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ABSTRACT

Measure Theory of Self-Similar Groups and Digit Tiles. (December 2010)

Rostyslav Kravchenko, B.S., National Taras Shevchenko University of Kyiv,

Ukraine;

M.S., National Taras Shevchenko University of Kyiv, Ukraine

Chair of Advisory Committee: Dr. Gilles Pisier

This dissertation is devoted to the measure theoretical aspects of the theory of

automata and groups generated by them. It consists of two main parts. In the first

part we study the action of automata on Bernoulli measures. We describe how a

finite-state automorphism of a regular rooted tree changes the Bernoulli measure on

the boundary of the tree. It turns out, that a finite-state automorphism of polynomial

growth, as defined by Sidki, preserves a measure class of a Bernoulli measure, and

we write down the explicit formula for its Radon-Nikodim derivative. On the other

hand the image of the Bernoulli measure under the action of a strongly connected

finite-state automorphism is singular to the measure itself.

The second part is devoted to introduction of measure into the theory of limit

spaces of Nekrashevysh. Let G be a group and φ : H → G be a contracting

homomorphism from a subgroup H < G of finite index. Nekrashevych associated

with the pair (G, φ) the limit dynamical system (JG, s) and the limit G-space XG

together with the covering ∪g∈GT · g by the tile T. We develop the theory of self-

similar measures m on these limit spaces. It is shown that (JG, s,m) is conjugate

to the one-sided Bernoulli shift. Using sofic subshifts we prove that the tile T has

integer measure and we give an algorithmic way to compute it. In addition we give

an algorithm to find the measure of the intersection of tiles T ∩ (T · g) for g ∈ G. We

present applications to the evaluation of the Lebesgue measure of integral self-affine
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tiles.

Previously the main tools in the theory of self-similar fractals were tools from

measure theory and analysis. The methods developed in this disseration provide a

new way to investigate self-similar and self-affine fractals, using combinatorics and

group theory.
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CHAPTER I

INTRODUCTION

Automata, and especially groups generated by finite automata, play important

role in different areas of mathematics, producing examples and counterexamples for

many problems, including some famous ones. For instance, the Grigorchuk group

([Gri83]) was the first example of a group of intermediate growth, which gave an

answer to a question of Milnor. It is also a particularly simple example of an infinite

torsion group. Another example is the solution of the ”twisted rabbit” problem of

Hubbard by Bartholdi and Nekrashevych ([BN06]).

In [Rya86] Ryabinin computed the so called ”stochastic function” of a finite

automaton. He applied the automaton to a sequence of 0-s and 1-s with independently

chosen entries, with probability of 1 equal to p, and computed frequency f(p) of 1

in the resulting sequence. He called this function f the ”stochastic function” of

the automaton, and also gave a characterization of the class of all such functions.

His treatment was somewhat ’naive’, for instance he did not rigorously define the

frequency of the resulting sequence; we will make it precise in what follows. More

about his result can be found in [KAP85].

The group of all invertible automata over a given alphabet is quite complicated.

Thus there were various attempts to single out special classes of automata. One

such attempt, which used the structure of the action of an automaton on the tree of

words over the alphabet of the automaton, was done by Sidki in [Sid00]. He defined

a notion of automata of polynomial growth of degree n, showed that the class of such

automata is closed under composition and taking an inverse, and that any group of

This dissertation follows the style of Algebra and Discrete Mathematics.
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automata of polynomial growth of degree n does not contain a free group of rank two.

He also reformulated his definition of an automaton of polynomial growth in terms

of the Moore diagram of the automaton.

Examples of such automata are the Aleshin automaton ([VV07]) which is famous

since it was the first automaton such that its states freely generate the free group

([Nek05]), and the Bellaterra automaton ([Nek05]).

The uniform Bernoulli measure on the set of sequences is useful for a variety of

questions concerning automata since it is invariant under their action, see [BG00].

Thus it seems natural to consider the more general case of an arbitrary Bernoulli

measure and see how it interplays with an action of automata.

In Chapter III we study the push-forward of a Bernoulli measure on a set of

infinite words under an action of automaton. The results of Chapter III are published

in paper [Kra10]. Firstly, Theorem 1 shows that if an invertible automaton has

polynomial growth, then the action defined by any of its states maps a Bernoulli

measure to the absolutely continuous one with respect to it. Thus an invertible

automaton of polynomial growth preserves the class of Bernoulli measure. Then

we study the action of a strongly connected automata. In Theorem 3 we make

a rigorous statement of the result of Ryabinin and generalize it for an arbitrary

alphabet. Theorem 4 shows that if a Bernoulli measure if not a uniform one, then

its push-forward under the action of a strongly connected automata is singular to the

Bernoulli measure.

Chapter IV of this dissertation is devoted to the development of measure theory

in the setting of limit spaces. The result of Chapter IV are published in paper [BK],

written jointly with I. Bondarenko.

Let G be a group and φ be a virtual endomorphism of G, which is a

homomorphism from a subgroup H < G of finite index to G. Iterative construction
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involving φ (together with some additional data) produces the so called self-similar

action (G,X∗) of the groupG on the spaceX∗ of finite words over an alphabetX. And

conversely, every self-similar action of the group G defines a virtual endomorphism

of G, which almost completely describes the action. A rich geometric theory is

associated with the pair (G, φ) in [Nek05] through the theory of self-similar groups.

In Chapter IV we introduce measure to this theory.

Self-similar group is a rather new notion in geometric group theory. Like the

self-similar objects in geometry (fractals) are too irregular to be described using the

language of classical Euclidean geometry, the self-similar groups possess properties not

typical for the traditional group theory. In particular, the class of self-similar groups

contains infinite periodic finitely generated groups, just-infinite groups, groups of

finite width, etc. (see [Nek05, BGN03, BGZ03] and references therein). At the same

time, it was discovered that self-similar groups appear naturally in many areas of

mathematics, and have applications to holomorphic dynamics, combinatorics, analysis

on fractals, etc. An important class of self-similar groups are contracting groups,

which correspond to self-similar actions with contracting virtual endomorphism. A

virtual endomorphism φ is contracting if it asymptotically contracts the length of

group elements with respect to some generating set. The contracting property makes

many problems around the group effectively solvable.

V. Nekrashevych in [Nek05] associated a limit dynamical system (JG, s) with

every contracting self-similar action, where JG is a compact metrizable space and

s : JG → JG is an expanding continuous map. The limit space JG can be defined

as the quotient of the space of left-infinite sequences X−ω = {. . . x2x1|xi ∈ X} by

the equivalence relation, which can be recovered from a finite directed labeled graph

N , called the nucleus of the action. Another associated geometric object is the

limit G-space XG, which is a metrizable locally compact topological space with a
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proper co-compact (right) action of G. The limit spaces JG and XG depend up

to homeomorphism only on the pair (G, φ). However every self-similar action with

the pair (G, φ) additionally produces a tile T of the limit G-space and a covering

XG = ∪g∈GT · g (not a tiling in general).

Limit spaces connect self-similar groups with the classical self-similar sets. The

self-similar set (the attractor) given by the system of contracting similarities f1, . . . , fn

(iterated function system) of a complete metric space is the unique compact set T

satisfying T = ∪ni=1fi(T ). Given a probability vector p = (p1, . . . , pn), Hutchinson

[Hut81] showed the existence of a unique probability measure µ supported on T

satisfying

µ(A) =
n

∑

i=1

piµ(f
−1
i (A)), for any Borel set A, (1.1)

which is called the self-similar measure. Another way to introduce this measure is to

consider the natural coding map π : X−ω → T given by π(. . . x2x1) = ∩m≥1fx1 ◦ fx2 ◦

. . . ◦ fxm(T ). Then the self-similar measure µ is the image of the Bernoulli measure

µp on X−ω with weight p (here µp(xi) = pi) under the projection π. Self-similar

measures play an important role in the development of fractal geometry, and have

applications in harmonic analysis, conformal dynamics, algebraic number theory, etc.

(see [Edg98, Urb03, LNR01, Str94, Ban01] and references therein).

In subsection 1 we study the Bernoulli measure of sofic subshifts and other sets

given by a finite directed graph Γ = (V,E), whose edges are labeled by elements of

X. Consider the set Fv for v ∈ V of all sequences . . . x2x1, which are read along

left-infinite paths ending in the vertex v. It is proved in subsection 1 that if the

graph Γ is right-resolving (i.e. for every vertex v the outgoing edges at v are labeled

distinctly) then the sum meas(Γ) =
∑

v∈V µp(Fv) is integer, which does not depend

on the probability vector p. It can be interpreted as follows: almost every left-infinite
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sequence belongs to precisely meas(Γ) sets Fv. The number meas(Γ) we call the

measure number of the graph Γ. We propose an algorithmic method to compute the

measures µp(Fv) for any graph Γ, in particular its measure number.

The push-forward of the uniform Bernoulli measure on X−ω provides the self-

similar measure m on the limit space JG. The G-invariant measure µ on the limit

G-space XG is defined in a similar way. The measure µ restricted to the tile T satisfies

the self-similarity equation (1.1), so it is also self-similar. It is proved in subsection 3

that the measure µ(T) is equal to the measure number of the nucleus N . In particular

it is integer, the fact which generalizes corresponding result for integral self-affine tiles

[LW96a]. In addition we give an algorithm to find the measure of intersection of tiles

T ∩ (T · g) for g ∈ G. Then the covering XG = ∪g∈GT · g is a perfect multiple covering

of multiplicity µ(T), i.e. every point of XG belongs to at least µ(T) tiles and almost

every point belongs to precisely µ(T) tiles. This is used to prove that the measures m

and µ depend not on the specific self-similar action of G, but only on the pair (G, φ)

as the limit spaces themselves. Using a criterion from [HR02] we show that the limit

dynamical system (JG, s,m) is conjugated to the one-sided Bernoulli shift.

This work is partially motivated by applications presented in subsection 4. If G

is a torsion-free nilpotent group with a contractive surjective virtual endomorphism

φ and a faithful self-similar action, then the measure µ on XG can be considered as

a Haar measure on the respective nilpotent Lie group, Malcev’s completion of G. In

the case of self-similar actions of the free abelian group Z
n the limit G-space XZn

is R
n and the tile T is an integral self-affine tile, which are intensively studied for

the last two decades (see [LW96b, Vin00, LW96a, LW97, HLR03]). In this case the

measure µ is the Lebesgue measure on R
n. One can apply the methods developed in

subsection 1 to give an algorithmic way to find the Lebesgue measure of an integral

self-affine tile, providing answer to the question in [LW96a] (initially solved in [GY06]
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without self-similar groups). In addition we have an algorithm to find the Lebesgue

measure of the intersection of tiles T ∩ (T+ a) for a ∈ Z
n studied in [GY06, EKM09].
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CHAPTER II

DEFINITIONS AND PRELIMINARIES*

Let X be a finite set with discrete topology. Denote by X∗ = {x1x2 . . . xn|xi ∈

X,n ≥ 0} the set of all finite words over X (including the empty word denoted ∅).

Let Xω be the set of all right-infinite sequences (words) x1x2 . . ., xi ∈ X. Let X−ω

be the set of all left-infinite sequences (words) . . . x2x1, xi ∈ X. We put the product

topology on these sets. The length of a word v = x1x2 . . . xn is denoted by |v| = n.

