥ 0 is the Lagrangian multiplier associated with

the constraint of Eq. (7.9), and εγ ≥ 0 is Lagrangian multiplier associated with

the constraint of Eq. (7.10) in fading state γ. Based on the convex optimization

theory, the optimal adaptation policy (ϕ∗,ν∗) and the corresponding Lagrangian
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multipliers, denoted byψ∗ and ε∗γ, are the solution to the Karush-Kuhn-Tucker (KKT)

conditions [77] summarized in the following Eq. (7.17) through Eq. (7.20).

For all 1 ≤ n ≤ N , if ϕ∗
n > 0 and ν∗n > 0, (ϕ∗

n, ν
∗
n) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂L(ϕ∗,ν∗;ψ∗, ε∗γ)

∂ϕn
= 0;

∂L(ϕ∗,ν∗;ψ∗, ε∗γ)

∂νn
= 0;

ϕ∗
n > 0, ν∗n > 0;

(7.17)

if Eq. (7.17) does not have solutions, we get

ϕ∗
n = 0, ν∗n = 0. (7.18)

Furthermore, the KKT conditions require the following equations:

ε∗γ
(∑N

n=1 ϕ
∗
n − 1

)
= 0, ε∗γ ≥ 0, ∀γ , (7.19)

ψ∗
n

(
An
(
ϕ∗
n, ν

∗
n

)− 2−βnρnC0
)

= 0, ψ∗
n ≥ 0, ∀n . (7.20)

Plugging Eqs. (7.11) and (7.16) into Eq. (7.17), we obtain the following equations:

0 = εγ − ψnβn

(
1+

γnνn
ϕn

)−1−ϕnβn

×
[(

1 +
γnνn
ϕn

)
log

(
1 +

γnνn
ϕn

)
− γnνn

ϕn

]
; (7.21)

0 = 1 − ψnβnγn

(
1 +

γnνn
ϕn

)−1−ϕnβn

, (7.22)

whose solutions are ϕ∗
n and ν∗n, if ϕ∗

n > 0 and ν∗n > 0. Solving Eqs. (7.21)-(7.22) and

applying Eq. (7.18), we obtain Eq. (7.13) in Theorem 11. If γn ≤ 1/(βnψ
∗
n) for all

n = 1, 2, . . . , N , through Eq. (7.13) we have
∑N

n=1 ϕ
∗
n = 0 regardless of ε∗γ. Then, to

satisfy Eq. (7.19), we get ε∗γ = 0. If there is some n such that γn > 1/(βnψ
∗
n), ε

∗
γ → 0

leads to ϕ∗
n → ∞, which is not feasible. Thus, we must have ε∗γ > 0, and obtain

Eq. (7.14) by using Eq. (7.19). Similarly, ψ∗
n = 0 results in (ϕ∗

n, ν
∗
n) = (0, 0) for all γ,

which violates Eq. (7.9). Therefore, ψ∗
n > 0 holds for all n and we get Eq. (7.15) by
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solving Eq. (7.20), which completes the proof of Theorem 11.

Equation (7.15) in Theorem 11 shows that under the adaptation policy (ϕ∗,ν∗),

we get Cn(θn) = ρnC0, ∀n, i.e., the proportional-effective-capacity constraint is sat-

isfied. Moreover, we have the following Corollary 1.

Corollary 1. The average power P
∗
(C0) consumed under (ϕ∗,ν∗) is a monotonically

increasing function of C0.

Proof. Assume that there exist C ′
0 and C ′′

0 , where C ′
0 < C ′′

0 , such that P
∗
(C ′

0) >

P
∗
(C ′′

0 ) holds. Since 2−βnρnC ′′
0 < 2−βnρnC ′

0 , the policy generated by Theorem 11 with

C0 = C ′′
0 is also feasible to SP I with C0 = C ′

0. Based on Theorem 11 we then get

P
∗
(C ′

0) ≤ P
∗
(C ′′

0 ), however, which contradicts the assumption P
∗
(C ′

0) > P
∗
(C ′′

0 ).

Thus, Corollary 1 follows by contradiction.

To implement the policy generated by Theorem 11, we need to solve for ψ∗ �

(ψ∗
1, ψ

∗
2, . . . , ψ

∗
N ) and ε∗γ. Unfortunately, the general analytical expressions for these

solutions are usually intractable. Given ψ∗, Theorem 11 shows that ε∗γ can be ob-

tained in each fading state by solving
∑N

n=1 ϕ
∗
n = 1. Moreover, Eq. (7.13) shows that∑N

n=1 ϕ
∗
n is a decreasing function of ε∗γ, and thus it is easy to determine ε∗γ by using

the numerical searching techniques.

Based on the dual convex optimization theory [77, Chapter 5], ψ∗ is also the

maximizer of the Lagrangian dual function [77], which is concave over ψ∗. We then

can apply the widely used iterative subgradient optimization method [90] to optimize

the Lagrangian dual function and track the maximizer ψ∗.

3. The Optimal Solution to Problem VII-A

Since P
∗
(C0) is an increasing function of C0, it is not difficult to determine C ∗

0 in

Eq. (7.12) by using numerical searching techniques. Moreover, based on the mono-
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tonic property of P
∗
(C0), we can show that the decomposition method developed in

Section D-1 yields the optimal adaption policy to Problem VII-A, which is summa-

rized in Theorem 12 as follows.

Theorem 12. The optimal adaptation policy to Problem VII-A is given by

(ϕopt,νopt) = (ϕ∗,ν∗)|C0=C ∗
0
, (7.23)

where (ϕ∗,ν∗) is determined by Theorem 11 and C ∗
0 is the solution to Eq. (7.12).

Proof. Assume there is a policy (ϕ′,ν ′) �= (ϕopt,νopt), which is feasible to Prob-

lem VII-A with Cn(βn)/ρn = C ′
0 and the average power equal to P

′
. To prove the

optimality of (ϕopt,νopt), we only need to show C ∗
0 ≥ C ′

0. We then derive

P
∗
(C ∗

0 )
(a)
= P

(b)

≥ P
′ (c)

≥ P
∗
(C ′

0), (7.24)

where (a) follows by using Eq. (7.12), (b) holds because (ϕ′,ν ′) is feasible to Prob-

lem VII-A, and (c) is due to Theorem 11. Finally, applying Corollary 1 to Eq. (7.24),

we get C ∗
0 ≥ C ′

0 and complete the proof of Theorem 12.

It is worth noting that when N = 1, the one-to-many communication network

becomes the point-to-point wireless communication link and we only need to regulate

the transmit power. Correspondingly, we can show that the optimal power allocation

given in Eq. (7.13) will then reduce to the same form as the optimal power-adaptation

scheme derived in [19], where the effective capacity is maximized for a single wireless

link with the average power constraint.

4. The Suboptimal Equal-Length TD Policy

We also develop a suboptimal but simpler scheme for resource allocation. In particu-

lar, we fix ϕn = 1/N in each fading state and only regulate transmit power vector ν
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to optimize Csum(β) under the proportional-effective-capacity constraint in Eq. (7.5).

Because we equally allocate time-slot length among mobile users, we call this subopti-

mal strategy the equal-length TD policy. This problem can be solved by applying the

similar decomposition method used in Section D-1. We first specify a C0, and then

minimize the total average power
∑N

n=1 Eγ{νn} required to satisfy Cn(βn) = ρnC0,

n = 1, 2, . . . , N . Since the time-slot length is fixed, minimizing the total average

power is equivalent to minimizing E{νn} for N point-to-point links separately (see

discussions of Theorem 12 for power allocation over the point-to-point link). Next, we

search for C0 such that the total average power reaches the average power threshold

P. Then, we obtain the equal-length TD policy with such a C0 and the separate

power control for N mobile users.

E. Simulation Evaluations

We evaluate our proposed adaptive resource allocation schemes through simulations.

In the simulations, we employ Nakagami-m [70] as the typical fading-channel model.

Fig. 43(a) plots the normalized effective capacity of mobile user 1 versus that of mo-

bile user 2 for a two mobile-users network, where each plot is obtained by letting

ρ1/ρ2 vary from 0 to ∞. We can see from Fig. 43(a) that our derived optimal adapta-

tion policy achieves much larger effective capacities as compared to the equal-length

TD policy. Thus, our derived optimal policy can use the wireless resources more

efficiently to optimize the overall throughput for the entire network. Also, Fig. 43(a)

shows that when βn’s for both mobile users get larger, implying more stringent delay

QoS requirements, the achievable effective capacities for both mobile users become

smaller. Fig. 43(b) illustrates the impact of QoS exponents on resource allocation.

In particular, we fix β2 = 1 but change β1. Fig. 43(b) shows that a higher β1 leads
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Fig. 43. (a) C1(β1) versus C2(β2) in a two mobile-users network, where

γ1 = γ2 = 1, γn’s follow independent Nakagami-m fading with m = 2,

and P = 1. (b) Average power Eγ{ν1} versus the 1st mobile user’s

normalized QoS exponent β1, where β2 = 1 for mobile user 2 is fixed.

γn’s follow independent Nakagami-m fading with m = 2, γ1 = γ2 = 1,

and P = 1. (c) Normalized sum effective capacity Csum(β) versus the

number N of mobile users, where γn’s follow independent Nakagami-m

fading with m = 2, γ1 = γ2 = · · · = γN = 1, ρ1 = ρ2 = · · · = ρN = 1,

β1 = β2 = · · · = βN , and P = 1.
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to more power proportion allocated to user 1. This is expected because in order

to support more stringent delay requirement, more power is used to overcome deep

channel fading. However, this will cause the degradation of the overall network perfor-

mance due to the inefficient consumption of the limited resources. Fig. 43(c) studies

the effects of the QoS provisionings and the number of mobile users on the network

throughput performance. Specifically, Fig. 43(c) plots the normalized sum effective

capacity Csum(β) versus the number N of mobile users, where β1 = β2 = · · · = βN .

As shown in Fig. 43(c), a larger N yields the higher sum effective capacity, which

makes sense because of the following reasons. The existence of multiple mobile users

reduces the probability that all mobile users experience deep fading during the same

time period. Thus, the base station can take advantage of the better channel qualities

among mobile users to improve the overall network throughput. Moreover, we can see

from Fig. 43(c) that as the QoS exponent βn gets larger, increasing N cannot effec-

tively improve the sum effective capacity. This is because given larger QoS exponent,

the BS needs to allocate more power to mobile users when their channel qualities

are poorer. Then, the cellular system has to sacrifice power efficiency to compensate

the deep channel fading, and thus increasing N does not improve the sum effective

capacity significantly.

F. Summary

We derived the optimal channel-aware time-slot length and power allocation pol-

icy in cellular networks to maximize the sum effective capacity while satisfying the

proportional-effective-capacity constraint and guaranteeing the diverse statistical QoS

requirements from different mobile users. We also developed a suboptimal but sim-

pler equal-length TD policy. Simulation results demonstrated the impact of QoS
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provisionings on the resource allocation across different mobile users and the network

performance, and showed that our derived optimal adaptation policy significantly

outperforms the equal-length TD policy.
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CHAPTER VIII

DELAY-QOS-AWARE BASE-STATION SELECTIONS FOR DISTRIBUTED

MIMO LINKS IN BROADBAND WIRELESS NETWORKS

A. Introduction

In order to increase the coverage of broadband wireless networks, distributed multiple-

input-multiple-output (MIMO) techniques, where multiple location-independent base

stations (BS) cooperatively transmit data to mobile users, have attracted more and

more research attentions [40–44]. In particular, the distributed MIMO techniques can

effectively organize multiple location-independent BS’s to form the distributed MIMO

links connecting with mobile users, while not requiring too many multi-antennas,

which are expensive, equipped at individual BS’s. Like the conventional central-

ized MIMO system [45–47], the distributed MIMO system can significantly enhance

the capability of the broadband wireless networks in terms of the quality-of-service

(QoS) provisioning for wireless transmissions as compared to the single antenna sys-

tem. However, the distributed nature for cooperative multi-BS transmissions also

imposes many new challenges in wide-band wireless communications, which are not

encountered in the centralized MIMO systems.

First, the cooperative distributed transmissions cause the severe difficulty for

synchronization among multiple location-independent BS transmitters. Second, as

the number of cooperative BS’s increases, the computational complexity for MIMO

signal processing and coding also grow rapidly. Third, because the coordinated BS’s

are located at different geographical positions, the cooperative communications in

fact enlarges the interfering areas for the used spectrum, thus drastically degrading

the frequency-reuse efficiency in the spatial domain. Finally, many wide-band trans-
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missions are sensitive to the delay, and thus we need to design QoS-aware distributed

MIMO techniques, such that the scarce wireless resources can be more efficiently

utilized.

Towards the above issues, many research works on distributed MIMO transmis-

sions have been proposed recently. The feasibility of transmit beamforming with

efficient synchronization techniques over distributed MIMO link has been demon-

strated through experimental tests and theoretical analyses [41, 44], suggesting that

complicated MIMO signal processing techniques are promising to implement in realis-

tic systems. While the antenna selection [46,47] is an effective approach to reduce the

complexity for centralized MIMO systems, which can be also extended to distributed

MIMO systems for the BS selection. It is clear that the BS-selection techniques can

significantly decrease the processing complexity, while still achieving high throughput

gain over the single BS transmission. Also, it is desirable to minimize the number

of selected BS’s through BS-selection techniques, which can effectively decrease the

interfering range and thus improve the frequency-reuse efficiency of the entire wireless

network. Most previous research works for BS selections mainly focused on the scenar-

ios of selecting a subset of BS’s/antennas with the fixed cardinality [42,43]. However,

it is evident that based on the wireless-channel status, BS-subset selections with dy-

namically adjusted cardinality can further decrease the BS usage. More importantly,

how to efficiently support diverse delay-QoS requirements through BS-selection in

distributed MIMO systems sill remains a widely cited open problem.

To overcome the aforementioned problems, we propose the QoS-aware BS-selection

schemes for the distributed wireless MIMO links, which aim at minimizing the BS

usages and reducing the interfering range, while satisfying diverse statistical delay-

QoS constraints. In particular, based on the channel state information (CSI) and

QoS requirements, the subset of BS with variable cardinality for the distributed
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MIMO transmission is dynamically selected, where the selections are controlled by

a central server. For the single-user scenario, we consider the optimization frame-

work which uses the incremental BS-selection and time-sharing (IBS-TS) strategies,

and study another framework which employs the ordered-gain based BS-selection

and probabilistic-transmissions (OGBS-PT) techniques. For the multi-user scenario,

we propose the optimization framework applying the priority BS-selection, block-

diagonalization multiple-access, and probabilistic transmission (PBS-BD-PT) tech-

niques. We derive the optimal transmission schemes for the above frameworks, re-

spectively, and conduct comparative analyses with the baseline schemes through sim-

ulations.

The rest of this chapter is organized as follows. Section B describes the sys-

tem model for distributed MIMO transmissions. Section D proposes the optimiza-

tion framework for QoS-aware BS sections of the single-user case and develops its

corresponding optimal solution. Section E develops the optimization framework for

multi-user case and derives its optimal solution. Section F simulates our proposed

schemes. The chapter concludes with Section G.

B. System Model

1. System Architecture

We concentrate on the wireless distributed MIMO system for downlink transmissions

depicted in Fig. 44, which consists of Kbs distributed BS’, Kmu mobile users, and one

central server. The mth BS has Mm transmit antennas for m = 1, 2, . . . , Kbs and the

nth mobile user has Nn receive antennas for n = 1, 2, . . . , Kmu. All distributed BS’s

are connected to the central server through high-speed optical connections. The data

to be delivered to the nth mobile user, n = 1, 2, . . . , Kmu, arrives at the central server



186

...

Selected base 
station Selected base 

stationCooperative transmissions: 
distributed MIMO

...

Mobile 
user

Mobile
user

Fig. 44. System model of a wireless distributed MIMO system for downlink

transmissions.

with a constant rate denoted by Cn. Then, the central server dynamically controls

these distributed BS’s to cooperatively transmit data to the corresponding mobile

users under the specified delay-QoS requirements.

For the case of Kmu = 1, the distributed BS’s and the mobile user form a sin-

gle wireless MIMO link; when Kmu ≥ 2, the distributed BS’s and the mobile users

form the broadcast MIMO link for data transmissions. The wireless fading channels

between the mth BS and the nth mobile user is modeled by an Nn × Mm matrix

Hn,m. The element at the ith row and jth column of Hn,m, denoted by (Hn,m)i,j,

is the complex channel gain between the ith receive antenna of nth mobile user and

the jth transmit antenna of the mth BS. All elements of Hn,m are independent and

circularly symmetric complex Gaussian random variables with zero mean and the

variance equal to hn,m. Also, the instantaneous aggregate power gain of the MIMO

link between the nth mobile user and the mth BS, denoted by γn,m, is defined by

γn,m � 1

Mm

Nn∑
i=1

Mm∑
j=1

∣∣∣(Hn,m)i,j

∣∣∣2 . (8.1)

We define Hn � [Hn,1 Hn,2 · · · Hn,Kbs
] as the CSI for the nth mobile user for

n = 1, 2, . . . , Kmu. The matrix Hn follows the independent block-fading model, where
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Hn does not change within a time period with the fixed length T , called a time frame,

but varies independently from one frame to the other frame. Furthermore, we define

H � [Hτ
1 Hτ

2 · · · Hτ
Kbs

]τ , representing a fading state of the entire distributed MIMO

system, where the superscript τ denotes the transpose operation on a matrix or a

vector.

In order to decrease the complexity and suppress the interfering range of the

distributed MIMO transmission, the cental server will dynamically select a subset of

BS’s to construct the distributed MIMO link. Accordingly, our design target is to

minimize the average number of needed BS’s subject to the specified QoS constraints.

We suppose that each mobile user can perfectly estimate its CSI at the beginning of

every time frame and reliably fed CSI back to the central server through dedicated

control channels. Based on CSI H and QoS requirements, the central server then

adaptively selects the subset of BS’s and organizes them to transmit data to mobile

users through the distributed MIMO links.

2. The Delay QoS Requirements

The central data server maintains a queue for the incoming traffic to each mobile user.

We mainly focus on the queueing delay in this chapter because the wireless channel

is the major bottleneck for high-rate wireless transmissions. Since it is usually un-

realistic to guarantee the hard delay bound over the highly time-varying wireless

channels, we employ the statistical metric, namely, the delay-bound violation proba-

bility, to characterize the diverse delay QoS requirements. Specifically, for the nth

mobile user, the probability of violating a specified delay bound, denoted by D
(n)
th ,

cannot exceed a given threshold ξn. That is, the inequality

Pr
{
Dn > D

(n)
th

}
≤ ξn (8.2)
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needs to hold for all n = 1, 2, . . . , Nmu, where Dn denotes the queueing delay in the

queue of nth mobile user’s queueing system.

3. Performance Metrics and Design Objective

We denote by L the cardinality of the selected BS subset (the number of selected

BS’) for the distributed MIMO transmission in a fading state. Then, we denote the

expectation of L by L and call it the average BS usage. As mentioned in Section B-1,

our major objective is to minimize L through dynamic BS selection while guarantee-

ing the delay QoS constraint specified by Eq. (8.2). Besides the average BS usage, we

also need to evaluate the average interfering range caused by the distributed MIMO

transmission. The instantaneous interfering range, denoted by A, is defined as the

area of the region where the average received power under the current MIMO trans-

mission is larger than a certain threshold denoted by σ2
th. The average interfering

area is then defined as the expectation E{A} over all fading states. Clearly, minimiz-

ing L can not only reduce implementation complexity, but also decrease the average

interfering range caused by the transmit power.

4. The Power Control Strategy

The transmit power of our distributed MIMO system varies with the number of

selected BS’. In particular, given the number L of selected BS’, the total instantaneous

transmitted power used for distributed MIMO transmissions is set as a constant equal

to PL. Furthermore, PL linearly increases with L by using the strategy as follows:

PL = Pref + κ(L− 1), (8.3)

where Pref > 0 is called the reference power and κ ≥ 0 describes the power increasing

rate against L. Also, we define PL � 0 for L = 0. The above power adaptation
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strategy is simple to implement, while the average transmit power can be effectively

decreased through minimizing the average number of used BS’. In addition, Eq. (8.3)

can upper-bound the instantaneous interferences and the interfering range over the

entire network. Further note that when κ = 0, we get the scenario using the constant

transmit power; when κ = Pref , the average transmit power is linearly proportional to

the average BS usage. Thus, our framework of minimizing the average BS usage also

leads to minimizing the average transmit power for the distributed MIMO system.

C. Statistical Delay-QoS Requirements and Guarantees

In this chapter, we apply the effective capacity approach [8, 19] to integrate the con-

straint on delay-bound violation probability given by Eq. (8.2) into our BS selection

design.

As addressed in Chapter II, by using the QoS exponent θ, the delay-bound

violation probability can be approximated [3, 8] by

Pr{D > Dth} ≈ e−θϕDth , (8.4)

where D and Dth denote the queueing delay and delay bound, respectively, and ϕ

is a constant determined by the arrival and departure processes. When the arrival

rate is a constant equal to C and the departure rate is time-varying, Eq. (8.4) can be

rewritten by

Pr{D > Dth} ≈ e−θCDth . (8.5)

Then, to upper-bound Pr{D > Dth} with a threshold ξ, using Eq. (8.5), we get the

minimum required QoS exponent θ as follows:

θ = − log(ξ)

CDth

. (8.6)
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Consider a discrete-time arrival process with constant rate C and a discrete-time

time-varying departure process, denoted by R[k], where k is the time index. In order

to guarantee the desired θ determined by Eq. (8.6), the effective capacity C(θ) of the

service-rate process R[k] needs to satisfy

C(θ) ≥ C, (8.7)

under the given QoS exponent θ, as discussed in Chapter II.

In our distributed MIMO system, the BS selection result is designed as the

function determined by the current CSI. Thus, the corresponding transmission rate

(service rate) is time independent under the independent block-fading model (see

Section B-1). Then, applying Eqs. (8.6)-(8.7), the delay QoS constraints given by

Eq. (8.2) can be equivalently converted to:

EH

{
e−θnRn − e−θnCn

}
≤ 0 (8.8)

for all n = 1, 2, . . . , Nmu, where θn = − log(ξn)
/(
CnD

(n)
th

)
and EH{·} denotes the

expectation over all H.

D. QoS-Aware BS Selection for the Single-User Case

We focus on the scenario with a single mobile user in this section, where Kmu = 1. For

presentation convenience, we use the term transmission mode L to denote the case

where the cardinality of the selected BS subset is equal to L. Given transmission mode

L, we denote by ΩL the set of indices of selected BS’s, where ΩL = {iL,1, iL,2, . . . , iL,L}
and iL,� ∈ {1, 2, . . . , Kbs} for � = 1, 2, . . . , L. Once a BS is selected, we use all its

transmit antennas for data transmissions. Then, we characterize the channel matrix
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for the selected BS subset by HΩL
and write HΩL

as

HΩL
�
[
H1,iL,1

H1,iL,2
· · · H1,iL,L

]
,

which is an N1 ×ML matrix with ML �
∑L

�=1MiL,�
. Accordingly, the physical-layer

signal transmission is characterized by

y = HΩL
sΩL

+ ς,

where y is the N1 × 1 received signal vector and ς denotes the N1 × 1 additive

Gaussian noise vector whose elements are independent with unit power. The variable

sΩL
�
[
sτiL,1

, sτiL,2
, . . . , sτiL,L

]τ
is the input signal vector (transmitted signal vector) for

the MIMO channel HΩL
, where siL,�

is the MiL,�
× 1 signal vector transmitted from

the (MiL,�
)-th BS.

Clearly, for dynamic BS selections of distributed MIMO transmissions, we need

to answer the following three questions: (i) For a specified transmission mode L, how

do we determine the BS subset ΩL? (ii) How are the wireless resources shared if apply-

ing multiple modes within a time frame? (iii) Which transmission modes will be used

and how to quantitatively allocate the wireless resources? We first study associated

issues for question (i) in Section D-1. Then, we introduce the time-sharing transmis-

sion and probabilistic transmission to share the resources across different modes in

Section D-2. Following the discussions in Sections D-1 and D-2, we formulate two

mathematical optimization frameworks to answer question (iii). One optimization

framework is based on the incremental BS-selection algorithm and the time-sharing

strategy; the other framework applies the ordered-gain based BS selection algorithm

with probabilistic transmission, which will be detailed in Sections D-3 and D-4, re-

spectively. The BS-selection scheme derived under the former framework can achieve

better performance, while the latter one is simpler to implement.
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1. BS Selection Strategy Given the Cardinality of the BS Subset

In this chapter, we focus on the spatial multiplexing based MIMO transmissions.

