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ABSTRACT 

 

Numerical Investigation of Interaction Between Hydraulic Fractures and Natural 

Fractures. (December 2010) 

Wenxu Xue, B.S., Tsinghua University 

Chair of Advisory Committee: Dr. Ahmad Ghassemi 

 

Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, 

as fractures can have complex growth patterns when propagating in systems of natural 

fractures in the reservoir. Fracture propagation near a natural fracture (NF) considering 

interaction between a hydraulic fracture (HF) and a pre-existing NF, has been 

investigated comprehensively using a two dimensional Displacement Discontinuity 

Method (DDM) Model in this thesis.  

The rock is first considered as an elastic impermeable medium (with no leakoff), 

and then the effects of pore pressure change as a result of leakoff of fracturing fluid are 

considered. A uniform pressure fluid model and a Newtonian fluid flow model are used 

to calculate the fluid flow, fluid pressure and width distribution along the fracture. Joint 

elements are implemented to describe different NF contact modes (stick, slip, and open 

mode). The structural criterion is used for predicting the direction and mode of fracture 

propagation. 

The numerical model was used to first examine the mechanical response of the 

NF to predict potential reactivation of the NF and the resultant probable location for 
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fracture re-initiation. Results demonstrate that: 1) Before the HF reaches a NF, the 

possibility of fracture re-initiation across the NF and with an offset is enhanced when the 

NF has weaker interfaces; 2) During the stage of fluid infiltration along the NF, a 

maximum tensile stress peak can be generated at the end of the opening zone along the 

NF ahead of the fluid front; 3) Poroelastic effects, arising from fluid diffusion into the 

rock deformation can induce closure and compressive stress at the center of the NF 

ahead of the HF tip before HF arrival. Upon coalescence when fluid flows along the NF, 

the poroelastic effects tend to reduce the value of the HF aperture and this decreases the 

tension peak and the possibility of fracture re-initiation with time. 

Next, HF trajectories near a NF were examined prior to coalesce with the NF 

using different joint, rock and fluid properties. Our analysis shows that: 1) Hydraulic 

fracture trajectories near a NF may bend and deviate from the direction of the maximum 

horizontal stress when using a joint model that includes initial joint deformation; 2) 

Hydraulic fractures propagating with higher injection rate or fracturing fluid of higher 

viscosity propagate longer distance when turning to the direction of maximum horizontal 

stress; 3) Fracture trajectories are less dependent on injection rate or fluid viscosity when 

using a joint model that includes initial joint deformation; whereas, they are more 

dominated by injection rate and fluid viscosity when using a joint model that excludes 

initial joint deformation. 
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1 INTRODUCTION 

 

1.1 Hydraulic Fracturing 

Hydraulic fracturing is a process in which viscous hydraulic fluids and sorted 

proppant are mixed together and pumped into the wellbore to initiate and extend 

fractures in the rock formation. Hydraulic fracturing is a technique widely used in the 

petroleum industry to enhance the recovery of oil and gas from underground 

hydrocarbon reservoirs. It is also applied in the areas such as heat extraction from 

geothermal reservoirs, fault reactivation in mining and the measurement of in situ stress.  

1.2 Hydraulic Fracture Modeling 

Numerous analytical and numerical models have been developed to simulate 

hydraulic fracturing. The early efforts focused on analytical solutions for fractures of 

simple geometry, such as a straight crack in plane strain condition or a `penny-shaped 

crack (Geertsma and de Klerk 1969; Khristianovic and Zheltov 1955; Nordgren 1972; 

Perkins and Kern 1961; Sneddon 1946). All these solutions are approximate, and they 

contain simplifications in relation to either the opening or the pressure field within the 

crack. In recent years, research efforts have been directed towards the development of 

numerical algorithms to model the propagation of hydraulic fractures in rocks 

characterized by different mechanical properties and/or in-situ stresses, and natural 

discontinuities.  

____________ 
This thesis follows the style of SPE Journal. 
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Hydraulic fracturing is a complicated and challenging process to model, as it 

involves the coupling of at least three components:  

1) Mechanical deformation in rock induced by the fluid pressure on fracture 

surface 

2) Fluid flow within the fracture 

3) Fracture propagation in the rock formation. 

In the following sections, the modeling consideration of these three components 

is discussed in detail. 

1.2.1 Reservoir Rock 

In most current models, the mechanical deformation in the rock mass due to the 

fluid pressure on the fracture surfaces is assumed to be linear elastic. However, many 

natural substances such as rocks and soils are porous and their matrix is permeated by a 

fluid such as liquid or gas. Usually both solid matrix and the pore network (pore space) 

are assumed to be continuous and form two interpenetrating continua. Porous media 

whose solid matrix/fluid system behaves linearly under applied loads is called 

poroelastic.  

The theory of poroelasticity was introduced by Biot in 1941. Biot's equations of 

the linear theory of poroelasticity (see Appendix A) are derived from: Equations of 

linear elasticity for the solid matrix; Navier–Stokes equations for the viscous fluid;  

Darcy's law for the fluid flow through the porous matrix. The coupled poroelastic effects 
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of the deformation of fluid-saturated porous media can be summarized as follows 

(Vandamme et al. 1989):  

• Volumetric variations caused by changes in pore pressure: an increase of the pore 

pressure  can induce a volumetric expansion of the porous rock; 

• Pore pressure variations due to changes in mean stress: pore pressure is increased 

from the application of a confining pressure if the fluid is prevented from 

escaping (undrained condition);  

• The sensitivity of the volumetric response of the rock to the rate of loading: the 

rock stiffness ranges from Ku (undrained bulk modulus) to K (drained bulk 

modulus), depending on the loading rate. In fast loading, the fluid has not enough 

time to dissipate so the rock is undrained and appears stiffer. 

The poroelastic effects, which arise from coupling of the fluid flow and rock 

deformation, were mostly ignored in the fracture modeling. The inherent assumptions 

are that the time scale of the problem (diffusion) is such that poroelastic effects have not 

had time to develop and that the magnitude of the effect is small enough to be neglected 

(Boone et al. 1991). However, in many instances, such as injection into highly 

permeable sands or naturally fractured reservoirs, there is large leakoff into the 

formation during fracturing treatment so that poroelastic effects of significant magnitude 

can develop and need be considered. The poroelastic influences of a neighboring 

producing/inject well can create a heterogeneous stress field in the reservoir, and cause a 

hydraulic fracture to propagate deviating from its expected path of propagation 

(perpendicular to the minimum far-field compressive stress) (Berchenko and Detournay 
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1997). Also, pore pressure diffusion can decrease the effective stress in natural fractures 

promoting slip.  

The influences of coupled poroelastic processes on fracture opening have also 

been addressed previously (Detournay and Cheng 1991; Ghassemi and Zhang 2006; 

Vandamme et al. 1989). It has been shown that poroelastic effects could cause the crack 

opening to decrease with time and that the opening and closure of the crack in response 

to poroelastic loads would have a corresponding influence on the stress intensity factor 

(SIF) at the crack tip. Therefore, it is of interest to simulate fracture propagation 

considering poroelastic effects of the host rock. 

A few analytical procedures have been developed and used to solve the 

poroelastic effects on fracture propagation (Huang and Russell 1985; Ruina 1978). 

However, these analytical approaches are limited in solving many practical problems. 

Researchers have been continuing the efforts in developing various robust numerical 

methods such as the Boundary Element Method (BEM) (Crouch and Starfield 1983; 

Dong and de Pater 2001; Yan 2004) and the Finite Element Method (FEM) to solve 

crack problems. In terms of computational resources, BEM is more efficient than other 

methods, including FEM, for crack problems where surface/volume ratio is small, as in 

the BEM one only needs to construct a "mesh" over the modeled surface.  

The displacement discontinuity (DD) method lends itself nicely to solving 

problems involving injection/production using hydraulically induced or natural fractures 

and provides for more flexibility. The square root crack tip element (Yan 2004) in the 

2D real DD method greatly improves the accuracy of evaluation of stress/displacement 
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and the SIF at the crack tip. In our present work, the 2D real DD BEM is used to model 

fracture deformation and propagation considering poroelastic effects of the rock. 

1.2.2 Fluid Flow Within the Fracture 

Although actual fluids used for hydraulic fracturing treatments have complicated 

rheologies, such as viscoelasticity, usually the fluid flow within the fracture is modeled 

using a simple model. Typical underlying assumptions include: the fracturing fluid  has a 

uniform pressure distribution inside the fracture; the fracturing fluid is an incompressible 

Newtonian fluid such that the pressure gradient within the fracture is related to the flow 

rate and the fracture width governed by the Poiseuille's Law (Batchelor 1967); the 

fracturing fluid behavior can be approximated by a power-law model. In our current 

study, both assumptions of constant pressure distribution and Newtonian fluid are used 

as our focus is stimulation of unconventional gas reservoirs that are mostly treated with 

water. 

1.2.3 Fracture Propagation  

 

Fig. 1.1 Mode I, Mode II, and Mode III cracks (Wikipedia). 
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There are three different basic modes of fracture propagation as shown in Fig. 

1.1. Mode I is opening or tensile mode, where the crack surfaces move apart in a 

direction perpendicular to the surfaces. Mode II is sliding or in-plane shear mode, where 

the crack surfaces slide over one another in a direction perpendicular to the leading edge 

of the crack. Mode III is tearing or antiplane shear mode, where the crack surfaces move 

relative to one another in a direction parallel to the leading edge of the crack.  

The fracture propagation process is mostly modeled using linear elastic fracture 

mechanics (LEFM) theory, which assumes that the material is isotropic and linear elastic. 

Based on this assumption, the stress field near the crack tip is calculated using the theory 

of elasticity. LEFM is valid only when the zone of inelastic deformation at the crack tip 

is small compared to the size of the crack. The criterion of fracture propagation is mostly 

given by the maximum tangential tensile stress approach, conventional energy-release 

rate approach or stress intensity factor (SIF) approach. 

 The model we used here differs from those of previous studies in that it includes 

a more flexible crack initiation and propagation criterion - structural criterion 

(Dobroskok et al. 2005). This criterion is a unified criterion capable of predicting both 

Mode I (tensile, opening) and Mode II (sliding, shear) fracture propagation. Since 

Griffith’s (1924) paper on fracture of brittle materials, immense literature has appeared 

on this subject. Most of these works have focused on Mode I propagation. And most 

previous hydraulic fracture propagation model were based on Mode I or mixed-mode 

propagation, without considering the possibility of Mode II propagation. However, in 

many cases in rock mechanics, Mode II propagation may prevail, or appear at some 
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stage of crack growth. The importance of Mode II crack propagation in rock can be 

found in literature using both analytical (Bobet and Einstein 1998; Rao et al. 2003) and 

numerical (Bobet 2001; Tang et al. 2001) approaches. 

1.3 Interaction of Hydraulic Fractures and Natural Fractures 

The increased interest in exploration and production of low permeability 

reservoirs makes the design and evaluation of hydraulic fracturing treatments in these 

reservoirs a new challenge for industry. Many of the low permeability gas reservoirs, 

such as gas-bearing shales, and methane-bearing coals, are usually found crisscrossed by 

one more or sets of natural fractures where fracture can grow in a complicated manner.  

Under these circumstances, it is often found that the fracturing fluid and proppant 

can reopen and flow through the pre-existing fractures, as well as create new fractures in 

the rock (Fisher et al. 2002). Also, shear stresses accumulated in the rock mass (due to 

the natural anisotropy of stresses and the presence of discontinuities such as natural 

fractures and faults) tend to be released during a treatment, triggering shear slippage 

along the discontinuities (Warpinski et al. 2004). In Fig. 1.2, microseismic fracture 

mapping reveals that complex network of fractures can be created in shale reservoir 

during fracture stimulation. 
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Fig. 1.2 Complex network of fractures created in shale reservoirs by fracture 

stimulation (images courtesy of Halliburton (Matt Blauch and Grieser)).  

The problem of induced and natural fracture interaction has been the subject of 

many theoretical (Potluri et al. 2005), experimental/analytical (Blanton 1982; Warpinski 

and Teufel 1987), and numerical (Cooke and Underwood 2001; Koshelev and Ghassemi 

2003; Thiercelin and Makkhyu 2007; Wu et al. 2004; Zhang and Jeffrey 2006) studies.  

Blanton (1982) presented a simple analytical fracture interaction criterion 

relating differential stress and angle of interaction to extrapolate the lab results to field 

simulations. Warpinski and Teufel (1987) derived a fracture interaction criterion to 

predict whether the hydraulic fracture causes a shear slippage on the natural fracture 

plane causing arrest of the propagating fracture or dilates the natural fracture leading to 

excessive leakoff. Renshaw and Pollard (1995) provided a criterion for crack behavior 

that is near and orthogonal to un-bonded interfaces.  
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Potluri et al. (2005) reviewed various fracture interaction criteria and presented a 

systematic criteria for different types of fracture propagation modes near natural 

fractures, based on the conditions of differential stress, angle of intersection, and fracture 

toughness, and pressure drop within the natural fractures. However, for these analytical 

attempts, the in-situ stresses along the natural discontinuities were assumed not to have 

been affected by the hydraulic fracture, i.e., the mechanical interactions between the 

hydraulic fracture and the natural fracture were not considered.  

Cooke and Underwood (2001) investigated the local sliding, de-bonding and the 

subsequent opening along bedding contacts using a Displacement Discontinuity (DD) 

method to study the probable fracture intersection modes with natural bedding contacts. 

The bedding contacts they considered were sliding-only interfaces, opening-only 

interfaces, and both sliding and opening interfaces. However the fracture considered in 

their study is far-field tension stress driven instead of fluid driven.  

Koshelev and Ghassemi (2003) simulated the trajectory of a hydraulically driven 

crack near  natural fractures, and interface between two inhomogeneous blocks using the 

complex variable hypersingular boundary element method (BEM). They demonstrated 

that natural fractures and other inhomogeneities can generate unstable fracture 

configurations under different initial crack inclination, loading, and geometry. But the 

pressure distribution along the hydraulic fracture was assumed to be constant and fluid 

flow remained to be solved in their simulated process. 

Wu et al. (2004) studied fracture behavior crossing a bi-material interface. They 

used Griffith type global fracture criterion with anisotropic specific fracture energy, in 
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addition to conventional mass and energy balances.  The basic assumption in their study 

that fluid within the fracture follows a uniform pressure and that the interface is welded 

and no-slipping remained to be improved. 

Zhang et al. (2006) considered fluid flow in the hydraulic fracture and obtained 

the resulting pressure distribution as it intersected the natural fracture and examined the 

conditions for further fracture propagation.  The rock formation was modeled as an 

impermeable homogeneous elastic medium, and the fluid was modeled as an 

incompressible, Newtonian fluid injected at a constant rate. The frictional stress on the 

surfaces of pre-existing fractures was assumed to obey the Coulomb law. The DD 

method and the finite difference method were employed to deal with this coupling 

mechanism of rock fracture and fluid flow. 

Thiercelin and Makkhyu (2007) presented a semi-analytical model based on the 

dislocation theory to predict the reactivation of a natural fault with an approaching 

hydraulic fracture. They assumed that re-initiation occurs prior to fracture touching the 

interface. They analyzed the maximum tensile stress on the opposite side of the natural 

fractures to determine the most probable location of fracture re-initiation.  However, the 

influence of natural fracture reactivation on the change of in-situ stress and the resultant 

change of fracture response and interaction mode were not considered. 

As a result of the complex nature of the problem, these investigations have been 

limited to the case of one HF approaching a single joint. The results have shown that the 

fracture patterns that can occur for hydraulically induced fractures propagating near 

natural fractures can be complex, and are determined by the state of stress in the 
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neighborhood of the intersection and joint material properties. Generally, four types of 

interaction have been recognized using the 2D plain strain studies, as shown in Fig. 1.3; 

a hydraulic fracture can across the natural fracture without changing direction or it can 

be terminated by the natural fracture, it can propagate along the natural fracture, or 

reinitiate across the with an offset or jog (Zhang and Jeffrey 2006). 

 

Fig. 1.3 Four types of interaction between hydraulic fracture and natural fracture 

(artwork from Zhang et al. (2006)). 

Despite their limitations, numerical modeling has become an indispensable tool 

for researchers to obtain a more complete picture of the detailed process of fracture 

propagation near natural discontinuities. 
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Hydraulic fracture growth behavior in a naturally-fracture rock differs greatly 

from that of an intact rock. Models that can couple fluid flow, rock deformation, 

frictional and opening behavior of the natural interface and fracture propagation 

mechanics are needed to allow estimation of the stimulated volume when fracturing 

unconventional energy resources. Often, the model ought to consider poroelastic the 

effects of pore fluid diffusion on rock deformation to better understand the pressure 

history recorded during stimulation jobs. 

1.4 Research Objectives  

The main objectives of this study are: 

• To study the interaction between a hydraulic fracture and a natural fracture.  

• To study (via a parametric analysis) the effect of the model input parameters, 

such as rock, joint, and fluid properties, on the stresses/displacements distribution 

and the possible slipping/opening along the joint.  

• To observe the general behavior of natural fractures and hydraulic fractures. 

• To model the process of hydraulic fracture tip approaching pre-existing natural 

fractures.  

• To quantify the orientation and extension of the stimulated fracture. 

