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ABSTRACT 

 

High-Oleic Ground Beef, Exercise, and Risk Factors for Cardiovascular Disease in Men 

and Postmenopausal Women. (December 2010) 

Linda Anne Gilmore, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Stephen B. Smith 

 

 Sixty-six percent of the ground beef consumed in the U.S. contains 16-30% fat by 

weight, and at the retail level, ground beef fat varies widely with regards to saturated, 

monounsaturated and trans-fatty acid content. Through two independent studies the 

effect of fatty acid composition of ground beef on selected cardiovascular disease risk 

indicators was evaluated. 

 In the first study, 27 free-living normocholesterolemic men completed a three-

way crossover dietary intervention. Subjects consumed five, 114-g ground beef patties 

per week for 5 wk with intervening 4-wk washout periods. Patties contained 24% total fat 

with monounsaturated fatty acid:saturated fatty acid (MUFA:SFA) of either 0.71 (low-

MUFA, pasture-fed), 0.83 (mid-MUFA, short-term corn-fed), or 1.10 (high-MUFA, long-

term corn-fed). Blood was collected from each subject before and at the end of each diet 

period. Overall, the ground beef interventions decreased plasma insulin, HDL2, and 

HDL3 particle diameter and α-linolenic acid (18:2 (n-3)), and increased plasma 

arachidonic (20:4(n-6)). The greatest increase in HDL cholesterol from baseline (0.07 

mmol/L) was after the high-MUFA ground beef intervention. An increase from baseline 

in LDL particle diameter (0.5 nm) occurred after the mid- and high-MUFA interventions. 
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We concluded that low-MUFA ground beef from pasture/hay-fed cattle was no more 

“heart healthy” than high-MUFA ground beef from corn-fed cattle as judged by common 

clinical criteria. 

In the second study, 19 of 29 post menopausal women completed a two-way 

crossover design. Subjects consumed five, 114-g ground beef patties per week for 6 wk 

periods separated by a 4 wk washout period. The low-MUFA patties contained 19.4% fat 

with MUFA:SFA of 0.9. The high-MUFA patties contained 22.5% fat with a 

MUFA:SFA ratio of 1.3. In addition to patty consumption, the subjects completed a bout 

of exercise during the last week of each phase. Blood was taken before, each diet phase 

(24 hr before exercise) and 24 hr post exercise. Total cholesterol was increased by the 

high-MUFA patties with the most significant increase seen in HDL cholesterol, mainly 

HDL2b subfraction. Lipid-rich lipoprotein fractions were increased with the low-MUFA 

diet, but not by the high-MUFA diet. Very long chain fatty acids were depressed by low 

MUFA patty consumption. When unadjusted for plasma volume shifts (raw), exercise 

decreased triglycerides in all three phases. Raw VLDL cholesterol was reduced after 

exercise during the intervention phases. Raw RLP and IDL cholesterol were reduced after 

exercise during the high-MUFA intervention. HDL2b was reduced after exercise during 

the high-MUFA phase. LDL mean size increased and LDL mean density decreased after 

exercise during the low-MUFA intervention. HDL mean density increased after exercise 

during both ground beef interventions. The data indicate that high-oleic ground beef can 

reduce some cardiovascular disease risk factors and can be a part of a healthful diet. 

Exercise can have a beneficial impact on cardiovascular disease risk factors independent 

and in conjunction with ground beef consumption. 
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CHAPTER I 

INTRODUCTION 

 

Introduction  

Cardiovascular disease (CVD), a multifaceted disorder, is the leading cause of 

death in the United States. Atherosclerosis is the major contributor to CVD and has been 

plaguing the human race for centuries with early cases being seen in Egyptian mummies 

(1).  Galkina and Ley (2) defined atherosclerosis as a chronic inflammatory process 

characterized by plaque formation within the vessel wall of arteries and extensive 

necrosis and fibrosis of surrounding tissues.  Being chronic, this disease process 

progresses over time. The progression of CVD begins with an imbalance of endothelial 

function, lipid metabolism, and lipid retention. Ross (3) summarized the theory that 

attributed the initiation of endothelial dysfunction to a response to injury whether it be 

mechanical injury, toxins, or oxygen radicals. The first visible lesions of atherosclerosis 

are foam cells, which with lymphocytes form fatty streaks that consist of lipid-rich 

macrophages and T cells within a thin layer of lipid on the arterial wall. Fatty streaks are 

formed as a response to the disruption of normal endothelial cell function. The plaque 

formation and immune response are self-propagating. As the fatty streaks are formed, 

macrophages are recruited, surround the lipid, and become activated foam cells.  

____________ 
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Many inflammatory molecules, including cytokines, are released by the foam cells which 

in turn attract more lymphocytes, intensifying the immune response. This perpetuation 

results in a plaque with a fatty core covered by a stabilizing fibrous matrix (4). 

 

Inflammation and CVD 

 Inflammation plays an integral role in the initiation and progression of CVD (5).  

Inflammation is also seen with conditions such as obesity, insulin resistance, 

hypertension, metabolic syndrome, type 2 diabetes, hypertriglyceridemia, low HDL 

cholesterol and smoking, all of which are correlated with increased CVD risk (6). For this 

reason, inflammatory proteins such as high sensitivity C-reactive protein (hs-CRP), 

interleukin-6 (IL-6), and serum amyloid A (SAA), when elevated chronically, are 

considered markers of CVD (7, 8). hs-CRP and SAA are acute-phase proteins which 

become elevated as an innate immune response during periods of infection, 

inflammation, and tissue damage. After an innate response is initiated, the adaptive 

immune system is activated with B- and T-cell responses such as production of IL-6 (9). 

Unlike hs-CRP which travels freely in the plasma, SAA is an apolipoprotein primarily 

associated with HDL particles. SAA levels also have been correlated to the incidence of 

CVD (6). Inflammation markers are important predictors of cardiovascular events in 

women (8).  

Homocysteine is not an inflammatory protein, but it is regarded as a biomarker 

strongly associated with CVD. A single mechanism by which homocysteine contributes 

to CVD is not established. Homocysteine may cause endothelial damage and dysfunction 

by affecting nitric oxide production and reactivity (10). With all the biomarkers, a 
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multimarker approach that may be predictive of cardiovascular events should be utilized 

(11). 

 

Lipoprotein Metabolism 

The particles responsible for the packaging and transport of lipid-soluble 

constituents in an aqueous environment are lipoproteins. The main goal of lipoprotein 

metabolism is to package and transport cholesterol and lipids from the liver to 

extrahepatic tissues and then back to the liver. Lipoproteins are classified into five main 

groups based on particle density: high-density lipoproteins (HDL), low density 

lipoproteins (LDL), intermediate density lipoproteins (IDL), very low density 

lipoproteins (VLDL), and chylomicrons. Lipoproteins also can be grouped according to 

surface charge as “alpha” or “beta.” Each lipoprotein class is responsible for specific 

activities related to lipoprotein metabolism. 

  

High Density Lipoproteins 

High density lipoproteins, as a class of lipoproteins, are a heterogeneous mix of 

HDL subfractions. These subfractions can be characterized and sorted by density, size, 

shape, apolipoprotein composition and surface charge. When separated by size and 

density, HDL are classified as, HDL2b, HDL2a, HDL3a, HDL3b and HDL3c. Based on 

apolipoprotein composition, HDL can be divided into subpopulations A-I HDL which 

contain apoA-I but no apoA-II, and A-I/A-II HDL, which contain both apoA-I and apoA-

II. Agarose gel electrophoresis separates HDL based on surface charge. HDL are then 

classified as alpha, pre-alpha, pre-beta or gamma based on migration relative to the 
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plasma proteins. The surface charge then influences particle shape. Alpha HDL contain 

both apoA-I and apoA-II and are spherical lipoproteins whereas pre-beta HDLs are lipid-

poor apoA-1 discoidal particles. HDL particles are not limited to one characteristic, but 

can bear characteristics of each category (12).  

HDL cholesterol is well known as the “good’ cholesterol. This is due in part to its 

role in reverse cholesterol transport, which is the means in which cholesterol is removed 

from the peripheral tissues, including the macrophages in vessel walls. Reverse 

cholesterol transport is one of the major defense mechanisms against the development of 

atherosclerosis. Many enzymes are involved in reverse cholesterol transport, including 

lecithin cholesterol acyltransferase (LCAT) which transesterifies the sn-2 or sn-1 fatty 

acid of a phosphatidyl-choline molecule to the 3-β-hydroxyl group of cholesterol, 

resulting in a cholesterol ester and lysophosphatidyl-choline. LCAT is primarily 

associated with HDL and plays a major role in HDL metabolism. HDL formation begins 

with an apoA-1 and nascent HDL aggregate. The LCAT reaction is used to fill the 

nascent HDL with cholesterol ester, forming HDL3 and then the larger HDL2. HDL2 

cholesterol then can be taken up by the liver via scavenger receptor class B member 1 

(SR-B1). If LCAT activity is decreased, mature HDL production also is decreased. Like 

many mechanisms in the body, cholesterol efflux depends in part on a gradient. By 

esterifying fatty acids to free cholesterol and creating more cholesterol ester, which is 

then packaged into lipoproteins, LCAT helps maintain the cholesterol gradient favorable 

for the diffusion of free cholesterol from the peripheral tissues to HDL.  

Other enzymes important in reverse cholesterol transport include cholesteryl ester 

transfer protein (CETP) and hepatic lipase. CETP facilitates the exchange of cholesterol 
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ester from HDL for triglyceride in apoB100-containg lipoproteins such as LDL. 

Cholesterol esters removed in this way can be taken up by the liver by the LDL receptor. 

A decrease in CETP activity may increase HDL cholesterol concentrations and decrease 

VLDL and LDL cholesterol concentrations. However, the relationship of CETP to CVD 

(atherogenic or antiatherogenic) is still controversial (13). Hepatic lipase is responsible 

for hydrolyzing triglycerides and phospholipids in lipoproteins. 