Given ΩL in a fading state, the maximum achievable data rates (Shannon capacity),

denoted by R(ΩL) (nats/frame), are determined [45] by

R(ΩL)= max
Ξ:Tr(Ξ)=PL

{
BT log

[
det
(
I + HΩL

ΞH†
ΩL

)]}
, (8.9)

where (·)† represents the conjugate transpose, det(·) generates the determinant of a

matrix, Tr(·) evaluates the trace of a matrix, and Ξ is the covariance matrix of sΩL
.

Before further proceeding, we first summarize the results of MIMO transmis-

sion [45] to describe how to attain the maximum rate given by Eq. (8.9). In par-

ticular, we apply the singular value decomposition (SVD) [45] on HΩL
and get

HΩL
= ULΛLV

†
L, where UL and VL are unitary matrices, ΛL is an N1 ×ML rectan-

gular diagonal matrix with only nonnegative elements. More specifically, UL and VL

consist of N1 left singular vectors and ML right singular vectors of HΩL
, respectively.

The zth diagonal element of ΛL, denoted by
√
εL,j , is equal to the zth largest singular

value of HΩL
, where z = 1, 2, . . . ,min{N1,ML}.

To achieve the maximum data transmission rate, the transmitted signal needs

to be set as s = VL,1x, where VL,1 is a precoding matrix consisting of the first ZL

columns of VL and xL � [xL,1, xL,2, . . . , xL,ZL
]τ is a signal vector with independent

elements. Note that ZL = rank(HΩL
), which is also the number of nonzero singular

values of HΩL
. Applying the precoding matrix VL for the transmitted signals, we

can convert the MIMO channel to ZL parallel Gaussian sub-channels, where the zth

sub-channel’s SNR is equal to εL,j. The optimal power used on the zth sub-channel

is equal to ρL,j = [μL − 1/εL,j]
+, which is known as the water-filling algorithm,

where [·]+ � max{·, 0} and μL is the water level selected such that
∑ZL

j=1 ρL,j = PL.
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Correspondingly, we can get the maximum achievable data rate, which is given by

BT
∑ZL

j=1 [log(μLεL,j)]
+.

Under the aforementioned allocation, the transmit power allocated to the (i�)-th

BS in transmission mode L, denoted by �L,i� , is determined by the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρL � (ρL,1, ρL,2, . . . , ρL,ZL

)τ

ρ̂L =
(
VL,1 ◦ conj (VL,1)

)
ρL;

�L,i� =
∑WL,�

w=WL,�−1
ρ̂L(w),

(8.10)

where (·◦·) denotes the element-wise product between two matrices, conj(·) represents

the element-wise conjugate of a matrix or a vector, and WL,� �
∑�

j=1MiL,j
. In

Eq. (8.10), ρ̂L is the power vector associated with the input signal vector for the

MIMO channel HΩL
, and ρ̂L(w) represents the wth element of ρ̂L.

After obtaining R(ΩL), we have the best selection strategy to optimize the achiev-

able rate as follows:

max
ΩL

{
R(ΩL)

}
. (8.11)

To derive the optimal solution for this optimization problem, it is clear that we need

to examine all
(
Kbs

L

)
possible BS combinations, which leads to the prohibitively high

computational complexity as M gets large. Alternatively, we consider two suboptimal

approaches with low complexities as follows.

1). Incremental BS-Selection Algorithm: In [46], the authors developed the

fast antenna selection algorithm using the incremental-selection strategy. Although

this incremental-selection strategy was developed for antenna selection without CSI

feedback, it can be readily extended to the scenario for BS selection with CSI feedback

to achieve the near optimal data rate. The pseudo codes of the incremental BS-

selection algorithm are given in Table VIII. In particular, the idea of this algorithm
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Table VIII. The Pseudo Codes to Determine ΩL by Using the Incremental

BS-Selection Algorithm.

00. Let Ψ := {1, 2, . . . , Kbs} and Ψ := ∅, and Z = |Ψ|, where ∅ is the empty set and |Ψ| denotes the cardinality
of the set Ψ; ! Use variables Ψ and Ψ to store all selected BS’s and all other BS’, respectively.

01. For i := 1 to L ! Add one BS to Ψ in each step.
02. For z := 1 to Z ! Examine Z BS’s in Ψ, respectively

03. Θz := Ψ ∪ {ψz}, where ψz is the zth element in Ψ; ! Pick a BS in Ψ to form a new subset Θz with Ψ.

04. R̃z := R(Θz) based on Eq. (8.9) by setting ΩL := Θz . ! Examine the achievable rate of Θz.
05. End

06. z∗ := arg max
1≤z≤Z

{
R̃z

}
; ! Select the BS to maximize the achievable rate.

07. Ψ := Θz∗ , Ψ := Ψ\{ψz∗}, and Z := |Ψ|; ! Add the newly selected BS into the BS subset Ψ.
08. End

09. ΩL := Ψ. ! Complete the BS selection and get ΩL.

is to determine ΩL through L steps, where in each step one BS is selected, as shown

in lines 01-08 of Table VIII. In each step, one selected BS is added to the BS subset

denoted by Ψ, where the selection criterion is to maximize the achievable rate of

the updated BS subset Ψ. Then, after L steps, we have totally added L BS’s into

Ψ and then assign ΩL := Ψ. This algorithm only examines the achievable rates for

L(Kbs − (L − 1)/2) different BS combinations, which requires L(Kbs − (L − 1)/2)

times of SVD, resulting in much less complexity than the optimal approach which

examines all
(
Kbs

L

)
BS combinations.

2). Ordered-Gain Based BS-Selection Algorithm: The ordered-gain (or ordered-

SNR) based BS-selection algorithm selects L BS’s with the largest aggregate power

gain over all BS’s, where the aggregate power gain is defined by Eq. (8.1). Since

maximizing the aggregate power gain may not effectively optimize the achievable

transmission rate for MIMO links, the incremental BS-selection algorithm usually

dominates the ordered-gain based BS-selection algorithm. However, since the ordered-

gain based BS-selection algorithm does not need to perform the SVD, its complexity

is much lower than that of the incremental BS-selection algorithm.

Figure 45 plots the cumulative distribution functions (CDF) of the achievable
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Fig. 45. CDF of the achievable transmission rates R(ΩL): Pr{R(ΩL) ≤ r}
versus r, where Kbs = 6, Mm = 2 for all m = 1, 2, . . . , Kbs, N1 = 2,

B = 105 Hz, T = 10 ms, and hm = 4 dB for all m = 1, 2, . . . , Kbs.

transmission rate obtained by using the incremental selection algorithm, the optimal

selection, and the ordered-gain based BS selection, respectively. As shown in Fig. 45,

the incremental selection algorithm and the ordered-gain based BS selection both can

achieve the near optimal performance.

2. Time Sharing and Probabilistic Transmissions

To get the more general framework for BS selection, we apply the time sharing and

probabilistic transmission strategies, respectively, over different transmission modes,

which are described as follows.

1). Time Sharing Transmissions: Each time frame can be divided into (Kbs +1)

time slots with the lengths equal to {Tαm}Kbs
m=0, where αm is the normalized time-slot

length and
∑Kbs

m=0 αm = 1. Within the mth time slot for m > 1, the transmission

mode L BS will be used; for m = 0, no data is transmitted in the corresponding

time slot. Then, the total service rate in a time frame is equal to
∑Kbs

L=0 αLR(ΩL),

where R(ΩL) is given by Eq. (8.9) for L �= 0 and R(ΩL) = 0 for L = 0. Furthermore,

the total BS usage is given by
∑Kbs

L=0 LαL. The purpose of applying the time sharing
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based transmissions is to increase the system flexibility and to gain the continuous

control on the BS usage within each time frame. Accordingly, we need to identify how

to optimally adjust α with CSI and QoS constraints, where α � (α0, α1, . . . , αM).

2). Probabilistic Transmissions: Under this strategy, within each time frame

only one transmission mode will be used for distributed MIMO transmissions. In

particular, we will select transmission mode L with probability equal to φL and define

φ � (φ0, φ1, φ2, . . . , φKbs
)τ . Then, our target is to determine how to dynamically

adjust φ according to the CSI and QoS requirements.

If setting φ = α and using the same strategy to determine ΩL over all fading

states, we obtain the same BS usage. However, the effective capacities achieved

under the time-sharing transmission and the probabilistic transmission, denoted by

CTS(α, θ1) and CPR(φ, θ1), respectively, are different. Specifically, we derive

CTS(α, θ1) = − 1

θ1
log
(

EH

{
e−

∑Kbs
L=0 αLR(ΩL)

})
≥ − 1

θ1
log
(

EH

{
αLe

−∑Kbs
L=0 R(ΩL)

})
= − 1

θ1
log
(

EH

{
φLe

−∑Kbs
L=0R(ΩL)

})
= CPR(φ, θ1), (8.12)

where the inequality holds because EH

{
e−

∑Kbs
L=0 αLR(ΩL)

}
is a convex function over(

R(Ω0), R(Ω1), . . . , R(ΩKbs
)
)
. Equation (8.12) suggests that the time-sharing trans-

mission generally outperforms the probabilistic transmission. However, the proba-

bilistic transmission is more realistic to implement than the time-sharing transmis-

sion due to the following reasons. On the one hand, for the optimized time-sharing

transmission, the time-slot length TαL may be quite small and thus very hard to

implement. On the other hand, the multiple time slots (for the time-sharing trans-

mission) within a time frame introduces more overhead than the single-slot case (for

the probabilistic transmission).
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3. Optimization Framework Using Time-Sharing Transmissions with Incremental

BS Selection

As discussed in Section B-3, our major objective is to minimize the average BS usage.

In this section, we focus on the framework which employs the incremental BS-selection

algorithm for each transmission mode and apply the time-sharing transmission for

different transmission modes. Then, we develop the efficient BS-selection scheme

under the above framework by solving the following optimization problem VIII-A1,

which aims at minimizing the average BS usage while guaranteeing the delay-QoS

requirement.

VIII-A1 : min
α

{
L
}

= min
α

{
EH

{
Kbs∑
L=0

αLL

}}

s.t.: 1).

Kbs∑
L=0

αL = 1, ∀H; (8.13)

2). EH

{
e−θ1

∑Kbs
L=0 αLR(Ω)L − e−θ1C1

}
≤ 0, (8.14)

where α is a function of H, Eq. (8.14) is the constraint to guarantee the delay-bound

violation probability as derived in Eq. (8.2), we obtain ΩL through the incremental

selection algorithm listed in Table VIII, and determine Rα based on Eq. (8.9). We

call the solution to VIII-A1 as the incremental BS-selection and time-sharing based

(IBS-TS) scheme.

Note that the optimization over α is an (Kbs + 1)-dimensional problem. To

reduce the dimension of optimization variables, we define

R̃(L) � max
α

{
Kbs∑
L=0

αLR(ΩL)

}
(8.15)

s.t.

Kbs∑
L=0

αL = 1;

Kbs∑
L=0

αLL = L. (8.16)
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Based on Eqs. (8.15)-(8.16), R̃(L) is the maximum achievable rate over all α with

the same BS usage. Since R̃(L) is the convex combination [79] over {R(ΩL)}Kbs
L=1,

then the definition in Eqs. (8.15)-(8.16) suggests that R̃(L) is a piece-wise linear and

concave function, which can be written as

R̃(L) =

⎧⎪⎨⎪⎩
R̃ (mj−1) + νj (L −mj−1) , if L ∈ (mj−1, mj ] , j = 1, 2, . . . ,K,

0, if L = 0;

(8.17)

for a certain integer K, where m0 < m1 < · · · < mK, m0 = 0, mK = Kbs, and

mi ∈ {0, 1, . . . , Kbs}. Moreover, using
(
mi, R̃(mi)

)
to represent the coordinates of a

point in the two-dimensional plane, we can identify
{(
mi, R̃(mi)

)}K−1

i=1
through the

following procedures: a). find vertices of the convex hull spanned by two-dimensional

points
{(
L, R̃(L)

)}Kbs

L=0
; b).

{(
mi, R̃(mi)

)}K−1

i=1
are located above the line segment

with end points (0, 0) and
(
Kbs, R̃(Kbs)

)
. Accordingly, νj is the slope of the line

segment starting at the point
(
mi, R̃(mi)

)
and ending at the point

(
mi−1, R̃(mi−1)

)
,

which is determined by

νi =
R̃(mi) − R̃(mi−1)

mi −mi−1
, i = 1, 2, . . . ,K. (8.18)

For presentation convenience, we also define ν0 � ∞ and νK+1 � −∞. Further-

more, given L ∈ [mj−1, mj ], following the piece-wise linear property, we derive the

corresponding α to achieve the service rate R̃(L) as follows:

αL =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mj−L
mj−mj−1

, if L = mj−1;

L−mj−1

mj−mj−1
, if L = mj;

0, otherwise.

(8.19)

Applying Eqs. (8.15), (8.16), and (8.19) into problem VIII-A1, we can equiva-
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lently convert VIII-A1 to the following problem VIII-A1′:

VIII-A1′ : min
L
{
EH {L}}

s.t.: EH

{
e−θ1R̃(L) − e−θ1C1

}
≤ 0, (8.20)

where L is a function of H and we can uniquely map L to α through Eq. (8.19). Since

R̃(L) is an increasing and concave function, e−θ1R̃(L) is convex over L [90, pp. 84].

Thus, we can see that VIII-A1′ satisfies: a) the objective function is convex; b) the

inequality constraint function EH

{
e−θ1R̃(L) − e−θ1C1

}
is convex. Therefore, VIII-A1′

is a convex problem [90, pp. 137]. Then, using the Lagrangian method, we solve for

the optimal solution of VIII-A1′, as summarized in the following Theorem 13.

Theorem 13. The optimal solution to VIII-A1′, if existing, is determined by

L∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mj , if νj+1 ≤ eθ1R̃(mj)

θ1λ∗
≤ νj ;

log(θ1λ
∗νj)

νjθ1
− R̃(mj−1)

νj
+mj−1, if R̃(mj−1) <

log(θ1λ
∗νj)

θ1
< R̃(mj),

(8.21)

where R̃(·) and νj are characterized by Eqs. (8.15) through (8.18). In Eq. (8.21),

λ∗ ≥ 0 is a constant over all fading states, which needs to be selected such that

equality in Eq. (8.14) holds.

Proof. The proof of Theorem 13 is provided in Appendix Q.

Remarks: (i) Having obtained the optimal L∗ for problem VIII-A1′, the optimal

solution to VIII-A1, denoted by α∗, is obtained by setting L = L∗ in Eq. (8.19).

(ii) Under the optimal solution, we do not allocate time slots for all transmission

modes. As indicated by Eq. (8.19), within any time frames, we employ at most two

transmission modes. (iii) It is clear that by setting αKbs
= 1 for all time frames, we

use the maximum transmit power and thus obtain the maximum achievable effective
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capacity, which is denoted by C(1)
max. If C(1)

max is still smaller than C1, the specified delay-

QoS requirement cannot be satisfied since we have used up all power budget. As a

result, the optimal solution does not exist for this case. In contrast, if C(1)
max ≥ C1,

we can always find the optimal solution. (iv) The analytical expressions for λ∗ is

usually intractable. However, it is easy to verify that EH

{
e−θ1R̃(L∗) − e−θ1C1

}
is an

increasing function of λ∗. Thus, we can readily obtain λ∗ by using the numerical

searching techniques.

4. Optimization Framework Using Probabilistic Transmissions with Ordered-Gain

Based BS Selection

We in this section consider the framework using the ordered-gain based BS-selection

algorithm and the probabilistic transmission strategy. Specifically, we formulate the

optimization problem for this framework as follows:

VIII-A2 : min
φ

{
L
}

= min
φ

{
EH

{
Kbs∑
L=0

φLL

}}

s.t.: 1).

Kbs∑
L=0

φL = 1, ∀H; (8.22)

2). EH

{(
Kbs∑
L=0

φLe
−θ1R(ΩL)

)
− e−θ1C1

}
≤ 0, (8.23)

where φ is a function of H. We call the optimal solution to the optimization problem

VIII-A2 as the ordered-gain and probability transmission based (OGBS-PT) scheme.

Theorem 14. The optimal solution to problem VIII-A2, denoted by φ∗ is given by

φ∗
L =

⎧⎪⎨⎪⎩ 1, if L = L∗;

0, if L �= L∗,
(8.24)
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for all H, where

L∗ = arg min
L

{
L+ λ∗e−θ1R(ΩL)

}
. (8.25)

In Eq. (8.25), λ∗ ≥ 0 is a constant over all H, which is selected such that the equality

holds for Eq. (8.23) to guarantee the delay-QoS requirement.

Proof. The proof of Theorem 14 is provided in Appendix R.

Remarks: (i) Based on discussions in Sections D-1 and D-2, the OGBS-PT

scheme is easier to implement than the IBS-TS scheme. Moreover, although the

IBS-TS scheme generally outperforms the OGBS-PT scheme, we will see in Section F

that the performance differences between them are little. Therefore, the IBS-TS is

more promising to the realistic distributed MIMO systems. (ii) Theorem 14 suggests

that under the optimal solution, the probabilistic transmission reduces to a determin-

istic strategy, where the only transmission mode L∗ will be used for data transmission.

(iii) Similar to problem VIII-A1, the parameter λ∗ for VIII-A2 also needs to be

tracked through numerical searching.

5. Base-Station Selection with Fixed Cardinality

We also study the BS-selection strategy which fixes the cardinality L and the selected

BS subsect ΩL over all fading states. In particular, the mobile user selects L BS’s

which are closest to itself. Clearly, these L BS’ are associated with the L largest

average channel gains over all BS’s, which can be conveniently measured by the

mobile user. This approach is served as a baseline scheme for comparative analyses

with our proposed dynamic BS selection schemes. In particular, the fixed BS-subset
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cardinality, denoted by Lfix, is determined by

Lfix = arg min
L=1,2,...,Kbs

{
EH

{
e−θ1R(ΩL)

}}
(8.26)

s.t.: EH

{
e−θ1R(ΩL)

} ≤ e−θ1C1 ,

where ΩL consists of BS’s with L largest average channel gain over all Kbs BS’s. We

call the above described strategy the fixed BS-selection scheme.

E. QoS-Aware BS Selection for the Multi-User Case

We next consider the distributed MIMO transmissions for the case with multiple

mobile users. Clearly, it is more challenging for BS selection in the multi-user case

as compared to the single-user case. On one hand, different users1 may select the

same BS’s and thus we need to apply the multiple access techniques to avoid the

interference and to develop the resource allocation strategies across multiple links.

On the other hand, even different users select different BS’s, the cross interferences

among coexisting links may significantly degrade the throughput and complicate the

BS selection algorithms.

For efficient BS selection and distributed MIMO transmissions, the central sever

controls the selected distributed BS’s and the mobile users to constitute the broadcast

MIMO link, as mentioned in Section B. Specifically, given the transmission mode2

L and BS-index subset ΩL = {iL,1, iL,2, . . . , iL,L} of the selected BS’s, the channel

matrix of the nth mobile user, modeled by H
(n)
ΩL

, is determined by

H
(n)
ΩL

�
[
Hn,iL,1

Hn,iL,2
· · · Hn,iL,L

]
, n = 1, 2, . . . , Kmu

1We use the terms of “mobile user” and “user” exchangeably in the rest of this
chapter.

2For the multi-user case, we also use the term of transmission mode L to denote
the case where the BS-subset’s cardinality is L.
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where H
(n)
ΩL

is an Nn ×
(∑L

�=1MiL,�

)
matrix. Then, the physical-layer signal trans-

missions can be characterized by

y
(n)
ΩL

= H
(n)
ΩL

Kmu∑
i=1

s
(i)
ΩL

+ ς(n), n = 1, 2, . . . , Kmu

where s
(i)
ΩL

represents the ith user’s input signal vector for the MIMO channel H
(n)
ΩL

,

y
(n)
ΩL

is the signal vector received at the nth user’s receive antennas, and ς(n) is the

complex additive white Gaussian noise (AWGN) vector with unit power for each

element of this vector.

It is well-known that the optimal capacity of the broadcast MIMO link can be

achieved through the dirty-paper coding techniques [91], which is, however, hard

to implement due to its high complexity [92]. Alternatively, we apply the block-

diagonalization precoding techniques [92] for distributed MIMO transmissions and

then concentrate on developing efficient QoS-aware BS-selection scheme. In particu-

lar, we introduce the block-diagonalization precoding in Section E-1. In Section E-2,

we develop the priority BS-selection scheme under the specified cardinality of the

BS subset. Applying the above techniques, in Section E-3 we formulate the QoS-

aware optimization problem to develop the joint BS-selection and resource allocation

scheme, which aims at minimizing the average BS usage. We also discuss the time-

division-multiple-access (TDMA) based BS selections in Section E-4 as the baseline

scheme for comparative analyses.

1. The Block Diagonalization Technique for Distributed MIMO Transmissions

The idea of block diagonalization [92] is to use a precoding matrix, denoted by Γ
(n)
ΩL

,

for the nth user’s transmitted signal vector, such that H
(i)
ΩL

Γ
(n)
ΩL

= 0 for all i �= n. By

setting s
(n)
ΩL

= Γ
(n)
ΩL

ŝ
(n)
ΩL

, where ŝ
(n)
ΩL

is the nth user’s data vector to be precoded by Γ
(n)
ΩL

,
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we can rewrite the received signal y
(n)
ΩL

as

y(n) = H
(n)
ΩL

Kmu∑
i=1

Γ
(i)
ΩL

ŝ
(i)
ΩL

+ ς (n) = H
(n)
ΩL

Γ
(n)
ΩL

ŝ
(n)
ΩL

+ ς (n) = Γ̂
(n)
ΩL

ŝ
(n)
ΩL

+ ς(n), (8.27)

where Γ̂
(n)
ΩL

� H
(n)
ΩL

Γ
(n)
ΩL

. Under this strategy, the nth user’s signal will not cause

interferences to other users. Accordingly, the MIMO broadcast transmissions are vir-

tually converted toKmu orthogonal MIMO channels with channel matrices
{
Γ̂

(n)
ΩL

}Kmu

n=1
.

Then, we can get the nth user’s maximum achievable rate in a fading state, denoted

by R(n)
(
ΩL,P(n)

L

)
, as follows:

R(n)
(
ΩL,P(n)

L

)
� max

Ξ(n):Tr(Ξ(n))=P(n)
L

{
BT log

[
det

(
I + Γ̂

(n)

ΩL
Ξ(n)

(
Γ̂

(n)

ΩL

)†)]}
, (8.28)

where Ξ(n) is the covariance matrix of ŝ
(n)
ΩL

and P(n)
L is the power allocated for the nth

user.

The precoding matrix Γ
(n)
ΩL

for n = 1, 2, . . . , Kmu, can be determined by the

following procedures [92]. Let us first define the following matrix:

Ĥ
(n)
ΩL

�
[(

H
(1)
ΩL

)τ
· · ·

(
H

(n−1)
ΩL

)τ (
H

(n+1)
ΩL

)τ
· · ·

(
H

(Kmu)
ΩL

)τ]τ
, (8.29)

which is a
(∑Kmu

n=1 Nn

) × (∑L
�=1MiL,�

)
matrix, representing the CSI from all BS’s

except for the nth BS. Then, performing SVD on Ĥ
(n)
ΩL

, we get

Ĥ
(n)
ΩL

= Û
(n)
ΩL

Υ
(n)
ΩL

(
V̂

(n)
ΩL

)†
. (8.30)

Letting L̂ � rank
(
Ĥ

(n)
ΩL

)
, we define V̂

(n)
ΩL,1

as the
(∑Kmu

n=1 Nn

) × L̂ matrix consisting

of the first L̂ singular vectors of Ĥ
(n)
ΩL

, and also define V̂
(n)
ΩL,0

as the
(∑Kmu

n=1 Nn

) ×(∑L
�=1Mi� − L̂

)
matrix consisting of the rest singular vectors of Ĥ

(n)
ΩL

. Since the

column vectors of V̂
(n)
ΩL,0

span the null space [93] of Ĥ
(n)
ΩL

[92], we can set the precoding
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matrix Γ
(n)
ΩL

as follows:

Γ
(n)
ΩL

�

⎧⎪⎨⎪⎩ V̂
(n)
ΩL,0

, if L̂ <
∑L

�=1MiL,�
;

0, if L̂ =
∑L

�=1MiL,�
,

(8.31)

Note that if L̂ =
∑L

�=1MiL,�
, implying that Ĥ

(n)
ΩL

has full row rank, there does not

exist such a Γ
(n)
ΩL

satisfying H
(i)
ΩL

Γ
(n)
ΩL

= 0 for all i �= n. For this case, the nth user

does not transmit to avoid interferences to other users.

