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ABSTRACT

Contribution to the Study of Fracture in Amorphous Polymers:

Experiments and Modeling. (December 2010)

Anthony De Castro, B.S., Université Technologique de Compiègne, France

Chair of Advisory Committee: Dr. Amine Benzerga

Glassy polymers are extensively used to make all kinds of structural components.

Polymers, such as epoxies, are often chosen as matrices in polymer matrix composites

(PMC). Ever since the 1960s, these types of composites have been gaining importance

in aerospace and automotive advanced applications due to their high stiffness and

weight saving potential.

In order to provide clues on the dependence of the fracture behavior upon the

stress triaxiality, a series of tensile tests on epoxy (Epon862) round notched bars were

carried out at NASA Glenn Research Center. Using state-of-the-art non-contact dig-

ital image correlation measurement technique, the mechanical quantities of interest

were extracted in order to understand how the fracture behavior responds when sub-

jected to various levels of stress triaxiality induced by varying the notch radius of

the specimens. Effects of aging on the fracture behavior were also investigated. A

physics-based macromolecular constitutive model that accounts for temperature and

pressure sensitivity as well as small-strain softening and large-strain hardening was

used to model the deformation behavior. Good correlation between experiments and

numerical simulations was achieved. To predict fracture, a pressure-sensitive model

motivated by previous work is introduced. Based on the experimental and numerical

results, the relation between the mean strain to failure versus the stress triaxiality

was defined and it was shown that the fracture response of the material is strongly

affected by the level of stress triaxiality.
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CHAPTER I

INTRODUCTION

Glassy polymers are extensively used to make all kinds of structural components.

Polymers, such as epoxies, are often chosen as matrices in polymer matrix compos-

ites (PMC). These types of composites have been gaining importance in aerospace

and automotive advanced applications due to their high stiffness and weight saving

potential. However, their use is limited by their tendency to fail in a macroscopically

brittle manner. Little is known about the fracture behavior of epoxies in particular,

and polymers in general. In order to better predict when these materials fail, it is nec-

essary to gain knowledge on the driving forces behind their fracture, which ultimately

will allow the design and development of more advanced polymers and polymer-based

composite materials.

A. Overview of the fracture mechanisms in polymers

Depending on the polymer type, thermoplastic or thermoset, the fracture mecha-

nisms are different. At the molecular scale, for thermoplastics, fracture can occur by

breaking of the primary covalent bonds or by the second van der Waals bonds. If

an amorphous polymer does not have enough entanglements, its fracture will occur

by chain pulling via secondary bond breaking. It usually requires low energy. On

The journal model is Comptes Rendus Mécanique.
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the other hand, polymers with high entanglement density will fracture via primary

bond breaking, which requires higher energy. However, chain scission and chain pull

out can occur simultaneously [4]. Fracture mechanisms for thermosets usually occur

via primary bond breaking due to their cross-link density, which restrict the polymer

network from deforming under an applied load.

In polymers, local inelastic deformations act as a precursor to damage initiation

and subsequent propagation, which occur through irreversible changes of microstruc-

ture through different complex mechanisms known as crazing and shear yielding.

Ductile fracture occurs by the formation of shear band or necking due to intense

localized plastic deformation. A high degree of strain softening in a glassy polymer

leads to the formation of shear bands. Shear bands are initiated in regions where

there are heterogeneities of strain due to surface flaws or internal defects which can

produce stress concentrations [5]. Shear bands may be created in tension as well as

in compression, and have been observed in a wide range of glassy polymers including

PVC, PMMA, epoxy resins, and amorphous PET [5, 6]. On the other hand, the

fracture of many polymers is preceded by the formation of crazes. A craze is ini-

tiated when an applied tensile stress causes micro-voids to form due to high stress

concentration. The micro-voids develop in a plane perpendicular to the maximum

tensile stress. The resulting local yield region consists of an interpenetrating network

of voids and polymer fibrils as shown in Fig. 1. Unlike a crack, crazes are beneficial

to fracture toughness, they are capable of supporting a load and can sometime absorb

large amount of strain energy.

Various theories for craze initiation have been proposed. A complex mechanism

of craze formation was proposed by Argon et al. [7]. According to them, the event

of crazing consists of three distinct steps, which are in order: thermally activated

production of stable microporosity under stress; formation of craze nucleus by plastic
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Fig. 1. Craze formation and growth by the meniscus instability mechanism.

expansion of holes in a small region while elastically unloading the surroundings; and

extension of the craze nucleus into a planar yield zone. The physical mechanism of

craze growth has been successfully explained by the so-called meniscus instability

mechanism. The interface between the polymer and the vacuum just outside at the

craze tip, does not remain straight but develop into a wavy front and finally break

up leaving behind columns of polymer (fibrils) as shown on the top view of Fig. 1.

As the front advances, the thickness of the region behind it increases which stretches

the fibrils. However, the use of the word stretch here is not appropriate since it has

been shown that the fibrils grow mainly by pulling fresh material out of the bulk [8].

Fibrils breakdown ultimately leads to crack growth. It has been shown that fibrils

break at the fibril/bulk interface rather than at the so called mid-rib region [9].
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B. Influences of the stress state on fracture

Amorphous polymers such as epoxy resins are extensively used as matrix in composite

materials. Their combination of high stiffness, strength and low density makes them

attractive for all kind of advanced structural applications. However, the polymer

matrix must sustain local multi-axial stresses originating not only from the loading

conditions but also from the reinforcement itself [10]. Surprisingly little is known

about how these materials fracture when subjected to these stress states.

By way of contrast, for metals, this subject has been studied to a great extent

with a rich experimental database and good physical understanding of the factors

governing the onset of fracture. One way to experimentally reproduce a multi-axial

stress state is to perform test on round notched bar specimens. This has been done

extensively to investigate the effect of stress triaxiality on fracture strain for metals

[11, 12, 13, 14]. By varying the notch radius, one is able to introduce different intensity

levels of stress triaxiality. Bridgman was the first to analyze the stress distribution

in round bar specimens with different notches and to give experimental evidence of

the effect of the stress state on the strains to failure in tension for steels [15].

However, to date, similar investigations are very scarce for polymers in general,

and almost inexistent for amorphous polymers in particular. Tensile experiments

were carried on polycarbonate (PC) notched round bars by Wang et al. [2] at room

temperature. The notch radii (R) were 0.8, 1.2, 2, 4 and 8 mm. Smooth specimens

were also tested (R → ∞). The fracture strain εc was calculated from the variations

in the minimum diameter of the notch:

εc = 2 ln

(
D0

Dc

)
(1.1)

where Dc is the critical value of the diameter at the minimum cross-section, and D0
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the corresponding initial value. In order to characterize the level of stress triaxiality

induced by the different notch radii, they used the Bridgman formula commonly used

with metals notched bar [15]:

σm
σeq

=
1

3
+ ln

(
1 +

D

4R

)
(1.2)

where σm is the mean (hydrostatic) stress, σeq is the von Mises equivalent stress, R

is the notch radius and D is the specimen’s minimum cross-section current diameter.

They showed, Fig. 2, that the strain to fracture for their material was decreasing

as the stress triaxiality ratio was increasing. In other words, the higher the stress

triaxiality, the more brittle the fracture mode of PC becomes.

Fig. 2. Effect of the stress triaxiality on the strain to fracture of PC [2].

Similarly, Sobieraj et al. [16] studied the effect of pressure on fracture of notched

cylindrical bars of conventional and ultra-high molecular weight polyethylene (UHMWPE).

They showed that the triaxial stress state induced by the notch has a strong impact

on the fracture behavior. Moreover, Kody et al. [17, 18] also investigated the effect
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of hydrostatic pressure on polymer fracture. Using epoxies with different molecular

weight ranging from 380 to 1790 g/mol, they casted the resins into thin-walled hol-

low cylinders where pressure was applied internally. They carried out tension and

compression tests on the hollow specimens and concluded that the fracture response

of their epoxies was strongly affected by the stress state.

While experimentally it has been proven that fracture behavior of amorphous

polymers, such as epoxies, is strongly affected by local stress states, to date, the

relationship between strain to fracture and stress triaxiality is still unclear and further

work is needed to construct a fracture locus which, ideally, would cover a wide range

of stress triaxiality.

C. Effect of physical aging on the fracture behavior

Struik [19] defined isothermal structural relaxation below the glass transition tem-

perature (Tg) of materials as physical aging. Structural relaxation is a phenomenon

that occurs in amorphous glassy polymers below their Tg. Upon quenching from

a temperature above Tg, the material is not given sufficient time to reach its equi-

librium state. Its specific volume is initially in a non-equilibrium state and slowly

approaches equilibrium value with time. This process of slow evolution towards an

equilibrium state is known as physical aging. It is to be distinguished from chemical

aging, which involves some degree of chemical degradation of the material, such as

thermal degradation or photo-oxidation. In general, glassy polymers become stiffer

and more brittle when aged, mechanical properties such as creep rate, the strength

[20] and to a lesser extent, the impact fracture energy [21], are altered by this pro-

cess. There is indication from the literature that many aspects of physical aging are
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common to both thermoplastic and thermosetting materials [19, 20, 22].