1.5 Sign Convention  

In rock mechanics, compressive stresses are generally considered as positive for 

the convenience of engineering use. In this thesis, in order to be consistent with the rock 
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mechanics literature, all equations are presented using the compression positive 

convention. This sign convention is adopted for the remainder of this thesis.  



14 

 

 

2 MODEL SETUP 

 

2.1 Constant Displacement Discontinuity Method 

Consider a line crack over a line segment , 0x a y≤ =  in an infinite elastic 

material, as shown in Fig. 2.1. There is a constant displacement discontinuity when 

crossing over the crack, which can be defined as (Crouch and Starfield 1983): 

( ,0 ) ( ,0 )

( ,0 ) ( ,0 )

x x x

y y y

D u x u x

D u x u x

− +

− +

= −

= −
    .................................................................................. (2.1) 

2a

Dx

Dy

y

x

2a

Dx

Dy

y

x

2a

Dx

Dy

y

x

y=0+

y=0-

2a

Dx

Dy

y

x

2a

Dx

Dy

y

x

2a

Dx

Dy

y

x

y=0+

y=0-

 

Fig. 2.1 Constant displacement discontinuity components over a line segment. 

The displacements and stresses at a point (x,y) due to the constant displacement 

discontinuity Dx, Dy over the line segment are given by Crouch (1983):   

, , , ,

, , , ,

2(1 ) (1 2 )

(1 2 ) 2(1 )

x x y xx y x xy

y x x xy y y yy

u D f yf D f yf

u D f yf D f yf

ν ν

ν ν

   = − − + − − −   

   = − − + − −   

    ........................................ (2.2)            
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, , , ,

, , , ,

, , ,

2 2 2

2 2

2 2

xx x xy xyy y yy yyy

yy x xyy xyy y yy yyy

xy x yy yyy y xyy

GD f yf GD f yf

GD yf yf GD f yf

GD f yf GD yf

σ

σ

σ

   = + + +   

   = − + + −   

   = + + −   

   .............................................. (2.3)                                       

where 

2 2 2 2

1
( , ) [ (arctan arctan )

4 (1 )

( ) ( ) ( ) ( ) ]

y y
f x y y

x a x a

x a In x a y x a In x a y

π ν
= − − −

− − +

− − + + + + +

     ....................................... (2.4)                            

Knowing the analytical solution for a single, constant elemental displacement 

discontinuity (DD), we can find the numerical solution to any problem by discretizing a 

curved crack with enough elements and by summing the effects of all N elements. The 

discretized form of displacement discontinuity equation can be formed as (Crouch and 

Starfield 1983): 

1 1

1 1

N Nij j ij ji

s ss s sn n

j j

N Nij j ij ji

n ns n nn n

j j

A D A D

A D A D

σ

σ

= =

= =

= +

= +

∑ ∑

∑ ∑

     ............................................................................... (2.5)  

, and 

1 1

1 1

N Nij j ij ji

s ss s sn n

j j

N Nij j ij ji

n ns n nn n

j j

u B D B D

u B D B D

= =

= =

= +

= +

∑ ∑

∑ ∑

   .................................................................................. (2.6)   

where
j

s
D and 

j

n
D are the shear and normal components of discontinuity with respect to 

the local co-ordinates s and n at the jth element. 
i

s
σ and

i

n
σ are the shear and normal stress 



16 

 

 

at the midpoint of the ith element. 
i

s
u and 

i

n
u are the shear and normal displacement at the 

midpoint of the ith element. A and B are the influence coefficient matrix accounting for 

the different positions and orientations of each element.  

Given the boundary conditions on each element, we can solve the system of 

algebraic equations of Eq. (2.5) and (2.6), and get the values of elemental DD that are 

necessary to produce the boundary condition, element by element along the crack. Once 

the displacement discontinuities 
j

s
D and 

j

n
D along the crack are found, the displacements 

and stresses at any point in the body can be determined by using Eq. (2.5) and (2.6) with 

the influence coefficients calculated for the point of interest. 

2.2 Crack Tip Element 

The theory of linear elastic fracture mechanics shows that the relative 

displacement between the crack surfaces in the small vicinity of the crack tip is 

proportional to r1/2 (r is measured from the tip along the crack). Therefore, the constant 

DD method cannot produce accurate estimate of the stresses and displacements near the 

crack tip. To account for the r
1/2 variation, we used a special crack tip element at the 

crack tip. The schematic for a left crack tip is shown in Fig. 2.2 and the DD for a left 

crack tip element can be written as (Yan 2004):  

0.5

0.5

x s

y n

a
D H

a

a
D H

a

ξ

ξ

+ 
=  

 

+ 
=  

 

   ............................................................................................. (2.7)  
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where Hs and Hn are the tangential and normal displacement discontinuity quantities at 

the center of the crack tip element.  

 Substitution of Eq. (2.7) into Eq. (2.2) and (2.3), the displacements and stresses 

at the crack tip then can be expressed in terms of Hs and Hn. The corresponding 

influence coefficient functions are given in Appendix B for completeness. 

 

Fig. 2.2 Special crack tip displacement discontinuity at the left crack tip. 

2.3 Fracture Propagation Scheme 

We used the structural criterion (which has been described in detail in 

Dobroskok’s (2005) paper) for modeling and automatic tracking of tensile and shear 

mode crack propagation.                                                                                      

The tensile driving force 
I

f  is defined as averaged tangential stress ahead of the 

crack tip (Dobroskok et al. 2005): 

x 

y 

2a 

ξ 

a 

Di=Di(ξ) i=1,2 
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0

1
( )

d

If r dr
d

θθ θθσ σ= = ∫ , 0θθσ <   ........................................................................ (2.8)     

where d is the characteristic size of the fracture process zone (FPZ) (see Section 3.1.2 for 

definition).      

The shear driving force 
II

f is defined using Mohr-Coulomb criterion, relating to 

the averaged shear stress and tangential stress ahead of the crack tip (Dobroskok et al. 

2005): 

( ) tan ( )
II r r

f sign cθ θ θθσ σ φ σ= − − = , 0θθσ ≥  ...................................................... (2.9)                 

where φ is rock friction angle, c is rock cohesion, and 

0

1
( )

d

r r r dr
d

θ θσ σ= ∫  ............................................................................................. (2.10) 

The normalized driving forces can be defined as (Dobroskok et al. 2005): Mode I 

(normalized tensile driving force, 
I

F ): 

I
I

t t

f
F θθσ

σ σ
= = , 0θθσ <  ........................................................................................ (2.11) 

where tσ  is rock tensile strength; Mode II (normalized shear driving force,
II

F ): 

( ) tan ( )
II r r

II

f sign
F

c c

θ θ θθσ σ φ σ− −
= = , 0θθσ ≥  ................................................. (2.12)     
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Fig. 2.3 Structural criterion: average stress over the segment d (length of FPZ) in 

the small vicinity of the crack tip (after Dobroskok et al. 2005). 

To find the direction of crack propagation, normalized tensile and shear driving 

forces ahead of the crack tip are evaluated over a distance equal to the length of a FPZ, 

in directions comprising angles from –π to +π  with the current tip element, as shown in 

Fig. 2.3. The directions and the values of the maximum normalized tensile or shear 

driving force are determined and a new element is added according to the criterion 

summarized in Table 2.1. 

For Mode I (tensile mode) propagation, the propagation direction is the direction 

in which the normalized tensile driving force is maximum: 

{ })(max: θθθ
θ

II F=  ........................................................................................... (2.13)                                                                         

For Mode II (shear mode) propagation, the propagation direction is in the direction in 

which the normalized shear driving force is maximum: 

{ })(max: θθθ
θ

IIII F= .......................................................................................... (2.14)     

The corresponding maximum normalized tensile and shear driving forces at θI and θII are 

denoted as ( )
IMAX I I

F F θ=  and ( )
IIMAX II II

F F θ= , respectively. 
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Table 2.1 Different possibility, mode and direction of crack propagation 

(Dobroskok et al. 2005) 

Maximum Normalized Driving Forces    Mode    Direction    

F
IMAX

<1, F
IIMAX

<1 does not propagate  

F
IMAX

 >1, F
IIMAX

 <1 Mode I θp= θ
I
 

F
IMAX

 <1, F
IIMAX

 >1 Mode II θp= θ
II
 

F
IMAX

 > F
IIMAX

 >1 Mode I θp= θ
I
 

F
IIMAX

 > F
IMAX

 >1 Mode II θp= θ
II
 

In the case of a small FPZ ( / 0.1d ≤� ), the stresses at the crack tip (see Fig. 2.4) 

are calculated by the asymptotic analytical equation, which can be written as (Dobroskok 

et al. 2005): 

)3(
2

cos
2

1
),( 3 aKK

r
r III −=

θ

π
θσ θθ  ............................................................... (2.15)                                   

)]21([
2

cos
2

1
),( 23 aKaK

r
r IIIr −+=

θ

π
θσ θ   ................................................... (2.16)                            

where )2/tan(θ=a . 

As Eq. (2.15) and (2.16) are only valid at a small vicinity near the tip region, in 

the case of a large FPZ ( / 0.15d >� (� : half length of the crack)), the stresses at the 

crack tip are calculated as stresses at field points based on Eq. (2.5). 
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Fig. 2.4 Stress state in the vicinity of the crack tip.  

While evaluating the driving forces, the induced stresses at a point in the current 

time step are calculated by summing the influence of the fictitious fluid sources over all 

elements in the system and over all preceding time steps. The boundary conditions on a 

newly added element are considered to be the same as those of the initial crack. 

2.4 Newtonian Fluid Flow Within the Hydraulic Fracture 

Fig. 2.5 Geometry for a plane strain fracture and the fluid flow within the fracture. 
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Apart from the assumption of constant fluid pressure distribution along the 

hydraulic fracture, we also model the fluid flow within the fracture as an incompressible 

Newtonian fluid in our study, as our focus is stimulation of unconventional gas 

reservoirs that are mostly treated with water. 

The hydraulic fracture can be considered in a plane strain condition in the xy 

plane, when fracture height H >>fracture length L, as plotted in Fig. 2.5. Ignoring the 

fracture leakoff term, the continuity equation for flow of an incompressible fluid in the 

hydraulic fracture can be written as:  

q

t x

ω∂ ∂
=

∂ ∂
 ............................................................................................................. (2.17) 

where ω is the hydraulic fracture width, and q is the fluid flux through a cross-section of 

the fracture. Fluid flux can be expressed with respect to the fracture width and pressure 

gradient along the hydraulic fracture based on Poiseuille’s law (Batchelor 1967): 

3

12

f
p

q
x

ω

µ

∂
=

∂
 ....................................................................................................... (2.18)  

where pf is the fluid pressure within the hydraulic fracture. 

The boundary condition of the problem is: 

(0, )
i

q t q const= =  ............................................................................................... (2.19)  

where qi is the fluid injection rate at the wellbore (x=0). At the fracture tip, it is assumed 

that the net fluid pressure becomes zero, which can be expressed as: 

( , ) 0
f l n

p x t σ− =  ................................................................................................. (2.20) 

where σn is the far-field stress normal to the fracture surface. Initially, the fracture is 

closed, so the initial condition is: 
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( ,0) 0xω =  .......................................................................................................... (2.21) 

Eq. (2.17) is discretized using the implicit finite difference method from time 

m
t to 1m

t + : 

1 1 1

1/2 1/2

m m m m

i i i i
q q

t x

ω ω+ + +
+ −− −

=
∆ ∆

 ...................................................................................... (2.22) 

 where 1m m
t t t+∆ = − and  1/2 1/2i i

x x x+ −∆ = − . 

Let 
1 1

1 1
1/2

2

m m

m i i

i

ω ω
ω

+ +
+ +

+

+
= , and 

1 1
1 1

1/2
2

m m

m i i

i

ω ω
ω

+ +
+ −

−

+
= . According to Eq. (2.18) we can get: 

1 1 3 1 1

1 1
1/ 2

( )

8 12

m m m m

i i i i

i

p p
q

x

ω ω

µ

+ + + +
+ +

+

+ −
=

× ∆
 ......................................................................... (2.23) 

1 1 3 1 1

1 1
1/2

( )

8 12

m m m m

i i i i

i

p p
q

x

ω ω

µ

+ + + +
− −

−

+ −
=

× ∆
 ......................................................................... (2.24) 

Substituting Eq. (2.24) into Eq. (2.22) yields: 

1

1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1

1 1 1 1 1 12
( ) ( ) ( ) ( )

(8) 12 ( )

m m

i i

m m m m m m m m m m m m

i i i i i i i i i i i i

t
p p p p

x

ω ω

ω ω ω ω ω ω ω ω
µ

+

+ + + + + + + + + + + +
+ + + − − −

− =

∆
 + − + − + + + × ∆

(2.25) 

The boundary conditions in Eq. (2.19) and (2.20) can be written in discretized form into: 

For i=1,  

1/2

m

l
q q=  ............................................................................................................ (2.26) 

For i=n,  

m

n n
p σ=  ............................................................................................................. (2.27) 

Initial condition can be written into: 

0 ( ,0) 0
i i

xω ω= =  ................................................................................................ (2.28) 

Combining Eq. (2.25), (2.26), (2.27) and (2.28) yields: 
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1 1 1

1 1

m m m

i i i i i i ia p b p c p d
+ + +

− ++ + =  ...................................................................................... (2.29) 

where  

1 1 3

1

1 1 3 1 1 3

1 1

1 1 3

1

1

2

( )

( ) ( )

( )

( / 8 '( ) )

m m

i i i

m m m m

i i i i i

m m

i i i

m m

i i
i

a

b

c

d
t x

ω ω

ω ω ω ω

ω ω

ω ω

µ

+ +

−

+ + + +
+ −

+ +
+

+

= +

= − + − +

= +

−
=

∆ ∆

  for i=2 to n-1 ................................................. (2.30) 

where ' 12µ µ=  

,0, 1,n n n na b d σ∞= = =  .......................................................................................... (2.31) 

and  

1

1 1 3

1 1 2

1 1 3

1 1 2

1

1 1

1 2

0

( )

( )

( / 8 '( ) )

m m

m m

m m t
lx

a

b

c

q
d

t x

ω ω

ω ω

ω ω

µ

+ +

+ +

+ ∆
∆

=

= − +

= +

− −
=

∆ ∆

 .............................................................................................. (2.32) 

When the fluid pressure along the fracture has a prescribed value and uniformly 

distributed, the fracture width can be explicitly solved for by using the DD method as 

described Section 2.1. However, the main challenge for modeling a Newtonian fluid 

flow model is to determine two unknown and dependent variables, the fracture width 

and the fluid pressure distribution along the fracture. The two underlying coupling 

mechanisms are: 1) The fracture aperture (as mechanical response of the reservoir rock) 

changes with the applied loading which is imposed on the fracture surfaces by the fluid 

pressure; 2) The fluid pressure and the resultant pressure gradient along the fracture are 
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related to the fracture width according to the Poiseuille’s law. An iterative process is 

needed to solve for the pressure distribution and the fracture aperture.  

The iteration process can be explained as follows. During each time step, at kth 

iteration between width and fluid pressure along the fracture, a trial solution for the fluid 

pressure 1( ) ( )

1( , )m k k

i i m
p p x t+

+= along the fracture is first used then, the DD method as 

described in Section 2.1 is used to solve the fracture width ( )1 ( )

1( , )
m k k

i i m
x tω ω+

+= . This 

fracture width 1( ) ( )

1( , )m k k

i i m
x tω ω+

+=  is then substituted into Eq. (2.29) to solve for a new 

fluid pressure distribution 1( 1/2) ( 1/2)

1( , )m k k

i i m
p p x t+ + +

+= along the fracture. The process is 

continued within each time step until convergence i.e., when the difference between the 

two sets of width/fluid pressure approaches zero (or is less than a very small value). 

To shorten and stabilize the iteration process, a relaxation factor α is used to get 

the fluid pressure for the next cycle of iteration. 

1( 1) 1( ) 1( 1/2) 1( )( )m k m k m k m k

i i i i
p p p pα+ + + + + += + −  ........................................................... (2.33) 

The fracture length is increased by a fixed element size, and the time length is 

adjustable within each time step. The length of each time step is first assumed to be a 

certain value, and then the facture volume is calculated by numerical integration of the 

fracture length and calculated values of fracture width. If the volume pumped is greater 

/smaller than the assumed time length, then the time is increased/decreased by small 

increments. The newly adjusted time length is then used to calculate the next 

approximation of fracture width. This procedure is repeated until convergence criterion 

meets i.e., when the difference between two sets of time length approaches zero. 



26 

 

 

3 MODEL VERIFICATION 

 

3.1 Evaluation of SIF 

3.1.1 Different SIF Calculated by Using Different Lengths of Tip Element, 

Lengths of Ordinary Element and d (Length of FPZ) 

The stress intensity factor (SIF) is a parameter used to characterize the stress 

field near the crack tip, and it is used to evaluate the stress ahead of the crack tip and 

further determine fracture propagation direction and mode according to the structural 

criterion as explained in Section 2.3. The magnitude of SIF depends on the geometric 

configuration, the size and location of the crack and loading conditions of the body. SIF 

can be obtained by using analytical, numerical and experimental methods. In a boundary 

element modeling, SIF is usually calculated in two approaches. One is using the DD at 

the crack tip as expressed by the following equation (Yan 2004): 

2
( )

4(1 )

2
( )

4(1 )

I n

II s

G
K D r

r

G
K D r

r

π

ν

π

ν

=
−

=
−

   ...................................................................................  (3.1) 

where Dn (r) and Ds(r) are the normal and shear components of DD at a distance r from 

the crack tip. 