2. Priority BS-Selection Strategy Given the BS Subset Cardinality

When the transmission mode is specified, i.e., the cardinality of the BS subset is

given, every user expects to select the BS’s to maximize its own transmission rate.

However, it is clear that this objective cannot be obtained for all users in the multi-

user case. Moreover, the derivation of global optimal selection strategy in terms

of minimizing the average BS usage is intractable due to the too high complexity,

where we need to examine all
(
Kbs

L

)
possible BS combinations. Therefore, we propose

a simple yet efficient BS-selection algorithm, called priority BS-selection, which is

detailed as follows.

For the nth user, the global maximum achievable transmission rate is attained

when all BS’s are used and all the other users do not transmit. Thus, the maximum

achievable rate is given by

R(n)
(
ΩKbs

,PKbs

)
= max

Ξ(n):Tr(Ξ(n))=PKbs

{
BT log

[
det
(
I + HnΞ

(n)H†
n

)]}
. (8.32)

Correspondingly, we get the maximum achievable effective capacity of the nth user,

denoted by C(n)
max, as follows:

C(n)
max = − 1

θn
log
(

EH

{
e−θnR(n)(ΩKbs

,PKbs)
})

, n = 1, 2, . . . , Kmu. (8.33)
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Table IX. The Pseudo Codes to Determine ΩL in Each Fading State by Using

the Priority BS-Selection Algorithm for the Multi-User Case.

01. Let Ψ := {1, 2, . . . , Kbs} and Ψ := ∅, and � = |Ψ|;
! Use variables Ψ and Ψ to store selected BS’s and all other BS’, respectively.

02. j := 1. ! User π(j) is selecting BS.
03. While (� < L) ! Iterative selections until L BS’s are selected.
04. m∗ = arg minm∈Ψ{γπ(j),m}. ! γπ(j),m is the aggregate power gain associated with user π(j).

! Select the BS with the maximum aggregate power gain for user π(j).

05. Ψ := Ψ ∪ {m∗}, Ψ := Ψ\{m∗}, and � := �+ 1. ! Update Ψ, Ψ, and �.
06. If j = Kmu, then j := 1; else j := j + 1. ! Let next user with lower priority to select BS.
07. End

08. ΩL := Ψ. ! Complete the BS selection and get ΩL.

We further define the effective-capacity fraction for the nth user as the ratio between

the traffic load and the maximum achievable effective capacity. Denoting the effective-

capacity fraction by Ĉn, we have Ĉn � Cn/C(n)
max. Clearly, the higher Ĉn is, the more

wireless resources the nth user requires to meet its QoS requirements. Thus, in order

to satisfy the QoS requirements for all users, we assign higher BS-selection priority

to the user with larger Ĉn. Following this principle, we design the priority BS-

selection algorithm to determine ΩL in each fading state and provide the pseudo code

in Table IX. For presentation convenience, we permute {Ĉn}Kmu
n=1 in the decreasing

order and denote the permuted version by {Ĉπ(j)}Kmu
h=1 , where Ĉπ(1) ≥ Ĉπ(2) ≥ · · · ≥

Ĉπ(Kmu) indicates the order from the higher priority to the lower priority. In the rest

of this chapter, we use the term of user π(i) to denote the user associated with the

ith largest effective-capacity fraction.

As shown in Table IX, in each fading state the BS-selection procedure starts with

the selection for user π(1), who has the highest priority. After picking one BS for user

π(1), we select one different BS for user π(2). More generally, after selecting for user

π(j), we choose one BS for user π(j + 1) from the BS-subset Ψ, which consists of the

BS’s that have not been selected. This procedure repeats until L BS’s are selected.

For user-π(j)’s selection, we choose the BS with the maximum aggregate power gain



207

(see Eq. (8.1) for its definition) over the subset Ψ. In addition, after user-π(Kmu)’s

selection, if the number of selected BS’s is still smaller than L, we continue selecting

one more BS for user π(1), as shown in line 06 in Table IX, and repeat this iterative

selection procedure until having selected L BS’s.

3. The Optimization Framework for BS-Selection and Resource Allocation

a. Problem formulation for average BS-usage minimization

We next study how to determine which transmission modes will be used, and how

to derive the corresponding resource allocation strategy by integrating the block

diagonalization and the priority BS selection. Similar to the OGBS-PT scheme

for the single-user case, we also apply the probabilistic transmission for the multi-

user case, where transmission mode L is used with a probability denoted by φL,

L = 1, 2, . . . , Kbs. Note that for any transmission mode, there are Kmu coexisting

links towards Kmu mobile users. Consequently, we also need to determine how to

allocate the total power PL to these Kmu coexisting links. In particular, we describe

the power allocation strategy in a fading state by⎧⎪⎨⎪⎩ P � (P1,P2, . . . ,PKbs
) ;

PL �
(
P(1)
L ,P(2)

L , . . . ,P(Kbs)
L

)
, L = 1, 2, . . . , Kbs;

(8.34)

where P denotes the power-allocation policy for the entire system and the vector

PL represents the power-allocation policy for transmission mode L. Then, we formu-

late the following optimization problem VIII-A3 to derive the optimal QoS-aware

probability-vector φ∗ � (φ∗
1, φ

∗
2, . . . , φ

∗
Kmu

) and its corresponding power-allocation pol-
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icy P∗.

VIII-A3 : min
(φ,P)

{
L
}

= min
(φ,P)

{
EH

{
Kbs∑
L=0

φLL

}}

s.t.: 1).

Kbs∑
L=0

φL = 1, ∀H (8.35)

2).
Kmu∑
n=1

P(n)
L = PL, ∀L, H; (8.36)

3). EH

{(
Kbs∑
L=0

φLe
−θnR(n)

(
ΩL,P(n)

L

))
− e−θnCn

}
≤ 0, ∀n,(8.37)

where R(n)
(
ΩL,P(n)

L

)
is determined through Eq. (8.28). We call the optimal solution

to VIII-A3 as the PBS-BD-PT scheme.

b. The properties of R(n)
(
ΩL,P(n)

L

)
Before solving VIII-A3, we need to study the properties of R(n)

(
ΩL,P(n)

L

)
. Let us

consider the nth user with Γ
(n)
ΩL

not equal to zero. Similar to the results summarized

in Section D-1, the nth user’s MIMO channel Γ̂
(n)

ΩL
(after the block diagonalization)

can be converted to Z
(n)
L parallel Gaussian sub-channels, where Z

(n)
L is the rank of

Γ̂
(n)

ΩL
, the zth sub-channel’s SNR is equal to ε

(n)
L,z, and

√
ε
(n)
L,z is the zth largest nonzero

singular value of Γ̂
(n)

ΩL
. The optimal power ρ

(n)
L,z allocated to the zth sub-channel follows

the water-filling allocation, which is equal to ρ
(n)
L,z =

[
μ

(n)
L − 1/ε

(n)
L,z

]+
, where μ

(n)
L is

selected such that
∑Z

(n)
L

z=1 ρ
(n)
L,z = P(n)

L . Since Γ̂
(n)

ΩL
has only Z

(n)
L non-zero singular values,

for presentation convenience, we define 1/ε
(n)
L,i � ∞ for i = Z

(n)
L + 1. Accordingly, we

can show that

dR(n)
(
ΩL,P(n)

L

)
dP(n)

L

=
BT

μ
(n)
L

(8.38)
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holds and that R(n)
(
ΩL,P(n)

L

)
is strictly concave over P(n)

L . Moreover, if μ
(n)
L ∈[

1/ε
(n)
L,i , 1/ε

(n)
L,i+1

)
for i = 0, 1, 2, . . . , Z

(n)
L , we get:⎧⎪⎨⎪⎩

(a). P(n)
L = iμ

(n)
L −∑i

j=1
1

ε
(n)
L,j

(b). R(n)
(
ΩL,P(n)

L

)
= BT log

(∏i
j=1 ε

(n)
L,j

)
+BTi logμ

(n)
L .

(8.39)

Under the above transmission setups, we obtain the nth user’s actual transmit signal

as follows:

s
(n)
ΩL

= Γ
(n)
ΩL

ŝ
(n)
ΩL

= Γ
(n)
ΩL

V
(n)
L,1x

(n)
L ,

where x
(n)
L =

(
x

(n)
L,1, x

(n)
L,1, . . . , x

(n)

L,Z
(n)
L

)τ
is the signal vector for Z

(n)
L parallel Gaussian

sub-channels, the power of x
(n)
L,z is equal to ρ

(n)
L,z, and V

(n)
L,1 is composed by the first

Z
(n)
L right singular vectors generated from SVD on Γ̂

(n)

ΩL
. Then, using the similar

expressions as given in Eq. (8.10), the transmit power used for the nth user on the

i�th BS, denoted by �
(n)
L,i�

, is given by the following equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ

(n)
L =

(
ρ

(n)
L,1, ρ

(n)
L,2, . . . , ρ

(n)

L,Z
(n)
L

)τ
;

ρ̂
(n)
L =

((
Γ

(n)
ΩL

V
(n)
L,1

)
◦ conj

(
Γ

(n)
ΩL

V
(n)
L,1

))
ρ

(n)
L ;

�
(n)
L,iL,�

=
∑WL,�

w=WL,�−1
ρ̂

(n)
L (w).

(8.40)

where WL,� �
∑�

j=1MiL,j
and (· ◦ ·) denotes the element-wise product between two

matrices.
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c. The optimal solution to VIII-A3

Theorem 15. The optimal power-allocation policy P∗ for optimization problem VIII-A3,

if existing, is given as follows:

(
P(n)
L

)∗
= i∗

(
i∗∏
j=1

ε
(n)
L,j

)− BTθn
1+i∗BTθn ( ζ∗H,L

BTθnλ∗n

)− 1
1+i∗BTθn −

i∗∑
j=1

1

ε
(n)
L,j

, (8.41)

for all n, L, and H, where ε
(n)
L,j is the square of Γ̂

(n)
ΩL

’s jth largest singular value, and

i∗ is the unique solution satisfying the following condition:

μ
(n)
L ∈

[
1

ε
(n)
L,i∗

,
1

ε
(n)
L,i∗+1

)
, ∀n, L, H, (8.42)

where

μ
(n)
L = max

⎧⎨⎩ 1

ε
(n)
L,1

,

(
i∗∏
j=1

ε
(n)
L,j

)− BTθn
1+i∗BTθn ( ζ∗H,L

BTθnλ∗n

)− 1
1+i∗BTθn

⎫⎬⎭ . (8.43)

The corresponding optimal probability-transmission policy is determined by

φ∗
L =

⎧⎪⎨⎪⎩ 1, if L = L∗;

0, otherwise
(8.44)

where

L∗ = arg min
0≤L≤Kbs

{
L+

Kmu∑
n=1

λ∗ne
−θnBT

(
log
(∏i∗

j=1 ε
(n)
L,j

)
+i∗ log μ

(n)
L

)}
, ∀H, (8.45)

where in Eqs. (8.41)-(8.43), for the given {λ∗n}Kmu
n=1 the optimal ζ∗H,L is selected to

satisfy the equation
∑Kmu

n=1

(P(n)
L

)∗
= PL for all L and H; {λ∗n}Kmu

n=1 are constants over

all H, which are selected such that the equality of Eq. (8.37) holds.

Proof. Note that the optimization problem VIII-A3 is not convex, because the con-

straint function on the left-hand side of Eq. (8.37) is not convex with respect to

(w.r.t.) φ and P . Then, we need to apply the Lagrangian duality theory [79] to solve
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for the optimal solution. We construct VIII-A3’s Lagrangian function, denoted by

JA3(φ,P ;λ, ζH), as

JA3(φ,P;λ, ζH) = EH {JA3(φ,P ;λ, ζH)} (8.46)

with

JA3(φ,P ;λ, ζH) �
Kbs∑
L=0

φLL+

Kmu∑
n=1

λn

[
−e−θnCn +

Kbs∑
L=0

φLe
−θnR(n)

(
ΩL,P(n)

L

)]

+

Kbs∑
L=1

ζH,L

(
−PL +

Kmu∑
n=1

P(n)
L

)
(8.47)

for
∑Kbs

L=1 φL = 1, where λn ≥ 0 for n = 1, 2, . . . , Kmu are the Lagrangian mul-

tipliers associated with Eq. (8.37), which are constants over all fading states, and

λ � (λ1, λ2, . . . , λKmu); {ζH,L}Kbs
L=1 are the Lagrangian multipliers associated with

Eq. (8.36) for L transmission modes in each fading state, which are functions of H

and L, and ζH,L � (ζH,1, ζH,2, . . . , ζH,Kbs
).

The optimization problem VIII-A3’s Lagrangian dual function [77,79], denoted

by J̃A3(λ, ζH), is determined by

J̃A3(λ, ζH) � min
φ,P

{
JA3(φ,P ;λ, ζH)

}
= EH

{
min
φ,P

{
JA3(φ,P ;λ, ζH)

}}
.(8.48)

We denote the minimizer pair in Eq. (8.48) by (φ̃, P̃). Then, we can derive

φ̃ = arg min
φ:
∑Kbs

L=1 φL=1

{
JA3(φ, P̃ ;λ, ζH)

}
(8.49)

(a)
= arg min

φ:
∑Kbs

L=1 φL=1

{
Kbs∑
L=1

φL

(
L+

Kmu∑
n=1

λne
−θnR(n)

(
ΩL,P̃(n)

L

))}
, ∀H, (8.50)

where equation (a) holds by plugging Eq. (8.47) into Eq. (8.49) and removing the
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terms independent of φ. Solving Eq. (8.50), we obtain

φ̃L =

⎧⎪⎨⎪⎩
1, if L = arg min

�=1,2,...,Kbs

{
�+

∑Kmu

n=1 λne
−θnR(n)

(
Ω�,P̃(n)

�

)}
;

0, otherwise.

(8.51)

Based on Eq. (8.51), the opportunity of transmitting the data in a fading state will

be given to only one transmission mode. Moreover, when φ̃L = 1, the values of Pj for

j �= L do not affect the Lagrangian function JA3(φ,P ;λ, ζH). Therefore, P̃L needs

to minimize JA3(φ,P;λ, ζH) given φL = 1 and φj = 0 for all j �= L.

Following the above derivations, we define a set of functions JA3,L(P ;λ, ζH,L) for

L = 1, 2, . . . , Kbs, where JA3,L(P ;λ, ζH,L) � JA3(φ,P ;λ, ζH,L)|φL=1;φj=0,j 
=L . Taking

the derivative of JA3,L(P ;λ, ζH,L) w.r.t. P(n)
L and letting the derivative equal to zero,

we get

ζH,L −BTλnθnμ
(n)
L e−θnR(n)

(
ΩL,P(n)

L

)
= 0, ∀n, L, H (8.52)

where μ
(n)
L = dR(n)

(
ΩL,P(n)

L

)
/dP(n)

L (see Eq. (8.38)). Plugging Eq. (8.39)-(b) into

Eq. (8.52) and solving for the optimal μ
(n)
L under the boundary condition of μ

(n)
L ≥

1/ε
(n)
L,1, we obtain Eq. (8.43). Since Eq. (8.39) is obtained under the condition of

μ
(n)
L ∈ [

1/ε
(n)
L,i , 1/ε

(n)
L,i+1

)
, the variable i∗ in Eq. (8.43) must satisfy the condition

of μ
(n)
L ∈ [1/ε(n)

L,i∗, 1/ε
(n)
L,i∗+1

)
, as shown in Eq. (8.42). Moreover, we can show that

JA3,L(P ;λ, ζH,L) is a strictly convex function, and thus i∗ for Eq. (8.43) is unique.

Then, we can obtain PL by using Eq. (8.39)-(a).

The Lagrangian duality principle [79] shows that J̃ (λ, ζH) = J (φ̃, P̃ ;λ, ζH) is

concave over λ and ζH. Moreover, the original optimization problem (also called the

primal problem) VIII-A3’s dual problem is defined by

max
λ,ζH

{
J̃ (λ, ζH)

}
. (8.53)
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Denoting the optimal objective of the primal problem VIII-A3 by L
∗
, we always

have

L
∗ ≥ max

λ,ζH

{
J̃ (λ, ζH)

}
. (8.54)

We can further show that J̃ (λ, ζH) is differentiable w.r.t. λ and ζH. Then, the

Lagrangian duality principle [79] shows that⎧⎪⎨⎪⎩
∂J̃ (λ,ζH)

∂λn
= EH

{∑Kbs

L=0 φ̃Le
−θnR(n)

(
ΩL,P̃(n)

L

)
− e−θnCn

}
, ∀n;

∂J̃ (λ,ζH)
∂ζH,L

=
(∑Kmu

n=1 P̃(n)
L − PL

)
g(H)dH, ∀L, H

(8.55)

where g(H) is the probability density function of H and dH denotes the integration

variable. It is clear that if ∂J̃ (λ, ζH)/∂λn = 0 (for all n) and ∂J̃ (λ, ζH)/∂ζH,L =

0 (for all L and H) hold, J̃ (λ, ζH) attains its maximum. Equations (8.39)-(a)

and (8.43) indicate that given any λn, P̃(n)
L is a decreasing function of ζH,L. Moreover,

ζH,L → 0 and ζH,L → ∞ leads to P̃(n)
L → ∞ and P̃(n)

L → 0, respectively. Thus, for

any λn, we can always find a ζH,L = ζ∗H such that
∑Kmu

n=1 P̃(n)
L − PL = 0, implying

∂J̃ (λ, ζ∗H)/∂ζH,L = 0.

Having obtained ζ∗H, we next focus on the optimal λ∗ to maximize J̃ (λ, ζ∗H).

Due to the concavity of J̃A3(λ, ζH), ∂J̃ (λ, ζ∗H)/∂λn is a decreasing function of λn.

Also, we can readily show that ∂J̃ (λ, ζ∗H)/∂λn|λn=0 > 0. Then, if there does not

exist λ such that ∂J̃ (λ, ζ∗H)/∂λn = 0 for all n, we have λ∗n → ∞ for some nth user

and ∂J̃ (λ, ζ∗H)/∂λn > 0 always holds. For this case, we get L
∗ ≥ J̃ (λ∗, ζ∗H) → ∞,

implying that there is no feasible solution for VIII-A3.

In contrast, if there exists λ∗ such that ∂J̃ (λ∗, ζ∗H)/∂λn = 0 for all n, the

pair of (λ∗, ζ∗H) is the optimal solution to the dual problem given by Eq. (8.53).

Note that the optimum of Eq. (8.53) is achieved by using (P̃ , φ̃) given λ∗ and ζ∗H.

Clearly, this policy is feasible for the primal problem VIII-A3, implying that the



214

equality of Eq. (8.54) holds with zero duality gap. As a result, this policy is the

optimal solution to VIII-A3. Then, setting P∗ = P̃ and φ∗ = φ̃ with λ∗ and ζ∗H in

Eq. (8.51), we obtain Eqs. (8.44)-(8.45). Further plugging Eq. (8.42) into Eq. (8.39)-

(a), we prove that Eq. (8.41) holds. Finally, comparing ∂J̃ (λ∗, ζ∗H)/∂λn = 0 with

Eq. (8.55), we show that the equality of Eq. (8.37) holds, which completes the proof

of Theorem 15.

Note that the general closed-form expressions for the optimal Lagrangian multi-

pliers ζ∗H,L and λ∗ are hard to obtain. In contrast, we can use numerical searching

techniques to determine the values of ζ∗H,L and λ∗. In particular, as shown in the

proof of Theorem 15, P̃(n)
L is a monotonically decreasing function of ζH,L. Then, we

define ⎧⎪⎨⎪⎩ ζ ′H,L,n � BTλnθnμ
(n)
L e−θnR(n)(ΩL,P̃

(n)
L )
∣∣
P̃

(n)
L =1

;

ζ ′′H,L,n � BTλnθnμ
(n)
L e−θnR(n)(ΩL,P̃

(n)
L )
∣∣
P̃

(n)
L =1/Kmu

,

for all n = 1, 2, . . . , Kmu. It is clear that ζ∗H,L ∈ [
maxn{ζ ′H,L,n},maxn{ζ ′′H,L,n}

]
.

Consequently, we can search obtain ζH,L = ζ∗H,L to satisfy
∑Kmu

n=1 P̃(n)
L − PL = 0

through the bisection based numerical searching technique.

Next, we focus on how to derive λ∗. As discussed in the proof of Theorem 15,

J̃ (λ, ζH) is concave over λ and ζH. Therefore, J̃ (λ, ζ∗H) is also concave over λ

since ζ∗H maximizes J̃ (λ, ζH) under the given λ. Correspondingly, we can apply the

gradient descent method to search for the optimal λ∗, which maximizes J̃ (λ, ζ∗H).

Specifically, the iterative searching procedures is given by

λn := λn + ελn
∂J̃ (λ, ζ∗H)

∂λn
, n = 1, 2, . . . , Kmu (8.56)

where ε is a small positive real number and J̃ (λ, ζ∗H)/∂λn is given by Eq. (8.55).

Moreover, for fast simulations, we can use time average via the first-order AR low-
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pass filter to estimate J̃ (λ, ζ∗H)/∂λn. Denoting the estimate of J̃ (λ, ζ∗H)/∂λn at the

t-th time by Ĵn[k], we can use the following first-order AR low-pass filter to obtain

the estimate Ĵn[k] as follows:

Ĵn[k] = ϑĴn[k − 1] + (1 − ϑ)

(
Kbs∑
L=0

φ̃Le
−θnR(n)

(
ΩL[t],P̃(n)

L [t]
)
− e−θnCn

)
, (8.57)

where ϑ ∈ (0, 1) is a real number close to 1. If the optimal solution exists, the above

searching algorithm can effectively converge with the appropriately selected ε and ϑ.

4. The TDMA Based BS-Selection Scheme

We next study the TDMA based BS-selection scheme, which servers as the baseline

scheme for comparative analyses with our proposed scheme. The TDMA based multi-

user transmissions in MIMO link typically lead to lower throughput than the block-

diagonalization based scheme. However, the previous research works did not study

and compare the TDMA based and block-diagonalization based approaches in terms

of BS-selection and QoS provisioning for distributed MIMO systems.

In the TDMA based BS-selection, we also apply the priority BS-selection algo-

rithm given by Table IX when transmission mode L is specified. For transmission

mode L, we further divide each time frame into Kmu time slots3 for data transmissions

to Kmu users, respectively. The nth user’s time-slot length is set equal to T × tL,n

for n = 1, 2, . . . , Kmu, where tL,n is the normalized time-slot length. Moreover, we

still use the probabilistic transmission strategy across different transmission modes,

where the probability of using transmission mode L to transmit data is equal to φL.

3In this chapter, the TDMA based scheme described in Section E-4 and the time-
sharing based scheme described in Section D-3 both partition each time frame into a
number of time slots. However, note that we use the term of TDMA for multiple access
across multiple users, and use the term of time-sharing for time-division transmission
across different transmission modes.
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Then, we derive the TDMA and probabilistic transmission policies through solving

the following optimization problem VIII-A4.

VIII-A4 : min
(t,φ)

{
L
}

= min
(t,φ)

{
EH

{
Kbs∑
L=0

LφL

}}

s.t.: 1).

Kbs∑
L=0

φL = 1, ∀H, (8.58)

2).

Kmu∑
n=1

tL,n = 1, ∀H, L = 1, 2, . . . , Kbs, (8.59)

3). EH

{(
Kbs∑
L=0

φLe
−θntnR(n)(ΩL,PL)

)
− e−θnCn

}
≤ 0, ∀n,(8.60)

where φ and t are functions of H, φ � (φ0, φ1, φ2, . . . , φKmu), t � (t1, t2, . . . , tKbs
),

and tL � (tL,1, tL,2, . . . , tL,Kbs
).

Theorem 16. Problem VIII-A4’s optimal solution pair (t∗,φ∗), if existing, is de-

termined by

t∗L,n =

[
1

θnR(n) (ΩL,PL)
log

(
λ∗nθnR

(n) (ΩL,PL)

δ∗H,L

)]+

, ∀L, n, H (8.61)

and

φ∗
L =

⎧⎪⎨⎪⎩
1, if L = arg min

�=0,1,...,Kbs

{
�+

∑Kmu

n=1 λ
∗
ne

−θnt∗L,nR
(n)(Ω�,P�)

}
;

0, otherwise

(8.62)

for all L and H, where δ∗H,L under given {λ∗n}Kmu
n=1 is determined by satisfying

∑Kmu

n=1 t
∗
L,n =

1, and {λ∗n}Kmu
n=1 needs to be selected such that the equality of Eq. (8.60) holds.

