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ABSTRACT

Essays on Regression Spline Structural Nonparametric Stochastic Production Frontier

Estimation and Inefficiency Analysis Models. (December 2010)

Ke Li, B.S., South China University of Technology;

M.S., West Texas A&M University

Chair of Advisory Committee: Dr. Ximing Wu

Conventional Cobb-Douglas and Transcendental Logarithmic production functions widely

used in Stochastic Production Frontier Estimation and Inefficiency Analysis have merits

and deficiencies. The Cobb-Douglas function imposes monotonicity and concavity con-

straints required by microeconomic theory. However it is inflexible and implies undesired

assumptions as well. The Trans-log function is very flexible and does not imply undesired

assumptions, yet it is very hard to impose both monotonicity and concavity constraints.

The first essay introduced a class of stochastic production frontier estimation models that

impose monotonicity and concavity constraints and suggested models that are very flexible.

Researchers can use arbitrary order of polynomial functions or any function of indepen-

dent variables within the suggested frameworks. Also shown was that adopting suggested

models could greatly increase predictive accuracy through simulations. In the second essay

we generalized the suggested models with the Inefficiency Analysis technique. In the last

essay we extended the models developed in the previous two essays with regression spline

and let the data decide how flexible or complicated the model should be. We showed the

improvement of deterministic frontier estimation this extension could bring through simu-

lations, as well. Works in this dissertation reduced the gap between conventional structural

models and nonparametric models in stochastic frontier estimation field. This dissertation
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offered applied researchers Stochastic Production Frontier models that are more accurate

and flexible than previous ones. It also preserves constraints of economic theory.
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1. INTRODUCTION

In microeconomics, a production function is the maximum output of a technology can pro-

duce from a certain combination of inputs. It is usually used for technologies have single

or a group of closely related outputs. To obtain valid results from standard optimization

problems, i.e. profit maximization and cost minimization problems, microeconomics usu-

ally requires production function to be monotone increasing and concave. As one of the

most important functions in economics, production function has received a lot of attention

since the beginning of econometrics.

Yet before Farrell (1957), econometricians used Least Square(LS) technology to estimate

average production function, which is certainly different from production function in mi-

croeconomic theory. Since then econometricians have put a lot of effort to close this gap.

Data Envelopment Analysis (DEA) was the first practical solution developed. DEA is still

used in operation research. The main problem of DEA is that it fails to distinguish random

events that affect output from inefficiency. Aigner et al. (1977, hereafter ALS) described

a family of composed error term models to solve the problem. This family of models is

called Stochastic Efficiency Frontier (SEF) models. SEF models use Maximum Likelihood

Estimator (MLE) technology to estimate the model. Therefore, the variety and flexibility

of assumed distributions play a key role in estimation accuracy. Followed by the work of

Stevenson (1980) and Greene (1990), econometricians now have four distributions at their

disposal. Some of them are quite flexible.

a
This dissertation follows the style of Journal of Econometrics.
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Besides inefficiency and production function econometricians are also interested in non-

input/input elements that may affect inefficiency. Kumbhakar et al. (1991) made first

attempt, then followed by Reifschneider and Stevenson (1991), Battese and Coelli (1992),

Caudill and Ford (1993), Huang and Liu (1994), Caudill et al.(1995), and Wang and

Schmidt (2002). This set of models was called Inefficiency Analysis (IA) models. Alvarez

et al. (2006, hereafter AAOS) gave a good summary in this field.

The functional form of production function, which econometricians are probably most

interested in is another story. Right now, econometricians are basically stuck with Cobb-

Douglas model and Transcendental Logarithmic model. With coefficients except intercept

between 0 and 1, Cobb-Douglas model preserves monotonicity and concavity. However

Cobb-Douglas model also imposes assumptions econometricians do not want or rejected by

data e.g. unitary elasticity of factor substitution and constant partial and total production

elasticities. Trans-log model is very flexible, and does not bear undesired assumptions that

Cobb-Douglas function has. Yet it is very hard to impose monotonicity and concavity

constraint either (Henningsen, and Henning 2009).

In this dissertation we will introduce a class of flexible functions that impose monotonicity

and concavity constraints to SEF and IA models. The dissertation will be organized as

follow:

• In the second section, we will introduce a class of flexible functions with monotonicity

and concavity constraints. After that we will implement them in SEF models, and

discuss estimation and inference method. Then we will show improvement of both

deterministic frontier estimation and average technical efficiency recovery by adopting

suggested models. In the end of the section we will apply the model on an unbalanced

panel dataset of airline industry.

• In the third section, we will implement suggested models in IA models. We will
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show improvement of deterministic frontier estimation, average technical efficiency

recovery and estimation of the marginal effect of given variable on inefficiency by

adopting suggested models. In the last part of this section we will apply the model

on the same airline dataset.

• In the fourth section, we will extend the class of flexible functions with monotonicity

and concavity constraints into regression spline structure nonparametric models. We

will also show this extension could greatly improve estimation accuracy when signal

noise ratio is high or sample size is large. After that we will demonstrate the model

on the airline dataset.

• In the fifth section, we will conclude the dissertation and discuss future research

opportunities.
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2. A CLASS OF FLEXIBLE STOCHASTIC PRODUCTION

FRONTIER MODELS WITH SHAPE CONSTRAINTS

2.1 Introduction

In economic theory production function is the maximum output level a technology can

produce from given set of inputs. Firms may have inefficiencies. Their output levels lie on

or below the maximum level. The maximum levels for all input combinations are called

production-possibility frontier. Since ALS (1977) developed the first model to estimate

stochastic production frontier, it has became an important field in microeconometrics.

The general Stochastic Efficiency Frontier model can be written as:

yi = f(xi) exp(ui) exp(vi) (1)

In equation above,f(xi) is the deterministic part of production frontier, eui is the stochastic

part of production frontier. ui can take any value on the real line. Usually researchers as-

sume it follows a symmetric distribution that centers at zero, such as normal distribution.

evi is technique efficiency of the ith firm. vi can only be negative real number. Therefore

Technique efficiency will take any value from 0 to 1. Intuitively it represents the percentage

of production frontier that a firm can reach.

Econometricians have put a lot of efforts to develop new distributions for inefficiency term.

Now we have four distributions at our disposal. The gap between theory and realty is also

relatively small. Deterministic frontier itself, which econometricians are probably more

interested in, is another story. Econometricians basically have two classes of alternative

models for the deterministic frontier. Each of them has their advantage and deficiency.
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Microeconomic theory requires production function to be monotone increasing and con-

cave. If either of these two properties is missing the profit maximization procedure and

most of equilibrium models will breakdown. Without monotone increasing property, even

the cost minimization problem might not have a solution.

As long as all exponents are between 0 and 1, good old Cobb-Douglas production function

preserves both properties implicitly. Many econometricians incorporated this functional

form in their researches. However Cobb-Douglas production function also implies proper-

ties researchers do not desire. For instance it assumes unitary elasticity of factor substitu-

tion and partial and total production elasticities that do not change with input.

Trans-log can be considered as a generalized form of Cobb-Douglas function. It is a very

flexible functional form, and does not bear undesire assumptions that Cobb-Douglas func-

tion does. It becomes by far the most popular model in stochastic production frontier

estimation. Yet the flexibility does not come without cost. It is also very hard to impose

monotonicity and concavity restrictions on Trans-log model as well. Although implying

convex production function, linear production function is used by researchers in a few pa-

pers.

In this paper we will suggest three flexible functional forms that embed monotonicity and

concavity. This class of models allows econometricians to estimate a flexible production

function that incorporate prior knowledge from the theory without the burden of Cobb-

Douglas model.

The paper will be organized as follow. In Section 2.2 we will do a brief literature review

of stochastic production frontier estimation. In Section 2.3, the flexible forms of produc-

tion function will be presented. In Section 2.4 we will suggest a three-step procedure to
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estimate these models as well as derive point estimation and inference of value that might

be interested by researchers. In Section 2.5 we will use two models to estimate a simu-

lated arbitrary monotone concave production function. The result will be compared to the

result of Cobb-Douglas model. In the same section we will also estimate the Normalized

Integrated Squared Error and absolute error of average technical efficiency recovery of first

models under different error term settings. In Section 2.6 we will apply the first two models

on the airline dataset. In Section 2.7 we will summarize our research and discuss future

research possibilities.

2.2 Literature Review

Farrell (1957) first explored the possibility to estimate the frontier production function.

Aigner and Chu (1968), Afriat (1972) and Richmond (1974) developed a set of techniques

estimating deterministic frontier production using linear or quadratic programming tech-

nology. Their methods minimize

n∑
i=1

|yi − f(xi)|

or

n∑
i=1

(yi − f(xi))
2

subject to

yi ≤ f(xi)
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Deterministic efficiency frontier method fails to incorporate random elements that affect

output. These elements such as natural disaster, worker strike or finding new natural

recourses commonly exit in real world. The first attempt to incorporate these random

elements was done by Aigner et al.(1976). They suggested a discontinuous distribution for

the error term. ALS (1977) constructed the first practical Stochastic Efficiency Frontier

estimator.

ALS (1977) assume −vi follows a Half normal distribution with 0 mean and σv
2 variance.

Econometricians still widely use this distribution. The log likelihood function is:

LLi = ln
2

σ2
+ ln(φ(

εi
σ2

)) + ln(1− Φ(εiλσ
−1)) (2)

whereλ = σv/σu, σ = σ2u +σ2v . φ() is the density of standard normal distribution.Φ() is the

cumulated distribution function of standard normal distribution.

ALS (1977) also briefly considered the exponential distribution for−vi. The log likeli-

hood function under this assumption is:

LLi = ln(λ) + ln(1− Φ(
εi
σu
− σuλ)) + εiλ+

1

2
(σuλ)2 (3)

in which 1
λ = E(−v), 1

λ2
= Var(v)

Both half normal and exponential distribution bear implicit assumption that inefficiency

is more concentrated near zero than further away. Stevenson (1980) suggested a more gen-

eral normal-truncated normal distribution. Rather than assuming the normal distribution

generating −vi centers at zero, truncated normal −vi allow mean to be any value on real

line. The log likelihood of normal-truncated normal is:
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LLi = − lnσ − 1

2
ln 2π − ln Φ(

µλσ√
1 + λ2

) + ln Φ(
µ

σλ
− εiλ

σ
)− 1

2
(
εi + µ

σ
)2 (4)

Stevenson also instructed a Normal-Gamma distribution. In his specification the shape

parameter P in Gamma distribution can only take integer value. Greene (1990) generalized

Gamma distribution framework, by allowing P to take any positive real number. The log

likelihood function in his framework is:

LLi =P ln(Θ)− ln(Γ(P )) + σu
2Θ2/2 + Θεi

+ ln(Φ(−(εi + Θσ2u)/σu)) + ln(h(P − 1, εi)) (5)

in which

h(r, εi) = E[Qr|Q > 0, εi] Q ∼ Normal(−(εi + Θσ2u), σ2u)

P is the shape parameter in Gamma distribution.Θ is the rate of Gamma distribution.

Larger the P , further away concentration of firm-specific inefficiency is located from zero.

Previous researchers suggested maximum likelihood estimator and method of moment es-

timator. As we already assumed distribution of ui as vi, MLE is at least as efficient and

MME. I this paper we will focus on MLE.

2.3 A Class of Flexible Stochastic Production Frontier Models with Shape

Constraints

Researchers interested in estimating monotone function since development of the isotonic
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regression by Bartholomew (1959) and Kruskal (1965) and the Box-Cox transformation

by Box and Cox (1964). Various monotone functions were developed. Some sacrificed

flexibility. For instance Ramsay (1988) imposed monotonicity by restricting all coefficient

of spline estimator to be positive. Ramsay (1998) developed a differential equation based

monotone function. Their model is:

ŷ = β0 + β1

x∫
0

exp(

a∫
0

c(b)db)da (6)

In his setup c(x) is a polynomial or spline function. Sickles and Wu (Personal Discussion)

improved the model to impose not only monotonicity but also concavity constrains. They

also extended the model to multivariate case. From now on we will call it Additive model.

The improved model is:

f(x) = β0 +

p∑
j=1

βjm(cj(xj)) (7)

in which

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

xj is a vector of jth independent variables. p is number of independent variables in the

dataset. cj() is some arbitrary function. With production function above, we have:

∂f(x)

∂xj
= βjm

′(cj(xj)) (8)
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in which

m′(c(x)) = exp(−
x∫

0

exp(c(b)) db)

The sign of partial derivative is determined by the sign of βj . If on average output will

increase when input j increases, we can guarantee output monotone increasing respect to

input j in the estimated production function.