The other approach for calculating SIF at the crack tip is using the stresses ahead 

of the crack tip by the following equation (Rice 1968): 
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( ) 2

( ) 2
I n

II s

K r r

K r r

σ π
σ π

=
=

 ................................................................................................. (3.2) 

where σn (r) and σs(r) are the normal and shear components of the stresses at the point 

located along the tangent of the crack, and at a distance r from the crack tip as shown in 

Fig. 3.1. 

 

Fig. 3.1 SIF calculated based on the stresses ahead of the crack tip. 

The program has been extended to include tip element at each crack tip, and 

fracture propagation has been enabled from both crack tips. To verify the accuracy of the 

code for calculating SIF at the crack tip, the SIF of a straight crack in an infinite elastic 

space, as shown in Fig. 3.2, was checked against the analytical value by using different 

lengths of tip element, lengths of ordinarily element and d (length of FPZ). 

σn(r), σs(r) 

r 
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Fig. 3.2 A slanted pressurized crack under biaxial stresses in an infinite elastic 

medium. 

The analytical solution for SIF at the crack tip is (Woo and Ling 1984): 

I I
K aσ π=  .................................................................................................  (3.3) 

II II
K aσ π=  ........................................................................................................ (3.4) 

where 
2

a =
�

and 

11I
pσ σ= −  .......................................................................................................... (3.5)  

12II
σ σ=  ............................................................................................................... (3.6) 

11σ  and 12σ are far-field stresses with respect to the local coordinates of the crack. SIFs 

calculated based on DDs by using Eq. (3.1) and on stresses by using Eq. (3.2) are shown 

and compared in Table 3.1. 

x

y

h
S

H
S

�

p

11σ
12σ
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Table 3.1 SIFs calculated by using DDs and stresses 

SIF calculated based on DDs 

 

 
0.6

tip
=� �  

  
0.5

tip
=� �  

  
0.4tip =� �  

  0.3tip =� �  
  

 0.2
tip

=� �  
 

 0.1ord =� �   0.1ord =� �   0.1ord =� �   0.1ord =� �    0.1ord =� �  
 

KI 1.34E+06 0.71% 1.30E+06 0.69% 1.25E+06 0.78% 1.21E+06 1.17% 1.17E+06 2.35% 

KII 1.06E+06 0.70% 1.02E+06 0.68% 9.86E+05 0.78% 9.51E+05 1.16% 9.21E+05 2.34% 

  
 0.1

tip
=� �  

  
 0.075

tip
=� �  

  
0.05

tip
=� �  

  0.05
tip

=� �  
    

  0.1ord =� �    0.1ord =� �   0.1ord =� �   0.05ord =� �      

KI 1.17E+06 7.22% 1.19E+06 10.89% 1.26E+06 18.43% 1.17E+06 7.61%   

KII 9.20E+05 7.26% 9.40E+05 10.90% 9.91E+05 18.43% 9.24E+05 7.69%   

SIF calculated based on stresses, d=0.01l  

  
 0.2

tip
=� �  

 
 0.1

tip
=� �  

 
 0.075

tip
=� �  

 0.05
tip

=� �  
 0.05

tip
=� �  

  

   0.1ord =� �   0.1ord =� �    0.1ord =� �   0.1ord =� �   0.05ord =� �    

KI 1.02E+06 -10.34% 1.02E+06 -6.75% 1.03E+06 -4.05% 1.08E+06 1.28% 1.01E+06 -7.30% 

KII 8.07E+05 -10.35% 8.00E+05 -6.72% 8.13E+05 -4.04% 8.47E+05 1.29% 7.96E+05 -7.23% 

SIF calculated based on stresses, d=0.05l 

  
 0.2

tip
=� �  

 
 0.1

tip
=� �  

 
0.075

tip
=� �  

 
0.05

tip
=� �  

 0.05
tip

=� �  
  

   0.1ord =� �    0.1ord =� �    0.1ord =� �   0.1ord =� �   0.05ord =� �    

KI 8.6E+05 -25.05% 8.40E+05 -22.88% 8.47E+05 -21.34% 8.65E+05 -18.60% 8.27E+05 -24.15% 

KII 6.7E+05 -25.06% 6.62E+05 -22.86% 6.67E+05 -21.33% 6.81E+05 -18.59% 6.51E+05 -24.10% 

It can be observed that SIFs calculated by stress formulae generally improve as 

the length of tip element gets smaller. The optimum ratio of 
tip
�  to 

ord
�  when the error is 

the smallest is 0.5. The error is the smallest when � tip=0.05 � , 
ord
� =0.1 � , and d=0.01� , 

which is about 1.28% when compared with the analytical values.  However, the results 

are not very good for SIFs calculated by using large d values (when d=0.05� ), as SIF 

calculated based on the stress formulae is only valid in a very mall vicinity of the crack 
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tip. The type of DD we used is real DD with equal length ordinary elements, so it is less 

accurate in estimating the stress ahead of the crack tip compared with the complex 

variable Boundary Element Method used by Dobroskok et al. (2005). 

The accuracy of SIF calculation based on DDs at the crack tip element is 

dependent on the selection of 
tip
�  and 

ord
� . The most accurate estimate of KI and KII are 

obtained when 0.5
tip

=� � and 0.1
ord

=� � . The SIF calculated by using DD formulae when 

0.1
tip ord

=� � and 0.1
ord

l = � gives an error of about 7.22%, which is acceptable for 

numerical estimates of rock engineering problems, and that is what we used in the 

following numerical calculation in this thesis. 

Table 3.2 also shows that SIFs calculated by DD formulae have the same error 

for cracks slanted at different angles with respect to x-axis. Therefore the crack 

propagation direction, which is determined by the value of KI /KII, can be modeled 

exactly.  

Table 3.2 SIFs calculated based on DDs 

 Analytical Numerical Error (%) 

Angle KI KII KII/KI KI KII KII/KI KI KII KII/KI 

30 0.4431 0.7675 1.7321 0.4752 0.8230 1.7320 7.23% 7.23% 0.00% 

45 0.8862 0.8862 1.0000 0.9503 0.9503 1.0000 7.23% 7.23% 0.00% 

60 1.3293 0.7675 0.5774 1.4254 0.8230 0.5774 7.23% 7.23% 0.00% 

90 1.7725 0.0000 0.0000 1.9006 0.0000 0.0000 7.23% 0.00% 0.00% 
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For both simplicity and accuracy, in the following numerical examples in this 

thesis, SIFs are calculated by choosing � tip and � ord to be 0.1 �  ( � : the original half 

crack length) to avoid remeshing of the elements with crack growth, and by using DD 

formulae, as SIFs calculated by this approach is independent on the selection of d. SIF 

calculated by the stress formulae will be dependent on the selection of d, so this 

approach is not adopted in the following numerical examples. 

3.1.2 Selection of d (Length of FPZ) 

Another important parameter in the modeling of the crack propagation process is 

d, the characteristic length of the fracture process zone. Fig. 3.3 illustrates a macro-crack 

(continuous traction-free crack) with its surrounding zone in a rock. The damaged zone 

ahead of the traction-free crack is referred to as the fracture process zone (FPZ) and it 

plays an important role in the analysis of growth of the crack. Within the FPZ many 

micro-failure mechanisms including matrix microcracking, matrix interface debonding, 

crack deviation and branching take place. A FPZ is called a small FPZ if / 0.1d ≤�  and 

non-small for / 0.15d >� (� : half length of the crack) (2005). 
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Fig. 3.3 A fracture process zone (Gdoutos 2005). 

The length of the FPZ, d, depends on the geometry and size of the structure, the 

type of material, and the considered scale of study, and in practice they are to be found 

experimentally. As shown in Dobroskok et al (2005), fracture would display different 

propagation trajectories for a small FPZ case ( / 0.05d =� ) and a non-small FPZ case 

( / 0.25d =� ). It is important to carefully select this value in order to get reliable 

modeling results.  

As another test case, the propagation of a slanted pressurized crack under biaxial 

stresses in an elastic space was modeled using different values of d, and the results are 

plotted in Fig. 3.4. (The input parameters were: half crack length � =1m, minimum 

horizontal stress Sh=-0.5MPa, maximum horizontal stress SH=-3MPa, internal fluid 

pressure within the fracture p=2.5MPa, cohesion c=2.2MPa, and tensile strength 

T0=2.0MPa). The calculated crack trajectories are similar and crack propagates in Mode 

I in three cases of small FPZ:  d=0.1� , d=0.05� , and d=0.01� . The modeling results 

are not sensitive to the variation of d as long as d falls in the small FPZ category. 
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However, when d is set to 0.5� (non-small FPZ), the fracture does not propagate forward. 

Due to the singularity of the stress distribution around the crack tip, the calculated 

averaged driving forces around the tip is a function depending strongly on d. The 

averaged normal and shear driving force will decline very rapidly with the increase of d. 

Therefore, propagation may not occur if a very large d is selected.  

Zhang (2002) showed that there is an empirical relation between Mode I fracture 

toughness and the tensile strength of the rock: 

T0 = 6.88 KIC ........................................................................................................ (3.7) 

which is valid for general rocks from soft to hard under the condition of quasi-static or 

low-speed impact loading. As pointed by Dobroskok (2005) for a small FPZ, 

0
2

IC

d
K T

π
=  ...................................................................................................... (3.8) 

Therefore, it can be estimated that 0.013md ≈ . For most cracks of length over 1m, d is 

within the range of a small FPZ. As we use real DD with equal length ordinary elements, 

the stress ahead of the crack tip determined by SIF formulae Eq.(2.15) and (2.16) is only 

valid for the very small vicinity of the crack tip. Therefore, in this thesis we only focused 

on cases of small FPZ.  
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Fig. 3.4 Fracture trajectories calculated with different d for a slanted pressurized 

crack under biaxial stresses in an infinite elastic medium.  
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3.2 Fracture Propagation (Elastic Case) 

3.2.1 Crack Propagation Under Biaxial Stress in an Infinite Elastic Rock 

 

Fig. 3.5 An initially straight pressurized crack under biaxial stresses.  

Using the example in Dong and de Pater’s paper (2001), the propagation path of 

a pressurized crack under biaxial compressive stresses in an infinite elastic rock is 

simulated (see Fig. 3.5). The input parameters are listed in Table 3.3. The maximum 

circumferential stress criterion was used in our example as in Dong and de Pater’s paper. 

Constant pressure distribution inside the crack was assumed.  

Table 3.3 Input parameters in Section 3.2.1  

E Young’s modulus 042.0 10×  MPa 

l initial half crack length 0.02 m 

υ  Poisson’s ratio 0.2   

KIC Mode I critical stress intensity factor 0.6 MPa·m1/2 

x

y

h
S

H
S

2l

p
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Fig. 3.6 Crack trajectories under different internal pressures.  

Fig. 3.6 shows the reorientation of crack trajectories under different internal 

pressures (p=24.3, 29.1 38.8 MPa) in the crack. Fig. 3.7 shows the reorientation of crack 

trajectories under different maximum horizontal stresses (SH=22.6, 19.4, 9.7 MPa). 

Similarly as those obtained by Dong (2001), the crack would reorient from its original 

direction (the direction of Sh) and propagate along the direction of SH under the far-field 

compressive  stresses. Different curves show that for crack with lower internal pressure 

or for a stress field with bigger difference between maximum horizontal stress SH and 

minimum horizontal stress Sh (higher degrees of anisotropy of the stress field), the 

direction of the crack path change more quickly.  
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As quadratic boundary elements were used by Dong while we used constant 

elements along the crack and tip element implemented at the crack tip, the preciseness of 

the fracture tip SIF calculation and our model results of fracture paths are slightly from 

those predicted by Dong. 

 

Fig. 3.7 Crack trajectories under different maximum horizontal stresses.  
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3.2.2 Crack Propagation under Uniaxial Stress in an Infinite Elastic Medium 

 

Fig. 3.8 A line crack under uniaxial stress in an infinite elastic medium. 

We also investigated the propagation of a straight line crack with a length of 

2 2ma =  in an infinite elastic space under plane-strain conditions as shown in Fig. 3.8. 

The crack surfaces are subjected to far-field tension, SH, at different angles γ with respect 

to the x-axis. We modeled the crack with ltip and lord equal to 0.1l and d=0.01l. To 

compare our results with previous studies, the maximum circumferential stress criterion 

was also used in the program. In view of the symmetry in geometry and mechanical 

loading of the problem, only half of the crack is plotted in Fig. 3.9. The crack grows in 

the direction perpendicular to the direction of far-field uniaxial tension as the crack is 

subjected to the greatest tension at this direction and can propagate most easily. The 

model results match the results in Mogilevskaya’s (2005) paper. 

x

y
H

S

γ

2a
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Fig. 3.9 Crack growth under uniaxial stress in an infinite elastic medium. 

 

Mogilevskaya 

(2005) 
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4 JOINT ELEMENT 

 

4.1 Joint Element 

For many problems in rock mechanics, the total stresses at any point in the rock 

can be represented as the sum of the initial stresses and the stress changes at that point, 

which is usually called the induced stress (Crouch and Starfield 1983). 

'

0( )
ij ij ij

σ σ σ= + .................................................................................................... (4.1)  

Similarly, total displacement can be represented as the initial displacement and the 

induced displacement. 

'

0( )
ij ij ij

σ σ σ= + .................................................................................................... (4.2)  

4.1.1 Joint Stick Mode (Elastic Joint Element) 

 

Fig. 4.1 Representation of an elastic joint element (a) normal stiffness; (b) shear 

stiffness. 

 

σn 

Kn 

σs 

Ks 

(a) (b) 
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4.1.1.1  Joint Element Excluding Initial Joint Deformation 

For an elastic joint element (shown in Fig. 4.1) with zero initial deformations, the 

joint elements deform only in response to the induced stress caused for example by an 

approaching hydraulic fracture. The relation between tractions and the DD’s on the joint 

surface are (Crouch and Starfield 1983): 

' '

' '

0

0

i i
i

n nn

ii i

s
s s

DK

K
D

σ

σ

   
    = −     
       

 ............................................................................... (4.3) 

where '
i

n
σ , '

i

s
σ  are the induced normal and shear stresses, and '

i

n
D , '

i

s
D  are the 

components of induced normal and shear DD vector on the i
th element of the joint 

surface. i

n
K  and i

s
K  are the normal and the shear rigidity of the joint. For a joint 

(having N elements) undergoing elastic deformation, the induced stresses on any 

element i are given by (Crouch and Starfield 1983): 

' ' '

1

' ' '

1

j ji N ij ij

s ss s sn n

j

j ji N ij ij

n ns s nn n

j

A D A D

A D A D

σ

σ

=

=

 
= + 

 

 
= + 

 

∑

∑
 for i=1 to N ................................................................. (4.4) 

where
ij

ss
A , 

ij

sn
A , 

ij

ns
A , 

ij

nn
A  are the boundary influencing coefficients as defined in Eq. 

(2.5). From Eq. (4.3) and (4.4), we can rewrite the system of equations in the following 

form: 
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' ' '

1

' ' '

1

0 ( )( )

0 ( )( )

j ji N ij iji

s s ss s sn n

j

j ji N ij iji

n n ns s nn n

j

K D A D A D

K D A D A D

=

=

 
 = + +
 
 

 
 = + +
 
 

∑

∑

 for i=1 to N .............................................  (4.5) 

which can be simplified as: 

[ ]
' '

' '

0

0

ss s sn s s

ns nn n n n

A K A D D
A K

A A K D D

+      
= = +      +       

.................................................. (4.6) 

By introducing the total joint deformation (
i

s
D and 

i

n
D ), which can be 

expressed as the sum of the initial total joint deformation ( 0( )
i

s
D  and 0( )

i

n
D ) and the 

induced deformation (Crouch and Starfield 1983): 

'

0

'

0

( )

( )

ii i

s s s
ii i

n n n

D D D

D D D

= +

= +
 .................................................................................................. (4.7) 

and assuming zero initial joint deformation for a joint, we write Eq. (4.5) as: 

1

1

0 ( )( )

0 ( )( )

j ji N ij iji

s s ss s sn n

j

j ji N ij iji

n n ns s nn n

j

K D A D A D

K D A D A D

=

=

 
 = + +
 
 

 
 = + +
 
 

∑

∑

 for i=1 to N ............................................  (4.8) 

This type of joint element has the assumption that the natural fracture under 

consideration has already reached equilibrium with geologic time and is closed and does 

not deform elastically or plastically under far-field stress prior to the process of 
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hydraulic fracturing. As the initial deformation on a fault was assumed to be zero, the 

initial stress field around a hydraulic fracture was not affected by the presence of the 

fault (Crouch and Starfield 1983).  

4.1.1.2 Joint Element Including Initial Joint Deformation 

In Section 4.1.1.1, we used a joint element without considering the initial joint 

deformation, which means the initial stress field prior to fracture propagation was not 

affected by the presence of the fault. Another type of joint element would include initial 

joint deformation prior to fracture propagation process. In this type of scenario, the 

initial stress field is disturbed by the initial deformation of the fault under the action of 

the far-field stress prior to the fracture propagation process. The joint is deformed 

(possibly plastically) under initial far-field stresses prior to the process of hydraulic 

fracturing.  

