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ABSTRACT 

 

Estimating Canopy Fuel Parameters with In-Situ and Remote 

Sensing Data. (December 2010) 

Muge Mutlu, B.A., Cukurova University, Turkey; 

     M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Sorin C. Popescu 

 

Crown fires, the fastest spreading of all forest fires, can occur in any forest type 

throughout the United States and the world. The occurrence of crown fires has become 

increasingly frequent and severe in recent years.  The overall aim of this study is to 

estimate the forest canopy fuel parameters including crown base height (CBH) and 

crown bulk density (CBD), and to investigate the potential of using airborne lidar data in 

east Texas. The specific objectives are to: (1) propose allometric estimators of CBD and 

CBH and compare the results of using those estimators to those produced by the 

CrownMass/FMAPlus software at tree and stand levels for 50 loblolly pine plots in 

eastern Texas, (2) develop a methodology for using airborne light detection and ranging 

(lidar) to estimate CBD and CBH canopy fuel parameters and to simulate fire behavior 

using estimated forest canopy parameters as FARSITE inputs, and (3) investigate the use 

of spaceborne ICEsat /GLAS (Ice, Cloud, and Land Elevation Satellite/Geoscience Laser 

Altimeter System) lidar for estimating canopy fuel parameters. According to our results 

from the first study, the calculated average CBD values, across all 50 plots, were 0.18 



 iv

kg/m³  and  0.07 kg/m³,  respectively, for the allometric equation proposed herein and 

the CrownMass program. Lorey’s mean height approach was used in this study to 

calculate CBH at plot level. The average height values of CBH obtained from Lorey’s 

height approach was 10.6 m and from the CrownMass program was 9.1 m. The results 

obtained for the two methods are relatively close to each other; with the estimate of CBH 

being 1.16 times larger than the CrownMass value. According to the results from the 

second study, the CBD and CBH were successfully predicted using airborne lidar data 

with R² values of 0.748 and 0.976, respectively.  The third study demonstrated that 

canopy fuel parameters can be successfully estimated using GLAS waveform data; an R² 

value of 0.84 was obtained. With these approaches, we are providing practical methods 

for quantifying these parameters and making them directly available to fire managers. 

The accuracy of these parameters is very important for realistic predictions of wildfire 

initiation and growth.  
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CHAPTER I 

INTRODUCTION  

 

The occurrence of wildland fires is an essential part of the natural cycle of the 

ecosystem (Johnson, 1992). Without fire, ecosystems may turn into a major disturbance 

mechanism (Pyne et al., 1996). A fire clears out a great deal of vegetation, leaving 

behind burned and/or partially burned areas. On the surface this can appear to be a loss, 

but it actually provides a new habitat for young and different plants to grow (Omi, 2005; 

Pyne et al., 1996). Over time, certain fire adapted species and fire dependent 

relationships develop. A fire dependent species is one that has adapted to fire so much 

that it requires fire to complete an essential part of its life cycle. In some species such as 

Picea mariana, E. regnans, E. diversicolor, and P. banksiana, seeds are stored in tree 

crown, called serotiny (Lamont et al., 1991). Fires actually help these seeds by releasing 

them into recruitment environment and dropping their seeds and reduce the competition. 

If fires do not recur frequently enough, some species may disappear (Pyne, et al., 1996). 

Wildland fires, though an integral part of nature, can also create a societal 

problem. They affect forest structures in different ways such as altering vegetation 

composition, increasing soil erosion, heating stream water, modifying the hydrological 

cycle, and endangering human lives and properties in large areas of wildland/urban 

interface (Agee & Skinner, 2005; Chuvieco, 1999). All fire behavior properties are 

strongly related to fuel characteristics, weather, and topography information for instance 

________________ 
This dissertation follows the style of Remote Sensing of Environment. 
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 digital elevation model, slope, and aspect (Mutlu et al., 2008b). Fire behavior is used to 

describe the reaction of the fire to fuel, topography, weather, direction, and the pattern of 

fire spread (DeBano et al., 1998). Vegetation types can be grouped into fuel types based 

on similar potential fire behavior (Riano et al., 2002). Since forest structure is related to 

fire behavior, fire risk and behavior depends on the quantity of biomass, the vertical and 

horizontal structure of the canopy, and live and dead biomass portion. 

           Fuel distribution is a critical factor for predicting fire behavior. Fuel is any living 

or dead organic combustible material including grass, leaves, ground litter, and shrubs 

and trees that can ignite and burn. A fuel type is an identifiable organization of fuel 

elements of plant species, form, size, arrangement, or other fuel elements that will cause 

a predictable rate of fire spread (Pyne et al., 1996). Forest fuels are classified as ground, 

surface, and crown fuels.  Ground fuels are defined as all burnable materials below the 

surface litter such as organic soils, duff, tree or shrub roots, rotten buried logs, peat, and 

sawdust, which usually support a glowing combustion without flame (Scott & Reinhardt, 

2001).  Ground fuels are characterized by higher bulk density than surface and canopy 

fuels. Surface fuels are described as surface litter on the soil surface. This includes 

needles, leaves, grass, twigs, bark, cones, dead and down branch wood and logs, shrubs, 

low brush, and short trees available to burn. Crown fuels, also called aerial, are 

described as all burnable materials, e.g., live and dead foliage, lichen, live and dead 

brachwood, that are located in the upper forest canopy and separated from the ground by 

more than six feet (Chuvieco & Congalton, 1989). They have higher moisture content 

and lower bulk density than surface fuels. When fuels are arranged uniformly and 
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continuously, fire will travel uniformly, but canopy structure is highly heterogeneous 

and causes fires to spread along combustible paths (Pyne et al., 1996; Riano et al., 2002). 

             The accurate prediction of the potential risk of a wildland fire can help reduce 

the seriousness of wildland fires. There are three general types of wildland fires 

recognized by fire scientists and managers. A ground fire burns in ground fuels, 

underneath the surface litter of the forest floor. Ground fires spread within the organic 

layer and are characterized by a slowly smoldering edge with no flame and very little 

smoke because of the compactness of ground fuels. These types of fires are difficult to 

detect and control (DeBano et al., 1998). Ground fires may follow surface fires that may 

cause much of the initial spread. A surface fire occurs in the surface fuel layer and 

surface fire behavior varies widely depending on the nature of the surface fuel complex. 

A surface fire may turn into the crown fire depending on the surface fuels and crown 

characteristics. Crown fires result, when surface fires have created enough energy to 

preheat and combust live crown fuels (Agee & Skinner, 2005). Crown fires advance 

from top to top of trees or shrubs and spread through the overstory (Pyne et al., 1996; 

Cohen et al., 2006) They are the fastest spreading of all forest fires, more difficult to 

control, and their effects are more lasting than surface fires (Rothermel, 1983). Decision-

making tools for canopy fuel management practices are based on the relationships 

between crown fire behavior, surface fire behavior, and canopy fuel structure. Recent 

advances in lidar technology and applications research have demonstrated the ability of 

lidar data to accurately map crown fuels in test areas (Hyyppa et al., 2000; Riano et al., 

2004; Andersen et al., 2005; Hyde et al., 2005). 
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Forest managers must consider the vertical distribution of fuels when evaluating 

the potential risk associated with a crown fire.  According to Van Wagner (1977) there 

are three types of crown fires: passive, active, and independent.  A passive crown fire, 

also known as a torching fire, occurs when the surface flame spreads to the canopy and 

flaming in the canopy can be maintained only for short periods (Scott & Reinhardt, 

2001; Van Wagner, 1977). Active crown fires, known as continuous crown fires, spread 

by torching and are continual based on the density of the forest canopy fuels. This type 

of fire depends on heat from the surface fuels for constant spread (Agee & Skinner, 

2005). An independent crown fire is one that continues to burn in canopy fuels without 

requiring heat from surface fire; but it requires steep slope, strong windspeed, and low 

moisture (Scott & Reinhardt, 2001).  

There is a strong interest in the use of recent advances in high spectral resolution 

remotely sensed imagery in forest fuel inventories. Applications of various remote 

sensing systems and techniques to forest fire related research have been rapidly 

increasing in recent years. These techniques and systems can be used to decrease fire 

risk and reduce fire damage (Mutlu et al., 2008a; Andersen et al., 2005; Arroyo et al., 

2008; Mutlu et al., 2008b). A number of studies have used multispectral remote sensing 

data to map fuels (Wulf et al., 1990; Salas & Chuvieco, 1995; Castro & Chuvieco, 1998; 

Maselli et al., 2000; Mutlu et al., 2008a). However, there are limitations in using these 

optical images (i.e. Landsat, SPOT, QuickBird, IKONOS, etc.) including their inability 

to penetrate forest canopies (Keane et al., 2000; Arroyo et al., 2008) and to detect 

surface fuels when more than two canopies are present. Also, reflectance from the 
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surface is not related to vegetation height. Lidar pulses can penetrate into a canopy and 

can be used to infer the height fuel elements. 

Airborne lidar remote sensing is an advanced technology for forestry 

applications. It provides useful information about the three-dimensional structure of 

forests, which makes it a valuable tool for the mapping of wildland fires (Means et al., 

2000). Lidar sensors are active remote sensing tools that measure properties of scattered 

light to find range and/or other information about an object (Popescu et al., 2004). 

Airborne lidar directly measures the three-dimensional distribution of tree canopies and 

allows accurate and efficient estimation of canopy fuel characteristics over large areas of 

forests (Andersen et al., 2005; Nelson et al., 2003; Popescu et al., 2002). In recent years, 

lidar remote sensing techniques have been applied to estimate surface fuel models and 

canopy fuel parameters (Mutlu et al., 2008a; Arroyo et al., 2008; Dubayah & Drake, 

2000; Riano et al., 2003; Andersen et al., 2005; Hall et al., 2005; Morsdorf et al., 2004; 

Popescu & Zhao, 2008). The Geoscience Laser Altimeter System (GLAS) on the Ice, 

Cloud and land Elevation satellite (ICESat) is the first spaceborne lidar tool. This system 

was designed to measure and monitor ice sheet mass balance, cloud and aerosol heights, 

surface elevation changes, and vegetation characteristics (Zwally et al., 2002; Sun et al., 

2008; Nelson et al., 2009; Simard et al., 2008). The ICESat/GLAS has become more 

popular and used in various forest studies such as deriving forest characteristics, forest 

biomass estimation, and forest structure analysis (Drake et al., 2002; Popescu, 2007).  

Spaceborne lidar waveform data were used to obtain digital elevation information 

(DEM), and canopy base height (CBH).  
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Objectives 

This study has three main objectives: 

(1) provide canopy bulk density (CBD) and canopy base height (CBH) estimators for 

a loblolly pine dominated area in Huntsville, TX, at the plot level using both 

allometric equations and the CrownMass/FMAPlus software,  

(2) develop a methodology for assessing and mapping CBD and CBH with lidar 

derived metrics at multiple spatial resolutions for loblolly pine dominated areas, 

and  

(3) investigate the use of spaceborne ICEsat /GLAS lidar data for characterizing 

forest canopy fuel parameters in eastern Texas. 

 

Dissertation Organization 

         The dissertation consists of six chapters. An introduction to the dissertation is 

presented here in Chapter I. Chapter II contains a literature review. Chapter III presents 

a methodology for estimating CBD and CBH specifically for loblolly pine dominated 

areas plot level using both allometric equations and CrownMass/FMAPlus software. 

Chapter IV presents a methodology for estimating CBH and CBD using airborne lidar 

data for loblolly pine trees in eastern Texas and simulation results of FARSITE. Chapter 

V presents a methodology for investigating the use of spaceborne ICEsat /GLAS lidar 

data to derive CBH. Conclusions of the study are presented in Chapter VI. In this 

dissertation, chapters III, IV, and V are organized as individual manuscripts. 
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  CHAPTER II 

    LITERATURE REVIEW 

 

Previous studies have shown that airborne lidar remote sensing technology can 

be used to estimate a variety of forest inventory parameters, including aboveground 

biomass, stem volume, stand height, basal area, mean diameter at breast height (dbh), 

stem density, canopy bulk density (CBD), canopy cover, and canopy base height (CBH) 

(Means et al., 2000; Lefsky et al., 2002; Maclean & Krabill, 1986; Means et al., 1999; 

Nelson et al., 1984; Popescu, 2007). Some studies have also shown the ability to 

transform lidar measurements to approximate canopy height and the vertical 

distributions of foliage density (Carreiras et al., 2006; Means et al., 1999). Estimates of 

CBD and CBH are necessary spatial data inputs for fire simulation software such as 

FARSITE (Finney, 1995). These two canopy fuel parameters have been estimated by 

many researchers through allometric equations and/or remote sensing technology. 

A lidar study in Norway developed an approach to estimate Lorey’s mean height, 

crown lengths, and heights to crown base for plots in a spruce-pine forest using height 

quantile estimators (Naesset & Okland, 2002). The average space of laser pulses was 

ranged from 0.66 m to 1.29 m. The canopy metrics obtained from the laser pulses were 

used in their regression analysis using ground truth values.  Riano et al. (2004) study 

presented a methodology for estimating crown fuel parameters at individual tree and plot 

levels in an intensively managed, homogeneous Scots pine forest with little understory. 

They used the equations developed in the Riano et al. (2003) to derive these two canopy 
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fuel parameters. Then, they assessed the ability of using lidar data to estimate CBD and 

CBH.  Andersen et al. (2005) presented and evaluated an approach for estimating critical 

canopy fuel metrics; including canopy fuel weight, CBD, CBH, and canopy height, 

using high density, multiple-return lidar data collected over a Pacific Northwest conifer 

forest. A cross-validation procedure was used to assess the reliability of these models. 

They used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) 

method to estimate canopy fuel parameters.  Falkowski et al. (2005) evaluated the 

accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and 

Reflection (ASTER) radiometer satellite sensor and gradient modeling for mapping fuel 

layers for fire behavior modeling with FARSITE and FlamMap. They created the 

surface fuels map using a classification tree based on three gradient layers: cover type, 

potential vegetation type, and structural stage. Single band reflectance values (green, 

red, and near-infrared (NIR)) and vegetation indices (NDVI, GRVI and SR) were used 

as predictor variables in their regression analysis. Model coefficients were extracted 

from the best model for each response variable and used to create the final crown closure 

and crown bulk density layers.  

Lefsky et al. (2005) focused on statistical relationships between two multivariate 

datasets containing lidar measurements of canopy structure and field measurements of 

stand structure. They transformed SLICER waveforms into four canopy structure classes 

to analyze the relationship between the canopy and stand structure. Then, Canonical 

Correlation Analysis was used to create correlated axes pairs from the canopy and stand 

structure. Each pair of axes was examined using their correlations with the original stand 
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and canopy indices.  In a study by Popescu and Zhao (2008), airborne lidar data were 

used to assess CBH for individual trees in east Texas. They used TreeVaw, a lidar 

software application developed by Popescu et al. (2003), to position individual trees and 

to obtain each tree’s height and crown width measurements. By using linear regression 

models, they were able to explain approximately 80% of the variability related with 

individual trees’ canopy base height. Taylor et al. (1998) assessed temporal changes in 

crown fire hazard at the landscape scale by noting the change in relative frequency of 

different types of crown fire in different time periods.  Skowronski et al. (2007) 

measured canopy height using the first return profiling lidar portable airborne laser 

system (PALS), obtained intensive biometric measurements in plots, and used Forest 

Inventory and Analysis (FIA) data to characterize forest structure and ladder fuels in the 

New Jersey Pinelands, USA. Height percentiles at different height intervals above the 

ground were predicted from the airborne lidar datasets. The arithmetic and quadratic 

mean of both all first lidar returns and all first returns from the canopy (>3 m and >4 m) 

were analyzed to detect the presence/absence of ladder fuels using a profiling lidar. They 

estimated understory cover in different height classes (1-4 m) and generated a fuel 

loading map for their area. They concluded that different lidar height classes generated 

in their study can be used to detect ladder fuels and to evaluate fuel reduction treatments. 