∂2f(x)

∂xj2
= βjm

′′(cj(xj)) (9)

in which

m′′(c(x)) = − exp(c(x)) exp(−
x∫

0

exp(c(b)) db)

Likewise if βj > 0, we can guarantee f(x) is a concave function of xj . Moreover the relative

concavity of production function is:

∂2f(x)/∂2xj
∂f(x)/∂xj

= − exp(c(xj)) (10)

Substitute equation (7) into (1), we have the full Additive model:

yi = (β0 +

p∑
j=1

βjm(cj(xi,j))) exp(ui) exp(vi) (11)

To separate the error term from deterministic frontier we need to take natural log on both

side.

ln(yi) = ln(β0 +

p∑
j=1

βjm(cj(xi,j)))) + ui + vi (12)
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In Additive model, we assume all inputs are separable. That is ∂2y/∂xk∂xj = 0. This

assumption may be undesirable to some researchers. We will suggest another multiplica-

tive functional form to avoid this assumption. From now on we will call it Generalized

Cobb-Douglas (GCD) model. The deterministic frontier is defined by:

y = β0

p∏
j=1

m(cj(xj))
βj (13)

Again cj(x) can be arbitrary function of xj . In this paper we will use polynomial specifi-

cation. The marginal productivity of GCD model is:

∂y

∂xk
= β0 × βk×m′(ck(xk))×m(ck(xk))

βk−1 ×
p∏

j=1,j 6=k
m(cj(xj))

βj (14)

If both β0 and βk are positive, we can be sure the marginal productivity of input k is

always positive. As all output is non-negative, β0 will always be greater than zero. The

change of marginal productivity of kth input respect to itself is defined by:

∂2y

∂x2k
= β0 × βk × [(βk − 1)×m′(ck(xk, ))2 ×m(ck(xk))

βk−2+

m′′(ck(xk))×m(ck(xk))
βk−1]×

p∏
j=1,j 6=k

m(cj(xj))
βj (15)

If βk lies between 0 and 1, we can guarantee the second derivative is negative. However

different from Cobb-Douglas model, even if βk is greater than 1 the second derivative can

still be negative. The actual sign of second derivative depends on ck() and xk. We cannot
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give a specific range. Yet one can always evaluate the second derivative after the model is

estimated. Similar to Additive model, we need to take natural log to separate the deter-

ministic frontier from error term.

ln(yi) = ln(β0) +

p∑
j=1

βj ln(m(cj(xi,j))) + ui + vi (16)

Both Additive and GCD model preserve monotonicity and concavity conditional on right

βs. The third model we suggest is a restricted form of GCD model. By construction, m()

cannot take value much lager than 1. Intuitively in GCD model β0 is the global scaling

parameter to match m()s to the scale of y. βj is the individual scaling parameter for input

j. Theoretically βjs are not necessary, because cj()s can adjust the relative scales between

inputs by themselves. The third model fix βjs to 1. We will call the third model Restricted

Generalized Cobb-Douglas(RGCD) model. By eliminating βjs, we enforce the model to

preserve monotonicity and concavity. Yet it does not come without cost. βjs play an

important role in GCD model. Getting rid of them may reduce estimation accuracy. The

impact can be compensated by adding more degree of freedom to cj()s. In some circum-

stance RGCD can even out perform GCD model. We suggest researchers to use RGCD

when number of observations per degree of freedom is low and data well behaves. RGCD

model can also be used by researchers really want to impose monotonicity and concavity

constraints on a dataset inconsistent with monotonicity or concavity, however the result

can be strange and unpredictable. The specification of RGCD model is:

y = β0

p∏
j=1

m(cj(xj)) (17)
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2.4 Estimation and Inferences

For simplicity, we assume c(x) to be polynomial function in the rest of paper.

c(x) =
k∑
j=1

cjx
j (18)

Estimation methods for three models are virtually the same. We will discuss estimation

of Additive model as an example. As the objective function is highly nonlinear, we have

two difficulties while estimating the model. The parameter estimation may be sensitive

to starting value, moreover for some starting value, the log likelihood function cannot be

evaluated. Suggested models have high degree of freedom per independent variable. Esti-

mation is computationally intensive and sensitive to local minimum.

To overcome these difficulties we suggest a three-step estimation procedure. First we

estimate the stochastic production frontier model with Cobb-Douglas production function.

Then we can use its λ̂ and σ̂ as starting value. Our simulation shows that despite to be

restrictive, Cobb-Douglas specification recovers distributional parameter very well.

Cobb-Douglas specification will also generate a prediction of deterministic production fron-

tier P̂F . We use P̂F as pseudo true production frontier and estimate P̂F with Additive

model using the least square estimator. β̂ and ĉ generated by least square estimator will

be used as starting value of β and c. In our research 0 is good starting value for c, and 1

is good starting value for β in the least square estimation.

After these two auxiliary regressions our starting value should be reasonably close to the

true value. It is very likely the log likelihood function can be evaluated with starting value.

In more than 10000 simulations we reported with two different models cross wide ranges of

error term settings, non fail to find appropriate starting value. If log likelihood function still
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cannot be evaluated after the auxiliary regressions, we suggest to use Simulated-annealing

algorithm optimize the log likelihood function. Simulated-annealing algorithm is very slow,

in our experience, at least 10 times slower than the quasi-Newton method, but it does not

require log likelihood function able to be evaluated with starting value.

After appropriate starting values are acquired, we can estimate the model using quasi-

Newton method(also known as a variable metric algorithm). In our simulations the average

convergence time is 7.2 seconds for a model with 2 variables and 200 observations. Both

Simulated-annealing algorithm and quasi-Newton method are supported by the optim()

function in R and are fairly easy to use.

As β, λ, σ and c themselves do not have economic meanings, we need to derive point

estimations and inferences of values that interested by economists. Applied researchers are

commonly interested in marginal productivities, input elasticities, return to scale, Elastic-

ities of Substitution and average TE.

The mean productivity of input j in Additive model equals equation (8) evaluated at sample

mean. For Generalized Cobb-Douglas model and RGCD model, the marginal productivities

are defined in equation (15). The input elasticities are derived from normalizing mean

productivities with input-output ratios. The Return to scale equals to summation of all

input elasticities. The elasticity of substitution of ith input to jth input equals input

elasticity of ith input divide by that of jth input. Average TE equals E[exp(−v)|θ̂]. θ̂

is a vector of estimated parameters of distribution that −v was assumed to follow. The

expression to recover average TE for half-normal distribution is:

TE =

∞∫
−∞

exp(−|x|)φ0,σ(x)dx (19)
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in which, φ0,σ is pdf of

Normal(0,

√
σ2λ2

1 + λ2
)

Because analytically deriving Jacobian and Hessians needed for calculating Fishers In-

formation Matrices is very tedious, we use ”numDeriv” package in R to numerically ap-

proximate them. In most simulations Fisher’s Information Matrices are near singular.

Therefore, we suggest more time consuming but more robust Bootstrapping approach to

inference values above. In regression Bootstrapping we use ŷ as true EF, and resample ε̂

with replacement. By the natural of Stochastic Efficiency Frontier model, our Bootstrap-

ping setup is a little bit different from ordinary:

ỹ = ŷ exp(ε̃) (20)

2.5 Monte Carlo Simulations

In this section we will conduct three groups of simulations. First two simulations in-

tended to investigate estimation accuracy of suggested models under separability assump-

tion. Third simulations are conducted without separability assumption.

In first two simulation we will use equation (21) to simulate y.

yi =(4.5 + 18 ln(xi,1)− 2.2x2i,1 + 16 ln(xi,2)− 2x2i,2) exp(ui + vi) (21)
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ui ∼ Normal(0, σu)

vi ∼ −|Normal(0, σv)|

xi,1 is generated by Gamma(100, 10) distribution. xi,2 is generated by Gamma(120, 20)

distribution. Both variables were rescaled into [1, 2] range. With setup in equation (21)

we can guarantee the production function to be smooth, monotone increase and concave.

We choose this form for deterministic frontier, because we want to test suggested models

on some arbitrary smooth monotone concave function.

Each simulation contains 200 observations. In each simulation we also generated additional

200 ”naked” observations to evaluate out of sample prediction accuracy of the model. The

term ”naked” means dependent variable of evaluation observations only contains determin-

istic frontier i.e. (4.5 + 18 ln(xi,1)− 2.2x2i,1 + 16 ln(xi,2)− 2x2i,2). Independent variables in

evaluation sample are generated from identical procedure to that in simulation. Intuitively

out of sample MSE is an empirical approximation of Normalized Integrated Squared Error

(NISE)

NISE =
1

36

6∫
1

6∫
1

(P̂F (x1, x2)− PF (x1, x2))
2dF1(x1)dF2(x2) (22)
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We did simulations in three different average TE settings by three different λ settings grid.

We compared the deterministic production frontier recovery ability and the distributional

parameter recovery ability amount Additive model, GCD model and Cobb-Douglas model.

For each point in grid we did 500 simulations.

We used cubic polynomial function for c(x) in all three simulations. Because the model

already contains a constant term, we exclude the constant term in c(x). The Additive

model used to estimate simulated data is:

yout =β0 + β1m(c1(x1)) + β2m(c2(x2)) (23)

in which

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

ci(xi) = ci,1(xi) + ci,2(xi)
2 + ci,3(xi)

3

In Table 1 is the deterministic frontier recovery accuracy comparison between Additive

model, GCD and Cobb-Douglas model. NISE tend to increase when average TE drops,

since σv is a decreasing function of TE. For instance σv corresponding to 0.7 average TE

is 0.4982, and for 0.9 average TE σv is 0.1361. TE is a scaling factor. For given λ it also

controls variance of stochastic frontier.

Compare to mean variance of the true deterministic frontier, which is 2.21 all models did

a good job recovering it. It is also clear that Additive and GCD models consistently out-

perform Cobb-Douglas model, cross all settings. Especially when TE gets from 0.8 to 0.9,
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NISE of suggested models keep reducing. NISE of Cobb-Douglas model become more or

less stagnate. Reason is none models is the true model. Suggested and Cobb-Douglas

models are trying to approximate an arbitrary smooth monotone concave function. As

suggested models are more flexible, it can proximate the true model with less error. This

effect becomes more significant when deterministic frontier is covered by less volatile noise.

It surprised us that GCD consistently outperform Additive model. The setup of first sim-

ulation specifically favors Additive model over GCD model i.e. separability assumption.

The standard deviations of NISEs of suggested models also are smaller than Cobb-Douglas

model cross all setups. Suggested models’ performance is also more stable in terms of

deterministic frontier recovery. Relative standard deviation gap gets larger when average

TE gets closer to 1 for the same reason stated before.

λ by definition, can serve as the measure of significance of stochastic frontier in distur-

bance term. Smaller the λ more significant stochastic frontier is. Changing λ does not

affect NISE much, when TE is close to 1. When TE gets smaller λ’s effect becomes more

significant. Overall smaller λ leads more inaccurate estimation.

Similar to deterministic frontier, MAE of average TE in Table 2 is a decreasing function of

both average TE and λ. All models estimated average TE rather accurately. When average

TE is small performance of all models is very close. When average TE and λ get bigger the

gap become more and more significant. Similar to what happens in NISE of deterministic

frontier measure, Additive and Cobb-Douglas model fails to continue improve average TE

estimation when average TE gets 0.9. Yet Additive Model suffer less approximation error

effect.
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Based on our first simulation suggested models dominates Cobb-Douglas model in deter-

ministic frontier recovery accuracy and average TE recovery accuracy cross all settings.

The benefit of using suggested models over Cobb-Douglas model becomes more significant

when average TE gets larger. Between suggested models, GCD model outperform Additive

model significantly even data agree with separability assumption.

Fixed setup simulation gives us idea how Additive model performs at different points. Yet

it does not tell us how model performs between these points. Based on our study of existing

literature, average TE most likely lies between 0.3 and 0.95, and λ most likely lies between

1 and 10. We did a random setup simulation. In which average TE and λ will uniformly or

close to uniformly distributed between range stated before. Then we constructed surfaces

of f̂(MAETE |λ, TE) and f̂(NISEDEF |λ, TE) , using local constant kernel estimator. In

second simulation we also intent to push Additive model to the limit, see what setting will

rand Additive model useless. In second simulation we will also use cubic c(x) identical to

which used first simulation.

Average TE is controlled through changing σv. Relationship between two parameters is

not linear. Range of σv corresponding to average TE range stated above is from 0.0652 to

2.32. Rather than generate uniform σv, we generated sample σunif using uniform between

exp(−0.0652) and exp(−2.32) and rescaled back by σv = −ln(σunif ). We did some simula-

tions to make sure average TE’s distribution is close enough to uniform. We used standard

normal quantile to transform average TE rescaled to 0-1 range. Transformed variables

cannot reject null hypothesis of Anderson-Darling normality test in all 100 simulations

with sample size of 100 at 10% level, and cannot reject same hypothesis in 21 out of 100

simulations with sample size of 1000 at same level. Therefore simulated average TE is not

strictly uniform distributed, but it should be close enough for our purpose. We estimated

5000 simulated samples. For consistency each sample contains 200 observations.
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Figure 1: Mean Squared Error (MSE) of out of sample prediction

Because NISE becomes too large when average TE gets below 0.4 and λ gets below 2. We

reduced grid to [2-9]×[0.4-0.95], while plotting NISE. In Figure 1 we can see in large part

of our setting grid, Additive model performs well. When λ is large NISE is a quite flat
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and close to linear function of average TE. When λ is small, NISE becomes a much steeper

and convex function of average TE. While average TE is close to 1, NISE is almost flat

function of λ. While average TE gets smaller, NISE becomes more steep function of λ.

Figure 2: Absolute error of average Technical Efficiency (absE.TE) recovery
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In Figure 2 we can see absolute error of average TE recovery is consistently a very flat

liner function of average TE. When λ is larger than 4 it is also an almost flat function of

λ. When λ gets below 4 absolute error of average TE recovery starts to climb. When λ

gets below 2 it rises almost straight up. We also did random setup simulations for GCD

model. The result is very similar to that of Additive model. Therefore we will not report

the result in this paper.