Very limited work has been done to date to study the effect of aging on fracture

behavior of glassy amorphous polymers. Kong [3] investigated the aging phenomenon

on fracture properties of postcured epoxy resin and epoxy resin reinforced with carbon

fibers. In order to avoid chemical aging due to ultra violet light irradiation, the

experiment was designed in a dry, dark and inert atmosphere. With the exception

of a few samples, the dog-bone-shaped specimens were postcured to render a fully-

crosslinked network, then heated to 260◦C for 20 minutes and finally immediately

air-quenched to room temperature. Some of those specimens were tested right away,

the rest were annealed at either 80, 110 or 140◦C for time increments of 10, 102, 103,

104 and up to 105 minutes. The effect of physical aging at 140◦C on the ultimate

tensile strength are shown in Fig. 3 (a). The effect of thermal history on the ductility

of epoxy are summarized in Fig. 3 (b).

The results showed that as physical aging proceeds, the fracture behavior of the epoxy

polymer is clearly affected with a decrease in its ultimate mechanical properties such

as its ultimate tensile strength and its strain to failure. The polymer fractures in a

more brittle fashion with aging.

D. Modeling fracture in amorphous polymers

Numerous theories and models have been developed during the last 40 years for

modeling polymers fracture behavior. Most studies on fracture of amorphous glassy

polymers are based on linear elastic fracture mechanics [23, 24]. However, Estevez

et al. [25] pointed out that this approach hides the process of initiation, widening

and breakdown of crazes which is responsible for crack creation. Classical fracture
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(a) (b)

Fig. 3. Effect of aging on neat epoxy resin [3],

(a) Ultimate tensile strength of postcured epoxy as a function of aging time

(b) Ductility as a function of thermal history.

mechanics cannot deal with crack nucleation, and the numerical simulation of crack

propagation has also been a challenge for this classical theory.

One of the earliest model that deals with craze nucleation is a stress based

craze initiation criterion developed by Sternstein et al. [26, 27] based on experiments

on poly(methyl methacrylate) (PMMA) plates with a circular hole under biaxial

tension. The underlying assumption behind their criterion is that the polymer free

volume, in large amount in amorphous polymers, is increased due to the dominance

of dilative stresses, which ultimately facilitates molecular orientation and mobility

of chain segments leading to the formation of voids and fibrils. Oxborough et al.

[28], based on their own experiments on polystyrene (PS), developed an alternative

criterion which postulates that crazes initiate when the maximum principal tensile



9

strain reaches a critical value which depends on the mean normal stress. Gearing

et al. [29] further rearranged Browden’s initiation criterion from a critical strain-

based criterion to a critical stress-based criterion, in which craze initiates when the

maximum principal stress reaches a critical value which depends on the mean normal

stress and two temperature dependent material parameters.

Once crazes have initiated, growth occurs due to extension of the fibrils in the

direction of the maximum principal stress, which leads to an advancing craze tip

perpendicularly to this direction. In order to model craze growth and breakdown,

Gearing et al. [29] adopted a model where the viscoplastic flow rule, for the general

polymer deformation, switches to a craze flow rule once initiation has started. Chowd-

hury et al. [30] pointed out that Gearing’s model does not account for gradual loss of

stress bearing capacity of the crazes structure and that craze breakdown is considered

by imposing an ad-hoc critical strain criterion which is empirically defined. Based on

Gearing’s work, Chowdhury et al. [31] proposed an improved model that accounts for

craze initiation, craze growth process associated with fibril formation and breakdown,

accompanied by gradual loss of load bearing capacity and final failure of the crazes

structure.
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CHAPTER II

TENSILE TESTS ON NOTCHED ROUND BARS

A. Introduction

An experimental plan has been defined which mainly aims at investigating the effect

of stress triaxiality on macroscopic measures of fracture. The experimental data basis

was generated using custom designed test specimens. These were round notched bars

where the notch acuity implies a specific amount of stress triaxiality. This type of

specimens is commonly used to investigate fracture in ductile and brittle metals [32].

The locus of strain-to-failure versus a measure of stress triaxiality1 will be referred to

as the fracture locus of the material. The underlying hypothesis of this work is that

the amount of hydrostatic stress superposed onto a given deviatoric loading affects the

strain to failure. There has been some indication in the literature that pressure effects

are important in thermoplastic polymers. To date, no detailed experimental work

has been conducted yet to determine the fracture locus for thermosetting polymers

in general and epoxies in particular. In addition, in this work the influence of test

temperature, strain rate and physical aging were also investigated.

1These quantities will be precisely defined later.
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B. Presentation of the experiments

A series of epoxy (EPON 862) notched round bars have been tested in tension under

various strain rates ranging from 10−5 to 10−1/s and temperatures ranging from room

temperature to 80◦C. The tests were conducted at NASA Glenn Research Center by

two undergraduate student from Texas A&M University, B. Burgess and T. Wood-

bury. The mechanical quantities of interest were measured using optical measurement

techniques. These tests demonstrated the effects of stress state, strain rate and tem-

perature not only on the deformation behavior but also on the fracture response of

the epoxy.

1. Material and specimens

The material used in this study is an epoxy resin (Epon 862) cured at 176◦C for

2.5 hours under 1.03 MPa of pressure. Table I summarized the material properties.

Experiments from Littell et al. [33] for smooth round bars of the same material have

been performed to determine the polymer’s intrinsic behavior.

Table I. Material properties.

Density Poisson’s ratio Young’s modulus 1 Tg
2

1100 kg/m3 0.4 2.6 GPa 109◦C

1 at room temperature 2 Glass transition temperature

The specimens were designed based on previous studies for ductile fracture in

metals [14]. The bars were machined from stock sheets of epoxy resin plates of

60.96 mm×60.96 mm×6.35 mm. The result was tightly controlled specimen geometry



12

with a very smooth surface finish. The precise machining method used allowed for

minimal variations between the specimens. Fig. 4 shows an example of the specimen

tested.

Fig. 4. Example of a generic test specimen.

In order to vary the stress triaxiality, three notch radii were considered: R=0.78 mm,

R=1.56 mm and R=3.9 mm. The dimensions of the specimens are shown in Fig. 5.

To each notched specimen corresponds an expected level of stress triaxiality. Each

geometry is identified by the parameter ζ with ζ/10 being equal to the ratio of notch

radius to the minimal section diameter. Decreasing value of ζ translates into a more

intense triaxial stress state.

2. Setup and measurements

The specimens were tested in tension at various temperatures (25◦C, 50◦C and 80◦C)

at different levels of nominal strain-rate (10−5/s, 10−3/s and 10−1/s). Up to four

(4) realizations of each test condition (type of notch, temperature and strain rate)

were obtained. The specimens were placed between grips of an axial-torsional MTS

servo-hydraulic machine (Fig. 6a). At higher temperatures, a boro-silicate glass tem-

perature chamber was used (Fig. 6b). Isothermal conditions were reached by heaters

and thermocouples suitably located around the specimen ensured a uniform tempera-

ture (within 1◦C) between the specimen surface temperature and the surrounding air.

Full-field surface strain measurements were carried out using a precise non-contact

digital image correlation technique. Each tested specimen was painted with a black

and white speckled pattern (Fig. 7) such that displacements and rotations of the
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R = 3.9R = 1.56R = 0.78
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Fig. 5. Geometry of round notched bars with Φ0 = 3.9 mm, R the notch radius and

ζ = 10×R/Φ0.

speckles were tracked during the test by two cameras. Figure 8 shows a close-up of a

mounted specimen, for both the room temperature setup and the high-temperature

setup.

Image data processing was carried out using the Aramis software, which provided

the pointwise dilatational and shear strains. A detailed mapping of local surface

strains could therefore be obtained, as illustrated in Fig. 9. However, the resolution

of strain measurement is not sufficient to detect strain concentrations in areas where

fracture eventually initiates. In addition, the initiation point is often located in the

interior of the specimen, as will be shown below thanks to fractographic examination.
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(a)

(b)

Fig. 6. (a) Setup for room temperature testing (A: MTS machine, B: MTS computer

controller, temperature chamber control box and ARAMIS data acquisition

computer.) (b) Setup for high temperature testing (C: Temperature chamber,

D: Optical measurement cameras, E: Specimen tested).
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Fig. 7. Notched specimen with speckles before testing (bottom) and post-test (top).