Jia et al. (2006) focused on estimating forest canopy cover, separating ponderosa pine 

and Douglas-fir, and assessing the burn severity of two recent fires using remote sensing 

data.  
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In a study by Naesset and Gobakken (2008), airborne lidar data was used to 

estimate above and below ground biomass in young and mature coniferous forest in 

Norway. Canopy height and density were estimated and used as independent variables in 

their regression analysis. They used four different airborne lidar data sets obtained from 

four different laser scanners to obtain all forest parameters necessary to predict biomass 

in their study. Height percentiles, mean and maximum height values, coefficients of 

variation in heights, and canopy density at different height intervals above the ground 

were also predicted from the four different airborne lidar datasets.  

In recent years, ICESat/GLAS has been used in a number of forestry studies. 

GLAS data has proven to have strong correlation with field-based aboveground biomass 

and canopy height measurements in extensive forests (Boudreau et al., 2008; Sun et al., 

2008). Lefsky et al. (2005) used ICESat/GLAS data to estimate maximum stand height 

and aboveground biomass in three forested ecosystems located in Brazil, and two states 

in the USA, Tennessee and Oregon. Ranson et al. (2004) used GLAS waveform data to 

identify and examine forest disturbance, fire, and forest stands damaged by insects in 

central Siberia. They compared GLAS waveforms for damaged and undamaged forest 

stands and found that crown structure information can be derived from GLAS data. 

Duong et al. (2006) used ICESat/GLAS waveform data for land cover classification in 

the Netherlands. Nelson et al. (2009) used GLAS waveform and MODerate resolution 

Imaging Spectrometer (MODIS) data to assess Siberian timber volume in south-central 

Siberia. They attributed a MODIS land cover map with timber volume estimates 

obtained from GLAS data, and then compared the timber volume estimates to ground 
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based estimates in their area. Based on their results, the GLAS/MODIS estimate was 

77.38×109 m3, a difference of less than 1.1%. 

Some studies used a nominal elliptical shape of GLAS footprint.  Popescu et al. 

(in review) compared estimated total aboveground biomass and canopy height metrics 

derived from both GLAS waveform and airborne lidar data. Instead of using circular 

shape, they used an elliptical shape of GLAS footprints to extract height metrics and 

biomass estimates from airborne lidar data in their study. Their results demonstrate that 

GLAS waveform data can be used to accurately assess aboveground biomass in eastern 

Texas. Pang et al. (2008) and Neuenschwander et al. (2008) estimate stand height 

metrics from both GLAS waveforms and airborne lidar data also using the nominal 

shape of GLAS footprints and then compared the results. Sun et al. (2008) used GLAS 

data along with LVIS data (Laser Vegetation Imaging Sensor) to model vertical 

structure of characteristics of the forests in Maryland, USA. Based on their results, 

GLAS waveform data can be used to estimate vertical structure of the stand.  Simard et 

al. (2008) focused on how to use ICESat/GLAS to estimate the extent, height, and 

biomass of the mangrove forests in Colombia using SRTM (Shuttle Radar Topography 

Mission) elevation data, ICEsat/GLAS waveforms, and field data. In a study by 

Boudreau et al. (2008), the combination of ICESat/GLAS waveform data and airborne 

lidar data was used to predict regional aboveground dry biomass in forests in Quebec at 

a very large spatial scale. They compared their aboveground biomass estimates with 

those obtained from other biomass estimations that are available from previous studies 

and found a high correlation. 
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Airborne lidar data have also been used for mapping the spatial distribution of 

forest surface fuels, and canopy fuel parameters (Mutlu et al., 2008a; Popescu & Zhao, 

2008). Such maps are required inputs for fire simulation software such as FlamMap, 

FARSITE, and NEXUS. Fire managers around the world use FARSITE software 

(Finney, 1994; Keane et al., 1998). There are few published studies that use fire 

behavior models to evaluate potential fire behavior in a given landscape (Finney, 1995; 

Stephens, 1997; Faiella, 2005; Stratton, 2004).  Stephens (1997) used FARSITE to 

spatially simulate fire growth and behavior in a mixed-conifer forest in California and to 

investigate silvicultural and fuel treatments affect on potential fire behavior in that 

forest. Mutlu et al. (2008a) fused lidar and multispectral Quickbird data to produce 

surface fuel model maps, one of the key inputs in FARSITE. Mutlu et al. (2008b) used 

these results to create two different datasets, one obtained from lidar data alone and the 

other one obtained from different sources. These datasets were used as inputs into 

FARSITE. Keane et al. (2000) combined both gradient modeling and remote sensing to 

map fuels spatial data layer required by FARSITE to spatially model fire behavior on the 

Gila National Forest, New Mexico. Miller and Yool (2002) evaluated the sensitivity of 

FARSITE to the level of detail in the fuels data, both spatially and quantitatively, which 

provided land managers knowledge about the effectiveness of detailed fuels mapping in 

modeling fire spread. In their study, two surface fuel maps were generated using two 

different scales, fine and coarse. They ran FARSITE and found that fine scale fuel maps 

produce statistically smaller fire areas. 
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Several researchers (Stephens, 1997; Agee et al., 2000; Fule et al., 2001) 

assessed fire hazard and the effectiveness of fuel treatments on crown fire potential. 

Scott and Reinhardt (2001) focused on assessing surface and crown fire behavior models 

and transitioned between them using Van Wagner’s crown fire transition criteria in a 

forest stand. Russel and McBride (2003) sampled various vegetation types throughout 

seven sites using a chronosequence of remote sensing images in order to detect change 

over time. They also estimated changes in fuel and fire hazard through field sampling 

and by using the FARSITE software. They assessed the average rate of spread, flame 

length, and fire-line intensity for each of the vegetation types in their study area.  

Mbow et al. (2004) described the use of spectral indices and simulation of 

savanna burning to assess the risk of intensive fire propagation in a national park in 

West Africa. They developed a simple remote sensing based algorithm to detect fire risk 

areas and their corresponding risk levels. In their study, the FARSITE fire simulation 

software was used to address the fire risk assessment issue in their area. Mitsopoulos 

and Dimitrakopoulos (2007) derived canopy fuels for Aleppo pine stands and simulated 

crown fire behavior using different understory fuel types in Greece. Stratton (2004) 

presented a methodology for assessing the effectiveness of landscape fuel treatments on 

fire growth and behavior in southern Utah. He used FARSITE and FlamMap to model 

pre- and post-treatment effects on fire growth, spotting, and fireline intensity.  

Some studies estimated crown foliage and branch biomass at tree-level using 

allometric equations (e.g. Brown 1978; Riano et al., 2003; Fule et al., 2004). Roccaforte 

et al. (2008) estimated canopy fuel parameters (CBH and CBD) and analyzed stand 
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characteristics for the untreated, densely treated areas, and treated stands in the Mount 

Trumbull, Arizona, USA forest to evaluate fire risk and the effectiveness of fuel 

treatments on crown fire. The CBD values were computed as the available canopy fuel 

load divided by canopy volume using equations from Fule et al. (2001), Brown (1978), 

and Cruz et al. (2003).  The CBH values were calculated using regression equations for 

ponderosa pine trees in Grand Canyon, Arizona, USA.  Then, they used their estimates 

of CBD and CBH as inputs into FlamMap and NEXUS fire behavior and hazard 

assessment systems to estimate and compare results of potential fire behavior. Several 

species-specific studies predict foliar and branch biomass from tree dimensions.  

Brown (1978) developed predictive equations for ponderosa pine stands in the 

northern Rocky Mountains. His results have been widely applied to estimate canopy fuel 

weight and density (Keane et al., 2000; Pollet & Omi 2002; Raccoforte et al., 2008).  

Snell and Brown (1980) provide similar algorithms for Pacific Northwest conifers. 

Whittaker and Woodwell (1968) studied the distribution of biomass within individual 

pine trees. Foresters and ecologists commonly use their study.  Using data from the 

USDA Forest Service’s Forest Inventory and Analysis (FIA) database, Cruz et al. (2003) 

developed equations for crown fuel load (CFL), CBD, and CBH, for different vegetation 

types in the western U.S. The crown fire spread rate was modeled using non-linear 

regression analysis in their study.  

Baldwin and Peterson (1997) developed a model to predict the crown shape of 

loblolly pine trees in stands and developed species-specific equations for loblolly pine 

trees in Louisiana, USA. Their system of equations includes models for the crown 
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height, volume, surface area, and maximum crown radius. Hall and Burke’s (2006) 

study focused on analyzing the effects and sensitivity of assumptions made for CBH and 

CBD using data from the Colorado Front Range, USA. They also focused on the role of 

crown shape information in the calculations of CBD and CBH and found that these two 

variables are very sensitive to crown shape. Fahnestock (1970) developed a heuristic key 

to crowning potential rate based largely on canopy closure, crown density, and the 

presence or absence of ladder fuels at tree level. Kilgore and Sando (1975) showed a 

decrease in crown fire potential following prescribed burning in a giant sequoia/mixed-

conifer forest by comparing canopy fuel weight, crown volume ratio, mean height to 

canopy base, and the vertical profile of canopy fuel packing ratio before and after a 

prescribed fire.  

This current study builds on and extends the research efforts described above by 

integrating airborne lidar and space borne IceSat/GLAS data to estimate canopy fuel 

parameters using wall-to-wall lidar-derived CBD and CBH maps. Species-specific 

equations for foliage biomass and crown volume are rarely developed and used to 

predict CBD.  We employed a unique approach to model CBD and CBH for loblolly 

pine stands in eastern Texas and compared estimates obtained from those models to 

those of CrownMass, a program often used to predict canopy fuel parameters. The 

results of these two methods were used as ground reference data when estimating both 

CBD and CBH from airborne lidar data. Our study is unique because it is the first study 

that models CBH from ICESat/GLAS waveform data using a wall-to-wall canopy fuel 

map obtained from airborne lidar data. In addition, we developed all of the spatial data 
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layers required by FARSITE including, fuel model map, canopy cover, DEM, slope, 

aspect, CBD, canopy height model (CHM), and CBH using airborne lidar data and 

simulated crown fire behavior in eastern Texas. Many fire managers do not have a 

surface fuel model map, CBD, and CBH data layers and as far as I am aware, there is no 

published study that runs FARSITE to simulate crown fires in Texas.  
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 CHAPTER III 

ESTIMATING CANOPY FUEL PARAMETERS FOR LOBLLOLY PINE 

TREES USING FIELD DATA 

 

Introduction 

In recent years, the number of crown fires has significantly increased, 

threatening life, property, and natural resources in the United States (Falkowski et al., 

2005). Wildland crown fires are one of the most important and prevalent type of 

disasters because of their potential environmental impacts (Pyne et al., 1996). Fire 

managers and foresters use the term “crown” to refer to the branches and foliage of 

individual trees, and the term “canopy” refers to the aggregation of crowns at the stand 

level (Scott & Reinhardt, 2001).  

Canopy fuels are defined as all burnable materials, which include live and dead 

foliage, lichen, and redundant stem and branchwood located in the upper forest canopy 

(Chuvieco & Congalton, 1989). Canopy fuels are important inputs for fire behavior 

models that predict crown fire behavior and spread (Scott & Reinhardt, 2001). 

Therefore, fire managers need more precise spatially explicit information about the fuels 

they manage. Canopy bulk density (CBD) and canopy base height (CBH) are the two 

main canopy fuel parameters (illustrated in Fig. 3.1) needed to predict crown fire spread 

(Van Wagner, 1977; Finney, 1998; Van Wagner, 1993).  CBD is defined as the density 

of available canopy fuels, i.e. a measure of the amount of fuel contained per unit of 

canopy volume (Scott & Reinhardt, 2001; Hall & Burke, 2006). The CBD is a bulk 
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density of the whole stand, not a bulk density of an individual tree. CBH is defined as 

the vertical distance between the surface and live canopy fuel layer (Cruz et al., 2003; 

Kilgore & Sando, 1975; McAlpine & Hobbs, 1994; Van Wagner, 1977).  

 

 

Fig. 3. 1. Two main canopy fuel parameters, CBD and CBH. 

 

The CBD and CBH are important inputs for crown fire simulation models such 

as NEXUS and FARSITE (Finney, 1998). Assumptions are made when calculating CBD 

in regards to crown shape and the vertical distribution of foliage and/or branchwood 

within the tree crown. Of CBD and CBH, CBD is the most important canopy fuel 

parameter because active crown fires burn the entire surface-canopy fuel complex (Hall 

& Burke, 2006). However, CBH is also important since it may carry a surface fire to the 

crown.  
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In practice, CBD has never been directly measured in the field. One common 

way to estimate CBD is to divide an estimate of foliage biomass by an estimate of the 

canopy volume (Riano et al., 2003). This equation was used as a basis for creating a 

more specific and effective formula to estimate CBD canopy fuel for loblolly pines in 

this study. Some studies only estimated foliage biomass (i.e. Riano et al., 2003; Ranson 

et al., 1997) and ignored the branchwood component when estimating CBD. However, 

the branchwood component significantly contributes to crown fires to crown fire 

initiation and spread and therefore needs to be included in the estimation of available 

canopy foliage biomass (Jenkins et al., 2003). They collected all the available regression 

equations (over 2,500) in the literature and developed national scale total aboveground 

and component biomass regression equations for tree species in the USA. They 

developed estimators for five tree components: total aboveground, foliage, coarse roots, 

merchantable stem wood, and bark.  In our study, the total aboveground and foliage 

biomass equations for loblolly pine trees were used. The foliage biomass equation 

includes both foliage and branchwood tree components. The ratio of foliage biomass to 

crown volume has been widely used by many researchers; however, the type of species 

has been ignored.  

The CBD and CBH have been modeled for various species using allometric 

equations to predict crown fire behavior and spread for different regions of the U.S.  

However, none of those studies used species-specific equations for calculating crown 

volume and foliage biomass when calculating CBD at stand level. Species type plays an 

important role in calculating the CBD canopy fuel parameter (Baldwin & Peterson, 
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1997; Brown, 1978).  Crown shape is an important determinant of crown volume 

(Baldwin & Peterson, 1997). Crown shape varies by species, if follows that species-

specific CBD models should improve the prediction of CBD. There is a need to 

accurately predict the crown shape for specific species. Many studies use an assumption 

for crown shape and crown volume equations accordingly (i.e., Hall and Burke, 2006; 

Riano et al., 2003; Monserud & Marshal, 1999; Andersen et al., 2005). These 

assumptions tend to result in the over estimation of crown volume, because they include 

the space occupied by the canopy fuels (foliated) and the space not occupied by the 

canopy fuels (non-foliated) in the tree crown (Fig. 3.2a). In this study, using the 

equations from Baldwin and Peterson (1997), crown volume for loblolly pines was 

estimated by considering only the space occupied by the canopy fuels (Fig. 3.2b). 