In third simulation we used a slightly different deterministic frontier. We added a mono-

tone concave cross term in production function, as GCD model do not assume separability.

The mean variance of production function with 200 observations is 3.99.

yi =(4.5 + 18 ln(xi,1)− 2.2x2i,1 + 16 ln(xi,2)− x2i,2+

2.7xi,1xi,2 − 0.3(xi,1xi,2)
2) exp(ui + vi) (24)

in which

ui ∼ Normal(0, σu)

vi ∼ −|Normal(0, σv)|

In Table 3 are predictive accuracy comparisons on production frontier. Similar to the

first simulation, GCD model consistently out performs Additive model, which outperforms

Cobb-Douglas model. Gap become larger when average TE and λ get larger. In column

0.9 NISEs of Cobb-Douglas are nearly 5 times of those of GCD.
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One can see in Table 4, average TE recovery accuracy of GCD is consistently higher than

Cobb-Douglas. Moreover in column 0.9 GCD did not suffer approximation error effect.

Third simulation tells us, GCD model always dominates Cobb-Douglas model in terms of

deterministic frontier recovery and average TE recovery.

2.6 An Empirical Application

In this section, we will demonstrate suggested models, by estimating an airline dataset.

Data is downloaded from Greene’s website . This data set is an extension of Caves et

al.(1984). It is an unbalanced panel with 256 observations on 25 firms. Independent vari-

ables are materials, fuel, equipment labor and property. The dependent variable is an index

of airline out put. Summary statistic of the dataset is in Table 5.

First we will estimate Additive model and GCD model under pooled model. The procedure

is identical to what we did in simulation part and what we suggest researcher do to cross

sectional dataset. Throughout this section, We will use the cubic c(x) same as what we

used in simulation. Our empirical model for additive deterministic frontier is:

Table 5: Summary Statistic of Airline Dataset-A

Output Material Fuel Equipment Labor Property
Mean 0.6288 0.7516 0.5839 0.6517 0.5950 0.6562
StDev 0.5919 0.6430 0.5038 0.5677 0.5082 0.6926
Min 0.0234 0.0645 0.0462 0.0496 0.0632 0.0146

Median 0.4000 0.4733 0.3609 0.3597 0.3588 0.3728
Max 2.4424 2.4479 1.7698 2.1049 1.6919 2.8070

Skewness 0.7945 0.6510 0.6004 0.7171 0.6787 1.1252
Kurtosis -0.5266 -1.0430 -1.0934 -0.7869 -1.0924 0.3070

StDev:Standard Deviation
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yout =β0 + β1m(c1(Mat.)) + β2m(c2(Fue.)) + β3m(c3(Eqp.))

+ β4m(c4(Lab.)) + β5m(c5(Pro.)) (25)

in which

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

ci(xi) = ci,1(xi) + ci,2(xi)
2 + ci,3(xi)

3

In Table 6 is the estimation of interested values less marginal productivity and elasticity of

substitutions. Elasticity of substitutions will be reported in different table. Because dataset

was already rescaled before we get it, marginal productivities do not bear any economic

meaning. The standard deviation and confidence interval is derived from Bootstrapping

with 399 replications. The bootstrapping took 3.06 hours, without parallel computing. Be-

cause truncated normal model is less restrictive than half normal model, we also estimated

the model for comparison. Overall estimation of two models are very close, except for

λ. For some reason λ estimation of truncated normal model is very volatile. Fortunately

average TE the variable we are interested in is rather stable, and close to half normal model.

In half normal model estimated λ is pretty small, this means stochastic frontier roughly

contributed 36.4% of total variation of error term. Average TE is 89.28%. Most of airlines

are operating at very high efficiency. Average return to scale is 1.32. A ”average” airline

is smaller than economic scale.

Input elasticity of labor is negative, and non replication in bootstrapping has positive value.

This is inconsistent with the Economic theory. Yet it happens to Cobb-Douglas model as
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Table 6: Vital Parameter Estimation of Additive Model

Half-Normal Truncated Normal
Mean StDev 95%L 95%U Mean StDev 95%L 95%U

Mu - - - - 0.306 0.049 0.216 0.358
Sig. 0.206 0.027 0.156 0.263 0.174 0.019 0.155 0.194

Lam. 1.211 0.677 0.147 2.562 44.98 77.06 0.460 200.5
TE 0.893 0.038 0.832 0.982 0.891 0.027 0.866 0.949
RTS 1.316 0.063 1.178 1.435 1.593 0.073 1.476 1.673

Mat.* 0.669 0.095 0.484 0.847 0.786 0.121 0.577 0.995
Fue.* 0.403 0.081 0.245 0.564 0.537 0.103 0.376 0.723
Eqp.* 0.337 0.090 0.161 0.501 0.378 0.106 0.191 0.561
Lab.* -0.263 0.079 -0.410 -0.118 -0.309 0.107 -0.496 -0.127
Pro.* 0.171 0.035 0.104 0.247 0.202 0.042 0.126 0.270

Sig: Sigma
Lam.:Lambda
Mu: Mean of Truncated Normal Distribution
TE: Average Technical Efficiency
RTS: Average Return to Scale
* are average input elasticity for given input
Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
StDev: Standard Deviation, L: Lower Bound, U: Upper Bound

well as other models Greene tried on. We will just take it as how data behave. Elasticities

of all other input are positive. Material has largest input elasticity. 1 percent increase in

material will lead to 0.67 percent increase in output.
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Table 7: Elasticity of Substitution Additive Model Half Normal Distribution

Mtl. Fue. Eqp. Lab. Pro.

Mtl.
1 1.7458 2.2070 -2.8848 4.1102

( 0) ( 0.5411 ) ( 0.9658 ) ( 1.9022 ) ( 1.1602 )

Fue.
0.6164 1 1.3257 -1.7018 2.4785

( 0.1606 ) ( 0) ( 0.5864 ) ( 0.8856 ) ( 0.7776 )

Eqp.
0.5222 0.8891 1 -1.4406 2.0686

( 0.1829 ) ( 0.3593 ) ( 0 ) ( 0.7964 ) ( 0.7565 )

Lab.
-0.3949 -0.6652 -0.8413 1 -1.5935

( 0.1148 ) ( 0.2051 ) ( 0.3681 ) ( 0) ( 0.5668 )

Pro.
0.2610 0.4463 0.5524 -0.7319 1

( 0.0678 ) ( 0.1536 ) ( 0.2201 ) ( 0.4056 ) ( 0)

All numbers are derived by elasticities of parameters in row divide by elasticities of parame-
ters in column. For example, 1.7458 in row Mtl., column Fue. is derived from EMtl./EFue..
Mtl: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.

In Table 7, are the elasticities of substitutions cross all inputs estimated by half normal

model. Although in theory marginal rate of substitution is a better measure for production

function. Inputs in this dataset are indexed from multiple categories and rescaled . Unit

of each input is unclear. Thus elasticities of substitution are better measure in this case.

In Table 8 are vital parameter estimation of GCD model. Return to scale and all elasticity

estimations are reasonably close to Additive model. Within half normal framework we

have large amount of bootstrapping scenario without any technical inefficiency. Within

Normal-Truncated normal original estimation and most of bootstrapping scenario do not

found technical inefficiency. When we were estimating GCD model with normal-truncated

normal distribution , quasi-Newton method cannot find appropriate gradient. We solved

this problem by adopting Nelder and Mead method, which does not use gradient or Hes-

sian. We believe the cause of this problem is this model did not find technical inefficiency

in the dataset. Nelder and Mead method is also supported by optim() function.
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Table 8: Vital Parameter Estimation, Generalized Cobb-Douglas (GCD) Model

Half-Normal Truncated Normal
Mean StDev 95%L 95%U Mean StDev 95%L 95%U

Mu - - - - -65.6 30.7 -123.9 -3.7
Sig. 0.170 0.023 0.135 0.217 2.027 0.753 0.216 3.348

Lam. 0.659 0.524 0.000 1.598 15.42 6.153 1.277 26.18
TE 0.938 0.046 0.871 1.000 - - - -
RTS 1.222 0.068 1.111 1.342 1.208 0.035 1.132 1.277

Mat.* 0.730 0.083 0.565 0.918 0.680 0.073 0.529 0.832
Fue.* 0.405 0.082 0.243 0.570 0.390 0.065 0.258 0.510
Eqp.* 0.322 0.078 0.174 0.467 0.350 0.056 0.240 0.465
Lab.* -0.422 0.077 -0.593 -0.269 -0.405 0.052 -0.515 -0.299
Pro.* 0.187 0.036 0.121 0.269 0.192 0.030 0.130 0.252

Sig: Sigma
Lam.:Lambda
Mu: Mean of Truncated Normal Distribution
TE: Average Technical Efficiency
RTS: Average Return to Scale
* are average input elasticity for given input
Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
StDev: Standard Deviation, L: Lower Bound, U: Upper Bound

Work of previous researchers allows us to exploit panel feature of the dataset. Pitt and

Lee (1981) suggested two random effect models. In the first model they assume inefficiency

term is time invariant and follows half-normal distribution. In the second model they as-

sume inefficiency term is serial correlated. Because integration of multivariate distribution

is computationally infeasible they suggested a Constrained Seemingly Unrelated Regres-

sion (CSUR) approach. With our dataset, equations in CSUR specification can have as

few as 12 observations. In each equation we will have at least 21 parameters. Therefore we

cannot estimate second random effect model. Schmidt and Sickles (1984) suggested a fixed

effect within estimator. A distinct advantage of their estimator is individual inefficiency of
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each firm can be identified.

Table 9: Vital Parameter Estimation, Generalized Cobb-Douglas (GCD) Model, under
Random Effect and Fixed Effect Specifications

Fixed Effect Random Effect
Mean StDev 95% L 95% U Mean StDev 95% L 95% U

Sig. 0.206 0.028 0.156 0.256 0.270 0.034 0.192 0.335
Lam. 21.90 3.680 15.55 29.473 2.863 0.553 1.857 3.944
TE 0.676 0.046 0.577 0.770 0.983 0.003 0.977 0.989
RTS 1.283 0.039 1.198 1.354 1.508 0.073 1.348 1.642

Mat.* 0.852 0.067 0.748 0.998 1.101 0.087 0.945 1.270
Fue.* -0.138 0.082 -0.293 0.021 0.257 0.032 0.196 0.324
Eqp.* 0.238 0.094 0.084 0.461 0.346 0.093 0.155 0.541
Lab.* 0.247 0.074 0.099 0.379 -0.271 0.060 -0.385 -0.158
Pro.* 0.084 0.027 0.043 0.146 0.076 0.023 0.034 0.117

Sig: Sigma
Lam.:Lambda
TE: Average Technical Efficiency
RTS: Average Return to Scale
* are average input elasticity for given input
Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
StDev: Standard Deviation, L: Lower Bound, U: Upper Bound

As GCD is very close to Cobb-Douglas function Pitt and Lee (1981) discussed, we use

GCD model for fixed and random effect estimation. Additive model can also be estimated

in all specifications we mentioned above with small modifications. In Table 9 is the vi-

tal parameter of fixed and random effect model. Estimation of random effect model is

relatively close to counterpart in pooled model. We find almost no technical inefficiency

in airline industrial with random effect model. Estimation of fixed effect model is quite

different from all estimations before. It find more than 13 out of 25 firms is below 70%

efficiency. Average efficiency is only 67.6%. Input elasticity of Labor becomes positive,

which is good. However point estimation of Fuel’s input elasticity change to negative, and
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we cannot reject hypothesis that it equal zero with α = 5%.

The original intension is use RGCD model on the dataset as well. Because dataset espe-

cially labor variable does not behave well, RGCD yield a very strange result. We suggest

that RGCD model shouldn’t be used on a dataset inconsistent with theory. The result can

be strange and unpredictable.

2.7 Summary

Our purpose has been present a class of flexible functional forms embedding monotonicity

and concavity for stochastic production frontier estimation. Suggested models compre-

hended Cobb-Douglas model’s ability to preserve monotonicity and concavity, and flexi-

bility. Despite highly nonlinear nature of the model, it can be estimated within relatively

short time with three-step method suggested. Because Fisher’s Information Matrix of Ad-

ditive model is near singular, we suggested Bootstrapping inference. The time need for

399 replication of model with 5 independent variables and 256 observations is 3.06 hours,

without parallel computing. Moreover in our simulation both Additive model and GCD

model out performed Cobb-Douglas model in both deterministic frontier recovery and av-

erage TE recovery. We also gave researcher a general idea of how our model’s accuracy

behaves in different error term setting, through a random setup simulation. Then we ap-

plied the Additive model and GCD model to an airline dataset with both half-normal and

normal-truncated normal distribution. Finally we demonstrated how to estimate GCD

model under random and fixed effect specifications.
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3. A CLASS OF FLEXIBLE INEFFICIENCY ANALYSIS MODELS

WITH MONOTONICITY AND CONCAVITY CONSTRAINTS

3.1 Introduction

In this paper, we are interested in introduce a class of flexible frontier production function

with monotonicity and concavity constraint into inefficiency analysis. Since Aigner, Lovell,

and Schmidt (1977, hereafter ALS 1977) developed first practical Stochastic Production

Frontier model many work has been done in this field. In recent years researchers extend

interest to model firm level inefficiency with observable characteristics. Deterministic pro-

duction frontiers researchers used in previous literatures belong to log linear family. For

instance Caudill and Ford (1993) used Cobb-Douglas model, Huang and Liu (1994) used

Trans-log model. Although log linear family is easy to estimate, its members does bear

undesired theoretical implications.