Cholesterol can be removed from the macrophages found in vessel walls through 

many independent pathways involving ATP-binding membrane cassette transport protein 

AI (ABCA1),  SR-B1, caveolins, sterol 27-hydroxylase, and passive diffusion (14). 

ABCA1-mediated cholesterol efflux correlates positively with pre-β-1 HDL levels, 

whereas SR-B1 selectively removes cholesterol from HDLα-1 particles and correlates 

positively with HDLα-1 and α-2 particle levels (15, 16). Whereas ABCA1 mediates 

cholesterol efflux to preβ-HDL (17), ABCG1 stimulates efflux to larger HDL particles, 

especially HDL2 (18). 

HDL cholesterol is also beneficial in preventing CVD due to its antioxidant 

properties through the enzyme paraoxonase. Paraoxonase, though not directly involved in 

reverse cholesterol transport, is an HDL-bound enzyme that hydrolyzes oxidized lipids in 

LDL and HDL particles. If not hydrolyzed, these oxidized lipids may impair endothelial 

function (19). Platelet-activating factor acetyl hydrolase and LCAT are also HDL-

associated enzymes that are able to remove oxidized phospholipids (20).  Apo A-I acts as 

an antioxidant as well by removing oxidized lipids from LDL and possibly undergoing 

oxidative modification in return (21). 
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Bérard et al. (22) has shown that through regulation of the many enzymes 

involved in reverse cholesterol transport, fatty acids are able to influence HDL 

cholesterol concentration and functionality. HDL level alone may not dictate the level of 

CVD risk (22). Demonstrating HDL subfractions and functionality has become more 

important than HDL cholesterol. The HDL subpopulation profile of CVD patients with 

low total HDL cholesterol levels has significantly less large cholesterol-rich HDL and 

more small lipid depleted particle levels than patients with no cardiovascular event (23). 

The functionality of each HDL subclass still is equivocal. Low proportions of 

large HDL2b particles and high proportions of small HDL particles has been associated 

with other CVD risk factors such as increased body mass index (BMI), hyperinsulinemia, 

hypertriglyceridemia, increased visceral adipose tissue, increased homeostatic model 

assessment of insulin resistance (HOMA-IR) scores, and increased carotid intima-media 

thickness (IMT) (24-28).  Although the correlation between high proportions of small, 

dense HDL and CVD is strong, some argue that small, dense HDL particles are more 

functional and protective against CVD. In an in-vitro system, at similar physiological 

concentration and circulating levels, HDL antioxidant activity increased in the order 

HDL2b<HDL2a<HDL3c<HDL3b<HDL3a. When HDL particles were studied in equal 

number (not representative of physiological conditions) antioxidant activity increased in 

the order HDL2b<HDL2a<HDL3a<HDL3b<HDL3c, with the antioxidant activity of HDL3c 

most effective at the late stages of oxidation (29).  

Together these findings indicate that small dense HDL particles protect LDL 

against oxidative stress and HDL antioxidative activity is dependent, in part, on the 

concentration of the particle (29). Along with high antioxidative activity, small HDL are 
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better cholesterol acceptors and have a high capacity to inhibit expression of adhesion 

molecules in patients with low total HDL concentrations (30, 31). However, the 

antioxidative activity of small, dense HDL, especially HDL3b and HDL3c, is impaired in 

patients with metabolic syndrome and established coronary artery disease (32). Oxidative 

damage can impair the ability of apoA1 to remove cholesterol from macrophages (33). 

During an inflammatory state, HDL has been shown to be proatherogenic, being depleted 

of specific proteins such as apo-A1, apo-AII, and paraoxonase while becoming enriched 

in SAA. SAA incorporation into HDL may inhibit its ability to deliver free cholesterol to 

the liver for clearance. Though the HDL cholesterol will rise, the antioxidant function of 

HDL will decrease (34). 

 

Very Low Density Lipoproteins 

VLDL are thought to be the first lipoprotein synthesized by the liver in the 

sequence of lipoprotein metabolism. When secreted, VLDL are large triglyceride-rich 

particles and contain apoB100. Once in circulation, VLDL acquire apoE and apoC (I,II, 

and II). VLDL are delipidated by lipoprotein lipase, which is found on the surface of 

extrahepatic tissues. As VLDL triglycerides are hydrolyzed, the cholesterol, 

phospholipids, and proteins are transferred to higher density lipoproteins such as HDL 

and LDL, leaving a small, dense remnant lipoprotein (RLP). RLP are further metabolized 

to smaller more dense lipoproteins called IDL, which are remodeled to form the 

endproduct LDL. Due to the retention of apoB-100, both IDL and LDL can be cleared 

from the plasma by the LDL receptor, which has a high affinity for apoB-100 and apoE 

(35, 36). The clearance of lipoprotein particles by the LDL receptor is down-regulated 
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when the need for cholesterol by the peripheral cells is met, which suggests accumulation 

of LDL, IDL, RLP by arterial foam cells may not be mediated by the LDL receptor (37). 

This idea has been supported with the characterization of the scavenger receptor, which is 

found on the surface of macrophages and endothelial cells and facilitates the uptake of 

lipoproteins such as modified LDL, IDL, and RLP particles, but not native LDL particles 

(38).  Hyperinsulinemia and increased free fatty acids secondary to insulin resistance lead 

to an increase in plasma triglycerides and VLDL concentrations. Although VLDL and 

triglycerides correlate strongly to LDL density and decreasing LDL size, these 

characteristics are inversely related to HDL cholesterol, especially the HDL2 subfraction 

(39, 40). 

 

Low Density Lipoproteins  

The National Cholesterol Education Program defines the desirable LDL 

cholesterol concentration as <3.62 mmol/L (41). Like HDL, LDL are heterogeneous and 

can be defined on the basis of particle density, size, charge and chemical composition. 

LDL particles are commonly separated by density ultracentrifugation, resulting in LDL I 

through IV, with LDL IV being the most dense (42). LDL concentration, particle size and 

density are influenced by age, gender, hormone replacement therapy or contraceptive use, 

abdominal adiposity, diet and exercise. Small, dense LDL particles with increased 

triglycerides and low HDL cholesterol are often associated with metabolic syndrome and 

diabetes mellitus secondary to insulin resistance (43). Though there is much colinearity 

between the CVD risk factors, it is still believed that small, dense LDL particles are a 

contributing factor to atherosclerosis based on evidence that smaller LDL are taken up 
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less readily by LDL receptors (44), are more apt to penetrate arterial tissue (45) and are 

oxidized at a greater rate than larger LDL particles (46). Some argue that it is not particle 

size or amount of cholesterol carried alone that matters, but the particle number as well 

(47, 48). LDL cholesterol concentration can be the same among individuals, but particle 

number can vary greatly. Cromwell and Otvos (47) suggest LDL particle numbers be 

used instead of LDL cholesterol concentrations to better assess risk for CVD. 

 As stated previously, macrophages and endothelial cells specialize in the uptake 

of modified LDL particles, which leads to the progression of atherogenesis. LDL 

particles may be modified in a number of different ways, including acetylation, 

malondialdehyde addition, acetoecetylation, carbamylation, LDL-dextran sulfate 

complex formation, oxidation, glycation and desialylation, but not all modifications lead 

to increased uptake by the scavenger receptor. Oxidation of LDL particles may be the 

most studied mechanism in which LDL particles are modified and lead to increased 

uptake by the scavenger receptor. Oxidation of the LDL can occur through phospholipid 

oxidation (mainly phosphatidycholine), which then propagates into the core of the LDL 

particle, with cholesterol and cholesterol ester oxidation and fragmentation of Apo B. It is 

the fragmentation and change in amino acid sequence of the Apo B that is thought to be 

responsible in a shift from particle recognition from the LDL receptor to the scavenger 

receptor (49). Therefore quantifying LDL cholesterol levels alone can be misleading for 

assessing CVD risk (50). 
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Lipoprotein(a) (Lp(a))  

Lp(a) is similar to LDL particles, but also contains apolipoprotein(a). Because of 

the apo(a), Lp(a) is not taken up by the LDL receptor and in return Lp(a) levels are 

dependent on genetically regulated synthesis and not particle clearance. Lp(a) is a strong 

risk factor of CVD; because  Lp(a) particles accumulate in atherosclerotic lesions, Lp(a) 

levels correlate positively with CVD associated events, Lp(a) is both proatherogenic and 

prothrombotic and Lp(a) is thought to be the main scavenger of oxidized phospholipids 

(51-53).  

 

Plasma Fatty Acids and CVD 

 Plasma fatty acids can be obtained directly from the diet (exogenously) or from 

fatty acids synthesized or modified by metabolic pathways in the body (endogenously). 

Fatty acids can impact metabolism by up- or down- regulating enzymes. Though it is 

difficult with nonessential fatty acids to distinguish endogenous from exogenous fatty 

acids, their origin may dictate their impact on metabolism. For example, dietary oleic 

acid has been shown to have positive health benefits (54), but for oleic acid synthesized 

by hepatic stearoyl-CoA desaturase (SCD1), negative health effects are seen such as 

increased plasma triglycerides, decreased HDL, increased VLDL, and increased LDL 

(55). SCD1 is a delta-9-desaturase responsible for placing a double bond at carbon 9 of a 

fatty acid chain. The most common substrates for SCD1 are stearic acid and palmitic 

acid. Desaturation by SCD1 results in oleic (18:1(n-9)) and palmitoleic acid (16:1(n-7)), 

respectively (56).  SCD1-deficient mice are protected from insulin resistance, diet-

induced obesity, increase triglycerides, and increased VLDL (57). Many of the effects of 
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SCD1 deficiency are dependent on diet composition and other genetic factors (58).  