 

         

(a) (b) 

Fig. 3.2.  (a) Crown volume considering both non-foliated and foliated area, (b) 
crown volume considering only foliated area.  
  



 

 

21

Unlike tree crown base height (CrBH), CBH is a complex stand-level variable 

that is not easily measured in the field (Van Wagner, 1993). One of the assumptions 

made when estimating CBH is that the canopy biomass is distributed uniformly within 

the canopy stand, which is unlikely even in stands with simple structures (Scott & 

Reinhardt, 2001). These assumptions can lead poorly defined CBH and CBD (Sando & 

Wick, 1972; Hall & Burke, 2006). Neither the lowest crown base height in a stand nor 

the arithmetic average of crown base height is likely to be representative of the stand as 

a whole. Therefore, Lorey’s mean height was used in this study to calculate CBH. This 

method weights the contribution of trees to the stand height by their basal area by 

allowing the bigger trees to contribute more to the mean (Philip, 2002). The key in 

defining CBH for the purpose of modeling fire behavior is, for a given stand, to choose 

that height at which a fire is likely to move from the surface to the canopy and then to be 

carried by the canopy. These depend on many factors including fire intensity and wind 

speed. Fire has a spatial component so it is unlikely that the best choice is the lowest 

CBH as the occurrence of fire under that particular tree is less likely than it is under 

other trees in the stand. It is also unlikely to be the arithmetic average of the CBH.  

The overall objective of this chapter was to estimate CBD and CBH for loblolly 

pines, at the plot level using both allometric equations and CrownMass/FMAPlus 

software. The CrownMass/FMAPlus software is most commonly prograsm used by fire 

managers to estimate CBD and CBH.   
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The allometric equation results were compared with those of CrownMass outputs for 

validation. An additional objective was to produce a canopy fuels map for the 

Huntsville, Texas region since no such map was available for use by fire managers. 

 

Materials and Methods 

Study Area 

The study area is located in eastern Texas near Huntsville, covering about 47.15 

km² (approximately 4800-ha) and contains part of the Sam Houston National Forest. 

Vegetation in the study area comprises upland, bottomland hardwoods, coniferous, old 

growth pine stands, mixed stands, brushes, upland and bottomland hardwoods, and open 

ground with fuels consisting of grasses. The study area is flat with average elevation is 

about 90 m.  Fig. 3.3 represents the high-resolution (2.5 m x 2.5 m) multispectral 

QuickBird image of the study area. Yellow marks on the image illustrate the locations of 

field plots within the study area.  
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Fig. 3. 3. Map of Texas and a QuickBird image indicating the location of the study area, 
with field plot locations. 

 
 

Processing Approach 

The overall steps of this study are illustrated in Fig.3.4.   
 

 
 

Fig. 3.4.  The flowchart for steps used in this study. 
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Field Data Collection 

Field data were collected from 50 plots between May 2004 and July 2004. 

Ground reconnaissance was used to identify the potential plot locations in Huntsville, 

Texas. Plot locations were determined by specialists from the Texas Forest Service 

taking into account: (1) ease of access to each plot; (2) land ownership (private or 

federal); and (3) covering a variety of vegetation cover types.  Circular plots of two 

different sizes, a radius of 11.35 m (37.24 ft) covering a 404.7 m² (1/10th acre) and a 

smaller plot size of 40.468 m² (1/100-acre) with a radius of 3.59 m (11.78ft), were used 

in this study. The smaller plot size was used in the young unthinned loblolly pine 

plantations. The plot center coordinates were recorded with a GeoExplorerXT and were 

differentially corrected with Trimble’s Pathfinder software. Inside of each plot 

boundary, the following parameters were measured for each tree: diameter at breast 

height (dbh), total tree height, crown base height, and crown class.  In order to map each 

tree’s location, distance (m) and azimuth from center of the plot were measured, starting 

from north and progressing clockwise. A Haglöf Vertex III hypsometer was used to 

measure total tree height and crown base height. Crown base height was measured as the 

distance from ground to the first live branch or whorl. A diameter tape was used to 

determine each tree’s dbh. The Kraft system was used to classify each tree’s crown: 

dominant, co-dominant, intermediate, and suppressed (Mutlu et al., 2008a). Using a 

hemispherical (fisheye) lens, canopy cover was recorded with upward- looking 

photographs taken from the center point.  Table 3.1 provides general descriptions of the 

50 plots. 
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Table 3.1 
Descriptions of 50 plots in our study area. 
 
  DBH (cm) CBH (m) TH (m) % basal area 
Plot# Size #Trees Ave Min Max Ave Min Max Ave Min Max Pine HW 
H_1 1\10 24 16.2 2.3 25.9 8.4 0.9 11.9 12.2 1.5 17.9 0.99 0.01 
H_2 1\10 25 15.8 3.0 29.2 7.7 1.4 12.0 11.7 1.8 19.4 0.96 0.04 
H_3 1\10 35 13.1 2.8 23.9 7.2 0.3 13.1 10.8 0.9 18.4 0.97 0.03 
H_4 1\10 29 14.2 3.3 28.4 5.5 0.4 11.4 11.2 1.4 17.4 0.97 0.03 
H_5 1\10 27 13.7 4.3 41.1 5.7 0.9 10.9 11.1 5.0 19.3 0.79 0.21 
H_6 1\10 38 15.7 3.6 47.8 6.4 2.0 12.2 10.7 3.9 20.8 0.95 0.05 
H_7 1\100 11 11.8 3.0 18.8 4.7 1.6 5.8 9.8 3.6 14.1 0.97 0.03 
H_8 1\100 4 3.4 2.5 4.3 0.2 0.2 0.5 2.2 2.1 2.4 0.75 0.25 
H_9 1\100 4 2.6 1.8 3.0 0.2 0.2 0.2 2.1 2.0 2.2 100.00 0.00 
H_13 1\100 8 13.7 4.3 24.9 6.8 3.5 11.6 10.8 5.4 15.8 0.93 0.07 
H_14 1\10 9 13.7 6.6 19.1 7.3 5.7 9.3 10.8 8.8 13.1 0.94 0.06 
H_15 1\10 32 17.6 4.8 38.9 9.1 4.0 16.0 14.6 5.1 27.3 0.86 0.14 
H_16 1\10 22 17.0 6.1 32.3 8.1 2.3 17.2 13.5 2.9 27.1 0.49 0.51 
H_17 1\10 35 17.9 4.3 66.0 7.1 1.4 21.1 12.7 2.7 37.1 0.85 0.15 
H_18 1\100 9 13.9 6.4 16.3 6.0 4.2 7.1 10.7 7.7 12.0 0.55 0.45 
H_19 1\10 25 19.8 7.1 48.3 8.5 3.2 17.8 14.0 6.0 26.6 0.33 0.67 
H_21 1\10 13 31.3 11.4 39.9 16.5 3.1 21.5 25.2 11.5 29.5 0.94 0.06 
H_22 1\10 8 34.1 12.7 78.5 13.3 8.8 19.3 23.5 16.8 32.5 100.00 0.00 
H_23 1\10 8 29.5 9.4 64.3 11.9 4.5 21.5 20.6 8.2 31.1 100.00 0.00 
H_24 1\10 25 27.9 5.8 65.8 9.3 3.1 25.9 16.8 7.3 37.5 0.73 0.27 
H_25 1\10 11 13.2 3.8 29.7 7.6 2.5 11.2 12.2 4.6 17.8 0.73 0.27 
H_26 1\10 43 15.0 4.3 33.5 9.3 3.5 14.2 13.5 4.6 22.2 0.94 0.06 
H_29 1\10 7 36.3 13.7 58.2 9.5 2.9 13.3 19.6 6.7 27.5 100.00 0.00 
H_30 1\10 5 51.6 29.2 72.9 11.5 2.7 17.5 24.9 15.0 28.6 0.89 0.11 
H_31 1\10 13 50.1 36.8 72.6 16.4 5.5 23.4 32.8 24.9 37.2 0.75 0.25 
L_1 1\100 10 8.5 3.3 17.5 4.3 2.4 7.6 6.4 4.6 10.7 0.97 0.03 
L_2 1\100 5 11.9 4.1 17.8 6.6 2.7 10.7 10.0 3.4 15.5 0.85 0.15 
L_3 1\100 11 14.8 6.9 38.1 7.8 2.2 10.9 12.4 6.6 19.8 100.00 0.00 
L_4 1\100 10 13.7 7.6 21.1 9.5 2.3 12.2 13.8 10.7 16.5 0.95 0.05 
L_5 1\10 41 14.9 5.1 51.6 7.0 1.5 16.8 10.6 1.5 22.9 0.66 0.34 
L_6 1\10 33 16.9 5.8 72.4 6.0 1.8 18.3 12.2 6.1 33.5 0.45 0.55 
L_7 1\100 7 5.1 4.1 6.4 0.3 0.3 0.3 2.6 2.6 2.6 100.00 0.00 
L_8 1\100 3 3.6 2.8 4.6 0.3 0.3 0.3 2.6 2.4 2.7 100.00 0.00 
L_9 1\100 4 4.1 2.8 5.1 0.3 0.3 0.3 2.3 2.1 2.6 100.00 0.00 
L_12 1\10 39 19.8 10.9 31.8 9.8 2.1 12.2 13.6 9.1 16.8 0.91 0.09 
L_13 1\10 6 41.8 36.1 49.3 14.9 11.3 17.0 22.5 22.1 23.1 100.00 0.00 
L_14 1\10 23 22.3 15.5 27.2 11.5 9.6 14.8 18.5 15.1 20.4 100.00 0.00 
L_15 1\10 16 21.5 5.6 37.8 9.2 2.7 11.0 16.2 7.1 18.6 0.99 0.01 
L_16 1\100 6 12.7 5.8 16.0 3.0 1.9 5.1 8.0 5.7 9.3 100.00 0.00 
L_17 1\100 11 10.9 5.1 16.0 2.9 1.1 4.7 8.2 4.8 9.3 0.95 0.05 
L_21 1\10 57 19.5 6.9 28.7 11.3 4.3 13.9 16.2 5.3 19.0 100.00 0.00 
L_22 1\100 5 20.3 14.0 27.9 12.0 10.3 13.1 18.1 14.9 19.7 100.00 0.00 
L_23 1\100 6 16.9 9.7 20.8 10.7 6.9 12.3 14.9 7.6 17.2 100.00 0.00 
L_25 1\100 5 15.6 6.4 24.4 8.1 6.4 9.2 14.1 9.8 17.4 0.90 0.10 
L_26 1\100 3 18.7 16.0 20.8 7.8 6.8 8.3 15.6 15.4 15.7 100.00 0.00 
L_27 1\10 13 27.3 7.6 61.0 10.0 2.1 19.8 19.7 7.2 32.7 0.84 0.16 
L_28 1\10 11 27.3 4.6 44.7 6.7 1.5 13.7 14.3 3.7 22.3 100.00 0.00 
L_29 1\10 12 24.8 10.4 43.2 9.5 3.0 15.1 17.0 9.1 22.3 100.00 0.00 
L_30 1\10 8 27.8 11.7 45.7 9.1 3.7 20.0 17.9 6.9 30.1 0.81 0.19 
L_31 1\10 38 19.4 6.4 45.7 8.4 2.3 20.2 15.3 4.6 30.1 0.86 0.14 
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Estimation of CBD and CBH Fuel Parameters 

The CBD and CBH on all 50 plots located in the study area were estimated from 

a set of allometric equations and the CrownMass program in the FMAPlus software 

(FMAPlus3, 2003).  

 

Estimating Canopy Fuels Using Allometric Equations  

Crown bulk density (CrBD) is defined as the available biomass of the crown per 

unit volume of crown space (Reinhart et al., 2006; Cruz et al., 2003). CrBD was 

calculated by dividing predicted forest foliage biomass by predicted crown volume for 

loblolly pines (Riano et al., 2003) as follows:              

    

                3 ( )FB kgCrBD
CV m

                                                                   (1) 

 

where FB and CV are the tree’s foliage biomass and crown volume, respectively. 

Jenkins et al. (2003) developed equations for predicting total aboveground 

biomass (equation 2) and foliage biomass (equation 3) for loblolly pine trees. The dbh 

was used in all the equations to estimate aboveground and tree component biomass. 

Their foliage biomass equation includes both foliage and branchwood components. 

 

                       0 1( ln( )Bm exp dbh                                                                 (2) 
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where Bm is total aboveground biomass (kg) for trees 2.5 dbh and larger, dbh is 

diameter at breast height (cm), Exp is exponential function, β₀ is set to -2.5356, and β₁ is 

set to 2.4349. 

                               

                             1
0

 (   )FBratio Exp
dbh


                                                                     (3) 

 

where FBratio is foliage biomass ratio to total aboveground biomass for trees 2.5 cm 

dbh and larger, β₀ is equal to -2.9584, and β₁ is equal to 4.4766. 

As mentioned before, crown shape is the key to calculating crown volume. 

Baldwin and Peterson (1997) developed a crown model that considers both inner and 

outer shapes to predict the crown shape of loblolly pine forests, shown in Fig. 3.2. This 

is noteworthy because the inner shape was not accounted in previous studies. In their 

study, they assumed that the profile is a simple balanced vertical cross sectional that 

involves outer and inner profile functions. A second degree polynomial was used to 

model outer profile and the crown tip was set to zero. A straight line model was used for 

inner defoliated cone-shaped area of the tree. Using their models and equations, 

maximum crown radius and its height, crown volume, and crown surface area can be 

determined. Their model can approximate a cone-shape crown. The crown volume 

equation they developed specifically for loblolly pine trees is given by:  

 

         
32

2 2 32
1 1 2 1 1 2

4

  [3 5   4 ln 2 2 ]
3 3

bbCRVOL FL b b b b b b
b

                           (4) 
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The quantities b1 through b4 are defined by sub-models. 

  

b1 = -4.5121 + 0.5176DBH + 4.3529R, 

b2 = 4.4749 – 0.0175A – 0.4985DBH – 6.0414R, 

b3 = 0.0168DBH + 0.0155FL, and  

b4 = -0.0233dbh, 

 

where A, R, and FL are the tree’s are, crown ratio, and foliated crown length, 

respectively. 

In equation 4, foliated crown length (FL) was calculated as total tree height 

minus crown base height obtained from the field data. Crown ratio was calculated as the 

ratio of crown length to total tree length. Site index and height information are needed to 

determine the age of a tree (A), necessary for equation 4. Stukey (2009) developed 

equation (5) to determine the age for the loblolly pine trees in our study area at base age 

25. 

 

                                                       
( 0.453  )

0.441 e
TH SI

SIA
  

                                                       (5) 

 

where TH is tree height and SI is site index.  

Site index is described as the average height of the dominant and co-dominant 

trees on the site at a given base age (Avery and Burkhart, 1987). Site index for our study 

area was obtained from Soil Survey Geographic (SSURGO) data. The study area has site 
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indices of 15.2 m (50 ft), 21.3 m (70 ft), 24.4 m (80 ft), 25.6 m (84 ft), and 27.4 m (90 

ft) at 25 years.   