Proof. We construct VIII-A4’s Lagrangian function, denoted by JA4(t,φ;λ, δH), as

follows:

JA4(t,φ;λ, δH) = EH {JA4(t,φ;λ, δH)} (8.63)
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with

JA4(t,φ;λ, δH) �
Kbs∑
L=0

LφL +

Kbs∑
L=1

δH,L

(
Kmu∑
n=1

tL,n − 1

)

+
Kmu∑
n=1

λn

(
Kbs∑
L=0

φLe
−θntnR(n)(ΩL,PL) − e−θnCn

)
(8.64)

subject to
∑Kbs

L=0 φL = 1 for all H, where δH � (δH,1, δH,2, . . . , δH,Kbs
) represents the

Lagrangian multipliers associated with Eq. (8.59), λn ≥ 0 for n = 1, 2, . . . , Kmu are the

Lagrangian multipliers associated with Eq. (8.60), and λ � (λ1, λ2, . . . , λKmu). The

optimization problem VIII-A4’s Lagrangian dual function, denoted by J̃A4(λ, δH),

is determined by

J̃A4(λ, δH) � min
(t,φ)

{
JA4(t,φ;λ, δH)

}
= EH

{
min
(t,φ)

{
JA4(t,φ;λ, δH)

}}
= EH

{
min
(t,φ)

{
Kbs∑
L=0

φL

(
L+

Kmu∑
n=1

λne
−θntnR(n)(ΩL,PL)

)

+

Kbs∑
L=1

δH,L

(
Kmu∑
n=1

tL,n − 1

)
−

Kmu∑
n=1

λne
−θnCn

}}
. (8.65)

We denote the minimizer pair in Eq. (8.65) by (t∗,φ∗). Lagrangian duality princi-

ple [79] suggests that J̃A4(λ, δH) is a concave function and VIII-A4’s dual problem

is given by maxλ,δH
{J̃A4(λ, δH)}. We then denote the maximizer pair for J̃A4(λ, δH)

by λ∗ and δ∗H. Given λ = λ∗ and δH = δ∗H in Eq. (8.65), we solve for t∗ and φ∗ as

shown in Eqs. (8.61) and (8.62), respectively.

Using the analyses similar to the proof for Theorem 15, we can show that if

there does not exist λ∗ such that the equality in Eq. (8.60) holds for all n, the

feasible solution to problem VIII-A4 does not exist. In contrast, applying the similar

derivations as used in the proof of Theorem 15, we obtain that if the optimal solution

to problem VIII-A4 exists, the duality gap between J̃A4(λ
∗, δ∗H) and the optimal
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objective value of VIII-A4 is zero. Correspondingly, the optimal solution to VIII-A4

is given by Eqs. (8.61) and (8.62), where δ∗H needs to satisfy Eq. (8.59) and λ∗ results

in the equality in Eq. (8.60). Then, Theorem 16 follows.

Note that the general closed-form expressions for the optimal Lagrangian mul-

tipliers of problem VIII-A4 are also hard to obtain. However, we can apply the

gradient descent method similar to problem VIII-A3 (see Section E-3.3) for tracking

the optimal Lagrangian multipliers.

F. Simulation Evaluations

We use simulations to evaluate the performances of our proposed BS selection schemes

for distributed MIMO links. In particular, we simulate the distributed MIMO trans-

missions within a 250 m × 250 m square region, where the coordinates of its four ver-

tices are given by (125, 125) m, (−125, 125) m, (125,−125) m , and (−125,−125) m,

respectively. For the single-user case, the BS’s deployment and the mobile user’s

position are shown in Fig. 46(a), where Kbs = 5. For the multi-user case, the BS’s

deployment and the mobile users’ positions are given by Fig. 46(b), where Kbs = 6.

Moreover, we set T = 10 ms and B = 105 Hz throughout the simulations.

In the simulations, we employ the following average power degradation propa-

gation model [94]. For the given reference distance dref , if the transmission distance,

denoted by d, is smaller than or equal to dref , the free-space propagation model is

used; if the d > dref , the power degradation is proportional to (d/dref)
η, where η is

the path loss exponent and typically varies from 2 to 6 indoor environments without

LOS [94]. Accordingly, the mean hn,m of Hn,m’s elements can be determined by

hn,m =

⎧⎪⎨⎪⎩
Gd−2

n,m, if dn,m ∈ (0, dref ];

G
(
dref
dn,m

)η
, if dn,m ∈ (dref ,∞),
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Fig. 46. The deployment of BS’s and the positions of mobile users. (a) Sin-

gle-user case: Kbs = 5 BS’s, whose coordinates are (37.96,−21.56),

(−7.83, 13.33), (25.50,−22.49), (17.98, 25.00), and (−26.34, 11.62); the

mobile station’s coordinates are (4,−11) (b) Multi-user case: Kbs = 6,

whose coordinates are (35.77, 22.69), (13.06,−37.45), (27.15,−26.33),

(−40.28,−0.14), (−32.86,−28.65), and (−5.10, 29.98); Kmu = 3,

whose coordinates are (−11, 0), (3, 5), and (2,−12).

where dn,m is the distance between the mobile user and themth BS, andG is aggregate

power gain generated by the antenna and other factors. In simulations, we set dref =

1 [94] and η = 3. Furthermore, we set Pref = 4 and further select G such that

hn,m = 0 dB at dn,m = 50 m. Also, we set σ2
th = 0 dB for the evaluation of average

interfering range (see Section B-3 for its definition).

Figures 47(a) and 47(b) plot the average BS usage and the average interfering

range, respectively, versus the incoming traffic load for the single-user case. As shown

in Fig. 47(a), our proposed IBS-TS and OGBS-PT schemes both effectively decrease

the average BS usage and the interfering range as compared to the fixed selection

scheme. This is expected because our proposed BS-selections can adaptively adjust

BS selection in each fading state based on the CSI, traffic load, and the QoS re-

quirements. In contrast, the resulted average BS usage and the interfering range by
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Fig. 47. Single-user case, where Kbs = 5, each BS has two transmit antennas,

the mobile user has two receive antennas, and κ = 2.4. The delay

bound and its violation probability requirement are given by D
(1)
th = 50

ms and ξ1 = 10−4, respectively. (a) Average BS usage versus traffic

load. (b) Average interfering range versus traffic load.

applying the fixed BS-selection scheme cannot smoothly vary with traffic load, which

may cause unnecessary BS usage wither high power consumption and thus larger

interferences to the entire wireless network. We also observe from Fig. 47 that the

IBS-TS scheme needs less BS usage to support the incoming traffic under the specified

QoS requirements and therefore generates lower interferences accordingly, verifying

our discussions in Sections D-1 and D-2. However, we can see that the performance

differences between the IBS-TS and OGBS-PT schemes are little, especially when the

incoming traffic load is relatively high. Then, since the OGBS-PT scheme is easier

to implement (see Section D-4), the OGBS-PT scheme is more promising for realistic

systems than the IBS-TS scheme.

Figure 48 depicts the dynamics of the average BS usage and the interfering range

as functions of κ. When κ gets larger, the power budget used for distributed MIMO

transmission in each fading state is increased (see Eq. (8.3)). As a result, the average

BS usage is reduced correspondingly for all schemes, as illustrated in Fig. 48(a).
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Fig. 48. Single-user case, where Kbs = 5, each BS has two transmit antennas,

the mobile user has two receive antennas, and C1 = 1.1 Mbits/s. The

delay bound and its violation probability requirement are given by

D
(1)
th = 50 ms and ξ1 = 10−4, respectively. (a) Average BS usage

versus κ. (b) Average interfering range versus κ.

Although the BS usage decreases as κ increases, we can observe from Fig. 48(b) that

the interfering range is enlarged, which is also expected since higher transmit power

is used. Again, Fig. 48 demonstrates the inflexibility of the fixed BS-selection and the

significant reduction of BS usage and interferences generated by using our proposed

IBS-TS and OGBS-PT schemes.

Figure 49 compares the average BS usage and interfering range between our

proposed PBS-BD-PT scheme and the TDMA based scheme for multi-user case under

various system parameters. Fig. 49 shows that as the traffic load increases, both

scheme’s average BS usages and interfering range increase to satisfy the specified QoS

constraints for the incoming traffic. However, the TDMA based scheme’s BS usage

increases much more rapidly than our proposed PBS-BD-PT scheme. This is because

block diagonalization for multi-user distributed MIMO communication can effectively

take advantage of space multiplexing gain in removing the cross-interferences among

all mobile users, and thus can achieve high throughput. In contrast, the TDMA
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Fig. 49. Multi-user case, where Kbs = 6, Kmu = 3, Nn = 2 for all

n = 1, 2, . . . , Kmu, κ = 1.2, and Mm is the same for all users; ξn = 10−4

for all n, D
(1)
th = D

(2)
th = 50 ms, and D

(3)
th = 40 ms. (a) Average BS

usage versus traffic load. (b) Average interfering range versus traffic

load.

based scheme simply assigns orthogonal time slots to mobile users, which severely

degrades the sustainable traffic load. Moreover, Fig. 49 shows that as the traffic

load becomes smaller, the superiority of our proposed PBS-BD-PT scheme over the

TDMA based scheme gradually vanishes, implying that TDMA works well for low

traffic load. Fig. 49 also illustrates the impact of the number Mm of transmit antennas

at each BS on supporting the traffic load with the specified QoS requirements. As

depicted in Fig. 49, higher Mm can significantly decrease the average BS usage and

the interfering range, especially for our PBS-BD-PT scheme. Given Mm = 8, we can

see that the average BS usage and the interfering range for our PBS-BD-PT scheme

only need to increase slightly as traffic load gets larger. This is because the block

diagonalization typically needs high space multiplexing degree such that multiple user

can coexist while all achieving high system throughput. Further comparing Figs. 49(a)

and 49(b), we observe that the impact from the traffic load on the interfering range

is higher than that on the BS usage.
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Fig. 50. Multi-user case, where Kbs = 6, Kmu = 3, and Cn = 0.6 Mbits/s,

Nn = 2 for all n = 1, 2, . . . , Kmu and Mm = 6 for all m = 1, 2, . . . , Kbs;

the delay bounds and their corresponding violation probability require-

ments are the same for all users. (a) Average BS usage versus κ. (b)

Average interfering range versus κ.

Figure 50 illustrates our proposed PBS-BD-PT scheme and TDMA based scheme’s

performances versus κ under diverse QoS requirements. Similar to the single-user

case, the average BS usage deceases but the interfering range increases as κ gets

larger. The average BS usage and the interfering range of the PBS-BD-PT scheme

are much smaller than the TDMA based scheme. Also, the PBS-BD-PT scheme’s

BS usage and interfering range is less sensitive to the increasing of power budget

as compared to the TDMA based scheme. Figs. 50 also compares the performances

under various delay-QoS requirements. As shown in Fig. 50, lower delay bound and

smaller violation probability threshold, implying more stringent delay-QoS require-

ments, cause more BS usage and thus larger interfering range. This is because in order

to satisfy more stringent QoS requirements, more BS’s need to involve the coopera-

tive downlink transmissions to achieve high system throughput for all mobile users.

This also demonstrates that our proposed schemes can effectively adjust the trans-

mission strategy to adapt to the specified QoS requirements. In addition, Figs. 50(a)
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and 50(b) shows that the impact of κ is more significant on the average interfering

range than the average BS usage.

G. Summary

We proposed the QoS-aware BS-selection schemes for the distributed wireless MIMO

downlink to minimize the BS usages and to reduce the interfering range caused by the

distributed MIMO system, while satisfying diverse statistical delay-QoS constraints

characterized by the delay-bound violation probability and the effective capacity

technique. For the single-user scenario, we developed the scheme using the incre-

mental BS selection and time-sharing strategy and proposed the scheme employing

the ordered-gain based BS-selection and probabilistic transmission strategy. The

former scheme archives better performance, while the latter scheme is easier to im-

plement. For the multi-user scenario, we developed the joint priority BS-selection,

block-diagonalization precoding, and probabilistic transmission scheme. We also stud-

ied the TDMA based BS selection scheme for multi-user link. Abundant simulation

results show that our proposed schemes can effectively support the incoming traf-

fic load under the specified QoS requirements and significantly outperforms baseline

schemes in terms of minimizing the average BS usage and the interfering range.
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CHAPTER IX

QUEUE-AWARE SPECTRUM SENSING FOR INTERFERENCE

CONSTRAINED TRANSMISSIONS IN COGNITIVE RADIO NETWORKS

A. Introduction

Recently, cognitive radio networks have attracted more and more research attentions

due to the dramatically increasing demands on wireless services and considerable

underutilization of the licensed spectrums [48]. To effectively improve the utilization

of wireless spectrum resources, in cognitive radio networks unlicensed users (secondary

users) are allowed to use the licensed spectrums when the licensed users (primary

users) do not occupy these bandwidths [48–51].

Spectrum sensing is one of the key techniques in cognitive radio networks, through

which the secondary users (SUs) can detect the occupancy statuses of the channels

licensed to the primary users (PUs). Among various spectrum sensing techniques,

energy detection with the threshold-based decision is widely applied [50–52]. The tra-

ditional energy-detection based schemes typically compare the received energy with

the fixed threshold to decide whether the spectrum is occupied. The threshold is se-

lected such that the probability of causing interference to the PUs is upper-bounded.

However, the traditional energy-detection based spectrum-sensing strategy cannot ef-

fectively satisfy the statistical quality-of-service (QoS) requirements [3, 8, 53], such

as the queue-length-bound violation probability or buffer-overflow probability. This

is because the traditional energy-detection threshold is not aware of the queueing

status of SUs. In order to effectively decrease the queue-length-bound violation or

buffer-overflow probabilities, we need to take into consideration the queue length at

the sender of SUs. Specifically, when the queue length is small, the current data
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traffic burden is usually not heavy as compared to the channel service capability.

For this case, the SUs can use a relatively conservative strategy, e.g., a lower energy

threshold for the decision of spectrum occupancy, which causes less interferences to

PUs. When the queue length gets larger, SUs apply more aggressive strategies to

reduce the chances of buffer overflow or queue-length-bound violation. Furthermore,

the adaptation policy need to be carefully designed such that the overall interferences

to the PUs do not exceed the acceptable level.

To overcome the above problem, we propose the queue-aware spectrum sensing

schemes for interference-constrained opportunistic transmissions of SUs in cognitive

radio networks. Specifically, we employ the energy detection to detect the SU’s spec-

trum usage status. The energy threshold to decide the occupancy of the spectrum

is dynamically regulated as a function of the queue length at the sender of SUs. We

design the dynamic threshold control policies for the scenarios with infinite and finite

queue buffer sizes, respectively, which can effectively satisfy the statistical QoS con-

straints, while upper-bounding the interference probability to the PU’s transmissions.

The rest of the chapter is organized as follows. Section B describes the system

model. Section C proposes the queue-aware spectrum sensing framework for SUs’

transmissions. Section D derives the queue-aware spectrum sensing schemes with

infinite and finite queue buffer sizes, respectively. Section E presents the simulation

evaluations. The chapter concludes with Section F.

B. System Model

Consider a cognitive radio network consisting of a SU pair (a secondary sender and

a secondary receiver) and a PU, as shown in Fig. 51. The bandwidth of the licensed

spectrum is equal to B. The secondary sender uses spectrum sensing to detect the
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occupancy of the licensed spectrum. Due to the existence of thermal noises, the

spectrum sensing result cannot be perfectly accurate and thus interferences to the

PU cannot be completely avoided. Then, we use the miss-detection probability (to

be detailed in Section C) to characterize the interference constraints imposed to the

SUs. Specifically, we require that the miss-detection probability cannot exceed the

specified threshold denoted by Pm, implying that the interference probability to the

PU is also upper-bounded by Pm. The detailed system descriptions are provided in

the following sections.

1. The Primary User’s Transmission Behaviors

The licensed spectrum’s occupance status of the PU is modeled by the discrete-

time two-state Markov-Chain Model [49]. In particular, the time axis is divided into

consecutive time frames each with the fixed length T . Within the t-th time frame,

t = 1, 2, . . ., the channel occupancy by the PU is denoted by a random variable

O[t] ∈ {0, 1}. In particular, O[t] = 1 implies that the channel is currently being used

by the PU while O[t] = 0 suggests the idle state. The probability transition matrix

of the two-state Markov Chain is given by

G =

⎡⎢⎣ β 1 − β

1 − α α

⎤⎥⎦ , (9.1)

where the element Gi,j of G on the ith row (i = 0, 1) and jth column (j = 0, 1)

represents the probability of O[t+ 1] = j given O[t] = i.

2. Wireless Channel Model

The PU and the secondary sender both use constant transmit power. Then, the wire-

less channels for the corresponding wireless links can be characterized by the received
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Fig. 51. System model of an interference-constrained cognitive radio network.

SNR. The instantaneous SNR’s for the links of primary-user-to-secondary-sender,

primary-user-to-secondary-receiver, and secondary-sender-to-secondary-receiver, are

denoted by γps, γpr, and γsr, respectively, which are depicted in Fig. 51. These SNR’s

are independent and follows Rayleigh fading model. Moreover, γps, γpr, and γsr fol-

low the block-fading model, where they remain unchanged within a time frame, but

varies independently from frame to frame. In addition, we suppose that the secondary

sender knows the distribution of γps.

The PU and the secondary sender may transmit data in the same time frame.

Then, the signal-to-interference-plus-noise ratio (SINR) received at the secondary

receiver, denoted by γr, is determined by

γr =

⎧⎪⎨⎪⎩
γsr, if the PU does not transmit;

γsr
1+γpr

, otherwise;

(9.2)

We assume that the secondary receiver can perfectly estimate γr and feed γr back to

the secondary sender in the beginning of each time frame. However, we suppose that

the secondary sender does not use the information of γr for spectrum sensing. The

purpose of the assumption for perfect SINR estimation is to identify the theoretic

performance bound and simplify analyses. For the impacts of imperfect channel

estimation on the performances of wireless communications links, researchers can
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refer to [95, 96].

3. QoS Requirements for the Secondary Users

Due to the time-varying wireless channel and opportunistic spectrum access, the

deterministic QoS metrics such as hard delay bound and hard queue-length bound

are difficulty to guarantee. In contrast, we focus on statistical QoS metrics such as

the queue-length-bound violation probability and buffer-overflow probability [3,8,53].

The queueing system for the secondary sender is depicted in Fig. 52. In particular,

the secondary sender is responsible for transmitting a data stream to the secondary

receiver. The secondary sender maintains a queue to buffer the arrival data, where

the queue buffer size is denoted by L nats. The discrete-time arrival-rate process of

the data stream is denoted by A[t] (nats/frame), and the departure-rate process is

denote by R[t] (nats/frame), where

R[t] =

⎧⎪⎨⎪⎩ BT log(1 + γr), if transmitting;

0, if not transmitting.
(9.3)

In Eq. (9.3), BT log(1 + γr) is the Shannon capacity given the SINR γr. In this

chapter, we assume that A[t] is the constant-rate process and focus on the impacts

of spectrum sensing techniques on the transmission capability of the opportunistic

spectrum access in cognitive radio networks. Next, we introduce the QoS requirements

for the scenarios with L = ∞ and L <∞, respectively.

a. L = ∞

Since no buffer flow happens in this case, we focus on the queue-length-bound viola-

tion probability. The queue length and the required queue-length bound are denoted

by Q and Qth, respectively. The probability of violating this queue-length bound
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Fig. 52. Queue-aware spectrum sensing framework for the SUs.

cannot exceed a specified threshold Pth, i.e., the inequality given by

Pr{Q > Qth} ≤ Pth (9.4)

needs to hold.

b. L <∞

For this scenario, we require that the buffer-overflow probability satisfies the following

inequality:

Pr{buffer overflow} ≤ Pth. (9.5)

C. Queue-Aware Spectrum Sensing Framework for the Secondary Users

We propose a queue-aware spectrum-sensing framework for the secondary sender, as

illustrated in Fig. 52. We employ the energy detector for spectrum sensing, which

is marked with the dash-lined box in Fig. 52. Specifically, the secondary sender

first passes the sensed signal through the band-pass filter to remove the out-of-band

noises. Then, the square-law device and integrator are applied to obtain the energy

of the sensed signal within the certain observation interval. For more details of the
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energy detector, please refer to [50, 52]. We mainly concentrate on the output of the

integrator, which is denoted by Y . The energy detector uses Y to test two hypotheses

H0 and H1, where H1 represents that the PU is transmitting data and H0 denotes

the idle state of the PU. Moreover, Y follows the distributions below [50, 52]:

Y ∼

⎧⎪⎨⎪⎩ χ2
2m, H0 (the PU is transmitting data);

χ2
2m(2γps), H1 (the PU is idle),

(9.6)

where χ2
2m denotes the central chi-square distribution and χ2

2m(x) represents the non-

central chi-square distributions with the non-centrality parameter equal to x. In the

above equation, 2m is the degree of freedoms. More specifically, m represents the

number of samples from the energy detector [52]. Then, we use a threshold ξ to

decide the spectrum occupancy as follows:

Y
H1

≷
H0

ξ. (9.7)

When the decision is H1, the secondary sender transmits data in the buffer with the

rate determined by Eq. (9.3), which will cause interference to the PU. Accordingly,

given ξ the miss-detection probability, denoted by Pm(ξ), is defined by Pm(ξ) �

Pr{Y < ξ |H1}. Then, we can use the miss-detection probability to characterize the

interference probability to the PU.

The traditional energy detector typically uses the fixed ξ to guarantee the miss-

detection probability equal to the specified threshold. In contrast, we dynamically

regulate the threshold ξ as a function of the queue length Q at the secondary sender,

as shown in Fig. 52. Denoting the dynamic threshold by ξ(Q), the average miss-

detection probability is then equal to EQ{Pm(ξ(Q))} = EQ{Pr{Y < ξ(Q) |H1}},
where EQ{·} denotes the expectation over Q. The principle of our dynamic threshold

based scheme is explained as follows. On the one hand, when the queue length
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is small, implying that the current traffic burden is not heavy as compared to the

channel service capability. Accordingly, the secondary sender can use a relatively

conservative strategy, i.e., a smaller threshold, resulting in a small miss-detection

probability and imposing less interferences to the PU. On the other hand, as the

queue length becomes large, the secondary sender uses a more aggressive strategy,

i.e., a larger threshold for energy detection. Moreover, the threshold adjustment

rule needs to be carefully designed such that the average interference probability is

upper-bounded by Pm while satisfying the statistical QoS requirements.

D. Queue-Aware Spectrum Sensing Schemes for the Secondary Sender

Following the framework described in Section C, we need to identify the dynamic

threshold ξ(Q) as a function of queue length Q. Given a fixed threshold ξ, the

detection probability, denoted by Pd(ξ), in Rayleigh fading channel was given [50,52]

by

Pd(ξ)= e−
ξ
2

m−2∑
k=0

1

k !

(
ξ

2

)k
+

(
1 + γ

γ

)m−1

×
(
e
− ξ

2(1+γ) − e−
ξ
2

m−2∑
k=0

1

k !

(
ξγ

2(1 + γ)

)k)
,

where Pm(ξ) = 1 − Pd(ξ). When ξ(Q) is applied, the average miss-detection prob-

ability needs to be upper-bounded by Pm. To increase the chances of the spectrum

access for SUs, we set the targeted average miss-detection probability just equal to

Pm. Thus, we have ∫ ∞

0

Pm(q)g(q)dq = Pm, (9.8)

where g(q) denotes the probability density function (pdf) of the queue length distri-

bution, and Pm(Q) � Pm(ξ(Q)) represents the designed miss-detection probability

given Q. Since Pd(ξ) is a monotonically increasing function of ξ, so is Pm(ξ). Thus,
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the inverse function of Pm(ξ), denoted by ξ̃(Pm), exists, which can be readily obtained

through numerical searching techniques. Then, we can focus on controlling Pm(Q) to

satisfy Eq. (9.8). After determining Pm(Q), we can obtain the dynamic threshold for

energy detection as follows:

ξ(Q) = ξ̃(Pm(Q)). (9.9)

Following that discussion Chapter II, the queue-length-bound violation proba-

bility of a dynamic queueing system can be approximated by

Pr{Q > q} ≈ e−θq. (9.10)

Accordingly, we can write the pdf g(q) of Q as

g(q) ≈ θe−θq. (9.11)

The parameter θ > 0 describes the exponentially decaying speed of Pr{Q > q} as q

increases, which is called the QoS exponent [8, 53]. Having obtained the pdf of Q,

we design the queue-aware sensing schemes for scenarios with L = ∞ and L < ∞,

respectively, in the following sections.