The initial total stress can be expressed as the sum of the far-field stress and the 

initial induced stress (Crouch and Starfield 1983). 

'

0 0 0( ) ( ) ( )
ij ij ij

σ σ σ∞= +  .......................................................................................... (4.9)  

(For a joint exclude initial joint deformation, we can obtain that 

0 0( ) ( )
ij ij

σ σ ∞=  ................................................................................................... (4.10))  

Similarly, the initial displacements can be expressed as the sum of the far-field 

displacements and the initial induced displacements. 
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'

0 0 0( ) ( ) ( )
i i i

u u u∞= +  ...........................................................................................  (4.11) 

For a joint system of N elements with elastic deformation, the initial total 

stresses at element i are (Crouch and Starfield 1983): 

0 0

0 0

( ) ( )( )

( ) ( )( )

i i i

s s s

i i i

n n n

K D

K D

σ

σ

= −

= −

 ..........................................................................................  (4.12) 

where 0( )
i

s
D  and 0( )

i

n
D are the initial total joint deformation. The initial induced 

stresses at element i are (Crouch and Starfield 1983):  

'

0 0 0

1

'

0 0 0

1

( ) ( ) ( )

( ) ( ) ( )

i N ij j ij j

s ss s sn n

j

i N ij j ij j

n ns s nn n

j

A D A D

A D A D

σ

σ

=

=

 
 = +
 
 

 
 = +
 
 

∑

∑

 ...................................................................... (4.13) 

where
ij

ss
A , 

ij

sn
A , 

ij

ns
A , 

ij

nn
A  are the boundary influencing coefficients as defined in Eq. 

(2.5). Combining Eq. (4.9), (4.12) and (4.13), we can obtain:  

0 0 0 0

1

0 0 0 0

1

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

N ij j ij ji i i

s s s ss s sn n

j

N ij j ij ji i i

n n n ns s nn n

j

K D A D A D

K D A D A D

σ

σ

∞

=

∞

=

 
 − = + +
 
 

 
 − = + +
 
 

∑

∑

 for i=1 to N ............................. (4.14) 

which can be simplified as 
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[ ]0 00

0 00

( ) ( )( )

( ) ( )( )

ss s sn s ss

ns nn n n nn

A K A D D
A K

A A K D D

σ

σ

∞

∞

+ −      
= = +       +−       

 .............................. (4.15) 

Initial total joint deformation 0( )
i

s
D and 0( )

i

n
D  can therefore be solved. The same form of 

equation can also be derived in relation to the total joint deformation Ds and Dn (Crouch 

and Starfield 1983): 

0

1

0

1

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

N ij j ij ji i i

s s s ss s sn n

j

N ij j ij ji i i

n n n ns s nn n

j

K D A D A D

K D A D A D

σ

σ

∞

=

∞

=

 
 − = + +
 
 

 
 − = + +
 
 

∑

∑

 for i=1 to N ................................. (4.16) 

In this assumption, the mechanical response of a natural fracture under far-field 

stresses would distort the initial stress field prior to the propagation of hydraulic fracture.  
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4.1.2 Joint Slip Mode 

 

Fig. 4.2 Mohr diagram for a MC joint element under different contact mode under 

different stress conditions.  

During elastic deformation, there is a constraint between the normal and shear 

stresses across the joint, which is given by the Mohr-Coulomb condition (Fig. 4.2). The 

total shear stress across a Mohr-Coulomb joint element cannot exceed the value 

specified by Eq. (4.17) (Crouch and Starfield 1983). 

, tan
i i i i i

s s yield n cσ σ φ σ 
≤ = ⋅ + 

 
 ....................................................................... (4.17)  

i

nσ  

i

sσ  , tan
i i i i i

s s yield n cσ σ φ σ 
= ≤ ⋅ + 

 
 

i

2φ  

2
i

c  

cot
i i

c φ  

Stick/bonded 

Frictional sliding 
Opening 
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where 
i

φ  is the angle of friction, and 
i

c  is the cohesion. It requires that the element be 

allowed to undergo a certain amount of inelastic deformation or permanent slip, when 

the total shear stress on a joint element, 
i

sσ , exceeds the total yield stress ,

i

s yieldσ .  

The simulation of the joint displacements and stresses under yield condition is 

explained as follows. Suppose the current values of the DD components on element i are 

'
i

n
D , '

i

s
D (if initial joint deformation is excluded). If no inelastic deformation occurred 

during this or any previous loading the total normal stress and shear stress are: 

( ) '

0

( ) '

0

( ) ( )

( ) ( )

ii i
k

s total s s

ii i
k

n total n n

σ σ σ

σ σ σ

= +

= +

 ................................................................................... (4.18)  

Combining Eq. (4.18) with Eq. (4.4), we can get 

' '

0

1

' '

0

1

( ) ( )

( ) ( )

j jN ij iji i

s total s ss s sn n

j

j jN ij iji i

n total n ns n nn n

j

A D A D

A D A D

σ σ

σ σ

=

=

 
 = + +
 
 

 
 = + +
 
 

∑

∑

................................................................ (4.19) 

According to Eq. (4.17), the yield stress is: 

, ( ) tan
i i i i

s yield n total
cσ σ φ= + ⋅  .................................................................................. (4.20) 

The magnitude of the shear stress ( )
i

s total
σ calculated from Eq. (4.19) cannot exceed the 

yield stress defined in Eq. (4.20). If the element is yielding, the total shear stress must 
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equal the yield stress, so combining Eq. (4.19) and (4.20), we can get the governing 

equation for the shear deformation at the ith joint element if joint yield occurs: 

' '

0

1

, ( )
j jN ij iji i

s yield s ss s sn n

j

A D A Dσ σ
=

 
 ± = + +
 
 

∑  ................................................................ (4.21) 

The positive value of the yield stress ,
i

s yield
σ is used if the total shear stress ( )

i

s total
σ is 

positive, and the negative value is used if it is negative.  

( , ) (( ) )
i i

s yield s total
sign signσ σ=  ............................................................................. (4.22) 

(In a convention system where compression is positive, σs is positive if point to the left 

with respect to the outward of a surface.) 

The governing equation for the normal deformation is obtained from Eq. (4.5) for a joint 

element excluding initial joint deformation: 

' ' '

1

0 ( )( )
j ji N ij iji

n n ns s nn n

j

K D A D A D
=

 
 = + +
 
 

∑  .............................................................. (4.23) 

The initial joint deformation is zero for a joint in this case, so '
ii

s s
D D= and '

ii

n n
D D=  

and Eq. (4.21), (4.23), and (4.10) can be written as: 

1

1
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j jN ij iji i
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 
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∑

∑

................................................................ (4.24) 
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 Similarly, the governing equation for the normal deformation is obtained from 

Eq. (4.14) for a joint element including initial joint deformation: 

0 0 0 0

1

( ) ( )( ) ( ) ( )
N ij j ij ji i i

n n n ns s nn n

j

K D A D A Dσ ∞

=

 
 − = + +
 
 

∑  for i=1 to N ............................. (4.25) 

Therefore, the corresponding system of equations is: 

, 0

0

( )
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ss sns yield s s
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∞ ∞

∞

   ± −  
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......................................................... (4.26) 

Similarly, the positive value of the yield stress ,
i

s yield
σ is used if the total shear stress 

( )
i

s total
σ is positive, and the negative value is used if it is negative, as expresses in Eq. 

(4.22).  

 The same form of equation can also be derived in relation to the total joint 

deformation Ds and Dn (Crouch and Starfield 1983): 

1

1

, ( )

( ) ( )( )

j jN ij iji i

s yield s ss s sn n

j

j ji N ij iji i

n n n ns s nn n

j

A D A D

K D A D A D

σ σ

σ

∞

=

∞

=

 
 ± − = +
 
 

 
 − = + +
 
 

∑

∑

 ......................................................... (4.27) 

4.1.3 Joint Opening Mode 

 Joint separation or tensile cracking is another possible failure mode for the joint 

element, as shown in Fig. 4.2. According to the Mohr-Coulomb condition, the tensile 

strength of a joint element can be expresses as: 
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cot
i i i

n cσ φ=  ....................................................................................................... (4.28) 

When the tensile stress across an element is greater than the tensile strength
i

nσ , the 

element needs to be allowed to crack open, in which the total normal and shear stresses 

become zero.  

The total stress on element i is equal to the summation of far-field stress and 

induced stress: 

( ) ( ) ( )
total indi i i

σ σ σ
∞

= +  ........................................................................................ (4.29) 

For a joint with N element, if element i becomes an open joint element, the equation 

takes the form: 

1

1

0 ( ) ( )

0 ( ) ( )

N ij j ij ji i
ind

s s ss s sn n

j

N ij j ij ji i
ind

n n ns s nn n

j

A D A D

A D A D

σ σ

σ σ

∞

=

∞

=

 
 − = = +
 
 

 
 − = = +
 
 

∑

∑

 .......................................................... (4.30)  

where Ass, Asn, Ans, Ann are the influence coefficient matrix accounting for the different 

positions and orientations of each element as defined in Eq.  (2.5). 

The simulation of the joint displacements and stresses under opening mode is as 

follows. Suppose the current values of the DD components at element i are 
i

n
D ,

i

s
D , if no 

opening mode occurred during this or any previous loading, calculate the total normal 
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stress and shear stress along the joint. If ( ) cot
i i i

n total
cσ φ≥ ⋅ , governing Eq. (4.30) is used to 

calculate 
i

n
D and

i

s
D .  

4.2 Numerical Procedure 

For problems involving joint elements, the contact type (stick, yield or open) and 

the displacements/stresses of each element along the joint are unknown. But if the 

contact mode is known, the corresponding governing equations relating the stresses and 

DD in Section 4.1 can be used to solve the DD at each element. Then, the stresses along 

the joint can be obtained and used to check the contact state again. If the new and the old 

contact modes are not in agreement, the assumed contact mode must be changed and DD 

must be solved again. The process will be stopped when the new and the assumed 

contact modes are the same and resultant DD and stresses along the joint converge. The 

iterative procedure can be summarized and listed as follows (see Appendix C for the 

detailed flowchart): 

1) Within each time step, at k
th iteration and at element i, first a joint contact 

type (for example stick mode) is assumed and the corresponding kth estimates 

for the normal and shear displacements
( )ki

n
D , 

( )ki

s
D  at the i

th element are 

obtained using Eq.(4.8) or (4.16).  

2) The total normal and shear stresses at the ith element ( )( )
i

k

n total
σ  and ( )( )

i
k

s total
σ  are 

calculated by Eq. (4.31) as followed: 



52 

 

 

The total stress on a joint element in the system is obtained by adding the far-

field stressσ ∞ and the induced stress indσ resulting from the deformation of all 

elements present in the system which is: 

 

( ) ( )

( )

0

1

( ) ( )

( )

0

1

( ) ( )

( ) ( )

k kj jN ij iji i
k

s total s ss s sn n

j

k kj jN ij iji i
k

n total n ns s nn n

j

A D A D

A D A D

σ σ

σ σ

∞

=

∞

=

 
 = + +
 
  

 
 = + +
 
  

∑

∑

 ...................................... (4.31) 

3) Calculate the yield stress at the kth iteration according to Eq. (4.20). Then a 

check is made to see whether the yield/opening condition is met or not 

according to Eq. (4.20) and (4.28).  

4) If the yield condition is met, Eq. (4.24) or (4.27) is used to compute the next 

approximation of the normal and shear displacements at the i
th elements 

( 1)ki

n
D

+

 and 
( 1)ki

s
D

+

. 

5) If the yield condition is not met, Eq.(4.8) or (4.16) are used to compute the 

next approximation of the normal and shear displacements at the ith elements, 

( 1)ki

n
D

+

 and 
( 1)ki

s
D

+

. 

6) If the opening condition is met, Eq.(4.30) is used to compute the next 

approximation of the normal and shear displacements at the i
th elements, 

( 1)ki

n
D

+

 and 
( 1)ki

s
D

+

. 
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7) Continue to step 2) and check the contact mode again. If the new contact 

mode does not match the old one, the assumed contact mode must be 

changed and DD must be solved again. Continue the iterative process until 

DD and stresses at each element i converge (the difference between the 

stresses of two iteration cycles approaches zero or less than a small 

value: ( 1) ( ) 2 ( 1) ( ) 2 3 2

1 1

(( ) ( ) ) (( ) ( ) ) 10
N Ni i i i

k k k k

n total n total s total s total

i i

Error Paσ σ σ σ+ + −

= =

= − + − ≤∑ ∑ ) or 

maximum number of iteration is reached. The joint problems in our study can 

usually converge quickly before maximum number of iteration is reached. 

8) We then continue to simulate the next time step and repeat the entire 

procedure. 

4.3 Numerical Examples 

4.3.1 Compression of a Single Joint 

As an example, consider the initial deformation of a horizontal joint of length 2m 

under in-situ compressive stress Sh=1MPa (see Fig. 4.3). The normal and shear rigidity 

of the joint is set to be 0.5MPa/m
n

K =  and 0.25MPa/m
s

K = . 

 

Fig. 4.3 Compression of a single joint. 
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Fig. 4.4 Shear and normal displacement (Ds, Dn) along the joint surface (initial joint 

deformation included). 

 

Fig. 4.5 Shear and normal stress along the joint surface (initial joint deformation 

included). 

The mechanical response of a horizontal natural fracture under far-field 

compressive stresses calculated by using 10 equal length joint elements including initial 
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joint deformation is shown in Fig. 4.4 and Fig. 4.5. The governing equation Eq. (4.15) 

in this case is reduced to 0

1

( ) ( )( ) ( )
N ij ji i i

n n n nn n

j

K D A Dσ ∞

=

− = +∑  or [ ] [ ][ ]
n nn n n

A K Dσ ∞ = + − . 

Therefore, uniaxial compressive stress will cause a negative Dn, indicating joint closure 

(it is assumed here that the initial aperture of the joint is much bigger than the maximum 

relative closure of the two joint surfaces, which is only at the order of 10-4m. Therefore, 

the two joint surfaces have not come into contact or penetrated into each other.) The 

total normal stress along the joint surface is positive (compressive) and is smaller than 

the magnitude of the far-field compressive stress, as the joint acts like a spring that it 

absorbs some of the external force/energy by deformation (relative joint closure). (A 

joint with higher value of normal stiffness would deform less, and the degree of stress 

absorption is less.) Shear displacement and shear stress in this case is zero along the joint 

surface. 

In comparison, the mechanical response of a horizontal natural fracture under 

far-field compressive stresses without considering the initial joint deformation is shown 

in Fig. 4.6 and Fig. 4.7. As can be seen, the total normal and shear stresses on the joint 

corresponds to the far-field compressive stress Sh and zero far-field shear stress, 

respectively. As we have excluded the initial joint deformations under far-field stresses, 

assuming the joint has reached equilibrium under geological time, so the model yields 

results that there is no slippage or relative normal displacement along the joint. 
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Fig. 4.6 Shear and normal displacement (Ds, Dn) along the joint surface (initial joint 

deformation not included). 

 

Fig. 4.7    Shear and normal stress along the joint surface (initial joint deformation 

not included). 

 In summary, both two models can be used for describing joint behaviors under 

far-field stresses. But the selection of which model to use depends on the specific 
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considerations for the particular fracturing situations. For fracturing in a naturally-

fractured reservoir of long geological history, the second model in which initial joint 

deformation is excluded seems to have a better representation of the mechanical 

response (stresses/displacements) of the natural joints as we could expect. And 

especially when investigating the induced stresses/displacements along the natural joint 

due to fracturing, the initial joint deformation probably is of less importance to the 

problem, and can therefore be ignored or regarded as zero. 

Therefore more examples were simulated by using the second approach and 

shown in the following sections, to verify whether this approach can give us reasonable 

and good approximations for simulating problems involving joint deformation.  

4.3.2 A Slanted Single Joint under Biaxial Stresses 

 

Fig. 4.8 A slanted joint under biaxial stresses. 

The mechanical response of a slanted single joint under far-field biaxial stress 

SH=4MPa, Sh=3MPa is checked (see Fig. 4.8). The slant angle of the joint relative to the 
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direction of SH is 45°, and the normal and shear rigidity of the joint is 0.5MPa/m
n

K =  

and 0.25MPa/m
s

K = . The half length of the joint a=1m. 

 

Fig. 4.9 Shear and normal displacement (Ds , Dn) along the joint surface for a 

slanted joint under biaxial stresses (initial joint deformation not included). 

 

Fig. 4.10 Shear and normal stress along the joint surface for a slanted joint under 

biaxial stresses (initial joint deformation not included). 
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As can be seen from Fig. 4.9 and Fig. 4.10, the total shear and normal stresses on 

the joint are the far-field stresses in the joint direction. The joint is closed and has not 

slipped under far-field stresses. 

4.3.3 Shear of a Single Joint 

 

Fig. 4.11 Shear of a single joint. 

The mechanical response of a horizontal joint under far-field shear stress is 

checked in this example (see Fig. 4.11). The normal and shear rigidity of the joint is 

assumed to be 0.5MPa/m
n

K =  and 0.25MPa/m
s

K = . The frictional angle 30φ = ° , far-field 

stress Sxy=2.2MPa, and cohesion 0.22MPac = .  

The stresses and displacements along the joint are shown in Fig. 4.12 and Fig. 