By applying the equation (1), we obtained only CrBD at tree level not the CBD 

at stand level. From now on, CBD estimated from allometric equations is named as 

CBDAL. The CBDAL was calculated as: 

 

                                   FBCBD
CV




                                                                  (6) 

 

Lorey’s mean height, also called weighted mean height approach, was used to 

calculate CBH in this study. This is a commonly used method in the US. In our study, 

tree’s CrBH value was multiplied by tree basal area for all trees within the plot 

boundaries, and then divided by the basal area of stand (equation 7). This method 

weights the contribution of trees to the stand height by their basal area by allowing the 

bigger trees to contribute more to the mean (Philip, 2002). Because of the silvicultural 

treatments, e.g. thinning from below, harvesting smaller trees, and mortality of trees, 

Lorey’s mean approach is more stable than unweighted (arithmetic) mean approach 

(Brack, 1999).  From now on, CBH estimated from Lorey’s mean height equation is 

named as CBHLH. 

 

                                 ( )BA CrBHCBH
BA

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where CBHLH is canopy base height estimated using Lorey’s mean height eqaution at 

plot level, CrBH is crown base height at individual tree level, and BA stands for basal 

area.  

 

Estimating CBD and CBH Using CrownMass Program  

For comparative purposes CBD and CBH were also calculated using the 

CrownMass program within FMAPlus software (FMAPlus3, 2003). CrownMass is 

based on the work of Beukema et al. (1999), Rothermel (1972), Andrews (1986), and 

Finney (1998). The program accepts and processes overstory data and estimates the fire 

behavior and fire effects. Required inputs are tree diameter at breast height, tree height, 

tree crown ratio and tree structural stage.  Based on the tree list data, the software 

determines the canopy fuel loading for the needle and the 1-hour timelag live/dead fuel 

categories. The program assumes that the distribution of crown loading is vertically 

uniform within the canopy. Each tree is divided into one-foot (0.3048 m) vertical 

segments from the tree’s crown base height to the tree’s total height by the program 

(FMAPlus, 2003). The loading for each foot segment is calculated by summing the 

loading contributions to that segment from all trees within the stand. A running mean of 

these values is calculated and the maximum running mean value is used by this software 

as CBD (FMAPlus, 2003). The CBH is determined by CrownMass as the lowest 

segment where the running mean segment bulk density is greater than the minimum 

crown bulk density, 0.0111 kg/m³ (33 lbs/acre/foot).  We will refer to the CrownMass 

estimators of CBD and CBH as CBDCM and CBHCM, respectively.  
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Results and Discussion 

The allometric equations always produced higher values for average CBD (Fig. 

3.5) and CBH (Fig. 3.6).  The comparison of calculated general statistics for canopy fuel 

parameters is presented in Table 3.2.  

 

Table 3.2  
General statistics for computed CBD and CBH (Min, minimum value; Max, maximum 
value; Ave, average; St. Dev., standard deviation). 
 

 

 

The CBD values calculated using the allometric equations method varied 

between 0.03 kg/m³ (min) and 0.47 kg/m³ (max) with an average of 0.18 kg/m³. In 

comparison, CBD values obtained from the CrownMass program ranged between 0.006 

kg/m³ (min) and 0.18 kg/m³ (max) with an average of 0.07 kg/m³. The average 

difference between the two methods is 0.11 kg/m³ and using allometric equations results 

in a value approximately 2.5 times greater than the value estimated by the CrownMass 

program. The CBD estimates from our method exceeded CrownMass program estimates 

by 157%. In our study, CV was calculated by considering only the space occupied by 

the canopy fuels and therefore generated results with higher CBD values over the entire 

study area. In previous studies, crown volume was over estimated by considering both 

space occupied and space not occupied by the canopy fuels in the tree crown (Keane et 

 CBD (kg/m3) CBH (m) 
 CBDAL CBDCM CBHLH CBHCM 

Min/Max 0.03/0.47 0.006/0.18 0.1/24.3 0.21/23.1 
Ave/St.Dev. 0.18/0.10 0.07/0.05 10.6/5.1 9.1/4.9 
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al., 2000; Cruz et al., 2003; Riano et al., 2003).  However, in this study crown volume 

was calculated considering only the space occupied by the canopy fuels and the shape of 

the loblolly pine tree crowns. Therefore, comparatively low crown volume values were 

obtained. Further, dividing the foliage biomass by a smaller crown volume resulted in 

higher CBD values. Therefore, if space not occupied by the canopy fuels were included 

in our calculations, CBD values would be closer to the results of the CrownMass 

program.  

The recent study by Roccaforte et al. (2008) compared three different methods of 

calculating the CBD canopy fuel parameter for three different years over the same study 

area: 1870, 1996-97, and 2003. The CBD parameter used in this study is described by 

Brown (1978), Fule et al. (2001), and Cruz et al. (2003). Roccaforte et al. (2008) 

concluded that for the same dataset and area, average CBD for given areas in 1870 was 

0.01 kg/m³ from Fule et al. (2001), 0.02 kg/m³ from Brown (1978), 0.03 kg/m³ from 

Cruz et al. (2003). In addition to the results from 1870, the following CBD values were 

obtained in 1996-97: 0.05 kg/m³ from Fule et al. (2001), 0.12 kg/m³ from Brown (1978), 

and 0.23 kg/m³ from Cruz et al. (2003). Finally, in 2003, CBD was 0.05 kg/m³ from Fule 

et al. (2001), 0.13 kg/m³ from Brown (1978), and 0.22 kg/m³ from Cruz et al. (2003).  

As a result of Roccaforte et al. (2008) study, all the CBD results were not similar at all. 

Brown (1978)’s estimates exceeded Fule et al. (2001)’s estimates by 184–268% and 

Cruz et al. (2003)’s estimates exceeded Fule et al. (2001)’s estimates by 153–491%. For 

the same area and the same dataset, Scott (2008) ran two different canopy fuel 

calculation software, FuelCalc and FMAPlus, respectively.  The differences between 
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these two softwares were larger than they expected. Based on their conclusion, 

FMAPlus is over-predicting the canopy fuels compared to FuelCalc software. As a 

result, there is apparently no substantial difference between the results from our method 

and the CrownMass program. Therefore, CBD values obtained from allometric 

equations do not seem unreasonably high. The distribution of average CBD values 

obtained from two different methods is presented in Fig. 3.5 in this study.  

 

 

Fig. 3.5. Distribution of the average CBD values for loblolly pine forests. 

 

The height values of CBH obtained from Lorey’s weighted height varied 

between 0.1 m (min) and 24.3 m (max) with an average height of 10.6 m. The height 

values of CBH obtained from the CrownMass program varied between 0.21 m and 23.1 

m with an average height of 9.1 m. For CBH, Lorey’s weighted height estimates 
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exceeded CrownMass program estimates by 16%. Lorey’s mean height approach is one 

of the most accurate ways of calculating CBH without using any program, because the 

average height and/or the lowest crown base height will not represent the stand as a 

whole. The average height results obtained from two different methods are quite close to 

each other and our estimation is 1.16 times more than that estimated by the CrownMass 

program. The distribution of average CBH values obtained from two different methods 

is presented in Fig.3.6 in this study.  

 

  

Fig. 3.6. Distribution of the average CBH values for loblolly pine forests. 
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Conclusions 

When a wildfire burns out of control, the size of the losses can be almost 

inestimable. Improving the accuracy of mapping fuel loads is essential for fuel 

management decisions and for explicit fire behavior prediction for real-time support of 

suppression tactics and logistics decisions. Fire managers need more accurate fire 

behavior predictions, and benefits can be gained from improving key canopy fuel 

parameters such as canopy height, canopy bulk density, and canopy base height (Pyne et 

al., 1996). 

The objective of this study was to improve and incorporate suitable allometric 

equations to estimate CBH and CBD canopy fuel parameters at stand level, specifically 

for loblolly pine plantations. The CrownMass program was also used to estimate the 

same parameters as those produced from our calculations.  In this way, we were able to 

assess our results. The results of this study show that our approach has great potential for 

becoming a standard method for estimating CBD and CBH canopy fuel parameters  for 

loblolly pine trees in eastern Texas. Our values compared reasonably well with the 

CrownMass program estimates and yet highlight the differences due to adopted 

definitions of biomass and crown volume. The CBD results showed the effect of 

including the branchwood tree component in defining foliage biomass because foliage 

and branchwood account for the majority of CBD estimates. Furthermore, these 

components are considered the primary fuels for crown fires (Keane et. al., 2005). Our 

results also highlights that consideration of crown shape is an important aspect when 

defining crown volume and CBD, a key canopy fuel parameter.  
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A digital elevation model, slope, aspect, surface fuel map, CBH, and CBD are 

required to run FARSITE. Many fire managers do not have the surface fuel map, canopy 

bulk density, or canopy base height data layers.  Instead, they are required to use very 

coarse estimates of these inputs. There has been no reliable, accurate, and simple method 

for estimating these parameters and thereby providing high quality input for FARSITE 

crown fire modeling. The same problem exists with regards to inputs for other fire 

simulation software packages such as BehavePlus and FlamMap. It is imperative that 

these datasets be delivered in formats suitable for input to fire simulation systems used 

by fire managers. In addition, satellite remote sensing technology has been proven to 

estimate forest inventory data over large areas (Riano et al., 2003; Ranson et al., 1997). 

Previously, the estimation of canopy fuel parameters and the generation of canopy fuel 

maps from remote sensing required ground inventory data. Estimators CBDAL and 

CBHLM can be used as ground inventory data to estimates these parameters from remote 

sensing technology and then spatial explicit maps can be easily generated.  

This study also highlights that canopy fuel parameters, CBD and CBH, can be 

easily derived using allometric equations. There is no published study on calculating 

CBD for this area. Fire managers can use our approach for loblolly pine trees in eastern 

Texas and they do not need to purchase any software such as FuelCal and/or 

CrownMass to derive these parameters.  
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CHAPTER IV 

ESTIMATING CANOPY BULK DENSITY AND CANOPY BASE HEIGHT 

FUEL PARAMETERS USING AIRBORNE LIDAR DATA 

 
 

Introduction 

Due to the increase of crown fires in the United States, crown fire behavior is an 

important consideration in fuel assessment for fire managers (Allen et al., 2002; 

Westerling et al., 2002).  The accurate prediction of the potential risk of a crown fire is 

necessary for fire management activities and it may reduce the seriousness of crown 

fires (Pyne et al., 1996).  All fire behavior properties are strongly related to fuel 

distribution (Mutlu et al., 2008b; Riano et al., 2003).  Therefore, there is a need to 

characterize crown fuel parameters, such as canopy bulk density (CBD), canopy height, 

canopy volume, and canopy base height (CBH), for crown fire behavior.  This chapter 

presents methods for deriving CBD, defined as the density of available canopy fuels 

(Cruz et al., 2003; Scott & Reinhardt, 2001; Hall & Burke, 2006), and CBH, defined as 

the vertical distance between the ground surface and live canopy fuel layer (Cruz et al., 

2003; Kilgore & Sando, 1975; McAlpine & Hobbs, 1994; Van Wagner, 1977), using 

airborne lidar remote sensing technology. 

Airborne lidar sensors are high resolution active remote sensing tools that use 

lasers to measure the distance between the sensor and an object (Wagner et al., 2004).  

These systems distribute thousands of laser pulses per second and measure the return 

time needed for each pulse sent from the sensor to reach the ground and reflect back to 
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the sensor (Naesset & Gobakken, 2005; Popescu, 2007).  Lidar technology provides 

useful information on the three-dimensional structure of canopy surface and vegetation 

parameters, such as tree height, stem density, crown dimensions, volume, and biomass 

(Naesset & Okland, 2002; Nelson et al., 2003; Popescu et al., 2004).  Aboveground 

biomass, foliage biomass, and crown volume are the main parameters required to derive 

CBD.  Studies have shown that lidar can be used to derive these parameters for extended 

areas (Lefsky et al., 1999; Means et al., 1999; Popescu, 2007; Nelson et al., 2003).  

Applications of airborne lidar remote sensing for forest fire applications over large areas 

have been rapidly increasing in recent years, which have effectively improved estimates 

of canopy fuel metrics for wildfire behavior modeling (Popescu & Zhao, 2008).  

Therefore, lidar is a very valuable tool for the prevention, detection and mapping of 

wildland crown fires (Andersen et al., 2005; Means et al., 2000).  This technology can 

be used for fire risk management to decrease crown fire risk and to reduce fire damage.  

In addition, airborne lidar datasets are becoming increasingly available and are less 

expensive than in the past.  Thus, lidar is gaining popularity as a tool for natural resource 

management.   

Previous studies have shown that airborne lidar remote sensing can be used to 

measure canopy structure to predict important aspects of stand structure which include 

aboveground biomass, mean diameter at breast height (dbh), stem density, stem volume, 

basal area, canopy cover, and CBH (Lefsky et al., 2002; Maclean & Krabill, 1986; 

Means et al., 1999; Nelson et al., 1984; Popescu & Zhao, 2008).  These techniques also 

have been used for mapping the spatial distribution of forest surface fuels and canopy 
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fuel parameters (Mutlu et al., 2008a; Popescu & Zhao, 2008).  Some studies also have 

shown the ability to transform lidar measurements to approximate common field 

measured parameters, including canopy cover, stand height, and vertical distributions of 

foliage density (Carreiras et al., 2006; Means et al., 1999).  Airborne lidar is particularly 

valuable for measuring CBD because it can provide information about biomass, crown 

length, tree crown, tree height, and volume ( Hyyppa et al., 2000; Lefsky et al., 2001; 

Popescu & Zhao, 2008).  The CBD is an important canopy fuel parameter because 

programs such as FARSITE (Fire Area Simulator) use a threshold value of CBD for 

achieving and sustaining an active crown fire. The CBH layer is also important for 

determining the probability of fire transition from ground surface to tree crown. 

FARSITE is the most commonly used decision-support system tool for wildfire 

modeling by fire managers all over the world.  FARSITE requires a variety of inputs that 

can be derived from lidar data including elevation, slope and aspect, fuel model, canopy 

cover, tree height, CBH, and CBD, in addition to other inputs, such as temperature, wind 

direction, and wind speed (Finney, 1998).  

Field measurement techniques are not standardized and consistently applied to 

assess the forest fuels, complicating the efforts to model fire behavior at the landscape 

scale.  There is a need for a standardized and efficient approach for measuring crown 

fuels in forest stands that exhibit a wide variety of structural characteristics.  Several key 

spatial data layers are required by FARSITE and they are often difficult to derive.  These 

layers include: surface fuel model, canopy cover, CBD, and CBH.  Crown fire data 

inputs are difficult to create; therefore, they are presented as “optional” in the FARSITE 
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software.  Many fire managers do not have these important data layers and they are 

required to use very coarse estimates of these inputs or generalized assumptions.  We 

employ a unique approach to derive these spatial data layers from airborne lidar data.  

There has been no reliable, accurate, and simple method for estimating these parameters 

and providing high quality inputs for FARSITE crown fire modeling.  Some studies 

derived only CBD and CBH canopy fuel parameters (i.e., Cruz et al., 2003; Riano et al., 

2003; Fule et al., 2004), but could not generate the maps needed for fire simulation 

software.  Even though they derived these parameters, they did not have the other two 

key inputs required for FARSITE, which are canopy cover and surface fuel model maps. 