Microeconomic theory requires production function to be monotone increasing respect to

each input and diminishing return to scale. These two assumptions are essential to profit

maximization, cost minimization and various equilibrium problems. Conventional Cobb-

Douglas production function preserves both properties automatically when all coefficients

are between 0 and 1. Yet it also enforces undesired properties such as unitary elasticity of

factor substitution and constant partial and total production elasticities.

Trans-log can be considered as a generalized form of Cobb-Douglas function. It is very

flexible, and generally does not imply any properties econometricians do not desired. Yet

it does not imply monotone increasing respect to each input and diminishing return to

scale either.
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In this paper we will introduce a flexible model that imposes these two constraints without

the burden of Cobb-Douglas model to inefficiency analysis. This paper will be organized

as follow. In the next section we will do a brief literature review of inefficiency analysis.

In Section 3.3 will introduce two alternative production functions for inefficiency analysis.

Then we will derive estimator and likelihood function for inefficiency analysis. After that

we will suggest estimation and inference method for interesting parameters. In Section

3.5 we will present result of Monte Carlo simulations and compare the result with Cobb-

Douglas model. In Section 3.6 we will apply the model on a airline dataset.

3.2 Literature Review

Half Normal-Normal and Exponential-Normal frameworks developed by ALS (1977) have

one common assumption. That is firms are more concentrated in higher efficiency area than

in lower efficiency area. This assumption might not be true in reality. Stevenson (1980)

generalized their model and developed Truncated Normal-Normal framework. Stevenson

(1980) also suggested a Gamma-Normal framework with positive integer shape parameters.

Greene (1990) generalized the Gamma-Normal framework to allow positive real shape pa-

rameter that is greater than one. Both Truncated Normal-Normal and Gamma-Normal

frameworks do not imply undesired assumptions ALS (1977) have. Yet Gamma-Normal

framework does not have close form log likelihood function. Estimation is much more com-

putationally intensive than Truncated Normal-Normal framework. Inefficiency analysis is

already much more computationally intensive than conventional production frontier prob-

lem. Previous researchers adopted Truncated Normal-Normal framework in inefficiency

analysis.

Kumbhakar et al. (1991) made first attempt to explain individual inefficiency with observ-

able characteristics. Their model allows mean of truncated normal distribution vary with
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characteristic variables. Huang and Liu (1994) suggested a similar model with two-step

estimation method. Although two step method has the advantage of identifying individual

inefficiency, the estimator could be biased. Wang and Schmidt (2002) showed that the

bias can be substantial. Therefore in this paper we will focus on one step MLE estimator.

Reifschneider and Stevenson (1991) developed a class of models, in which variances of in-

efficiency term depend on characteristic variables.

Alvarez et al. (2006, hereafter AAOS 2006) summarized results of previous papers. Ac-

cording to them, the nested model of inefficiency analysis is:

yi = f(xi) exp(ui − vi) (26)

ui ∼ Normal(0, σu)

vi ∼ Normal(µv,i, σv,i)+

In which

µv,i = µ∗v exp(γzµ,i)

σv,i = σ∗v exp(δzσ,i)

f(xi) and exp(ui) are deterministic part and stochastic part of production frontier, which is

identical to conventional stochastic efficiency frontier estimation. exp(vi) is efficiency level

of ith firm. Different from conventional stochastic production frontier problem, each firm

has their own distribution of efficiency determined by γi, δi, zµ,i, and zσ,i. zµ,i, and zσ,i are

vectors of firm level characteristics that affect efficiency. γi and δi are vectors of coefficients

associated with these characteristics. xi, zµ,i, and zσ,i can overlap each other partially or
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fully. In previous literatures that we are aware of, researchers assume zµ,i = zσ,i. For

convenience we adopt this assumption in the rest of the paper.

By putting different constraints on parameters, we can obtain three popular models in

inefficiency analysis. When assuming γ = δ we have Scale Stevenson (SS) model used by

Wang and Schmidt (2002).

vi ∼ Normal(µ∗v exp(δzi), σ
∗
v exp(δzi))+ (27)

It can also be written as:

vi ∼ exp(δzi)Normal(µ∗v, σ
∗
v)+

Assuming δ = 0, we have KGMHLBC model used by Kumbhakar et al. (1991), Huang and

Liu (1994), and Battese and Coelli (1992).

vi ∼ Normal(µ∗v exp(γzi), σ
∗
v)+ (28)

When fixing µ∗v = 0, we got RSCFG model used by Reifschneider and Stevenson (1991),

Caudill and Ford (1993), and Caudill et al. (1995).
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vi ∼ Normal(0, σ∗v exp(δzi))+ (29)

It can also be written as:

vi ∼ exp(δzi)Normal(0, σ∗v)+

3.3 A Class of Flexible Inefficiency Analysis Models with Shape Constraints

Sickles and Wu (Personal Discussion) developed a production function with monotonicity

and concavity constraints embedded. Their function is:

f(x) = β0 +

p∑
j=1

βjm(cj(xj)) (30)

in which

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

In equation above c(·) is some arbitrary function. From now on we will call it Additive

model. Marginal productivity of input j is:

∂f(x)

∂xj
= βjm

′(cj(xj)) (31)
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in which

m′(c(x)) = exp(−
x∫

0

exp(c(b)) db)

As exponential function, m′(·) will always be positive. The second derivative of Additive

model is:

∂2f(x)

∂xj2
= βjm

′′(cj(xj)) (32)

in which

m′′(c(x)) = − exp(c(x)) exp(−
x∫

0

exp(c(b)) db) (33)

Likewise m′′(·) is guaranteed negative. Thus as long as all βj is positive f(x) is a monotone

increasing function exhibiting diminishing return to scale. Additive model implicitly as-

sume separability between inputs, i.e. ∂2y/∂xk∂xj = 0. Some researchers might not want

this assumption. To solve this problem, we suggest a multiplicative production function.

y = β0

p∏
j=1

m(cj(xj))
βj (34)

The functional form of model above is very similar to that of Cobb-Douglas model. From

now on we will call it Generalized Cobb-Douglas (GCD) model. First and second derivative

of GCD model are:
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∂y

∂xk
= β0 × βk ×m′(ck(xk))×m(ck(xk))

βk−1 ×
p∏

j=1,j 6=k
m(cj(xj))

βj (35)

∂2y

∂x2k
= β0 × βk × [(βk − 1)×m′(ck(xk, ))2 ×m(ck(xk))

βk−2+

m′′(ck(xk))×m(ck(xk))
βk−1]×

p∏
j=1,j 6=k

m(cj(xj))
βj (36)

As m(·) and m′(·) are positive and m′′(·) is negative, as long as βjs lie between 0 and 1,

GCD is guaranteed to exhibit monotone increasing and diminishing return to scale prop-

erty. More over because m′′(·) is negative, f(x) might preserve diminishing return to scale

even if βjs is greater than 1. In this situation ∂2y/∂x2k depends not only on βj but also xs

and c(·). Researchers need to evaluate over range of all xs to make sure function is concave.

Substituting Additive model into nested model, we have Additive-Nested Inefficiency Anal-

ysis (A-NIA)model.

yi = (β0 +

p∑
j=1

βjm(cj(xi,j))) exp(ui − vi) (37)

in which

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

ui ∼ Normal(0, σu)

vi ∼ Normal(µ∗v exp(γzi), σ
∗
v exp(δzi))+

When GCD is combined with nested model we get the estimator for GCD-Nested Ineffi-
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ciency Analysis (GCD-NIA) model.

yi = β0

p∏
j=1

m(cj(xi,j))
βj exp(ui − vi) (38)

in which

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

ui ∼ N(0, σu)

vi ∼ N(µ∗v exp(γzi), σ
∗
v exp(δzi))+

In both equations above c(·) is some arbitrary function. To derive estimator for different

inefficiency analysis model we only need to impose constraint required. For instance, when

we apply δ = 0 to GCD-NIA model, we get:

yi = β0

p∏
j=1

m(cj(xi,j))
βj exp(ui − vi) (39)

in which

ui ∼ Normal(0, σu)

vi ∼ Normal(µ∗v exp(γzi), σ
∗
v)+

which is estimator of GCD-KGMHLBC model. To estimate the model we still need the

log likelihood function. Based on log likelihood function derived by Stevenson (1980), we

get the likelihood function for nested model.



42

LLi = − lnσi −
1

2
ln 2π − ln Φ(

µiλiσi√
1 + λ2i

) + ln Φ(
µi
σiλi

− εiλi
σi

)− 1

2
(
εi + µi
σi

)2 (40)

in which

εi = ln(yi)− ln(f(xi))

σi =
√
σ∗2v exp(2δzi) + σ2u

λi =
σ∗v exp(δzi)

σu

µi = µ∗v exp(γzi)

In equation above f(xi) can be either GCD or Additive model. Φ(·) is CDF of standard

normal distribution.

3.4 Estimation, Parameter Recovery, and Inference

For simplicity, we assume c(x) to be polynomial function in the rest of paper.

c(x) =
k∑
p=1

cpx
p (41)

As suggested models have many parameters to estimate and are highly nonlinear, result

may be sensitive to starting value. Log likelihood function cannot be evaluated by many

starting values. To overcome these two problems, we suggest a three-step procedure. First

we estimate Cobb-Douglas production function using whatever Inefficiency analysis frame-

work we assume, then use predicted P̂F as true PF , and use suggested models to proximate

P̂F using least square estimator. 0 is good starting value for cps and 1 is good starting value
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for βjs. Parameter estimations of least square auxiliary regression should serve reasonably

well as staring values. Point estimation of γ, δ, σ∗v and µ∗v from Cobb-Douglas model can

be used as starting value of corresponding parameters in suggested models. After these

two auxiliary regressions our starting value should be reasonably close to true value. We

can estimate suggested model by maximizing log likelihood function in equation (15) with

quasi-Newton algorithm. Quasi-Newton algorithm is supported by ”optim()” function in

R. It is pretty easy to use.

As βs and cs themselves do not have economic meanings, we need to derive point estima-

tions and inferences of values that are interested by economists. Regarding deterministic

production frontier, applied researchers are commonly interested in marginal productivi-

ties, input elasticities, return to scale, and Elasticities of Substitution. Mean productivity

of suggested models equals first derivative evaluating at sample mean. Input elasticities are

derived from normalizing mean productivities with input-output ratios. Return to scale

equals to summation of all input elasticities. Elasticity of substitution of ith input to jth

input equals input elasticity of ith input divide by that of jth input.

As γs and δs in inefficiency analysis affects σvs and/or µvs rather than technical efficiency

itself, these coefficients does not bear any economic meanings. We need equation below

to recover their marginal effect on technical efficiency in nested inefficiency analysis models.

∂TE

∂zi,j
=

∞∫
0

exp(−x)[δj(x− µv,i)2σ−3v,i + γj(x− µv,i)σ−2v,i − δjσ
−1
v,i ]φ(x)dx (42)
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in which

φ(·) is pdf of Normal(µv,i, σv,i)

µv,i = µ∗v exp(γzi)

σv,i = σ∗v exp(δzi)

Equation above is affected by many factors. A negative coefficient alone does not mean the

variable is negative or positive correlated with technical efficiency. it can only be evaluated

case by case. Yet in different reduced models we might get some idea about the sign of

marginal effect of given variable just from sign of γs or δs. For instance in RSCFG model,

µ∗v is restricted to zero. Thus positive coefficient means that variable is positive correlated

with inefficiency.

Because analytically deriving Fishers Information Matrices and Hessians for suggested

models is very teddies we use ”numDeriv” package in R to numerically approximate them.

In most simulations Fisher’s Information Matrices are near singular. As in inefficiency

analysis models we assume error term is correlated with observationally specified variables,

we cannot do regression bootstrapping either. We propose researcher to resample observa-

tions with Bootstrapping and reestimate the model on resampled dataset.

3.5 Monte Carlo Simulations

In this section we will implement GCD model in inefficiency analysis and compare results

to that of Cobb-Douglas model. In first simulation we use SS model. the equation is:
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yi = (4.5 + 18 ln(xi,1)−2.2x2i,1 + 16 ln(xi,2)− x2i,2) exp(ui + vi) (43)

ui ∼ Normal(0, σu)

vi ∼ − exp(δzi)Normal(µ∗v, σ
∗
v)+

in which

δzi = 0.6xi,1 − 0.6xi,2+0.6zi,1 − 0.6zi,2

xi,1 is generated by Gamma(100, 10) distribution. xi,2 is generated by Gamma(120, 20) dis-

tribution. zi,1 is generated byGamma(80, 25) distribution. zi,2 is generated byGamma(140, 15)

distribution. All variables were rescaled into [1, 2] range. We use σ∗v = 0.4982, σu =

0.09964, and µ = 0.5. This error term setup was inherited from TE = 0.7 and λ = 5 setup

in the first essay. The estimator for GCD-SS model is:

yi = β0

p∏
j=1

m(cj(xi,j))
βj exp(ui − vi) (44)

in which

ui ∼ Normal(0, σu)

vi ∼ exp(δzi)Normal(µ∗v, σ
∗
v)+

For consistency and simplicity we use third order polynomial for c(x) in the rest of this

section.
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ci(xi) = ci,1(xi) + ci,2(xi)
2 + ci,3(xi)

3 (45)

In each simulation we also generated additional 200 ”naked” observations to evaluate out

of sample prediction accuracy of the model. Term ”naked” means dependent variable of

evaluation observations only contains deterministic frontier i.e. (4.5+18 ln(xi,1)−2.2x2i,1 +

16 ln(xi,2)− x2i,2). Independent variables in evaluation sample are generated from identical

procedure to that in simulation. Intuitively out of sample MSE is an empirical approxima-

tion of Normalized Integrated Squared Error (NISE).