4.13. As far-field shear stress has exceeded the yield stress of the joint, which in this 

case is equal to the cohesion 0.22 MPa, the joint undergoes permanent slippage along the 

surface, so that the total shear stresses remain at the value of the yield stresses. As can be 

seen from Fig. 4.12, the normal closure and normal stresses are zero in this case of only 
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shear loading (no dilation is considered). Slippage along the joint is symmetric and 

parabolic. 

 

Fig. 4.12 Normal and shear displacement (Dn, Ds) along a joint surface under 

plastic deformation (initial joint deformation not included). 

 

Fig. 4.13 Normal and shear stress along a joint surface under plastic deformation 

(initial joint deformation not included). 
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4.3.4 Assessment of Accuracy 

 

Fig. 4.14 A rectangular opening subjected to far-field compressive stress. 

The accuracy of the joint element approach can be checked by using the 

numerical example in  (Crouch 1976) p.137, which essentially examines the stresses and 

displacement in the vicinity of an excavation in an infinite elastic medium. As shown in 

Fig. 4.14, a single rectangular opening of width L and height h0, in an infinite body is 

subjected to a uniaxial stress
H

S p= . The stresses and displacements in the vicinity of the 

opening and along the x-axis are checked. This problem is solved by using the joint 

element method. I used 10 elements to model the rectangular opening with “mined” 

joint elements (crack elements) and 10 elements along x-axis at each side of the 

rectangular opening as “unmined” joint elements. Poisson’s ratio of the rock is 

0.2v = .The rectangular length to height ratio is 0/ 10L h = . The ratio of far field stress p 

to the shear modulus G was taken as 3/ 2.4 10p G −= × . 
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Fig. 4.15 Dimensionless normal displacements at y=0 using joint element solution. 

 

Fig.4.16 Dimensionless normal stresses at y=0 obtained using joint element solution. 

 Dimensionless normal displacement and stresses along y=0 are shown in Fig. 

4.15 and Fig.4.16. We can see that the two surfaces of the rectangular excavation are 

closed relative to each other under far-field compressive stress (negative Dn indicating 
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relative closure) and that two surfaces outside the excavation approaches zero 

displacement. The total normal stress distribution is zero along the excavation and 

approaches to far-field compressive stress outside the excavation. At locations near the 

excavation, there is stress localization which is about 3.77 times of the far-field stress. 

This value matches well with results when only crack element of DD method is used to 

model the stresses within and outside the excavation along y=0 (Crouch 1976). 

Therefore, we may come to the conclusion that joint element method can give us fairly 

accurate results when determining the stress and displacement distribution for problems 

involving natural fractures and hydraulic fractures (which can be regarded as mined 

elements with nonzero total normal stresses imposed on the surface). 
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5 HYDRAULIC FRACTURE AND NATURAL FRACTURE INTERACTION 

 

5.1 Introduction 

The objectives of the initial phase of modeling are: 

• To study the interaction between a hydraulic fracture (HF) and a natural fracture 

(NF). Carry out a parametric analysis to explore the effect of model input 

parameters on the displacements and stresses, and the possible slipping or 

opening of a pre-existing NF (observe NF and HF mechanical interaction). 

• To model the process of HF tip approaching a NF to trace the orientation and 

extension of the HF.  

5.2 Mechanical Responses of a Natural Fracture 

5.2.1 Problem Definition 

 

Fig. 5.1 A hydraulic fracture located near a natural fracture. 
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 The first modeling was done assuming a stationary hydraulically induced fracture 

located near a NF that is oriented θ degrees to the maximum horizontal in-situ stress SH 

(see Fig. 5.1). The fracture is assumed to be subjected to a constant pressure distribution 

along its length. The stress and displacement distributions along the NF are checked. The 

natural fractures/faults are considered to have reached mechanical equilibrium under far-

field stresses with geological time (joint model as described in Section 4.1.1.1). With the 

introduction of a new HF, the stress field near the NF would experience perturbation, 

possibly leading to slip/opening.  This process along with the most probable location for 

fracture re-initiation along the NF is investigated below.  

For a given rock tensile strength, T0, the criterion for the tensile crack initiation is 

(Jaeger et al. 2007): 

0p
Tσ− >  .............................................................................................................  (5.1) 

where σp (see Fig. 5.2) is the maximum tensile stress (minimum principal stress, 

compression positive) defined as:  

 

Fig. 5.2 Stress components around a rock element. 
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( ) ( )
2

20.5 0.5
p xx yy xx yy xy

σ σ σ σ σ σ = + − − +  ................................................... (5.2) 

When the joint is considered ideally smooth and without any secondary flaws along its 

surface, the zones of tension are the probable locations for new tensile crack re-

initiation. 

A complete investigation of the interaction between a HF and a NF should 

include stages of HF tip approaching, fracture coalescence, fluid flow into the NF, and 

the subsequent initiation of the secondary fracture from the NF. In this thesis, the HF 

induced stress change and the resultant slippage or tensile opening along the NF are 

studied for the stage of an approaching HF tip (Section 5.2.2 and 5.2.3), and the stage of 

fluid flow into the NF (Section 5.2.4).  

5.2.2 Parametric Studies  

The model inputs are listed in Table 5.1. Joints with different magnitude of 

bonding strengths were investigated in our study. We considered three sets of joint 

properties: a weak joint (c=0, T0=0), an infinitely strong joint (c=∞, T0=∞), and a joint 

with moderate strength (φ =26.6°, c=2.2MPa, T0=0.2MPa). The distance between the HF 

tip and NF was modeled to be 0.2m, 0.1m, and 0.05m. The NF (length of 2m) was 

modeled with 50 constant DD elements with equal length and the HF (length of 2m) was 

modeled with 20 constant DD elements with equal length. Modeling results are 

discussed in details as follows. 
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Table 5.1 Input parameters in Section 5.2.2 

Joints Rock HF 

Geometry:  

• Orientation 90θ = °  

• Length 2 2mL =  

In-situ Stresses: 

• 2.1MPa
H

S = −  

• 1.9MPa
h

S = −  

Geometry 

• Length 1 2L m=  

• Distance with NF 0d  

 
Mechanical Properties: 

• Friction angle: φ  

• Cohesion: c  

• Tensile strength: 0T  

• Normal stiffness 
60.5 10 MPa/m

n
K = ×  

• Shear stiffness 
60.25 10 MPa/m

s
K = ×

 

 
Mechanical Properties: 

• Young’s modulus 
41.4 10 MPaE = ×  

• Poisson’s ratio  

0.1v =  

 
Fluid Properties: 

• Fluid pressure  
3.9MPap =  

 

The weak joint has zero cohesion and tensile strength, so it cannot sustain any 

shear and tensile forces and is always ready to slip or open. In Fig. 5.3, the stress 

distribution along a weak joint, when d0=0.1m and θ=90° is plotted. The shear stress in 

this case is zero, and as the yield stress is set to zero in this case, the fault is in a plastic 

yield condition or “permanent slip” mode. The normal stress and shear stress are zero 

near the center of the joint, which is an indication of joint opening (normal to the joint 

surface) at this segment. The maximum tensile stress becomes negative near the center 

of the opposite side of the joint, and has two peak values located at two locations with 

symmetry to the x axis. As the tensile limit of the joint is zero and has been exceeded in 

this case, these two locations could become most probable location for new tensile crack 

onset before the coalescence of the HF with the NF.  
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However, the induced tensile crack may not have a sufficient capability to grow 

further without fluid infiltration. Once the HF coalesces with the NF, and fluid 

penetrates into the NF, the stress distribution along the joint and the zones of stress 

localization for new crack re-initiation may change. Therefore, a complete study of HF 

interaction with NF involving all the subsequent stages is needed for us to have a 

complete picture of this problem. 

 

Fig. 5.3 Stress distribution along a weak joint (at x=0, d0=0.1m, θ=90°). 
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Fig. 5.4 Normal and shear displacement (Dn, Ds) along a weak joint (at x=0, 

d0=0.1m, θ=90°). 

 

Fig. 5.5 Maximum tensile stress along a weak joint (x=0) at different tip distances 

(d0) (θ=90°). 
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The shear slip and normal displacement is shown in Fig. 5.4. The normal 

displacement is positive, which indicates that HF can induce normal opening near the 

HF tip region along the joint. Curves of maximum tensile stress generated along the back 

side of the joint at different distances from the HF tip and NF are plotted in Fig. 5.5. 

With the approaching of HF tip to the NF, the influence of fracture tip is stronger and the 

tension force gets bigger. The two peak locations move closer to the center of the NF, 

with the decreasing of the distance between HF tip and NF. 

 

Fig. 5.6 Stress distribution along a strong joint (at x=0, d0=0.1m, θ=90°). 
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Fig. 5.7 Normal and shear displacement (Dn, Ds) along a strong joint (at x=0, 

d0=0.1m, θ=90°).  

Stresses and displacements along a strong joint (c=∞, T0=∞) are calculated and 

plotted in Fig. 5.6 and Fig. 5.7. A joint with infinite strength is bonded so strongly that 

tensile failure (joint crack open) and shear failure (joint permanent slip) will never occur 

on it. From Fig. 5.6 we can see that everywhere along the joint the shear and normal 

stress are nonzero, and that yield stress has not been reached (infinite in this case), so 

everywhere along the joint is in the “stick” contact mode. For a very strong joint, the HF 

cannot induce enough stresses that can lead to the joint “opening” and “permanent slip”. 

The maximum normal opening at the center of the joint for a strong joint is about 

5.39×10-6 m as shown in Fig. 5.7, which is much smaller than that for a weak joint 

(about 1.65×10-5m). As could be expected, the induced displacements are much less for 

a joint with stronger strength. 
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Fig. 5.8 Maximum tensile stress along a strong joint (x=0) at different tip distances 

(d0) (θ=90°). 

From Fig. 5.8 we can see that the maximum tensile stress generated at the back 

side of the strong joint (see Fig. 5.1) also increase with the decrease of the distance 

between HF tip and NF. The joint has an infinite tensile strength in this case, and the 

induced tension is of finite value, so a very strong joint inhibits crossing of the HF. In 

comparison with a weak joint, the magnitude of the peak value gets smaller and the 

location of the two peak values gets closer for a strong joint.  

In most practical cases, a natural joint is of moderate strength between these two 

above limiting cases. Therefore a joint with intermediate strength values (α=26.6°, 

c=2.2MPa, T0=0.2MPa) is also simulated to check its mechanical responses. Stresses and 

displacements along the joint are plotted in Fig. 5.9 and Fig. 5.10, respectively. From 
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Fig. 5.9, it can be seen that one small segment at the center of joint has zero shear and 

normal stress corresponding to an “open” contact mode (when the normal stress exceeds 

the tensile limit of the joint and the joint surfaces open like a crack). When d0=0.1m, the 

peak values of maximum tensile stress at the opposite side of the NF is about 2 MPa 

which exceeds the tensile limit of the joint (0.2 MPa) in this case. So, the onset of new 

tensile cracks can begin there before the HF coalesces with the NF. Again Fig. 5.11 

shows that the maximum tensile stress increases with the approach of HF tip, and the 

peak tension becomes more localized near the tip region when the tip is closer to the NF.   

 

Fig. 5.9 Stress distribution along a moderate joint (at x=0, d0=0.1m, θ=90°). 
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Fig. 5.10 Normal and shear displacement (Dn, Ds) along a moderate joint (at x=0, 

d0=0.1m, θ=90°). 

 

Fig. 5.11 Maximum tensile stress along a moderate joint (x=0) at different tip 

distances (d0) (θ=90°). 
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By comparing Fig. 5.5, Fig. 5.8 and Fig. 5.11, it can be concluded that: 1) Before 

HF reaches the NF, fracture re-initiation is more encouraged when the joint has weaker 

interfaces, because the induced tension is more likely to exceed the tension limit of the 

rock; a stronger joint tends to inhibit fracture re-initiation as the induced tension is 

usually smaller and the tensile strength; 2) In terms of re-initiation location, a fracture 

step-over (offset) is more likely to happen for HF interacting with a weak joint because 

the stress localization on the joint tends to be mitigated by NF sliding; direct crossing of 

the HF is more likely to occur when interacting with a stronger joint.  

5.2.3 Discussion 

 The mechanical response along a joint was compared with a previous study 

(Chuprakov et al. 2010) of a stationary HF located near a NF. The geometry of the 

problem is shown in Fig. 5.1. The main parameters used are listed in Table 5.2. 
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Fig. 5.12 Sketch of mesh arrangement for the NF and HF. Dashed part of the NF is 

negligible in the interaction between HF and NF, and therefore can be omitted in 

the modeling. 

Seventy elements were used in the simulation of the NF of 20m length, with 50 

elements distributed over the central region of the NF (with a length of 2m); 20 equal 

length elements were used along the HF of length of 2m. Similar results were obtained 

for modeling only the center of the NF with a length of 2m using 50 equal length 

elements. The modeling results indicate that the interaction between HF and NF is 

negligible in regions outside the central portions of the NF (dashed part of NF as 

sketched in Fig. 5.12) and that excluding these regions in the model will not affect the 

model outputs.  
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The shear and normal displacement along the joint ,s n
D are normalized as 

following: ,

,

1 (1 )

s n

s n

m

D G
d

L v σ
=

−
, in which 1 3

1
( )

2
m

σ σ σ= + is the mean far-field stress. The 

shear and normal stresses ,t n
S along the joint are normalized by the mean far-field 

stress: ,

,

t n

t n

m

S
s

σ
= . 

Table 5.2 Input parameters in Section 5.2.3 

Joints Rock HF 

Geometry:  

• Orientation 40θ = °  

• Length 2 20mL =  

In-situ Stresses: 

• 2.1MPa
H

S = −  

• 1.9MPa
h

S = −  

Geometry 

• Length 1 2mL =  

• Distance with NF 
0.1md =  

Mechanical Properties: 

• Friction angle: 
26.6φ = °  

• Cohesion 
2.2MPac =  

• Tensile strength:  

0 0.2MPaT =  

• Normal stiffness 
60.5 10 MPa/m

n
K = ×  

• Shear stiffness 
60.25 10 MPa/m

s
K = ×

 

Mechanical Properties: 

• Young’s modulus 
41.4 10 MPaE = ×  

• Poisson’s ratio  
0.1v =  

Fluid Properties: 

• Fluid pressure  
3.9MPap =  

 From Fig. 5.13, it can be seen that along most part of the joint the shear slip and 

normal displacement are nearly zero, and that the HF tip would induce a relative joint 

opening (positive dn) and shear slip (ds) near the center of the NF.  In Fig. 5.14, the 

normalized stresses along the joint are plotted. At the lower side (y<0) of the NF, there is 
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an opened segment where shear stress and normal stress come to zero.  The maximum 

tensile stress generated along the opposite side of the joint reaches two peak values near 

the two ends of the opening section. Similar results can be found in Chuprakov et al. 

(2010). The magnitude and location of the peak of maximum tensile stress are actually 

very sensitive to various model input parameters. The difference might result from: 1) In 

Chuprakov et al., the normal opening for the “closed” part sof NF was set to zero. But in 

this thesis, the relative normal closure/opening could occur along the entire length of the 

joint (it is assumed that the NF has an initial aperture that is much larger than the 

induced relative normal displacements (either positive or negative) so that two surfaces 

of NF will not come into contact or overlap)). Therefore, in our results, the boundary 

between the HF influenced zone (with nonzero shear and normal displacments) and the 

closed part of the NF are less disdinct; 2) The shear and normal rigidity of the joint were 

not considered/mentioned in Chuprakov et al. while a relatively large rigidity is assumed 

in this thesis to prevent significant normal/shear displacement outside the HF influenced 

zone; 3) The tensile strength of the rock was not mentioned in Chuprakov et al. The 

strength of the rock will afftect the jog position (tension peak may occur either at the 

right or left side of NF (Chuprakov et al. 2010)).  
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Fig. 5.13 Normalized normal/shear displacements (dn, ds) along the NF (x=0).  

 

Fig. 5.14 Normalized values of normal stress (sn), shear stress (st), and maximum 

tensile stress (sp) along NF (x=0). 
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5.2.4 Interaction at the Stage when Fluid Flows into the Natural Fracture 

The mechanical response of a NF once the fluid is flowing from the HF into the 

NF is considered in this section. It is assumed that the HF has coalesced with NF, and 

that the injected fluid propagates along the (y>0) part of the NF (for an acute orientation 

angle θ) (Fig. 5.1). Fluid flow is assumed steady and a constant pressure distribution has 

been established along both the HF and the infiltrated part of the NF. The input 

parameters are listed in Table 5.3.  

 

Fig. 5.15 Sketch of mesh arrangement for a HF and NF partly filled with fluid. 

In Fig. 5.15, mesh arrangement along the HF and NF with partial fluid 

penetration is plotted. Twenty equal-length constant DD crack elements were 

x

y
HS

hS
NF 

HF θ
2 2mL =

Fluid invaded part Lb  
40b equal-length 

constant DD crack 

elements  

L1=2m 
20 equal-lengths 
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40 equal- 
length joint 
elements 

40(1-b) 
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joint 

elements 
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implemented along the HF. Eighty equal-length elements were arranged along the NF, 

with constant DD crack elements along the fluid infiltration part, and joint elements 

along the unpressurized part of the NF. 