Though it seems SCD1 deficiency is antiatherogenic, SCD1 deficiency also promotes 

inflammation and atherosclerosis in mice (59). When increased SCD1 activity is seen in 

macrophages, palmitoleic acid is increased and relief from lipid-induced endoplasmic 

reticulum (ER) stress is provided. Erbay et al. (60) demonstrated endogenous fatty acid 

synthesis and desaturation of fatty acids can be highly beneficial for defending ER 

function when macrophages are exposed to toxic lipids, which may lead to an 

antiatherogenic effect of SCD1 activity. 

 

Menopausal Status and CVD 

 Menopause brings on many changes, one of which is increased risk for CVD. 

This increased risk is due in part to reduced circulating estrogen and an overall reduction 

in physical activity. Although women have higher HDL and total cholesterol and lower 

LDL cholesterol and triglycerides than men (61), HDL cholesterol levels decrease in 

women after menopause. The decrease in HDL is accompanied by an increase in LDL, 

total cholesterol, VLDL, triglycerides, glucose and BMI after menopause, contributing to 

an increased risk for CVD (62-64). HDL changes in postmenopausal women are 

accompanied by more dense, smaller HDL particles (64). Though postmenopausal 

women have different lipid profiles than premenopausal women, the changes in their 

profile as a response to exercise is the same (63). When estrogen is replaced in 

postmenopausal women in a combination with exercise, HDL lipid peroxidation is 

reduced (65). 
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Dietary Influence on CVD 

 It is well known that CVD can be influenced favorably by diet and exercise, but 

optimal dietary content continues to be debated. The National Cholesterol Education 

Program/American Heart Association Step I or Step II previously recommended a diet 

low in total fat, especially saturated fat (8-10% and < 7% of energy, respectively), and 

cholesterol was kept below 300 or 200 mg/d, respectively. At that time, carbohydrate was 

used to replace saturated fat. Though low in total fat, the high-carbohydrate diet increased 

plasma triglyceride concentrations and decreased HDL cholesterol concentrations, 

although beneficial effects were seen for total and LDL cholesterol (41, 66). Though a 

reduction was seen in total LDL concentration, which is thought to be beneficial, Campos 

et al. (67) reported an associated reduction of LDL particle size with reduced animal fat 

intake and increased consumption of carbohydrates. LDL:HDL ratios are reduced when 

carbohydrate is replaced with fat, even with saturated fat (68). When isocaloric 

substitutions of carbohydrates for monounsaturated fat or polyunsaturated fat were made 

in the diets of women, their risk of CVD increased 20 and 60%, respectively (69). 

Changing the quality of the fat in the diet has been shown to be more beneficial than 

reducing the total amount of fat in the diet (68, 69). High-carbohydrate diets also increase 

Lp(a) concentrations (70). In the year 2000, the Nutrition Committee of the American 

Heart Association moved away from its former insistence on low-fat diets and concluded 

that diets that provided up to 40% of dietary energy in the form of unsaturated fat were as 

heart-healthy as low-fat diets. An outcome of this official opinion has been the 

reevaluation of the nutritional properties of a number of higher fat foods such as dairy, 
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nuts, and dietary oils such as olive oil rich in the monounsaturated fatty acid, oleic acid 

(71).  

Fatty acids are not only sources of energy, but are powerful modulators of cell 

function and gene transcription. By this, fatty acids modulate metabolic and 

inflammatory response by the body (72). Differences in fatty acid chain length and 

saturation/unsaturation account for the differences in biological effects and physical 

properties. Kris-Etherton et al. (73) performed a meta-analysis which showed the varying 

effect of individual fatty acids on total cholesterol, LDL, and HDL cholesterol. It was 

clear that individual fatty acids have different effects on serum cholesterol fraction even 

if they belong to the same class of lipid, saturated, unsaturated, or trans-fats (73). Though 

types of fats and higher fat foods have been reevaluated and are now considered “heart 

healthy,” the American Heart Association discourages the consumption of red meat due 

to its saturated fat content. 

 Due to the current recommendations, beef and beef fat and their effects on CVD 

have been examined closely. Though beef fat and coconut oil are both considered to be 

high in saturated fat, they do not have the same effects on cholesterol levels. When 

compared to coconut oil, which consist of more medium chain saturated fatty acids 

(lauric (12:0) and myristic acid (14:0)), beef fat reduced total, LDL, and HDL cholesterol 

(74). When red meat was tested against fish and poultry, there were no significant 

difference in plasma cholesterol concentrations between the diets consisting of red meat, 

fish or poultry (75). 

Numerous clinical and epidemiological studies have shown saturated fats have 

adverse effects on cholesterol metabolism and thus increase the risk of CVD (76). Using 
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regression analysis, Keys et al. (77) and Hegsted et al. (78) evaluated the effect of 

individual fatty acid classes on cholesterol concentration in humans. Their equations 

estimated that saturated fat is twice as potent in raising total cholesterol as 

polyunsaturated fats are in reducing it. Mazaffarian et al. (79) found while eating a low 

fat diet (25% energy), a greater saturated fat intake (10-16% energy) was associated with 

less progression of coronary atherosclerosis in postmenopausal women than a lower 

intake of saturated fat (3-7% energy). There could be many reasons why this study does 

not support the general trend of saturated fat effects, including participant characteristics, 

other dietary components including carbohydrates, and individual saturated fatty acids 

consumed. 

 

Saturated Fats  

Stearic acid (18:0) is the second most abundant saturated fatty acid in beef and 

accounts for 13-20% of total fatty acids (80). Although saturated fats have been 

positively correlated with CVD, stearic acid has been shown to have neutral effect on 

lipids and lipoproteins. This has been shown by predictive equations and through 

replacing carbohydrate with stearic acid in the diet (81, 82). The regression analysis of 

Muller et al. (81) demonstrated that stearic acid had no effect on total cholesterol, LDL 

cholesterol or HDL cholesterol concentrations compared to myristic, lauric or palmitic 

acid (16:0). When stearic acid was substituted for lauric, myristic and palmitic acid, it 

lowered total, LDL and HDL cholesterol (68). Watts et al. (83) questioned the influence 

of stearic acid on CVD through a prothrombotic effect independent of plasma cholesterol 

concentration. A prothrombic effect was seen in hypercholesterolemic men with a 
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previous occurrence of angina pectoris or myocardial infarction when the usual diet was 

consumed, which was higher in stearic acid than the test diet. Although a prothrombic 

effect was observed, the usual diet was higher in other fatty acids, cholesterol, energy, 

total fat, saturated fat and monounsaturated fat and trans-fat than the test diet. The data 

provided by the angiogram could not specifically be attributed to stearic acid. Stearic acid 

also has less of an influence on postprandial lipemia and thus the activation of thrombotic 

factors than oleic, elaidic (18:1trans-9), and palmitic acids (84). 

Whereas stearic acid is neutral in its effects on cholesterol metabolism, palmitic 

acid has a negative effect. Palmitic acid is the main saturated fatty acid found in beef (24-

25% of all fatty acids) (80). Evidence from metabolic ward studies and epidemiological 

studies have shown that palmitic acid, when compared to unsaturated fatty acids and 

carbohydrates, raises total cholesterol, with the greatest increase in LDL cholesterol, and 

a slight increase in HDL cholesterol and VLDL cholesterol (85). The slight increase in 

HDL cholesterol associated with the intake of palmitic and myristic fatty acids may be 

due to an impairment in reverse cholesterol transport and the residence time of HDL 

particles. HDL may be less capable to return cholesterol to the liver due to a decrease in 

SR-B1 and 7α-hydroxylase activity (86).  Nicholls et al. (87) examined the effect that 

saturated fats have on the anti-inflammatory potential of HDL. After consumption of a 

meal high in saturated fat, HDL was less functional than HDL isolated from fasting 

plasma. The saturated fat diet reduced the ability of HDL to inhibit the expression of 

intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-

1), possibly by reducing HDL anti-inflammatory properties (88). 
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Monunsaturated Fats 

 When monounsaturated fats were used to replace carbohydrate in an average 

American diet, total cholesterol was reduced by approximately 10% and LDL cholesterol 

by 14% (68). The high-monounsaturated fatty acid diet did not lower HDL cholesterol 

whereas a high-carbohydrate diet (59% of energy) lowered HDL by 4% compared to the 

average American diet (70). Mente et al. (89) used the Bradford Hill Guidelines to 

evaluate the scientific evidence of a causal relationship between each dietary exposure 

and CVD. Through the analysis of cohort data of 101,521 patients, Mente et al. (89) 

found higher consumption of monounsaturated fatty acids was associated with 

significantly lower risk of CVD. Outside of lipid profiles, monounsaturated fatty acids 

are antiatherogenic by decreasing the susceptibility of LDL to oxidation, improving 

endothelial function and reducing inflammation marker levels and platelet aggregation. 

Monounsaturated fatty acids are antihypertensive, and could improve insulin sensitivity 

(90). These findings may be due to, or are enhanced by, minor compounds found in olive 

oil, the common source of monounsaturated fatty acids in study protocols (91). 

Oleic acid is the main monounsaturated fatty acid found in beef (80), but it 

typically is associated with olive oil and the Mediterranean diet. There are polyphenolic 

compounds in olive oil that also have an influence on lipid metabolism, in that they 

reduce  HMG-CoA reductase activity (92). Though Pérez-Jiménez et al. (91) points out 

the beneficial effects of the polyphenols found in olive oil, he does not disregard the 

positive effects of the fatty acids in olive oil, mainly oleic acid, on cholesterol 

metabolism. The effect of olive oil on cholesterol metabolism was confirmed by Ruíz-

Gutiérrez et al. (54). They observed an increase in HDL cholesterol in hypertensive 
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women who consumed a diet enriched with high-oleic sunflower oil or olive oil. 

Additionally, a significant decrease in plasma HDL2 and an increase in plasma HDL3 

cholesterol concentrations were seen with the oleic and interventions. In addition to an 

increase in HDL cholesterol, oleic acid reduces the post-secretory oxidation of LDL 

particles, making them less atherogenic (54). 