The shift on the space Xω is the map σ : Xω → Xω, which deletes the first letter

of a word, i.e. σ(x1x2x3 . . .) = x2x3 . . .. The shift on the space X−ω is the map also

denoted by σ, which deletes the last letter of a word, i.e. σ(. . . x3x2x1) = . . . x3x2.

The shifts are continuous |X| - to -1 maps. The branches σx for x ∈ X of the inverse

of σ are defined by σx(x1x2 . . .) = xx1x2 . . . and σx(. . . x2x1) = . . . x2x1x.

We interpret X∗ as the set of vertices of a rooted tree. Let g : X∗ → X∗ be an

endomorphism of X∗. For a word v from X∗ let vX∗ be the subset of words that

have v as a beginning. The endomorphism g maps vX∗ to g(v)X∗. Identifying vX∗

and g(v)X∗ with X∗ we get an endomorphism of X∗, which we denote by g|v and

call the restriction of g in word v. We have that for each pair of finite words v, w

g(vw) = g(v)g|v(w).

If g is a tree automorphism of X∗ we can also extend g to the boundary of X∗,

that is, define the action of g on infinite words from Xω. Indeed, if w is an infinite

word from Xω, and wm is its beginning of length m, then since g is an endomorphism,

the word g(wn) is the beginning of the word g(wn+1) for all n. Thus we define g(w)

*Reprinted with permission from “The action of finite-state tree automorphisms on
Bernoulli measures” by Rostyslav Kravchenko, 2010, Journal of Modern Dynamics,
4(3), 443–451, Copyright 2010 by The American Institute of Mathematical Sciences.
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as an infinite word such that g(wn) is its beginning for every n.

Definition 1. An automaton A = (X,S, π, λ) over alphabet X consists of set of

states S, transition function π : S ×X → S and output function λ : S ×X → X.

Given tree endomorphism g we can construct an automaton by considering the

set {g|v : v ∈ X∗} of all restrictions of g as the set of states S, with the transition

function π(s, x) = s|x, and the output function λ(s, x) = s(x), for s ∈ S, x ∈ X. We

will call it the automaton of restrictions of g.

An automaton is usually visualized with the help of its Moore diagram. It is a

directed labeled graph with the set of states S as vertices, with each state s labeled

by permutation x 7→ λ(s, x) and with arrows going from s to π(s, x) labeled by x.

A finite automaton is an automaton with finite set of states. A tree

endomorphism g is called finite-state if the automaton of restrictions of g is finite.

The output and transition function of an automaton can be extended to the set

of words over X, by the inductive rules

λ(s, xv) = λ(s, x)λ(π(s, x), v), π(s, xv) = π(π(s, x), v),

where v is a word and x is a letter from X. In the case of an automaton of restrictions

of tree endomorphism, we have that λ(s, v) = s(v), and π(s, v) = s|v, for any finite

word v.

Let now g be a finite-state endomorphism of X∗. We say that g has polynomial

growth if the number α(g, k) of words v of length k, such that g|v is nontrivial

endomorphism of a rooted tree, (the trivial endomorphism is such that maps each

vertex to itself), grows polynomially with k. Notice that if g has polynomial growth

then for some word v g|v is trivial, since the set of all words of length k grows

exponentially with k. Thus the automaton of restrictions of g has a trivial state. The
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fact that g has polynomial growth is equivalent to the fact that the Moore diagram of

the automaton of restrictions of g does not have a vertex with two different nontrivial

simple cycles going through it, where by the nontrivial cycle we mean a cycle that

does not contain a trivial state, and by a simple cycle we mean a cycle without

self-intersections.

If the automaton of restrictions of a endomorphism g has strongly connected

Moore diagram, by which we mean that for every two vertices there is a directed

path that goes from one vertex to another, then we say that g is strongly connected.

In a sense it is the opposite notion to the notion of a endomorphism of polynomial

growth: it is easy to see that a strongly connected endomorphism g does not have a

trivial state, and through each state of its automaton of restrictions pass at least two

different cycles.

Let p = (p(x))x∈X be a probability vector (fixed for the rest of the chapter) and

let µp be the Bernoulli measure on Xω with weight p, i.e. this measure is defined on

cylindrical sets by

µp(x1x2 . . . xnX
ω) = p(x1)p(x2) . . . p(xn).

The measure on X−ω is defined in the same way. We always suppose that px > 0 for

all x ∈ X (otherwise we can pass to a smaller alphabet X). In case px = 1
|X|

for all

x ∈ X, the measure µp is the uniform Bernoulli measure denoted µu. The dynamical

system (Xω, σ, µu) is called the one-sided Bernoulli |X|-shift. The measure µp is

the unique regular Borel probability measure on Xω that satisfies the self-similarity

condition:

µp(A) =
∑

x∈X

p(x)µp(σ
−1
x (A))

for any Borel set A ⊂ Xω.
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CHAPTER III

THE ACTION OF FINITE STATE TREE AUTOMORPHISMS ON BERNOULLI

MEASURES*

In this chapter we will denote the Bernoulli measure µp simply by µ, since the

vector p is fixed.

1 Tree automorphism of polynomial growth

We want to prove that if g has polynomial growth, then the measure g∗µ is

absolutely continuous with respect to µ. In fact, it is easy to produce the Radon-

Nikodim derivative dg∗µ/dµ, as follows. Denote by V the set of words from X∗, such

that the restriction of g−1 in every v ∈ V is the identical transformation. Let Vmax

be the subset of all such words v from V , such that no proper prefix of v belongs to

V .

Lemma 1. Let g have polynomial growth, then Xω−∪v∈Vmax
vXω is at most countable,

thus its measure µ is 0.

Proof. Note that since g has polynomial growth, g−1 also has polynomial growth. An

infinite word w belongs to Xω−∪v∈Vmax
vXω if and only if g−1|wn

is not trivial, for any

natural n, where wn is prefix of length n of the word w. Consider the Moore diagram

of the automaton of the restrictions of g−1. The word w defines an infinite path g−1|wn

in the Moore diagram of this automaton, that consists of nontrivial states. Suppose

the vertex s happens infinitely often in the path defined by w. It means that the

path contains a cycle that passes through s. Since g−1 has polynomial growth there

*Reprinted with permission from “The action of finite-state tree automorphisms on
Bernoulli measures” by Rostyslav Kravchenko, 2010, Journal of Modern Dynamics,
4(3), 443–451, Copyright 2010 by The American Institute of Mathematical Sciences.
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is only one such cycle, (see [Ufn82]), and it means that the path, after it has passed

through s the first time, stays on the cycle after that. Thus w is eventually periodic.

The set of eventually periodic words is countable.

We have

Theorem 1. For an automorphism g of polynomial growth and Bernoulli measure

µ, the push-forward g∗µ is absolutely continuous with respect to µ and

dg∗µ

dµ
=

∑

v∈Vmax

µ(g−1(vXω))

µ(vXω)
χvXω .

Proof. Let

g′ =
∑

v∈Vmax

µ(g−1(vXω))

µ(vXω)
χvXω .

Since cylindrical sets generate the Borel σ−algebra of Xω, it suffices to check that

the measures dg∗µ and g′.dµ agree on the cylindrical sets. Note also that since the

set Xω − ∪v∈V vX
ω = Xω − ∪v∈Vmax

vXω is at most countable, any cylindrical set

not of the form vXω for some v ∈ V can be expressed as a union of cylindrical sets

{vXω|v ∈ V } modulo countable subset. Since both measures dg∗µ and g′.dµ are

continuous, in order to show that they are equal it suffices to check that they agree

on all sets of the form {vXω|v ∈ V }.

Take any v in V . Then there is a unique v′ in Vmax such that v′ is the prefix of

v. It follows that v = v′w and we have

∫

vXω

g′dµ =
µ(g−1v′Xω)

µ(v′Xω)
µ(vXω) = µ(g−1v′Xω)µ(wXω).

On the other hand, the fact that v′ is in V implies that g−1(v′w) = g(v′)w, thus

g∗µ(vX
ω) = µ(g−1vXω) = µ(g−1(v′)wXω) = µ(g−1v′Xω)µ(wXω).

Let us compute the corresponding function for the automorphism a of the binary
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tree: a swaps the 0 and 1 in the beginning of every word. Then a has polynomial

growth, the set V consists of all non-empty words, and Vmax = {0, 1}. If µ assigns

probability p(0) to 0 and p(1) to 1, we have:

da∗µ

dµ
=
µ(a(0Xω))

µ(0Xω)
χ0Xω +

µ(a(1Xω))

µ(1Xω)
χ1Xω =

p(1)

p(0)
χ0Xω +

p(0)

p(1)
χ1Xω .

Let a, b, c, d be the states of the automaton that defines the Grigorchuk group.

Consider the automorphism b. Denote by vn the word of length n + 1 with n 1’s at

the beginning and one 0 at the end. Then the set Vmax for b consists of all words vn

for n = 2 mod 3 and all words vn0, vn1 for n 6= 2 mod 3. Moreover b(vn) = vn for

any n, and b(vn0) = vn1, and b(vn1) = vn0. Thus the Radon-Nikodim derivative for

b and the measure µ is

db∗µ

dµ
=

∑

n=2 mod 3

χvnXω +
p(1)

p(0)

∑

n 6=2 mod 3

χvn0Xω +
p(0)

p(1)

∑

n 6=2 mod 3

χvn1Xω .

2 Strongly connected tree automorphism

Let g be the finite-state strongly connected tree endomorphism of X∗, and S be

the set of its restrictions, which we also call the set of states of g. Let w be an infinite

word and x a letter in X. We are interested in the frequency of x-s in the image of w

under the action of the tree endomorphism g. In other words, we seek the existence

and the value of the limit when n goes to infinity of a sequence

1

n

n−1
∑

k=0

χx(σ
kg(w)),

where χx is a characteristic function of the subset xXω.

We start by considering a sequence of random variables ζn : Xω → S, such that
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ζ1 is constant and ζn+1(w) = π(ζn(w), wn). We have the following lemma:

Lemma 2. ζn is an ergodic Markov chain.

Proof. Note that ζn(w) depends only on the beginning of w of length n− 1. We then

have that

µ(ζn+1 = sn+1|ζn = sn, . . . , ζ1 = s1) = µ(π(sn, wn) = sn+1|ζn = sn, . . . , ζ1 = s1) =

µ(π(sn, wn) = sn+1),

provided that µ(ζn = sn, . . . , ζ1 = s1) > 0, since sets {w|π(sn, wn) = sn+1} and

{w|ζn = sn, . . . , ζ1 = s1} are independent. Thus ζn is indeed a Markov chain. The

corresponding transition probability from s to s′ is equal to
∑

p(x) where the sum

runs through all such x that π(s, x) = s′. Since g is strongly connected, it follows

that for any s, s′ there is a path from s to s′, thus the probability to get from s to s′

is positive. It follows that ζn is ergodic.

Let q denote the stationary distribution of the chain ζn. Consider the sequence

w 7→ (ζn(w), wn). We have the lemma:

Lemma 3. (ζn, wn) is an ergodic Markov chain with state space S×X and stationary

distribution q ⊗ p, q ⊗ p(s, x) = q(s)p(x).