Table 5.3 Input parameters in Section 5.2.4 

Joints Rock HF 

Geometry:  

• Orientation 40θ = °  

• Length 2 2mL =  

• Invaded length b 

In-situ Stresses: 

• 2.0MPa
H

S = −  

• 2.0MPa
h

S = −  

Geometry 

• Length 1 2mL =  

• Distance with NF 
0.0md =  

Mechanical Properties: 

• Friction angle: 
26.6φ = °  

• Cohesion 
0.1MPac =  

• Tensile strength:  

0 0.2MPaT =  

• Normal stiffness 
60.5 10 MPa/m

n
K = ×  

• Shear stiffness 
60.25 10 MPa/m

s
K = ×

 

Mechanical Properties: 

• Young’s modulus 
41.4 10 MPaE = ×  

• Poisson’s ratio  
0.1v =  

Fluid Properties: 

• Fluid pressure  
p  
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Fig. 5.16 Normalized maximum tensile stress along NF (x=0) at different fluid 

invaded lengths of NF (b) (p=3.0MPa). 

 

Fig. 5.17 Normalized normal displacement (dn) along NF (x=0) at different fluid 

infiltrated lengths of NF (b) (p=3.0MPa).  
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First consider the normalized maximum tensile stress that develops along the NF 

when the fluid-infiltrated length of NF is increased without changing the fluid pressure. 

As can be seen from Fig. 5.16, a tensile peak is generated along the NF ahead of the 

fluid front (the maximum tensile stress, 
p

S , along the joint is normalized by the mean 

far-field stress, p

p

m

S
s

σ
=  in which 1 3

1
( )

2
m

σ σ σ= + is the mean far-field stress. The fluid 

infiltrated length of the NF Lb is normalized with half length of the HF, 
10.5

b
L

b
L

= ). The 

value of the tensile peak is about 4MPa, and does not change with increased fluid 

infiltrated length. The location of the tension peak moves along the NF with the 

increasing of the fluid infiltrated length.  

As can be seen from Fig. 5.17, the fluid pressure, which is set to be higher than 

the far-field compressive stress (by 1MPa), creates an open zone (dn>0) along the NF. 

The length of the open zone (dn>0) is always longer than the length of the fluid 

infiltrated zone which means there is a fluid lag between the fluid front and end of the 

open zone. In addition, the tension peak is located at the end of the NF open zone. 

Therefore, the tension peak is always ahead of the fluid front, and moves with the open 

zone while fluid infiltrates along the NF. These results are consistent with those of 

Cooke and Underwood (2001) and Chuprakov et al. 2010. The location of the maximum 

tensile stress peak is a probable location for further fracture re-initiation.  

As another example, let’s fix the pressurized length of the HF while increasing 

the fluid pressure along the HF and NF. The normalized maximum tensile stress along 

the NF is plotted in Fig. 5.18. It can be seen that the value of the tension peak increases 
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and its location moves further to the right part of the NF (y>0) with increasing fluid 

pressure. 

Based on these two example simulations, it can be concluded that the location of 

peak tension is dependent on both the fluid pressure and fluid infiltrated length of the 

NF, and its value depends mostly on the fluid pressure. 

 

Fig. 5.18 Normalized maximum tensile stress along NF (x=0) at different fluid 

pressures (p) (b=0.2). 

5.2.5 Poroelastic Effect on Mechanical Responses of Natural Fracture  

In all previous numerical examples, the rock formation was considered to be 

elastic and impermeable. In this section, the pore pressure effect on the mechanical 

responses of the NF is investigated. Again, a uniform pressure distribution along the HF 

is assumed.  
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First consider the stage prior to HF coalescing with NF by assuming a stationary 

HF located near the NF, and monitor the mechanical response of the NF with fluid 

diffusion from fracture surface into the rock with time. Input parameters are listed in 

Table 5.4. The reservoir rock parameters are used from Westerly Granite as reported in 

the paper of McTigue (1986). 

Table 5.4 Input parameters for granite in Section 5.2.5 (McTigue 1986) (I) 

Joints Rock HF 

Geometry:  

• Orientation 90θ = °  

• Length 2 2mL =  

In-situ Stresses: 

• 2.1MPa
H

S = −  

• 1.9MPa
h

S = −  

Geometry 

• Length 1 2L m=  

• Distance with NF 

0 0.1d =  

 
Mechanical Properties: 

• Friction angle: 
26.6φ = °  

• Cohesion: 2.2MPac =  

• Tensile strength: 

0 0.2MPaT =  

• Normal stiffness 
60.5 10 MPa/m

n
K = ×  

• Shear stiffness 
60.25 10 MPa/m

s
K = ×  

 
Mechanical Properties: 

• Young’s modulus 
41.4 10 MPaE = ×  

• Poisson’s ratio  
0.1v =  

• Bulk modulus 
44.5 10 MPaK = ×  

• Porosity 0.01n =  

• Dynamic 
permeability

74.053 10 darcyk −= ×  

• Fluid diffusivity 
5 26.16 10 m /sfc −= ×  

 

 
Fluid Properties: 

• Fluid pressure  
3.9MPap =  

• Fluid bulk 
modulus

32.5 10 MPa
f

K = ×  
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Fig. 5.19 Distribution of normal displacement (Dn) along a moderate joint (x=0) at 

different time (t) considering poroelastic effects. 

 

 

Fig. 5.20 Distribution of normal stress along a moderate joint (x=0) at different 

time (t) considering poroelastic effects. 
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Fig. 5.21 Distribution of maximum tensile stress along a moderate joint (x=0) at 

different time (t) considering poroelastic effects. 

Distribution of normal displacement (Dn), normal stress, and maximum tensile 

stress generated along the joint at different times are plotted in Fig. 5.19, Fig. 5.20 and 

Fig. 5.21, respectively. It can be observed that with fluid diffusion from the fracture into 

the rock matrix, the HF tip induced normal displacement, normal stress and maximum 

tensile stress all decrease with time near the center of the NF, and slightly increase 

outside the center region of the NF. The normal stress at the center of the NF changes 

from zero to positive value (becomes compressive). The value of HF tip induced 

maximum tensile stress also decreases with time. Therefore, the possibility for fracture 

re-imitation is less if pore pressure diffusion is included.  

Near the center of the NF, HF tip induced stresses are weakened because HF 

aperture decreases with fluid diffusion into the rock, which is much more influential than 
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the effective stress decrease with pore pressure increase. However, further away from 

the HF tip influenced region, outside the center of the NF, the factor of effective stresses 

decrease gradually dominates so the maximum tensile stress and normal stress become 

more tensile. 

The poroelastic effect on the mechanical response of the NF during the stage 

when fracturing fluid penetrates part of the NF are then considered by assuming a 

sequence of fluid with moving fluid front. The input parameters are listed in Table 5.5. 

The model ideally should couple the fluid infiltrated length, pressure distribution and 

time together, but the simulation is simplified by assuming a fluid infiltrated length at 

each time, and by assuming a uniform pressure distribution along the HF and NF.  

Table 5.5 Input parameters for granite in Section 5.2.5 (McTigue 1986) (II) 

Joints Rock HF 

Geometry:  

• Orientation 40θ = °  

• Length 2 2mL =  

• Invaded length b 

In-situ Stresses: 

• 2.0MPa
H

S = −  

• 2.0MPa
h

S = −  

Geometry 

• Length 1 2mL =  

• Distance with NF 
0.0md =  

Mechanical Properties: 

• Friction angle: 
26.6φ = °  

• Cohesion 
0.1MPac =  

• Tensile strength:  

0 0.2MPaT =  

• Normal stiffness 
60.5 10 MPa/m

n
K = ×  

• Shear stiffness 
60.25 10 MPa/m

s
K = ×

 

Mechanical Properties: 

• Young’s modulus 
41.4 10 MPaE = ×  

• Poisson’s ratio  
0.1v =  

• Bulk 
modulus

44.5 10 MPaK = ×  

• Porosity 0.01n =  

• Dynamic 
permeability

74.053 10 darcyk −= ×  

• Fluid diffusivity fc  

Fluid Properties: 

• Fluid pressure  
3.0MPap =  

• Fluid bulk 
modulus

32.5 10 MPa
f

K = ×  
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Fig. 5.22 Normalized maximum tensile stress along NF at different fluid invaded 

lengths along NF (b) and time (t) considering poroelastic effects (Cf=6.16×10
-6

m
2
/s). 

 

Fig. 5.23 Normalized maximum tensile stress along NF at different fluid invaded 

lengths along NF (b) and time (t) considering poroelastic effects (Cf=6.16×10
-5

m
2
/s). 
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The normalized maximum tensile stress generated along the NF with increasing 

time and fluid infiltration (for a fluid diffusivity, Cf , of 6.16×10-6m2/s and 6.16×10-

5m2/s) are plotted in Fig. 5.22 and Fig. 5.23, respectively. Compared with Fig. 5.16, it 

can be seen that poroelastic effect caused by fluid diffusion can significantly decrease 

the value of tension peak at each time step, decreasing the possibility for fracture re-

initiation along the NF. For a fluid with higher value of diffusivity, poroelastic effect is 

more significant. As shown in Fig. 5.23, tension peak diminishes with time and 

approaches zero, and the values of tension peaks are reduced more when compared to 

those plotted in Fig. 5.22.  

5.3 Hydraulic Fracture Trajectories Near a Natural Fracture 

 

Fig. 5.24 A HF propagating towards a NF and mesh arrangement at initial 

condition.  
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Table 5.6 Input parameters for Barnett shale in Section 5.3 (Palmer et al. 2007). 

Joints Rock HF 

Geometry:  

• Orientation 76θ = °  

• Length 2 2.06mL =  

In-situ Stresses: 

• 43MPa
H

S = −  

• 39MPa
h

S = −  

Geometry 

• Length 1 2mL =  

• Distance with NF 
1md =  

• Slant angle α   

Mechanical Properties: 

• Friction angle: 
31φ = °  

• Cohesion 
2.2MPac =  

• Tensile strength:  

0 2.0MPaT =  

• Normal stiffness 
40.5 10 MPa/m

n
K = ×  

• Shear stiffness 
40.25 10 MPa/m

s
K = ×

 

Mechanical Properties: 

• Young’s modulus 
42.07 10 MPaE = ×  

• Poisson’s ratio  
0.25v =  

Fluid Properties: 

• Fluid pressure  
44MPap =  

The second modeling attempt was done to model the trajectories of a HF 

emanating from a wellbore and propagating towards a NF, which is oriented θ degree to 

the axis of maximum horizontal stress SH. Fluid pressure distribution along the HF is 

assumed constant. The mesh arrangement along the hydraulic fracture and natural 

fracture at the initial condition is plotted in Fig. 5.24. The hydraulic fracture half length 

is initially (at t=0) modeled by using 10 equal length elements, with 9 constant DD 

elements and one tip element at the fracture tip. The natural fracture is modeled using 10 

equal length joint elements. With the growth of hydraulic fracture, the tip element 

reduces to a constant DD element, and a new tip element is added ahead of the previous 

tip element. Increment of hydraulic fracture length within each time step is fixed to be 
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one element length, so that remeshing of the fracture is avoided. The input parameters 

are for Barnett shale (Palmer et al. 2007) as listed in Table 5.6. We first checked the 

fracture trajectories by using joint models that include initial joint deformation (as 

described in Section 4.1.1.2).  

 

Fig. 5.25 Deflection of HFs at different orientation angles (α) when propagating 

towards a NF. 

As can be seen from Fig. 5.26, fractures initially slanted at different angles (due 

to stress localization and ruptures at local flaws or micro-cracks in the rock formation 

immediately adjacent to the wellbore, fracture could initiate in certain direction initially. 

Another scenario would be for an inclined well, fracture would initially have an angle 
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with respect to the direction of maximum horizontal stress) would propagate 

perpendicular to the direction of minimum far-field stresses under biaxial stresses 

without the presence of a NF. With NF located in front of the HF, the HF would deviate 

from its original path and bend near the NF, as shown in Fig. 5.25. In this case, as the 

joint model that includes initial deformation under far-field stresses was used, the 

deformation along the joint has changed the stress field around the HF tip, and therefore 

has changed its propagation path. It will be shown later that whether the deformation 

along the joint due to the far-field stresses is considered or not can affect the simulation 

results of HF trajectories. 

 

Fig. 5.26 Fracture trajectories propagating under biaxial stresses without the 

presence of a NF for HF at different slant angles (α). 

The fracture deviation behavior would be of great importance for us to predict or 

monitor during the stimulation practice. Ideally we would like to design a fracturing 



94 

 

 

treatment to create as much as conductive paths as possible, either by directly crossing 

NF or reinitiating new fractures from the NF. HF fracture bending or blunting at the NF 

are what we aim to avoid. Therefore, the following parametric studies are conducted to 

investigate the influence of different rock or fluid properties on the fracture trajectories. 

 

Fig. 5.27 Fracture trajectories under different net pressures (∆p). 

Net pressure of the HF is a factor that can affect fracture propagation near a NF 

as shown in Fig. 5.27. A fracture under higher net pressure deviates less from its original 

path. A tensile fracture under a higher net pressure has a higher driving force at the 

fracture tip, so perturbation of the stress field induced by the NF appears to be less 
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influential. The implication for stimulation practices is that fractures with higher net 

fluid pressure have less bending and are more likely to propagate towards a naturally-

fractured reservoir. Once the fracture coalesces with NF, we could expect the onset of 

even greater pressure drop along the fracture paths; therefore higher net fluid pressure is 

needed when fracturing naturally-fractured reservoirs. 

 

Fig. 5.28  Fracture trajectories under different distances from fracture tip to NF. 

The NF may be located at different distances relative to the HF tip. As plotted in 

Fig. 5.28, the smaller the distance between NF and the fracture tip, the greater deviation 

exhibited at the fracture tip. When the NF is located further from the HF, the influence 

of deformation along the NF on the stress field around the HF tip gets smaller, so HF 
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deviation becomes smaller. The fracture trajectory may either go to the left or the right 

side of the original path, depending on the specific in-situ stress field at the fracture tip.  

 

Fig. 5.29 Fracture trajectories under different far-field stress differences (∆s). 

HF also shows different degrees of deviation from its original paths under 

different differences between the maximum in-situ stress (SH) and minimum in-situ 

stress (Sh), as shown in Fig. 5.29. When the difference is small (the stress-field 

approaches isotropic condition), the perturbation of the stress field at the HF tip brought 

by the NF is more significant, so the bending of the HF is more significant.  
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Fracture trajectories calculated by using joint models that do not consider initial 

joint deformation (as described in 4.1.1.1) are shown in Fig. 5.30. As compared with 

Fig. 5.25, fracture paths are not influenced by the presence of NF. Because in this case, 

joint deformation due to far-field stresses is zero (as demonstrated in Section 4.3.2, a 

joint model that excludes initial joint deformation would have zero normal/shear 

displacements and normal/shear stresses corresponding to the action of the far-field 

stresses). HF tip-induced joint deformation and stresses are also negligible as the tip is 

far enough from the NF (about 1m). Therefore, the joint does not perturb the stress-field 

around HF until the HF tip arrives very close to the NF, so that HF will not deviate 

significantly from its original path. 

 

Fig. 5.30 Trajectories of HF propagating towards a NF at different slant angles (α). 
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Analysis based on this type of joint model might give a better representation for 

formations where the pre-existing fractures have been subjected to the far-field stresses 

for long time and have reached mechanical equilibrium prior to the process of hydraulic 

fracturing. Selection of joint model would have direct impact on the modelling results of 

fracture propagation near NFs. Therefore, carefully consideration of geomechanical 

characteristics of the reservoir is needed to get reliable modelling results. 

5.4 Hydraulic Fracture Propagation by Using Newtonian Fluid Flow  

 

Fig. 5.31 An initially straight pressurized crack under biaxial stresses.  

 Simulation of the hydraulically induced fracture (Fig. 5.31) is carried out 

assuming a Newtonian fluid flow model. The input parameters are listed in Table 5.7. 

The fracture trajectories were calculated under different fluid injection rates and 

viscosities, and the results are plotted in Fig. 5.32 and Fig. 5.33. 
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Table 5.7 Input parameters for simulating a HF using Newtonian fluid model 

Rock HF 

In-situ Stresses: 

• 2.0MPa
H

S = −  

• 0.5MPa
h

S = −  

Geometry 

• Length 1 2mL =  

• Slant angle α=80˚ 

Mechanical Properties: 

• Young’s modulus 
41.4 10 MPaE = ×  

• Poisson’s ratio  
0.1v =  

Fluid Properties: 

• Injection rate q 

• Viscosity μ 

 

 

Fig. 5.32 Fracture trajectories under different fluid injection rates (q) at the 

wellbore (μ=1.0cp). 

SH 

Sh 
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Fig. 5.33 Fracture trajectories under different fluid viscosities (µ) (q=1.0bbl/min).  

As can be seen from Fig. 5.32, the fracture, which initially slanted at 80˚ with the 

direction of maximum horizontal stress SH, will gradually turn and propagate along the 

direction of maximum horizontal stress under the influence of far-field stresses. When 

the injection rate is higher, which is 10.0bbl/min, the fracture travels longer distance 

before turning to the direction of maximum horizontal stress, as a fracture under higher 

injection rate has bigger resistance against the far-field compressive stresses. For lower 

injection rate, which is 5.0bbl/min and 1.0bbl/min, the fracture will travel shorter 

distance while turning. Similarly, as shown in Fig. 5.33, when the fracturing fluid has 

higher viscosity (1.3cp, viscosity of water at 10 ˚C), the hydraulic fracture will travel 

Sh 

SH 
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longer distance before turning than those with a lower viscosity (1.0cp and 0.3cp, 

viscosity of water at 20 ˚C and 90 ˚C respectively).  