 

Polyunsaturated Fats 

 The American Heart Association has moved away from low fat/high carbohydrate 

diets as discussed previously, but what is to replace the carbohydrate? Jakobsen et al. (93) 

suggested substituting polyunsaturated fatty acids for carbohydrate. Less fatal coronary 

heart disease events were seen when polyunsaturated fats, especially linoleic acid 

(18:2(n-6)), were substituted for carbohydrate as compared to saturated fats and even 

monounsaturated fats. A review by Kris-Etherton (94), indicated that intervention studies 

with n-6 polyunsaturated fatty acids obtained a 13-16% reduction in total cholesterol. 

Though a reduction in total cholesterol can be considered beneficial when it comes to 

cardiovascular health, n-6 polyunsaturated fatty acids are known to be proinflammatory, 

increasing the production of cytokines, hs-CRP and SAA levels, and stimulating 

endothelial activation (90). 

 When n-3 polyunsaturated fatty acids are increased in beef, the increase is seen in 

α-linolenic acid (18:3(n-3), ALA) not docosahexaenoic acid (22:6(n-3), DHA), or 

eicosapentaenoic acid (20:5(n-3), EPA). Intervention studies have shown that increased 

intake of EPA and DHA lowers the risk of CVD (95, 96).  For example, supplementation 

of  3 g DHA/d for 45 and 90 d significantly decreased remnant lipoprotein concentrations 
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through a reduction in postprandial triglycerides in hypertriglyceridemic men (97).  

Though humans can convert ALA to EPA and some DHA, the conversion is too limited 

to replace the consumption of DHA and EPA directly from cold water fish. When ALA is 

compared to EPA and DHA in regards to CVD risk factors, Goyens (98) saw that EPA 

and DHA increased LDL cholesterol levels and tissue factor pathway inhibitor activity 

(an inhibitor of blood coagulation).   

 

Trans-Fats 

Over the last two decades, trans-fats and their relation to CVD increasingly have 

been an area of interest. trans-Fats are not metabolically equivalent to the cis-isomers and 

have adverse effects on serum lipid profiles (99). trans-Fats raise LDL cholesterol, lower 

HDL concentrations, increase triglycerides and increase Lp(a) when substituted for 

saturated fat (100). In addition to the reduction of HDL-cholesterol, trans-fats have been 

shown to reduce serum paraoxonase activity (19). 

 Little has been studied concerning individual trans-fatty acids, but several studies 

have been done dividing trans-fats into those from industrial sources, or partially 

hydrogenated oils, and those from ruminant animals as a result of biohydrogenation of 

fatty acids by rumen bacteria. Epidemiologic studies have shown a positive association 

between CVD risk and the intake of trans-fat from industrial sources, but not between 

CVD risk and ruminal trans-fats (101). These epidemiological data have lead to multiple 

intervention studies which have supported past data. Motard-Bélanger et al. (102) showed 

high intakes (10.2 g/2,500 kcal) of both industrial and ruminal trans-fats, significantly 

increased LDL cholesterol concentrations and reduced HDL cholesterol. Whereas high 
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intake of ruminal trans-fat leads to deleterious changes in cholesterol homeostasis, 

moderate intake (4.2 g/2,500 kcal) had no effects. Compared to industrial trans-fats, 

ruminal trans-fats significantly increased large HDL and LDL concentrations (103).  

Mozaffarian (104) reported that consuming trans-fats not only influences 

lipoprotein concentrations, but also is associated with higher circulating markers of 

systemic inflammation, including TNF-α, IL-6 and hs-CRP. When mononuclear cells 

from hypercholesterolemic subjects were cultured, increased production of IL-6 and 

TNF-α was seen with a soybean margarine diet (6.7% energy from trans-fats), compared 

with a soybean oil diet (0.6% energy from trans-fats) (105). When using cow feeding 

strategies to increase the vaccenic acid (18:1(trans-11)) concentration in milk fat, 

Tholstrupt (106) did not see a significant difference between the butter made with high-

vaccenic milk and a control diet in their effects on hs-CRP concentrations, urinary 

excretion of PGF2α, or other hemostatic risk and oxidative stress markers. There also was 

a reduction in total and HDL cholesterol levels. This may have been due in part to the 

method in which the high vaccenic butter was made. Through vaccenic acid was 

increased by the feeding method, so was conjugated linoleic acid, oleic acid and stearic 

acid, with a decrease in palmitic and myristic acid. This profile may reflect the actual 

consumption of products containing ruminant produced trans-fatty acids by most people. 

Conjugated linoleic acid (CLA) has many isomers. The main isomers, trans-10, 

cis-12 CLA and cis-9,trans-11 CLA, are commonly found in ruminant animal fat, dairy 

products, and partially hydrogenated vegetable oils (107). When given encapsulated 

individual CLA isomers, an increase in plasma triglycerides, total cholesterol, and LDL 

cholesterol was seen with trans-10, cis-12 CLA, but not with cis-9,trans-11 CLA 
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supplementation (108). The trans-10, cis-12 and CLA cis-9,trans-11 CLA isomers were 

studied in vitro at high concentrations. Both CLA treatments resulted in lower 

concentrations of esterified cholesterol and stimulated HDL-dependent cholesterol efflux 

in mouse macrophage-derived foam cells (109). 

 

Dietary Cholesterol 

 As reviewed by Grundy and Denke (110), the relationship between dietary 

cholesterol and serum circulating cholesterol levels was first observed when cholesterol 

was fed to rabbits and other species. From these studies it was assumed dietary 

cholesterol increased serum cholesterol and thus led to an increased risk for CVD. 

However, humans respond less to dietary cholesterol than most species (110, 111). The 

direct influence of dietary cholesterol and serum cholesterol levels is interrupted by the 

intense regulation of cholesterol biosynthesis by the liver. Cholesterol synthesis is 

regulated, in part, by a negative feedback mechanism. When dietary cholesterol is high, 

biosynthesis is down regulated (112). Dietary cholesterol reduces endogonous cholesterol 

synthesis by suppressing 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA 

reductase) and up-regulates acyl CoA:cholesterol acyltransferase (ACAT) activity. 

ACAT is responsible for esterifying a free fatty acid, likely unsaturated, to free 

cholesterol making cholesterol ester. When ACAT activity is increased, the free 

cholesterol pool is decreased, and LDL receptor activity, and thus LDL catabolism is 

increased. Oleic acid, the primary fatty acid substrate for ACAT, (along with arachidonic 

acid and eicosapentanoic acid) stimulates ACAT activity (113, 114). 
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Exercise and Lipid and Lipoprotein Metabolism 

 Inactivity is a major risk factor for CVD due, in part, to its effects on individual 

lipid and lipoprotein profiles. The American College of Sports Medicine and the 

American Heart Association now recommend that older adults participate in moderate 

aerobic exercise for an accumulation of 30 min/d, with each bout lasting a minimum of 

10 min at least 5 d/wk, or vigorous activity for 20 min/d for at least 3 d/wk. Moderate 

muscle strengthening activities should be done for 30 min at least 2 d/wk or vigorous 

muscle strengthening activity for 20 min/d at least 2 d/wk (115). High levels of exercise 

are associated with reduced prevalence of hypertension, elevated cholesterol, and 

diabetes mellitus. Even with low- to moderate- intensity activities (walking), women who 

expend 600-1499 kcal/wk are less likely to develop CVD with no additional reduction of 

risk seen at higher energy expenditures (116). 

 Endurance exercise may be beneficial to blood lipid profiles due to its influence 

on key lipoprotein metabolism enzymes. Such effects include increased lipoprotein lipase 

activity, decreased hepatic lipase activity (117), increased LCAT activity and reductions 

in CETP activity. By influencing these enzyme activities, changes in blood lipids are seen 

in postmenopausal women and in men including decreases in total cholesterol, LDL 

cholesterol and triglycerides with elevations in HDL cholesterol including HDL3 and 

HDL2 (62, 117). Through meta-analysis, Kelley et al. (118) reported that chronic exercise 

significantly lowered total cholesterol, LDL and triglyceride concentrations while 

increasing HDL cholesterol concentrations in women (118) and men (119). Greater 

reductions in total cholesterol were associated with reductions in body fat percentage 

(118, 119). HDL cholesterol was increased in White and African American males and 
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females, while triglycerides were decreased only in White male and females after 3 y of 

increased regular exercise (61).   

 An acute bout of exercise can be used to isolate the acute effects of exercise on 

blood lipids. These effects may mirror that of endurance exercise training such as acute 

reductions in triglycerides, increases in HDL cholesterol, and improved glucose control 

(120, 121). After an acute bout of exercise in which moderately trained females expended 

800 kcal at 75% VO2peak, an increase in total HDL cholesterol was seen at 48 h after 

exercise and an increase in HDL3 was seen immediately after exercise, but returned to 

baseline 24 and 48 h after the exercise bout (122). As long as caloric expenditure is held 

constant, the changes in serum lipids after an acute bout of exercise are not influenced by 

intensity (121). 

 

Present Study 

The objectives of this study were: 

1. To establish the relationship between the monounsaturated:saturated 

fatty acid (MUFA:SFA) ratio in beef and plasma lipoprotein 

cholesterol and inflammatory markers of CVD in 

normocholesterolemic men and postmenopausal women.  

2. To establish the relationship between the MUFA:SFA ratio of ground 

beef and the metabolic and inflammatory responses to a single bout of 

aerobic exercise in postmenopausal women. 