NISE =
1

36

6∫
1

6∫
1

(P̂F (x1, x2)− PF (x1, x2))
2dF1(x1)dF2(x2) (46)

As the in SS model we need to estimate second moment of yi, the result tend to be less

accurate than conventional production frontier estimation. Therefore we increased number

of observations from 200 to 1000 gradually with 200 observations a step. For each setup

we did 500 simulations. Results of first simulation is in Table 10.

GCD-SS model dominate Cobb-Douglas-SS model in terms of production frontier recovery.

The gap shrinks when number of observation increases. The gap between MSE and NISE

of Cobb-Douglas-SS model is also much larger than that of GCD-SS model. The difference

is rather large even when sample size reaches 1000.

In inefficiency analysis, recovering individual inefficiency and δs is also amount primary

interests. When sample size is small GCD-SS model dominates Cobb-Douglas-SS model.
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When sample size gets larger, results of two models become very close to each other.

Although RSCFG model is less flexible than SS model, it is favored by a number of re-

searchers. In second simulation we will us RSCFG specification. The equation used for

simulation is:

yi = (4.5 + 18 ln(xi,1)−2.2x2i,1 + 16 ln(xi,2)− x2i,2) exp(ui + vi) (47)

ui ∼ Normal(0, σu)

vi ∼ − exp(δzi)Normal(0, σ∗v)+

in which

δzi = 0.6xi,1 − 0.6xi,2+0.6zi,1 − 0.6zi,2

The estimator of GCD-RSCFG model is:

yi = β0

p∏
j=1

m(cj(xi,j))
βj exp(ui − vi) (48)

in which

ui ∼ Normal(0, σu)

vi ∼ exp(δzi)Normal(0, σ∗v)+

Result of second simulation is in Table 11. With µ fixed to 0, production frontier estimation
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becomes much more accurate than SS model. GCD-RSCFG model consistently out per-

form Cobb-Douglas-RSCFG model in this field. Relative gap also gets bigger when sample

size increases. For instance, when sample size is 200 in sample MSE of GCD-RSCFG is

63.77% of in sample MSE of Cobb-Douglas-RSCFG model. When sample size gets 1000

the ratio becomes 38.52%.

In terms of distributional parameter recovery GCD-RSCFG also performs better than

Cobb-Douglas-RSCFG model. Distributional parameter estimation get worse when sam-

ple size increase from 800 to 1000.

3.6 An Empirical Application

In this section we will implement the GCD-SS and GCD-RSCFG models on an airline

dataset. Data is downloaded from Greene’s website . This data set is a extension of Caves

et al.(1984). It is an unbalanced panel with 256 observations on 25 firms. Input variables

are materials, fuel, equipment labor and property. The dependent variable is a index of

airline out put.

This dataset also contains three characteristic variables that might affect efficiency. They

are load factor (Loa.), average stage length (Sta.) and number of points served (Poi.). Load

factor is percentage of capacity used for revenue generating activities. For instance per-

centage of ticket sold. We expected it to be strongly negative correlated with inefficiency.

Average stage length is average length of each flight. The unit is mile. Points Served is

number of airport each airline serves. Due to our limited understanding of airline industry,

we do not have expectation on coefficient of these two variables. Summary statistics of the

dataset are in Table 12.
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Table 12: Summary Statistic of Airline Dataset-B

Out Mat. Fue. Eqp. Lab. Pro. Loa. Sta. Poi.
Mean 0.629 0.752 0.584 0.652 0.595 0.656 0.548 507.9 72.9
StDev 0.592 0.643 0.504 0.568 0.508 0.693 0.056 290.7 26.0
Min 0.023 0.064 0.046 0.050 0.063 0.015 0.378 120.5 30.0
Med. 0.400 0.473 0.361 0.360 0.359 0.373 0.551 507.9 67.0
Max 2.442 2.448 1.770 2.105 1.692 2.807 0.676 1620 168
Skew. 0.79 0.65 0.60 0.72 0.68 1.13 -0.32 0.84 1.12
Kurt. -0.53 -1.04 -1.09 -0.79 -1.09 0.31 -0.15 0.93 1.29

StDev:Standard Deviation, Med: Median, Skew.: Skewness, Kurt.: Kurtosis
Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
Out: Output, Loa.:Load Factor, Sta.: Average Stage Length, Poi. Number of Points Served

The estimator we used for GCD-SS model is:

yi =β0m(cMat(Mati))
βMatm(cFue(Fuei))

βFue

m(cEqp(Eqpi))
βEqpm(cLab(Labi))

βLab

m(cPro.(Pro.i))
βPro.exp(ui − vi) (49)

in which

ui ∼N(0, σu)

vi ∼exp(δLoaLoai + δStaStai + δPoiPoii)N(µ∗v, σ
∗
v)+

ci(xi) = ci,1(xi) + ci,2(xi)
2 + ci,3(xi)

3

The estimator we used for GCD-RSCFG model is:
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yi =β0m(cMat(Mati))
βMatm(cFue(Fuei))

βFue

m(cEqp(Eqpi))
βEqpm(cLab(Labi))

βLab

m(cPro.(Pro.i))
βPro. exp(ui − vi) (50)

in which

ui ∼Normal(0, σu)

vi ∼ exp(δLoaLoai + δStaStai + δPoiPoii)N(0, σ∗v)+

ci(xi) = ci,1(xi) + ci,2(xi)
2 + ci,3(xi)

3

The result of both model is Table 13. In SS model all three characteristic variables are neg-

atively correlated with inefficiency. The marginal effect of load factor is 3.07. 1% increase

of load factor efficiency will increase by more than 3%. Logically it may seem problematic.

Load factor can go up to 100%. Even observation with the highest load factor can have

more than 100% efficiency increase when load factor reaches 100%. Our explanation is

although logically load factor can reach 100%, with the technology we studied it cannot

get that high. If load factor increases that much we consider it a technology shift rather

than a improvement of efficiency. Average stage length and number of points served also

have positive impact on efficiency. Their marginal effect is much smaller than that of load

factor. This outcome is what we expected.

One may noticed a by product of GCD-SS model. All elasticities of inputs are positive and

significantly different from zero now. In all models we and Greene estimated there is always

a elasticity is negative. We suspect previous models has misspecification problem. Because

input elasticity estimation is quite different from previous models, we show Elasticities of
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Table 13: Vital Parameter Estimation

SS RSCFG
Mean StDev 95%LCI 95%UCI Mean StDev 95%LCI 95%UCI

sig.v 0.0034 0.0002 0.0030 0.0039 0.1060 0.0250 0.0531 0.1563
Lam. 0.0284 0.0020 0.0248 0.0324 0.8878 0.2562 0.3914 1.4371
Mu 0.2418 0.0167 0.2108 0.2756 - - - -

ATE 0.7854 0.0131 0.7591 0.8100 0.9210 0.0176 0.8865 0.9590
Loa.ˆ 3.0713 0.0654 2.9372 3.1722 1.7430 0.8698 0.0309 3.6470
Sta.ˆ 0.0027 0.0001 0.0025 0.0031 0.0012 0.0017 0.0003 0.0047
Poi.ˆ 0.0022 0.0003 0.0014 0.0026 0.0002 0.0017 -0.0031 0.0029
RTS 1.3182 0.0288 1.2663 1.3785 1.1990 0.0470 1.1192 1.2945

Mat.* 0.7150 0.0327 0.6137 0.7464 0.6725 0.0931 0.4904 0.8508
Fue.* 0.0662 0.0080 0.0504 0.0818 0.3634 0.0949 0.1960 0.5568
Eqp.* 0.3921 0.0283 0.3517 0.4751 0.3599 0.0714 0.2112 0.4945
Lab.* 0.0388 0.0338 0.0188 0.1284 -0.391 0.0699 -0.522 -0.234
Pro.* 0.1061 0.0135 0.0987 0.1469 0.1949 0.0335 0.1306 0.2681

sig.v: Standard Deviation of Truncated Normal Distribution
Lam.:Lambda
Mu: Mean of Truncated Normal Distribution
ATE: Average Technical Efficiency
RTS: Average Return to Scale
* are average input elasticity for given input
ˆ are average marginal effect of observable characteristics on inefficiency
Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
Loa.:Load Factor, Sta.: Average Stage Length, Poi. Number of Points Served
StDev: Standard Deviation, LCI: Lower Bound of Confidence Interval, UCI: Upper Bound
of Confidence Interval

Substitution Matrix in Table 14. we can see material is by far the most dominant input

in frontier production function. Impact of 1% change in material can only be offset by

19.76% of labor.
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Table 14: Elasticities of Substitution, Generalized Cobb-Douglas-Scaled Stevenson (GCD-
SS) Model

Mtl. Fue. Ept. Lab. Pro.

Mtl.
1 11.050 1.836 19.760 6.898

( 0 ) ( 3.052 ) ( 0.203 ) ( 17.392 ) ( 1.809 )

Fue.
0.093 1 0.170 1.860 0.635

( 0.014 ) ( 0 ) ( 0.028 ) ( 1.148 ) ( 0.140 )

Eqp.
0.551 6.098 1 10.579 3.791

( 0.065 ) ( 2.377 ) ( 0 ) ( 11.158 ) ( 1.220 )

Lab.
0.056 0.588 0.102 1 0.387

( 0.058 ) ( 0.508 ) ( 0.110 ) ( 0 ) ( 0.421 )

Pro.
0.149 1.637 0.272 2.918 1

( 0.025 ) ( 0.498 ) ( 0.044 ) ( 3.225 ) ( 0 )

Mtl: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.

3.7 Summary

In this section our purpose has been apply suggested models on inefficiency analysis. We

use same three step method as what we used in first section to estimate the model. Our

simulation shows suggested model does not only greatly improve deterministic frontier

estimation accuracy but also significantly improves estimation accuracy of coefficients of

variables for inefficiency analysis in both RSCFG and SS models. Then we applied the

model on airline dataset.
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4. A REGRESSION SPLINE STRUCTURAL NONPARAMETRIC

STOCHASTIC PRODUCTION FRONTIER AND INEFFICIENCY

ANALYSIS MODELS

4.1 Introduction

ALS (1977) developed first practical stochastic frontier model. Since then Stochastic Fron-

tier Estimation has become a important field in microeconometrics. Four maximum likeli-

hood frameworks have been developed by econometricians. They are Half Normal-Normal,

Exponential-Normal, Truncated Normal-Normal and Gamma-Normal.

Within Stevenson’s (1980) Half Normal-Normal framework inefficiency term is very flexible.

It also nested Half Normal-Normal and Exponential-Normal framework. Gamma-Normal

framework is also very flexible and nested Exponential-Normal framework. Yet its log like-

lihood function does not have close form, and requires numerical integration. Therefore it

is computationally expensive and only a few researchers adopted it.

Researchers also developed different fixed effect and random effect model to utilize ad-

vantage of panel datasets. Pitt and Lee (1981) developed two random effect models, and

Schmidt and Sickles (1984) suggested a fixed effect within estimator.

Functional form of deterministic frontier is another story. Since ALS (1977) researchers

are pretty much stuck with Cobb-Douglas and trans log model. Microeconomic theory

requires production function to be monotone increasing and concave. If either of these two

properties is missing profit maximization procedure and most of equilibrium models will

breakdown. Without monotone increase property, even cost minimization problem might

not have a solution.
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As long as all exponents are between 0 and 1, good old Cobb-Douglas production function

preserves both properties implicitly. Many econometricians incorporated this functional

form in their researches. However Cobb-Douglas production function also implies proper-

ties researchers do not desire. For instance it assumes unitary elasticity of factor substitu-

tion and partial and total production elasticities that do not change with input.

Trans-log can be considered as a generalized form of Cobb-Douglas function. It is a very

flexible functional form, and do not bear undesire assumptions that Cobb-Douglas function

has. It becomes by far the most popular model in stochastic production frontier estimation.

Yet the flexibility does not come without cost. it is also very hard to impose monotone

and concave restrictions on Trans-log model.

In section I we have introduced a class of flexible stochastic production frontier models with

monotonicity and concavity embedded. In previous sections we used third-order polyno-

mial function. In this section we will generalize the model with regression spline and make

the model data driven.

The paper will be organized as follow. In Section 4.2 we will do a brief literature review

of stochastic production frontier estimation. In Section 4.3, a structure nonparametric

model and Leave One out Cross Validation method to find optimal tuning parameter will

be presented. In Section 4.4 we will suggest three method to speed up Cross Validation

process. In Section 4.5 we will demonstrate performance improvement of adopting Penal-

ized Likelihood by a grid setup simulation. In Section 4.6 we will apply suggested model

on the airline dataset. In Section 4.7 we will summarize our research and discuss future

research possibilities.
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4.2 Literature Review

Farrell (1957) first explored the possibility to estimate the frontier production function.