We derived these two inputs in our previous study, Mutlu et al. (2008a). None of the 

studies have developed all these important data layers for the same study area and run 

FARSITE to simulate the fire behavior.  In contrast with other studies, our study group 

has developed all these spatial inputs with high accuracy maps for forested areas in 

Texas, and simulated fire growth and behavior.  It is necessary to deliver these datasets 

to fire managers in formats suitable for use with fire simulation systems.   

The overall aim of this chapter is to estimate the two critical forest canopy fuel 

parameters including CBH and CBD using airborne lidar data for loblolly pine trees in 

east Texas.  More specific objectives were: (1) to develop a methodology for assessing 

CBD and CBH with lidar derived metrics by investigating several processing 

approaches including lidar point cloud metrics, height bins, and lidar-multispectral data 

fusion; and (2) to map CBD and CBH from airborne lidar for the entire study area. 
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Materials and Methods 

Data 

Three types of data were used in this chapter: field data, a multispectral 

Quickbird image, and airborne lidar data.   

 

Field Data 

Field data, also called ground inventory data, is required to derive CBD and 

CBH from the airborne lidar data.  Field data collection and derivation of CBD and CBH 

were discussed in detail in Chapter III.  The validation of airborne lidar data to retrieve 

forest parameters has been widely tested using field data (Riano et al., 2003; Hyyppa et 

al., 2001; Means et al., 2000; Naesset, 1997).  In this study, field data were used to 

validate CBD and CBH canopy fuel parameters derived from airborne lidar data.   

 

Multispectral Image  

The multispectral Quickbird image used in this study (Fig. 4.1a) is a high 

resolution (2.5 x 2.5 m) satellite image in 2004.  The major physical parameters of the 

Quickbird satellite are that the spatial resolution of the panchromatic band is only 0.61 

m, and the spatial resolution of multispectral bands (blue, red, green, and Near infrared 

(NIR)) is only 2.44 m (DigitalGlobe, 2010).  The Charge-Coupled-Device (CCD) sensor 

of QuickBird has 5 channels: the black and white (panchromatic) channel gets the 

spectrum at 445-900 nm; the other four multispectral channels cover the blue spectrum 

at 450-520 nm, the green spectrum at 520-600 nm, the red spectrum at 630-690 nm 
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wavelength, and the near-infrared spectrum at 760-900 nm wavelength 

(http://www.digitalglobe.com/index.php/85/QuickBird).    

 

Lidar Data 

Airborne lidar scanning data over an area of 6,474.9 hectare (25 square miles) 

was obtained in leaf-off condition during March 2004.  The lidar system (Leica-

Geosystems ALS40) recorded two returns per laser pulse, first and last.  The horizontal 

accuracy is 20-30 cm and vertical accuracy for the mission is 15 cm. To allow a good 

penetration of laser shots to the ground and to decrease effects of row direction on 

loblolly pine plantations, two different flight line directions were designed.  A total of 19 

flight lines were obtained from East to West and a total of 28 flight lines were obtained 

from North to South in LAS file format over the study area.  The average point density 

is 2.58 laser points/m² and the maximum point density is 39.84 laser points/m².  The 

average distance between laser points is 0.62 m for the entire point cloud.  Fig.  4.1b 

represents all 47 flight lines over the study area.    
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(a)       (b) 

Fig.  4.1.  (a) Quickbird image and (b) airborne lidar flight lines over Huntsville, TX. 

 

 Processing Approach 
 
The overall steps of this study are illustrated in Fig.4.2.   
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Field Data Lidar Data Multispectral Data

Lidar Point 
Could

Lidar Individual 
Trees

Height Bins 
Approach

Data
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Deriving Lidar Metrics 
- 30 m resolution

*Canopy Fuels: 
- CBD
- CBH

Deriving Lidar Metrics
- 20.12 m resolution
- 6.36 m resolution

Choose the Best Model

Map CBD and CBH

Run FARSITE

Regression Analysis

PCA Analysis

 
 

*Chapter III canopy fuel parameters (CBH and CBD) results were used as reference data 
** 20.12 m and 6.36 m are the grid sizes equivalent to a 404.7 m² and 40.47 m² plot sizes, respectively.  

 
Fig.4.2.  A flowchart of the processing approach.  

 
 
 

Height Bins Approach 
 

 The height bins approach was used to generate lidar multiband data from 

airborne scanning lidar data (Popescu and Zhao, 2008).  The height bins approach makes 

use of the entire lidar point cloud.   Lidar bins were created by counting the occurrence 

of the number of lidar points within each volume unit and normalizing by the total 

number of points.   The percentage of lidar hits can be obtained for any height interval.    

** 
** 
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A total of eleven lidar height bins were obtained and illustrated in Fig.  4.3.  The 

first four height bins are generated for 0.5 m height intervals to afford a better 

characterization of vegetation that defines surface fuels.  The other bins are spaced at: 

Bin 5: 2.0-5.0 m, Bin 6: 5.0-10.0 m, Bin 7: 10.0-15.0 m, Bin 8: 15.0-20.0 m, Bin 9: 

20.0-25.0 m, Bin 10: 25.0-30.0 m and the last bin is generated from laser hit above 30 m 

(Bin 11: >30.0 m).   All the height bins were used in this study to derive CBH and CBD 

canopy fuel parameters. 

 

 

Fig.  4.3.  Height bin images: (a) 0-0.5 m, (b) 0.5-1.0 m, (c) 1.0-1.5 m, (d) 1.5-2.0 m, (e) 
2.0-5.0 m, (f) 5.0-10.0 m, (g) 10.0-15.0 m, (h) 15.0-20.0 m, (i) 20.0-25.0 m, (j) 25.0-30.0  
m, and (k) >30.0 m. 
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Data Fusion and PCA Analysis 
 

In this study, we created a new image by stacking the four bands of the 

QuickBird image with all the lidar height bins (bin 1 through bin 11).  Data fusion deals 

with association, correlation, and combination of information and data from one or many 

sources (Llinas, 2002).   The range of values for the height bins bands and the Quickbird 

image are different.  The QuickBird data obtained from DigitalGlobe have 2048 possible 

intensity values for each pixel. Lidar height bins are the density of points at each height 

interval and ranged from zero to one.  Therefore, data spanning 2048 values are 

normalized and rescaled to 0 to 1 value to avoid any bias because of the scale 

differences.   

Principal Component Analysis (PCA) was applied to our stack image, which has 

fifteen bands.  ENVI 4.5 (ITT, Boulder, CO) was used for layer stacking and PCA 

transformation.  PCA is a statistical technique used to produce uncorrelated output 

bands, to segregate noise components, and to reduce the dimensionality of data sets by 

transforming a set of correlated variables into a new set of uncorrelated variables 

(Jensen, 2005).   Basically, original data is transformed into a new set of data which may 

better capture the essential information.  The PCA transformation is based on the 

variance and covariance of the data set (Jensen, 2005).  The variance is a measure of the 

scatter or spread within one variable of the data set, and the covariance is a measure of 

the scatter between two variables of a data set (Smith, 2002). PCA reduces the 

dimensionality of the data and keeps the most significant part of the data.   
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Eigenvalues, variance, and eigenvector were extracted for each principal 

component (PC).  Table 4.1 represents the percentage of total variance, eigenvalues, and 

cumulative variance explained by each PC.  Each eigenvector represents a principle 

component.  The first PC is defined as the eigenvector with the highest corresponding 

eigenvalue.  The individual eigenvalues indicate the variance, the higher the value the 

more variance they have captured. 

 
Table 4.1  
Calculated percentage of total variance, eigenvalues, and cumulative variance 
explained by each principal component. 
 

PCs Eigenvalue 
%of total 
variance cumulative 

PC1 0.124942 48.2299 0.482299 
PC2 0.040637 15.6866 0.639165 
PC3 0.032816 12.6676 0.765841 
PC4 0.020207 7.8003 0.843844 
PC5 0.01866 7.2031 0.915875 

 

  
 

 

We used the first five components, which account for approximately 92 % of the 

total variance, to derive CBD and CBH canopy fuel parameters.   Fig.  4.4 represents all 

the PCA components used in this study.  It can be concluded that the first five principal 

components can replace the original fifteen bands of the stack image, while reducing the 

size of the data set, redundancy, and noise.    
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Fig. 4.4.  The first five PCs: (a) PC 1, (b) PC 2, (c) PC 3, (d) PC 4, and (e) PC 5. 

 

Estimating Canopy Fuel Parameters  
 

We have a total of 50 plots with two different sizes: 33 of them are 404.7 m² 

(1/10th acre) and 17 of them are 40.47 m² (1/100th acre).  The smaller plot size was 

selected because the loblolly pine trees in unthinned plantations are uniform and the 
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40.47 m² (1/100th acre) size was enough to represent the stand. Measuring the same type 

of stand using 404.7 m² (1/10th acre) plot size is economically expensive and time 

consuming. Four processing approaches were used to derive CBD and CBH canopy fuel 

parameters. First, two different datasets were used to derive these canopy fuel 

parameters from the entire airborne lidar point cloud at two different map spatial 

resolutions: (1) at 30 meter resolution, (2) at a grid cell size with an area equal to the 

actual plot size.  Second, CBD and CBH were derived at plot level using an individual 

tree approach. Third, upper lidar height bins corresponding to the canopy were used to 

derive these canopy fuel metrics. Lastly, PCA components (data fusion) were used in 

this study. 

 

Lidar Point Cloud Approach 

Estimating Canopy Fuel Parameters at 30 Meter Resolution 

First, pixel size was set to 30 m resolution, which is larger than the actual plot 

size, to derive all lidar metrics to compensate for any GPS errors when locating ground 

plots.  Similar to studies of Naesset and Bjerknes (2001), Erdody and Moskal (2010), 

and Andersen et al. (2005), eight lidar metrics were derived from the lidar point cloud 

including: 25th, 50th (median), 75th, and 90th of height percentiles of laser pulses, 

maximum height, mean height, coefficient of variation (cv), and canopy density (D), 

calculated as the number of all returns above 2.5 m divided by the total number of all 

returns at 30 m.  In addition, logarithmic transformation was applied to our metrics.  The 

log transformation is used for normalizing the data, easier data visualization, and 
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correcting heteroscedasticity (Fox, 1997). This transformation also helps homogenize 

the variance over the sample data and equalizes the variance over the entire range of 

predicted y values (Sprugel, 1983). Including log-transformed metrics, we obtained a 

total of sixteen metrics at 30 m resolution. 

 

Estimating Canopy Fuel Parameters at Actual Plot Size 

In this step, canopy fuel parameters were derived at actual plot size. Same eight 

metrics derived at 30 m resolution were derived at 20.12 m (1/10th ac) and 6.36 m 

(1/100th ac) resolutions assuming plot center was accurately located at the center of the 

pixel.  Centered shapefiles were created in ArcMap 9.1 for each individual plot location: 

33 with 11.35 m radius for 1/10th acre plots and 17 with 3.59 m radius for 1/100 acre 

plots.  These plots were saved as ascii file format in order to open the point cloud of 

each plot in QTM (Quick Terrain Modeler) software.  A digital elevation model (DEM) 

was created using QTM to interpolate the raw lidar data and used as true ground height 

above the sea level.  Then, each plot point cloud was extracted from the total lidar point 

cloud using the “Clipping Panel” tool in QTM (Fig.  4.5) and saved as a text file for 

statistical analysis.  The R (R Development Core Team, 2005) statistical software 

package was used to derive all the metrics, except the D metric.  The QTM software was 

used to derive the D metric.  After applying the log transformation to these metrics, we 

also obtained a total of sixteen lidar metrics in this section.   
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 (a)   (b) 

 
Fig. 4.5. Two snapshots of the Plot# Hunt_6 (r =11.35 m) lidar point cloud from the 
QTM software from above (a) and a side (b), respectively. 

 

Estimating Canopy Fuel Parameters at Plot Level Using Trees Captured by TreeVaw 

In Chapter III, we used species-specific equations, adapted from Baldwin and 

Peterson (1997) and Jenkins et al. (2003), to derive CBD and Lorey’s mean height 

approach to derive CBH at plot level. Field measurement inputs were used into these 

allometrics equations in Chapter III.  Total tree height, crown ratio, foliage biomass, age, 

and crown length are necessary variables for our allometric equations to estimate crown 

bulk density (CrBD) at tree level and CBD at plot level.   

Airborne lidar can be used to estimate all these variables.  Instead of using field 

measured variables in these equations, we used variables derived from airborne lidar 

data using the studies of Popescu and Zhao (2008) and Stukey (2009).   Popescu and 

Zhao (2008) used TreeVaw (Tree Variable Window) developed by Popescu and Wynne 

(2004) to extract tree heights and crown diameters at individual tree level in our study 
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area.  Stukey (2009) used the results of Popescu and Zhao (2008) and Popescu (2007) to 

estimate dbh, CBH, and age of each individual pine tree for the same study area.  

Thousands of trees for the whole study area were identified by the TreeVaw software.  

The locations of plots and all the trees captured by TreeVaw were displayed in ArcGIS 

9.2.  Then, trees fallen in each plot boundaries were selected and a text file was created 

for further analysis.  Initially, we had 50 plots, but we only used 41 out of 50 plots.  

Nine of the 50 plots could not be used since there was no tree captured by TreeVaw 

software within the plot boundaries.  In addition, foliage biomass and crown length of 

each tree were estimated using dbh and total tree height data obtained from Popescu and 

Zhao (2008) and Stukey (2009), to calculate CrBD at individual tree levels and CBD at 

plot levels.   

 

Estimating Canopy Fuel Parameters from Lidar Height Bins and Data Fusion 

Approaches 

Seven upper lidar height bins (bin 5 through bin 11, Fig. 4.3) were used to derive 

CBD and CBH canopy fuel parameters.  The first four lidar height bins were not used 

since they represent the surface fuels (Mutlu et al., 2008a).  On each individual plot 

location, thirty-five metrics were derived using ENVI 4.5 software.  These metrics 

include maximum, minimum, mean, standard deviation (st), and coefficient of variance 

(cv) of the digital numbers of each lidar bin at plot level.  In addition, twenty-five 

metrics were derived from data fusion (first five PCA components) including: 

maximum, minimum, mean, st, and cv of the digital numbers of each PCA component at 
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plot level.  ENVI 4.5 software was used to derive all the metrics.  Then, all the results 

were saved in a text file for regression analysis. 

 

Statistical Analysis 

To estimate CBD and CBH canopy fuel parameters from airborne lidar data, 

multiple predictive models were developed in this study.  In our regression models, we 

used Chapter III’s results (CBDAL, CBDCM, CBHLH, and CBHCM) as field data, also 

called reference data.  Four different metric sets were used to obtain the best fitted 

regression models for canopy fuels and these metrics are summarized in Table 4.2: (1) a 

total of sixteen lidar point cloud metrics at 30 m resolution, the original eight lidar point 

cloud metrics and the same metrics transposed using a natural logarithmic 

transformation (Ln), named metrics-set-1, (2) a total of sixteen lidar point cloud metrics 

at actual plot size, the original eight lidar point cloud metrics and the same metrics 

transposed using a natural logarithmic transformation (Ln), named metrics-set-2, (3) 

thirty-five lidar upper bins metrics, named metrics-set-3, and (4) twenty-five data fusion 

PCA metrics, named metrics-set-4.   
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Table 4.2   
Definition of metric sets used in this study. 
 