 

 



 23

Our primary hypothesis was differing fatty acid profiles in ground beef would 

differentially affect CVD risk with the high-MUFA ground beef having a more beneficial 

impact on CVD risk than low-MUFA ground beef in normocholesterolemic men and 

postmenopausal women. Also, exercise would have a beneficial additive effect on CVD 

risk factors when performed during ground beef patty consumption. 
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CHAPTER II  

GROUND BEEF FORMULATED FROM CORN-FED CATTLE INCREASES HDL 

CHOLESTEROL AND LDL DIAMETER AND DECREASES PLASMA INSULIN IN 

NORMOCHOLESTEROLEMIC MEN 

 

Introduction 

Researchers previously concluded that dietary saturated fatty acids (SFA) elevate 

serum cholesterol concentrations, whereas polyunsaturated fatty acids (PUFA) reduce 

serum cholesterol concentrations, and monounsaturated fatty acids (MUFA) have little or 

no effect (77, 78). While a recent WHO/FAO expert consultation generally confirmed 

these concepts (123), specific reports noted the importance of dietary context for the 

effects of SFA (124) as reductions in its intake is associated with reductions in HDL 

cholesterol (HDL-C) as well as LDL cholesterol (LDL-C) The major MUFA in beef, 

oleic acid, has been studied in more detail and found to lower LDL-C without affecting 

the HDL-C (70, 89, 125, 126). Monounsaturated fatty acids typically constitute 35 to 

45% of the total fatty acids in beef produced in the U.S. (80, 127). Some studies 

concluded that beef consumption resulted in decreased serum cholesterol in human 

subjects (128), while others conclude that it had no effect (75, 129, 130). The wide 

variation of oleic acid and trans-fatty acid content (TFA) in market beef (131, 132) may 

have been responsible for inconsistent study results. 

Carcasses from pasture-fed cattle are lower in total fat and typically attain USDA 

quality grade Select, whereas carcasses from corn-fed cattle are higher in total fat, 

typically grading to USDA quality grade Choice (133, 134). Select beef contains 3 – 4% 
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total extractable lipid while Choice beef contains 5 – 7% total extractable lipid (135). 

Additionally, because grasses contain a greater proportion of α-linolenic acid (18:3(n-3), 

ALA) than corn or other grains, beef from grass-fed beef cattle contains more ALA than 

beef from grain-fed cattle (131, 133), albeit the total amount remains very low. For 

example, a 114 g (4 oz) strip steak from corn-fed beef contains approximately 6 mg of 

ALA, whereas the same size strip steak from grass-fed cattle would contain about 25 mg 

of ALA (values calculated from 17). The current DRI for macronutrients recommends 

daily intakes of 1,100 mg and 1,600 mg ALA for adult women and men, respectively. 

Thus, a 114-g steak from grass fed cattle could provide 1.6 – 2.3% of the daily 

recommendation of ALA and about 4 g of total fat.    

At least 40% of average 67 pounds of per capita beef consumption in the U.S. is 

consumed as ground beef, and low-income households consume more ground beef per 

capita than high-income households (136). Unlike intact cuts of beef, ground beef is 

fabricated to a specific fat level, which can be as low as 3% total fat to an upper legal 

limit of 30% total fat (137). Statistics from July 2009 to July 2010 show that 31.4% of 

ground beef consumed in the US contains 22-30% fat, while the next 34.8%, contains 16-

22% fat. In contrast, ground beef containing 10% or less fat comprises about 18.8% 

ground beef consumption (138). Beef fat can be a significant component of the diet, and 

nutritional optimization of beef fat composition could have important health impacts (89). 

Previous work from our laboratories has shown that beef fat composition varies 

by depot, animal age and method of feeding, with corn feeding being an effective means 

to reduce SFA and TFA (131, 132, 139). However, these improvements came at the 

expense of ALA content. In an earlier study, hypercholesterolemic individuals showed 
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evidence of reduced CVD risk following consumption of 35% fat hamburger patties from 

corn-fed cattle. It became of interest to determine whether the intake of ground beef of a 

common total fat content (24% total fat) from pasture- and corn-fed cattle would 

differentially affect risk factors for CVD in normocholesterolemic individuals.   

 

Methods 

 Approval.  The study was conducted according to the Declaration of Helsinki 

guidelines. All procedures involving human subjects were approved by the Texas A&M 

University Institutional Review Board for use of human subjects in research (Protocol 

number 2005-0435). Written consent was obtained from all subjects. 

 Participants and study design. Healthy, non-smoking males between the ages of 

23 and 60 y were screened for eligibility. The 30 subjects selected were not on restrictive 

diets or medications. Family histories were obtained as part of a complete physical 

examination that included a treadmill exercise test with an electrocardiogram. Baseline 

blood chemistries were analyzed by a local laboratory (St. Joseph’s Hospital, Bryan, TX) 

and all blood chemistries were within normal ranges as defined by the testing laboratory. 

All participants were free-living and were instructed to maintain routine activities and 

body weight (± 2.2 kg of entry weight). Exercise and physical activities were not 

restricted, but participants were requested not to change their habitual level of physical 

activity. Twenty-seven of the initial 30 participants completed the study. Of the three 

non-completers, one had a reoccurrence of a previous illness, another relocated, and data 

from the third was omitted following three baseline samples that showed high TAG 

concentrations (> 5 mmol/L). 
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A three-period randomized, cross-over design was used. Each participant 

completed three, 5-wk diet interventions in a randomly assigned order with a 4-wk 

washout period between the test diet interventions. The men consumed 5 ground beef 

patties per week for 5 wk during each dietary intervention. The three interventions were 

low-MUFA ground beef, mid-MUFA ground beef and high-MUFA ground beef. The 

three diet interventions and two washout periods required a total of 23 wk to complete. 

To facilitate product distribution and blood sampling, participants were assigned 

to one of two groups comprised of 3 blocks of 5 men each, balanced with regard to age, 

body weight and total cholesterol concentration at the initial screening. Group 1 began 

the study 2 wk before group 2. Both groups rotated through all three test diets, but the 

pattern in which they crossed over differed between groups. Therefore, crossovers 

included all possible rotation sequences. Body weights were recorded weekly during the 

test phases, and body composition was measured by dual energy X-ray absorptiometry 

(DEXA) at the initial screening and at the completion of the study. 

 Diet  records. Diet records were obtained to establish baseline observations and 

encourage compliance to guidelines to consume one patty daily, five times each week for 

5 wk. Between each diet phase and once during each phase, participants completed a 3-d 

record. Records included one weekend day. Daily intake of major nutrients and dietary 

exchanges was analyzed by a registered dietitian using Nutrient Calc version 1.1 

(University of Minnesota, St. Paul, MN).   

Source of raw materials.  Cattle were fed pasture or grain-based diets 

specifically with aim to produce ground beef with MUFA:SFA of 0.70, 0.85 and 1.20, 

representing grass-fed, typical chubpack (regular), and intensively corn fed (premium) 

 



 28

ground beef (15, 16). Eighteen Angus steers were purchased as calves at 8 mo of age, 

transported to the Texas AgriLife Research Center in McGregor, TX, and fed Coastal 

burmudagrass hay (9.5% crude protein) free choice for 8 d. Twelve steers were fed a 

high-energy, corn-based diet containing (as-fed basis) 48% ground corn, 20% ground 

sorghum, 15% cottonseed hulls, 6.5% molasses, 6% cottonseed meal, 3% limestone, trace 

mineral salt (NaCl, 98%, Zn, 0.35%, Mn, 0.28%, Fe, 0.175%, Cu, 0.35%, and I, 0.007%), 

vitamin premix (vitamin A, 2.2 x 106 IU/kg; vitamin D, 1.1 x 106 IU/kg; and vitamin E, 

2.2 x 106 IU/kg), and a monensin premix (Elanco Animal Health, Greenfield, IN) to 

provide 25 mg of monensin/kg of feed (18). The remaining six steers grazed on Coastal 

burmudagrass pasture and were offered free choice coastal Burmudagrass hay 

supplemented with non-protein nitrogen. 

Six of the 12 corn-fed steers were fed for 117 d (to 12 mo of age), and the 

remaining 6 corn-fed steers and the 6 pasture/hay-fed steers were fed for 228 d (to 16 mo 

of age).  The 12-mo-old, corn-fed steers were processed at a commercial facility in 

McGregor, TX, whereas the 16-mo-old corn-fed and pasture/hay-fed steers were 

transported to the Texas A&M University Rosenthal Meat Science and Technology 

Research Center, College Station, for processing. At each facility, subcutaneous adipose 

tissue was sampled over the 12th thoracic rib along the dorsal midline according to 

commercial grading protocols and adipose tissue collected for immediate fatty acid 

composition determination to facilitate ground beef patty formulation.    

Carcasses from the pasture/hay-fed steers graded USDA low Select and carcasses 

from the steers fed corn for 228 d graded USDA low Choice (Table 1). Carcass data were 

not available for steers fed corn for 117 d because they were processed at a commercial 
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plant. However, based on previous studies (139), the cattle should have produced high 

Select/low Choice, yield grade 3 carcasses, values intermediate between grass-fed and 

long-fed cattle. 

 
 
 
TABLE 1 Production and carcass characteristics of Angus steers used to 

produce the test ground beef 
 Targeted ground beef MUFA:SFA ratio 

Item 0.80 1.10 1.40 

Age at slaughter, mo 20 15 20 

Average daily gain, kg/d 0.88 1.53 1.32 

Time on pasture or corn, mo 8 mo, pasture 4 mo, corn 8 mo, corn 

Carcass weight, kg 284.2 NA1 363.9 

Adjusted fat thickness, cm 1.09 NA 2.45 

Subcutaneous adipose tissue  

MUFA:SFA 
0.8 1.07 1.43 

Ribeye area, cm2 67.2 NA 73.7 

Kidney, pelvic & heart fat % 2 NA 2.67 

Marbling score3 340 NA 500 

Quality grade Select16 NA Choice08

Yield grade 3.03 NA 4.82 
1NA = not available. 
2MUFA:SFA ratio = (14:1n-5 +16:1n-7 + 18:1n-9 +18:1n-7)/(14:0 + 16:0 + 18:0). 
3300 = slight marbling, 400 = small marbling, 500 = modest marbling. 
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Subcutaneous adipose tissue overlying the 12th thoracic rib from the pasture/hay-

fed steers had a MUFA:SFA of 0.80 (low-MUFA). In the short-fed, corn-fed steers, the 

subcutaneous adipose tissue had a MUFA:SFA of 1.07 (mid-MUFA), whereas 

subcutaneous adipose tissue from corn-fed, long-fed steers had  a MUFA:SFA of 1.43 

(high-MUFA).  