Proof. We have

µ(ζn+1 = sn+1, wn+1 = xn+1|ζn = sn, wn = xn, . . . , ζ1 = s1, w1 = x1) =

µ(π(sn, xn) = sn+1, wn+1 = xn+1|ζn = sn, wn = xn, . . . , ζ1 = s1, w1 = x1) =
{

p(xn+1) if π(sn, xn) = sn+1

0 otherwise
,

if µ(ζn = sn, wn = xn, . . . , ζ1 = s1, w1 = x1) > 0, thus (ζn, wn) is a Markov chain.

Denote the corresponding transition probability by p((s, x), (s′, y)). To prove that
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(ζn, wn) is ergodic, for any two elements (s, x) and (s′, y) we have to construct a

sequence of elements of S × X, which starts at (s, x) and ends at (s′, y), such that

the consecutive transition probabilities are non-zero. Since g is strongly connected

there exists a sequence of states s1 = s, s2, . . . , sm = s′ and a sequence of elements

of X x1 = x, . . . , xm−1, such that π(sk, xk) = sk+1. Then p((sk, xk), (sk+1, xk+1)) =

p(xk+1) > 0, which shows that the Markov chain (ζn, wn) is ergodic.

We have that
∑

s∈S q(s)
∑

x∈X:π(s,x)=s′ p(x) = q(s′), since
∑

x∈X:π(s,x)=s′ p(x) is

the transition probability for the Markov chain ζn. It follows

∑

s∈S,x∈X

q(s)p(x)p((s, x), (s′, y)) =
∑

s,x:π(s,x)=s′

q(s)p(x)p(y) =

p(y)
∑

s

q(s)
∑

x∈X:π(s,x)=s′

p(x) = q(s′)p(y),

and so q ⊗ p is the stationary distribution for the Markov chain (ζn, wn).

Let P be the shift invariant ergodic measure on (S ×X)ω, corresponding to the

stationary distribution q ⊗ p and let Pg be the measure on (S ×X)ω, corresponding

to the initial distribution δg ⊗ p. Note that Pg is absolutely continuous with respect

to P. Define a map hg from Xω to (S×X)ω in the following way. Take any sequence

w ∈ Xω and apply the transformation g to it. We then get also a sequence of states

ŝ = (g, g|w1
, g|w2

, . . . ), where wn is the prefix of length n of w, which is obtained when

reading w by g and we put hg(w) := (ŝ, w). We have the following lemma:

Lemma 4. The push-forward of the measure µ under the map hg is the measure Pg.

Proof. It follows from the fact that

h−1
g ((s1, x1) . . . (sm, xm)(S ×X)ω) =

{

∅ if s1 6= g or π(sk, xk) 6= sk+1 for some k

x1 . . . xmXω otherwise
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Consider the map λ̃ : (S ×X)ω → Xω,

λ̃((sn, xn)n≥1) = (λ(sn, xn))n≥1.

(note that λ̃hg = g). Let Q = λ̃∗P. We have the lemma:

Lemma 5. Let p′ be the one-dimensional distribution of Q, p′(x) = Q(xXω), x ∈ X.

Then p′(x) =
∑

s∈S q(s)p(σ
−1
s (x)), where σs(x) = λ(s, x).

Proof. It follows from the equality

λ̃−1(xXω) =
∐

s∈S

(s, σ−1
s (x))(S ×X)ω.

We can now prove the theorem,

Theorem 2. The limit when n goes to infinity of

1

n

n−1
∑

k=0

χx(σ
kg(w))

exists and is the same for almost all w with respect to the measure µ, and is equal to

p′(x), where p′ is the one-dimensional distribution of Q from Lemma 5.

Proof. By the Birkgoff pointwise ergodic theorem we have that

lim
n→∞

1

n

n−1
∑

k=0

χx(σ
k(v)) =

∫

v∈X

χx(v)dQ(v) = p′(x), (3.1)

for Q -almost all v. Since Pg is absolutely continuous with respect to P, λ̃∗Pg =

(λ̃hg)∗µ = g∗µ is absolutely continuous with respect to Q. Thus the equality (3.1)

holds also for almost all v with respect to the measure g∗µ. Putting v = g(w) in (3.1)

we get

lim
n→∞

1

n

n−1
∑

k=0

χx(σ
kg(w)) = p′(x),
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for µ -almost all w.

We reformulate 2 in the following more intuitive way:

Theorem 3. Let g be a strongly connected tree endomorphism, w ∈ Xω. Let µ be

the Bernoulli measure with the probability of y equal to p(y) for y ∈ X. Then the

frequency of x in the sequence g(w) exists and is the same for almost all w with respect

to µ and this frequency is equal to
∑

s∈S(
∑

y∈X χx(λ(s, y))p(y))q(s), where S is the

set of restrictions of g and q(s) are the stationary probabilities for the ergodic Markov

chain on S, ζn+1 = π(ζn, wn) defined by the transition probabilities
∑

y:π(s,y)=t p(y).

Using the ergodic theorem once again, we can derive the following theorem:

Theorem 4. Suppose that the nontrivial tree automorphism g is strongly connected.

If there is x such that p(x) 6= 1/d, then µ and the image measure g∗µ are singular.

Proof. We first prove that if there is an i such that p(x) 6= 1/d, then p 6= p′. Indeed,

for τ in S(X) let Sτ be the set of states of g such that σs(y) = λ(s, y) = τ(y) for y ∈ X.

(S(X) is the group of all permutations of the set X). Since g is an automorphism,

the set of all states S of g is equal to the union of all Sτ . Now,

p′(x) =
∑

s∈S

q(s)p(σ−1
s (x)) =

∑

τ∈S(X)

∑

s∈Sτ

q(s)p(τ−1(x)) =

∑

τ∈S(X)

∑

s∈Sτ

q(s)p(τ−1(x))

Denote q(τ−1) =
∑

s∈Sτ
q(s). Then p′(x) =

∑

τ∈S(X) p(τ(x))q(τ), for all x.

Choose y such that p(y) is maximal among all p(x). Then

p′(y) =
∑

τ∈S(X)

p(τ(y))q(τ) < p(y)
∑

τ∈S(X)

q(τ) = p(y).

Since p, p′ are the one-dimensional distributions of shift invariant measures µ and

Q correspondingly, it follows from p 6= p′ and the pointwise ergodic theorem that µ
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and Q are singular. It is left to note that since g∗µ is absolutely continuous with

respect to Q, then g∗µ and µ are also singular.
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CHAPTER IV

DIGIT TILES AND LIMIT SPACES OF SELF-SIMILAR GROUPS*

1 Bernoulli measure of sofic subshifts

In this subsection all considered graphs are directed and labeled with X as the

set of labels. Let Γ = (V,E) be such a graph and take a vertex v ∈ V . We say

that a sequence x1x2 . . . ∈ Xω (a word x1x2 . . . xn ∈ X∗) starts in the vertex v if

there exists a right-infinite path e1e2 . . . (finite path e1e2 . . . en) in Γ, which starts

in v and is labeled by x1x2 . . . (respectively x1x2 . . . xn). Similarly, we say that a

sequence . . . x2x1 ∈ X−ω (a word xn . . . x2x1 ∈ X∗) ends in the vertex v if there

exists a left-infinite path . . . e2e1 (finite path en . . . e2e1) in Γ, which ends in v and

is labeled by . . . x2x1 (respectively xn . . . x2x1). For every w ∈ X∗ ∪ X−ω denote by

VΓ(w) = V (w) ⊂ V the set of all vertices v ∈ V such that the sequence w ends in v.

Observe that V (w′w) ⊆ V (w) for arbitrary word w′ and finite word w.

For every vertex v ∈ V denote by Bv the set of all right-infinite sequences that

start in v, and denote by Fv the set of all left-infinite sequences that end in v. The sets

Bv and Fv are closed correspondingly in Xω and X−ω, thus compact and measurable.

The sets B = ∪v∈VBv and F = ∪v∈V Fv are the one-sided (respectively, right and left)

sofic subshifts associated with the graph Γ. The sets Fv, v ∈ V , satisfy the recursion

Fv =
⋃

u
x
→ v

σx(Fu)

(here the union is taken over all edges which end in v). Hence, associating the map σx

*Reprinted with permission from “Graph-directed systems and self-similar measures
on limit spaces of self-similar groups” by I. Bondarenko and R. Kravchenko,
2011, Advances in Mathematics, 226(3), 2169–2191, doi:10.1016/j.aim.2010.09.018,
Copyright 2010 by Elsevier.
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with every edge e of the graph Γ labeled by x, the collection of sets {Fv, v ∈ V } can

be seen as the graph-directed iterated function system on the sofic subshift F with

the underlying graph Γ (see [BGN03]). All the maps σ−1
x are restrictions of the shift

σ, and thus {Fvx, v ∈ V } is the Markov partition of the dynamical system (F, σ).

Similarly, the collection of sets {Bv, v ∈ V } can be seen as the graph-directed iterated

function system on the sofic subshift B.

A labeled graph Γ = (V,E) is called right-resolving (Shannon graph in some

terminology) if for every vertex v ∈ V the edges starting at v have different labels.

Every sofic subshift can be given by a right-resolving graph (see Theorem 3.3.2 in

[LM95]). A right-resolving graph is called strictly right-resolving if every vertex v ∈ V

has an outgoing edge labeled by x for every x ∈ X.

For a labeled graph Γ = (V,E) we use the following notations:

~µp(B) = (µp(Bv))v∈V , ~µp(F) = (µp(Fv))v∈V , and µp(Γ) =
∑

v∈V

µp(Fv).

Next we study the properties of these quantities and describe an algorithmic way to

find them. First we discuss the problem for right-resolving graphs, and then reduce

the general case to the right-resolving one.

Theorem 5. Let Γ = (V,E) be a finite right-resolving graph. Then

µp(Γ) = min
w∈X−ω

|V (w)| = min
w∈X∗

|V (w)|.

In particular, the measure µp(Γ) is integer.

Proof. Let w = . . . x2x1 ∈ X
−ω and denote wn = xn . . . x2x1 for n ≥ 1. Observe, that

V (w) ⊆ V (wn) and V (wn) ⊆ V (wm) for n ≥ m.

Take a vertex v ∈ ∩n≥1V (wn). Let Pn be the set of all paths en . . . e2e1 labeled by

wn and ending in v. The set Pn is a finite non-empty set for every n, and en−1 . . . e2e1 ∈
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Pn−1 for every path en . . . e2e1 ∈ Pn. Since the inverse limit of a sequence of finite

non-empty sets is non-empty, there exists a left-infinite path . . . e2e1 labeled by w and

ending in v. Then v ∈ V (w) and we get

V (w) =
⋂

n≥1

V (wn). (4.1)

From this follows that |V (w)| = min
n≥1
|V (wn)| for w ∈ X

−ω. Then

min
w∈X−ω

|V (w)| = min
w∈X−ω

min
n≥1
|V (wn)| = min

w∈X∗

|V (w)|

and the second equality of the theorem is proved.