 
Fig. 5.34 Fracture trajectories for HF propagating under biaxial stresses at 

different slant angles (α) using Newtonian fluid flow model. 

 The trajectories for HF propagating under biaxial stresses at different slant angles 

using a Newtonian fluid flow model are plotted in Fig. 5.34. As compared with Fig. 

5.26, the fractures follow similar trajectories as results simulated by using constant 

pressure model. Hence the model outputs for fracture footprints by using Newtonian 

fluid model are stable and reliable. It predicts that HF will propagate along the direction 

of maximum horizontal stress, SH. 
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Fig. 5.35 Fluid pressure at the wellbore (x=0) with time by using Newtonian fluid 

model for HF at different slant angles (α).  

 The variation of fluid pressure at the wellbore with time for HF at different slant 

angles α is plotted in Fig. 5.35. Under the boundary condition of constant injection rate 

at the wellbore, the pressure at the wellbore required for the fracture to propagate 

decreases with time. As the fracture grows and the fracture aperture increases, less 

energy is required to propagate the HF and the pressure is decreasing. This agrees with 

the results calculated by a classical KGD model (Geertsma and de Klerk 1969).  
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Fig. 5.36 Fracture length with time by using Newtonian fluid model for HF at 

different slant angles (α).  

It can also be observed that for a HF with a bigger slant angle, the pressure at the 

wellbore is higher than those with a smaller slant angle. Similarly, we can see from Fig. 

5.36 that the higher the slant angle, the more slowly the fracture length increases with 

time. We may conclude that more energy is required for a HF with bigger slant angle to 

grow within the rock. 
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Fig. 5.37 Deflection of HFs at different orientation angles (α) when propagating 

towards a NF simulated by using a joint model that includes initial deformation 

and a Newtonian fluid model. 

HF trajectories near a NF by using a Newtonian fluid model and joint models 

that include and exclude initial joint deformations are simulated and plotted in Fig. 5.37 

and Fig. 5.38, respectively. The input parameters are similar as listed in Table 5.6 

except that the fluid is modeled to have a viscosity µ=1.0cp and the injection rate at the 

wellbore q=1.0 bbl/min. As can be seen, fracture trajectories are identical as those 

plotted in Fig. 5.25 and Fig. 5.30. The model outputs for fracture footprints by using 

Newtonian fluid model near NF are stable and reliable. 
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Fig. 5.38 Deflection of HFs at different orientation angles (α) when propagating 

towards a NF simulated by using a joint model that excludes initial deformation 

and a Newtonian fluid model. 

 Fracture trajectories under different fluid injection rates at the wellbore by using 

a Newtonian fluid model and joint models that include and exclude the initial joint 

deformation are simulated and plotted in Fig. 5.39 and Fig. 5.40, respectively. It can be 

observed from Fig. 5.39 that fracture trajectories are identical under three different 

injection rates and that they are not sensitive to the fluid injection rates when using a 

joint model that include initial deformation. In this type of joint model, we can see that 

the NF is a predominant factor in controlling the HF trajectory. The initial deformation 
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along the NF (when included) is much more influential to the stress field around the HF 

than the fluid flow within the HF.  

In contrast, HF shows three different routes under different injection rates when a 

joint model that excludes the initial joint deformation is used, as plotted in Fig. 5.40. We 

can observe that fracture under higher injection rate deviates more from the direction of 

maximum horizontal stress (SH). Simulation results from this type of joint model exhibits 

that the NF has a much smaller influence on the stress field around the HF and that the 

influence of fluid flow within the HF overweighs and can thereby affect the fracture 

trajectory.  

 
Fig. 5.39 Deflection of HF (α=30˚) under different injection rates at the wellbore (q) 

when propagating towards a NF simulated by using a joint model that includes 

initial deformation and a Newtonian fluid model. 
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Fig. 5.40 Deflection of HF (α=30˚) under different injection rates at the wellbore (q) 

when propagating towards a NF simulated by using a joint model that excludes 

initial deformation and a Newtonian fluid model. 
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6 SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

In this thesis, the interaction between a HF and a NF are investigated numerically 

by considering the mechanical deformation of the rock in response to the fluid pressure 

acting on the fracture surface, the fluid flow within the fracture, and the fracture 

propagation in the formation. Rock deformation is considered to be elastic while the 

poroelastic effect associated with pore pressure diffusion is included. Fluid pressure is 

first considered to be uniformly distributed in the HF, and then the pressure distribution 

is found using flow of a Newtonian fluid in the crack. Fracture propagation is modeled 

using the stress structural criterion. A special type of DD element (joint element) is used 

to describe different joint contact modes (stick, open and yield) for numerical analysis of 

HF interaction with NF. 

The mechanical response of the NF to a static HF is studied to predict the 

probable location for the onset of new tensile crack before HF coalesces with the NF. 

The stage when the fluid invades the NF is also considered by simulating a sequence of 

static states of fluid with uniform pressure distribution along the HF and NF.  

Hydraulic fracture trajectories near a NF before HF coalesces with the NF under 

different joint, rock and fluid properties were modeled using two different joint models 

(which exclude or included initial joint deformation) and two different fluid flow models 

(prescribed uniform pressure model or Newtonian fluid flow model). 
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Future research on the interaction between a HF and a NF can be done by 

modeling a complete set of stages of HF and NF interaction: HF approaching NF, 

coalescence, subsequent fluid infiltration, and fracture re-initiation from the NF.  

6.2 Conclusions 

1. During the stage that a HF approaches a NF before coalescence, the possibility of 

fracture re-initiation across the NF is enhanced when the NF has weak interfaces; 

a stronger NF tends to inhibit fracture re-initiation. In terms of re-initiation 

location, a step-over (offset) is more likely to occur for HF interacting with a 

weaker joint, as the stress localization tends to be mitigated by sliding of the NF; 

a strong joint whose surface is fully bonded promotes direct crossing.   

2. During the stage of fluid infiltration along the NF, a maximum tensile stress peak 

is generated at the end of the opening zone along the NF ahead of the fluid front. 

The location and value of the tension peak is a function of fluid pressure and 

fluid infiltrated length. 

3. Poroelastic effect arising from fluid diffusion into the rock deformation reduces 

HF aperture and thus reduces tensile stress near the center of the NF ahead of the 

HF tip before HF reaches NF. While fluid flows along the NF, poroelastic effects 

can reduce the value of tension peak, decreasing the possibility of fracture re-

initiation with time. However, rapid fluid diffusion into a NF can cause it to slip 

prior to HF arrival, promoting offset situations.  
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4. Hydraulic fractures subjected to higher injection rates or fracturing fluids of 

higher viscosity propagate longer distance before turning to the direction of 

maximum horizontal stress. 

5. Fracture trajectories near a NF tend to bend and deviate from the direction of 

maximum horizontal stress when using a joint model that includes the initial joint 

deformation.  

6. Fracture trajectories are less dependent on the injection rate or fluid viscosity 

when NF slips under initial stresses and the influence of NF is more 

predominant; whereas, fracture trajectories are more dominated by the HF 

variables such as injection rate and fluid viscosity when the influence of NF is 

smaller, e.g., when a joint is in equilibrium with the in-situ stresses. 
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NOMENCLATURE 

 

ij

ns
A  =  boundary influence coefficients (gives the normal stress at the midpoint of the 

i
th element due to a constant shear DD over the jth element)  

B = Skempton’s pore pressure coefficient 

c  =  cohesion, MPa 

Cf = Fluid diffusivity, m2/s 

d   =  characteristic length of fracture process zone, m 

xD  =  displacement discontinuity with respect to x-axis, m 

y
D  =  displacement discontinuity with respect to y-axis, m 

j

s
D  =  total shear components of discontinuity with respect to the local co-ordinates s 

and n at the jth element, m  

j

n
D  =  total normal components of discontinuity with respect to the local co-ordinates 

s and n at the jth element, m  

0( )
i

s
D  =  shear component of initial total joint deformation, m   

0( )
i

n
D  =  normal component of initial total joint deformation, m  

'
i

s
D  = shear component of the induced deformation, m 

'
i

n
D  = normal component of the induced deformation, m 

E  =  Young’s modulus, MPa 
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I
f  =  tensile driving force, MPa 

II
f  =  shear driving force, MPa 

I
F  =  normalized tensile driving force 

II
F  =  normalized shear driving force 

G  =  shear modulus of rock formation, MPa 

k  = dynamic permeability, md 

Ku  =  undrained bulk modulus, MPa 

K  = rock’s bulk modulus, MPa 

KI  = Mode I stress intensity factor, MPa·m1/2 

KII  =  Mode II stress intensity factor, MPa·m1/2 

KIC  =  Mode I critical stress intensity factor, MPa·m1/2 

l  =  initial crack half length, m 

L1  =  fracture length, m 

L2 = joint length, m 

p  =  pressure, MPa 

pf  = fluid pressure, MPa 

p(0,t)  = pressure at the wellbore at time t, MPa 

p(x,t)  = pressure at coordinate x at time t, MPa 

∆p  = pressure drop, MPa  

q  =  fracturing fluid flow rate, bbl/min 

q(0,t)  = injection rate at the wellbore (x=0)  at time t, bbl/min 

SH = maximum horizontal stress, MPa  
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Sh = minimum horizontal stress, MPa 

t  =  time point during a fracture treatment, s 

T0 = tensile strength, MPa 

x
u  =  displacement with respect to x-axis, m 

y
u  =  displacement with respect to y-axis, m 

i

s
u  =  shear displacement at the midpoint of the ith element, m  

i

n
u  =  normal displacement at the midpoint of the ith element, m 

w = fracture width, m 

wj = level weighting factor  

x  = coordinate along direction of fracture propagation, m 

y  = coordinate along direction of fracture propagation, m 

α = Biot’s effective stress coefficient 

µ  = fluid viscosity, cp 

ν  = Poisson’s ratio 

ρ  = density of the fracturing fluid, kg/m3 

φ  = angle of friction, ˚ 

σn  = in-situ normal rock stress perpendicular to fracture face, MPa 

θθσ  = tangential stress in radial coordinate, MPa 

rθσ  = shear stress in radial coordinate, MPa 

rr
σ  = radial stress in radial coordinate, MPa 
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i

s
σ  =  shear stress at the midpoint of the ith element, MPa  

i

n
σ  =  normal stress at the midpoint of the ith element, MPa  



115 

 

 

REFERENCES 

 

Batchelor, G.K. 1967. An Introduction to Fluid Dynamics. Cambridge, UK.: Cambridge 

University Press. Original edition.  ISBN  0521 66396 2. 

Berchenko, I. and Detournay, E. 1997. Deviation of Hydraulic Fractures through 

Poroelastic Stress Changes Induced by Fluid Injection and Pumping. 

International Journal of Rock Mechanics and Mining Sciences 34 (6): 1009-

1019.  

Biot, M.A. 1941. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 

26: 182-185.  

Blanton, T.L. 1982. An Experimental Study of Interaction between Hydraulically 

Induced and Pre-Existing Fractures. Paper SPE 10847-MS presented at the SPE 

Unconventional Gas Recovery Symposium, Pittsburgh, Pennsylvania. DOI: 

10.2118/10847-MS. 

Bobet, A. 2001. Numerical Simulation of Initiation of Tensile and Shear Cracks. Paper 

presented at the 38th U.S. Symposium on Rock Mechanics (USRMS), 

Washington D.C., Swets & Zeitlinger Lisse. 

Bobet, A. and Einstein, H.H. 1998. Fracture Coalescence in Rock-Type Materials under 

Uniaxial and Biaxial Compression. Int. J. Rock Mech. Min. Sci. 35: 863-888.  

Boone, T.J., Ingraffea, A.R., and Roegiers, J.C. 1991. Simulation of Hydraulic Fracture 

Propagation in Poroelastic Rock with Application to Stress Measurement 



116 

 

 

Techniques. International Journal of Rock Mechanics and Mining Sciences & 

Geomechanics Abstracts 28 (1): 1-14.  

Chuprakov, D.A., Akulich, A., Siebrits, E. and Thiercelin, M. 2010. Hydraulic Fracture 

Propagation in a Naturally Fractured Reservoir. Paper SPE 128715-MS presented 

at the SPE Oil and Gas India Conference and Exhibition, Mumbai, India. DOI: 

10.2118/128715-MS. 

Cooke, M.L. and Underwood, C.A. 2001. Fracture Termination and Step-over at 

Bedding Interfaces Due to Frictional Slip and Interface Opening. Journal of 

Structural Geology 23 (2-3): 223-238.  

Crouch, S.L. 1976. Analysis of Stresses and Displacements around Underground 

Excavations: An Application of the Displacement Discontinuity Method. 

Minneapolis: Dept. of Civil and Mineral Engineering, University of Minnesota.   

Crouch, S.L. and Starfield, A.M. 1983. Boundary Element Methods in Solid Mechanics. 

London: George Allen & Unwin. Original edition.  ISBN 004620010X. 

Detournay, E. and Cheng, A.H.D. 1991. Plane Strain Analysis of a Stationary Hydraulic 

Fracture in a Poroelastic Medium. International Journal of Solids and Structures 

27 (13): 1645-1662.  

Dobroskok, A., Ghassemi, A., and Linkov, A. 2005. Extended Structural Criterion for 

Numerical Simulation of Crack Propagation and Coalescence under Compressive 

Loads. International Journal of Fracture 133: 223-246.  



117 

 

 

Dong, C.Y. and de Pater, C.J. 2001. Numerical Implementation of Displacement 

Discontinuity Method and Its Application in Hydraulic Fracturing. Computer 

Methods in Applied Mechanics and Engineering 191 (8-10): 745-760.  

Fisher, M.K., Wright, C.A., Davidson, B.M. et al. 2002. Integrating Fracture Mapping 

Technologies to Optimize Stimulations in the Barnett Shale. Paper presented at 

the SPE Annual Technical Conference and Exhibition, San Antonio, Texas.  

Copyright 2002, Society of Petroleum Engineers Inc. 77441. 

Gdoutos, E.E. 2005. Fracture Mechanics: An Introduction. Dordrecht, The Netherlands: 

Springer. Original edition.  ISBN 1-4020-3153-X. 

Geertsma, J. and de Klerk, F. 1969. A Rapid Method of Predicting Width and Extent of 

Hydraulically Induced Fractures. SPE Journal of Petroleum Technology 21 (12): 

1571-1581.  

Ghassemi, A. and Zhang, Q. 2006. Porothermoelastic Analysis of the Response of a 

Stationary Crack Using the Displacement Discontinuity Method. Journal of 

Engineering Mechanics 132: 26-33.  

Griffith, A.A. 1924. The Theory of Rupture. Proceedings 1st International Congress 

Applied Mechanics: 55-63, Delft, Holland.  

Huang, N.C. and Russell, S.G. 1985. Hydraulic Fracturing of a Saturated Porous 

Medium-II: Special Cases. Theoretical and Applied Fracture Mechanics 4 (3): 

215-222.  



118 

 

 

Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W. 2007. Fundamentals of Rock 

Mechanics. Malden, MA: Blackwell Publishing. Original edition.  ISBN  978-0-

632-05759-7. 

Khristianovic, S.A. and Zheltov, Y.P. 1955. Formation of Vertical Fractures by Means 

of Highly Viscous Liquid. Paper presented at the 4th World Petroleum Congress, 

Rome, Italy. 579-586. World Petroleum Congress. 

Koshelev, V. and Ghassemi, A. 2003. Hydraulic Fracture Propagation near a Natural 

Discontinuity. In Twenty-Eight Workshop on Geothermal Reservoir Engineering. 

Stanford University, Stanford, California. 

Matt Blauch and Grieser, B. Special Techniques Tap Shale Gas. 

http://www.epmag.com/archives/features/307.htm. Accessed May 10, 2010. 

McTigue, D.F. 1986. Thermoelastic Response of Fluid-Saturated Porous Rock. J. 

Geophys. Res. 91 (B9): 9,533-539,542.  

Nordgren, R.P. 1972. Propagation of a Vertical Hydraulic Fracture. SPE Journal 12 (4): 

306-314.  

Palmer, I.D., Moschovidis, Z.A., and Cameron, J.R. 2007. Modeling Shear Failure and 

Stimulation of the Barnett Shale after Hydraulic Fracturing. Paper SPE 106113 

presented at the SPE Hydraulic Fracturing Technology Conference, College 

Station, Texas, U.S.A.   

Perkins, T.K. and Kern, L.R. 1961. Widths of Hydraulic Fractures. SPE Journal of 

Petroleum Technology 13 (9): 937-949.  



119 

 

 

Potluri, N.K., Zhu, D., and Hill, A.D. 2005. The Effect of Natural Fractures on 

Hydraulic Fracture Propagation. Paper SPE 94568-MS presented at the SPE 

European Formation Damage Conference, Scheveningen, The Netherlands.   

Rao, Q., Sun, Z., Stephansson, O. et al. 2003. Shear Fracture (Mode II) of Brittle Rock. 

Rock Mech. Mining Sci. 40: 355-375.  

Renshaw, C.E. and Pollard, D.D. 1995. An Experimentally Verified Criterion for 

Propagation across Unbounded Frictional Interfaces in Brittle, Linear Elastic 

Materials. International Journal of Rock Mechanics and Mining Science & 

Geomechanics Abstracts 32 (3): 237-249.  