1. The Scenario with Infinite Buffer Size

Based on Eqs. (9.4) and (9.10), in order to guarantee the QoS requirements, the QoS

exponent θ needs to satisfy

θ ≥ − 1

Qth
log(Pth). (9.12)

Then, we use the boundary value θ = − log(Pth)/Qth as the guidance to design

our queue-aware spectrum sensing scheme. We further require that control function

Pm(Q) has the following properties: (i) Pm(Q) is an increase function of Q; (ii) since
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Pm(Q) is essentially a probability, it must be upper-bounded by 1; (iii) Pm(Q) is a

continuous function of Q. Note that property (i) follows the principles proposed in

Section C. The smaller queue length corresponds to the more conservative strategy,

while the larger queue length generates the more aggressive strategy. Property (iii)

is applied to obtain the flexible dynamic-threshold policies. Following the above

properties, we design a control function Pm(Q) given by

Pm(Q) =

⎧⎪⎪⎨⎪⎪⎩
Q

φ
, if 0 ≤ Q ≤ φ;

1, if Q > φ,

(9.13)

where φ > 0. We choose the linear function in that given ξ(Q) in a time frame, the

average queue length increment/decrement is linear to the miss-detection probability.

Under this control policy, when the queue length is larger than or equal to φ, the SU

transmits data regardless of the current status of the PU to decrease the queue-length-

bound violation probability. When the queue length is equal to 0, the miss-detection

probability will also become 0, implying that the secondary sender does not attempt

to use the spectrum in this case. If the queue length fall in the interval given by

(0, φ), the miss-detection probability for the current time frame varies linearly to Q.

Plugging Eq. (9.13) into Eq. (9.8) we obtain∫ ∞

0

Pm(q)g(q)dq =

∫ φ

0

θq

φ
e−θq

∫ ∞

φ

θe−θq

=
1

θφ

(
1 − e−θφ

)
= Pm. (9.14)

Solving this equation, we get the analytical expression of φ as follows:

φ =
1

θPm

[
1 + PmW

(
− 1

Pm

e
− 1

Pm

)]
, (9.15)

where W (·) is the Lambert W function [74] which is known as the inverse function of
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Z(W ) = WeW . Applying φ into Eq. (9.13), we get the control policy Pm(Q) for the

scenario with infinite buffer size. The corresponding dynamic-threshold policy can be

obtained through Eq. (9.9).

Although we use the boundary θ in Eq. (9.12) to design our queue-aware spectrum

sensing scheme, the actual QoS exponent under our proposed policy will vary with the

traffic load. However, through simulations in Section E we will show that our proposed

schemes can support higher traffic loads than the traditional energy-detection based

scheme under the same QoS requirement and interference constraint.

2. The Scenario with Finite Buffer Size

When L is finite, the maximum queue length is equal to L, and the arrival data will be

dropped if the queue is full. Based on the theory of statistical QoS, the queue-length

distribution can be characterized by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(q) ≈ θe−θq, if q < L;

g(q) = 0, if q > L;

Pr{Q = q} ≈ e−θq, if q = L.

(9.16)

Accordingly, the buffer-overflow probability can be approximated by Pr{Buffer overflow} ≈
1 − Pr{Q < L}. Then in order to satisfy Eq. (9.16), the QoS exponent θ needs to

satisfy

θ ≥ − 1

L
log(Pth). (9.17)

We also select the boundary value θ = − log(Pth)/L to design our dynamic-threshold

policy.

When the queue length approaches L, we need to increase the chances for trans-

missions, such that the buffer-overflow probability can be effectively decreased. Then,
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a natural strategy is to set Pm(L) = 1. Accordingly, when the queue length decreases

to 0, we set Pm(0) = 0. Similar to the design for the scenario with infinite buffer size,

we let Pm(Q) linearly vary with Q for Q ∈ [0, L] and thus get

Pm(Q) =
Q

L
, ∀ 0 ≤ Q ≤ L. (9.18)

However, with the policy of Eq. (9.18), the average miss-detection probability is not

equal to the design target Pm under the given QoS exponent θ, which causes either

too much interferences to the PU or insufficient utilization of the wireless spectrum.

Accordingly, we need to modify the policy given by Eq. (9.18) for the cases with

L < φ and L ≥ φ, respectively, where φ is determined by Eq. (9.15).

a. For the case of L < φ

In this case, when applying the policy given by Eq. (9.18), the integration result on

the left-hand side of Eq. (9.8) is larger than Pm. To satisfy the interference constraint,

we introduce a multiplier μ ∈ (0, 1] into Eq. (9.18) and derive a new control policy as

follows:

Pm(Q) =
μQ

L
, ∀ 0 ≤ Q ≤ L. (9.19)

Plugging Eqs. (9.19) and (9.16) into Eq. (9.8) and solving for μ, we obtain the ana-

lytical solution to μ as:

μ =
θLPme

θL

−1 + eθL
. (9.20)

Note that under this new policy, the maximum detection probability in any time

frame is smaller than 1, which is forced by the interference constraints.



237

4 5 6 7 8 9 10 11 12 13
10

−4

10
−3

10
−2

10
−1

10
0

Traffic load  (nats/frame)

Pr
 {

 Q
 >

 Q
th

 }

4 5 6 7 8 9 10 11 12 13
0

0.005

0.01

0.015

0.02

0.025

Traffic load  (nats/frame)

M
is

s 
de

te
ct

io
n 

pr
ob

ab
ili

ty

Traditional detection
Queue−aware sensing

Traditional detection
Queue−aware sensing

P m = 0.01
P th = 0.01

Max load that can
be supported by the
traditional detection

Max load than can be
supported by
queue−aware
sensing

(a) (b)

Fig. 53. The SU’s transmission performance with the infinite buffer size, where

Pr{Q > Qth} ≤ Pth = 0.01, Qth = 500 nats, and Pm = 0.01. (a)

The queue-length-bound violation probability Pr{Q > Qth} versus the

traffic load A. (b) The miss-detection probability Pm versus the traffic

load A.

b. For the case of L ≥ φ

If applying Eq. (9.18) in this case, the integration results on the left-hand side of

Eq. (9.8) is lower than Pm, which decreases the spectrum utilization. Then, further

increasing Pm(Q) for Q < L and following the similar design principles applied in

Section D-1, we get the dynamic threshold policy in this case as follows:

Pm(Q) =

⎧⎪⎪⎨⎪⎪⎩
Q

φ
, if 0 ≤ Q ≤ φ;

1, if φ < Q ≤ L.

(9.21)

E. Simulation Evaluations

We use simulations to evaluate the performance of our proposed queue-aware sensing

schemes. For comparative analyses, we also simulate the traditional energy-detection

based scheme. In the simulations, we set bandwidth of the licensed spectrum as
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Fig. 54. The SU’s transmission performance with the finite buffer size, where

Pth = 0.01 and Pm = 0.01. (a) The buffer-overflow probability versus

the traffic load A. (b) The average miss-detection probability versus

the traffic load A.

B = 105 Hz and the time-frame length as T = 1 ms. The probability transition

parameters in Eq. (9.1) are set to α = 0.5 and β = 0.7. For wireless channels, the

average SNR’s of γps, γpr, and γpr are given by γps = 10 dB, γpr = 10 dB, and

γsr = 15 dB, respectively. The arrival traffic A[t] for the SU has a constant arrival

rate, denoted by A (nats/frame), which represents the traffic load. Moreover, the

miss-detection probability needs to be upper-bounded by Pm = 0.01. Figs. 53 and 54

simulate the scenarios with infinite and finite buffer size, respectively.

Figures. 53(a) and 53(b) plot the queue-length-bound violation probability and

miss-detection probability, respectively, versus the traffic load, where Pth = 0.01 and

Qth = 500 nats. Fig. 53(a) shows that the queue-length-bound violation probability

increases as the traffic load gets larger. We can observe from Fig. 53(a) that our

proposed scheme generates much lower queue-length-bound violation probability than

the traditional energy detection scheme. From Fig. 53(b), we can see that the miss-

detection probability of the traditional energy detection scheme does not vary with
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traffic loads, which is expected in that the threshold for the hypotheses test does not

vary with queue length. The miss-detection probability of our proposed queue-aware

sensing scheme increases as the traffic load gets large. This is also expected because

when the traffic load is higher, the queue-length is usually larger, resulting in a more

aggressive detection strategy in our scheme. On condition that both the QoS and

interference constraints are satisfied, as shown in Fig. 53(a), the maximum traffic

load that can be supported by the traditional energy-detection based scheme is only

7 nats/frame. In contrast, by using our proposed queue-aware sensing scheme, the

maximum traffic load that can be supported reaches 10 nats/frame (see Fig. 53(b)),

which significantly outperforms the traditional scheme.

Figures. 54(a) and 54(b) depict the queue-length-bound violation probability

and miss-detection probability, respectively, versus the traffic load, where the buffer

size is finite with Pth = 0.01. We do not draw the curve for traditional scheme

in Fig. 54(b), because the miss-detection probability of the traditional scheme is

always fixed at Pm, which is independent of the buffer size. Figs. 54(a) and 54(b)

demonstrate the similar tendency to Figs. 53(a) and 53(b), respectively. Moreover,

Fig. 54(a) shows that as the buffer size gets larger, the buffer-overflow probabilities

for both schemes increase. However, regardless of the variation of the buffer size,

our proposed queue-aware sensing scheme can always achieve much lower buffer-

overflow probability than the traditional detection scheme. Based on Figs. 54(a)

and 54(b), when L = 200 nats, the maximum traffic loads that can be supported by

our proposed scheme and the traditional scheme are 4 and 3 nats/frame, respectively.

When L = 100 nats, the maximum sustainable traffic loads under our proposed

scheme and the traditional scheme are 2 and 1 nats/frame, respectively. In both

cases, our queue-aware sensing scheme shows the great superiority over the traditional

energy detection scheme in supporting higher system throughput under the specified
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QoS and interference constraints.

F. Summary

We proposed the queue-aware spectrum sensing schemes for SUs in cognitive radio

networks. The energy threshold to decide the spectrum occupancy status dynami-

cally varies with the queue length of the secondary sender, such that statistical QoS

requirements can be effectively satisfied while upper-bounding the interference prob-

ability to the primary user. We developed the queue-aware threshold control policies

for the scenarios with infinite buffer and finite buffer at the secondary sender, respec-

tively. Simulations evaluations demonstrated that under the specified statistical QoS

requirements and interference constraints, our proposed schemes can support much

higher data traffic loads for SUs than the traditional energy-detection based scheme.
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CHAPTER X

CONCLUSIONS

A. Summary of the Dissertation

In this dissertation, we study the adaptive resource allocation problems for statisti-

cal QoS provisioning in several typical mobile wireless networks. In Chapter I, we

discussed the background, motivations, and related works. In Chapter II, we gave an

introduction to the theory of statistical delay-QoS guarantees and the dual concepts

of effective capacity and effective bandwidth, which served as the foundation for our

works in Chapters IV, V, VII, VIII, and IX.

In Chapter III, we derived the optimal time-sharing rate policy for mobile mul-

ticast with i.i.d. fading channels. In i.i.d. fading environments, to maximize average

multicast goodput is equivalent to maximizing the sum of achieved rates over receivers

in each fading state independently. The derived optimal policy has good scalability in

term of the multicast group size. As the multicast group size approaches infinity, the

derived optimal policy converges to a constant rate policy with a non-zero goodput.

By using a SNR-plane partition based method, we also derived the optimal time-

sharing policy for two-receiver cases with non-i.i.d. fading channels. To solve the

problem that the statistical channel information is usually unavailable to the sender,

we developed a sub-grouping based suboptimal rate policy, which can effective apply

the algorithm derived in i.i.d. fading environments into non-i.i.d. fading environ-

ments across multicast receivers. Simulation and numerical analyses show that our

proposed policies significantly outperform the existing rate adaptation schemes.

In Chapter IV, we proposed the efficient framework for mobile multicast over

broadcast fading channels by integrating the effective-capacity theory, multicast rate
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adaptation, and loss-rate control. Subject to the QoS exponent and average loss-rate

constraint, we formulated an effective-capacity maximization problem via channel-

aware rate adaptation. For rate adaptation, we employed the time-sharing and

superposition-coding techniques, respectively, to handle the heterogeneous qualities

over channels across multicast receivers. We also developed a novel pre-drop scheme

to implement the more efficient QoS-driven wireless multicasting. Under the de-

veloped framework, we derived the optimal time-sharing based and superposition-

coding adaptive multicast policies. Simulation evaluations demonstrated the trade-

off between the effective capacity and QoS metrics and showed the superiority of

our derived optimal policies over the fixed-dominating-position based policy and the

constant-rate policies.

In Chapter V, we proposed a framework to model the wireless transmission of

multi-layer video stream with statistical delay QoS guarantees. A separate queue is

maintained for each video layer and the same statistical delay QoS-requirement needs

to be satisfied by all video layers, where the statistical delay QoS is characterized

by the delay-bound and its corresponding violation probability through the effective

bandwidth/capacity theory. Under the proposed framework, we derived a set of op-

timal rate adaptation and time-slot allocation schemes for video unicast/multicast

with and/or without loss tolerance, which minimizes the time-slot resource consump-

tion. We also conducted extensive simulation experiments to demonstrate the impact

of statistical QoS provisionings on wireless resource allocation by using our derived

optimal adaptive transmission schemes.

In Chapter VI, we developed and analyzed an adaptive hybrid ARQ-FEC graph-

code-based erasure-correcting protocol for the QoS-driven multicast services over mo-

bile wireless networks. The key features of our proposed scheme are two-fold: the

low complexity and dynamic adaptation to packet-loss levels. The low complexity is
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achieved by using the graph code. To increase the error-control efficiency, we proposed

a two-dimensional adaptive error-control scheme, which dynamically adjusts both

the error-control redundancy and code-mapping structures in each adaptation step

according to packet-loss levels. By deriving and identifying the closed-form nonlin-

ear analytical expression between the optimal check-node degree and the packet-loss

level for any given code-block length, we proposed the nonuniformed adaptive cod-

ing structures to achieve high error-control efficiency. Furthermore, we developed a

loss covering strategy to determine the error-control redundancy in each transmission

round and derive the corresponding analytical expressions of the error-control re-

dundancy. Using the proposed two-dimensional nonuniformed adaptive error-control

scheme, we developed an efficient hybrid ARQ-FEC protocol for multicast. We eval-

uated the proposed protocol through simulation experiments. The simulation results

show that our proposed adaptive scheme can achieve high error-control efficiency for

QoS-driven multicast services while introducing low computational complexity and

implementation overhead.

In Chapter VII, we derived the optimal channel-aware time-slot length and power

allocation policy in cellular networks to maximize the sum effective capacity while

satisfying the proportional-effective-capacity constraint and guaranteeing the diverse

statistical QoS requirements from different mobile users. We also developed a subop-

timal but simpler equal-length time-division policy. Simulation results demonstrated

the impact of QoS provisionings on the resource allocation across different mobile

users and the network performance, and showed that our derived optimal adaptation

policy significantly outperforms the equal-length time-division policy.

In Chapter VIII, we proposed the QoS-aware BS-selection schemes for the dis-

tributed wireless MIMO downlink to minimize the BS usages and to reduce the in-

terfering range caused by the distributed MIMO system, while satisfying diverse sta-
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tistical delay-QoS constraints characterized by the delay-bound violation probability

and the effective capacity technique. For the single-user scenario, we developed the

scheme using the incremental BS selection and time-sharing strategy and proposed

the scheme employing the ordered-gain based BS-selection and probabilistic trans-

mission strategy. The former scheme archives better performance, while the latter

scheme is easier to implement. For the multi-user scenario, we developed the joint

priority BS-selection, block-diagonalization precoding, and probabilistic transmission

scheme. We also studied the TDMA based BS selection scheme for multi-user link.

Abundant simulation results show that our proposed schemes can effectively sup-

port the incoming traffic load under the specified QoS requirements and significantly

outperforms baseline schemes in terms of minimizing the average BS usage and the

interfering range.

In Chapter IX, we proposed the queue-aware spectrum sensing schemes for SUs

in cognitive radio networks. The energy threshold to decide the spectrum occupancy

status dynamically varies with the queue length of the secondary sender, such that

statistical QoS requirements can be effectively satisfied while upper-bounding the

interference probability to the primary user. We developed the queue-aware threshold

control policies for the scenarios with infinite buffer and finite buffer at the secondary

sender, respectively. Simulations evaluations demonstrated that under the specified

statistical QoS requirements and interference constraints, our proposed schemes can

support much higher data traffic loads for SUs than the traditional energy-detection

based scheme.
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B. Future Work

1. Resource Allocation and Statistical Delay-QoS Provisionings for Multi-Hop

Networks

In this dissertation, we exploited QoS-driven adaptive resource allocation schemes for

several types of wireless networks. Although our works shed light on how to effectively

design resource allocation schemes for statistical delay-QoS provisioning, there are

still many widely cited open problems for delay-QoS guarantees in wireless networks.

Our works mainly focused on single-hop wireless communications scenarios. However,

how to integrate statistical delay-QoS analyses into resource allocation for multi-hop

communications is still a challenging task. While effective capacity/bandwidth theory

have established a powerful framework to evaluate the statistical delay QoS, they

cannot be directly applied into multi-hop environments due to the following reasons:

1) each node on the route has its own buffer; 2) the total delay for the end user is

a result from concatenated-queue model rather than a single-queue model. These

facts cause significant challenges in analytical analyses. Consequently, it is critically

important to extend the effective capacity/bandwidth theory to multi-hop networks

for the design of efficient delay-QoS driven resource allocation schemes.

2. Resource Allocation and Statistical Delay-QoS Provisioning in Cooperative

Wireless Networking

In addition to the problem of statistical delay-QoS provisioning in multi-hop wireless

networks, the statistical delay-QoS provisioning in cooperative wireless communica-

tions and networks is also a very important and promising research direction. Not like

the scenarios discussed in this dissertation, where resource allocation are controlled

by the centralized base station or server, in cooperative wireless networks mobile



246

users will interact to cooperatively delivery data over wireless fading channels. Over

the last few years, fundamental research has demonstrated the advantage of cooper-

ative wireless communications in significantly improving the capacity and reliability

for data transmissions [22, 97–99]. Moreover, the recent research focuses of cooper-

ative wireless communications have shifted from the simpler link-level scenarios to

the more complex wireless-networks regimes. However, diverse delay-QoS provision-

ing problems in cooperative wireless networking has neither been well addressed nor

thoroughly studied. As a result, there is the urgent need to explore this research

areas towards the future wireless networking techniques.

3. Quality-of-Service Provisioning versus Quality-of-Experience Provisioning

While quality-of-service (QoS) provisioning for mobile wireless communications has

been widely studied, quality-of-experience (QoE) provisioning in wireless networks

has attracted more and more research attention [100,101]. QoS provisioning typically

has objective performance metric and measure methods, which can be quantitatively

measured by the network infrastructures. In contrast, QoE represents the users’

subjective satisfaction levels for their received services, which are often difficult to

quantitatively evaluate. Correspondingly, developing new approaches/frameworks

for designing various resource allocation schemes in wireless networks to address QoE

provisioning is a very promising research direction.



247

REFERENCES

[1] ITU-T Rec. G.114: One-way transmission time, International Telecommunica-

tion Union Std.

[2] C.-S. Chang, “Stability, queue length, and delay of deterministic and stochastic

queueing networks,” IEEE Transactions on Automatic Control, vol. 39, no. 5,

pp. 913–931, May 1994.

[3] C.-S. Chang, Performance Guarantees in Communication Networks. London:

Springer-Verlag, 2000.

[4] F. Kelly, S. Zachary, and I. Ziedins, Stochastic Networks: Theory and Applica-

tions, Royal Statistical Society Lecture Notes Series. Oxford: Oxford University

Press, U.K., 1996, vol. 4.

[5] C. Courcoubetis and R. Weber, “Effective bandwidth for stationary sources,”

Probability in Engineering and Information Sciences, vol. 9, no. 2, pp. 285–294,,

1995.

[6] M. M. Krunz and J. G. Kim, “Fluid analysis of delay and packet discard perfor-

mance for qos support in wireless networks,” IEEE Journal on Selected Areas

in Communications, vol. 19, no. 2, pp. 384–395, Feb. 2001.

[7] A. I. Elwalid and D. Mitra, “Effective bandwidth of general Markovian traffic

sources and admission control of high speed networks,” IEEE/ACM Transac-

tions on Networking, vol. 1, no. 3, pp. 329–343, Jun. 1993.

[8] D. Wu and R. Negi, “Effective capacity: A wireless link model for support of

quality of service,” IEEE Transactions on Wireless Communications, vol. 2,

no. 4, pp. 630–643, Jul. 2003.



248

[9] A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with channel

side information,” IEEE Transactions on Information Theory, vol. 43, no. 6,

pp. 1986–1992, Nov. 1997.

[10] A. J. Goldsmith, “The capacity of downlink fading channels with variable rate

and power,” IEEE Transactions on Vehicular Technology, vol. 46, no. 3, pp.

569–580, Mar. 1997.

[11] A. J. Goldsmith and M. Effros, “The capacity region of broadcast channels

with intersymbol interference and colored Gaussian noise,” IEEE Transactions

on Information Theory, vol. 47, no. 1, pp. 219–240, Jan. 2001.

[12] N. Jindal and A. Goldsmith, “Capacity and dirty paper coding for Gaussian

broadcast channels with common information,” in Proc. Int. Symp. Information

Theory ISIT 2004, Chicago, IL, USA, Jun. 27-Jul. 2 2004, p. 215.

[13] D. N. Tse, “Optimal power allocation over parallel Gaussian broadcast chan-

nels,” in Proc. Symp. IEEE Int Information Theory 1997, Ulm, Germany, Jun.

1997, p. 27.

[14] D. N. Tse, “Optimal power allocation over parallel Gaussian broadcast

channels,” 1997, full paper version. [Online]. Available: http://www.eecs.

berkeley.edu/∼dtse/broadcast2.pdf.

[15] L. Li and A. J. Goldsmith, “Capacity and optimal resource allocation for fading

broadcast channels–Part I: Ergodic capacity,” IEEE Transactions on Informa-

tion Theory, vol. 47, no. 3, pp. 1083–1102, Mar. 2001.

[16] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over fading



249

channels,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1468–

1489, Jul. 1999.

[17] E. Biglieri, G. Caire, and G. Taricco, “Limiting performance of block-fading

channels with multiple antennas,” IEEE Transactions on Information Theory,

vol. 47, no. 4, pp. 1273–1289, May 2001.

[18] L. Li and A. J. Goldsmith, “Capacity and optimal resource allocation for fading

broadcast channels–Part II: Outage capacity,” IEEE Transactions on Informa-

tion Theory, vol. 47, no. 3, pp. 1103–1127, Mar. 2001.

[19] J. Tang and X. Zhang, “Quality-of-service driven power and rate adaptation

over wireless links,” IEEE Transactions on Wireless Communications, vol. 6,

no. 8, pp. 3058–3068, Aug. 2007.

[20] J. Tang and X. Zhang, “Quality-of-service driven power and rate adaptation

for multichannel communications over wireless links,” IEEE Transactions on

Wireless Communications, vol. 6, no. 12, pp. 4349–4360, Dec. 2007.

[21] J. Tang and X. Zhang, “QoS-driven power allocation over parallel fading chan-

nels with imperfect channel estimations in wireless networks,” in Proc. IN-

FOCOM 2007. 26th IEEE Int. Conf. Computer Communications, Anchorage,

Alaska, USA, May 2007, pp. 62–70.

[22] J. Tang and X. Zhang, “Cross-layer resource allocation over wireless relay net-

works for quality of service provisioning,” IEEE Journal on Selected Areas in

Communications, vol. 25, no. 4, pp. 645–656, May 2007.

[23] D. Wu and R. Negi, “Downlink scheduling in a cellular network for quality-of-

service assurance,” IEEE Transactions on Vehicular Technology, vol. 53, no. 5,



250

pp. 1547–1557, Sep. 2004.

[24] G. H. Forman and J. Zahorjan, “The challenges of mobile computing,” Com-

puter, vol. 27, no. 4, pp. 38–47, Apr. 1994.

[25] M. Hauge and O. Kure, “Multicast in 3G networks: Employment of existing

ip multicast protocols in UMTS,” in WOWMOM ’02: Proceedings of the 5th

ACM international workshop on Wireless mobile multimedia, New York, NY,

USA, Sep. 2002, pp. 96–103.