Source Definition 

Metrics-set-1 sixteen lidar point cloud metrics at 30 m 

Metrics-set-2 sixteen lidar point cloud metrics at actual plot size 

Metrics-set-3 thirty-five lidar upper bins metrics 

Metrics-set-4 twenty-five data fusion PCA metrics 

 

 

Table 4.3 represents all the independent variables used in our regression analysis 

in this study. In this table, the subscript i for height bins metrics represents height bin 

numbers from 5 through 11 and the subscript i for data fusion metrics represents PCA 

band numbers 1 through 5, respectively. As mentioned before, log transformation was 

applied to all of lidar metrics.  Log transformations may introduce a systematic bias into 

the calculations; therefore, there is a need to calculate the correction factor to neutralize 

this bias.   
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We calculated the correction factor using the following equation from Sprugel 

(1983):  

 

Correction Factor = Exp(standard error of estimate)²/2 

 

The SPSS, Statistical Package for the Social Sciences, was used for all regression 

analyses in this study.  As discussed in detail in Chapter III, CBD and CBH canopy fuel 

parameters were derived using both allometric equations and a software called 

CrownMass.  In this chapter, results of these two methods were separately used as 

ground data to see which method’s result has better relationship with lidar derived 

metrics.  Stepwise regression was performed to find the best fitted model for the data at 

α = 0.05 for estimating CBD and CBH from airborne lidar.  The selected models were 

chosen based on several criteria: a good balance between a high coefficient of 

determination (R²) value, a low root mean square error (RMSE), no colinearity, and 

parsimony, which contains a limited number of independent variables.  Variance 

inflation tests were conducted for each selected model which is important for finding 

colinearity between independent variables if there is any.   
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Table 4.3  
All the metrics used in this study to derive CBD and CBH. 

 
Metrics Description 
Lidar point cloud metrics 
h_mean Mean height of point cloud 
h_max Max height of point cloud 
h_25 25th percentile height of point cloud 
h_50 50th percentile height of point cloud 
h_75 75th percentile height of point cloud 
h_90 90th percentile height of point cloud 
D Density 
variance(s) coefficient of variation of point cloud 
CBHLH CBH obtained from allometric equations 
CBHCM CBH obtained from CrownMass program 
Height Bins metrics 
Bini_min Lidar Height Bini: Minimum DN value of plot 
Bini_max Lidar Height Bini: Maximum DN value of plot 
Bini_mean Lidar Height Bini: Mean DN value of plot 
Bini_st Lidar Height Bini: Standard Deviation DN value of plot 
Bini_cv Lidar Height Bini: Variance DN value of plot 
Data Fusion metrics 
PCAi_min PCA Bandi: Minimum DN value of plot 
PCAi_max PCA Bandi: Maximum DN value of plot 
PCAi_mean PCA Bandi: Mean DN value of plot 
PCAi_st PCA Bandi: Standard Deviation DN value of plot 
PCAi_ cv PCA Bandi: Variance DN value of plot 
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Results and Discussion 
 

Table 4.4 and Table 4.5 represent the selected regression models with their R², 

adjusted R², p-values, and RMSE values for both CBH and CBD, respectively.  In these 

tables, ŷ  represents  reference  data  for  CBH  and  CBD  and  bias  correction  factors  are 

added to the end of each predicted model.   

As shown in Table 4.4, we obtained a total of eight best fitted regression models 

for CBH: two models from metrics-set-1 at 30 m spatial resolution; two models from 

metrics-set-2 at actual plot size; two best fitted models from metrics-set-3; and two best 

fitted models from metrics-set-4.  These regression models were developed with a 

significant level of 0.05.  All the predicted regression models provided good R² values, 

ranging from 0.662 to 0.976, and adjusted R² values, ranging from 0.647 to 0.973.  

However, only R² and adjusted R² values are not enough to select the best regression 

model. Therefore, all the selected models were plotted (Fig.  4.6a through Fig.  4.6h) to 

present the goodness-of-fit of the data to choose the best model for predicting CBH.   

Overall, when comparing the CBHLH and CBHCM regression models for each 

individual metrics sets, we can see that CBH obtained from allometric equations always 

provided the better fitted models based on the R² and adjusted R² values with all the 

metric sets (1 through 4).  The H90 was the main predictor due to its vertical location 

within the point cloud on all regression models obtained from lidar point cloud (metrics-

set-1 and -2).  Since H90 and CBH are related to canopy height it makes sense to have 

H90 as a main predictor.  The H90 and D were the two main predictors obtained from 

metrics-set-2 at actual plot size. These results are consistent with other research that 
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found D and H90 to be a main predictor in CBH (Li et al., 2008; Erdody and Moskal, 

2010; Andersen et al., 2005).  In addition, LnH50, LnH75, LnHmean, and Lncv were the 

other predictors used on regression models obtained from Metrics-set-1 and Metrics-set-

2 at both resolutions 30 m and actual plot size for estimating CBH.   

As mentioned before, height bins were created by counting the occurrence of the 

number of lidar points within each volume unit and normalizing by the total number of 

points.  Therefore, they are also considered as canopy density metrics.  As demonstrated 

in earlier studies such as Popescu and Zhao (2008) and Næsset (2004), the height bins 

approach can be used to derive independent variable for regression models to estimate 

canopy characteristics. Among all the thirty-five lidar upper bins predictors, Band6cv, 

Band7cv, Band8cv, and Band9mean were used as predictors to estimate CBH from metrics-

set-3.  The height values of CBH obtained from Lorey’s weighted height approach 

varied between 0.1 m (min) and 24.3 m (max) with an average height of 10.6 m.  The 

CBH value of a total of 24 plots is within 10 to 15 m interval (Band7), 14 plots are 

within 5 to 10 m interval (Band6), and 7 plot’s CBH values are in 15 to 20 m interval 

(Band9).  The coefficient of variation (cv) is the measure of dispersion of the data and 

also considering the total number of the plots fallen within each interval, we could 

expect these metrics to be included in our final fitted models.  
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Table 4.4   
Results of the CBH regression analysis. 
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Fig.  4.6.  Scatterplots of predicted CBH vs.  (a) CBHLH at 30 m resolution; (b) CBHCM 
at 30 m resolution; (c) CBHLH at actual plot size; (d) CBHCM at actual plot size; (e) 
CBHLH from Metrics-set-3; (f) CBHCM from Metrics-set-3; (g) CBHLH from Metrics-set-
4; (h) CBHCM from Metrics-set-4. In all figures, the solid line represents X=Y and the 
dashed line represents the data fit. 
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Among all the twenty five PCA predictors, PCA1max, PCA3mean, and PCA5mean 

were the key metrics used in the final fitted regression models for estimating CBH from 

all the metrics-set-4.  The PCA considers the total variance in the data. We also 

calculated factor loadings for each band and PCs to see which band was used to explain 

the most variance in the data. The term factor loading in PCA is the simple relationship 

between the factors and the variables.  Overall, upper lidar height bins explained the 

most of the variance in all PCs. The strongest relationship for PC1 was for height bins 9 

(20.0-25.0 m) and 11 (>30.0 m) (6.35837 and 0.37327, respectively; Table 4.5).  The 

PC3 has high factor loadings in lidar height bins 6 (5.0-10.0 m) and 9 (20.0-25.0 m), 

0.61003 and 0.40377, respectively.  The majority of the variance of PC5 was explained 

by lidar height bins 3 and 8 with factor loadings of 0.12811 and 0.29246, respectively.  

Other bands provide no useful information, contain most of the systematic noise, and/or 

account for very little of the variance.  
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Table 4.5  
Result of calculated factor loadings for each PC. 

 

 

As shown in Table 4.6, we also obtained a total of eight regression models, 

developed with a significant level of 0.05, for CBD canopy fuel parameter.  These 

models were constructed using the same metrics-sets and spatial resolutions as the 

regression models for CBH.  The estimated CBH obtained in this chapter was included 

as an additional variable.  Bias correction factors are added to the end of each predicted 

model and ŷ represents ground validation data for CBD in Table 4.6.  We compared the 

regression models obtained from the same metrics for CBDAL and CBDCM to see which 

method’s result worked the best with lidar metrics.  We obtained a total of four models 

from lidar point cloud metrics, metrics-set-1 and metrics-set-2, and the highest R² and 

adjusted R² values were gathered from CBDAL- Metrics-set-2 with 0.689 and 0.674, 

respectively, with 0.303 RMSE.  The lowest R² and adjusted R² values were obtained 

from CBDCM- at 30 m resolution with 0.473 and 0.450, respectively, with 0.554 RMSE.  
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For CBD from Metrics-set-3 (Table 4.6), the best R² and adjusted R² values were 

obtained from CBDAL when used as field data with 0.748 and 0.726, respectively.  For 

CBD from Metrics-set-4 (Table 4.6), the highest R² and adjusted R² values were 

obtained from CBDAL with 0.700 and 0.673, respectively.  As a result, CBDAL used as 

field data always provided better models in each metrics set.  To illustrate the goodness-

of-fit of the data and select the best fitted model for predicting CBD, all regression 

models were plotted  (Fig.  4.7a through Fig.  4.7h).  Overall, the best fitted model based 

on the scatterplots, p-values, R², and adjusted R² values was obtained from Metrics-set-3 

to estimate CBD canopy fuels in this study.   

Some of the results in our selected regression models need to be highlighted 

(Table 4.6).  For instance, the R² value obtained with CBDAL was 0.748 while it was 

0.403 with CBDCM (Table 4.6) in the regression models obtained from Metrics-set-2.  

Also, the scatterplots of these two models, Fig.  4.7e and Fig.  4.7f, are quite different.  

In addition, the  was the key predictor for estimating CBD canopy fuel 

parameters from CBDAL in all the regression models.   
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Among all the best fitted regression models obtained from all metrics sets, 

LnCBH was the key predictor when CBDAL used as reference data.  Since CBD and 

CBH are correlated, using CBH as a predictor is adding significant explanatory power to 

CBD.  The Hmax was the main predictor due to its vertical location within the point cloud 

on all regression models obtained from lidar point cloud (metrics-set-1 and -2). These 

results are also consistent with other research that found H90, Hmean, and Hmax to be one of 

the predictors in CBH models (Erdody and Moskal, 2010; Andersen et al., 2005).   

As expected, the LnCBH, and upper lidar height bins (Band7max, Band8cv, and 

Band10cv,) were used to predict CBD canopy fuel parameters in the final fitted 

regression models obtained from metrics-set-3.  As mentioned before, studies have 

shown that lidar height bins approach can be used to derive independent variable for 

regression models to estimate canopy characteristics.  Lidar height bins (Band6 and 

Band7) were used in the selected fitted model obtained from metrics-set-3.  This model 

provides poor R² and adjusted R² values, 0.403 and 0.378.  
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Table 4.6   
Results of the CBD regression analysis. 
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Fig.  4.7.  Scatterplots of predicted CBD vs.  (a) CBDAL at 30 m resolution; (b) CBDCM 
at 30 m resolution; (c) CBDAL at actual plot level; (d) CBDCM at actual plot level; (e) 
CBDAL from Metrics-set-3; (f) CBDCM from Metrics-set-3; (g) CBDAL from Metrics-set-
4; (h) CBDCM from Metrics-set-4.  In all figures, the solid line represents X=Y and the 
dashed line represent the data fit. 
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Among all the twenty five PCA predictors, PCA2cv, PCA2min, PCA4mean, and 

LnCBH were the key metrics used in the final fitted regression model for estimating 

CBH.  In this model, CBHLH was used as reference data. The PCA1 and PCA5 were the 

main predictors in the final model when CBDCM used as reference data.  As shown in 

Table 4.5, the upper lidar height bins were able to explain the most of the variance in 

both PC2 and PC5.  

We derived CBD and CBH from airborne lidar data at plot level for 41 plots. The 

variables needed to estimate CBD and CBH were obtained from TreeVaW 

measurements. The estimated CBD and CBH canopy fuel parameters from TreeVaW 

were compared with both estimated CBD and CBH from allometric equations and 

CrownMass software, respectively, to see the relationship between each pair.  The 

scatter plots of predicted CBD from TreeVaw (CBD_TreeVaw) versus CBDAL and 

CBDCM were shown in Fig.  4.8a and 4.8b.  The scatterplots of predicted CBH from 

TreeVaw (CBH_TreeVaw) versus CBHLH and CBHCM were shown in Fig.  4.8c and 

4.8d. These scatterplots are results of visual correlation analysis, rather than a regression 

analysis. Both scatterplots obtained for CBD comparison do not show strong 

relationship. However, the CBD_TreeVaw and CBDAL demonstrated better relationship 

than the scatterplot of CBD_TreeVaw and CBDCM.  One possible explanation could be 

that most of the times TreeVaw captured less number of trees on each plot which might 

affect the result of CBD. There is a positive relationship between CBH_TreeVaw and 

CBHLH.  Since we have uniform stands in our study area and we used weighted mean 
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height approach to estimate CBH, the number of trees will most likely not affect the 

results.  

 

 
Fig.  4.8.  (a) CBDAL versus predicted CBD from TreeVaw, (b) CBDCM software versus 
predicted CBD from TreeVaw, (c) CBHLH versus predicted CBH from TreeVaw, (d) 
CBHCM software versus predicted CBH from TreeVaw. 
 
 

After regression models have been developed to establish a functional 

relationship between the airborne lidar data and the canopy fuels, CBD and CBH, the 

best fitted equations were used to generate maps of CBD and CBH over the entire study 
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area.  For CBH, among all the models, the best-fitted equation was obtained from 

metrics-set-1 with R² value of 0.976 and adjusted R² value of 0.973. For CBD, the best 

fitted equation was obtained from metrics-set-3 with R² value of 0.748 and adjusted R² 

value of 0.726.  The highest R² and adjusted R² values were used to identify the best 

fitted model for CBD and CBH, not the lowest log-transformed RMSE. The CBD (Fig.  

4.9a) and CBH (Fig.  4.9b) maps were generated in ENVI using Band Math function 

based on the selected regression models.   

 

       

(a)                                          (b) 

Fig.  4.9.   (a) The CBD map; (b) The CBH map of our study area. 
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Using airborne lidar data, we were able to derive the two required CBH and 

CBD canopy fuel parameters to simulate crown fires in FARSITE.  Surface fuel model, 

CBD, and CBH maps are very difficult to derive and many fire managers do not have 

these inputs to run FARSITE.  We developed all the spatial data layers for our study 

area.  To simulate crown fire over the study area, a plot (Liv#21) was selected and plot 

center location was used as an ignition point in FARSITE simulations.   Inside of this 

plot boundary, we have a total of 57 trees with an average total tree height of 52.1 m.  

The duration of this simulation was set to 48 hours beginning at 8:00 AM and ending at 

8:00 AM two days later.  Weather and wind data, gathered on March 1, 2004, were used 

for all runs of FARSITE because dryer periods occur during September – October and 

February – March in the study area.  Fig.  4.10 represents the snapshot of FARSITE run.  