Aigner and Chu (1968), Afriat (1972) and Richmond (1974) developed a set of techniques

estimating deterministic frontier production using linear or quadratic programming tech-

nology. Their methods minimize:

n∑
i=1

|yi − f(xi)|

or

n∑
i=1

(yi − f(xi))
2

subject to

yi ≤ f(xi)

Deterministic efficiency frontier method fails to incorporate random elements that affect

output. These elements such as natural disaster, worker strike or finding new natural

recourses commonly exit in real world. The first attempt to incorporate these random

elements was done by Aigner et al. (1976). They suggested a discontinuous distribution

for the error term. ALS (1977) constructed the first practical Stochastic Efficiency Frontier

estimator.

ALS (1977) assume −vi follows a Half normal distribution with 0 mean and σv
2 variance.
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Econometricians still widely use this distribution. The log likelihood function is:

LLi = ln
2

σ2
+ ln(φ(

εi
σ2

)) + ln(1− Φ(εiλσ
−1)) (51)

Where λ = σv/σu, σ = σ2u + σ2v . φ() is the density of standard normal distribution.Φ() is

the cumulated distribution function of standard normal distribution.

ALS (1977) also briefly considered exponential distribution for−vi.The log likelihood func-

tion under this assumption is:

LLi = ln(λ) + ln(1− Φ(
εi
σu
− σuλ)) + εiλ+

1

2
(σuλ)2 (52)

in which 1
λ = E(−v), 1

λ2
= Var(v)

Both half normal and exponential distribution bear implicit assumption that inefficiency

is more concentrated near zero than further away. Stevenson (1980) suggested a more

general normal-truncated normal distribution. Rather than assuming normal distribution

generating −vi centers at zero, truncated allow mean to be any value on real line. The log

likelihood of normal-truncated normal is:

LLi = − lnσ − 1

2
ln 2π − ln Φ(

µλσ√
1 + λ2

) + ln Φ(
µ

σλ
− εiλ

σ
)− 1

2
(
εi + µ

σ
)2 (53)

Stevenson also instructed a Normal-Gamma distribution. In his specification shape pa-

rameter P in Gamma distribution can only take integer value. Greene (1990) generalized

Gamma distribution framework, by allowing P to take any positive real number. Log like-

lihood function in his framework is:
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LLi =P ln(Θ)− ln(Γ(P )) + σu
2Θ2/2 + Θεi

+ ln(Φ(−(εi + Θσ2u)/σu)) + ln(h(P − 1, εi)) (54)

in which

h(r, εi) = E[Qr|Q > 0, εi] Q ∼ Normal(−(εi + Θσ2u), σ2u)

P is the shape parameter in Gamma distribution.Θ is the rate of Gamma distribution.

Larger the P, further away concentration of firm-specific inefficiency is located from zero.

Pitt and Lee (1981) first explored the possibility of utilizing penal property of dataset

using two random effect model. Both their models are based on Half Normal-Normal

framework. First model assumes inefficiency is time invariant. Second model assumes in-

efficiency is correlated within each firm. They derived close form log likelihood function

for first model. Unfortunately log likelihood function of second model does not have close

form and requires T-dimensional numerical integration, which is computationally impossi-

ble at the time. They suggested a Constrained Seemingly Unrelated Regression approach

to estimate second model.

Schmidt and Sickles (1984) suggested a group of fixed effect within estimators. A distinct

advantage of their model is one can identify technical inefficiency for each firm. Their

within estimator was the most popular fixed effect model. Greene (2005) reintroduced

Pitt and Lee’s (1981) second model as true random effect model. He also demonstrated

the possibility of estimate the model with multidimensional numerical integration. He also

generalized Schmidt and Sickle’s (1984) within estimator to a true fixed effect model.
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Spline smoothing is one of the most powerful techniques in nonparametric regression. (Eu-

bank 1999 ; Wahba 1990 ; Green and Silverman 1994 ; Gu 2002 ) In early studies focuses

on direct apply spline smoothing to the data with Ridge-Regression.

yi = f(xi) + εi (55)

Wahba 1990 first considered transform the nonparametric model with a bounded linear

function.

yi = Li(f(xi)) + εi (56)

Ke and Wang (2004) generalized the model to allow Li to be arbitrary function. They call

them general smoothing spline nonlinear nonparametric regression models (SSNNRMs).

Researchers interested in estimating monotone function since development of isotonic re-

gression by Bartholomew (1959) and Kruskal (1965) and Box-Cox transformation by Box

and Cox (1964). Various monotone functions were developed. In the vast literature of

estimating monotone function, monotone spline received a lot of attentions in recent years.

Passow (1974) and Passow and Roulier (1977) discussed monotone interpolation splines.

Wright and Wegman (1980) developed an approach to fitting monotone smoothing splines.

Ramsay (1988) imposed monotonicity by restricting all coefficient of spline estimator to

be positive. Kelly and Rice (1990) described a method to impose monotone constraint on

B-Splines. Fritsch (1988) proposes an algorithm for calculating a monotone cubic spline. Li

al et. (1996) developed a 6 step smoothing procedure for piecewise convex/concave curves.

Turlach (1997) discussed general model that imposes different shape constraint on cubic

spline by restricting coefficients.
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While previous work mainly focused on restricting coefficients, Ramsay (1998) come about

the ingenious idea of using a link function with integration to blockade the Chain Rule.

His model is:

ŷ = β0 + β1

x∫
0

exp(

a∫
0

c(b)db)da (57)

In his setup c(x) is a polynomial or spline function. Sickles and Wu (Personal Discussion)

improved the model to impose not only monotonicity but also concavity constrains. They

also extended the model to multivariate case. From now on we will call it Additive model.

The improved model is:

f(x) = β0 +

p∑
j=1

βjm(cj(xj)) (58)

in which

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

xj is a vector of jth independent variables. p is number of independent variables in the

dataset. cj() is some arbitrary function.
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4.3 A Regression Spline Structural Nonparametric Model

In this section we will introduce a nonparametric model embeds monotonicity and con-

cavity constraint required by microeconomic theory. In the first section we generalized

Additive model into Generalized Cobb-Douglas (GCD) model to remove separability as-

sumption.

y = β0

p∏
j=1

m(cj(xj))
βj (59)

Again cj(x) can be arbitrary function of x. With polynomial specification of c(·), both

models are very flexible. As we showed in Section 2 and 3 they strictly dominate Cobb-

Douglas model, which imposes same constraint. Yet because by construction c(·) can be

arbitrary function, we can replace polynomial c(·) with regression spline, and make the

model data-driven. Specification of regression spline c(·) is:

c(x) =
k∑
j=1

cjx
j +

L∑
i=1

cn,i(x− xn,i)k+ (60)

in which

(x− xn,i)+ = max(x− xn,i, 0)

In equation above k is exponent of spline. In this paper we will use k = 3. L is number

of nodes in the regression spline. xn,i is ith nodes in the spline. cn,i is coefficient of ith
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nodes. (x− xn,i)+ is called base of ith nodes.

L can take value from 0 up to number of observations. When L equals 0, c(·) returns to

third order polynomial. When L goes up to number of observations, c(·) become third

order interpolation. xn,i can even space or even quantile spread cross sample space. In

this paper we will use even quantile spread. Even quantile means number of observations

between nodes will be equal.

With c(·) defined we still have one problem to implement the model. In theory log likeli-

hood value will never get smaller when L increases. In reality log likelihood will probably

always increase when we increase L. If we only maximize log likelihood function, we will

get a interpolation model. When L increases from 0 to 1, f̂(x) will have better in sample

prediction and may have better out of sample prediction. However when we keep increasing

L, eventually we will have better and better in sample prediction and worse and worse out

of sample prediction. This phenomenon is called over fitting in econometrics.

To prevent over fitting, AIC and BIC first falls into our sight naturally. To use AIC and

BIC in model selection, we just try different Ls and use L with smallest AIC or BIC. It is

very intuitive and simple. Yet we find AIC and BIC have severe over penalizing problem in

our model. We ran 300 simulations to try L between 0 and 20. In all 300 replications mod-

els that have smallest out of sample MSE have L larger than 0. In only 27% of replications

AIC chose L larger than 0, and in none replications AIC chooses optimal L. Therefore we

advise strongly against using AIC or BIC for model selection in our case.

The 95% quantile of over penalizing factor of AIC is from 1.4 to 4. The 95% quantile of

over penalizing factor of BIC is between 8 and 10.6. We define over penalizing factor as the

number that number of parameters needs to divide before being used for given criterion.
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Even with adjustment above we still advise against using AIC and BIC.

When AIC and BIC failed us, we have to consider other options. Penalized spline (P-

Spline) or more specifically penalized likelihood is another approach. The idea penalized

likelihood is we first over fit the model with a large L, usually 20-30 would be enough, then

we penalize the roughness of estimated function. The general specification of penalized

likelihood estimator is:

θ̂ = argmax[ln(f(x|θ))− λPP (θ)] (61)

f(·) is the likelihood function. λP is the tuning parameter. It can take non-negative real

value. P (θ) is the roughness penalty function. Because our model no matter Additive or

GCD models are quite different from linear regression spline we have to choose P (θ) very

carefully. For instance, we first tried conventional cubic spline penalty term.

P (θ) =

∫
x

ĝ′′(a)2da (62)

ĝ(·) is the estimated production frontier. The intuition of cubic spline penalty term is pe-

nalizing integrated squared second derivative i.e. visual roughness of estimated function.

By construction our model should have negative second derivative, and it does not only

depends on spline coefficients but also other parameters. Therefore when we implement

the penalty term result is very bad.
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Ruppert (2002) suggested a penalty function directly penalize the magnitude of spline

coefficients.

P (θ) =
v∑
j=1

L∑
i=1

cn,i,j
2 (63)

In equation above v is number of independent variables. This penalty function is very

intuitive. When λP goes to infinite c(·) becomes near polynomial and model converge to

model we discussed in Section 2. When λP goes to zero c(·) becomes near interpolation.

After we chose an appropriate roughness penalty function, we only need find optimal tun-

ing parameter.

By purpose of penalized likelihood, we first considered Leave One out Cross Valida-

tion(LOOCV). The idea of LOOCV is very strait forward. In first iteration we leave

first observations out as evaluation sample, and use other observations as training sample.

We first train the model with training sample and then evaluate trained model with evalu-

ation sample. We can get a log likelihood value from evaluation. process above is repeated

such that each observation in the sample is used once as the validation data. Lastly we try

different λP to maximize summed log likelihood from all evaluations.

When we implement LOOCV in simulation it yielded satisfactory result. Yet it has one

problem. By construction LOOCV is very expensive from a computational point of view.

In our case this problem gets even worse. In each evaluation of λP we need to numerically

optimize a 50+ dimension maximization problem n times for a small 2-variable model. In

our initial try it took 17 hours to reach a convergence.

Besides LOOCV we also considered Generalized Cross Validation (GCV), Generalized Max-
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imum Likelihood (GML), Generalized Information Criterion (GIC),and parametric direct

plug-in tuning parameter (PDPI) to choose optimal tuning parameters. To the best of our

knowledge existing GCV and GML method is for least square estimator only. They re-

quire error terms to have zero mean (Wahba 1977 ), which is clear not the case in efficiency

frontier analysis.

Ueki and Fueda (2010) developed PDPI method to choose optimal tuning parameter. In

their paper they proved under certain regularity conditions PDPI, GIC and LOOCV will

generate consistent estimation of optimal λP .

PDPI method relies on complicated analytic calculations. It involves third order derivative

of parameters, which is requires too much analytic calculation and programming for our

purpose. We also tried to approximate derivative with recursive Richardson algorithm. It

terms out to be computationally more expensive than LOOCV. Initial try took more than

3 days. Therefore we decide to abandon PDPI method.

GIC is developed by Konishi and Kitagawa (1996). It removed two assumptions required

by AIC i.e. ”estimation is by maximum likelihood.”, and ”this is carried out in a para-

metric family of distributions including the true model.” Violation of second assumption

is probably the cause of over penalizing problem we met. Estimation of λP by GIC is:

λP,GIC = argmin[−2

n∑
i=1

ln(f(xi|θ̂λ)) + 2tr[R̂(θ̂λ)−1Q̂λ(θ̂λ)] (64)
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in which

R̂(θ̂λ) = − 1

n

n∑
i=1

∂2{ln(f(xi|θ))− λP
n P (θ)}

∂θ∂θT

Q̂λ(θ̂λ) =
1

n

∑
i=1

∂{ln(f(xi|θ))− λP
n P (θ)}

∂θ

∂ ln(f(xi|θ))
∂θT

(65)

R̂(θ̂λ) is the Hessian of PLE estimator divided by −n. Quasi-Newton algorithm in optim()

will automatically generate numerical approximation of Hessian. The first term in Q̂λ(θ̂λ)

is effectively the ith row of Jacobian matrix of ln(f(x|θ)) − λP
n P (θ). The second term in

Q̂λ(θ̂λ) is the ith row of Jacobian matrix of ln(f(x|θ)). Jacobian can be approximated

using Evaluation of GIC is much faster than LOOCV. Initial try took 2.2 hours to reach

convergence.

4.4 Estimation, Parameter Recovery, and Inference

We suggest same three step method used by polynomial model to estimate PLE model.

First we estimate stochastic production frontier model with Cobb-Douglas production func-

tion. Then we can use its λ̂ and σ̂ as starting value. Cobb-Douglas specification will also

generate a prediction of deterministic production frontier P̂F . We use P̂F as pseudo true

production frontier and estimate P̂F with suggested model using least square estimator.