Define the integer k = minw∈X−ω |V (w)| and consider the set O = O(Γ) ⊆ X−ω

of all sequences w ∈ X−ω such that |V (w)| = k. Define O∗ as the set of finite words

that satisfy the same condition. We have the following lemma.

Lemma 6. The set O is open and dense in X−ω, and µp(O) = 1. For each w ∈ O

there is a beginning of w that belongs to O∗. Equivalently, O = ∪w∈O∗X−ωw.

Proof. If w ∈ O then k = |V (w)| = minn≥1 |V (wn)| and there exists N ≥ 1 such that

|V (wN)| = k. Then k ≤ |V (ωwN)| ≤ |V (wN)| = k for all ω ∈ X−ω. Hence wN ∈ O
∗,

X−ωwN ⊆ O and so O is open, and thus measurable.

Let u ∈ X∗ be such that |V (u)| = k. Let us show that if w ∈ X−ω contains the

subword u then w ∈ O. If w = w′u then k ≤ |V (w′u)| ≤ |V (u)| = k and w ∈ O.

Observe that V (ux) is the set of those vertices v ∈ V for which there exists an edge

labeled by x which starts in some vertex of V (u) and ends in v. Since the graph Γ is

right-resolving there is no more than one such an edge for each vertex of V (u), and

thus |V (ux)| ≤ |V (u)|. It implies that if w = w′uu′ than k ≤ |V (w)| ≤ |V (u)| = k

and thus |V (w)| = k, so w ∈ O. The Bernoulli measure of the set of all words

w′uu′, u′ ∈ X∗, w′ ∈ X−ω, is equal to 1. Thus µp(O) = 1. It follows also that O is
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dense in X−ω.

By construction of the set O for every w ∈ O there exist exactly k vertices v such

that w ∈ Fv. Let χFv
be the characteristic function of the set Fv. Then

∑

v∈V χFv
= k

almost everywhere. Integrating we get µp(Γ) =
∑

v∈V

µp(Fv) = k.

Remark 1. The theorem holds not only for Bernoulli measures. The only property

that was used is that for every word u ∈ X∗ the set of all words, which contain u as a

subword, has measure 1. It should be pointed out that the number µ(Γ) is independent

on the chosen measure µ, while the measures µ(Fv), µ(Bv) and
∑

v∈V µ(Bv) depend

on µ.

Definition 2. The number meas(Γ) = µp(Γ) is called the measure number of the

graph Γ.

Theorem 5 shows that almost every sequence w ∈ X−ω ends in precisely meas(Γ)

vertices of Γ.

We will use the following proposition in the next subsections.

Proposition 1. Let Γ = (V,E) be a finite labeled graph. Then B = Xω if and only

if F = X−ω. In particular, F = X−ω for a finite strictly right-resolving graph Γ.

Proof. Since the inverse limit of nonempty finite sets is nonempty, B = Xω (F = X−ω)

is equivalent to the fact that every finite word v ∈ X∗ labels some path in Γ.

The matrix A = (avu)v,u∈V , where avu is equal to the number of edges from v to

u, is the adjacency matrix of the graph Γ. For the probability vector p = (px)x∈X

define the matrix

Tp = (tvu)v,u∈V , where tvu =
∑

v
x
→u

px
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(the sum is taken over all edges from v to u). The matrices A and Tp are irreducible if

and only if the graph Γ is strongly connected. If the graph Γ is right-resolving, then

the matrix Tp is the transition matrix of the random walk on the weighted directed

graph Γ, where each edge labeled by x has weight px. In this case the row sums of the

matrix A are ≤ |X|, and the row sums of the matrix Tp are ≤ 1, hence the spectral

radius of A is ≤ |X|, and the spectral radius of Tp is ≤ 1. If the graph Γ is strictly

right-resolving, then the transition matrix Tp is right stochastic.

Proposition 2. Let Γ = (V,E) be a finite right-resolving graph with the transition

matrix Tp. If the vector ~µp(B) is nonzero then it is the right eigenvector of Tp for the

eigenvalue 1. If the vector ~µp(F) is nonzero then it is the left eigenvector of Tp for

the eigenvalue 1.

Proof. By construction, for every vertex v ∈ V we have

Bv =
⊔

v
x
→u

xBu

(here the union is disjoint because the graph Γ is right-resolving). It implies

µp(Bv) =
∑

v
x
→u

p(x)µp(Bu) =
∑

u∈V

tvuµp(Bu).

Thus the nonzero vector ~µp(B) is the right eigenvector of Tp for the eigenvalue 1.

Similarly,

Fv =
⋃

u
x
→v

Fux, v ∈ V,

and, since the graph Γ is right-resolving, that implies

µp(Fv) ≤
∑

u
x
→v

p(x)µp(Fu) =
∑

u∈V

tuvµp(Fu) ⇒ ~µp(F) ≤ ~µp(F)Tp.

The standard arguments based on the theory of nonnegative matrices (see for
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example [HLR03, proof of Theorem 4.5], [GY06, page 197], [Rot06]) end the proof.

Corollary 1. Let Γ = (V,E) be a finite right-resolving graph. Let {Γi} be the set

of all strongly connected components of Γ, which are strictly right-resolving graphs.

Then meas(Γ) =
∑

imeas(Γi).

In particular, if a finite strictly right-resolving graph Γ contains a vertex v0 such

that for each vertex v there is a path in Γ from v to v0 and for each x ∈ X there is an

edge from v0 to v0 labeled by x (the open set condition for graphs), thenmeas(Γ) = 1.

Corollary 2. Let Γ = (V,E) be a finite right-resolving graph with the adjacency

matrix A. For the uniform Bernoulli measure µu the nonzero vectors ~µu(B) and

~µu(F) are respectively the right and left eigenvectors of A for the eigenvalue |X|.

Although Theorem 5 gives a useful characterization of the number µp(Γ), it does

not present an algorithmic way to find it. It follows from Proposition 2 that the

problem of finding ~µp(F) and µp(Γ) reduces to the strongly connected components

which are strictly right-resolving graphs (for all other vertices µp(Fv) = 0). Notice

that if Γ is a strongly connected strictly right-resolving graph, then the vector

~µp(F)/µp(Γ) is the unique stationary probability distribution of the stochastic matrix

Tp.

At the same time Proposition 2 implies the algorithm to find the vector ~µp(B)

for a right-resolving graph. Indeed, a left eigenvector of Tp for the eigenvalue 1 is

uniquely defined if we know its entries µp(Bv) for vertices v in the strongly connected

components of Γ without outgoing edges. For every such a component Γ′, we have

Bv = Xω and µp(Bv) = 1 for every vertex v ∈ Γ′ if the component Γ′ is a strictly

right-resolving graph, and µp(Bv) = 0 otherwise. In particular, if the matrix Tp is

rational then the values µp(Bv) are rational.
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Given a finite labeled graph Γ = (V,E) the problems of finding the measures

µp(Bv) and µp(Fv) are equivalent, and can be reduced to right-resolving graphs. The

problem is that the system

Bv =
⋃

v
x
→u

xBu =
⊔

x∈X

x





⋃

v
x
→u

Bu



 , v ∈ V

is not self-similar in the sense that the above expression involves not only the sets

Bv but also their finite unions. Introducing additional terms to this recursion

corresponding to these unions we get a system with a right-resolving graph. This

procedure is similar to the construction described in the proof of Theorem 3.3.2 in

[LM95].

Proposition 3. For every finite graph Γ = (V,E) one can construct a finite right-

resolving graph Γ′ = (V ′, E ′) with the property that for every v ∈ V there exists

v′ ∈ V ′ such that Bv = Bv′.

Similarly, one can find the measures of subshifts B and F by introducing new

vertices corresponding to ∪v∈VBv and ∪v∈V Fv.

Corollary 3. Let Γ = (V,E) be a finite labeled graph. For the uniform Bernoulli

measure µu all measures µu(Bv), µu(Fv), µu(Γ) are rational.

Consider the question how to find the measure of the intersection Bv ∩ Bu for

v, u ∈ V . Construct a new graph G with the set of vertices V × V and put an edge

from (v, u) to (v′, u′) labeled by x ∈ X for every edges v
x
→ v′ and u

x
→ u′ in the

graph Γ (label products of graphs by Definition 3.4.8 in [LM95]). It is easy to see

that then B(v,u) = Bv ∩ Bu (see Proposition 3.4.10 in [LM95]).
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2 Self-similar actions and its limit spaces

We review in this subsection the basic definitions and theorems concerning self-

similar groups. For a more detailed account and for the references, see [Nek05].

Self-similar actions. A faithful action of a group G on the set X∗ is called

self-similar if for every g ∈ G and x ∈ X there exist h ∈ G and y ∈ X such that

g(xw) = yh(w)

for all w ∈ X∗. The element h is called the restriction of g on x and denoted

h = g|x. Inductively one defines the restriction g|x1x2...xn = g|x1|x2 . . . |xn for every

word x1 . . . xn ∈ X
n. Notice that (g · h)|v = g|h(v) · h|v (we are using left actions).

Virtual endomorphisms. The study of the self-similar actions of a group

is in some sense the study of the virtual endomorphisms of this group, which are

homomorphisms from a subgroup of finite index to the group. There is a general

way to construct a self-similar representation of a group with a given associated

virtual endomorphism. Let φ : H → G be a virtual endomorphism of the group

G, where H < G is a subgroup of index d. Let us choose a left coset transversal

T = {g0, g1, . . . , gd−1} for the subgroup H, and a sequence C = {h0, h1, . . . , hd−1}

of elements of G called a cocycle. The self-similar action (G,X∗) with the alphabet

X = {x0, x1, . . . , xd−1} defined by the triple (φ, T, C) is given by

g(xi) = xj, g|xi = h−1
j φ(g−1

j ggi)hi,

where j is such that g−1
j ggi ∈ H (such j is unique). The action may be not faithful,

the kernel can be described using Proposition 2.7.5 in [Nek05].

Conversely, every self-similar action can be obtained in this way. Let (G,X∗)

be a self-similar action and take a letter x ∈ X. The stabilizer StG(x) of the letter
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x in the group G is a subgroup of index ≤ |X| in G. Then the map φx : g 7→ g|x

is a homomorphism from StG(x) to G called the virtual endomorphism associated to

the self-similar action. Choose T = {gy : y ∈ X} and C = {hy : y ∈ X} such that

gy(x) = y and hy = (gy|x)
−1. Then T is a coset transversal for the subgroup StG(x)

and the self-similar action (G,X∗) is defined by the triple (φx, T, C). Different self-

similar actions of the group G with the same associated virtual endomorphism are

conjugated by Proposition 2.3.4 in [Nek05].

Contracting self-similar actions. An important class of self-similar actions

are contracting actions. A self-similar action of a group G is called contracting if

there exists a finite set N such that for every g ∈ G there exists k ∈ N such that

g|v ∈ N for all words v ∈ X∗ of length ≥ k. The smallest set N with this property

is called the nucleus of the self-similar action. The nucleus itself is self-similar in

the sense that g|v ∈ N for every g ∈ N and v ∈ X∗. It can be represented by the

Moore diagram, which is the directed labeled graph with the set of vertices N , where

there is an edge from g to g|x labeled (x, g(x)) for every x ∈ X and g ∈ N . We

identify the nucleus with its Moore diagram, also denoted by N . The contracting

property of the action depends only on the virtual endomorphism but not on the

chosen coset transversal and cocycle (see Corollary 2.11.7 in [Nek05]). Notice that

every contracting self-similar group is countable.