[26] “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air In-

terface for Fixed Broadband Wireless Access Systems,” May 2004, IEEE Std

802.16-2004 (Revision of IEEE Std 802.16-2001).

[27] N. Jindal and Z.-Q. Luo, “Capacity limits of multiple antenna multicast,” in

Proc. IEEE Int Information Theory Symp, Seattle, WA, USA, Jul. 2006, pp.

1841–1845.

[28] Y. Sun and K. J. R. Liu, “Transmit diversity techniques for multicasting over

wireless networks,” in Proc. WCNC Wireless Communications and Networking

Conf. 2004 IEEE, vol. 1, Atlanta, GA, USA, Mar. 2004, pp. 593–598.

[29] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo, “Transmit beamforming for

physical-layer multicasting,” IEEE Transactions on Signal Processing, vol. 54,

no. 6, pp. 2239–2251, Jun. 2006.

[30] Y. Park, Y. Seok, N. Choi, Y. Choi, and J.-M. Bonnin, “Rate-adaptive multi-

media multicasting over IEEE 802.11 wireless LANs,” in Proc. Consumer Com-

munications and Networking Conference, CCNC 2006, Las Vegas, NV, USA,

Jan. 2006, pp. 178–182.



251

[31] P. K. Gopala and H. El Gamal, “On the throughput-delay tradeoff in cellu-

lar multicast,” in Proc. Int. Wireless Networks, Communications and Mobile

Computing Conf., vol. 2, Maui, HI, USA, Jun. 2005, pp. 1401–1406.

[32] X. Zhang, K. G. Shin, D. Saha, and D. D. Kandlur, “Scalable flow control

for multicast ABR services in ATM networks,” IEEE/ACM Transactions on

Networking, vol. 10, no. 1, pp. 67–85, Feb. 2002.

[33] X. Zhang and K. G. Shin, “Delay analysis of feedback-synchronization signaling

for multicast flow control,” Networking, IEEE/ACM Transactions on, vol. 11,

no. 3, pp. 436–450, Jun.s 2003.

[34] X. Zhang and K. G. Shin, “Markov-chain modeling for multicast signaling delay

analysis,” Networking, IEEE/ACM Transactions on, vol. 12, no. 4, pp. 667–680,

Aug. 2004.

[35] S. McCanne, M. Vetterli, and V. Jacobson, “Low-complexity video coding for

receiver-driven layered multicast,” IEEE Journal on Selected Areas in Commu-

nications, vol. 15, no. 6, pp. 983–1001, Aug. 1997.

[36] J. Villalon, P. Cuenca, L. Orozco-Barbosa, Y. Seok, and T. Turletti, “Cross-

layer architecture for adaptive video multicast streaming over multirate wireless

LANs,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 4, pp.

699–711, May 2007.

[37] A. Majumda, D. G. Sachs, I. V. Kozintsev, K. Ramchandran, and M. M. Yeung,

“Multicast and unicast real-time video streaming over wireless lans,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 12, no. 6, pp.

524–534, Jun. 2002.



252

[38] Y. S. Chan, J. W. Modestino, Q. Qu, and X. Fan, “An end-to-end embedded

approach for multicast/broadcast of scalable video over multiuser cdma wireless

networks,” IEEE Transactions on Multimedia, vol. 9, no. 3, pp. 655–667, Apr.

2007.

[39] R. Knopp and P. A. Humblet, “Information capacity and power control in

single-cell multiuser communications,” in Proc. IEEE International Conference

on Communications (ICC), vol. 1, Seattle, WA, USA, Jun. 1995, pp. 331–335.

[40] A. Sanderovich, S. Shamai, and Y. Steinberg, “Distributed MIMO receiver—

Achievable rates and upper bounds,” IEEE Transactions on Information The-

ory, vol. 55, no. 10, pp. 4419–4438, Oct. 2009.

[41] D. R. Brown and H. V. Poor, “Time-slotted round-trip carrier synchronization

for distributed beamforming,” IEEE Transactions on Signal Processing, vol. 56,

no. 11, pp. 5630–5643, Nov. 2008.

[42] P. Shang, G. Zhu, L. Tan, G. Su, and T. Li, “Transmit antenna selection for the

distributed MIMO systems,” in Proc. Int. Conf. Networks Security, Wireless

Communications and Trusted Computing NSWCTC ’09, vol. 2, Wuhan, Hubei,

China, Apr. 2009, pp. 449–453.

[43] R. Chen, R. W. Heath, and J. G. Andrews, “Transmit selection diversity for

unitary precoded multiuser spatial multiplexing systems with linear receivers,”

IEEE Transactions on Signal Processing, vol. 55, no. 3, pp. 1159–1171, Mar.

2007.

[44] R. Mudumbai, D. R. Brown, U. Madhow, and H. V. Poor, “Distributed trans-

mit beamforming: Challenges and recent progress,” Communications Magazine,

IEEE, vol. 47, no. 2, pp. 102–110, Feb. 2009.



253

[45] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans.

Telecomm., vol. 10, no. 6, pp. 585–596, Nov. 1999.

[46] M. Gharavi-Alkhansari and A. B. Gershman, “Fast antenna subset selection in

MIMO systems,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp.

339–347, 2004.

[47] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,” IEEE

Communications Magazine, vol. 42, no. 10, pp. 68–73, Oct. 2004.

[48] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” Se-

lected Areas in Communications, IEEE Journal on, vol. 23, no. 2, pp. 201–220,

Feb. 2005.

[49] Q. Zhao, L. Tong, and A. Swami, “Decentralized cognitive mac for dynamic

spectrum access,” in Proc. First IEEE Int. Symp. New Frontiers in Dynamic

Spectrum Access Networks DySPAN 2005, Baltimore, MD, USA, Nov. 2005, pp.

224–232.

[50] A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for opportunistic

access in fading environments,” in Proc. First IEEE Int. Symp. New Frontiers

in Dynamic Spectrum Access Networks DySPAN 2005, Baltimore, MD, USA,

Nov. 2005, pp. 131–136.

[51] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Spectrum sensing measure-

ments of pilot, energy, and collaborative detection,” in Proc. IEEE Military

Communications Conf. MILCOM 2006, Washington, DC, USA, Oct. 2006, pp.

1–7.



254

[52] F. F. Digham, M.-S. Alouini, and M. K. Simon, “On the energy detection of un-

known signals over fading channels,” IEEE Transactions on Communications,

vol. 55, no. 1, pp. 21–24, Jan. 2007.

[53] X. Zhang, J. Tang, H.-H. Chen, S. Ci, and M. Guizani, “Cross-layer-based

modeling for quality of service guarantees in mobile wireless networks,” IEEE

Communications Magazine, vol. 44, no. 1, pp. 100–106, 2006.

[54] Q. Du and X. Zhang, “Time-sharing based rate adaptation for multicast over

wireless fading channels in mobile wireless networks,” in Proc. 40th Annual

Conf. Information Sciences and Systems, CISS 2006, Princeton, NJ, USA, Mar.

2006, pp. 1385–1390.

[55] Q. Du and X. Zhang, “Fixed/variable power multicast over heterogeneous fad-

ing channels in cellular networks,” in Proc. IEEE Int. Conf. Communications

ICC ’08, Beijing, China, May 2008, pp. 2182–2186.

[56] Q. Du and X. Zhang, “Effective capacity optimization with layered transmission

for multicast in wireless networks,” in Proc. Int. Wireless Communications and

Mobile Computing Conf. IWCMC ’08, Crete Island, Greece, Aug. 2008, pp.

267–272.

[57] Q. Du and X. Zhang, “Effective capacity of superposition coding based mobile

multicast in wireless networks,” in Proc. IEEE Int. Conf. Communications ICC

’09, Dresden, Germany, Jun. 2009.

[58] X. Zhang and Q. Du, “Cross-layer modeling for QoS-driven multimedia multi-

cast/broadcast over fading channels in [Advances in Mobile Multimedia],” IEEE

Communications Magazine, vol. 45, no. 8, pp. 62–70, Aug. 2007.



255

[59] Q. Du and X. Zhang, “Statistical QoS provisionings for wireless uni-

cast/multicast of multi-layer video streams,” IEEE Journal on Selected Areas

in Communications, vol. 28, no. 3, pp. 420–433, Mar. 2010.

[60] X. Zhang and Q. Du, “Adaptive low-complexity erasure-correcting code-based

protocols for QoS-driven mobile multicast services over wireless networks,”

IEEE Transactions on Vehicular Technology, vol. 55, no. 5, pp. 1633–1647,

Sep. 2006.

[61] Q. Du and X. Zhang, “Resource allocation for downlink statistical multiuser

qos provisionings in cellular wireless networks,” in Proc. INFOCOM 2008. The

27th IEEE Conf. Computer Communications, Phoenix, AZ, USA, Apr. 2008,

pp. 2405–2413.

[62] Q. Du and X. Zhang, “QoS-aware base-station selections for distributed MIMO

links in broadband wireless networks,” submitted to IEEE Journal on Selected

Areas in Communications, 2010.

[63] Q. Du and X. Zhang, “Queue-aware spectrum sensing for interference-

constrained transmissions in cognitive radio networks,” in Proc. IEEE Interna-

tional Conference on Communications (ICC), Cape Town, South Africa, May

2010.

[64] G. L. Choudhury, D. M. Lucantoni, and W. Whitt, “Squeezing the most out

of ATM,” IEEE Transactions on Communications, vol. 44, no. 2, pp. 203–217,

Feb. 1996.

[65] U. Varshney, “Multicast over wireless networks,” Commun. ACM, vol. 45,

no. 12, pp. 31–37, Dec. 2002.



256

[66] A. J. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for

fading channels,” IEEE Transactions on Communications, vol. 45, no. 10, pp.

1218–1230, Oct. 1997.

[67] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based loss recovery

for reliable multicast transmission,” IEEE/ACM Transactions on Networking,

vol. 6, no. 4, pp. 349–361, Aug. 1998.

[68] J. W. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain approach to

asynchronous reliable multicast,” IEEE Journal on Selected Areas in Commu-

nications, vol. 20, no. 8, pp. 1528–1540, Oct. 2002.

[69] J. Jiang, R. M. Buehrer, and W. H. Tranter, “Antenna diversity in multiuser

data networks,” IEEE Transactions on Communications, vol. 52, no. 3, pp.

490–497, Mar. 2004.

[70] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels.

Hoboken, NJ: John Wiley & Sons, Inc., 2005.

[71] T. Cover, “Broadcast channels,” IEEE Transactions on Information Theory,

vol. 18, no. 1, pp. 2–14, Jan. 1972.

[72] I. S. Gradshteyn and I. M. Ryzhik, Table of Integral, Series, and Products. New

York, NY: Academic Press, 1992.

[73] O. Kallenberg, Foundations Modern Probability, 2nd, Ed. New York: Springer-

Verlag, 2000.

[74] F. Chapeau-Blondeau and A. Monir, “Numerical evaluation of the Lambert

W function and application to generation of generalized Gaussian noise with



257

exponent 1/2,” IEEE Transactions on Signal Processing, vol. 50, no. 9, pp.

2160–2165, Sep. 2002.

[75] M. J. Gans and B. Chen, “Beaconing in MIMO broadcast channels,” in

Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP ’05),

Philadelphia, PA, USA, Mar. 2005.

[76] Q. Du and X. Zhang, “Cross-layer design based rate control for mobile mul-

ticast in cellular networks,” in Proc. IEEE Global Telecommunications Conf.

GLOBECOM ’07, Washington DC, USA, Nov. 2007, pp. 5180–5184.

[77] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge

University Press, U.K., 2004.

[78] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 2nd, Ed. Cambridge, MA: MIT Press, 2001.

[79] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: The-

ory and Algorithms, 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2006.

[80] J. Shin, J. W. Kim, and C.-C. J. Kuo, “Quality-of-service mapping mecha-

nism for packet video in differentiated services network,” IEEE Transactions

on Multimedia, vol. 3, no. 2, pp. 219–231, Jun. 2001.

[81] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding

extension of the H.264/AVC standard,” IEEE Transactions on Circuits and

Systems, vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[82] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory,

vol. 52, no. 6, pp. 2551–2567, Jun. 2006.



258

[83] Multimedia Broadcast/Multicast Service: Protocols and Codecs, 3GPP Std.,

Sep. 2009, tS 26.346, Release 9, v9.0.0.

[84] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reliable

multicast framework for light-weight sessions and application level framing,”

IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 784–803, Dec. 1997.

[85] C. Huitema, “The case for packet level FEC,” in PfHSN ’96: Proceedings of

the TC6 WG6.1/6.4 Fifth International Workshop on Protocols for High-Speed

Networks, London, UK, Oct. 1996, pp. 109–120.

[86] N. Nikaein, H. Labiod, and C. Bonnet, “MA-FEC: a QoS-based adaptive fec

for multicast communication in wireless networks,” in Proc. IEEE Int. Conf.

Communications ICC 2000, vol. 2, New Orleans, LA, USA., Jun. 2000, pp.

954–958.

[87] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Ef-

ficient erasure correcting codes,” IEEE Transactions on Information Theory,

vol. 47, no. 2, pp. 569–584, Feb. 2001.

[88] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symp. Foundations of Com-

puter Science, Nov. 2002, pp. 271–280.

[89] A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamentals Con-

cepts and Key Architectures. Boston, MA: McGraw-Hill, 2000.

[90] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” Oct. 2003. [Online].

Available: http://www.stanford.edu/class/ee392o/subgrad method.pdf

[91] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the gaus-

sian multiple-input multiple-output broadcast channel,” IEEE Transactions on



259

Information Theory, vol. 52, no. 9, pp. 3936–3964, Sep. 2006.

[92] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for

downlink spatial multiplexing in multiuser mimo channels,” IEEE Transactions

on Signal Processing, vol. 52, no. 2, pp. 461–471, Feb. 2004.

[93] C. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia, PA:

Society for Industrial and Applied Mathematics, 2000.

[94] T. S. Rappaport, Wireless Communications: Principles & Practice, 2nd, Ed.

Upper Saddle River, NJ: Prentice Hall, 2001.

[95] J. Wang and J. Chen, “Performance of wideband CDMA systems with complex

spreading and imperfect channel estimation,” IEEE Journal on Selected Areas

in Communications, vol. 19, no. 1, pp. 152–163, Jan. 2001.

[96] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading MIMO

channels with channel estimation error,” IEEE Transactions on Information

Theory, vol. 52, no. 5, pp. 2203–2214, May 2006.

[97] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–Part I:

System description,” IEEE Transactions on Communications, vol. 51, no. 11,

pp. 1927–1938, Nov. 2003.

[98] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity – Part

II: Implementation aspects and performance analysis,” IEEE Transactions on

Communications, vol. 51, no. 11, pp. 1939–1948, Nov. 2003.

[99] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in

wireless networks: Efficient protocols and outage behavior,” IEEE Transactions

on Information Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.



260

[100] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative relationship

between quality of experience and quality of service,” IEEE Network, vol. 24,

no. 2, pp. 36–41, Mar. 2010.

[101] P. Brooks and B. Hestnes, “User measures of quality of experience: why being

objective and quantitative is important,” IEEE Network, vol. 24, no. 2, pp.

8–13, Mar. 2010.

[102] J. R. Norris, Markov Chains. Cambridge: Cambridge University Press, U.K.,

1997.



261

APPENDIX A

PROOF OF PROPOSITION 1

Proof. Define Rsum �
∑N

n=1Rn

(
λ(γ)

)
. Based on Eq. (3.4) we get an upper-bound of

R
(
λ(γ)

)
given by

R
(
λ(γ)

) ≤ 1

N
Rsum

(
λ(γ)

) ≤ J � 1

N
max
λ(γ)

{
Rsum

(
λ(γ)

)}
. (A.1)

Applying Eq. (3.3), we can simplify the right-hand side of Eq. (A.1) as

max
λ(γ)

{
Rsum

(
λ(γ)

)}⇔ max
λ(γ)

{
N∑
n=1

cn(γ)τλ(γ)

}
, (A.2)

which implies that for each γ, maximizing Rsum

(
λ(γ)

)
is equivalent to maximizing∑N

n=1 cn(γ)τλ(γ). Furthermore, we derive

N∑
n=1

cn(γ)τλ(γ) =
N∑
i=1

λ̂i(γ)

[
N∑
k=1

c
(
γ̂k, B log(1 + γ̂i)

)]
=

N∑
i=1

λ̂i(γ)Θ̂i, (A.3)

where Θ̂i = B
∑

∀ k,γ̂k≥γ̂i
log(1 + γ̂i). Because Θ̂i does not vary with λ(γ), in order to

optimize
∑N

n=1 cn(γ)τλ(γ), we need to allocate all time proportions to the maximum

Θ̂i. Thus, the policy maximizing the right-hand side of Eq. (A.3), denoted by λ̂
∗
(γ)

(the permuted version), is given by

λ̂∗ i(γ) = 1, if i = i∗; λ̂∗ i(γ) = 0, if i �= i∗; i∗ = arg max
1≤i≤N

{
Θ̂i

}
, (A.4)

Since γ̂1 ≥ γ̂2 ≥ · · · ≥ γ̂N , we get

i∗ = arg max
1≤i≤N

{
Θ̂i

}
= arg max

1≤i≤N

⎧⎨⎩B ∑
∀ k,γ̂k≥γ̂i

log(1 + γ̂i)

⎫⎬⎭ = arg max
1≤i≤N

{
iB log(1 + γ̂i)

}
. (A.5)



262

Note that i∗ may not be unique for a given CSI vector γ. If there exist multiple indices

i1, i2, . . . , iS (S is an integer, S ≤ N) such that isB log(1+γ̂is) = max1≤i≤N{iB log(1+

γ̂i)} holds for all s = 1, 2, . . . , S, we set i∗ = max{i1, i2, . . . , iS} without loss generality.

Because {γn}Nn=1 are i.i.d. and γ̂ completely determines λ̂
∗
(γ), λ̂

∗
(γ) benefits all

receivers evenly and we obtain R1

(
λ̂

∗
(γ)
)

= R2

(
λ̂
∗
(γ)
)

= · · · = RN

(
λ̂

∗
(γ)
)
. Then

through Eq. (A.1) we obtain Rsum = NJ , and further derive

R
gp∣∣

λ̂
∗
(γ)

= Rn

(
λ̂

∗
(γ)
)

=
1

N
Rsum = J . ∀1 ≤ n ≤ N, (A.6)

Therefore, λ̂
∗
(γ) achieves the upper-bound of the average multicast goodput, and

Proposition 1 follows.
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APPENDIX B

PROOF OF PROPOSITION 2

Proof. For convenience of presentation, given multicast group size N we rewrite the

average multicast goodput as Rgp

(
N,λ

(
γ〈N〉

))
. Moreover, we rewrite the corre-

sponding OPTS policy as λ∗ (γ〈N〉
)
. For given N , we split the entire multicast

group into two sub-groups: sub-group 1 includes users 1, 2, . . . , N − 1 and sub-

group 2 includes user N . Accordingly, we get γ〈N−1〉 = (γ1, γ2, . . . , γN−1)
τ and

γ〈N〉 =
(
γτ〈N−1〉, γN

)τ
. Following Definition 2, we derive

Rgp

(
N,λ∗ (γ〈N〉

))
= min

1≤n≤N

{
Rn

(
λ∗ (γ〈N〉

))}
= min

{
min

1≤n≤N−1

{
Rn

(
λ∗ (γ〈N〉

))}
, RN

(
λ∗ (γ〈N〉

))}
. (B.1)

We first focus only on sub-group 1. Based on results in Section D-1, the OPTS policy

for sub-group 1 is λ∗ (γ〈N−1〉
)

obtained through Proposition 1. Therefore, we have

min
1≤n≤N−1

{
Rn

(
λ∗ (γ〈N〉

))} ≤ min
1≤n≤N−1

{
Rn

(
λ∗ (γ〈N−1〉

))}
= Rgp

(
N − 1,λ∗ (γ〈N−1〉

))
(B.2)

Plugging Eq. (B.2) into Eq. (B.1), we get

Rgp

(
N,λ∗ (γ〈N〉

)) ≤ min
{
Rgp

(
N − 1,λ∗ (γ〈N−1〉

))
, RN

(
λ∗ (γ〈N〉

)) }
≤ Rgp

(
N − 1,λ∗ (γ〈N−1〉

))
, (B.3)

and thus Proposition 2 follows.
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APPENDIX C

PROOF OF PROPOSITION 4

Proof. For convenience, we use V ∗
a , V ∗

b , V ∗
c , and V ∗

d to denote Va, Vb, Vc, and Vd,

with η0 = η∗0, respectively. Consider any policy λ′(γ) �= λ∗(γ) with R1

(
λ′(γ)

)
=

R2

(
λ′(γ)

)
. We have

R2

(
λ∗(γ)

)− R2

(
λ′(γ)

)
= E {−λ′1(γ)μ2(γ)|γ ∈ V ∗

a ∪ V ∗
c } + E {(1 − λ′1(γ))μ2(γ)|γ ∈ V ∗

b ∪ V ∗
d } . (C.1)

Using the definition of compensation efficiency (see Eq. (3.24)), we derive

R1

(
λ∗(γ)

)−R1

(
λ′(γ)

)
= E {−λ′1(γ)η(γ)(−μ2(γ))|γ ∈ V ∗

a ∪ V ∗
c }

+E {(1 − λ′1(γ))η(γ)(−μ2(γ))|γ ∈ V ∗
b ∪ V ∗

d }
(a)

≥ −η∗0
[
E {−λ′1(γ)μ2(γ)|γ ∈ V ∗

a ∪ V ∗
c } + E {(1 − λ′1(γ))μ2(γ)|γ ∈ V ∗

b ∪ V ∗
d }
]

= −η∗0
[
R2

(
λ∗(γ)

)− R2

(
λ′(γ)

)]
, (C.2)

where (a) follows because μ2(γ) ≤ 0 holds for all γ (see Eq. (3.22)), η∗0 ≥ η(γ) for

γ ∈ V ∗
a ∪ V ∗

c , and η∗0 ≤ η(γ) for γ ∈ V ∗
b ∪ V ∗

d . Comparing Eq. (C.2) with the facts of

R1

(
λ′(γ)

)
= R2

(
λ′(γ)

)
and R1

(
λ∗(γ)

)
= R2

(
λ∗(γ)

)
, we derive R

gp|λ∗(γ) ≥ R
gp|λ′(γ),

which completes the proof of Proposition 4.
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APPENDIX D

PROOF OF LEMMA 1

Proof. Applying Definition 9 to Eq. (4.16), we obtain Eq. (4.22) of Claim 1. Following

the principles for optimizing non-differentiable concave functions [79, pp. 128], R̃s is

the solution to

0 ∈ ∂g̃sum(R̃s). (D.1)

In order to satisfy Eq. (D.1), Eq. (4.23) needs to hold for certain integer 1 ≤ k ≤ N .

The existences of such a k is guaranteed by Eq. (4.17). The uniqueness of such a

k is obtained through applying the strict monotonicity of ηα(j) given by Eq. (4.17).

If ηα(k) < 0, g̃sum(Rs) is a strictly increasing function for Rs ∈ [rπ(N), rα(k)], and a

strictly decreasing function for Rs ∈ [rα(k), rπ(1)]. As a result, R̃s = rα(k) achieves

the unique peak of g̃sum(Rs). If ηα(k) = 0, we have ηα(k+1) > 0 = ηα(k) > ηα(k−1),

suggesting that g̃sum(Rs) is a strictly increasing function forRs ∈ [rα(N ), rα(k)], remains

unchanged within Rs ∈ [rα(k), rα(k−1)], and becomes a strictly decreasing function

within Rs ∈ [rα(k−1), rα(1)]. Consequently, the maximizer R̃s can be any real number

within [rα(k), rα(k−1)], which competes the proof of Claim 2 and thus Lemma 1 follows.
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APPENDIX E

PROOF OF LEMMA 2

Proof. Consider any feasible TS policy (λ′, R′
d) of problem IV-P1-a with group loss

rate equal to q′0, where q′0 ≤ qth holds. We denote A′ the point in the ISR-ISG plane

generated under λ′ and suppose that A′ is not an upper-boundary point of the convex

hull spanned by {Aπ(i)}Ni=1 for some γ.

Note that any feasible (Rs, g̃sum(Rs)) of IV-P1-b must be an upper-boundary

point. Thus, in order to prove Lemma 2 we need to show that for any (λ′, R′
d), there

exists a certain policy (λ′′, R′′
d) which satisfies the following three conditions:

Condition (i): λ′′ generates an upper-boundary point for all γ.