Therefore, in order to quantify the strain to failure, the following specimen-level

measure was defined:

ε̄ = ln
S0

S
= 2 ln

Φ0

Φ
(2.1)

where S is the current notch-root cross-sectional area, Φ is the corresponding diameter

and the subscript 0 refers to initial values. The above strain measure represents the

average total strain in the section of minimal diameter. In particular, its values at

crack initiation, ε̄i, and after complete failure of the bar, ε̄f can be defined using the

corresponding values of Φi and Φf , respectively. In actuality, the crack propagation

stage is so sudden that the distinction between ε̄i and ε̄f is impossible. Had they

been measured separately, it is likely that these two strains would be very close from

each other. Thus, we will only invoke strains to failure initiation ε̄i in the sequel. For

simplicity, the above strain measure is termed mean strain to failure.

Definition (2.1) requires that the diameter Φ be measured at the desired location.

This was carried out using the post-processing capabilities of the Aramis software.

More specifically, the tangent circle method was used as sketched in Fig. 10.
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(a)

(b)

Fig. 8. (a) Painted notched bar mounted for room-temperature testing. (b) Painted

notched bar mounted for high-temperature testing.



17

Fig. 9. Contours of extensional axial strain in a typical notched bar experiment using

the digital image analysis software Aramis. Also shown is the tangent circle

used to determine the current cross-sectional diameter Φ in (2.1).

surface
where strains
are measured

tangent
circle

Fig. 10. Determination of the current cross-sectional diameter Φ using the tangent

circle method (Aramis post-processing).
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C. Discussion of the results

1. Tensile tests results

The fracture locus of the material is defined as a measure of fracture property (mean

strain to failure) versus a measure of stress state (stress triaxiality ratio). To quantify

the triaxiality of the stress state, a stress triaxiality ratio, τ , is defined as:

τ =
σm
σeq

(2.2)

where σm denotes the mean normal stress (i.e. hydrostatic stress = σkk/3) and σeq

is the von Mises equivalent stress. Expectations based on the original design of the

specimens and elastoplastic finite-element simulations of the tests using power-law

hardening materials lead to the following values of the triaxiality, averaged over the

history and the notch-root cross-section: 0.6–0.8 (ζ = 10); 0.9–1.1 (ζ = 4) and 1.2–1.4

(ζ = 2).

With the measure of the minimal cross section S0, curves of normalized load

F/S0 versus mean strain ε̄ were plotted for the various notch acuities, temperatures

and strain rates. Each experiment was repeated such that between two and four load–

deformation curves could be drawn for each condition. Figure 11 depicts the effect

of notch acuity on the load–deformation response. The sample results are shown for

T = 25C (Fig. 11a) and T = 80C (Fig. 11b)2. Irrespective of the temperature, the

load is higher in a bar with a sharp notch (ζ = 2) than in one with a shallow notch

(ζ = 10), as expected. The load carried by the moderately notched bar (ζ = 4) is in

between, on average. However, the variation of the peak load with the notch acuity is

weaker than expected. The fact that the level of axial load does not vary much from

2The zigzagged character of the curves at small deformation levels is due to inac-
curacies in the measurement of the diameter.



19

(a)

(b)

F S 0 (M
Pa

)

0

20

40

60

80

100

120

140

2.ln(
Φ0

Φ
)

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

ζ = 2
ζ = 4
ζ = 10

F S 0 (M
Pa

)

0

20

40

60

80

100

2.ln(
Φ0

Φ
)

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ζ = 2
ζ = 4
ζ = 10

Fig. 11. Normalized load versus minimal cross-section mean strain at ε̇ = 10−1/s for

various levels of triaxiality. (a) T = 25◦C. (b) T = 80◦C.
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one geometry to the other indicates that the stress triaxiality does not vary by the

amount expected based on the FE analyses that were used to design the experiments.

Part of this unexpected trend may be associated with the changes made to specimen

dimensions. An other part may be due to the peculiar behavior of Epon 862, which

does not follow a power-law hardening. For more details see chapters IV–C and IV–

D. Also, similar results for a different strain rate can be found in Appendix A. It

is important to keep this limitation in mind as the results are presented from both

experiments and analysis.

 

| ε
i

0

0.1

0.2

0.3

0.4

τ

0.6 0.7 0.8 0.9 1.0 1.1

T = 25ºC
T = 80ºC

Fig. 12. Minimal cross-section mean strain to fracture versus triaxiality ratio at

ε̇ = 10−3 s−1 for T = 25◦C and T = 80◦C.

Although the stress triaxiality τ in (2.2) may not vary between the bars by as

much as expected, the results in Fig. 11 indicate a consistent trend for a decreasing

ductility with increasing τ , the strains to failure being smaller in bars with a sharp
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notch. This trend is summarized in Fig. 12 which depicts examples of the so-called

fracture loci3. Note that the strain rate is lower here than in Fig. 11. Also note the

scatter in the values of the mean strain to failure around the average value (indicated

by a point). This scatter is associated with the fact that fracture is not deterministic.

For example, one origin of the scatter is the slight variation in the initiation location.

In addition to the main effect of stress triaxiality, the effect of temperature on

ductility and on the “fracture locus” is clearly seen in Figs. 11 and 12 (compare parts

(a) and (b) in Fig. 11). Some of the corresponding load–deformation curves are shown

in Fig. 13. As expected from smooth bars testing, there is some thermal softening: the

strength decreases with increasing temperature. At all triaxiality levels, this thermal

softening leads to a greater ductility. At low triaxiality levels (ζ = 10), the scatter is

very large so that the above trend may not be very clear from Fig. 13b;

2. Fracture surfaces

In addition to the stress–strain curves generated from the experimental results, pic-

tures of the fracture surfaces of each notched specimen were taken postmortem using

a low powered optical microscope in order to determine the nature and the initiation

point of each fracture event. Figure 14 and 15 summarized the two main fracture

initiation sites. It was observed that the stress triaxiality intensity induced by the

different notch radii have a strong correlation with the location where fracture ini-

tiates. In the case of a sharp notch acuity, Fig. 14, the onset of fracture is mostly

located in the vicinity of the specimen’s notch root whereas in the case of a less sharp

notch acuity, for Fig. 15, it is located near the specimen’s center.

3The values assigned to τ in the abscissa are based on the FE analyses mentioned



22

(a)

(b)

F S 0 (M
Pa

)

0

20

40

60

80

100

120

140

2.ln(
Φ0

Φ
)

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

T = 25ºC
T = 50ºC
T = 80ºC

F S 0 (M
Pa

)

0

20

40

60

80

100

120

140

2.ln(
Φ0

Φ
)

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

T = 25ºC
T = 50ºC
T = 80ºC

Fig. 13. Normalized load versus minimal cross-section mean strain at ε̇ = 10−3 s−1 and

various levels of temperature. (a) ζ = 2. (b) ζ = 10.
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(a) Realization #1 (b) Realization #2

Fig. 14. Fracture surface of a sharp notched specimen (ζ = 2) tested at ε̇ = 10−3/s

and T = 25◦C.

(a) Realization #1 (b) Realization #2

Fig. 15. Fracture surface of a medium notched specimen (ζ = 4) tested at ε̇ = 10−1/s

and T = 50◦C.
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A complete summary of the locations of fracture initiation for all specimens

tested is shown in Fig. 16. When fracture initiates near the specimen’s center, the

location is defined as ”Internal” and when it initiates near the notch root, the location

is defined as ”External”.

(a) ζ = 2 (b) ζ = 4 (c) ζ = 10

Fig. 16. Summary of the locations of fracture onset for all temperatures, strain rates

and notch radii.

As the stress triaxiality increases in intensity, the location of the onset of fracture

switches from a region near the specimen’s center to the notch root vicinity.

D. Conclusions

A series of tensile tests on epoxy round notched bars were carried out in order to

provide clues on the dependence of the fracture behavior upon the stress triaxiality.