Self-similar groups are related to self-similar sets through the notion of limit

spaces.

Limit G-spaces. Let us fix a contracting self-similar action (G,X∗). Consider

the space X−ω ×G of all sequences . . . x2x1 · g, xi ∈ X and g ∈ G, with the product

topology of discrete sets X and G. Two elements . . . x2x1 ·g and . . . y2y1 ·h of X−ω×G

are called asymptotically equivalent if there exist a finite set K ⊂ G and a sequence
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gn ∈ K,n ≥ 1, such that

gn(xnxn−1 . . . x1) = ynyn−1 . . . y1 and gn|xnxn−1...x1 · g = h

for every n ≥ 1. This equivalence relation can be recovered from the nucleus N of

the action (Proposition 3.2.6 in [Nek05]).

Proposition 4. Two elements . . . x2x1·g and . . . y2y1·h of X−ω×G are asymptotically

equivalent if and only if there exists a left-infinite path . . . e2e1 in the nucleus N ending

in the vertex hg−1 such that the edge ei is labeled by (xi, yi).

The quotient of the set X−ω×G by the asymptotic equivalence relation is called

the limit G-space of the action and denoted X(G,X∗). The group G naturally acts on

the space X(G,X∗) by multiplication from the right.

The map τx defined by the formula

τx(. . . x2x1 · g) = . . . x2x1g(x) · g|x

is a well-defined continuous map on the limit G-space XG for every x ∈ X, which is not

a homeomorphism in general. Inductively one defines τx1x2...xn = τxn ◦ τxn−1
◦ . . . ◦ τx1 .

The image of X−ω × 1 in XG is called the (digit) tile T of the action. The image

of X−ωv × 1 for v ∈ Xn is called the tile Tv, equivalently Tv = τv(T). It follows

directly from definition that

XG =
⋃

g∈G

T · g and T =
⋃

v∈Xn

Tv.

Two tiles T ·g and T ·h intersect if and only if gh−1 ∈ N . A contracting action (G,X∗)

satisfies the open set condition if for any element g of the nucleus N there exists a

word v ∈ X∗ such that g|v = 1, i.e. in the nucleus N there is a path from any vertex

to the trivial state. If the action satisfies the open set condition then the tile T is
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the closure of its interior, and any two different tiles have disjoint interiors; otherwise

every tile T · g is covered by the other tiles (see Proposition 3.3.7 in [Nek05]).

The tile T and the partition of XG on tiles T ·g depend on the specific self-similar

action of the group G. However, up to homeomorphism the limit G-space X(G,X∗) is

uniquely defined by the associated virtual endomorphism φ of the group, hence we

denote it by XG(φ) (or XG for short).

Theorem 6. Let φ : H → G be a virtual endomorphism of the group G. Let

(G,X∗) and (G, Y ∗) be the contracting self-similar actions defined respectively by the

triples (φ, T, C) and (φ, T ′, C ′). Then X(G,X∗) and X(G,Y ∗) are homeomorphic and the

homeomorphism is the map α : X(G,X∗) −→ X(G,Y ∗) such that

α(τx(t)) = τy(α(t)) · sx, for t ∈ X(G,X∗),

where sx = h′−1
y φ(g′−1

y gx)hx and y is such that g′yg
−1
x ∈ H.

Proof. The statement follows from Sections 2.1–2.5 in [Nek05].

Limit dynamical system. The factor of the limit G-space XG by the action

of the group G is called the limit space JG = JG(φ). It follows from the definition

that we may also consider JG as a factor of X−ω by the following equivalence relation:

two left-infinite sequences . . . x2x1, . . . y2y1 are equivalent if and only if there exists a

left-infinite path . . . e2e1 in the nucleus N such that the edge ei is labeled by (xi, yi).

The limit space JG is compact, metrizable, finite-dimensional space. It is connected

if the group G is finitely generated and acts transitively on Xn for all n.

The equivalence relation onX−ω is invariant under the shift σ, therefore σ induces

a continuous surjective map s : JG → JG, and every point of JG has at most |X|

preimages under s. The dynamical system (JG, s) is called the limit dynamical system

of the self-similar action.
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The image of X−ωv for v ∈ Xn in JG is called the tile Tv of the n-th level. Clearly

Tv =
⋃

x∈X

Txv and s(Tvx) = Tv

for every v ∈ X∗ and x ∈ X. Two tiles Tv and Tu of the same level have nonempty

intersection if and only if there exists h ∈ N such that h(v) = u. Under the open set

condition, every tile Tv is the closure of its interior, and any two different tiles of the

same level have disjoint interiors (Proposition 3.6.5 in [Nek05]). It will be used in the

next subsection that

lim
n→∞

max
v∈Xn

diam(Tv) = 0 (4.2)

for any chosen metric on the limit space JG (see Theorem 3.6.9 in [Nek05]).

The inverse limit of the topological spaces JG
s

← JG
s

← · · · is called the limit

solenoid SG. One can consider SG as a factor of the space XZ of two-sided infinite

sequences by the equivalence relation, where two sequences ξ, η are equivalent if and

only if there exist a two-sided infinite path in the nucleus labeled by the pair (ξ, η).

The two-sided shift on XZ induces a homeomorphism e : SG → SG.

3 Self-similar measures on limit spaces

Let us fix a contracting self-similar action (G,X∗).

Invariant measure on the limit G-space XG. We consider the uniform

Bernoulli measure µu on the space X−ω and the counting measure on the group G,

and we put the product measure on the space X−ω × G. The push-forward of this

measure under the factor map πX : X−ω×G→ XG defines the measure µ on the limit

G-space XG. The measure µ is a G-invariant σ-finite regular Borel measure on XG.

Proposition 5. The measures of tiles have the following properties.

1. µ(Tv) = |X|
n · µ(Tuv) for every v ∈ X∗ and u ∈ Xn.
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2. µ(Tv ∩ Tv′) = 0 for v, v′ ∈ Xn, v 6= v′.

3. Let µ|T be the measure µ restricted to the tile T. Then

µ|T(A) =
∑

x∈X

1

|X|
µ|T(τ

−1
x (A))

for any Borel set A ⊂ T.

Proof. Let us show that µ(A) ≥ |X|µ(τx(A)) for any Borel set A. Consider sequences

which represent points of the sets A and τx(A):

π−1
X (A) =

⋃

g∈G

Tg · g ⇒ π−1
X (τx(A)) =

⋃

g∈G

Tgg(x) · g|x.

It implies

µ(τx(A)) ≤
∑

g∈G

1

|X|
µu(Tg) =

1

|X|
µ(A).

By applying this inequality n times we get |X|nµ(Tv) = |X|
nµ(τv(T)) ≤ µ(T) for

v ∈ Xn. Since T = ∪u∈XnTu we have that

µ(T) ≤
∑

u∈Xn

µ(Tu) ≤
∑

u∈Xn

1

|X|n
µ(T) = µ(T).

Hence all the above inequalities are actually equalities, µ(T) = |X|nµ(Tu) for every

u ∈ Xn, and µ(Tu ∩ Tu′) = 0 for different u, u′ ∈ Xn.

Notice that since every Borel set A ⊂ T can be approximated by unions of tiles of

the same level and using items 1 and 2 we have that if µ(τx(A)) < ε then µ(A) < ε|X|.

It is left to prove item 3. First, let us show that the assertion holds for the tiles

Tv. Since the measure µ|T is concentrated on the tile T, up to sets of measure zero

the set τ−1
x (Tv) is equal Tu if v = ux, and is empty if the last letter of v is not x.

Really, if t ∈ τ−1
x (Tux) and t ∈ Tv with v 6= u, |v| = |u|, then τx(t) ∈ Tvx ∩ Tux and
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the measure of such points is zero. Hence

µ|T(Tv) =
1

|X|
µ|T(Tu) =

∑

x∈X

1

|X|
µ|T(τ

−1
x (Tv)).

Now we can approximate any Borel set by unions of tiles and pass to the limit.

The tile T of the limit G-space XG can be considered as the attractor of the

iterated function system τx, x ∈ X, i.e.

T =
⋃

x∈X

τx(T).

Hence Proposition 5 item 3 implies that µ|T is the self-similar measure on T by the

standard definition of Hutchinson (1.1). The measure µ is the G-invariant extension

of the self-similar measure µ|T to the limit G-space XG.

Let us show how to find the measure of the tile T. Let N be the nucleus of

the action (G,X∗) identified with its Moore diagram. Replacing each label (x, y) by

label x in the nucleus N we get a strictly right-resolving graph denoted ΓN labeled

by elements of X, so that we can apply the methods developed in subsection 1.

Theorem 7. The measure µ(T) is equal to the measure number meas(ΓN ) of the

nucleus, in particular it is always integer. Moreover, µ(T) = 1 if and only if the

action satisfies the open set condition.

Proof. By Proposition 4 we have

π−1
X (T) =

⋃

g∈N

Fg · g
−1,

where the sets Fg are defined using the graph ΓN (see subsection 1). Thus

µ(T) =
∑

g∈N

µu(Fg) = meas(N ),
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which is integer by Theorem 5. Observe that µ(T) ≥ 1 because Fg = X−ω for

g = 1 ∈ N .

If the action satisfies the open set condition then µ(T) = meas(ΓN ) = 1 by

Corollary 1.

Suppose now that the action does not satisfy the open set condition. Then there

exists an element h of the nucleus, whose all restrictions are non-trivial. Let N1

be the set of all restrictions of h, and ΓN1
be the corresponding graph. Then by

Proposition 1
∑

g∈N1

µu(Fg) = meas(ΓN1
) ≥ 1.

Thus µ(T) =
∑

g∈N µu(Fg) ≥ meas(ΓN1
) + µu(Fg=1) ≥ 2.

Remark 2. The measure µ(T) = meas(ΓN ) can be found algorithmically using the

remarks after Proposition 2.

The next proposition shows that the covering XG = ∪g∈GT ·g is a perfect multiple

covering of multiplicity µ(T).

Proposition 6. Every point x ∈ XG is covered by at least µ(T) tiles. The set ẊG of

all points x ∈ XG, which are covered by exactly µ(T) tiles, is open and dense in XG,

and its complement has measure 0.

Proof. For each x ∈ XG we define the number nx of such g ∈ G that the tile T · g

contains x.

First we prove the inequality. Let x ∈ XG be represented by the pair w · g from

X−ω × G. Then |V (w)| ≥ meas(ΓN ) by Theorem 5. If h ∈ V (w) it means that

the sequence w ends in h, which by Proposition 4 means that there is a sequence

uh ∈ X−ω such that w is asymptotically equivalent to uh · h. It follows that w · g

is asymptotically equivalent to uh · hg. It means, in turn, that x belongs to the tile

T · hg for every h ∈ V (w). It follows that nx ≥ meas(ΓN ).
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Consider the set O = O(ΓN ) defined in Lemma 6 using the graph ΓN , in other

words O is the set of all w ∈ X−ω that end in precisely meas(ΓN ) elements of N .