Preparation of ground beef. Carcasses were fabricated at the Texas A&M 

Rosenthal Meat Science & Technology Center, Texas A&M University. Fat and lean 

trims from the plate and flank were combined at the appropriate ratios to yield 24% total 

fat. Notably, the plate and flank regions from the pasture/hay-fed cattle did not contain 

sufficient fat trim to achieve 30% total fat.   

Ground beef patties (114 g; 4 oz) were formed with an automated patty maker, 

quick-frozen to -20°C, and individually vacuum-packaged. The final MUFA:SFA of the 

low-MUFA, mid-MUFA and high-MUFA ground beef patties were 0.71, 0.83 and 1.10, 

respectively. These values were lower than predicted by the subcutaneous fatty acid 

composition because the plate and flank used to formulate the ground beef are more 

saturated than the subcutaneous fat overlying the loin (132). Each low-MUFA ground 

beef patty contained 2.5 g more SFA and 3.4 g less MUFA than the high-MUFA patties 

(Table 2). Also, each low-MUFA patty contained 37 mg more trans-vaccenic acid and 60 

mg more ALA than the high-MUFA ground beef patties.   
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TABLE 2 Fatty acid composition of low MUFA, mid MUFA, and high MUFA 
ground beef1 

  
Fatty acid Low MUFA Mid MUFA High MUFA 
  g/114-g ground beef patty 
14:0 (myristic) 0.99 0.97 0.66 
14:1 (myristoleic) 0.28 0.26 0.22 
16:0 (palmitic) 8.78 8.43 7.89 
16:1(n-7) (palmitoleic) 0.85 0.83 0.97 
18:0 (stearic) 5.57 4.98 4.31 
18:1(trans-11) (trans-vaccenic) 1.06 0.97 0.69 
18:1(n-9) (oleic) 10.07 11.06 13.25 
18:1(n-7) (cis-vaccenic) 0.29 0.36 0.46 
18:2(n-6) (linoleic) 0.55 0.49 0.56 
18:3(n-3) (α-linolenic) 0.09 0.04 0.03 
18:2(cis-9,trans-11) 0.18 0.13 0.14 
18:2(trans-20,cis-12) 0.04 0.07 0.09 
Total trans 1.28 1.17 0.92 
MUFA:SFA ratio 0.71 0.83 1.10  

1Data are means for three batches of ground beef per treatment group. 
 
 
 

On the day of the initial blood sampling, each participant received an unlabeled 

box containing all of the patties for the first 5-wk trial. A new box of patties was provided 

at the beginning of the subsequent, two intervention periods. No restrictions were placed 

on how the beef was to be prepared. Participants were instructed to consume all to the 

beef from a single patty at one meal. 

 Collection and analysis of blood samples.  Prior to the initiation of the dietary 

treatments and at the end of each diet phase, after 5 min of seated rest, blood was 

collected from the subjects into EDTA vacutainers from a vein in the antecubital fossa 

using standard phlebotomy procedures. Plasma was harvested from the blood collected 

with EDTA, and lipoproteins preserved (140). Lipoprotein separation involved density 

gradient ultracentrifugation employing human density intervals (131). The diameters of 

LDL and HDL particles isolated from plasma were determined by non-denaturing 
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gradient gel electrophoresis (141). Particle diameters were determined by comparison 

with migration distances of standard proteins of known hydrated diameter (High 

Molecular weight standards, Amersham Pharmacia, Piscataway, NJ) (142). 

Plasma total cholesterol, triacylglycerol, insulin and glucose were determined by 

separate enzymatic assays (Sigma Chemical Co., St. Louis, MO). Serum hs-CRP was 

determined using an ELISA test kit (Alpha Diagnostic International, Inc., San Antonio, 

TX).   

 Fatty acid composition of plasma and test ground beef. Plasma fatty acids and 

fatty acid composition of every batch of ground beef (n = 3 for each ground beef type) 

were measured. Total lipid was extracted and methylated (143, 144). Fatty acid methyl 

esters (FAME) were analyzed with a Varian gas chromatograph (model CP-3800 fixed 

with a CP-8200 autosampler, Varian Inc., Walnut Creek, CA) equipped with a fused 

silica capillary column CP-Sil88 [100 m x 0.25 mm (i.d.)] (Chrompack Inc., Middleburg, 

The Netherlands) (16). Helium was used as the carrier gas (1.2 mL/min). After 32 min at 

180oC, oven temperature was increased at 20oC/min to 225oC and held for 13.75 min.  

Injector and detector temperatures were at 270 and 300oC, respectively. Individual 

FAME were identified using genuine standards (Nu-Chek Prep, Inc., Elysian, MN) and 

expressed as a g/100 g total FAME analyzed or as g/114 g ground beef patty. 

 Statistical analysis. Nutrient and dietary exchange data were analyzed by 

analysis of variance (SuperAnova, Abacus Concepts, Inc., Berkeley, CA). Intakes during 

each test phase were compared to the pooled values for two habitual periods. Final (after 

test, pooled across treatment; n = 81) plasma glucose, lipids, insulin, hs-CRP, lipoprotein 

particle sizes and fatty acids were compared to pooled initial values (n = 81) by analysis 
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of variance. Also, changes from corresponding initial values for each variable were 

calculated and compared statistically to no change by analysis of variance. Because each 

participant randomly rotated through all three diets, values reported for changes from 

baseline are means ± standard error of the mean (SE) for n = 27 observations. 

 

Results 

Nutrient and dietary exchange intake. Dietary records indicated no significant 

differences in energy intake or intakes of protein, carbohydrate, cholesterol, linoleic acid 

(18:2(n-6)) or ALA (Table 3).  

Saturated fat intake was greatest when participants consumed low-MUFA ground 

beef, while MUFA and oleic acid intake was greatest when participants consumed the 

high-MUFA ground beef. Consumption of the mid-MUFA ground beef caused no 

significant change in the intakes of any major fatty acid.  Differences in total TFA intake 

could not be evaluated due to inadequate food database documentation. However trans-

fatty acids from beef were greatest while consuming the low-MUFA beef, 1.28 g/d, and 

lowest while consuming the high-MUFA ground beef, 0.92 g/d. When diets were 

characterized as dietary exchanges, only the intake of high-fat meat changed between the 

habitual and test diets (from 0.5 to approximately 1.5 exchanges/d; Table 4). The increase 

in intake of high-fat meat was offset sufficiently by reduced intake of medium-fat meat so 

that there was not a significant difference in total meat intake. 

 



 

TABLE 3 Daily intake of major nutrients for habitual diets and for test diets of men rotated through test ground 
beefs low in monounsaturated fatty acids (Low MUFA), medium in monounsaturated fatty acids (Mid 
MUFA), or high in monounsaturated fatty acids (High MUFA)1

  
  Treatment group  
Item Habitual Low MUFA Mid MUFA High MUFA P-values  
Total energy, kjoule/d 8,632 ± 501 9,337 ± 909 8,968 ± 1,049 9,065 ± 535 0.20 
Protein, g/d 97 ± 5 97 ± 10 92 ± 10 91 ± 8 0.32 
Carbohydrate, g/d 211 ± 13 224 ± 26 225 ± 27 222 ± 15 0.23 
Cholesterol, mg/d 353 ± 45 325 ± 44 347 ± 59 325 ± 44 0.37 
Saturated fat, g/d 30 ± 2b 39 ± 4a 36 ± 4ab 36 ± 2ab <0.01 
Monounsaturated fat, g/d 26 ± 2b 31 ± 4ab 27 ± 3ab 32 ± 3a 0.05 
Polyunsaturated fat, g/d 10 ± 1 11 ± 1 9 ± 2 12 ± 2 0.15 
Oleic acid, 18:1(n-9), g/d 22.4 ± 2.0b 27.0 ± 3.3ab 23.8 ± 2.9ab 27.4 ± 2.2a 0.04
Linoleic acid, 18:2(n-6), g/d 8.4 ± 0.8 7.6 ± 1.0 6.7 ± 1.3 9.0 ± 1.5 0.35 
α-Linolenic acid, 18:3(n-3), g/d 1.1 ± 0.2 1.0 ± 0.3 1.0 ± 0.3 1.0 ± 0.2 0.36  
1Data were derived from 3-d diet records collected during each test period, to include one weekend day.  Data for the habitual 
diets were pooled over the two washout periods.  abMeans without common superscripts differ (P < 0.05). 
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TABLE 4 Dietary exchanges for habitual diets and for test diets of men rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), medium in monounsaturated fatty acids (Mid MUFA), or 
high in monounsaturated fatty acids (High MUFA)1 

  
  Treatment group  
Item Habitual Low MUFA Mid MUFA High MUFA P-values  
Bread/starch 8.1 ± 0.5 9.1 ± 1.2 9.2 ± 1.3 8.6 ± 0.5 0.18 
Fat 6.7 ± 0.9 7.0 ± 1.6 7.0 ± 1.8 7.7 ± 1.1 0.26 
Fruit 0.9 ± 0.2 1.0 ± 0.3 1.3 ± 0.3 0.7 ± 0.2 0.24 
Meat, high-fat 0.5 ± 0.1b 1.7 ± 0.4a 1.4 ± 0.4a 1.4 ± 0.4a <0.01 
Meat, medium-fat 6.2 ± 0.5 6.0 ± 0.9 5.7 ± 0.7 5.5 ± 0.4 0.30 
Meat, low-fat and lean 2.3 ± 0.4 2.6 ± 0.6 2.2 ± 0.6 2.6 ± 0.6 0.44 
Meat, total 8.9 ± 0.8 10.6 ± 1.3 10.4 ± 1.8 9.9 ± 1.2 0.19 
Milk, whole, low-fat and skim 0.5 ± 0.1 0.3 ± 0.1 0.4 ± 0.3 0.7 ± 0.2 0.25 
Other carbohydrates 3.3 ± 0.4 3.4 ± 0.6 2.7 ± 0.6 3.4 ± 0.7 0.28 
Vegetables 1.3 ± 0.2 1.4 ± 0.4 1.6 ± 0.4 1.1 ± 0.3 0.41 