β̂ and ĉ generated by least square estimator will be used as starting value of β and c. In

our research 0 is good starting value for c, and 1 is good starting value for β in the least

square estimation. After appropriate starting values are acquired, we can estimate the

model using quasi-Newton method(also known as a variable metric algorithm).

To make the model practical we also need reduce computational expenses. In simulation

we implement three method to reduce computational expenses of LOOCV method. First
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method we use K-Fold Cross Validation (KFCV) to replace LOOCV. K-fold Cross Vali-

dation randomly assigns observations into K groups. Of the K groups, a single group is

retained as the validation data to evaluate the model, and the remaining K-1 groups are

used as training data. The Cross Validation process is then repeated K times, with each of

the K groups used exactly once as the evaluation data. As a matter of fact LOOCV can be

considered as a special case of KFCV, where K equals number of observations. Generally

speaking this method may reduce computational expenses to n/K of original. According

to McLachlan et al. (2004) we suggest 10-fold cross-validation for cross sectional dataset.

For N×T Panel dataset we suggest N/k-fold CV. N/k should be positive integer. That

is in each iteration leave k individuals out as validation sample. We suggest this, because

observations within each individual are usually not independent.

In simulation, we found out the objective function of CV is very close to concave function

with one maximum. Instead of quasi-Newton algorithm, we suggest a Hill Climbing algo-

rithm to maximize summed log likelihood. With Hill Climbing algorithm, model usually

converges within several evaluations. In simulation we also find out increase relative tol-

erance of quasi-Newton algorithm to 1 × 10−4 will greatly increase speed with negligible

impact on final result. With these adjustment we reduce average time need for CV to

around 2 minutes in 2-variable 400 observation case. With implementation of second and

third method, average time need for GIC method reduced to around 9 minutes.

As β, λ, σ and c themselves do not have economic meanings, we need to derive point

estimations and inferences of values that interested by economists. Applied researchers

commonly interested in marginal productivities, input elasticities, return to scale, Elastic-

ities of Substitution and average TE. The marginal productivity of GCD-PLE model is:
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∂y

∂xk
= β0 × βk×m′(ck(xk))×m(ck(xk))

βk−1 ×
p∏

j=1,j 6=k
m(cj(xj))

βj (66)

in which

m′(c(x)) = exp(−
x∫

0

exp(c(b)) db)

Input elasticities are derived from normalizing mean productivities with input-output ra-

tios. Return to scale equals to summation of all input elasticities. Elasticity of substitution

of ith input to jth input equals input elasticity of ith input divide by that of jth input.

Average TE equals E[exp(−v)|θ̂]. θ̂ is a vector of estimated parameters of distribution that

−v was assumed to follow. Expression to recover average TE for half-normal distribution is:

TE =

∞∫
−∞

exp(−|x|)φ0,σ(x)dx (67)

In which, φ0,σ is pdf of

Normal(0,

√
σ2λ2

1 + λ2
)

We suggest Bootstrapping approach to inference values above. In regression Bootstrap-

ping we use ŷ as true EF, and resample ε̂ with replacement. By the natural of Stochastic

Efficiency Frontier model, our Bootstrapping setup is a little bit different:
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4.5 Monte Carlo Simulations

In this section we will show the performance improvement of switching from Polynomial-

GCD estimator to PLE-GCD estimator. We use equation below to simulate ys.

yi = 20× Φ(xi,1, xi,2) exp(ui + vi) (68)

in which

Φ(·) is CDF of Normal(0,Σ)

Σ =

 2 0.5

0.5 3


ui ∼ Normal(0, σu)

vi ∼ −|Normal(0, σv)|

xi,1 is generated by Γ(100, 10) distribution. xi,2 is generated by Γ(120, 20) distribution.

Both variables were rescaled into [1, 6] range. Each simulation contains 400 observations.

In each simulation we also generated additional 400 ”naked” observations to evaluate out

of sample prediction accuracy of the model. Term ”naked” means dependent variable of

evaluation observations only contains deterministic frontier i.e. 20 × Φ(xi,1, xi,2). Inde-

pendent variables in evaluation sample are generated from identical procedure to that in

simulation. Intuitively out of sample MSE is an empirical approximation of Normalized

Integrated Squared Error (NISE).
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NISE =
1

36

6∫
1

6∫
1

(P̂F (x1, x2)− PF (x1, x2))
2dF1(x1)dF2(x2) (69)

In equation above, PF (·) and P̂F (·) are true and estimated deterministic frontier. Fi(xi)

is CDF of xi. We did simulations in three different average TE settings by three differ-

ent λ settings grid. We compared deterministic production frontier recovery ability and

distributional parameter recovery ability between PLE specification and polynomial speci-

fication. For each point in grid we did 500 simulations. We use third order polynomial for

polynomial specification, and use L = 20 for PLE specification. The objective function of

PLE specification is:

PLL = LL(x, c, cn, β)− λPP (cn) (70)

in which

LL(x, c, cn, β) =

n∑
i=1

ln
2

σ2
+ ln(φ(

εi
σ2

)) + ln(1− Φ(εiλσ
−1))

εi = ln(yi)− ln(β0)−
2∑
j=1

βj ln[m(cj(xi,j))]

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

cj(x) =
3∑
i=1

cj,ix
i +

20∑
i=1

cn,j,i(x− xn,j,i)k+

P (cn) =
2∑
j=1

20∑
i=1

cn,i,j
2
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The objective function of Polynomial specification is:

PLL = LL(x, c, cn, β) (71)

in which

LL(x, c, cn, β) =
n∑
i=1

ln
2

σ2
+ ln(φ(

εi
σ2

)) + ln(1− Φ(εiλσ
−1))

εi = ln(yi)− ln(β0)−
2∑
j=1

βj ln[m(cj(xi,j))]

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

cj(x) =

3∑
i=1

cj,ix
i

Table 15: Predictive Accuracy of Penalized Likelihood Estimator (PLE) and Polynomial
Model on Technical Efficiency

PLE Polynomial
Lambda 0.7 0.8 0.9 0.7 0.8 0.9

3
0.0126 0.0095 0.0052 0.0121 0.0095 0.0057

( 0.0103 ) ( 0.0074 ) ( 0.0040 ) ( 0.0099 ) ( 0.0075 ) ( 0.0042 )

5
0.0086 0.0070 0.0038 0.0093 0.0071 0.0042

( 0.0063 ) ( 0.0057 ) ( 0.0030 ) ( 0.0070 ) ( 0.0052 ) ( 0.0030 )

7
0.0083 0.0065 0.0034 0.0082 0.0066 0.0041

( 0.0063 ) ( 0.0047 ) ( 0.0024 ) ( 0.0062 ) ( 0.0049 ) ( 0.0030 )

0.7, 0.8, 0.9 are different TE settings
Numbers on the top are Mean Absolute Error of Technical Efficiency.
Numbers in parenthesis are standard deviation of Error of Technical Efficiency.
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In Table 15 is the comparison of Average TE recovery accuracy. Both models recover

Average TE precisely. Differences between two models are relatively small. When Average

TE equals 0.7 results of two model are indistinguishable. When Average TE equals 0.8

accuracy improvement of adopting PLE is negligible. When Average TE gets 0.9 PLE

specification has significant advantage over polynomial specification. This result is some

what expected. Our primary goal has been improve deterministic frontier. When signal-

noise ratio is low, most of predictive error was caused by variance of error terms. Improving

deterministic frontier estimation will not help much. When error terms are less volatile

gain of deterministic frontier estimator improvement become more significant.

Table 16: Predictive Accuracy of Penalized Likelihood Estimator (PLE) and Polynomial
Model on Deterministic Production Frontier

MPLE Polynomial
Lambda 0.7 0.8 0.9 0.7 0.8 0.9

3

0.6095 0.2444 0.0543 0.6263 0.3275 0.1894
( 0.4593 ) ( 0.1842 ) ( 0.0357 ) ( 0.4599 ) ( 0.1917 ) ( 0.0461 )

0.6712 0.2857 0.0639 0.6837 0.3834 0.2340
( 0.5202 ) ( 0.2552 ) ( 0.0511 ) ( 0.5006 ) ( 0.2219 ) ( 0.0961 )

5

0.3660 0.1532 0.0355 0.3821 0.2341 0.1734
( 0.2324 ) ( 0.1083 ) ( 0.0228 ) ( 0.2047 ) ( 0.0907 ) ( 0.0326 )

0.4208 0.1811 0.0436 0.4442 0.2780 0.2214
( 0.2961 ) ( 0.1619 ) ( 0.0358 ) ( 0.2810 ) ( 0.1387 ) ( 0.0862 )

7

0.2787 0.1164 0.0254 0.3205 0.2164 0.1709
( 0.1942 ) ( 0.0827 ) ( 0.0148 ) ( 0.1422 ) ( 0.0654 ) ( 0.0332 )

0.3420 0.1347 0.0317 0.3783 0.2664 0.2165
( 0.2917 ) ( 0.1080 ) ( 0.0237 ) ( 0.2120 ) ( 0.1340 ) ( 0.0715 )

0.7, 0.8, 0.9 are different TE settings
Numbers without parenthesis on the top are average MSE of in sample prediction.
Numbers without parenthesis at the bottom are Integrated Squared Error.
Numbers in parenthesis are standard divinations of value above them.

In Table 16, is comparison of predictive accuracy of PLE and polynomial specification.

Similar to Average TE recovery accuracy, improvement of adopting PLE increases when
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variance of error terms decreases. When Average TE equals 0.7 PLE specification is only

marginally superior to polynomial specification. When Average TE equals to 0.8 adopting

PLE can reduce Integrated Squared Error close to 50%. When Average TE equals 0.9

adopting PLE can reduce Integrated Squared Error up to 85%.

Table 17: Predictive Accuracy of Penalized Likelihood Estimator (PLE) Model and Poly-
nomial Model on Technical Efficiency and Deterministic Frontier, under Different Sample
Size

PLE
Observations MSE NISE TE.e

400
0.6095 0.6712 1.26%

( 0.4593 ) ( 0.5202 ) ( 0.0103 )

800
0.3206 0.3606 0.89%

( 0.2424 ) ( 0.2963 ) ( 0.0069 )

1200
0.1994 0.2275 0.66%

( 0.1499 ) ( 0.1734 ) ( 0.0053 )
Polynomial

400
0.6263 0.6837 1.21%

( 0.4599 ) ( 0.5006 ) ( 0.0099 )

800
0.3510 0.3923 0.88%

( 0.2203 ) ( 0.2638 ) ( 0.0068 )

1200
0.2617 0.3041 0.78%

( 0.1419 ) ( 0.1426 ) ( 0.0058 )

*Standard Deviations are in Parenthesis.
MSE: In Sample Prediction MSE
NISE: Normalized Integrated Squared Error
TE.e: Mean Absolute Error of Average Technical Efficiency Recovery

In second simulation we fixed error term setting at λ = 3 and TE = 0.7, and compared

result with different sample size. In Table 17 we can see PLE model converges to true

deterministic frontier much faster than Polynomial model. When sample size equals 400

PLE is only marginally superior to Polynomial model. When sample size reaches 1200

MSE reduction from adopting PLE model goes up to almost 30%.
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Average Technical Efficiency estimation of PLE model also converges to true Average Tech-

nical Efficiency faster than Polynomial model. When sample size equals 400 MAE of TE

of PLE model is 0.05% larger than Polynomial model. When sample size grows to 800 the

difference reduces to 0.01%. When sample size reaches 1200 MAE of TE of PLE model is

0.12% smaller than Polynomial model.

Table 18: Comparisons of Tuning Parameter Choosing Method

GIC KFCV
Lambda/TE NISE MSE TE.e NISE MSE TE.e

5/0.8
0.1777 0.1519 0.0067 0.1811 0.1532 0.0070

(0.1487) (0.1052) (0.0052) (0.1619) (0.1083) (0.0057)

7/0.9
0.0378 0.0258 0.0034 0.0317 0.0254 0.0034

(0.0374) (0.0167) (0.0026) (0.0237) (0.0148) (0.0024)

*Standard Deviations are in Parenthesis.
GIC: Generalized Information Criterion.
KFCV: K-Fold Cross Validation
MSE: In Sample Prediction MSE
NISE: Integrated Squared Error
TE.e: Mean Absolute Error of Average Technical Efficiency Recovery
TE: Technical Efficiency

In the last simulation we compared the performance of two method for tuning parameter

selection under two error term settings. In Table 18 we can see the results of two method

are quite similar. Therefore researchers can choose either or both of them in applied work.

4.6 An Empirical Application

In this section we will implement the GCD-SS and GCD-RSCFG models on an airline

dataset. Data is downloaded from Greene’s website . This data set is a extension of Caves

et al.(1984). It is an unbalanced panel with 256 observations on 25 firms. Input variables
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are materials, fuel, equipment labor and property. The dependent variable is a index of

airline out put.