Results have shown a strong effect of the level of stress triaxiality, induced by the

specimen notch radius, on the strain to failure. However, it has been shown that

the variation of stress triaxiality levels is weaker than expected based on the FE

above. Thus, they are only indicative.
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simulations that were used to design the experiments. In order to further investigate

these unexpected trends, it is necessary to capture the variations of the stress state

induced by the different specimen geometries and to gain knowledge of the local

mechanical quantities of interest. To achieve this goal, numerical simulations were

used.
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CHAPTER III

MODELING OF THE MATERIAL DEFORMATION

A. Introduction

The so-called macromolecular model is the result of approximately 40 years of collab-

orative work on modeling complex glassy polymer behavior. First, Haward et al. [34]

developed a one dimensional continuum model, by using the Eyring dashpot model

to describe yield and Langevin spring model to describe post yield orientational hard-

ening behavior. Then, Argon [35] incorporated dependence upon strain rate. Later,

Boyce et al. [36] improved the model by incorporating hydrostatic pressure sensitiv-

ity, three dimensional effect, finite strain kinematics and classical three chain rubber

elasticity model to describe the orientation hardening. Arruda et al. [37] further

refined the model by considering thermal softening due to adiabatic heating. Wu et

al. [38] revised Boyce model by improving the orientation hardening in considering a

statistical combination of three chain and eight chain rubber elasticity model. Finally,

the model as been modified by Chowdhury et al. [31] to better represent the small

strain behavior with the possibility to model independently the pre-peak hardening

and the post-peak softening observed in amorphous polymers. As it is showed in the

next chapter, the basis of the macromolecular model is to combine a rate-sensitive

plastic flow rule with an anisotropic hardening model.
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B. Formulation

First, an additive decomposition of the total rate of deformation D into an elastic and

a plastic part is assumed. A hypoelastic law is used to specify the elastic part De in

terms of the co-rotational rate of Cauchy stress as:

De = L−1 :
∇
σ (3.1)

where L is the point-wise tensor of elastic moduli given in terms of Young’s modulus

and Poisson’s ratio as follows:

Lijkl =
E

1 + ν

[
1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

]
(3.2)

and
∇
σ is the co-rotational rate of Cauchy stress.

In the polymer matrix, the flow rule is specified such that plastic deformation is

incompressible, i.e.,

Dp = ˙̄εp, p =
3

2σe
σ′d (3.3)

where ˙̄ε is the effective strain rate, describing the magnitude of the plastic flow, defined

as:

˙̄ε =

√
2

3
Dp′ : Dp′ (3.4)

and p being a tensor that defines the direction of the plastic flow. Also, X′ refers to

the deviator of second-rank tensor X, and σe is an effective stress defined by:

σe =

√
3

2
σ′d : σ′d (3.5)

with σd = σ− b being the driving stress and b the back stress tensor that describes
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the orientation hardening of the material. It evolves following:

∇

b= R : D (3.6)

R being a fourth-order tensor, which is specified here by using a non-Gaussian network

model [39] that combines the classical three-chain rubber elasticity model [36] and

the eight-chain model [40], such that

R = (1− κ)R3-ch + κR8-ch (3.7)

where κ = 0.85λ̄/
√
N , N is a material constant and λ̄ is the maximum principal

stretch, which is calculated based on the left Cauchy–Green tensor B = F · FT , and

the contravariant components of the eight-chain back-stress moduli tensor, R8-ch, are

given by

R8-ch
ijkl =

1

3
CR
√
N

[(
ξc√
N
− βc
λc

)
BijBkl

Bmm

+
βc
λc

(δikBjl +Bikδjl)

]
(3.8)

where Bij are the components of the left Cauchy-Green tensor. CR and N are ma-

terial constants known as the rubbery modulus and average number of links between

entanglements, respectively, and

λ2c =
1

3
trB, βc = L−1

(
λc√
N

)
, ξc =

β2
c

1− β2
c csch

2βc
(3.9)

where L−1 is the inverse Langevin function defined as L(x) = cothx − 1
x
. The

components of R3-ch are given in terms of the principal total stretches λI , with respect

to axes pointing onto the principal stretch directions,

R3-ch
IJKL =

1

6
CR
√
NλI

2

(
ξI√
N

+
βI
λI

)
(δIKδJL + δJKδIL) if I = J (3.10)
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R3-ch
IJKL =

1

6
CR
√
N
λI

2 + λJ
2

λI
2 − λJ2

(λIβI − λJβJ)(δIKδJL + δJKδIL) if I 6= J (3.11)

Strain rate effects are accounted for through a viscoplastic law giving the effective

plastic strain rate ˙̄ε in (3.3) as [35, 36]:

˙̄ε = ε̇0 exp

[
−A (s− ασh)

T

(
1−

(
σe

s− ασh

)m)]
(3.12)

where ε̇0, m and A are material parameters, α is a factor describing pressure sensi-

tivity, T is the absolute temperature, σh = trσ is the trace of Cauchy stress and s is

a micro-scale athermal shear strength. Boyce et al. [36] introduced strain softening

effects through the state variable s. In order to better represent the small strain

behavior, [31] modified the evolution law for s (from its initial value s0 to its current

value s) as follows:

ṡ = h1(ε̄)

(
1− s

s1

)
ε̇+ h2(ε̄)

(
1− s

s2

)
ε̇ (3.13)

where s1 and s2 are adjustable parameters and h1(ε̄) and h2(ε̄) are smooth, Heaviside-

like functions given by:

h1(ε̄) = −h0
{

tanh

(
ε̄− ε̄p
f ε̄p

)
− 1

}
; h2(ε̄) = h0

{
tanh

(
ε̄− ε̄p
f ε̄p

)
+ 1

}
(3.14)

The updating of the back stress b is obtained using bt+4t = bt +4tḃ with the

convected rates calculated through

ḃ =
∇

b− bD−Db (3.15)

This constitutive model has been implemented in a user-defined routine (UMAT)
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in the commercial finite element code ABAQUS. Here, large strains are modeled

within objective space frames. Implementation of the macromolecular model as a

UMAT thus requires to recast the constitutive equations using a co-rotational formu-

lation [41].

C. Results

Finite element models were built in Abaqus/Standard to simulate the experiments.

For round bars, axisymmetric elements were used. Due to symmetry, only a quarter

of the specimen was modeled, see Fig. 17.

Fig. 17. Example of a finite element model of a round notched specimen.

Details on the procedure to identify the material parameters can be found in

Poulain’s work [1]. The following numerical results were all obtained from the macro-

molecular model simulations calibrated with the material parameters identified by

Poulain. Table II summarized the materials parameters used to calibrate the model.
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The predictive capabilities of the model implemented in Abaqus via a user-

defined routine (UMAT) are tested against the experimental results at various levels

of pressure, temperature and strain rate. Overall, the numerical simulations are in

good agreement with the experimental results. The deformation behavior of Epon

862 is very well captured for all notch acuities as illustrated in Figure 18 which corre-

sponds to specimens tested at a temperature T = 25◦C and a strain rate ε̇ = 10−1/s

for all three notch radii.

Similarly, the model shows very good agreement with the temperature, Fig. 19,

and strain rate dependence, Fig. 20, of the material deformation. Also, it can be ob-

served in Fig. 19, which corresponds to a shallow notched specimen, that the model

is able to capture the softening stage occurring at large strains.
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Fig. 18. Model verification for pressure sensitivity against experimental results taken

at T = 25◦C and ε̇ = 10−1/s.
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Fig. 19. Model verification for temperature sensitivity against experimental results

taken at ε̇ = 10−3/s and ζ = 10.
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Fig. 20. Model verification for strain rate sensitivity against experimental results taken

at T = 25◦C and ζ = 2.
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Table II. Material parameters used in the finite-element calculations, identified by

Poulain [1].

Material Units Description Epoxy
parameter Epon 862

ρ kg/m3 mass density 1100
Er GPa modulus at Tr 2.6
Tr K reference temperature 298
β 1/K temperature dependence 0.0028
ν — Poisson’s ratio 0.4

s0/E — initial shear strength 45.8
s1/s0 — pre-peak strength 1.2
s2/s0 — saturation strength 1.1
h1 MPa pre-peak hardening 2994
h2 MPa rate of yield drop 896.6
ε̄p — peak plastic strain 0.054
f — 0.1

α — pressure-sensitivity 0.05

m — rate-sensitivity 0.5
ε̇0 s−1 rate-sensitivity 43000
A 1/K rate-sensitivity 173.8

CR MPa rubbery modulus 15
N — number of rigid links 7.4
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CHAPTER IV

MECHANICS OF NOTCHED BARS

A. Introduction

Numerical simulations can provide insight into the complex stress and strain distribu-

tions that an amorphous polymer experiences during multi-axial loading conditions.

However, these simulations, and the knowledge gained from them, are limited by the

accuracy of the constitutive model used to define the behavior of the material. In

chapter III, a physics based model for polymers has been presented which is capable

of accounting for rate-, pressure-, and temperature-sensitive yielding, isotropic hard-

ening before peak yield, intrinsic postyield softening, and rapid anisotropic hardening

at large strains. Using the model’s capabilities, the aim of this chapter is to inves-

tigate the stress triaxiality spatial distribution and evolution in the notched round

bars presented in chapter II. The peculiar polymeric material response to various

stress states is compared against a more common deformation behavior observed in

materials following a power law hardening. Also, the effects of the specimens geom-

etry on the stress triaxiality is investigated for various notch acuities. The results

show that the stress triaxiality does not vary by the amount expected based on the

finite element analyses that were used to design the experiments. The influence, of

what was initially thought to be a minor change in the specimen geometry, is quite

significant and strongly affects the stress state evolution.
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B. Background

In order to evaluate the effects of the stress triaxiality on the strain to failure, it is

necessary to perform different tests where the level of triaxiality can be varied. As

mentioned previously, the classical tensile test on notch specimens is one of the most

common ways to achieve this goal. The experimental work presented in chapter II

was based on previous studies for ductile fracture in metals [14]. The dimensions of

the specimens are shown in Fig. 5. The larger diameter Φmax was originally specified

to be 7 mm for all the bars, however, due to manufacturing constraints the specimens

had to be machined from stock sheets of resin plates of 60.96×60.96×6.35 (mm) where

6.35 mm is the sheet thickness, therefore the original diameter had to be reduced to

5.8 mm.