  

1Data were derived from 3-d diet records collected at each interval.  Data for the habitual diets were pooled over the two 
washout periods.  
abMeans without common superscripts differ (P < 0.05). 
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TABLE 5 Initial and final characteristics of men rotated through ground beef 
types low in monounsaturated fatty acids, medium in 
monounsaturated fatty acids, or high in monounsaturated fatty acids 
(pooled across dietary interventions)1 

   
Item Baseline Intervention P-values  
Age, y 35.8 ± 1.3 --- --- 
Body weight, kg 85.6 ± 2.7 86.2 ± 2.7 0.15 
Body mass index, kg/m2 27.1 ± 0.8 27.3 ± 0.8 0.17 
Android fat, % total fat 35.3 ± 2.4 35.6 ± 2.4 0.69 
Gynoid fat, % total fat 32.7 ± 2.5 31.1 ± 1.8 0.29 
Total body fat, % 27.4 ± 2.0 26.9 ± 1.8 0.31 
Lipid values 

Glucose, mmol/L 5.10 ± 0.04 5.03 ± 0.04 0.14 
Triacylglycerol, mmol/L 1.28 ± 0.06 1.21 ± 0.11 0.09 
Total cholesterol, mmol/L 4.73 ± 0.10 4.72 ± 0.09 0.97 
LDL cholesterol, mmol/L 3.02 ± 0.09 3.00 ± 0.09 0.55 
HDL cholesterol, mmol/L 1.17 ± 0.02 1.22 ± 0.04 <0.01 
LDL:HDL 2.68 ± 0.10 2.57 ± 0.18 0.04 
Insulin, mU/L 5.96 ± 0.53 4.52 ± 0.42 <0.01 
hs-CRP, mg/L 1.97 ± 0.44 1.82 ± 0.29 0.70 
LDL particle diameter, nm 26.05 ± 0.13 26.38 ± 0.12 0.05 
HDL2 particle diameter, nm 11.45 ± 0.08 11.25 ± 0.08 0.04 

HDL3 particle diameter, nm 9.29 ± 0.03 9.12 ± 0.04 <0.001 

  

1Data are means ± SE for 27 values for age and morphometric measurements and 81 
values for lipid measurements, pooled across 27 men and three ground beef 
interventions.  
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Main effects of ground beef interventions. Final lipid and lipoprotein 

parameters did not differ among the ground beef interventions and so the effects of 

ground beef consumption per se were assessed using pooled data comparisons between 

baseline (n = 81) and intervention values (n = 81).  Body weight, BMI, android fat, 

gynoid fat and total body fat were unchanged over the 23-wk duration of the study 

(Table 5).  

Ground beef interventions decreased plasma TAG (P = 0.09), and increased 

HDL-C (P < 0.01) and the plasma LDL:HDL (P = 0.04). Plasma insulin was uniformly 

decreased by the ground beef interventions (P < 0.01) and aggregate hs-CRP was 

unaffected. The ground beef interventions increased LDL particle diameter (P = 0.05), 

but decreased HDL2 and HDL3 particle diameters (P = 0.04 and P < 0.001, respectively). 

There was a small decrease in plasma palmitoleic acid and a similarly small 

increase in plasma stearic acid (both P = 0.07) that resulted in a significant (P = 0.04) 

decrease in the palmitoleic:stearic (from 0.185 to 0.156; Table 6). Plasma trans-vaccenic 

and ALA both were depressed after the ground beef interventions (P = 0.02). 

Conversely, consumption of the ground beef patties increased plasma arachidonic acid 

(P < 0.001). The total plasma fatty acid concentration did not change with the ground 

beef interventions (414 vs 363 µmol/L, respectively; baseline vs intervention P = 0.25). 
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TABLE 6 Initial and final plasma fatty acids of men rotated through ground 
beef types low in monounsaturated fatty acids, medium in 
monounsaturated fatty acids, or high in monounsaturated fatty acids 
(pooled across dietary interventions)1 

   
Fatty acid Baseline Intervention P-values  

µmol/100 µmol total fatty acids2 

Palmitic, 16:0 23.89 ± 0.29 23.31 ± 0.31 0.36 

Palmitoleic, 16:1(n-7) 1.54 ± 0.09 1.34 ± 0.08 0.07 
trans-Vaccenic, 18:1(trans-11) 0.40 ± 0.07 0.17 ± 0.05 0.02 
Stearic, 18:0 8.43 ± 0.12 8.81 ± 0.13 0.07 
Oleic, 18:1(n-9) 21.06 ± 0.34 20.85 ± 0.36 0.89 
Linoleic, 18:2(n-6) 32.99 ± 0.59 32.85 ± 0.58 0.54 
α-Linolenic, 18:3(n-3) 0.33 ± 0.05 0.20 ± 0.04 0.02 
Arachidonic, 20:4(n-6) 6.54 ± 0.26 7.92 ± 0.20 <0.001 
Eicosapentaenoic, 20:5(n-3) 0.31 ± 0.05 0.34 ± 0.05 0.86 
Docosahexaenoic, 22:6(n-3) 0.76 ± 0.11 0.83 ± 0.11 0.31 
Palmitoleic:stearic acid ratio 0.185 ± 0.012 0.156 ± 0.010 0.04 
  

1Data are means ± SE for 81 values, pooled across 27 men and three ground beef 
interventions. 

2Total plasma fatty acid concentrations were 414 µmol/L (baseline) and 363 µmol/L 
(intervention); concentrations were not different, P = 0.25. 
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FIGURE 1 Absolute changes from baseline (mmol/L) for triacylglycerol (TAG), 
LDL-C and HDL-C in men rotated through test group beefs low in 
monounsaturated fatty acids (Low MUFA), medium in monounsaturated fatty 
acids (Mid MUFA), or high in monounsaturated fatty acids (High MUFA).  Values 
are expressed as mean ± SEM, n = 27.  Different from zero change at ***P < 0.001. 
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Changes from baseline for each ground beef intervention. Although the low-, 

mid- and high-MUFA ground beef caused uniform decreases from baseline in plasma 

TAG (0.04 to 0.10 mmol/L decreases), the change from baseline TAG were not 

significant (P > 0.10). Similarly, there was no overall effect of the dietary interventions 

on LDL-C (Figure 1). Only the high-MUFA ground beef intervention significantly 

increased HDL-C from baseline values (P < 0.001).   

The low-MUFA ground beef had no effect on LDL particle diameter, whereas 

the mid- and high-MUFA ground beef interventions increased LDL particle diameter 

from baseline values (0.45 to 0.55 nm increases; P < 0.05) (Figure 2). Although the 

ground beef interventions caused an overall decrease in HDL2 diameter (Table 5), the 

changes from baseline for the separate ground beef interventions were not significant (P 

> 0.10). The mid-MUFA ground beef caused the greatest decrease in diameter for HDL3, 

but all ground beef interventions significantly reduced HDL3 diameter. 

The mid-MUFA ground beef intervention significantly reduced plasma glucose 

from baseline (P < 0.05) and the high-MUFA ground beef caused a significant 

depression from baseline for plasma insulin (P < 0.01; Figure 3). The low- and mid-

MUFA ground beef interventions decreased plasma ALA from baseline (P < 0.05). 
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FIGURE 2 Absolute changes from baseline (nm) for LDL, HDL2 and HDL3 
particle diameter in men rotated through test group beefs low in monounsaturated 
fatty acids (Low MUFA), medium in monounsaturated fatty acids (Mid MUFA), or 
high in monounsaturated fatty acids (High MUFA).  Values are expressed as mean 
± SEM, n = 27.  Different from zero change at *P < 0.05, **P < 0.01, ***P < 0.001. 
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FIGURE 3 Magnitude changes from baseline for glucose (mmol/L), 
insulin(mU/L) and hs-CRP (mg/L) in men rotated through test group beefs low in 
monounsaturated fatty acids (Low MUFA), medium in monounsaturated fatty 
acids (Mid MUFA), or high in monounsaturated fatty acids (High MUFA).  Values 
are expressed as mean ± SEM, n = 27.  Different from zero change at *P < 0.05, **P 
<.01. 
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Discussion 

Nutrient and dietary exchange intake.  Total energy intake and intakes of 

protein, carbohydrates, and fat were essentially identical to values reported in two 

previous studies from our laboratory on the effects of beef on plasma lipoprotein 

concentrations (130, 131). Although nutrient intake was not strictly controlled, it was 

carefully monitored. Very few food restrictions were placed on the participants either 

during the test periods or during the intervening washout periods. We purposely did not 

strictly control dietary intake of nutrients by participants, but stipulated only that the 

ground beef patties replaced an equal portion of meat (beef or otherwise) that they 

normally would have consumed. Dietary records indicated that the participants generally 

consumed the ground beef patties intact, and usually included them in their noontime 

meals. This encouraged compliance and allowed us to evaluate the effects of the test 

ground beef patties in a more likely, i.e., free-living setting.   

By design, the high-MUFA ground beef contained nearly 4 g more MUFA per 

patty than did the low-MUFA ground beef, and the mid-MUFA ground beef was 

intermediate. Thus, each participant on the high-MUFA diet consumed nearly 20 g more 

MUFA per week than those consuming the low-MUFA ground beef. The mid-MUFA 

ground beef intervention was included as it most closely resembled regular chub pack 

ground beef in total fat and fatty acid composition (131, 132). 