Condition (ii): (λ′′, R′′
d) is feasible to IV-P1-a;

Condition (iii): e−θ(R
′′
s +R′′

d ) ≤ e−θ(R
′
s+R′

d), ∀γ.

In the rest of this proof, we use (·)′ and (·)′′ to denote the values of corresponding

variables under the policies (λ′, R′
d) and (λ′′, R′′

d), respectively. Consider any γ under

which A′ is not an upper-boundary point, as shown in Fig. 55. Starting from A′,

which is marked with a hollow square, we draw a ray with slope N(1 − q′0) towards

the direction where the sending rate increases. Then, we have either of the following

two cases, depending on the position of A′:
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Fig. 55. Illustration in the ISR-ISG plane for the proof of Lemma 2, where

N = 3 in this example.

Case I: The ray intersects the upper boundary at A′′, which is marked with a

hollow triangle in Fig. 55;

Case II: There is no intersection between the ray (marked with a dashed line in

Fig. 55) and the upper boundary. The ray intersects with the vertical

line Rs = Rα(1) at a point below Aα(1), which is marked with a black

solid circle. In this case, we let A′′ := Aα(1).

Next, we construct a new adaptive transmission policy (λ′′, R′′
d) through the strategy

below. If A′ is on the upper boundary, we set λ′′ := λ′. Otherwise, we set λ′′ as the

TS policy generating A′′ as described in Cases I and II. Moreover, we let R′′
d = R′

d for

all γ.

Under the above strategy, Condition (i) is satisfied. Defining ΔRs � R′′
s − R′

s

and Δgsum � g′′sum − g′sum, we have

ΔRs ≥ 0, Δgsum ≥ N(1 − q′0)ΔRs, and R′
d = R′′

d, ∀ γ. (E.1)
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Then, we derive

Eγ

{
ρ(R′′

s +R′′
d) − g′′sum

}
= Eγ

{
ρ(R′

s +R′
d) − g′sum

}
+ Eγ

{
ρΔRs − Δgsum

}
(a)

≤ Eγ

{
ρΔRs − Δgsum

}
(b)

≤ Eγ

{
N(1 − qth)ΔRs −N(1 − q′0)ΔRs

} (c)

≤ 0, (E.2)

where (a) holds because of q′0 ≤ qth, (b) results from Δgsum ≥ N(1−q′0)ΔRs, (c) follows

by applying q′0 ≤ qth and ΔRs ≥ 0. Eq. (E.2) shows that the new policy (λ′′, R′′
d) is

feasible to problem IV-P1-a, and thus Condition (ii) follows. Furthermore, because

of ΔRs ≥ 0, Condition (iii) holds, which completes the proof of Lemma 2.
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APPENDIX F

PROOF OF THEOREM 1

Proof. If ψ∗ = 0, the solutions to Eqs. (4.27)-(4.28) become (R∗
s+R

∗
d) → ∞, implying

that the group loss-rate constraint is violated. Therefore, we must have ψ∗ > 0. Next,

we consider the following two cases to solve Eqs. (4.27)-(4.28).

A. For the case with R∗
d > 0

If R∗
d > 0, plugging Eq. (4.31) into Eq. (4.28) we get

ψ∗ρ = θe−θ(R
∗
s+R∗

d), if R∗
d > 0. (F.1)

Applying Eq. (F.1) into Eq. (4.30), we derive

∂�Rs(R
∗
s, R

∗
d;ψ

∗) =

⎧⎪⎨⎪⎩
{
− ψ∗ηα(j)

}
, if rα(j) < R∗

s < rα(j−1) & N ≥ j ≥ 2;[
− ψ∗ηα(j+1),−ψ∗ηα(j)

]
, if R∗

s = rα(j) & N ≥ j ≥ 1,

(F.2)

Because ψ∗ > 0, we can see from Eqs. (4.30) and (4.22) that 0 ∈ ∂�Rs(R
∗
s , R

∗
d;ψ

∗) in

this case is equivalent to 0 ∈ ∂g̃sum(R∗
s). Comparing 0 ∈ ∂g̃sum(R∗

s) with Eq. (D.1),

we see that

R∗
s = R̃s, if R∗

d > 0. (F.3)

Solving Eq. (F.1), we can express R∗
d through R∗

s by

R∗
d = −1

θ
log

(
ψ∗ρ
θ

)
− R∗

s, if R∗
d > 0. (F.4)
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B. For the case with R∗
d = 0

Plugging R∗
d = 0 into Eq. (4.27), we get

R∗
s = R̂s, if R∗

d = 0. (F.5)

To satisfy Eqs. (4.28) and (4.31), the inequality

ψ∗ρ > θe−θ(R
∗
s+R∗

d), if R∗
d = 0 (F.6)

needs to hold. In other words, we have

R∗
d = 0, if − 1

θ
log

(
ψ∗ρ
θ

)
< R∗

s. (F.7)

Obtaining the analytical expressions for (R∗
s, R

∗
d) in the above two cases, we need

to examine which solution is optimal given a γ. For the case of R∗
d = 0, we define

ζγ � ψ∗ρ− θe−θ(R
∗
s+R∗

d) > 0.

Applying ζγ to Eq. (4.30), we derive

∂�Rs(R
∗
s, R

∗
d;ψ

∗)

=

⎧⎪⎨⎪⎩
{
ζγ − ψ∗ηα(j)

}
, if rα(j) < R∗

s < rα(j−1) & N ≥ j ≥ 2;[
ζγ − ψ∗ηα(j), ζγ − ψ∗ηα(j−1)

]
, if R∗

s = rα(j) & N ≥ j ≥ 1,

(F.8)

Note that the solutions of R∗
s to 0 ∈ ∂�Rs(R

∗
s, R

∗
d;ψ

∗) under Eqs. (F.2) and (F.8) are

R̃s and R̂s, respectively. Then, comparing Eq. (F.2) with Eq. (F.8) under ζγ > 0, we

must have ⎧⎪⎨⎪⎩ R̃s ≥ R̂s ⇐⇒ R∗
d = 0;

R̃s ≤ R̂s ⇐⇒ R∗
d > 0.

(F.9)

Combing Eqs. (F.3), (F.5), and (F.9), we obtain Eq. (4.32). Further summarizing
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Eqs. (F.4), (F.7), and (F.9), we get Eq. (4.33). In addition, the definition of the

group loss rate given by Eq. (4.9) indicates that Eq. (4.35) is required by Eq. (4.29),

which completes the proof of Theorem 1.
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APPENDIX G

PROOF OF THEOREM 3

Proof. We define ψ̃ � ψ∗ρ/θ. Plugging ψ∗ = ψ̃θ/ρ and Eq. (4.30) into Eqs. (4.27),

the condition 0 ∈ ∂�Rs(R
∗
s , R

∗
d;ψ

∗) for the optimal solution becomes⎧⎪⎨⎪⎩
0 = ψ̃

(
1 − ηα(j)

ρ

)
− 1, if rα(j) < R∗

s < rα(j−1) & N ≥ j ≥ 2;

0 ∈
[
ψ̃
(
1 − ηα(j+1)

ρ

)
− 1, ψ̃

(
1 − ηα(j)

ρ

)
− 1
]
, if R∗

s = rα(j) & N ≥ j ≥ 1,

(G.1)

Further defining ηth � ρ(1 − 1/ψ̃) and applying ψ̃ = ρ/(ρ − ηth) into Eq. (G.1), we

have⎧⎪⎨⎪⎩
0 =

ρ−ηα(j)

ρ−ηth − 1, if rα(j) < R∗
s < rα(j−1) & N ≥ j ≥ 2;

0 ∈
[
ρ−ηα(j+1)

ρ−ηth − 1,
ρ−ηα(j)

ρ−ηth − 1
]
, if R∗

s = rα(j) & N ≥ j ≥ 1,
(G.2)

The monotonic property of ηα(j) shown in Eq. (4.17) suggests that there exists a

unique integer k such Eq. (4.42) holds. Applying k and solving Eq. (G.2), we get the

optimal sending rate R∗
s expressed by Eq. (4.41). For ηth ∈ (0, ρ), we have ψ̃ ∈ (1,∞)

accordingly. Plugging ψ̃ > 1 and ψ∗ = ψ̃θ/ρ into Eq. (4.28) and letting θ → 0, we

derive R∗
d = 0 for all γ, as given in Eq. (4.40).

Lemma 3 shows that q0(ηth, ζγ) is a decreasing function of ηth with limηth→0 q0(ηth, 1) =

q̃0 > qth. Moreover, letting ηth → ρ = N(1 − qth) in Eq. (H.3), we can obtain

limηth→ρ q0(ηth, 1) ≤ qth. Therefore, there must exist certain ηth and ζγ such that

q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth holds, which is equivalent to Eq. (4.29). Since the policy char-

acterized by Eq. (4.40)-(4.42) satisfy all three conditions given by Eqs. (4.27)-(4.28),

it is the optimal solution to P1-b under θ → 0. The proof of Theorem 3 is completed.
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APPENDIX H

PROOF OF LEMMA 3

Proof. For any multicast policy characterized by Eqs. (4.40)-(4.42), we can derive

Eγ

{
g̃sum(R∗

s)
}

= Eγ

⎧⎨⎩Nrα(N ) +
N∑

j=k+1

ηα(j)

(
rα(j−1) − rα(j)

)
+ ηα(k)(R

∗
s − rα(k))

⎫⎬⎭
(a)

≥ ηthEγ{R∗
s} =

ηth

N (1 − q0(ηth, ςγ))
Eγ

{
g̃sum(R∗

s)
}
, (H.1)

where (a) follows because of ηα(j) ≥ ηth for j = k + 1, . . . ,N . Through Eq. (H.1), we

get

ηth ≤ N (1 − q0(ηth, ςγ)) . (H.2)

We use the superscripts (·)′ and (·)′′ to mark the corresponding variables for the

policies under η′th and η′′th, respectively. Following Eq. (H.1), we get⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Eγ

{
g̃sum(R′

s)
}

= Eγ

⎧⎨⎩Nrα(N ) +

N∑
j=k

′
+1

ηα(j)

(
rα(j−1) − rα(j)

)
+ η

α(k
′
)

(
R′
s − r

α(k
′
)

)⎫⎬⎭ ;

Eγ

{
g̃sum(R′′

s)
}

= Eγ

⎧⎨⎩Nrα(N ) +
N∑

j=k
′′
+1

ηα(j)

(
rα(j−1) − rα(j)

)
+ η

α(k
′′
)

(
R′′
s − r

α(k
′′
)

)⎫⎬⎭ .

Then, we derive

Eγ

{
g̃sum(R′′

s )
}
− Eγ

{
g̃sum(R′

s)
}

= Eγ

{
η
α(k

′
)

(
r
α(k

′−1)
− R′

s

)

+
k
′−1∑

j=k
′′
+1

ηα(j)

(
rα(j−1) − rα(j)

)
+ η

α(k
′′
)

(
R′′
s − r

α(k
′′
)

)}
. (H.3)

Since η′th > η′′th, by applying the monotonic property of ηα(j) given by Eq. (4.17) and
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the criterion to determine k in Eq. (4.42), we must have k
′ ≤ k

′′
and

η′th ≥ η
α(k

′
)
≥ ηα(j) ≥ η

α(k
′′
)
, ∀ j, k′ ≥ j ≥ k

′′
. (H.4)

Plugging Eq. (H.4) into Eq. (H.3), we obtain

Eγ

{
g̃sum(R′′

s)
}
− Eγ

{
g̃sum(R′

s)
}

≤ η′thEγ

{(
r
α(k

′−1)
−R′

s

)
+
∑k

′−1

j=k
′′
+1

(
rα(j−1) − rα(j)

)
+
(
R′′
s − r

α(k
′′
)

)}
= η′th

(
Eγ{R′′

s} − Eγ{R′
s}
) (a)

≤ N(1 − q0(η
′
th, ς

′
γ))
(
Eγ{R′′

s} − Eγ{R′
s}
)
, (H.5)

where (a) results from Eq. (H.2). Furthermore, we derive

N(1 − q0(η
′′
th, ς

′′
γ))

=
Eγ{g̃sum(R′′

s )}
Eγ{R′′

s}
=

Eγ{g̃sum(R′
s)} + Eγ{g̃sum(R′′

s )} − Eγ{g̃sum(R′
s)}

Eγ{R′
s} + Eγ{R′′

s} − Eγ{R′
s}

≤
N(1 − q0(η

′
th, ς

′
γ))Eγ{R′

s} +N(1 − q0(η
′
th, ς

′
γ))
(

Eγ{R′′
s} − Eγ{R′

s}
)

Eγ{R′
s} + Eγ{R′′

s − R′
s}

= N(1 − q0(η
′
th, ς

′
γ)), (H.6)

implying that Eq. (4.43) holds. Given ηth → N , Eq. (4.42) suggests R∗
s = rα(N ) =

rπ(N), because ηα(N+1) = N and ηα(j) < N for all j = 1, 2, . . . ,N (see Eq. (4.17)).

With R∗
s = rπ(N) and R∗

d = 0, there is no loss for all multicast receivers and thus we

have limηth→N q0(ηth, ςγ) = 0. In contrast, as ηth → 0, Eq. (4.42) reduces to Eq. (4.23),

implying that R∗
s = R̃s. Then, together with R∗

d = 0, we get limηth→0 q0(ηth, 1) = q̃0,

which completes the proof of Lemma 3.
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APPENDIX I

PROOF OF THEOREM 4

Proof. We define κ � − log(ψ∗ρ/θ)/θ. Plugging ψ∗ = θe−θκ/ρ and Eq. (4.30) into

Eq. (4.27) and letting θ → 0, the condition of 0 ∈ ∂�Rs(R
∗
s, R

∗
d;ψ

∗) reduces to⎧⎪⎨⎪⎩
0 = ηα(j), if rα(j) < R∗

s < rα(j−1) & N ≥ j ≥ 2;

0 ∈ [−ηα(j+1),−ηα(j)

]
, if R∗

s = rα(j) & N ≥ j ≥ 1.

(I.1)

Solving this equation, we get R∗
s = R̃s. Moreover, applying ψ∗ = θe−θκ/ρ into

Eqs. (4.28) and (4.31) under θ → 0, the condition 0 ∈ ∂�Rd
(R∗

s , R
∗
d;ψ

∗) changes to⎧⎪⎨⎪⎩
e−θR

∗
s < e−θκ, if R∗

d = 0;

0 = e−θ(R
∗
s+R∗

d) − e−θ(Rs+Rd), if R∗
d > 0,

(I.2)

solving which we obtain

R∗
d =

⎧⎪⎨⎪⎩ 0, if R̃s ≥ κ;

κ− R∗
d, if R̃s ≤ κ.

(I.3)

Summarizing the above results, we get Eq. (4.46). Also, q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth has

to hold, as required by Eq. (4.35) in Theorem 1. Because the larger pre-drop rate

improves the instantaneous throughput but does not affect the instantaneous sum

goodput, the group loss rate under the policy given by Eq. (4.46) is an increasing

function of κ. Eq. (4.46) also implies that the average sum goodput vary continuously

with κ. Therefore, given any qth ≥ q̃0, there must exist a certain κ to guarantee

q0|(Rs,Rd)=(R∗
s ,R

∗
d) = qth. The proof of Theorem 4 is completed.
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APPENDIX J

PROOF OF THEOREM 5

Proof. Recall that we define ξ � log(ψ∗ρ/θ)/θ. Then, rewriting the conditions given

by Eqs. (4.27) and (4.28) in terms of ξ, we get⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 = e−θξ

(
1 − ηα(j)

ρ

)
− e−θ(R

∗
s+R∗

d), if rα(j) < R∗
s < rα(j−1) & N ≥ j ≥ 2;

0 ∈
[
e−θξ

(
1 − ηα(j+1)

ρ

)
− e−θ(R

∗
s+R∗

d),

e−θξ
(
1 − ηα(j)

ρ

)
− e−θ(R

∗
s+R∗

d)
]
, if R∗

s = rα(j) & N ≥ j ≥ 1.

(J.1)

and ⎧⎪⎨⎪⎩
0 < e−θξ − e−θR

∗
s , if R∗

d = 0;

0 = ξ − (R∗
s +R∗

d), if R∗
d > 0,

(J.2)

respectively. Then, the solution can be categorized into the following five cases.

A. For the case of R∗
s = rα(j) and R∗

s +R∗
d = ξ

In order to meet the second line of Eq. (J.1), 1 − ηα(j+1)/ρ < 1 ≤ 1 − ηα(j)/ρ has to

hold, which is equivalent to ηα(j+1) > 0 ≥ ηα(j), implying rα(j) = R̃s. As a result, we

get

(R∗
s, R

∗
d) = (R̃s, ξ − R̃s), if

(
R∗
s = rα(j)

) ∧ (R∗
s +R∗

d = ξ) (J.3)

for some j. Further applying R∗
s +R∗

d = ξ into Eq. (J.2), we get R∗
d > 0 and thus

R̃s < ξ. (J.4)
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B. For the case of R∗
s = rα(j) and R∗

s +R∗
d > ξ

The second line of Eq. (J.1) implies that 1 − ηα(j+1)/ρ < 0 ≤ 1 − ηα(j)/ρ must hold,

which is equivalent to ηα(j+1) > ρ ≥ ηα(j). We use k̂ to denote the unique integer j to

satisfy ηα(j+1) > ρ ≥ ηα(j). Then, we get R∗
s = Rρ, where Rρ is given by Eq. (4.48).

Moreover, the condition R∗
s + R∗

d > ξ requires that R∗
d = 0 according to Eq. (J.2).

Summarizing these results, we obtain

(R∗
s , , R

∗
d) = (Rρ, 0), if

(
R∗
s = rα(j)

) ∧ (R∗
s +R∗

d > ξ) , (J.5)

for some j, where we must have

ξ < Rρ. (J.6)

C. For the case of R∗
s = rα(j) and R∗

s +R∗
d < ξ

Under this condition, it is easy to verify that Eq. (J.1) does not have solution as

θ → ∞. Thus, this optimal solution will never fall into this category.

D. For the case of rα(j) < R∗
s < rα(j−1) and ηα(j) �= 0

If 1 − ηα(j)/ρ ≤ 0, i.e., ηα(j) ≥ ρ, it is clear that the solution to Eq. (J.1) does not

exist; moreover, if ηα(j) < 0, we have

0 = e−θξ
(

1 − ηα(j)

ρ

)
− e−θ(R

∗
s+R∗

d) > e−θξ − e−θ(R
∗
s+R∗

d), (J.7)

under which Eq. (J.2) does not have solution, either. Consequently, ρ > ηα(j) > 0

needs to hold, and thus the first line of Eq. (J.1) suggests

R∗
s +R∗

d = ξ − 1

θ
log

(
1 − ηα(j)

ρ

)
> ξ. (J.8)
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Furthermore, R∗
s + R∗

d > ξ results in R∗
d = 0 based on Eq. (J.2). Further letting

θ → ∞ in Eq. (J.8), we have R∗
s → ξ. Thus, the optimal R∗

s and R∗
d are given by

(R∗
s , R

∗
d) = (ξ, 0), if

(
rα(j) < R∗

s < rα(j−1)

)
(J.9)

for some j. In addition, since ρ > ηα(j) > 0 holds, according to the monotonicity of

ηα(j) we get

rα(k̂) ≤ R∗
s = ξ ≤ R̃s. (J.10)

E. For the case of rα(j) < R∗
s < rα(j−1) and ηα(j) = 0

Solving the first line of Eq. (J.1) under ηα(j) = 0, we get R∗
s + R∗

d = ξ > R̃s. Note

that the requirement ξ > R̃s coincides with the results in case 1), which is given by

Eq. (J.3). Therefore, when ξ > R̃s and ηα(j) = 0 hold for some j, the solution for R∗
d

and R∗
s may not be unique. However, because the optimization problem is convex,

these solutions result in the same optimal value of the objective function. Then, we

ignore this case and use the solution in case 1) to characterize the optimal multicast

policy.

As discussed in the above, the solution of (R∗
s , R

∗
d) will fall into cases 1), 2), or 4).

Since ρ = N(1−qth) > 0, we must have rα(i) ≤ Rρ. Then, comparing Eqs. (J.4), (J.6),

and (J.10), we can see that cases 1), 2), and 4) are mutual exclusive. Summarizing

the results for these three cases, we get Eq. (4.47) and thus Theorem 5 follows.
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APPENDIX K

PROOF OF LEMMA 4

Proof. Optimization theory shows that [77, Chs. 4.2.1 and 5.1] the Lagrangian dual

function z(�;Rs) is convex, and thus also continuous, over the Lagrangian multiplier

�. On the one hand, letting � = N − 1 for the Greedy algorithm in Fig. I, we get

μ̃π(N) = 1 and μ̃π(i) = 0 for i �= N , resulting in Rs−Rs(N−1) = BT log(1+γπ(N)) ≥ 0.

On the other hand, � → ∞ generates μ̃π(1) = 1 and μ̃π(i) = 0 for i �= 1, resulting in

Rs − Rs(N − 1) = Rs − BT log(1 + γπ(1)) ≤ 0. Consequently, we can always find a

certain � to satisfy Eq. (4.56).

Lagrangian duality theory also shows that [79, Th. 6.3.4] Rs − Rs(�) is a sub-

gradient of the Lagrangian dual function z(�;Rs), i.e., Rs−Rs(�) ∈ ∂z(�;Rs), where

∂z(�;Rs) is the subdifferential of z(�;Rs) w.r.t. �. Since we have Rs − Rs(�) = 0,

the equation 0 ∈ z(�;Rs) holds, implying that � is the minimizer of the Lagrangian

dual problem given by min�{z(�;Rs)}. Then, we have

� = arg min
�

{z(�;Rs)} . (K.1)

Note that when Rs − Rs(�) = 0, from Eqs. (4.52), (4.53), and (K.1) we can see

maxμ{ν(μ; �,Rs)} = min{z(�;Rs)}, suggesting there is no duality gap [79, Chs. 6.1-

6.2] between the primary problem P3 and its dual problem. As a result, μ̃(�) is the

optimal to P3, and Eq. (4.57) holds, which completes the proof of Lemma 4.
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APPENDIX L

PROOF OF LEMMA 5

Proof. In order to prove the concavity of g̃sum(Rs), we need to show that for any

Rs ∈ [BT log(1+γπ(N)), BT log(1+γπ(1))], we can find a real number u to satisfy the

following equality [79, Th. 3.2.6]:

g̃sum(R′
s) ≤ g̃sum(Rs) + u(R′

s −Rs), (L.1)

for all R′
s ∈ [BT log(1 + γπ(N)), BT log(1 + γπ(1))]. For convenience, we use � ′ to

denote any solution to Eq. (4.56) under Rs = R′
s. Then, we derive

g̃sum(R′
s) − g̃sum(Rs)

(a)
= z

(
� ′;R′

s

)− z
(
� ;Rs

)
(b)

≤ z
(
� ;R′

s

)− z
(
� ;Rs

)
(c)
= Gsum

(
�
)

+ �
(
R′
s −Rs

(
�
))−

[
Gsum

(
�
)

+ �
(
Rs −Rs

(
�
))]

= � (R′
s −Rs), (L.2)

where (a) holds by applying Eq. (4.57), (b) follows because � ′ minimizes z
(
�;R′

s

)
as

shown in Eq. (K.1), and (c) results from Eq. (4.55). Since Eq. (L.2) is equivalent to

Eq. (L.1) with w = � , we have proven the concavity of g̃sum(Rs).

Based on Definition 9 and Eq. (L.2), any � satisfying Eq. (4.56) is a subgradient

of g̃sum(Rs). Thus, we have

∂g̃sum(Rs) ⊃ {� |Rs(�
)

= Rs}. (L.3)

On the other hand, consider any u ∈ g̃sum(Rs). Because g̃sum(Rs) is a concave function,

∂g̃sum(Rs) must be a convex set [79, Ch. 3.2.3] and thus w ∈ [�min, �max], where �min
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and �max represent the minimum and maximum elements in g̃sum(Rs), respectively. As

discussed in the proof of Lemma 4, z(�;Rs) is a convex function of � with a subgradient

equal to Rs−Rs(�), implying that Rs(�) must be a monotonically decreasing function

of �. Then, we can get Rs = Rs(�max) ≤ Rs(w) ≤ Rs(�min) = Rs, resulting in

Rs(w) = Rs and thus

∂g̃sum(Rs) ⊂ {� |Rs(�
)

= Rs}. (L.4)

Combining Eqs. (L.3)-(L.4), we get Eq. (4.58). The proof of Lemma 5 is completed.
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APPENDIX M

Derivations of Eqs. (5.52)-(5.53)

If t∗ > 0 is given, then w becomes convex over (z�, R�), and thus (z∗� , R
∗
� ) must

satisfy ⎧⎪⎪⎨⎪⎪⎩
∂w
∂z�

∣∣∣
z�=z

∗
�

= 0, if z∗� > 0;

∂w
∂z�

∣∣∣
z�=z

∗
�

> 0, if z∗� = 0,

and 0 ∈ ∂wR�
(M.1)

To obtain Eqs. (5.52)-(5.53), we need to study the cases with φ� = 0 and φ� > 0,

respectively, as follows.