The fracture locus of the material has been defined as a measure of fracture

property (mean strain to failure) versus a measure of stress state (stress triaxiality

ratio). To quantify the triaxiality of the stress state, a stress triaxiality ratio, τ , was

defined in equation 2.2. When notched specimens are designed, in general, the goal

is to minimize variations of the stress triaxiality ratio with deformation, so its effect

on the fracture behavior can be quantified in a more controllable manner. This has

been done extensively for power law hardening materials such as metals. Our ex-

periment was designed following such guidelines (see chapter II). However polymers

deformation behavior does not obey power laws. And therefore it is necessary to

investigate the distribution of the stress triaxiality ratio corresponding to the original

specimen geometry (Φmax = 7 mm), using a material model that follows more real-

istically the deformation behavior of polymers. Also it is important to find out how

the modification in the specimens larger diameter, Φmax, would impact the results.
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The power law hardening law used is a Ramberg-Osgood model define as follows:

Eε = σ + α

( |σ|
σ0

)n−1

σ (4.1)

where E is the Young´ s modulus, α is the yield offset, σ0 is the yield stress and

n is the hardening exponent with n > 1. For a particular set of testing conditions

(temperature and strain rate), using the corresponding experimental stress-strain re-

sponse of smooth bars, the power law material parameters were determined by fitting

a curve onto the smooth bar response, see appendix A Fig 41. Table III summarizes

the value of the material parameters used for the case of T = 25◦C and ε̇ = 10−3/s.

Table III. Material parameters used in the power law finite-element calculations.

Material Units Description Epoxy
parameter Epon 862

E GPa modulus 2.6
α - yield offset 0.02
σ0 MPa yield stress 50
n - hardening exponent 9.5

C. Effects induced by the material model

The evolution of the stress triaxiality ratio with respect to the deformation along the

specimen minimum cross-section is show in Fig. 21 for all notch acuities. The varia-

tions of triaxiality versus the mean strain are compared when two different material

deformation models are used in the numerical simulations. First, it is found that for a

power law hardening material, the stress triaxiality ratio increases as the mean strain

increases at the specimen’s center, Fig. 21 (a), and the opposite trend is observed at
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the specimen’s notch root, Fig. 21 (b), where triaxiality decreases as the mean strain

increases. In both cases, center and notch root, triaxiality evolves in a rather smooth

manner. Now, when the material follows a more complex and realistic constitutive

model accounting for isotropic hardening before peak yield, intrinsic postyield soft-

ening, and rapid anisotropic hardening at large strains, triaxiality variations are no

longer smooth. For all notch acuities, at the specimen’s center, after some increase,

the stress triaxiality ratio reaches a maximum and then decreases towards what seems

to be a common value of τ ≈ 0.3 for all notch acuities which corresponds to triaxiality

ratio of a smooth bar. A similar observation can be made at the specimen’s notch

root. In other words, at large strains, the stress state in the specimen section of

minimum diameter seems to become uniaxial.

In order to further understand what is going on at larger strains, let’s now look

at deformed configurations of the finite element specimen models. Fig. 22 shows

the simulated contour evolution of the effective plastic strain for a power hardening

material, Fig. 22 (a), and a more realistic polymer behavior using the macromolecular

model, Fig. 22 (b). In the macromolecular model case, a neck seems to be developing

in the notch region along with some elongation of the material in the mid-section.

In contrast, for the case of using a power law, the overall geometry of the notch is

maintained. In addition, the evolution of the stress triaxiality contour in Fig. 23

shows a significant difference between both cases. As observed in Fig. 21, in the

specimen mid-section, for the simulation using the macromolecular model, the stress

triaxiality ratio at large strain (ε̄ = 0.85) is approximately equal to the one of a smooth

bar. Also, triaxiality seems to be building up in the region below the specimen mid-

section, whereas it remains concentrated in the center of the specimen for the power

law case.
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Fig. 21. Stress triaxiality ratio versus minimal cross-section mean strain at T = 25◦C

and ε̇ = 10−3/s for various levels of notch acuity. This figure compares differ-

ent material models and corresponds to the evolution of the stress triaxiality

taken at, (a) the specimen’s center, (b) the specimen’s notch root. (original

specimen geometry)
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(a) ε̄ = 0.55 (b) ε̄ = 0.85

Fig. 22. Evolution of effective plastic strain for (a) power law, (b) macromolecular

model.

D. Effects induced by the specimen geometry

Due to manufacturing constraints, the specimen larger diameter, Φmax, had to be

reduced from 7 to 5.8 mm (see chapter II). In order to gain knowledge on how

this design change might have impacted the results, numerical simulations using the

macromolecular model have been run for both, the modified and original specimen

geometry. Fig. 24 shows the evolution of the stress triaxiality along the specimen’s

minimum cross-section where r is its radius (r = 0 and r = 1.9 mm, corresponds to

the specimen’s center and notch root respectively). The results are extracted for fixed

levels of strain, at the onset of deformation ε̄ = 0, Fig. 24 (a), and at ε̄ = 0.4, Fig.

24 (b). The first observation is that the impact of the change in geometry is clearly

dependent on the stress triaxiality levels induced by the notch radius. For ζ = 2, there

is a significant reduction in the range of triaxiality, whereas for ζ = 10, the change
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(a) ε̄ = 0.55 (b) ε̄ = 0.85

Fig. 23. Evolution of the stress triaxiality ratio for (a) power law, (b) macromolecular

model.

in geometry has almost no influence at all on the simulations results. Moreover, its

impact seems to wear off as the location of interest goes from the center (r = 0) to

the notch root (r = 1.9) of the specimen. Last, when comparing Fig. 25 (a) and (b),

which depicts the evolution of the triaxiality ratio throughout deformation captured

at the specimen’s center and notch root. It is clear that the influence of the geometry

modification is diminished as the deformation increases. In addition, the range of

stress triaxiality is greatly reduced by this change. In order to remedy this effect,

instead of only reducing the diameter Φmax, the others dimensions could have been

also reduced by a proportional amount.
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(a)

(b)

Fig. 24. Stress triaxiality ratio versus radius along the minimal cross-section at

T = 25◦C and ε̇ = 10−3/s for various levels of notch acuity taken at (a) ε̄ = 0,

(b) ε̄ = 0.4.
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(a)

(b)

Fig. 25. Stress triaxiality ratio versus minimal cross-section mean strain at T = 25◦C

and ε̇ = 10−3/s for various levels of notch acuity taken at (a) the specimen’s

center, (b) the specimen’s notch root.
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E. Conclusion

A series of tensile tests on epoxy round notched bars were carried out in order to pro-

vide clues on the dependence of the fracture behavior upon the stress triaxiality. Nu-

merical simulations using Abaqus UMAT have been performed using a material model

that follows realistically the peculiar deformation behavior of amorphous polymers.

The correlation of experimental and numerical results shows a very good agreement

between the two. Despite lack of literature on the subject, there are experimental

works that have shown a clear dependency between the stress state and the fracture

behavior of polymers in general. It has been shown that care should be taken when

trying to formulate a fracture locus applicable to amorphous polymers. Indeed, the

design of the specimens, which was based on previous work on ductile fracture for

metals, caused strong temporal and spatial variations of the stress triaxiality. How-

ever, the triaxiality levels induced by the notch radii of the specimens can be easily

distinguished. Also, what was initially thought to be a minor change in the specimen

geometry turned out to reduce significantly the range of stress triaxiality achieved by

the three notch radii considered in this work.



44

CHAPTER V

DEVELOPMENT OF A FRACTURE MODEL

A. Background

1. When does fracture initiate?

As mentioned in chapter II, from the tensile experiments on notched bars, it is impos-

sible to differentiate when damage initiates (ε̄i) from macroscopic fracture (ε̄f ) since

the crack propagation stage is so sudden. Therefore, levels of mean strain, at which

macroscopic fracture occurs, are considered to be the moment when fracture initiates.