Table 19: Summary Statistic of Airline Dataset-C

Out Mat. Fue. Eqp. Lab. Pro. Loa. Sta. Poi.
Mean 0.629 0.752 0.584 0.652 0.595 0.656 0.548 507.9 72.9
StDev 0.592 0.643 0.504 0.568 0.508 0.693 0.056 290.7 26.0
Min 0.023 0.064 0.046 0.050 0.063 0.015 0.378 120.5 30.0
Med. 0.400 0.473 0.361 0.360 0.359 0.373 0.551 507.9 67.0
Max 2.442 2.448 1.770 2.105 1.692 2.807 0.676 1620 168
Skew. 0.79 0.65 0.60 0.72 0.68 1.13 -0.32 0.84 1.12
Kurt. -0.53 -1.04 -1.09 -0.79 -1.09 0.31 -0.15 0.93 1.29

StDev:Standard Deviation, Med: Median, Skew.: Skewness, Kurt.: Kurtosis
Out.: Output, Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
Loa.:Load Factor, Sta.: Average Stage Length, Poi. Number of Points Served

This dataset also contains three characteristic variables that might affect efficiency. They

are load factor (Loa.), average stage length (Sta.) and number of points served (Poi.). Load

factor is percentage of capacity used for revenue generating activities. For instance per-

centage of ticket sold. We expected it to be strongly negative correlated with inefficiency.

Average stage length is average length of each flight. The unit is mile. Points Served is

number of airport each airline serves. Due to our limited understanding of airline industry,

we do not have expectation on coefficient of these two variables. Summary statistics of the

dataset are in Table 19.

First we will apply pooled GCD model with Half Normal-Normal and Truncated Normal-

Normal specification. The objective function for PLE is:
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PLL = LL(x, c, cn, β)− λPP (cn) (72)

in which, For Half Normal-Normal Specification

LL(x, c, cn, β) =

n∑
i=1

ln
2

σ2
+ ln(φ(

εi
σ2

)) + ln(1− Φ(εiλσ
−1))

For Truncated Normal-Normal Specification

LL(x, c, cn, β) =

n∑
i=1

− lnσ − 1

2
ln 2π − ln Φ(

µλσ√
1 + λ2

)+

ln Φ(
µ

σλ
− εiλ

σ
)− 1

2
(
εi + µ

σ
)2

(73)

For Both Specification

εi = ln(yi)− ln(β0)−
5∑
j=1

βj ln[m(cj(xi,j))]

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

cj(x) =

3∑
i=1

cj,ix
i +

20∑
i=1

cn,j,i(x− xn,j,i)k+

P (cn) =

5∑
j=1

20∑
i=1

cn,i,j
2

Because the dataset is an unbalanced panel, 10-Fold CV does not work well for us. We use
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leave one individual out CV in this application. That is we leave observations from one firm

out as validation sample in each iteration. For each specification we did 399 bootstrapping

for inference.

Table 20: Vital Parameter Estimation of Generalized Cobb-Douglas Penalized Likelihood
Estimator (GCD-PLE) Model under Pooled Specification

Half-Normal Truncated Normal
Mean StDev 95%L 95%U Mean StDev 95%L 95%U

TE 0.907 0.044 0.851 1.000 0.999 0.006 1.000 1.000
RTS 1.289 0.073 1.123 1.409 1.254 0.041 1.170 1.332

Mat.* 0.771 0.086 0.591 0.936 0.754 0.072 0.607 0.891
Fue.* 0.272 0.084 0.122 0.442 0.292 0.062 0.166 0.425
Equ.* 0.391 0.077 0.248 0.539 0.342 0.064 0.201 0.475
Lab.* -0.279 0.086 -0.448 -0.092 -0.278 0.069 -0.445 -0.136
Pro.* 0.133 0.024 0.085 0.184 0.144 0.023 0.104 0.202

TE: Average Technical Efficiency
RTS: Average Return to Scale
* are average input elasticity for given input
Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
StDev: Standard Deviation, L: Lower Bound, U: Upper Bound

In Table 20 are the vital parameter estimation of GCD-PLE model under Half Normal-

Normal and Truncated Normal-Normal specification. Estimation differences of return to

scale and input elasticities between two models are minor. Average TE estimations be-

tween two models are very different. Under Half Normal-Normal specification suggested

model only have 5.25% bootstrapping replications with Average TE equals one. Under

Truncated Normal-Normal specification suggested model found 99% bootstrapping repli-

cations have Average TE equals one. The parameter estimations are also close to that of

GCD-Polynomial model in the first section.
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As the dataset is unbalanced panel we also applied random effect model by Pitt and Lee

(1981) and fixed effect model by Schmidt and Sickles (1984). The objective function of

random effect model is quite similar to that of pooled model.

PLL = LL(x, c, cn, β)− λPP (cn) (74)

in which

LL(x, c, cn, β) =

N∑
i=1

ln 2− Ti
2

ln(2π)− Ti − 1

2
lnσv

2 − 1

2
ln(σv

2 + Tiσu
2)

− Ti
2σ2v

E(ε2i ) +
T 2
i σ

2
u

2σ2v(σ
2
v + Tiσ2u)

E(εi)
2 + ln[1− Φ(

Tiσu

σv
√
σ2v + Tiσ2u

E(εi))]

E(εi) =
1

Ti

Ti∑
t=1

[ln(yi,t)− ln(β0)−
5∑
j=1

βj ln(m(cj(xi,j,t)))]

(75)

E(ε2i ) =
1

Ti

Ti∑
t=1

[ln(yi,t)− ln(β0)−
5∑
j=1

βj ln(m(cj(xi,j,t)))]
2

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

cj(x) =

3∑
i=1

cj,ix
i +

20∑
i=1

cn,j,i(x− xn,j,i)k+

P (cn) =

5∑
j=1

20∑
i=1

cn,i,j
2

Different from all other models fixed effect model uses Penalized Least Square Estimator.
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PLS =

N∑
i=1

Ti∑
t=1

ε2i,t − λPP (cn) (76)

in which

εi,t = ln(yi,t)− ln(β0,i)−
5∑
j=1

βj ln(m(cj(xi,j,t)))

m(c(x)) =

x∫
0

exp(−
a∫

0

exp(c(b)) db) da

cj(x) =
3∑
i=1

cj,ix
i +

20∑
i=1

cn,j,i(x− xn,j,i)k+

P (cn) =
5∑
j=1

20∑
i=1

cn,i,j
2

Table 21: Vital Parameter Estimation of Cobb-Douglas Penalized Likelihood Estimator
(GCD-PLE) Model under Fixed Effect and Random Effect Specification

Random Effect Fixed Effect
Mean StDev 95%L 95%U Mean StDev 95%L 95%U

TE 0.932 0.007 0.917 0.945 0.730 0.029 0.661 0.778
RTS 1.492 0.087 1.331 1.697 1.269 0.041 1.186 1.343

Mat.* 1.051 0.096 0.863 1.237 0.939 0.069 0.798 1.068
Fue.* 0.307 0.084 0.151 0.477 0.040 0.086 -0.115 0.206
Equ.* 0.334 0.100 0.145 0.536 0.319 0.082 0.174 0.492
Lab.* -0.270 0.105 -0.471 -0.005 -0.097 0.101 -0.279 0.106
Pro.* 0.071 0.028 0.009 0.133 0.068 0.009 0.050 0.085

TE: Average Technical Efficiency
RTS: Average Return to Scale
* are average input elasticity for given input
Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
StDev: Standard Deviation, L: Lower Bound, U: Upper Bound
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Fixed effect model assumes firm with highest Technical Efficiency (i.e. β0,i) is right at the

frontier. Efficiency of all other firm is β0,i/β
∗
0,i.

Table 22: Vital Parameter Estimation of Scaled Stevenson (SS) and RSCFG Inefficiency
Analysis Models

SS RSCFG
Mean StDev 95% LCI 95% UCI Mean StDev 95% LCI 95% UCI

sig.v 0.0054 0.0005 0.0037 0.0061 0.1280 0.0199 0.0870 0.1678
Lam. 0.0457 0.0034 0.0369 0.0513 1.1113 0.2256 0.7284 1.6258
Mu 0.3873 0.0309 0.2954 0.4354 - - - -
TE 0.6774 0.0401 0.6469 0.7411 0.9057 0.0136 0.8791 0.9342

Loa.ˆ 2.5295 0.0829 2.3994 2.6993 1.9175 0.3299 1.3153 2.7108
Sta.ˆ 0.0014 0.0002 0.0013 0.0020 0.0008 0.0003 0.0004 0.0014
Poi.ˆ 0.0023 0.0004 0.0020 0.0035 -0.0007 0.0009 -0.0027 0.0014
RTSˆ 1.5380 0.0610 1.3597 1.6289 1.1929 0.0386 1.1081 1.2591
Mat.* 0.7467 0.0680 0.5100 0.8014 0.7698 0.0733 0.5965 0.9206
Fue.* 0.2375 0.0545 0.2102 0.4391 0.1240 0.0744 -0.0175 0.2857
Eqp.* 0.3643 0.0359 0.3345 0.4687 0.3371 0.0626 0.1999 0.4703
Lab.* 0.0930 0.0601 -0.1322 0.1148 -0.1712 0.0556 -0.2983 -0.0561
Pro. 0.0966 0.0125 0.0795 0.1327 0.1333 0.0193 0.0988 0.1772

sig.v: Standard Deviation of Truncated Normal Distribution
Lam.:Lambda
Mu: Mean of Truncated Normal Distribution
TE: Average Technical Efficiency
RTS: Average Return to Scale
* are average input elasticity for given input
ˆ are average marginal effect of observable characteristics on inefficiency
RSCFG stands for Reifschneider, Stevenson, Caudill, Ford, and Gropper.
Mat: Material, Fue.: Fuel, Eqp: Equipment, Lab.: Labor, Pro.:Property.
Loa.:Load Factor, Sta.: Average Stage Length, Poi. Number of Points Served
StDev: Standard Deviation, LCI: Lower Bound of Confidence Interval, UCI: Upper Bound
of Confidence Interval

In Table 21 are parameter estimations of random effect and fixed effect model. Similar to

GCD-Polynomial case, results of random effect model and fixed effect model are quite dif-
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ferent. Parameter estimations of random effect model are close to that of GCD-Polynomial

case. Parameter estimations of fixed effect model are quite different from that of GCD-

Polynomial case. It found input elasticities of both labor and fuel not significant when

α = 2.5%.

To take full advantage of the dataset, we also applied SS and RSCFG Inefficiency analysis

model on the dataset. Result of inefficiency analysis is in Table 22.

4.7 Summary

Our purpose has been extending the suggested flexible functional form to constraint non-

parametric model using regression spline. We suggested a penalized likelihood approach

to extend the model. We considered three methods to obtain optimal tuning parameter.

Amount these three methods KFCV and GIC have reasonable computational cost. Three-

step can also be used on estimation of nonparametric version of suggested model. We

demonstrated in some circumstances adopting nonparametric version of suggested model

could greatly increase estimation accuracy of deterministic frontier. Then we applied the

model on airline dataset again.
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5. CONCLUSION AND FUTURE RESEARCH

The goal of this essay has been introduce a class of flexible functional form that narrow the

gap between micro economic theory and stochastic frontier estimation as well as improve

estimation accuracy of deterministic production frontier and technical efficiency. We dis-

cussed Additive Model and Generalized Cobb-Douglas (GCD) model. Without assumption

of separability GCD is closer to reality. Both functional forms we discussed impose mono-

tonicity and concavity constraint under the same condition as Cobb-Douglas production

function. Yet is does not imply undesired assumptions i.e. unitary elasticity of factor sub-

stitution and constant partial and total production elasticities, that Cobb-Douglas function

does. Suggested function can also be very flexible, as a matter of fact we extend it into

nonparametric case use regression spline later in the essay.

In the essay we also discussed a three step method to estimate suggested models. This

three step method is relatively easy to implement and can reach convergence in a matter

of seconds. Because of the flexibility, suggested model can also greatly improve prediction

accuracy of deterministic frontier and technical efficiency.

This class of flexible functional form can also be used on Inefficiency Analysis (IA). Our

simulation show adopting suggested model can significantly improve prediction accuracy

of estimated deterministic frontier and estimation accuracy of coefficients of variables for

inefficiency analysis in both RSCFG and SS models.

In first two essays we use third order polynomial as transformation function (c(·)). In real-

ity, third order polynomial may not be flexible enough for some data set. To encounter this

challenge, we extended c(·) to nonparametric case using regression spline. In third essay we

adopted Penalized Likelihood Estimator (PLE) method to deal with over fitting problem
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i.e. let data decide how flexible or complicated c(·) should be. To choose optimal tuning

parameter for PLE method we considered Leave One Out Cross Validation (LOOCV), K-

Fold Cross Validation (KFCV), Parametric Direct Plug-In (PDPI) and Generalized Cross

Validation (GIC) method. After our adjustment KFCV and GIC takes reasonable amount

of time (minutes), and yield very close result. Our simulation shows this extension could

significantly increase estimation accuracy in some circumstances.

This research can be extended in several ways.

• We still need to derive the converge rate of nonparametric extension. Mammen and

Thomas-Agnan (1999) derived the converge rate of general case of suggested model

with LS estimator. With some additional work we may derive convergence rate of

PL estimator.

• Dualities of this class of production function still need further work i.e. the profit

function, cost function, conditional demand and unconditional demand.

• Suggested model can be easily extended to cost frontier case. However as the method

of estimating cost frontier is almost identical to that of production frontier, contribu-

tion on methodology will be limited. We will extend to this direction when practical

problem and data present themselves.

• The most promising research opportunity is link other theoretical microeconomic

model and nonparametric econometrics. For instance, microeconomics requires Mar-

shallian demand functions to exhibit Slutsky symmetry, negativity, Homogeneity of

degree zero, and budget constraint properties. With kernel estimator it is very hard

to impose Slutsky symmetry Haag et al. (2009) constraint let along with other con-

straints above. With smoothing spline we may able to impose all constraint above.
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