The result of FARSITE simulation shows that the estimated burned area was 463 ha 

(1144.57 ac) and the perimeter was 12.6 km (7.8 miles) for the selected plot (Liv#21).  

These results are important because a significant risk to life and property exists 

wherever forest stands are prone to crown fire. 
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Fig.  4.10.  A snapshot from crown fire simulation software, FARSITE. 
 
 

Conclusions 

The CBD and CBH are necessary inputs for crown fire simulation models 

FARSITE and others such as NEXUS.  In practice, CBD has never been directly 

measured in the field.  The CBD is the most important canopy fuel parameter because 

active crown fires burn the entire surface-canopy fuel complex (Cruz et al., 2003; Lefsky 

et al., 2001).  The overall aim of this study was to estimate the two critical forest canopy 

parameters including CBH and CBD using airborne lidar data at plot level for loblolly 

pine trees in east Texas.  We also aimed to map CBD and CBH from airborne lidar data 

and to predict the spread of wildfires using estimated forest canopy parameters as inputs 

into FARSITE software.  The results of this study indicate that airborne lidar can be 
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used to generate accurate estimates of canopy fuel parameters efficiently over extensive 

areas of forests as demonstrated for the study area in Huntsville, TX.   

The CBH and CBD cannot be directly derived from the field data because the 

work required to estimate these quantities across extensive areas would be problematic.  

Also, it is not economically and timely feasible to collect data over the large forested 

areas.  Therefore, estimation of CBH and CBD canopy fuel parameters are based on 

statistical approaches using statistical metrics such as different height percentiles, mean 

and max height values derived from airborne lidar data for each plot.  The CBH and 

CBD canopy fuel parameters were derived from different metrics sets in this study.  The 

first two sets includes sixteen metrics derived from the lidar point cloud, the third metric 

set includes thirty-five variables from upper lidar height bins, and the last metrics set has 

twenty-five variables from the data fusion, stack of lidar height bins and multispectral 

imagery.  Different resolutions were used to derive metrics from lidar point cloud 

(metrics-set-1).  We were expecting that results at 30 m resolution would provide better 

models for both CBH and CBD since we have more lidar points within that grid cell 

size.  We obtained expected results for CBH; but, the differences in the final models 

were not significant.   However, results for CBD were unexpected and we obtained 

better regression models at actual plot size compared to 30 m resolution.   

Among all the models, the best fitted regression model to derive CBD was 

obtained from metrics-set-3 based on the coefficient of determination, 0.748.   In this 

model, CBDAL results were used as ground validation data.  Metrics-set-3 includes 

metrics derived only from lidar height bins.  One of the advantages of using lidar height 
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bins approach is that instead of processing individual lidar points and generating metrics 

for these point clouds, multiple bands of lidar data are easier to process and analyze and 

easier to derive metrics necessary for regression analysis (Popescu and Zhao, 2008).  

The lidar height bins approach has high potential for becoming a standardized method 

for deriving CBH and CBD canopy fuel parameters.  Metrics-set-2 and -3 did not 

improve our final models for CBH.  In addition, unlike the studies of McCombs et al. 

(2003), Mutlu et al. (2008a), Popescu and Wynne (2004), Erdody and Moskal (2010), 

Varga and Asner (2008), Donoghue and Watt (2006), data fusion approach (metrics-set-

3) did not provide the best estimation of canopy fuel parameters for this study.   

Andersen et al. (2005) and Scott and Reinhardth (2001) used Fire and Fuels 

Extension to the Forest Vegetation Simulator (FFE-FVS) to derive CBH and CBD 

canopy fuels and then tried to derive these two metrics from airborne lidar data.  In our 

study, we used both allometric equations and CrownMass software to derive CBH and 

CBD, then used both results as ground validation data when estimating these variables 

from airborne lidar data.  Overall, CBDAL and CBHLH when used as ground validation 

data always produced better estimation of CBD and CBH compared to CBDCM and 

CBHCM, respectively.  In Chapter III, we found that CBD values obtained from 

allometric equations are an average 2.5 times larger than CBD results obtained from 

CrownMass software.  We also found that CBH results obtained from Lorey’s Mean 

Height approach was 1.2 times higher than those from CrownMass software.  Because 

of statistical errors due to equation selection, estimating coefficients, data processing 

errors, CBD and CBH estimated either from software and/or allometric methods, errors 
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are potentially introduced no matter what the scale is.  As mentioned in Chapter III, it is 

difficult to conclude that one method is better than other.  However, the results presented 

in this chapter demonstrated that the calculated canopy fuel parameters using airborne 

lidar variables coupled with allometric equations resulted in better estimation compared 

with those obtained from CrownMass software.  

Studies have shown that CBH and CBD can be derived from allometric 

equations, software (e.g., FuelCalc, CrownMass, FFE-FVS), and/or airborne lidar data 

(Riano et al., 2003; Popescu and Zhao, 2008; Erdody and Moskal, 2010; Cruz et al., 

2004; Riano et al, 2004; Hall and Burke, 2006; Keane et al., 2005; Rollins and Frame, 

2006; Scott and Reinhardt, 2001; Beukema et al, 1997; Morsdof et al., 2003; Keane et 

al., 1998).  None of the studies I have found run FARSITE to simulate crown fire 

behavior for their study area.  There are two major reasons for that: (1) if they used 

allometric equations to derive CBH and CBD canopy fuels, they were not able to 

generate the spatial maps, (2) even if they used remotely sensed data to derive CBH and 

CBD and generated spatial maps, they did not have a surface fuel model map that is the 

other required input to run FARSITE.  We employ a unique approach to derive all the 

required spatial data layers from airborne LIDAR and to use these data layers into 

FARSITE to simulate crown fire behavior over our study area, Huntsville, TX.  Since 

crown fire data inputs are difficult to create it is presented as “optional” in the FARSITE 

software.  Many fire managers do not have these important data layers and they are 

required to use very coarse estimates of these inputs.  There has been no reliable, 

accurate, and simple method for estimating these parameters and providing high quality 
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inputs for FARSITE crown fire modeling.  The same problem exists with other fire 

simulation softwares such as BehavePlus and FlamMap.  

Compared to other types of fires, crown fires are relatively rare, but their impact 

is severe.  For fire mitigation purpose, it is crucial to know both fire perimeters and fire 

growth areas.   Fire growth area results are helpful to determine the cost of the fire.  Fire 

perimeter results are important because they help in determining an optimal mix of fire 

fighting resources needed to fight fires such as dozer, tractor, crews, helicopter, engines, 

hourly cost of operating the resources, arrival time etc.    

The advance of remote sensing technology provides a unique opportunity for 

alternative solutions of the forest fire problems.  Applications of remote sensing to forest 

fire related research have been rapidly increasing in recent years.  This technology can 

be used to decrease fire risk and to reduce fire damage.  Modeling crown fire behaviors 

are essential for fire management activities due to the vast natural resource damage they 

cause, the cost of property loss, large suppression efforts, and risks to human safety.  

Accurate estimation of fire growth area and the direction of fire growth is critically 

important information for the fire management process.  Knowing this essential 

information will avoid any health risk for local people living in the vicinity of forests 

with fire risk.  The results of this research will provide a better understanding of 

enhanced fire suppression efforts, increased safety for fire crews, and will ultimately 

reduce threats to human safety as well as reduce the costs associated with wildfires and 

their suppression. 
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CHAPTER V 
 

ASSESSING CANOPY FUEL PARAMETERS FROM ICESat/GLAS LIDAR  
 

DATA 
 

 
Introduction 

Remote sensing technologies have been used for mapping the spatial distribution 

of canopy and characterization of vegetation (Popescu and Zhao, 2008). Advance high 

resolution satellite imagery (i.e. Quickbird image) can be used to derive forest inventory 

data. Lidar remote sensing is a maturing and expanding technology (Hall et al., 2005; 

Nelson et al., 2009; Lefsky et al., 2005).  Given the rapid and continuous development 

of lidar technology, it is expected that lidar applications in forestry will continue to 

rapidly increase and will become more assessable in the future. As is discussed in 

Chapter IV, airborne lidar data have been used for quantifying forest structures and 

improving management decisions. Even though airborne lidar is gaining popularity as a 

tool for natural resource management and datasets are becoming increasingly available 

(Hudak et al., 2006) and less expensive than in the past, they are still considered a costly 

acquisition. In addition, airborne lidar data is generally used for local and/or regional 

scales and rarely used for state extent level in the USA (Popescu et al., (in review); 

Nelson et al., 2003).   

There is great interest in the potential for using Geoscience Laser Altimeter 

System (GLAS) on the Ice, Cloud and land Elevation (ICESat) satellite (launched on 

January 12, 2003) data in forest inventories in recent years (Zwally et al., 2002; Sun et 

al., 2008; Popescu et al., in (review); Ranson et al., 2004; Lefsky et al., 2005). 
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ICESat/GLAS is a large footprint full waveform satellite data. It is also the first 

spaceborne lidar tool that can be used to obtain continued global observation of the 

Earth (Simard, et al., 2008; Pang et al., 2008; Nelson et al., 2009). Mainly, it was 

designed to measure and monitor ice sheet mass balance, cloud and aerosol heights, and 

surface elevation changes (Zwally et al., 2002; Sun et al., 2008; Nelson et al., 2009; 

Simard et al., 2008). This system provides data for global scales and the data were 

obtained for over 250 million individual lidar observations. In addition, ICESat-II, future 

National Aeronautics and Space Administration (NASA) mission, is the 2nd generation 

of the orbiting laser altimeter. It is planned to launch in late 2015 (Abdalati et al., 2010). 

Measuring the ice sheet changes, sea ice thickness, vegetation biomass, and vegetation 

canopy heights are the main objectives of ICESat-II (Abdalati et al., 2010). The footprint 

size will be approximately 50 m at 50 Hz pulse repetition frequency, which will provide 

20% more dense sampling than that of ICESat. The space between the footprints will be 

140 m along-track (Abdalati et al., 2010). However, this mission is still in the early 

development stage; therefore, technical specifications of this upcoming mission are 

subject to change. 

The ICESat system records the reflected energy from the ground surface as a 

function of time by sending the laser pulses with 40 Hz frequency and 5 ns duration and 

recording the returned laser pulses as a vertical profile within footprint (Sun et al., 2008; 

Popescu et al., (in review); Pang et al., 2008; Nelson et al., 2009). There are three 

spaceborne ICESat/GLAS lasers onboard: LASER 1 (L1), LASER 2 (L2), and LASER 

3(L3) and operated one at a time (http://nsidc.org/data/icesat/laser_op_periods.html).  
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The ICESat has been in an orbit that repeats ground tracks every 91 days and each data 

acquisition period has ~33 days of data (Sun et al., 2008).  

The GLAS waveform data has close correlation with aboveground biomass and 

canopy height that are measured on ground plots in extensive forests (Boudreau et al., 

2008; Sun et al., 2008); therefore, it has been used for forestry studies in recent years.  

Lefsky et al. (2005) combined ICESat/GLAS waveforms and ancillary topography from 

SRTM to obtain maximum forest height in three different ecosystems located in Brazil, 

Tennesse, and Oregon, USA. Sun et al. (2008) used GLAS data to derive vertical 

structure of forests in Maryland, USA and compared their results with LVIS data (Laser 

Vegetation Imaging Sensor). Nelson et al. (2009) used GLAS and MODIS (MODerate 

resolution Imaging Spectrometer) data to estimate forest timber volume in Siberia. 

Simard et al. (2008) focused on how to use ICESat/GLAS to estimate the extent, height, 

and biomass of the mangrove forests in Colombia. This system has potential for deriving 

forest canopy structure.   

There are three general alternative approaches for obtaining forest canopy fuel 

parameters: (1) field measurements, which are also needed for testing and validating all 

remote sensing methods, (2) statistical models, and (3) remotely sensed data including 

multispectral images (i.e. Quickbird, Digital Orthophoto Quarter Quad (DOQQ), or 

SPOT), airborne lidar, and spaceborne ICESat/GLAS lidar data. The overall objective of 

this chapter is to investigate the use of spaceborne ICEsat /GLAS lidar data for 

characterizing canopy fuel parameters in east Texas.  
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The total vegetation height, vertical canopy structure, and aboveground biomass 

were derived from ICESat/GLAS; however, the CBH has never been derived from 

satellite ICESat/GLAS data before. Also, our research is unique in that we investigate 

the utility of spaceborn GLAS waveform data to estimate CBH canopy fuel parameter 

using a wall-to-wall airborne lidar-derived CBH map, as reference data.  

 

Materials and Methods 

Data 

Two types of data were used in this study: airborne LIDAR and spaceborne 

ICESat/GLAS data. Because no coincident field measurements are directly available 

over the footprints of GLAS shots, a two-phase approach were used in developing the 

regression models. First, a spatially-explicit map of CBH was derived from airborne 

lidar data. Then, the GLAS metrics were related to this lidar-derived canopy 

characteristic with multiple linear regression models.  The CBH was obtained from both 

the field data (Chapter III) and the airborne lidar data (Chapter IV). The details of 

airborne data and study area were discussed in Chapter IV. 

 

Spaceborne ICESat/GLAS data 

We were able to obtain GLAS data for our study area from February 2004 to 

October 2007 with GLAS sub-cycles from L2A to L3I from 

http://www.nsidc.org/data/icesat/order.html. Among all of the available GLAS data, we 

used the February 2004 GLAS data set obtained from GLAS L2B sub-cycle. This set of 
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GLAS data was collected during the leaf-off season, the same time period the airborne 

lidar data was collected. As mentioned in studies of Boudreau et al. (2008) and Popescu 

et al. (in review), data obtained from different season might create high variation in our 

regression analysis and increase the temporal inconsistency between airborne lidar and 

GLAS data.  Sun et al. (2008), Duong et al. (2006), Boudreau et al. (2008), and 

Ashworth et al. (2010) compared their estimations of canopy heights from different 

observation periods of ICESat GLAS data to analyze the season and timing effects on 

their estimations. They found that GLAS data obtained from different time periods 

contain different amount of signals, which affect estimation of variables such as biomass 

and canopy heights.  Therefore, we only used February 2004 GLAS dataset to match 

with airborne lidar data information to avoid any problems.  

The GLA01 and GLA14 were the two primary GLAS data that we used in this 

study. The GLA01 (level 1) data provides waveforms for each laser shots (Sun et al., 

2008; Boudreau et al., 2008).  Energy returned from the surface is recorded into 1000 

samples at two different sampling intervals, 5 ns or 1 ns, with sampling the last 544 bins 

at 1 ns (equal to 15 cm) (Neuenschwander et al., 2008).  The land surface altimetry 

GLA14 (level 2) data provides canopy/ground elevations and laser range information for 

signal beginning and end, the location, and width of the six Gaussian peaks that provides 

the shape of waveforms (Sun et al., 2008; Nelson et al., 2009).   

This spaceborn lidar system emits 40 pulses per second with a footprint of 65 m 

nominal diameter. The diameter of the footprints changed for each laser 

(Neuenschwander et al., 2008). The space between each footprint was 172 m apart along 
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track (Zwally et al., 2002; Nelson et al., 2009). In the waveform data, the first signal  

represents the maximum height and the last signal represents the ground data (Zwally et 

al., 2002; Nelson et al., 2009; Popescu et al., (in review); Sun et al., 2008). A total of 48 

GLAS waveforms were found and overlaid on our entire study area. Fig. 5.1 represents 

the overall view of the ICESat/GLAS footprints over lidar-derived CBH map of the 

study area.  