Rice, J.R. 1968. Mathematical Analysis in the Mechanics of Fracture. In Fracture, An 

Advanced Treatise. New York: Academic Press.  Vol II: Mathematical 

Fundamentals. H. Liebowitz. ed. 

Ruina, A.L. 1978. Influence of Coupled Deformation-Diffusion Effects on the 

Retardation of Hydraulic Fracture. In 19th US Rock Mechanics Symposium 

(USRMS):274-282. Reno, Nevada: University of Nevada Press, ARMA. 

Sneddon, I.N. 1946. The Distribution of Stress in the Neighborhood of a Crack in an 

Elastic Solid. In Proc. R. Soc. London, Ser. A, 187:229-260. 

Tang, C.A., Lin, P., Wong, R.H.C. et al. 2001. Analysis of Crack Coalescence in Rock-

Like Materials Containing Three Flaws - Part II: Numerical Approach. Int. J. 

Rock Mech. Min. Sci. 38: 925-939.  

Thiercelin, M.J. and Makkhyu, E. 2007. Stress Field in the Vicinity of a Natural Fault 

Activated by the Propagation of an Induced Hydraulic Fracture. In Rock 



120 

 

 

Mechanics: Meeting Society’s Challenges and Demands. London: Taylor & 

Francis Group. 

Vandamme, L., Detournay, E., and Cheng, A.H.-D. 1989. A Two-Dimensional 

Poroelastic Displacement Discontinuity Method for Hydraulic Fracture 

Simulation. International Journal for Numerical and Analytical Methods in 

Geomechanics 13 (2): 215-224.  

Warpinski, N.R. and Teufel, L.W. 1987. Influence of Geologic Discontinuities on 

Hydraulic Fracture Propagation (Includes Associated Papers 17011 and 17074 ). 

SPE Journal of Petroleum Technology 39 (2): 209-220. DOI: 10.2118/13224-pa 

Warpinski, N.R., Wolhart, S.L., and Wright, C.A. 2004. Analysis and Prediction of 

Microseismicity Induced by Hydraulic Fracturin. SPE Journal 9 (1): 24-33. DOI: 

10.2118/87673-pa 

Woo, C.W. and Ling, L.H. 1984. On Angled Crack Initiation under Biaxial Loading. The 

Journal of Strain Analysis for Engineering Design 19 (1): 51-59. DOI: 

10.1243/03093247V191051 

Wu, H., Chudnovsky, A., Dudley, J.W. et al. 2004. A Map of Fracture Behavior in the 

Vicinity of an Interface. Paper presented at the Gulf Rocks 2004, the 6th North 

America Rock Mechanics Symposium (NARMS), Houston, Texas.  ARMA 04-

620. 

Yan, X. 2004. A Special Crack Tip Displacement Discontinuity Element. Mechanics 

Research Communications 31 (6): 651-659.  



121 

 

 

Zhang, X. and Jeffrey, R.G. 2006. The Role of Friction and Secondary Flaws on 

Deflection and Re-Initiation of Hydraulic Fractures at Orthogonal Pre-Existing 

Fractures. Geophysical Journal International 166: 1454-1465.  

Zhang, Z.X. 2002. An Empirical Relation between Mode I Fracture Toughness and the 

Tensile Strength of Rock. International Journal of Rock Mechanics and Mining 

Sciences 39 (3): 401-406.  

 
 



122 

 

 

APPENDIX A 

EQUATIONS OF POROELASTICITY 

 

In the poroelasticity theory (Biot 1941), using a tension positive sign convention, 

the governing equations describing different variables are: 

Constitutive equations: 

,
2

i j

i j i j
G

σ
ε

∆
∆ = ≠  [dimensionless] ........................................................................ A.1 

3

kk
kk

p

K K

σ α
ε

∆ ∆
∆ = + [dimensionless] ....................................................................... A.2 

2
2

1 2
i j i j kk i j i j

Gv
G p

v
σ ε ε δ α δ∆ = ∆ + ∆ − ∆

−
(Pa) .......................................................... A.3 

3

kk p

K BK

α σ α
ζ

∆ ∆
∆ = + [dimensionless]  ...................................................................... A.4 

( )p M ζ αε= − (Pa) ............................................................................................... A.5 

Eq. A.2 and A.4 describe the volumetric response of the solid and fluid, respectively.  

i j
σ denotes the components of the total stress tensor; 

i j
ε denotes the components of the 

strain tensor related to the solid displacements, u, by , ,

1
( )

2
i j i j j i

u uε = +  ; G=shear 

modulus; α=Biot’s effective stress coefficient; p=pore pressure; K=rock’s bulk modulus; 

i j
δ =Kronecker delta (it equals unity for i=j and zero for i≠j); B=Skempton’s pore 

pressure coefficient; ζ= variation of the fluid content per unit reference volume of the 

porous material; M=Biot’s modulus. 
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Equilibrium equations: 

,i j j i
Fσ = − (Pa/m) ................................................................................................... A.6 

where Fi=solid body force (force per unit volume) 

Darcy's law: 

,( )
i i i

v p fκ= − − (m/s) ............................................................................................. A.7  

where vi= fluid velocity, ĸ=k/µ (k: dynamic permeability; µ: fluid viscosity) and fi=fluid 

body force (force per unit volume) 

Continuity equation: 

,i i
v

t

ζ
γ

∂
+ =

∂
(s-1) .................................................................................................... A.8 

0

t

Q dtγ= ∫   ............................................................................................................. A.9 

where γ represents fluid source intensity and its integration over time yields the source 

strengths give by Q. 

Field equations of Poroelasticity: 

Navier equation for solid displacement: 

2

, ,

1
( 3 ) 0

3
i i i

G u G K pε α∇ + + − =   ......................................................................... A.10 

Diffusion equation for pore pressure p: 

2

,

1
( )

i i

p
p M f

M t t

ε
κ α γ κ

∂ ∂
∇ = + − −

∂ ∂
  ................................................................... A.11 
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APPENDIX B 

NUMERICAL FORMULATIONS FOR TIP ELEMENTS 

 

 First consider arbitrary DD distributions along element length 2a, as shown in 

Fig. B.1: 

( ) , 1,2
i i

D D iξ= =   ............................................................................................... B.1 

or 

( )

( )
x x

y y

D D

D D

ξ

ξ

=

=
  ......................................................................................................... B.2 

From a differential point of view, the differential displacements and stresses at field 

point (x,y) due to a differential element (with length 2dξ) can be written as (Crouch and 

Starfield 1983, Yan 2004):  

[ ] [ ]

[ ] [ ]
3 5 2 4

2 4 3 5

( ) 2(1 ) ( ) (1 2 )

( ) (1 2 ) ( ) 2(1 )

x x y

y x y

du D T yT D T yT

du D T yT D T yT

ξ ν ξ ν

ξ ν ξ ν

= − − + − − −

= − − + − −
  .................................... B.3 

[ ] [ ]

[ ] [ ]

[ ] [ ]

4 6 5 7

6 5 7

5 7 6

2 ( ) 2 2 ( )

2 ( ) 2 ( )

2 ( ) 2 ( )

xx x y

yy x y

xy x y

d GD T yT GD T yT

d GD yT GD T yT

d GD T yT GD yT

σ ξ ξ

σ ξ ξ

σ ξ ξ

= + + − +

= − + − −

= − + + −

   .............................................. B.4                                       

where functions T2, T3, T4, T5, T6, T7 are given by 
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2 2 2 2

3 3 2 2

4 4 2 2 2

2 2

5 5 2 2 2

6

1
( , , , ) / ( , , )

4 (1 ) ( )

1
( , , , ) / ( , , )

4 (1 ) ( )

2
( , , , ) / ( , , )

4 (1 ) {( ) }

1 ( )
( , , , ) / ( , , )

4 (1 ) {( ) }

(

x
T x y d d V x y

v x y

y
T x y d d V x y

v x y

y x
T x y d d V x y

v x y

x y
T x y d d V x y

v x y

T

ξ
ξ ξ ξ ξ

π ξ

ξ ξ ξ ξ
π ξ

ξ
ξ ξ ξ ξ

π ξ

ξ
ξ ξ ξ ξ

π ξ

−
= = −

− − +

= = −
− − +

−
= =

− − +

− −
= =

− − +
3 2

6 2 2 3 2 2 3

2 2

7 7 2 2 3 2 2 3

2 ( ) 3( )
, , , ) / ( , , )

4 (1 ) {( ) } {( ) }

2 3( )
( , , , ) / ( , , )

4 (1 ) {( ) } {( ) }

x x y
x y d d V x y

v x y x y

y x y
T x y d d V x y

v x y x y

ξ ξ
ξ ξ ξ ξ

π ξ ξ

ξ
ξ ξ ξ ξ

π ξ ξ

 − −
= = − 

− − + − + 

 −
= = − 

− − + − + 

  . B.5                                       

 

Fig. B.1 An arbitrary DD function and its differential element 

If the following integrals are obtained 

( , ) ( ) ( , , )
a

i j j i
a

U x y D V x y dξ ξ ξ
−

= ∫  (i=2, 3... 7; j=1, 2)  ............................................ B.6                                       

x 

y 

2a 

ξ 

a 
2dξ 

Di=Di (ξ) 
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, then the displacements and stresses at point P (x,y) due to the whole element DD can be 

written as 

 
[ ]

[ ]

3 5 2 4

2 4 3 5

2(1 ) ( , ) ( , ) (1 2 ) ( , ) ( , )

(1 2 ) ( , ) ( , ) 2(1 ) ( , ) ( , )

x x x y y

y x x y y

u U x y yU x y U x y yU x y

u U x y yU x y U x y yU x y

ν ν

ν ν

 = − − + − − − 

 = − − + − − 

  ............ B.7 

[ ]

[ ]

[ ]

4 6 5 7

6 5 7

5 7 6

2 2 ( , ) ( , ) 2 ( , ) ( , )

2 ( , ) 2 ( , ) ( , )

2 ( , ) ( , ) 2 ( , )

xx x x y y

yy x y y

xy x x y

G U x y yU x y G U x y yU x y

G yU x y G U x y yU x y

G U x y yU x y G yU x y

σ

σ

σ

 = + + − + 

 = − + − − 

 = − + + − 

       .................. B.8 

The displacement discontinuity function at a left crack tip can be expressed as 

(Crouch and Starfield 1983, Yan 2004): 

0.5

0.5

x s

y n

a
D H

a

a
D H

a

ξ

ξ

+ 
=  

 

+ 
=  

 

   ............................................................................................... B.9  

where Hs and Hn are the tangential and normal DD at the center of the crack element, 

respectively.   

 Substitute Eq. B.9 into B.6, we can get 

( , ) ( , , ) ( , )
a

i j j i j i
a

a
U x y H V x y d H B x y

a

ξ
ξ ξ

−

+
= =∫  (i=2, 3... 7; j=1, 2)  ............... B.10 

where  

( , ) ( , , )
a

i i
a

a
B x y V x y d

a

ξ
ξ ξ

−

+
= ∫  (i=2, 3... 7)   .................................................... B.11 

Then substitute Eq. B.10 into Eq.B.7 and B.8, we can get 
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[ ] [ ]

[ ] [ ]
3 5 2 4

2 4 3 5

2(1 ) ( , ) ( , ) (1 2 ) ( , ) ( , )

(1 2 ) ( , ) ( , ) 2(1 ) ( , ) ( , )

x s n

y s n

u H B x y yB x y H B x y yB x y

u H B x y yB x y H B x y yB x y

ν ν

ν ν

= − − + − − −

= − − + − −
  .......... B.12 

[ ] [ ]

[ ] [ ]

[ ] [ ]

4 6 5 7

6 5 7

5 7 6

2 2 ( , ) ( , ) 2 ( , ) ( , )

2 ( , ) 2 ( , ) ( , )

2 ( , ) ( , ) 2 ( , )

xx s n

yy s n

xy s n

GH B x y yB x y GH B x y yB x y

GH yB x y GH B x y yB x y

GH B x y yB x y GH yB x y

σ

σ

σ

= + + − +
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       ................ B.13 

 Bi (i=2, 3... 7) in Eq. B.11 can be computed as following (Yan 2004): 

1) An arbitrary point P(x,y) (y≠0) 

Gauss numerical integration can be used to calculate Bi. Let 

atξ =   ........................................................................................................... B.14 

Then Eq. B.11 can be written as: 

1

1
( , ) ( , , ) 1i iB x y a V x y at tdt

−
= +∫  (i=2, 3... 7)   ............................................... B.15 

( , ) ( , , ) 1
i i j j j

j

B x y a V x y a wζ ζ= +∑  (i=2, 3... 7)   ......................................... B.16 

where ζj and wj are the Gauss point coordinates and corresponding weighted factors, 

respectively. 

2) An arbitrary point P(x,y) (y=0) 

For x a> − , 
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=

  ....... B.17 

For x a< − , let r x a= − , 

Then 

2

4

5

6 2 3/2

7

1 2
( ,0) 2 2 2 arctan
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1 2 1 2
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( ,0) arctan
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π

π

π

 −  
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−   

=
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− +  

  
= − − 

− + +  

=

  ........ B.18 

3)  An arbitrary point P(x,y) (y=0) 

3

3

3

( ,0) 0,

1
( ,0) , 0 ,

4(1 )

1
( ,0) , 0 ,

4(1 )

B x x a

B x y x a
v

B x y x a
v

+

−

= >

= = <
−

= − = <
−

  .......................................................... B.19 

4)  For point P(0,0) 
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2

3

3

4

5

2

6

7

1 1 2
(0,0) 2 2

4 (1 ) 1 2

1
( ,0) , 0

4(1 )

1
( ,0) , 0

4(1 )

(0,0) 0

1 1 1 2
(0,0) 2 /

4 (1 ) 2 1 2

1 3 2 1 1 2
(0,0) /

4 (1 ) 2 4 1 2

(0,0) 0

B ln
v

B x y
v

B x y
v

B

B ln a
v

B ln a
v

B

π

π

π

+

−

 − + 
= − + 

− −  

= =
−

= − =
−

=

 + 
= − − 

− −  

 − + 
= − 

− −  

=

  ....................................... B.20 

 

As the two tips are symmetric, knowing the calculation of influence coefficients 

from a left tip element to an arbitrary domain point P(x,y) (x, y are coordinates of the 

arbitrary point in the local coordinate system of the influencing tip element), the 

influence coefficients from a right crack tip element to an arbitrary point P can be 

calculated using the same functions of Bi (from Eq. B.17 to B.20) but the negative value 

of coordinates of the arbitrary point P in the local coordinate system of the influencing 

right tip element P’(-x, -y). 
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APPENDIX C 

PROGRAM FLOWCHART 

 

Start 

Call 

Input_Data 

Call Geometry 

Call Bound_Tract 

Call Field_points 

Call Sys_Sol 

Call Propagation 

Call Sys_Sol 

End 

Calculate geometric parameters 

for the elements 

Calculate boundary concentration at each element 

• far_field stress:PFM , PFN, PFNM, PFP 

• Induced stress: PM, PN, PNM (or induced 

displacement) 

• Induced pore pressure TEMP 

Calculate field point coordinates 

Core part (see next page) 

Determine fracture propagation direction and 
mode (details can be found in Dob’s paper) 

To have a correct value of temperature and 
displacements on the next time step, changes in 
geometry are accounted for by calling sys_sol again. 

Main program 
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End 

Start 

Calculate influence 

coefficients 

Call temper() 

Assume a joint 

contact type 

Fluid pressure, 
Fracture aperture 

iteration  

(see next page) 

Check shear, normal 
stress σs, σn at each 

element 

Solve for heat source strength on boundary 
elements  

Determination of fictitious loads coefficients in 
expression for stresses induced by fictitious 
loads  

Solve for Ds and Dn 
 

Loop 1 to maxiter 

Iter>maxiter

Y 

N 

Check yield stress σs, yield at 
each element 

 

Calculate next approx. of Ds, Dn 

from the new contact type 

Calculate the new total stress σs 
and σn  

 

Error<tolerance

End 

Y 
N 

Sys_sol routine 
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Endloop 1 

Start press iter 

Fracture aperture 
Initialization:  

w[i], dl[i], w0[i] 

 

Loop 1: i from 1 to 

Iter>maxiter

Y 

N 

Error eval: 

Er=  

Error<toler2

Y 

N 

Calc fracture volume: dv 

 

dv<dv0? 

Y 

N 

Decrease dt 

 

Dt1=(dv-dv0)/ql 

 

Loop 2: i from 1 to NF  

i>NF? Endloop 2 

Y 

N 

Calc a[i], b[i], c[i],  
d[i] from w[i] 

 

call 
TRIDAG(NF,aa,b,c,d,FP

N) calc pk from wk 

pk=pk-1+RF(pk-pk-1) 

CALL 
LUD(AAA,CCC,XXX,M

AXJ*2) 
cacl wk from pk 

Store pk to pkold 

3 

4 

Fracture Pressure/width iteration 
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Store converged 
width: w0[i]=w[i] 

 

Calc fracture volume: 
dv 

 

Dt1=(dv-dv0)/ql 
 

Dt1 ~ dt? 
dt and w[i] converged 

Endloop 1 

Y 

N 

Dt=dt1, recal with 
dt1 

3 

4 
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