By the same considerations as above we see that if w · g represents a point x with

nx = meas(ΓN ) then |V (w)| = meas(ΓN ), that is, w belongs to O. In other words,

the set O ×G is closed under the asymptotic equivalence relation on X−ω ×G, and

it is the inverse image of the set ẊG under the factor map πX . Since the set O × G

is open and dense in X−ω × G by Lemma 6, the same hold for ẊG in XG. The

complement of ẊG has measure 0, because the complement of the set O has measure

0 by Lemma 6.

Remark 3. Two tiles T · g1 and T · g2 for g1, g2 ∈ G have nonempty intersection if

and only if g1g
−1
2 ∈ N . Let us show how to find the measure of this intersection. By

Proposition 4 we have

π−1
X ((T · g1) ∩ (T · g2)) =

⋃

h1, h2 ∈ N

g1g
−1

2
= h1h

−1

2

(Fh1 ∩ Fh2) · h
−1
1 g1,

where the sets Fg are defined using the nucleus N . The word problem in contracting

self-similar groups is solvable in polynomial time [Nek05, Proposition 2.13.10] (one

can use the program package [MS08]). The measures of intersections Fh1 ∩ Fh2 can

be found for example using method described after Corollary 3.

The measure µ = µ(G,X∗) on the limit G-space XG was defined using the specific

self-similar action (G,X∗) of the group G. Let us show that actually this measure

depends only on the associated virtual endomorphism φ, as the limit G-space itself.

It allows us to consider the measure space (XG(φ), µ) independently of the self-similar

action. At the same time, the measure µ(T) may vary for different self-similar actions

as the nucleus does. It is an interesting open question in what cases we can always

choose a self-similar action which satisfies the open set condition (see [GM92, LW95]



34

for the abelian case and applications to wavelets).

Theorem 8. Let φ : H → G be a virtual endomorphism of the group G. Let (G,X∗)

and (G, Y ∗) be the contracting self-similar actions defined respectively by the triples

(φ, T, C) and (φ, T ′, C ′). Then the homeomorphism α : X(G,X∗) −→ X(G,Y ∗) from

Theorem 6 preserves measure, i.e.

µ(G,Y ∗)(α(A)) = µ(G,X∗)(A)

for any Borel set A.

Proof. Let N be the nucleus and T be the tile of the action (G,X∗). By Theorem 7

and Theorem 5

µ(G,X∗)(T) = meas(ΓN ) = min
w∈X−ω

|V (w)| = k ∈ N, (4.3)

where V (w) is defined using the graph ΓN . Consider

π−1
Y (α(T)) =

⋃

g∈G

Tg · g (here Tg ⊆ Y −ω),

where πY : Y −ω ×G→ XG is the canonical projection.

Take w ∈ Y −ω and let us prove that there exist at least k elements g ∈ G such

that w ∈ Tg. The tiles T · g cover the limit G-space X(G,X∗), and we can find g ∈ G

such that if x = α−1(y) for y = πY (w · g) ∈ X(G,Y ∗) then x belongs to the tile T. Then

x is represented by the sequence u · 1 for u ∈ X−ω. Equation (4.3) implies |V (u)| ≥ k

and so there exist k elements h1, . . . , hk ∈ N and sequences u1, . . . , uk ∈ X
−ω such

that for every i there exists a left-infinite path in the nucleus N which ends in hi and

is labeled by (u, ui). By Proposition 4

x = πX(u · 1) = πX(ui · hi) and x · h−1
i ∈ T
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for every i = 1, . . . , k. Then

πY (w · gh
−1
i ) = πY (w · g)h

−1
i = y · h−1

i = α(x · h−1
i ) ∈ α(T)

and thus w ∈ Tgh−1

i
for all i = 1, . . . , k.

Let χTg be the characteristic function of the set Tg. Then
∑

g∈G χTg(x) ≥ k for

almost all x. Integrating we get µ(G,Y ∗)(α(T)) =
∑

g∈G µu(Tg) ≥ k = µ(G,X∗)(T).

Let us now show that µ(G,Y ∗)(α(Tv)) ≤ µ(G,X∗)(Tv) for any v ∈ X
∗. Indeed, let

n = |v|, then it follows from Theorem 6 that α(Tv) = α(τv(T)) = τu(α(T))g for some

word u ∈ Y n and g ∈ G. Thus

µ(G,Y ∗)(α(Tv)) = µ(G,Y ∗)(τu(α(T))) ≤
1

|X|n
µ(G,Y ∗)(α(T)) =

=
1

|X|n
µ(G,X∗)(T) = µ(G,X∗)(Tv).

Let us prove that µ(G,Y ∗) ◦ α is absolutely continuous with respect to µ(G,X∗).

Indeed, let µ(G,X∗)(A) < ε, π−1
X (A) = ∪gTg · g. Then

∑

g µu(Tg) < ε. It follows that

there exist vi,g ∈ X∗ such that Tg ⊂ ∪iX
−ωvi,g and

∑

i,g |X|
−|vi,g | < ε. Then A ⊂

∪i,gTvi,g · g, and we have that
∑

i,g µ(G,X∗)(Tvi,g) < εµ(G,X∗)(T). Then µ(G,Y ∗)(α(A)) ≤
∑

µ(G,Y ∗)(α(Tvi,g)) ≤
∑

µ(G,X∗)(Tvi,g) < εµ(G,X∗)(T). Since ε is arbitrary, we are

done.

We will now prove that µ(G,Y ∗) ◦ α ≤ µ(G,X∗). Since both µ(G,Y ∗) ◦ α and µ(G,X∗)

are invariant under multiplication by g ∈ G it suffices to prove this inequality for sets

A ⊂ T. Since any Borel A is a union of a closed set and a set of arbitrarily small

measure, it suffices to prove the inequality for closed sets, as µ(G,Y ∗) ◦ α is absolutely

continuous with respect to µ(G,X∗) by above.

So let A ⊂ T be a closed set. For each n, let An be the union of all tiles

Tv, v ∈ X
n, that have non-empty intersection with A. Let us show that A = ∩nAn.
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Suppose x ∈ ∩An, and x is not in A. Then for each n there is vn ∈ X
n such that

Tvn has nonempty intersection with A and x ∈ Tvn . It follows that x has some

representation unvn ∈ X−ω. Since the number of such representations is finite, we

may choose subsequence nk such that vnk
is the beginning of some word v ∈ X−ω.

Since A is compact it follows that A has nonempty intersection with ∩kTvnk
, thus

∩kTvnk
contains at least two points, which is impossible.

Since An is the union of some tiles of level n, which are disjoint up to sets

of measure 0, the inequality also holds for all An. Going to the limit, we get the

inequality for A.

By interchanging X and Y we get the reverse inequality, and we are done.

Remark 4. It is important in the theorem that we take the uniform Bernoulli measure

on X−ω. The problem is that the homeomorphism α may change the Bernoulli

measure with a non-uniform weight to a measure that is not Bernoulli.

Self-similar measure on the limit space JG. The push-forward of the uniform

Bernoulli measure µu under the factor map πJ : X−ω → JG defines the self-similar

measure m on the limit space JG. The measure m is a regular Borel probability

measure on JG. The shift s is a measure-preserving transformation of JG.

Consider the set U = U(N ) of all sequences w ∈ X−ω with the property that

every left-infinite path in the nucleus N labeled by (w,w) ends in 1. Define U∗ as

the set of finite words that satisfy the same condition.

Lemma 7. The set U is open and dense in X−ω, and µp(U) = 1. For each w ∈ U

there is a beginning of w that belongs to U∗, and U = ∪w∈U∗X−ωw.

The sets U and U × G are closed under the asymptotic equivalence relation on

X−ω and X−ω ×G respectively.
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Proof. Construct the graph Γ with the elements ofN as vertices, for each edge labeled

by (x, x) in N we have the edge in Γ with the same starting and end vertices, and

labeled by x; and for each edge in N labeled by (x, y) for x 6= y there is an edge in

Γ with the same starting vertex that ends in the trivial element and labeled by x.

Then the set U coincides with the set O(Γ). Indeed, h ∈ VΓ(w) if and only if there is

a path in N labeled by (w,w) that ends in h, thus w ∈ U if and only if VΓ(w) = {1}.

For every nontrivial element h ∈ N there exists a word v ∈ X∗ such that h(v) 6= v.

It follows that there exists a path in the graph Γ from h to 1. Hence the component

{1} is the only strongly connected component of the graph Γ without outgoing edges.

By Corollary 1 the measure number of Γ is 1, and U = O(Γ). The first statement of

the lemma now follows from Lemma 6.

Let us show that the set U is closed under the asymptotic equivalence relation

(then the set U × G is also closed). It is sufficient to show that if there is a path

in N labeled by (u, v) and u ∈ U (v ∈ U) then v ∈ U (u ∈ U). Let the path in

N labeled by (u, v) end in h. It follows that u is asymptotically equivalent to v · h.

Suppose there is a path in N labeled by (v, v) that ends in g. It follows that v is

asymptotically equivalent to v · g. Thus u is asymptotically equivalent to v · gh which

is asymptotically equivalent to u · h−1gh. By definition, there is a path in N labeled

by (u, u) which ends in h−1gh. Since u ∈ U we get h−1gh = 1, thus g = 1.

Proposition 7. Almost every point of JG has precisely |X| preimages under s.

Proof. Since every point of JG has at most |X| preimages under s, it is enough to

show that for almost every w ∈ X−ω the map πJ : σ−1(w) → s
−1(πJ(w)) is one-to-

one. Suppose that for some w ∈ X−ω and x 6= y in X we have πJ(wx) = πJ(wy).

It follows that wx,wy are asymptotically equivalent, thus there is a left-infinite path

in N labeled by (wx,wy). It follows that the prefix of this path labeled by (w,w)
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must end in the nontrivial element, so w 6∈ U . Since µu(U) = 1 by Lemma 7, we are

done.

The definition of the measure m uses encoding of JG by sequences X−ω. At the

same time the space JG is defined as the space of obits XG/G. Let us show that we

can recover (JG,m) from the measure space (XG, µ).

Proposition 8. Let ρ be the factor map XG → JG. Then for any u ∈ U∗ the

restriction ρ|Tu : Tu → Tu is a homeomorphism, ρ−1(Tu) = ⊔g∈GTu · g.

Proof. By definition, the map ρ|Tu : Tu → Tu is surjective, and Tu is compact. Hence

in order to prove that ρ is a homeomorphism it is left to show that ρ is injective on Tu.

Take x, y ∈ Tu, and let wu ∈ X−ω represent x and vu ∈ X−ω represent y. Suppose

that ρ(x) = ρ(y). By Proposition 4 it means that there is a left-infinite path in N

labeled by (wu, vu). Since u ∈ U∗, this path must end in 1. It follows, that wu and

vu represent the same point of the tile Tu, and x = y.

To prove the second claim, take x ∈ Tu · g ∩Tu · g
′. Then x is represented by two

asymptotically equivalent sequences wu · g and w′u · g′. It follows that there is a path

in the nucleus N labeled by (u, u) which ends in g′g−1. Then g = g′ since u ∈ U∗.