A. For the case of φ� > 0:

Based on Eqs. (5.47)-(5.48), for any given φ� > 0 and z∗� , the variable x∗ to satisfy

0 ∈ ∂wR�
is derived by

x∗ =
1

φ�

(
φ�N

(
1 − q

(�)
th

)
− λ�β�e

−β�(z
∗
� +t�R�)

)
. (M.2)

Moreover, because g̃s(R�) is a concave function and R̃ maximizes g̃s(R�), we have

R∗
� < R̃, if x∗ > 0; R∗

� = R̃, if x∗ = 0; R∗
� > R̃, if x∗ < 0. (M.3)

Comparing Eq. (5.48) with Eq. (5.50), we get

∂w

∂z�

∣∣∣∣
z�=z

∗
�

= x∗φ�. (M.4)

Then, we need to further consider the following two different cases:
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1. If x∗ > 0

Eq. (M.4) results in (∂w/∂z�) |z�=z
∗
�
> 0. Comparing this with Eq. (M.1), we get

z∗� = 0, which implies R∗
� = R̂� according to Eq. (M.1). Moreover, Eq. (M.3) shows

that R̂� = R∗
� < R̃ when x∗ > 0. Thus, if R̂� < R̃, we have R∗

� = R̂� and z∗� = 0,

which generates Eq. (5.53).

2. If x∗ ≤ 0

By Eq. (M.4), we get the (∂w/∂z�) |z�=z
∗
�
≤ 0. Comparing this with Eq. (M.1), we

obtain z∗� > 0 and (∂w/∂z�) |z�=z
∗
�

= 0. Plugging (∂w/∂z�) |z�=z
∗
�

= 0 into Eq. (M.4),

x∗ is set to be zero, resulting in R∗
� = R̃ based on Eq. (M.3). Then, solving ∂w/∂z� =

0, we obtain Eq. (5.52).

B. For the case of φ� = 0:

When φ� = 0, the solution to Eq. (M.1) only needs to satisfy (z∗� + t∗�R
∗
� ) = ∞.

However, since R� is upper-bounded by Rπ(1), z
∗
� = ∞ must hold. Plugging z∗� = ∞

into 0 ∈ ∂wR�
, we get R∗

� = R̃. Combining the results for φ� = 0 and φ� > 0, we

complete the derivations of Eqs. (5.52)-(5.53).
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APPENDIX N

Derivations of
(
t
(2)
� , R

(2)
� , z

(2)
�

)
under R� = R̃ and

(
t
(3)
� , R

(3)
� , z

(3)
�

)
under z� = 0

A. Derivation of
(
t
(2)
� , R

(2)
� , z

(2)
�

)
under R� = R̃

When R� = R̃ is given, we have R
(2)
� = R̃ and w is convex over the 2-tuple (t�, z�),

where R̃ is determined by Eq. (5.55). Then, the minimizer
(
t
(2)
� , R̃, z

(2)
�

)
is the unique

solution to ∂w/∂t� = 0 and ∂w/∂z� = 0 under the boundary conditions t� ≥ 0 and

z� ≥ 0. More specifically, we need to guarantee the followings:⎧⎪⎪⎨⎪⎪⎩
∂w
∂t�

∣∣∣
t�=t

(2)
�

> 0, if t
(2)
� = 0;

∂w
∂t�

∣∣∣
t�=t

(2)
�

= 0, if t
(2)
� > 0;

and

⎧⎪⎪⎨⎪⎪⎩
∂w
∂z�

∣∣∣
z�=z

(2)
�

> 0, if z
(2)
� = 0;

∂w
∂z�

∣∣∣
z�=z

(2)
�

= 0, if z
(2)
� > 0.

(N.1)

Then, applying Eqs. (5.49)-(5.50), we derive the expressions of
(
t
(2)
� , R̃, z

(2)
�

)
for the

following three different cases.

1. For the case of 1 + ψγ ≤ φ�g̃s(R̃) − φ�N
(
1 − q

(�)
th

)
R̃:

In this case, we get ∂w/∂t� < 0 for all t� > 0, resulting in t
(2)
� = ∞. Moreover,

t
(2)
� = ∞ leads to ∂w/∂z� > 0 for all z� based on Eq. (5.50), which implies z

(2)
� = 0 in

order to satisfy Eq. (N.1). Thus in this case, we get t
(2)
� = ∞ and z

(2)
� = 0.

2. For the case of φ�g̃s(R̃) − φ�N
(
1 − q

(�)
th

)
R̃ < 1 + ψγ < φ�g̃s(R̃):

This condition guarantees that ∂w/∂t� < R̃×∂w/∂z�. Comparing this condition with

Eq. (N.1), the equation z
(2)
� = 0 needs to hold. Then, solving ∂w/∂t� = 0, we get

t
(2)
� =

⎡⎣ 1

−β�R̃
log

⎛⎝1 + ψγ − φ�g̃s(R̃) + φ�N
(
1 − q

(�)
th

)
R̃

λ�β�R̃

⎞⎠⎤⎦+

. (N.2)
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3. For the case of 1 + ψγ ≥ φ�g̃s(R̃):

This condition is equivalent to ∂w/∂t� ≥ R̃×∂w/∂z�. Comparing this condition with

Eq. (N.1), the equation t
(2)
� = 0 has to be satisfied. Then, solving ∂w/∂z� = 0, we get

z
(2)
� =

⎡⎣ 1

−β� log

⎛⎝φ�N
(
1 − q

(�)
th

)
λ�β�

⎞⎠⎤⎦+

. (N.3)

Combining the results for the above three cases, the derivation for
(
t
(2)
� , R

(2)
� , z

(2)
�

)
is

completed.

B. Derivation of
(
t
(3)
� , R

(3)
� , z

(3)
�

)
under z� = 0

According to Eqs. (5.35) and (5.36), the domain of R� is the union of a number of sets,

which are denoted by Ω � {ri, i = 1, 2, . . . ,N} and Λj � (rj, rj−1), j = 2, 3, . . . ,N .

We can first find the minimizer in each of the above sets, and then compare these

minimizers obtained to get the minimizer over the entire domain.

1. For the case of R� ∈ Ω:

Given R� = ri for some ri, the time slot (at the �th video layer) minimizing w, denoted

by t�,{i}, is obtained through solving ∂w/∂t� = 0, which is given by

t�,{i} =⎧⎪⎪⎨⎪⎪⎩
∞, if 1 + ψγ ≤ φ�g̃s(ri) − φ�N

(
1 − q

(�)
th

)
ri;[

1
−β�ri

log

(
1+ψγ−φ�g̃s(ri)+φ�N

(
1−q(�)th

)
ri

λ�β�ri

)]+

, if 1 + ψγ > φ�g̃s(ri) − φ�N
(
1 − q

(�)
th

)
ri.

(N.4)
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2. For the case of R� ∈ [rj, rj−1]:

When R� ∈ Λj = (rj, rj−1), g̃s(R�) is differentiable and we have

∂w

∂R�

= t�

(
φ�N

(
1 − q

(�)
th

)
− λ�β�e

−β�t�R� − φ�ηj

)
. (N.5)

Therefore, the minimizer is either a stationary point of w or R� is located at the

boundary, i.e, R� = rj or rj−1. If φ�N
(
1 − q

(�)
th

)
− φ�ηj ≤ 0, we have ∂w/∂R� ≤ 0

for all R� ∈ Λj, implying that the minimizer must be located at the boundary of the

closure of Λj; otherwise, jointly solving ∂w/∂R� = 0 and ∂w/∂t� = 0, we get⎧⎪⎨⎪⎩
t�R� = − 1

β�
log

(
φ�N

(
1−q(�)th

)
−φ�ηj

λ�β�

)
;

∂w
∂t�

= 1 + ψγ − φ�g̃s(rj) + φ�ηjrj .

(N.6)

In the above equation, ∂w/∂t� is a constant. As a result, the minimizer t� must satisfy

either t� = 0 or t� = ∞, both of which result in ∂w/∂R� ≥ 0 for all R� ∈ Λj, implying

that the optimal R� must lie on the boundary of the closure of Λj.

When R� is on the boundary of the closure of Λj , the minimizer has been derived

in Appendix 1. As a result, we do not need to examine the sets Λj, j = 2, 3, . . . ,N .

Accordingly, we have

(
t
(3)
� , R

(3)
� , z

(3)
�

)
= arg min

(t�,{i},ri,0), i=1,2,...,N

{
w
}
, (N.7)

which completes the derivation of
(
t
(3)
� , R

(3)
� , z

(3)
�

)
.
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APPENDIX O

PROOF OF THEOREM 9

Proof. Because losses for different data packets are i.i.d., we can express ψ1(k, θ, γ, 1)

as

ψ1(k, θ, γ, 1) =
λ

Λ
, (O.1)

where λ is the number of loss patterns under which one of the lost data packets can

be repaired by a single received check packet. Λ is the total number of loss patterns.

As described in Section B, in order to repair one lost data packet with one check

packet for a loss pattern, the following conditions must be satisfied. 1) Among γ data

packets which are connected with the same check packet in the bipartite graph, there

is only one lost packet. If γ > k− θ+1, at least two data packets are connected with

the check packet and then no losses can be repaired. 2) Among (k − γ) data packets

which are not connected with the check packet, (θ − 1) of them are other lost data

packets. Based on the above discussions, we derive λ given by

λ =

⎧⎪⎨⎪⎩
(
γ
1

)(
k−γ
θ−1

)
, if γ ≤ k − θ + 1;

0, if γ > k − θ + 1.
(O.2)

Also, through the above definition of Λ, we have Λ =
(
k
θ

)
. Then, using Eq. (O.1), we

get

ψ1(k, θ, γ, 1) =

⎧⎪⎨⎪⎩
θγ(k−θ) !(k−γ)!
(k−γ−θ+1) !k !

, if γ ≤ k − θ + 1;

0, if γ > k − θ + 1,
(O.3)
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which completes the proof of Claim 1. For 1 ≤ γ ≤ k − 1, we define

Δ(γ) � ψ1(k, θ, γ + 1, 1) − ψ1(k, θ, γ, 1). (O.4)

Plugging (O.3) into (O.4), and letting Δ(γ) ≤ 0, we derive

Δ(γ) ≤ 0 ⇔
⌈

(k + 1) − θ

θ

⌉
≤ γ ≤ k − 1. (O.5)

Thus, the following inequalities hold:

ψ1(k, θ, 1, 1) ≤ ψ1(k, θ, 2, 1) ≤ · · · ≤ ψ1

(
k, θ,

⌈
(k + 1) − θ

θ

⌉
, 1

)
; (O.6)

ψ1

(
k, θ,

⌈
(k + 1) − θ

θ

⌉
, 1

)
≥ ψ1

(
k, θ,

⌈
(k + 1) − θ

θ

⌉
+ 1, 1

)
≥ · · · ≥ ψ1(k, θ, k, 1).

(O.7)

Therefore, γ = �((k + 1) − θ)/θ� maximizes ψ1(k, γ, θ, 1) with the given θ. Then,

γ∗1(k, θ) is given by

γ∗1(k, θ) = arg max
1≤γ≤k

ψ1(k, θ, γ, 1) =

⌈
(k + 1) − θ

θ

⌉
, (O.8)

which completes the proof of Claim 2.

Note that γ > k − θ + 1 ⇔ θ > k − γ + 1. Thus, we have

ψ1(k, θ, γ, 1)=

⎧⎪⎨⎪⎩
θγ(k−θ) !(k−γ)!
(k−γ−θ+1) !k !

, if γ ≤ k − θ + 1;

0, if γ > k − θ + 1,

=

⎧⎪⎨⎪⎩
γθ(k−γ) !(k−θ)!
(k−θ−γ+1) !k !

, if θ ≤ k − γ + 1;

0, if θ > k − γ + 1,

=ψ1(k, γ, θ, 1).

(O.9)

This proves that the dynamics of ψ1(k, θ, γ, 1) is symmetric with respect to θ and γ.
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Note that we have ψ1(k, θ, γ, 1) ≤ 1. Next, we solve the equation ψ1(k, θ, γ, 1) = 1 for

γ ≤ k − θ + 1 to see whether some (θ, γ) achieves the upper bound 1. Equivalently,

we need to solve
(
γ
1

)(
k−γ
θ−1

)
=
(
k
θ

)
. Also, because

(
k
θ

)
=
∑min{γ,θ}

i=0

(
γ
i

)(
k−γ
θ−i
)

holds for any

1 ≤ γ ≤ k, we need to guarantee min{γ, θ} = 1 for
(
γ
1

)(
k−γ
θ−1

)
=
(
k
θ

)
. Thus, either θ = 1

or γ = 1 must be satisfied. Plugging θ = 1 and γ = 1 into Eq. (6.10), respectively, we

can derive ψ1(k, 1, k, 1) = 1 and ψ1(k, k, 1, 1) = 1. Thus, 1 is the least upper bound

of ψ1(k, θ, γ, 1). Moreover, through Eq. (6.11), we have γ∗1(k, 1) = k and through

and through Eq. (6.11), we have γ∗1(k, 1) = k and γ∗1(k, k) = 1. Then, the proof of

Theorem 9 is completed.
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APPENDIX P

PROOF OF THEOREM 10

Proof. We model the loss-covering procedure by a random process {Xn} taking value

in the state space specified by {0, 1, 2 · · · , k − θ + 1} as shown in Fig. 56, which

describes the loss-covering status of the data packets. State i, 0 ≤ i < k − θ + 1,

represents the total number i out of k data packets having been covered. State i,

i = (k − θ + 1), represents the target state, where at least (k − θ + 1) data packets

or, equivalently, at least one lost data packet have been covered by the generated

check packets. We call the data packets which have not been covered uncovered data

packets.

The random variable Xn denotes the covering state after the nth check packet

of the current TR has been generated. If Xn0−1 < k − θ + 1 and Xn0 = k − θ + 1

for some n0, we say that we reach the target state after n0 check packets having been

generated. It is clear that the number T (k, θ, γ) described in the Eq. (6.18) is equal

to E{n0}.
Next, we show {Xn}, n ≥ 0, is a Markov Chain. Note that if Xn = in, (k − in)

equals the number of data packets which have not been covered after the nth data

packet of the current TR has been generated. Then, we have

Pr
{
Xn+1 = in+1

∣∣∣Xn = in, Xn−1 = in−1, . . . , X0 = i0

}
= Pr

{
Xn+1 −Xn = in+1 − in

∣∣∣Xn = in, Xn−1 = in−1, . . . , X0 = i0

}
(a)
= Pr

{
(in+1 − in) out of (k − in) data packets uncovered by the previous n check

packets are covered by the (n + 1)-th check packet
∣∣∣Xn = in,

Xn−1 = in−1, . . . , X0 = i0

}
. (P.1)
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Fig. 56. State transition diagram of the Markov Chain for the covering status.

Given Xn, (k−Xn) is fixed. Also, as described in Section C-2, the random construc-

tion of the check packet is independent of the constructions of other check packets.

So, if Xn is given, the conditional probability in (a) of Eq. (P.1) is independent of

Xn−1, Xn−2, . . . , X0. Thus, we can derive

Pr
{
Xn+1 = in+1

∣∣∣Xn = in, Xn−1 = in−1, . . . , X0 = i0

}
= Pr

{
(in+1 − in) out of (k − in) data packets uncovered by the previous n check

packets are covered by the (n+ 1)-th check packet
∣∣∣Xn = in

}
.

= Pr
{
Xn+1 −Xn = in+1 − in

∣∣∣Xn = in

}
= Pr

{
Xn+1 = in+1

∣∣∣Xn = in

}
. (P.2)

Therefore, {Xn}, n ≥ 0, is a Markov Chain. Clearly, the Markov Chain is homoge-

neous in terms of n. We define the transition probability, denoted by ρi,j , as follows.

ρi,j � Pr
{
Xn+1 = j

∣∣∣Xn = i
}
, n ≥ 0, 0 ≤ i, j ≤ k − θ + 1. (P.3)

For convenience, we write Eq. (6.20) again in the following.
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ρi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
i

γ−j+i
)(
k−i
j−i
)
/
(
k
γ

)
, if 0 ≤ j − i ≤ γ ≤ j and j < k − θ + 1;

min{i+γ,k}∑
v=k−θ+1

(
i

γ−v+i
)(
k−i
v−i
)(

k
γ

) , if j = k − θ + 1 and i+ γ ≥ k − θ + 1.

0, otherwise,

Note that
(

i
γ−j+i

)(
k−i
j−i
)

is the number of ways of constructing the check packet such

that Xn+1 = j with given Xn = i, while
(
k
γ

)
is the total number of ways constructing

a check packet. Hence, ρi,j is equal to the ratio of
(

i
γ−j+i

)(
k−i
j−i
)

to
(
k
γ

)
, which is shown

in the first line of Eq. (6.20). The condition 0 ≤ j − i ≤ γ ≤ j is obtained by solving

i ≥ γ − j + i ≥ 0 and k− i ≥ j − i ≥ 0 such that the expressions of
(

i
γ−j+i

)
and

(
k−i
j−i
)

are meaningful. For the special case j = k − θ + 1, ρi,j is derived as follows.

ρi,k−θ+1

= Pr
{
Xn+1 = k − θ + 1

∣∣∣Xn = i
}

= Pr
{

At least (k − θ + 1 − i) out of (k − i) uncovered data packets are covered

by the (n+ 1)-th check packet
∣∣∣Xn = i

}
=

min{i+γ,k}∑
v=k−θ+1

Pr
{

(v − i) out of (k − i) uncovered data packets are covered by

the (n+ 1)-th check packet
∣∣∣Xn = i

}
=

min{i+γ,k}∑
v=k−θ+1

(
i

γ−v+i
)(
k−i
v−i
)(

k
γ

) . (P.4)

It is clear that when the conditions of the first two cases in Eq. (6.20) are not satisfied,

the covering state cannot transfer from state i to state j with only one new check

packet, and thus we get ρi,j = 0.

Then, the probability-transition matrix, expressed by a (k− θ+ 2)× (k− θ+ 2)
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square matrix ρ, is determined by

ρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ0,0 ρ0,1 · · · ρ0,k−θ+1

0 ρ1,1 · · · ρ1,k−θ+1

...
...

. . .
...

0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (P.5)

Note that ρ is an upper triangular matrix because Xn is an increasing sequence in

terms of n.

We define a set of variables hi, 0 ≤ i ≤ k − θ + 1: if the current covering status

is i (equivalently, we have covered i data packets), on average, the sender needs other

hi check packets to reach the target covering state (k − θ + 1) (equivalently, we have

covered at least (k− θ+ 1) data packets). Then, hi for 0 ≤ i ≤ k− θ+ 1 is expressed

as

hi � E

{
j

∣∣∣∣∣Xn = i, Xn+j = k − θ + 1, j ≥ 0, n ≥ 0

}
. (P.6)

Clearly, we have hk−θ+1 = 0 and T (k, θ, γ) = h0. If γ ≥ k − θ + 1, it is clear that

we need only one check packet to satisfy the covering criterion. Thus, we obtain

Eq. (6.18).

We define h = (h0, h1, . . . , hk−θ+1)
τ , where (·)τ denotes the matrix transpose

operator. h is the solution to the following linear equations [102]⎧⎪⎨⎪⎩ h = z + ρh;

hk−θ+1 = 0,
(P.7)

where z is a (k − θ + 2)-dimension column vector (1, 1, . . . , 1, 0)τ .

As shown in Eq. (P.5), ρ is an upper triangular matrix. Hence, we can get the



294

solution to h by the following iterative equations⎧⎪⎪⎨⎪⎪⎩
hi =

1

1 − ρi,i

(
1 +

k−θ+1∑
j=i+1

ρi,jhj

)
, i = 0, 1, 2, . . . , k − θ;

hk−θ+1 = 0,

which complete the proof of Eq. (6.19), and thus Theorem 10 follows.
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APPENDIX Q

PROOF OF THEOREM 13

Proof. We construct the Lagrangian function of VIII-A1′, denoted by JA1(L, λ),

follows:

JA1(L, λ) = EH{JA1(L, λ)}

with

JA1(L, λ) = L + λ
(
e−θ1R̃(L) − e−θ1C1

)
, (Q.1)

where λ is the Lagrangian multiplier associated with the constraint of VIII-A1′.

Then, the optimal L∗ and the optimal Lagrangian multiplier λ∗ are solutions to the

following equations [79]:⎧⎪⎨⎪⎩
0 ∈ ∂LJA1(L, λ), ∀H;

0 = EH

{
e−θ1R̃(L) − e−θ1C1

}
.

(Q.2)

where ∂LJA1(L, λ) denotes the subdifferential [79] of the function JA1(L, λ) with re-

spect to L. Note that the subdifferential is defined for nondifferentiable convex func-

tions (e.g., piece-wise linear functions), which is the counterpart concept for the gra-

dient of differentiable convex functions. Based on [79], for a convex function f(b)

defined on b ∈ B ⊂ R, where R is real-number set and B is a convex set, an n × 1

real-valued vector � is a subgradient of h(b) if h(b′) ≥ h(b) + �τ (b′ − b) for all

b′ ∈ B. Accordingly, the collection of subgradients at b is the subdifferential of h(b).

For more details and properties of subdifferential, please refer to Definition 9.
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Applying the piece-wise linear property and the concavity of R̃(L), we derive

∂LJA1(L, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 − θ1λνje

−θ1R̃(mj), 1 − θ1λνj+1e
−θ1R̃(mj)

)
, if L = mj ,

j = 0, 1, . . . ,K;{
1 − θ1λνje

−θ1R̃(L)
}
, if L ∈ (mj−1, mj) ,

j = 1, . . . ,K.
(Q.3)

Plugging Eq. (Q.3) into Eq. (Q.2) and solving for the optimal solution, we get

Eq. (8.21). Also, the equality of Eq. (8.14) needs to hold as required by Eq. (Q.2).

which completes the proof of Theorem 13.
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APPENDIX R

PROOF OF THEOREM 14

Proof. It is clear that both the objective and constraint functions of VIII-A2 are

linear to φ. Thus, VIII-A2 is a convex optimization problem. We construct the

Lagrangian function of the VIII-A2, denoted by JA2(φ, λ), as

JA2(φ, λ) = EH

{
Kbs∑
L=0

φLL

}
+ λEH

{(
Kbs∑
L=0

φLe
−θ1R(ΩL)

)
− e−θ1C1

}

for
∑Kbs

L=0 φL = 1, where λ ≥ 0 is the Lagrangian multiplier associated with Eq. (8.23).

Since VIII-A2 is a convex optimization problem, the optimal solution and Lagrangian

multiplier of (φ∗, λ∗) satisfies⎧⎪⎪⎨⎪⎪⎩
φ∗ = arg min

φ:
∑Kbs

L=0 φL=1

{
JA2(φ, λ

∗)
}

;

0 = EH

{(∑Kbs

L=0 φ
∗
Le

−θ1R(ΩL)
)
− e−θ1C1

}
.

(R.1)

Following the above equations, we further derive

φ∗ = arg min
φ:
∑Kbs

L=0 φL=1

{
EH

{
Kbs∑
L=0

φLL+ λ

(
Kbs∑
L=0

φLe
−θ1R(ΩL)

)
− e−θ1C1

}}
;

= arg min
φ:
∑Kbs

L=0 φL=1

{
EH

{
Kbs∑
L=0

(
L+ λe−θ1R(ΩL)

)
φL

}}
. (R.2)

Eq. (R.2) suggests that the objective function is simply a linearly-weighted sum-

mation over {φi}Kbs
i=1 . Then, to minimize the objective function, φL associated with

the minimum weight needs to be maximized. Following this principle, we define

L∗ = arg minL
{
L+ λ∗e−θ1R(ΩL)

}
as given in Eq. (8.25) and thus obtain Eq. (R.2) in

Theorem 14. Furthermore, Eq. (R.1) implies that the equality of Eq. (8.23) holds,

and thus Theorem 14 follows.
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