From the experimental force/radial-displacement curves, the radial displacements to

fracture were obtained from the sudden drop of the curves, then the corresponding

mean strains were determined. We shall refer to these levels of strain as the mo-

ment when cracking initiates, defined as ε̄i. Also, up to four realizations of each

test condition (type of notch, temperature and strain rate) were obtained during the

experiments. Significant scatter was observed for certain conditions of temperature,

strain rate and notch acuity. Therefore, for the sake of quantifying the strain levels at

which complete specimen failure was observed, ε̄i, for a given set of test conditions (ζ,

T and ε̇), the average over all realizations was considered. In Fig. 26 the scatter is il-

lustrated by the colored zone which is bounded by the minimum and maximum mean

strain to failure observed over 4 realizations performed at T = 25◦C and ε̇ = 10−1/s

for a notch acuity of ζ = 2. The vertical red dotted line corresponds to the average

value defined above. For the remainder of this chapter, all the results from the nu-

merical simulations were calibrated at strain levels up to this averaged ε̄i, for a given
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Fig. 26. Normalized load versus minimal cross-section mean strain at T = 25◦C and

ε̇ = 10−1/s for a notch acuity of ζ = 2.

set of test conditions.

2. Where does fracture initiate?

In Fig. 14, 15 and 16 from chapter II–2, pictures of the fracture surfaces of each

notched specimens were taken postmortem using a low powered optical microscope.

Observations of the fracture surfaces have shown that the location where fracture

initiates varies depending on the levels of stress triaxiality induced by the notch acuity.

As the stress triaxiality increases in intensity, the location of the onset of fracture

switches from a region near the specimen’s center to the notch root vicinity. In order

to further understand what mechanical quantities are behind these observations, let’s

look at Fig. 27 which depicts the evolution of the stress triaxiality ratio, τ , along

the specimen’s minimum cross-section for various notch acuities. Where r is the
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Fig. 27. Stress triaxiality ratio versus radius along the minimal cross-section at

T = 25◦C and ε̇ = 10−3/s for various levels of notch acuity captured at

ε̄i

specimen’s minimum cross-section radius (r = 0 and r = 1.9 mm, corresponds to

the specimen’s center and notch root respectively). The results are extracted at ε̄i,

defined earlier.

From the fracture surfaces observations, a more acute notch translates into a

shift of the fracture initiation point towards the notch root. Now, looking at the

curve corresponding to ζ = 2, the stress triaxiality ratio reaches a peak for r = 1–

1.2 mm whereas for ζ = 4 and 10, the peak is reaches in the specimen’s center. When

comparing the fracture surfaces observed in Fig. 14 and 15 with this results, there

seems to be a correlation between the peak stress triaxiality ratio and the actual

location of fracture initiation.

Furthermore, similar observations can be made be looking at Fig. 28. Here, the

evolution of various stresses is plotted against r (identically defined as earlier). σI
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Fig. 28. Various stresses versus radius along the minimal cross-section captured at

ε̄i with, (a) ζ = 2, T = 25◦C and ε̇ = 10−3/s, (b) ζ = 4, T = 50◦C and

ε̇ = 10−1/s.
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refers to the maximum principal stress, σII , the intermediate principal stress and

σm, the mean stress. Fig. 28(a) and (b) are similar plots captured at different notch

acuities, temperatures and strain rates. By comparing the two, it is clear that the

maximum principal stress, for instance, is also correlated with the fracture initiation

site. Its corresponding peak occurs at roughly r ≈ 1.2 mm, in the same region as

the peak stress triaxiality showed previously. Therefore, in the same regard as for

the stress triaxiality ratio, there seems to be a correlation between the peak of the

maximum principal stress and fracture initiation site.

B. Presentation of the model

The fracture initiation criterion is motivated by the collaborative work of many re-

searchers over the past 40 years (see chapter I–D). Based on the experimental work

on PMMA of Sternstein et al. [26, 27] and recently refined by Gearing et al. [29],

the criterion is essentially empirical in nature and as such, it can be used to model

cracking in a wide class of glassy polymers. Crack initiation is taken to occur when

the maximum principal stress σI attains or exceeds a (positive) pressure-dependent

critical value, σc, while the mean normal stress, σkk/3 is positive. The pressure de-

pendence of σc is specified by

σI = σc(σkk) = c1(T ) +
c2(T )

σkk
(5.1)

where c1 and c2 are temperature-dependent material parameters. In order to deter-

mine their dependencies upon temperature, two levels of approximation are consid-

ered. The first being linear with ci = ci1T + ci2 and the second being quadratic with

ci = ci1T
2+ci2T+ci3. c1 and c2 are calibrated in the next chapter on the experimental
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data.

The constitutive relations (3.3)–(3.14) specify the plastic flow prior to damage

initiation. Once damage occurs, these equations cease to be valid. One established

mechanism for glassy amorphous polymer fracture is craze formation, as mentioned in

chapter I–A, which is a major cause of fracture in thermoplastic polymers. Although,

elements of the model based on polymer crazing presented in this work were motivated

by physical arguments, it remains phenomenological in nature. As such, it can also

be used to model fracture in thermosetting polymers. During the craze growth stage,

the deformation is no longer homogenous and localized mode of inelastic deformation

takes place. Therefore, once crazing has initiated, specific craze flow constitutive

equations are prescribed. The magnitude and the direction of the initial plastic flow

rule for the macromolecular model (3.3) must be modified with the following tensor

p (new direction of the plastic flow) and ˙̄ε (new magnitude of the plastic flow),

p = êI ⊗ êI and ˙̄ε = ˙̄εcr0

(
σI

(1− (χ/χc)2)scr

) 1
m

(5.2)

where êI is a unit vector defining the direction of the maximum principal stress, σI .

χc is typically about 0.6. χ is a state variable representing craze induced damage,

and varies between 0, at the onset of crazing, and χf = 1 at zero stress. χ is meant

to describe the volume fraction of active fibrils in the craze structure. Also, ˙̄εcr0 is a

reference parameter chosen to ensure continuity of the plastic stretching at the transi-

tion from shear flow to craze flow, the two major fracture mechanisms for amorphous

glassy polymers. m and scr are additional material constants. The following evolution

equation is adopted of χ:

χ̇ = C(χf − χ) ˙̄ε (5.3)

with χf defined above and C an additional material constant. One consequence of
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this formulation is that the loss of stress bearing capacity is a natural outcome to the

craze growth process.

C. Calibration of the initiation criterion

In chapter V–A, the time (strain level) and the location of fracture initiation have

been defined. Therefore, for a given set test conditions, the following results have been

captured at strain levels corresponding to the mean strain to initiation defined earlier,

ε̄i. In addition, all quantities of interest are extracted along the specimen’s minimal

cross-section at the location where the maximum principal stress is the highest, as

shown in Fig. 28, which is defined as σmax
I corresponding to the maximum principal

stress taken at strain levels ε̄i and at the location where fracture is assumed to initiate.

As a side note, the material exhibits significant plastic deformation prior to macro-

scopic failure, and since plastic deformation is path dependent, the fracture locus

itself is path dependent as well. In this work, the values of the mechanical quantities

of interest are extracted at failure as explained above, however, an average over the

deformation could have also been considered which would have accounted, to some

extent, for the history of those quantities.

Taking into account the simple form of the criterion (5.1), the calibration proce-

dure for the material parameters c1 and c2 is rather straight forward. At fixed strain

rate taken arbitrarily at ε̇ = 10−1/s. We begin by plotting the critical stress, σc with

respect to 1/σkk as shown in Fig. 29. With σc = σmax
I (defined above).

Each dots in the figure correspond to a particular notch acuity (ζ) at room

temperature. The error bars account for the scatter in the experimental data (see

chapter V–A). Then plotting a linear fit corresponding to those 3 points yields a sim-
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Fig. 29. Critical stress σc versus 1/σkk at T = 25◦C and ε̇ = 10−1/s. The dotted black

line correspond to a linear fit with equation σc = 195.2− 13236(1/σkk).

Table IV. Material parameters.

T (◦C) c1 (MPa) c2 (MPa2)

25 195.2 -13236

50 201.3 -16528

80 128.1 -4501
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ple linear equation where the intercept corresponds to the c1 value for that particular

temperature (25◦C) and strain rate (10−1/s). Similarly, the slope corresponds to the

c2 value. Finally, reiterating the same process at temperatures of 50 and 80◦C, while

keeping ε̇ = 10−1/s, yields a set of c1 and c2 at each temperature as summarized in

Table IV. The temperature dependency of c1 and c2 can be simply determined from

Table IV by plotting them with respect to the temperature (T ).

D. Results and discussion

The calibration procedure was carried out for a strain rate of 10−1/s. In order to

verify the predictive capabilities of the model, it is necessary to test it against different

conditions of strain rates. Fig. 30 shows the error for all test conditions (ζ, T and ε̇)

induced by the calibrated criterion using both, a linear, Fig. 30(a) and a quadratic

approximation, Fig. 30(b). The error is defined as

Error =
σmodel
c − σexp.

c

σexp.
c

(5.4)

where σmodel
c is the critical stress generated by the calibrated initiation criterion (5.1)

and σexp.
c is σmax

I which was defined earlier using an experimental/numerical approach.