Theorem 9. The projection XG → JG is a covering map up to sets of measure zero.

Proof. Consider the sets X̃G = πX(U×G) and J̃G = πJ(U). It follows that X̃G/G = J̃G.

Since the set U has measure 1 by Lemma 7, the complements of U × G, of X̃G, and

of J̃G have measure 0.

Since the group G acts properly on XG, the same holds for X̃G. It is left to prove

the freeness. Suppose x · g = x for x ∈ X̃G and g ∈ G. Let u ·h be a representative of

x in X−ω×G. It follows that u ·hg is asymptotically equivalent to u ·h, thus there is

a path in N labeled by (u, u) that ends in h−1gh. Since u ∈ U we have g = 1. Hence

the projection X̃G → J̃G is a covering map, and the statement follows.
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Let (X, ν) be a locally compact measure space, the group G acts freely and

properly discontinuously on X by homeomorphisms, and the measure ν is G-invariant.

There is a unique measure ν∗ on the quotient space X/G, called the quotient measure,

with the property that if U is an open subset of X such that Ug ∩ Uh = ∅ for all

g, h ∈ G, g 6= h, then ν∗(U/G) = ν(U).

Proposition 9. The quotient measure µ∗ of the limit G-space (XG, µ) coincides with

the measure m on the limit space JG.

Proof. Consider the sets J̃G and X̃G of full measure from the previous theorem. For

every u ∈ U∗ we have Tu ⊂ J̃G, Tu ·g ⊂ X̃G for every g ∈ G, and ρ−1(Tu) =
⊔

g∈G Tu ·g

by Proposition 8. Since J̃G = ∪u∈U∗Tu by Lemma 7 it suffices to show that for any

u ∈ U∗ the restriction of µ∗ on Tu is equal to the restriction of m. Take a Borel set

A ⊂ Tu and consider its preimage π−1
X (A) = ⊔g∈NAg · g. Then π

−1
J
(ρ(A)) = ⊔g∈NAg.

Here the union is disjoint because if w ∈ Ag ∩ Ah then w·g and w·h are asymptotically

equivalent to vu and v′u respectively, for some v, v′ ∈ X−ω. It follows that vu · g−1 is

equivalent to v′u · h−1. Since u ∈ U , g = h. Hence

m(ρ(A)) = µu(π
−1
J
(ρ(A))) = µu(⊔g∈NAg) =

∑

g∈N

µu(Ag).

By the property of the quotient measure

µ∗(ρ(A)) = µ(A) =
∑

g∈N

µu(Ag) = m(ρ(A)).

Corollary 4. Theorem 8 holds for the limit space JG, i.e. the measure space (JG,m)

depends only on the associated virtual endomorphism.

Corollary 5. m(Tu) = µ(Tu) = (1/|X||u|)meas(T) for u ∈ U∗.
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Theorem 10. (JG, s,m) is conjugate to the one-sided Bernoulli |X|-shift.

Proof. We will use notions and results from [HR02]. First recall that a measure

preserving map with entropy log d is called uniformly d-to-one endomorphism if it

is almost everywhere d-to-one and the conditional expectation of each preimage is

1/d. The standard example is (X−ω, σ, µu), which is uniformly |X|-to-one. Next we

want to show that (JG, s,m) is also uniformly |X|-to-one. By Proposition 7 the map

π : X−ω → JG is injective on the preimages σ−1(w) for almost all w ∈ X−ω, that is,

π is tree adapted in terminology of [HR02]. We can apply Lemma 2.3 from [HR02],

which says that a tree adapted factor of a uniform d-to-one endomorphism is again

uniform d-to-one endomorphism. In particular, the shift s is the map of maximal

entropy log |X|.

To prove the theorem, we use the following Theorem 5.5 in [HR02].

Theorem 11. A uniform d-to-one endomorphism (Y, S, µ) is one-sidedly conjugated

to the one-sided Bernoulli d-shift if and only if there exists a generating function f

so that (Y, S, µ) and f are tree very weak Bernoulli.

Recall the definition of tree very weak Bernoulli and generating function. Let

(Y, S, µ) be uniformly d-to-one and f : Y → R be a tree adapted function to a

compact metric space R with metric D. The function f is called generating if the

σ-algebra on Y is generated by S−if−1(B), i ≥ 0, where B is the σ-algebra of Borel

sets of the space R.

Informally, “tree very weak Bernoulli” means that for almost all pairs of points

in Y their trees of preimages are close. To give a formal definition note that since S

is uniformly d-to-one, for almost all points y ∈ Y the set S−k(y) contains exactly dk

points, i.e. the tree of preimages is a d-regular rooted tree. The set {1, . . . , d}∗ of finite

words over {1, . . . , d} can be considered as a d-regular rooted tree, where every word
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v is connected with vx for x ∈ {1, . . . , d}, and the root is the empty word ∅. We can

use the tree {1, . . . , d}∗ to label the trees of preimages. For almost all points y ∈ Y

there is a map Ty : {1, . . . , d}∗ → Y such that Ty(∅) = y and Ty(σ(v)) = S(Ty(v))

for all nonempty words v ∈ {1, . . . , d}∗. Every map Ty is tree adapted, and it is

uniquely defined up to an automorphism of the tree {1, . . . , d}∗. Then (Y, S, µ) and

f are called tree very weak Bernoulli if for any ε > 0 and all sufficiently large n there

is a set W = W (ε, n) ⊂ Y with µ(W ) > 1− ε such that for any y, y′ ∈ W

tn(y, y
′) = min

ψ

1

n

∑

v∈{1,...,d}∗,|v|≤n

d−|v|D(f(Ty(v)), f(Ty′(ψ(v)))) < ε, (4.4)

where the minimum is taken over all automorphisms ψ of the tree {1, . . . , d}∗. Notice

that the definition of tn does not depend on the choice of Ty.

Let us show that (JG, s, µs) is tree very weak Bernoulli for the identity map id :

JG → JG. It immediately follows that id is tree adapted and generating. Take a point

x ∈ JG and let x be represented by some w ∈ X−ω. Define the map Tx : X
∗ → JG by

the rule Tx(v) = π(wv). It is enough to show that tn(x, x
′) → 0, n → ∞, for almost

all x, x′ ∈ JG. Using (4.2) we can find n1 such that maxv∈Xn diam(Tv) < ǫ/2 for all

n ≥ n1. It means that D(π(wv), π(w′v)) < ǫ/2 for all v, |v| ≥ n1 (here D is a fixed

metric on the limit space JG). Thus, taking ψ to be the identical tree automorphism,

we have that

tn(x, x
′) <

n1

n
diam(JG) +

n− n1

n

ǫ

2
<
n1

n
diam(JG) +

ǫ

2
< ǫ

for n > 2n1diam(JG)/ǫ. Hence (JG, s,m) and id are tree very weak Bernoulli, which

finishes the proof.

In the same way we introduce the measure me on the limit solenoid SG as the

push-forward of the uniform Bernoulli measure onXZ. It is easy to see that (SG, e,me)
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is the inverse limit of dynamical systems (JG, s,m) (see [SG89, page 27]). In particular,

we get

Corollary 6. (SG, e,me) is conjugate to the two-sided Bernoulli |X|-shift.

4 Applications and examples

Invariant measures on nilpotent Lie groups. Let G be a finitely generated

torsion-free nilpotent group. Let φ : H → G be a contracting surjective virtual

endomorphism such that the associated self-similar action is faithful (i.e. φ-core(H)

is trivial in the terminology of [BS07]). Then φ is also injective by Theorem 1 in

[BS07], thus φ is an isomorphism and we can apply Theorem 6.1.6 from [Nek05]. The

group G and its subgroup H are uniform lattices of a simply connected nilpotent

Lie group L by Malcev’s completion theorem. The isomorphism φ : H → G extends

to a contracting automorphism φL of the Lie group L. There exists a G-equivariant

homeomorphism Φ : XG → L such that φL(Φ(t)) = Φ(τx0(t) ·g0) for every t ∈ XG and

fixed x0 ∈ X and g0 ∈ G.

Proposition 10. The push-forward Φ∗µ of the measure µ on the limit G-space XG

is the (right) Haar measure on the Lie group L.

Proof. The measure Φ∗µ is a non-zero regular Borel measure on L. It is left to prove

that it is translation invariant. Since the measure µ is G-invariant and the map Φ

is G-equivariant, the measure Φ∗µ is G-invariant. By the property of the map Φ we

have φL(Φ(A)) = Φ(τx0(A))g0 for every Borel set A ⊂ XG. Notice that since the map

φ is injective, we get µ(A) = |X|µ(τx(A)) (see the proof of Proposition 5) and hence

Φ∗µ(B) = |X|Φ∗µ(φL(B)) for every Borel set B ⊂ L. It follows that the measure

Φ∗µ is ∪nφ
n
L(G)-invariant. Since φL is contracting, the set ∪nφ

n
L(G) is dense in the

Lie group L. Hence Φ∗µ is L-invariant.
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The same observation holds in a more general setting of finitely generated

virtually nilpotent groups (or under the conditions of Theorem 6.1.6).

Lebesgue measure of self-affine tiles. Let A be an n× n integer expanding

matrix, where expanding means that every eigenvalue has modulus > 1. The lattice

Z
n is invariant under A, and we can choose a coset transversal D = {d1, . . . , dm}

for Z
n/A(Zn), where m = |det(A)|. There exists a unique nonempty compact set

T = T (A,D) ⊂ R
n, called (standard) integral self-affine tile, satisfying

A(T ) =
⋃

d∈D

T + d.

The tile T has positive Lebesgue measure, is the closure of its interior, and the union

above is nonoverlapping (the sets have disjoint interiors) [LW96b]. It is well-known

[LW96a] that the tile T has integer Lebesgue measure. The question how to find this

measure is studied in [LW96a, HLR03, DH08], and finally answered in [GY06]. A

related question how to find the measure of intersection T ∩ (T + a) for a ∈ Z
n is

studied in [GY06, EKM09]. Let us show how to answer these questions using the

theory of self-similar groups.

The inverse of the matrix A can be considered as the contracting virtual

endomorphism A−1 : A(Zn)→ Z
n of the group Z

n, which is actually an isomorphism

so that we can apply the previous example of this subsection. Put X = {x1, . . . , xm}

and let (Zn, X∗) be the self-similar contracting action defined by the virtual

endomorphism A−1, the coset transversal D, and the trivial cocycle C = {1, . . . , 1}

(see Section 3). The group Z
n is the uniform lattice in the Lie group R

n. Hence by

Theorem 6.1.6 in [Nek05] (see also Section 6.2 there) there exists a Z
n-equivariant

homeomorphism Φ : XZn → R
n given by

Φ(. . . xi2xi1 · g) = g + A−1di1 + A−2di2 + . . .
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for ij ∈ {1, . . . ,m} and g ∈ Z
n. The image of the tile T is the self-affine tile T .

Proposition 11. The push-forward Φ∗µ of the measure µ on the limit G-space XZn

is the Lebesgue measure θ on R
n.

Proof. The measure Φ∗µ is the Haar measure on R
n by the above example. Since

the Haar measure is unique up to multiplicative constant, we have that Φ∗µ = cθ for

some constant c > 0 and we need to prove that c = 1.