 

 

 
 

Fig. 5.1. The ICESat/GLAS footprints overlaid on the airborne lidar-derived wall-to-
wall CBH map of our study area. 
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Processing ICESat/GLAS Waveform Data  

Initially, a total of 48 GLAS waveforms were found and overlaid over the study 

area; however, only the 33 of the GLAS waveforms were used because no information 

was obtained from the rest of the footprints. The GLAS metrics obtained from Popescu 

et al. (in review) were used in this study to derive the CBH canopy fuel parameter.  

After ordering and downloading the GLAS data from the NSIDC (National Snow and 

Ice Data Center) website for our study area, the GLAS data were processed as described 

in Popescu et al. (in review). A standalone peak finding algorithm developed by 

Neuenschwander et al. (2008) was used to process the GLAS waveform data.  Similar to 

studies of Nelson et al. (2009), Neuenschwander et al. (2008), Sun et al. (2008), and 

Boudreau et al. (2008), each waveform was extracted and processed to derive energy 

quartile heights (also called GLAS metrics) for our study area.   

The GLA14 provides the latitude and longitude information. With the information 

obtained from GLA14, the last 392 records of each GLAS waveform (GLA01) were 

geolocated. The vegetation height and ground height were derived using GLA14 

product.  On vegetated areas, the laser pulses interact with a complex surface; therefore, 

the returned waveform is modeled as a mixture of Gaussian (Neuenschwander et al., 

2008).  By applying the Gaussian filters, GLAS waveforms were smoothed using 

Gaussian peaks at different heights.  The ground was determined using the elevation 

information at the maximum location on the last Gaussian peak.  The GLAS waveform 

extent is obtained by computing the differences between the signal beginning and 

ending. The tree top information was obtained by computing the distance between the 



 

 

83

signal beginning and the signal ending, which is the last Gaussian peak.  

After obtaining total waveform energy, the position of 0% (RH0), 25% (RH25), 

50% (RH50-HOME (height of median energy)), 75% (RH75), 90% (RH90), and 100% 

(RH100) percentile heights were computed starting from the signal ending by computing 

a cumulative distribution function of GLAS waveform energy.  RH0 is the ground 

energy and RH100 represents energy at the top of canopy.  The HOME was calculated 

by finding the median of the entire signal from the waveform; including energy returned 

from both canopy and ground surfaces. The location of the median energy is then 

referenced to the center of the last Gaussian pulse to derive a height value.  By getting 

the ratio between ground and total waveform energy, the energy penetration index (EPI) 

was computed.  A total of ten GLAS metrics were derived and used in our regression 

analysis to estimate CBH.  

First, a spatially-explicit map of CBH was needed as a reference for using GLAS 

data to estimate the CBH canopy fuel parameter.  The wall-to-wall CBH map was 

generated and details were given in Chapter IV. After obtaining all the GLAS waveform 

metrics, we needed to tie GLAS data to the wall-to-wall map of CBH obtained from 

airborne lidar data. Similar to studies of Neuenschwander et al. (2008) and Pang et al. 

(2008), the exact shape of ellipsoid GLAS footprint was used in this study.  The 

canopy/ground elevation in GLA14 is positioned to TOPEX/Poseidon ellipsoid and the 

coordinates of our airborne lidar data are referenced to WGS-84.  Therefore, the 

coordinates of GLAS waveforms were converted to WGS-84 using a conversion tool 

named as “Research Coordination Network Utilities and Tools” obtained from the 
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Montana State University and Yellowstone National Park website 

(http://www.rcn.montana.edu/resources/tools/coordinates.aspx). The TOPEX/Poseidon 

ellipsoid and WGS-84 are similar, the main difference between the two is that there is 60 

cm difference in the semi-major axis (Neuenschwander et al., 2008).   

The exact ellipsoid shape of each GLAS footprint was determined by using major 

ellipse axis, eccentricity, and azimuth orientation.  The location accuracy of each GLAS 

footprint was evaluated by matching the elevation profile from GLAS with the airborne 

lidar derived elevation obtained from Popescu et al. (in review).  A shapefile of these 

footprints was created. Then, the shapefile was converted to ROIs (region of interests) 

using ENVI 4.5 software and displayed over the wall-to-wall of CBH map. Using the 

ROI statistics tool, we extracted average CBH values within each GLAS footprint 

boundaries on lidar-derived CBH map and recorded them as a text file for statistical 

analysis.  Fig. 5.2. represents an example of waveform data collected by ICESat/GLAS. 

 

Fig. 5.2. The GLAS example waveform over forest land. 
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Statistical Analysis 

The SPSS, Statistical Package for the Social Sciences (IBM company), was used 

in this study for our statistical analysis. Simple linear regression was used to derive CBH 

from GLAS data.  The mean CBH value obtained from lidar derived CBH map on each 

GLAS footprint was used as dependent variable and GLAS metrics were used as 

independent variables in our investigations. Stepwise regression analysis was performed 

to find the best fitted model with a significant level of 0.05 for estimating CBH from 

GLAS waveform data.  The best fitted model was chosen based on: a high coefficient of 

determination (R²) value, a low root mean square error (RMSE), no collinearity, and a 

scatterplot which shows the goodness-of-fit of the data.  

 

Results and Discussion 

According to regression analysis result, GLAS height metrics and lidar-derived 

CBH were highly correlated in this study.  Fig. 5.3 represents a comparison of average 

CBH at footprint level between airborne lidar and GLAS waveforms over a total of 33 

leaf-off waveforms. The solid line represents X = Y and the dash line represents the data 

fit in Fig. 5.3. The R² and adjusted R² values of the selected best-fitted model are 0.88 

and 0.876, respectively, with a low RMSE of 1.76. This correlation relates to the 

predictability of lidar-derived CBH from GLAS waveform data.  Among all the metrics 

(SigBeg, SigEnd, RH25, RH90, etc.) derived from GLAS data, the main predictor in our 

final model is HOME metric. The result is not surprising since HOME (RH50) is proven 

to be a useful GLAS metric in estimating forest structural attributes at the footprint level 
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by several studies, such as Drake et al. (2002) and Anderson et al. (2006).  

    

 

Fig. 5.3. A scatterplot of CBH from airborne lidar data vs. estimated CBH from GLAS 
data. 

 

Similar to studies from Sun et al. (2008), Popescu et al. (in review), Ashworth et 

al. (2010), and Neuenschwander et al. (2008), we also used an average value of our 

dependent variable (CBH). Our findings show that the average value extracted from the 

lidar-derived CBH map within each GLAS footprint boundary was able to examine the 

utility of GLAS data for estimating CBH canopy fuel.  Our initial attempt was to derive 

both CBH and canopy bulk density (CBD) canopy fuel parameters from GLAS data. 

Even though we were successful in estimating CBH, we were not successful in 

estimating CBD from GLAS waveform data. One possible explanation is that CBD is 

not a direct function of vegetation height, canopy energy, or any energy percentile 

because CBD is the ratio between foliage biomass and crown volume. Therefore, we 
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believe there is not a direct linear relationship between CBD and these GLAS metrics.  

Another explanation could be the use of allometric equations to derive CBD from field 

data.  Allometric equations utilizing field measurements often produce imperfect results; 

the error in these results can be propagated through data processing and increase errors 

(Popescu et al., (in review)).  In addition, the CBD map derived from airborne lidar data 

might also contain errors. Lastly, the algorithm written by Neuenschwander et al. (2008) 

may not capture necessary information from the GLAS waveform data that could affect 

the estimation of CBD from GLAS data. 

The correlation between each energy percentile (RH75, RH90, etc.) and the lidar-

derived CBH was analyzed. We found that all metrics, except for the HOME energy 

percentile, were poorly correlated with lidar-derived CBH.  In Chapter IV, CBH is 

proven to be a good predictor for estimating CBD. In addition, we also obtained a good 

model for predicting CBH from GLAS data (R² = 0.88).  We analyzed the correlation 

between CBD and CBH canopy fuel parameters (Fig. 5.4).  In Fig. 5.4, we can see there 

is a negative correlation between the two parameters. Five outliers can be clearly seen on 

the bottom left of Fig. 5.4.  
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Fig. 5.4. Scatter plot of CBD and CBH. 

 

Conclusions 

In this chapter, we investigated the use of ICESat/GLAS waveform data for 

estimating forest canopy fuel parameters. As discussed in Chapter IV, we were 

successfully able to generate a wall-to-wall CBH map using airborne lidar data. In this 

chapter, we used Chapter IV’s result as a reference to estimate canopy fuel parameters 

from GLAS data. We used a variety of GLAS metrics such as HOME (height of medium 

energy), percentile height, and energy penetration to test their usefulness to predict 

canopy fuel parameters through regression analysis. The only significant GLAS to 

estimate CBH in this study metrics was the HOME variable.  We extracted CBH within 

the exact shape of the GLAS footprint.   To derive some variables, such as biomass, 

other studies collected field data within the GLAS footprints. This method is time 

consuming and less efficient than using remotely sensed data i.e., multispectral imagery, 
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LVIS, or SRTM data (Ashworth et al., 2010). In this study, we used airborne lidar data 

and spaceborne GLAS data to estimate canopy fuel parameters.  Our results indicated 

that GLAS waveform data can be used to accurately estimate the CBH canopy fuel 

parameter, but not the CBD. 
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       CHAPTER VI 

        CONCLUSIONS 

 

Canopy fuel parameters are important model inputs for fire simulation software 

such as FARSITE and FlamMap. Fire managers and scientists need to estimate these 

parameters as accurately as possible (Raccoforte et al., 2008; Scott & Reinhardth, 2001).  

Accurate estimation of fire growth area and the direction of fire growth is important 

information for the fire management process.  To improve ecosystem health, there is a 

need to use complex fire behavior models to support environmental assessments.   The 

overall aim of this study was to derive two important canopy fuel parameters, canopy 

base height (CBH) and canopy bulk density (CBD), using in-situ, airborne lidar and 

spaceborne GLAS data in Texas. 

In Chapter III, species-specific allometric equations and the CrownMass program 

were used to derive CBD and CBH canopy fuel parameters.  We emphasized the 

importance of using species-specific equations and the effect of tree crown shape on 

CBD calculation. In addition, using Lorey’s weighted mean crown base height 

calculations provided promising result on CBH calculation.  The results from both 

methods, allometric equations and the CrownMass program, were compared. Chapter III 

also highlighted that these two important canopy fuel parameters can be derived using 

allometric equations. To the best of my knowledge, this approach has never been used 

and there is no published study on calculating species-specific CBD for forests similar to 

stand conditions in East Texas. This is an important step because ground inventory data 
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are needed to derive canopy fuel parameters and generate maps from remote sensing 

data. The accuracy of these calculations and availability of these methods are very 

important for fire managers. 

Airborne LIDAR systems can be used for fire detection, location, and mapping 

for burned area assessment, and, important to this study, for canopy fuel assessment and 

mapping (Keane et al., 1998; Mutlu et al., 2008b). Chapter III’s results were used as 

ground inventory data in Chapter IV to validate CBD and CBH estimates from airborne 

lidar data. The results of Chapter IV indicate that airborne lidar can be used to efficiently 

generate accurate estimates of canopy fuel parameters over extensive forested areas such 

those presented in our study area in Huntsville, TX. We developed a methodology for 

assessing and mapping CBD and CBH with lidar derived metrics at multiple spatial 

resolutions for loblolly pine trees. The lidar point cloud, lidar height bins, and data 

fusion approaches were used in Chapter IV. Since canopy fuel parameters cannot be 

directly measured from the field data, statistical approaches were developed for using 

metrics such as different height percentiles and density values derived from airborne 

lidar data for each plot. To derive CBD, the best fitted regression model was obtained 

from the height bins approach lidar point cloud metrics based on the coefficient of 

determination, 0.748.   In this model, the CBDAL results were used as ground validation 

data.  To derive CBH, the best fitted regression model was obtained from metrics-set-1 

based on the coefficient of determination, 0.976.  

The lidar height bins approach has high potential for becoming a standardized 

method for processing and exchanging forestry lidar data.  The lidar bins used in this 
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study contain detailed information on forest canopy structure.  Zhao and Popescu 

(2008),  Mutlu et al. (2008a), Griffin et al. (2008), and Næsset (2004) also used the 

height bins concept  for mapping surface fuels,  leaf area index (LAI), percent canopy 

cover, vertical structure of individual tree crowns, and tree heights. In addition, Principal 

Component Analysis (PCA), one of the most popular and effective image fusion 

techniques, was also used in this study.  The PCA technique has been used in studies of 

Zhang 2004, Fauvel et al. 2009, Mutlu et al. 2008a for urban classifications, vegetation 

classifications, and wetland change detection. In our analysis, the PCA technique did not 

provide the best result for assessing CBH and CBD canopy fuel parameters.  The CBH 

and CBD canopy fuel maps necessary for FARSITE crown fire simulations were 

generated based on the selected best regression models, respectively. 

Airborne and spaceborne lidar, ICESat/GLAS waveform data, were used in 

Chapter V.  Several metrics derived from GLAS waveform data were investigated to 

determine their usefulness for estimating canopy fuel parameters through regression 

analysis.  The GLAS waveform data have been proven to be useful global data for 

deriving forestry parameters (Popescu et al. (in review); Sun et al., 2008; Duncanson et 

al., 2010; Ashworth et al., 2010; Xing et al., 2010; Nelson et al., 2009). Our results 

indicated that GLAS waveform data can be used to accurately estimate CBH, but not the 

CBD fuel parameter. To the best of my knowledge, this is the first study that analyzes of 

the ability of satellite waveform data to assess canopy base height.  Further analysis will 

be carried out using GLAS waveform data and multispectral image to derive surface and 

canopy fuel maps.   
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 Once detailed field data are collected, the methods presented in this dissertation 

can be applied to any study areas located in eastern Texas.  The surface fuel model map 

produced by Mutlu et al. (2008a) and canopy fuel maps produced by this research were 

used as inputs into the fire simulation software, FARSITE.  We obtained burned area 

and perimeter information for the selected plot in our study area. For fire mitigation 

purposes, there is a need to know both fire perimeters and fire growth areas.  Fire growth 

area results are important for determining the cost of a fire. Fire perimeter results are 

important because they help to determine the fire fighting resources needed to fight fires.  

Improving the accuracy of mapping canopy fuel is essential for fuel management 

decisions and explicit fire behavior prediction to support real-time suppression tactic and 

logistics decisions. Small errors in fuel parameters may not be significant for small study 

areas; however, for large study areas, small errors could accumulate over the duration of 

the fire simulation leading to large errors in predicted fire sizes.  This study will assist 

fire managers with the mitigation of the harmful effects of wildfire.  It also gives the 

power of sound, accurate, and efficient fire behavior modeling technology to forest fire 

fighters.  The accurate prediction of the potential risk of a wildland fire is necessary to 

reduce the occurrence and seriousness of wildland fires.  Our results could significantly 

impact forest policy and forest resource management. 
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