From Fig. 30, it is clear that for a strain rate of 10−1/s (used for calibration) the error,

from both levels of approximation, is minimum.

However, for the linear approximation, the maximum error increases significantly as

the strain rate decreases from its calibrated value. For the quadratic approximation,

which yields better results, the maximum error seems to be contained at a constant

level (≈ 20%) as the strain rate changes. Also, in both cases, the model predictions

are almost consistently higher than the reference (σexp.
c ) which from a conservative
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Fig. 30. Error induced by the calibrated criterion defined in equation 5.4

(a) Linear approximation, (b) Quadratic approximation.
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Fig. 31. Maximum principal stress and critical stress versus minimal cross-section

mean strain for ζ = 10, T = 80◦C and ε̇ = 10−1/s.

stand point is not ideal.

The criterion (5.1) means that when the maximum principal stress σI reaches a

critical value σc, fracture initiates. Fig. 31 illustrates how well the criterion is able

to predict fracture. When the curve corresponding to the maximum principal crosses

the one corresponding to the critical stress, fracture is expected to initiate. The

curve representing σc has been generated using the calibrated criterion (5.1). In this

case, the prediction capabilities of the criterion are in very good agreement with the

observed mean strain to failure, which is represented by the vertical dotted line. Such

a good agreement is expected since the criterion has been calibrated at ε̇ = 10−1/s

and Fig. 31 corresponds simulations run at the same strain rate. However, when

the criterion performances are compared at different strain rate such as ε̇ = 10−3/s,

see Fig. 32, fracture initiation is predicted at a level of mean strain of roughly 0.5

whereas the experimentally observed fracture initiation, ε̄i, occurs at about 0.35.
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Fig. 32. Maximum principal stress and critical stress versus minimal cross-section

mean strain for ζ = 10, T = 80◦C and ε̇ = 10−3/s.

Also, in both figures (31 and 32), the curve representing the maximum principal stress

intersects the critical stress curve twice. The first intersection being consistently in

the region corresponding to the elastic regime. Therefore, when the criterion is to

be implemented into a finite element code, care should be taken so fracture is not

predicted prematurely.

The initiation criterion presented in this chapter has the main advantage of being

simple to implement with a straightforward procedure to identify the two temperature

dependent material parameters. It is also able to account for pressure sensitivity via

the term σkk. Results have shown that in terms of accuracy, the criterion yields

predictions that tends to worsen as the strain rate changes further away from the

calibrated conditions. However, we have seen that the experimental data presented

earlier shows significant scatter across the range of notch acuities, temperatures and

strain rates used in this work. All the simulated results have been extracted at an
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average value of ε̄i, thus, part of the prediction errors observed from the criterion (5.1)

may come from the experimental scatter. Moreover, the rationale for the notched

bar tensile tests was to vary, in a controlled manner, the stress triaxiality and thus

to calibrate the fracture criterion, which is pressure sensitive. However, it has been

shown in chapter IV that the stress triaxiality not only strongly varies but the range in

triaxiality achieved by the notched bars is narrower than what was initially expected,

mostly due to the change in the specimen that occurs during the manufacturing

process. With those issues in mind, the predictions are still within acceptable range

making them meaningful for potential applications involving fracture of amorphous

polymers where the pressure dependence must be accounted for.
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CHAPTER VI

AGING OF EPON 862

A. Introduction

As described in chapter I, aging processes are conventionally separated into physical

aging and chemical aging. The former is essentially a continued curing process in

case of a thermosetting polymer where the polymer specific volume goes slowly with

time from a non-equilibrium state initially to an equilibrium state. The chemical

aging such as thermal degradation or photo-oxidation, on the other hand, causes

permanent changes to the molecular structure.

In the experiments reported in chapter II as well as in the modeling of chapters III

and V, it was tacitly assumed that the material properties are not altered and are

time-invariant during the tests or simulations. This is usually a good assumption when

the initial age of the material exceeds the experimental or simulation time. However,

for long-term loading conditions or under circumstances where accelerated aging may

occur, e.g., at high temperatures, the above assumption no longer holds [42]. By way

of consequence, the material properties are expected to change during the experiment,

and the simulation must rely on a model that accounts for the associated change in

material parameters.

In the experimental plan presented in chapter II, investigation of the effects of

aging on the deformation and fracture behavior of epoxy Epon862 were also carried

out. Similarly to the experiments performed on unaged specimens, aged notched bars

were tested in tension at various temperatures (25◦C, 50◦C and 80◦C) at different
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levels of nominal strain-rate (10−5/s, 10−3/s and 10−1/s). Up to four (4) realizations

of each test condition (type of notch, temperature and strain rate) were obtained.

Physical aging was achieved by subjecting the specimens to isothermal aging at 121◦C

(12◦C above the epoxy’s glass transition temperature) for over 1750 h. The specimens

were placed in a thermal chamber for 90 min each day for an average of three days

a week over a six months period. For each cycle, a maximum temperature in the

chamber of 121◦C (250◦F) was reached. The following chapter presents the results

obtained from the tensile experiments on aged notched round bars.

B. Effects on the fracture behavior

As mentioned in this thesis introduction, very little work as been reported in the

literature about the effect of aging on the fracture response for amorphous polymers.

One investigation from Kong [3] has shown that as physical aging proceeds, the

fracture behavior of the epoxy polymer investigated is clearly affected with a decrease

in its ultimate mechanical properties such as its ultimate strength and its strain to

failure. The material fractures in a more brittle fashion with aging (see Fig. 3).

Similar findings are illustrated in Fig. 33 where the experimental data for unaged

and aged specimens captured at T = 80◦C and ε̇ = 10−3/s for various levels of

triaxiality are compared. Fig. 33 (a) and (b) corresponds respectively to the sharpest

notch acuity (ζ = 2) and the shallowest notch acuity (ζ = 10). The first observation

is that the trend of a decreasing ultimate tensile strength reported by Kong is not

only absent but the trend is reversed. To some extent, the aged specimens show an

increase of the ultimate tensile strength compare to the unaged ones. This was also

observed in smooth bars, where aged notched bars generally exhibit higher strength
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than the corresponding unaged specimens [1]. This increase of strength with aging

seems to be more pronounced for conditions favoring a lower stress, such as a lower

stress triaxiality (comparing Fig. 33 (a) and (b)), a lower strain rate or a higher

temperature; see details in Appendix B for more results. Second observation, the

strain to failure is significantly affected by aging as observed by Kong. On average,

the strains to failure for the aged specimens are roughly half of the one observed for

the corresponding unaged specimens.

Figure 34 depicts the effect of notch acuity on the load–deformation response of

an aged specimen. The sample results are shown for T = 25◦C and ε̇ = 10−3/s. The

load is higher in a bar with a sharp notch (ζ = 2) than in one with a shallow notch

(ζ = 10), as expected.

In chapter II–C, it was shown that the mean strain to failure was strongly affected

by the level of stress triaxiality, defined as τ (2.2). The results indicated a consistent

trend for a decreasing ductility with increasing τ , the strains to failure being smaller

in bars with a sharp notch. This trend was summarized in Fig. 12 which depicts

examples of the so-called fracture loci. Following the same line of thought, a similar

fracture locus is plotted in Fig. 35 where this time, the loci for unaged and aged

specimens are compared at fixed testing conditions of ε̇ = 10−3/s, T = 25◦C in

Fig. 35 (a) and T = 25◦C in Fig. 35 (b). Note the scatter in the values of the

mean strain to failure around the average value (indicated by a point). While the

trend of decreasing strain to failure with aging, mentioned earlier, is also apparent

here, more interestingly, the decrease of ductility with increasing stress triaxiality τ

appears to a lesser extent for the aged case. The difference in strain to failures going

from one level of triaxiality to another is not as significant as for the unaged results.

By comparing Fig. 35 (a) and (b), it appears that the temperature has a significant

influence on the response of the aged specimens. While for the case of T = 25◦C
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captured at T = 80◦C and ε̇ = 10−3/s for various levels of triaxiality, (a) ζ = 2

(b) ζ = 10.
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the difference between unaged and aged is rather small, for the case of T = 80◦C

the fracture response of the aged specimens is consistently more brittle for a given

level of triaxiality. Moreover, the impact of aging on the strain to failure seems to be

decreasing with an increasing level of stress triaxiality. For instance, by comparing

the average value of the strain to failure (plotted with an open circle and a full black

circle for the unaged and aged results respectively) for the sharpest notch acuity (τ

between 1.0 and 1.1) with the shallowest one (τ between 0.6 and 0.7), it is appears

that the impact of aging is almost inexistant for the sharpest case. In contrast, the

impact is significant for the shallowest notch acuity. Even the influence of aging on

the fracture behavior seems to be dependent on the stress state.