Recall that µ(T) is integer by Proposition 7, and almost every point of XG is

covered by µ(T) tiles T · g by Proposition 6. Hence Φ∗µ(T ) = Φ∗µ(Φ(T)) = µ(T) is

integer and almost every point of Rn is covered by µ(T) tiles T + g, g ∈ Z
n, with

respect to the measure Φ∗µ, and thus with respect to the Lebesgue measure θ. It

follows that, if χT+g is the characteristic function of T + g, then
∑

g∈Zn χT+g = µ(T)

almost everywhere with respect to both measures. Hence

Φ∗µ(T ) = µ(T) =

∫

I

∑

g∈Zn

χT+gdθ =
∑

g∈Zn

∫

I+g

χTdθ =

∫

Rn

χTdθ = θ(T ),

where I is the unit cube in R
n. Since µ(T) is positive, c = 1.

Corollary 7. The Lebesgue measure of the self-affine tile T is equal to the measure

number meas(N ) of the nucleus N of the associated self-similar action (Zn, X∗).

The nucleus of a contracting self-similar action can be found algorithmically

using the program package [MS08], and the number meas(N ) can be found using the

remarks after Proposition 2. The measures of sets T ∩ (T + a) for a ∈ Z
n can be

found by Remark 3.

The methods developed in [GY06] to find the Lebesgue measure of integral self-

affine tiles are related to the discussion above. Take the complete automaton [Nek05,

page 11] of the self-similar action (Zn, X∗) (it actually coincides with the graph B(Zn)
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from [ST02]), revert the direction of every edge, identify edges with the same starting

and end vertices labeled by (d1, d2) with the same difference r = d2 − d1, and put

the new label r on this edge. We get the graph G(Zn) constructed in [GY06] and

[MTT01]. The set W constructed using G(Zn) [GY06, page 195] is precisely the

nucleus N . Hence the theory of self-similar groups provides a nice explanation to the

ideas in [GY06, Section 3] and the methods developed in Sections 2,4 can be seen as

its non-abelian generalization.

It is shown in [LW97] that integral self-affine tile T gives a lattice tiling of Rn

with some lattice L ⊂ Z
n. An interesting open question is whether this holds for any

(self-replicating) contracting self-similar action (G,X∗) (or at least for self-similar

actions of torsion-free nilpotent groups), i.e. the tile T gives a tiling of XG with some

subgroup H < G.

Self-affine sets. Let us now drop the condition that D is a coset transversal,

so let it be any finite subset of Zn. There still exists a unique nonempty compact set

T = T (A,D) ⊂ R
n, called (integral) self-affine set, satisfying A(T ) = ∪d∈D(T + d).

We will show that Proposition 11 provides a method to compute the Lebesgue measure

of T for any set D.

If the set D does not contain all coset representatives of Zn/A(Zn), we extend it

to the set K ⊃ D which does, and choose a coset transversal X ⊂ K.

Construct a directed labeled graph (automaton) Γ = Γ(A,K) with the set of

vertices Zn and we put a directed edge from u to v for u, v ∈ Z
n labeled by the pair

(x, y) for x, y ∈ K if u+x = y+Av. We slightly generalize the definition of the nucleus

in the following way. Let the nucleus of the graph Γ be the subgraph (subautomaton)

N spanned by all cycles of Γ and all vertices that can be reached following directed

paths from the cycles. It is easy to see that since the matrix A is expanding the
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nucleus N is a finite graph (this also follows from the proof below). It follows from

u + x = y + Av that whenever ‖u‖ > (1− ‖A−1‖)−1maxx,y∈K ‖A
−1(x− y)‖ then

‖v‖ < ‖u‖. It is then easy to check that if u ∈ Z
n belongs to the nucleus, then

‖u‖ ≤ 1− ‖A−1‖
−1
maxx,y∈K ‖A

−1(x− y)‖, thus nucleus is a finite set. Remove every

edge in N whose label is not in X ×D, and replace every label (a, b) by a. We get

some finite graph ND whose edges are labeled by elements of X.

Theorem 12. The Lebesgue measure of the self-affine set T is equal

λ(T ) =
∑

v∈ND

µ(Fv),

where Fv is the set of left-infinite sequences that label the paths in ND that end in the

vertex v.

Proof. Consider the map Ψ : K−ω × Z
n → R

n given by the rule

Ψ(. . . x2x1 · v) = v + A−1x1 + A−2x2 + . . . ,

where xi ∈ K and v ∈ Z
n. Since Z

n = E + A(Zn) the map Ψ is onto. Two elements

ξ = (. . . x2x1, v) and ζ = (. . . y2y1, u) for xi, yi ∈ K and v, u ∈ Z
n represent the same

point Ψ(ξ) = Ψ(ζ) in R
n if and only if there is a finite subset B ⊂ Z

n and a sequence

{vm}m≥1 ∈ B such that there exists the path

vm
(xm,ym)
−−−−−→ vm−1

(xm−1,ym−1)
−−−−−−−→ . . .

(x2,y2)
−−−−→ v1

(x1,y1)
−−−−→ u− v (4.5)

in the graph Γ for every m ≥ 1. Indeed, this path implies that

vm+xm+Axm−1+ . . .+Am−1x1+Amv = ym+Aym−1+ . . .+Am−1y1+Amu. (4.6)

Applying A−m and using the facts that A−1 is contracting and the sequence {vm}m≥1

attains a finite number of values, we get the equality Ψ(ξ) = Ψ(ζ). For the converse,
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we choose vm such that (4.6) holds, and using equality Ψ(ξ) = Ψ(ζ) we get that

{vm}m≥1 attains a finite number of values. Notice that since the set B is assumed

finite, every element vm lies either on a cycle or there is a directed path from a cycle

to vm. In particular, all elements vm should belong to the nucleus N , and we have

that the elements ξ and ζ represent the same point in R
n if and only if there exists a

left-infinite path in N labeled by (. . . x2x1, . . . y2y1) and ending in u− v.

Take the restriction Φ : X−ω × Z
n → R

n of the map Ψ on the subset X−ω × Z
n.

The push-forward of the product measure µ and the counting measure on Z
n under

Φ is the Lebesgue measure on R
n by Proposition 11. Hence to find the Lebesgue

measure of the self-affine set T it is sufficient to find the measure of its preimage in

X−ω × Z
n. However, T is equal to Ψ(D−ω × 0), and hence the sequence (. . . x2x1, v)

for xi ∈ X and v ∈ Z
n represents a point in T if and only if there exists a left-infinite

path in the nucleus N , which ends in −v and is labeled by (. . . x2x1, . . . y2y1) for some

yi ∈ D. Hence

Φ−1(Ψ(D−ω × 0)) =
⋃

v∈ND

(Fv,−v), (4.7)

and the statement follows.
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CHAPTER V

CONCLUSIONS

In this dissertation we study possible applications of measure theory in the theory

of automata and groups generated by automata. Below we outline major results.

The first part of the dissertation is devoted to the action of finite automata on

Bernoulli measures, that are not necessarily uniform. The results are contained in

Chapter III and are published in [Kra10]. We establish that the result depend on the

structure of the automaton. Namely, if the automaton is of polynomial growth, which

is equivalent to the fact that in its Moore diagram no point belongs to two different

cycles, then image of the Bernoulli measure is absolutely continuous to the measure

itself. We are also able to write the Radon-Nikodim derivative of the image.

Theorem 13. For an automorphism g of polynomial growth and Bernoulli measure

µ, the push-forward g∗µ is absolutely continuous with respect to µ and

dg∗µ

dµ
=

∑

v∈Vmax

µ(g−1(vX∞))

µ(vX∞)
χvX∞ .

On the other hand, if the automaton is strongly connected, that is, in its Moore

diagram each two states are connected by a path, then we prove that if it is moreover

invertible, it maps a nonuniform Bernoulli measure to a sigular one. This is connected

to an earlier result of Ryabinin in [Rya86], which calculates the frequency of 1 in the

output sequnce of the automata on the binary alphabet. We generalize this result to

arbitrary alphabet.

Theorem 14. Let g be a strongly connected tree endomorphism, w ∈ X∞. Let µ be

the Bernoulli measure with the probability of y equal to p(y) for y ∈ X. Then the

frequency of x in the sequence g(w) exists and is the same for almost all w with respect
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to µ and this frequency is equal to
∑

s∈S(
∑

y∈X χi(λ(s, y))p(y))q(s), where S is the

set of restrictions of g and q(s) are the stationary probabilities for the ergodic Markov

chain on S, ζn+1 = π(ζn, wn) defined by the transition probabilities
∑

z:π(s,z)=t p(z).

Using theorem 14 we prove

Theorem 15. Suppose that the nontrivial tree automorphism g is strongly connected.

If there is i such that p(x) 6= 1/d, then µ and the image measure g∗µ are singular.

The second part of this dissertation is devoted to introduction of measure in

the setting of limit spaces of contracting self-similar groups defined by Nekrashevych

in [Nek05]. The results, which are contained in Chapter IV are published in [BK].

We start by establishing some measure theoretical properties of labeled graphs. In

particular we prove that if there are no vertices with several outgoing edges labeled by

the same letter, then the measure of the left-infinite sequences read along the paths

of the graph, is integer.

Theorem 16. Let Γ = (V,E) be a finite right-resolving graph. Then

µp(Γ) = min
w∈X−ω

|V (w)| = min
w∈X∗

|V (w)|.

In particular, the measure µp(Γ) is integer.

The limit space XG of a self-similar group is defined as factor of a product of the

set of left-infinite sequences X−ω and group G. Therefore, we define the measure on

the limit space XG as a push-down of the product of the Bernoulli measure on X−ω

and countable measure on G. We prove that the measure we get depends only on the

virtual endomorphism.

Theorem 17. Let φ : H → G be a virtual endomorphism of the group G. Let (G,X∗)

and (G, Y ∗) be the contracting self-similar actions defined respectively by the triples
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(φ, T, C) and (φ, T ′, C ′). Then the homeomorphism α : X(G,X∗) −→ X(G,Y ∗) from

Theorem 6 preserves measure, i.e.

µ(G,Y ∗)(α(A)) = µ(G,X∗)(A)

for any Borel set A.

There is a subset T of the limit space XG, which is called the tile and which is

defined as an image ofX−ω×{1}. Nekrashevych in [Nek05] studied various topological

properties of tiles. We compute its measure, using the result above about labeled

graphs, which we apply to the nucleus N of the self-similar contracting group G.

Theorem 18. The measure µ(T) is equal to the measure number meas(ΓN ) of the

nucleus, in particular it is always integer.

It is well known that when the self-similar group G is free abelian of finite rank,

then its limit space JG can be identified with R
n. In this case, there is Lebesgue

measure on defined on it, along with the measure we introduced above. We prove

that these two measures are equal.

Proposition 12. The push-forward Φ∗µ of the measure µ on the limit G-space XZn

is the Lebesgue measure θ on R
n.

We also establish several facts concerning measure on the limit space JG of a self-

similar group G. In particular we prove that JG considered as a dynamical system is

conjugate to the one-sided Bernoulli shift.

Theorem 19. (JG, s,m) is conjugate to the one-sided Bernoulli |X|-shift.
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