One possible explanation for this observed phenomenon could be explained as

follows. Physical aging effects on thermosetting polymers is essentially a continued

curing process which rendered a more fully cross-link network. In other words, aged

thermosets have a higher cross-link density, which generally tends to a stiffer material

response. The cross-link density restricts the polymer network from deforming under

applied load. When the levels of stress triaxiality are increased, on a molecular level,

it leads to a rearrangement of molecular orientation and ”opening up” of free volume,

which ultimately facilitate molecular orientation. Easier to move means less stress

is required for this orientation process. Therefore, effects of aging are canceled or

limited by a greater mobility induced by a highly triaxial stress state.

C. Conclusion

One of the main objectives from the aged notched bar experiment was to investigate

the effect of aging on the strain to failure. Major findings were established in that
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Fig. 35. Minimal cross-section mean strain to fracture versus triaxiality ratio captured

at ε̇ = 10−3/s for unaged and aged specimens, (a) T = 25◦C (b) T = 80◦C.
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regard. The following summarized what has been shown in this chapter. Additional

results can be found in Appendix B.

• While the effect of aging on tensile strength is moderate, its effect seems to

be more pronounced for conditions favoring more ductile conditions, such as a

lower level of stress triaxiality.

• The strain to failure is significantly affected by aging. Aged specimens consis-

tently exhibit a lower strain to failure compared to there unaged counterparts,

regardless of the conditions of temperature, strain rate and notch acuity.

• As expected from unaged tests, the results indicated a consistent trend for a

decreasing ductility with increasing τ , the strains to failure being smaller in

bars with a sharp notch. However, the decrease of ductility with increasing

triaxiality levels appears to a lesser extent for the aged specimens. The fracture

locus seems to be flattened.

• Extent of the influence of aging on the fracture behavior seems to be strongly

correlated with the temperature. A higher testing temperature increases the

influence of aging on the strain to failure which occurs in a more brittle manner.
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CHAPTER VII

CONCLUSION

In this research, a comprehensive experimental plan aiming to shed light on key as-

pects of amorphous polymers fracture behavior has been introduced in chapter II.

A series of tensile tests on epoxy round notched bars were carried out in order to

provide clues on the dependence of the fracture behavior upon the stress triaxiality.

Using state-of-the-art non-contact digital image correlation measurement technique,

the mechanical quantities of interest were extracted in order to understand how the

polymer fracture behavior responds when subjected to various levels of stress triax-

iality induced by the three notch radii considered in this work. It has been shown

that the material is strongly sensitive to the stress state. A fracture locus was defined

as a measure of fracture property versus a measure of stress state where the mean

strain to failure and the stress triaxiality ratio were chosen to construct the fracture

locus. Experimental results have made clear that a consistent trend exists with a

decreasing material ductility as the stress triaxiality ratio increases. These types of

results have been reported extensively in the literature for ductile fracture of metals

giving the wealth of experimental data available on the subject. However, little is

known to date on how amorphous polymeric materials fracture when subjected to

multi-axial stress states. In addition, analyses of the fracture surfaces have revealed a

strong correlation between the levels of triaxiality with the actual location site where

fracture initiates. For highly triaxial conditions, the initiation site appeared to be

systematically located in a region close to the specimen’s notch root whereas for less
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triaxial condition of stress, initiation was observed mostly at the specimen’s center.

The underlying hypothesis was that the amount of hydrostatic stress superposed

onto a given deviatoric loading affects the strain to failure. This hypothesis has

been verified experimentally. However, to go further and understand the driving

mechanisms behind this finding, access into the complex stress and strain distributions

that an amorphous polymer experiences during multi-axial loading conditions was

necessary. As a result, recourse to numerical simulation tools was evident. However,

these simulations, and the knowledge gained from them, are limited by the accuracy of

the constitutive model used to define the behavior of the material. Indeed, polymeric

materials exhibit some very peculiar deformation behavior. The material intrinsic

behavior is not only strongly dependent upon temperature, strain rate and hydrostatic

pressure (appendix A, fig. 38, 39 and 40) but also exhibit small-strain softening as

well as large-strain hardening. When using such tools, it is therefore paramount to

incorporate all those behaviors, specific to amorphous polymers, into the material

model. Resulting from approximately 40 years of collaborative work on modeling

complex glassy polymer behavior, the so-called macromolecular model, presented in

chapter III, was the ideal candidate. Over the years, this sophisticated physics-

based model has evolved thanks to many renowned researchers and is now able to

depict realistically the complex deformation behavior of amorphous polymers. Results

from the calibrated macromolecular model showed very good agreements with the

experimental notched bars responses at various levels of stress triaxiality, temperature

and strain rate.

The primary purpose behind using notched bars in these experiments was to

minimize the variations of the stress triaxiality ratio with respect to the deformation,

so its effect on the fracture behavior can be quantified in a controllable manner. This

has been done extensively for fracture studies on power law hardening materials such
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as metals. The experimental work introduced in this thesis, and more particularly

the design and geometry of the notched specimens, was based on previous studies

of ductile fracture for metals. The expectations were to achieve minor triaxiality

variations as well as a large enough range so the fracture mechanisms affected by

the levels of stress triaxiality would be easier to differentiate. However, The intrinsic

deformation behavior of polymers does not obey power laws and the findings presented

in chapter IV have proven that this particular specimen design was not well suited for

the purpose mentioned above. When a more complex material model, one that is able

to realistically describe polymeric deformation behavior, was used for the numerical

simulations, it appeared that the stress triaxiality distribution across the specimen

mid-section and throughout deformation was clearly not ”minimized” as initially

expected. Moreover, it has been shown that a minor change in the specimen geometry,

which occurred during the manufacturing stage, caused significant reductions in the

range of stress triaxiality achieved by these modified samples.

A fracture model was presented in chapter V. The model is based on experimental

works and is essentially empirical in nature. The initiation fracture criterion has

the main advantage of being simple to implement with a straightforward procedure

to identify the two temperature dependent material parameters. It is also able to

account for pressure sensitivity. Results have shown that in terms of accuracy, the

criterion yields predictions that tend to worsen as the strain rate changes further

away from the calibrated conditions. Part of this could be assigned to the scatter

observed in the experimental data across the range of notch acuities, temperatures

and strain rates considered. As mentioned above, the rationale for the notched bar

tensile tests was to vary, in a controlled manner, the stress triaxiality and thus being

able to calibrate the pressure sensitive fracture criterion. Therefore, another source

of inaccuracy in the predictions could also be due to the strong variations in the
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triaxiality as well as the smaller range achieved.

The effects of physical aging on the fracture behavior have also been investigated.

It was observed that while the effect of aging on tensile strength is moderate, its effect

seems to be more pronounced for conditions favoring more ductile conditions, such as

a lower level of stress triaxiality. Also, the strain to failure was significantly affected

by aging. Aged specimens consistently exhibited a lower strain to failure compared

to there unaged counterparts, regardless of the conditions of temperature, strain rate

and notch acuity. In addition, the fracture locus corresponding to the aged specimens

seemed to be flattened. The extent of the influence of aging on the fracture behavior

seems to be strongly correlated with the temperature. A higher testing temperature

increases the influence of aging on the strain to failure which occurs in a more brittle

manner.

Ultimately, the goal would be to design a specimen where ideally the distribution

across the specimen mid-section and throughout deformation of the stress triaxiality

would be constant so the fracture mechanisms affected by the levels of stress triaxiality

would be easier to differentiate. Also, this would allow the calibration of the fracture

model presented in this thesis, including the damage evolution model. Finally, the

implementation of aging effects into the physics-based macromolecular deformation

model as well as in the heuristic fracture model presented earlier, through appropriate

internal state variables, would allow the design and development of more durable

polymers and polymer-based composite materials through out their life-cycle.
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APPENDIX A

ADDITIONAL EXPERIMENTAL RESULTS - UNAGED SPECIMENS
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Fig. 36. Normalized load versus minimal cross-section mean strain at ε̇ = 10−3/s for

various levels of triaxiality, (a) T = 25◦C. (b) T = 80◦C.
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Fig. 37. Normalized load versus minimal cross-section mean strain at T = 25◦C for

various levels of strain rate, (a) ζ = 2. (b) ζ = 10.



77

Fig. 38. Temperature effects under tension for smooth bar at ε̇ = 10−3/s [1].
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Fig. 39. Strain-rate effects under compression for smooth bar at T = 50◦C [1].
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APPENDIX B

ADDITIONAL EXPERIMENTAL RESULTS - AGED SPECIMENS
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Fig. 42. Normalized load versus minimal cross-section mean strain for aged specimens
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