Ground beef comprises a large proportion of the beef consumed in the U.S. 

(145).  Also, the ground beef used in this study was representative of the range of ground 

beef that is readily available to consumers (131, 132), and the amounts of beef consumed 
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in the study would result in an annual consumption of 65 pounds per year, near to the 

national average in the US. The MUFA:SFA of the ground beef from pasture-fed cattle 

(low-MUFA; 0.71) was similar to the MUFA:SFA for a specialty branded ground beef 

product (0.73) (131). Low MUFA:SFA products typically are produced from cattle that 

are fed little or no grain, or which are processed at a young age (139). The high-MUFA 

ground beef (1.10) was similar to that for a branded Angus product (1.12) (130, 131). 

We demonstrated previously that MUFA in beef, and especially oleic acid, increase with 

the amount of time that cattle are fed a grain-based diet (139). 

The most profound differences in documented fat intake were for saturated and 

total fat. Individuals in the low-MUFA ground beef group consumed nearly 10 g/d more 

saturated fat and 15 g/d more total fat than in their habitual diets. This reflected the 

primary contribution of animal products to saturated and total fat intake. In spite of this, 

none of the test ground beef patties increased LDL-C, possibly because most of the 

increase in saturated fat was in the form of stearic acid (146). 

 Plasma TAG, insulin and glucose. We previously demonstrated that low-

MUFA ground beef increased, and high-MUFA ground beef decreased plasma TAG 

(131). In the current study, the ground beef interventions caused an overall depression in 

plasma TAG and plasma palmitoleic acid and an increase in plasma stearic acid. There 

was a highly significant correlation between plasma palmitoleic acid and TAG (r = 0.38, 

P < 0.0001), consistent with previous studies (131, 147). Notably, in both this and the 

previous study (131) the high-MUFA patties increased plasma stearic acid with 

approximately a 20% decrease in palmitoleic:stearic acid ratio, suggesting that high-
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MUFA ground beef may depress hepatic stearoyl-CoA desaturase-1 (SCD1) activity. 

Hepatic SCD1 activity supports TAG synthesis (148), and SCD1 gene expression and 

activity are activated by dietary stearic acid and depressed by oleic acid in mice (149). 

This argues strongly that SCD1 activity in part at least regulates plasma TAG in humans. 

Similar evidence for plasma palmitoleic as a predictor of cardiovascular mortality was 

provided by Warensjo et al. (150). The reduction in plasma insulin and the small 

reductions in TAG and glucose are consistent with this interpretation and effects seen in 

men consuming additional amounts of dairy fat (151), albeit specific mechanisms 

underlying the effect may differ. 

 Plasma lipoprotein cholesterol fractions. We recently reported the effects of 

two high-fat, hamburger preparations on cholesterol metabolism in a group of mildly 

hypercholesterolemic men (131). By definition, ground beef contains a maximum of 

30% total fat (137). In that study, 10 men were first fed 35% fat hamburger high in SFA 

and TFA (MUFA:SFA = 0.95, TFA = 1.72 g/patty), and then were rotated to 35% 

hamburger high in MUFA and lower in TFA (MUFA:SFA = 1.31, TFA = 1.28 g/patty). 

The high-SFA hamburger markedly reduced HDL-C and LDL particle diameters while 

increasing plasma TAG; these values returned to baseline values after the high-MUFA 

hamburger intervention (131). Notably, while the 35% fat low-MUFA:SFA hamburger 

intervention in the earlier study actually contained more oleic acid per patty (15 g) than 

the 24% fat high-MUFA ground beef of the current study (13.2 g) it also provided 9.6 g 

more palmitic and 0.8 g more TFA per patty. This suggests that, in our ground beef 
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intervention studies, the SFA and TFA content may have been more important in 

altering risk factors for CVD than the oleic acid content. 

None of the ground beef interventions of the current study reduced LDL particle 

diameters, and in fact the mid- and high-MUFA ground beef interventions increased 

LDL diameters. Thus, we were unable to reproduce the depression in LDL particle 

diameters caused by 35% fat hamburger from grass-fed cattle in our previous study 

(131). Similarly, serum hs-CRP was not affected by beef consumption. To our 

knowledge, the current and previous studies (131) are the only investigations in which 

the effects of supplemental beef on lipoprotein particle diameters or markers of vascular 

inflammation have been reported.   

The current study also demonstrated a very clear reduction in HDL3 particle 

diameters with all beef interventions that was independent of ground beef fatty acid 

composition. We know of no other study that has reported a reduction in the diameters 

of the individual HDL subclasses. Arsenault et al. (152) reported that HDL-C levels are 

the best correlates of HDL particle diameter in men (r = 0.58) and women (r = 0.62). 

Men and women with small HDL particles plus low HDL concentrations were at 

increased risk for CVD, as assessed by their cardiometabolomic risk profile (152). We 

observed a significant, positive correlation between HDL particle diameter and HDL-C 

(r = 0.26, P = 0.01) in the current study, but we also demonstrated increased HDL-C and 

reduced HDL diameter after the high-MUFA ground beef intervention. The relationship 

between HDL-C and particle diameter was true only for HDL2, as there was no 

correlation between HDL-C and HDL3 particle diameter (r = 0.06, P = 0.44). Because 
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depressed HDL particle diameter was accompanied by elevated HDL-C in this study, we 

cannot ascertain if this represents increased or decreased risk for CVD.   

Plasma and beef ALA. Mente et al. (89) conducted a systematic search for 

prospective cohort studies or randomized trials investigating dietary exposures in 

relation to CVD. They found strong evidence to support valid associations of protective 

factors for (among others) dietary MUFA, but insufficient evidence for total fat, SFA, 

PUFA or ALA. The low-MUFA ground beef of this study had three times the ALA of 

the high-MUFA ground beef, i.e., 90 vs 30 mg per ground beef patty, but this had no 

significant impact on the daily ALA intake. Our data indicated an overall lower plasma 

ALA after consumption of the low- and mid-MUFA ground beef preparations, and 

neither eicosopentaenoic (20:5(n-3)) nor docosahexaenoic acid (22:6(n-3)) 

concentrations were affected by the ground beef interventions. These data argue strongly 

that 24% fat ground beef from pasture-fed cattle does not provide enough ALA to have 

any impact on the metabolism of n-3 fatty acids. Interestingly, the 35% fat, low-MUFA 

hamburger used in our earlier study provided 63 mg ALA per patty, indicating that the 

low-MUFA ground beef in the present study was comparatively rich in ALA.  

Greater enrichment of beef with ALA can be achieved by allowing cattle to graze 

on pasture for much longer periods of time (up to 30 mo of age) (133), or by feeding 

flaxseed to cattle (153). However, the concentration of ALA in beef from these cattle 

would be at most 200 mg per 114-g beef serving (calculated from reported percentages 

of ALA) (133, 152). This is much less than the amount of ALA provided to human 

subjects in the form of flaxseed, margarine, or walnut oil (1 – 2 g/d) (154-156). Thus, 
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although supplementary ALA can lower plasma TAG (155) and hs-CRP (156), this 

cannot occur at the concentrations of ALA in beef from grass-fed cattle. Instead, the 

elevation of SFA and TFA that has been demonstrated consistently in beef from pasture-

fed animals (131, 133, 139) apparently overwhelms any potentially beneficial effects of 

the greater amounts of ALA. 

General considerations. There is convincing evidence that high-MUFA diets 

lower plasma cholesterol and TAG, usually by decreasing LDL-C (70, 126). 

Furthermore, studies that have included elevated beef intake have not demonstrated an 

increase in LDL-C (75, 129-131). However, it was not the intent of this study to 

recommend daily consumption of ground beef. It also is recognized that ground beef 

produced from carcasses of pasture-fed cattle typically is much leaner than the test 

ground beef patties developed for this study. However, none of the test ground beef 

patties had negative effects on risk factors for CVD, including the mid-MUFA ground 

beef, which was formulated to be similar to regular chub-pack ground beef. The high-

MUFA ground beef actually reduced risk factors for CVD by increasing HDL-C and 

LDL particle diameter as well as decreasing plasma insulin. Thus, this study provided no 

evidence that beef from pasture-fed cattle is nutritionally superior to beef from typical 

commercially produced (corn-fed) cattle in products where total fat content is similar.  
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CHAPTER III 

HIGH-OLEIC GROUND BEEF AND RISK FACTORS FOR CARDIOVASCULAR 

DISEASE IN POSTMENOPAUSAL WOMEN 

 

Introduction 

With cardiovascular disease (CVD) affecting the lives of over 26 million 

Americans, and being the leading cause of preventable death in the United States, the 

American Heart Association (AHA) has strived to provide “heart healthy” 

recommendations. The previous recommendation of the AHA was to consume a low-fat 

diet, especially low in saturated fatty acids (SFA). At that time, the AHA recommended 

that fat calories be replaced by carbohydrate. Unknowingly, consumers might have 

increased their risk of heart disease by increasing plasma triglycerides, Lp(a), and 

decreasing HDL cholesterol and LDL particle size (67-69). These findings resulted in 

the evaluation of fatty acids and their effect on CVD (73). While the recommendation 

for a reduction in saturated fat still remained, the AHA recognized diets that provided up 

to 40% of dietary energy in the form of unsaturated fat were as heart-healthy as low-fat 

diets (70, 71). An outcome of this official opinion has been the reevaluation of the 

nutritional properties of a number of higher fat foods such as dairy, nuts, and dietary oils 

such as olive oil rich in the monounsaturated fatty acid (MUFA), oleic acid (18:1n-9) 

(71). Although red meat is high in MUFA, especially oleic acid, it is still recommended 

to abstain from red meat consumption to maintain good heart health. The primary 

objective of this study was to establish the relationship between the MUFA:SFA ratio in 
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beef and plasma lipoprotein cholesterol and inflammatory markers of CVD in 

postmenopausal women. 

 

Methods 

 Subjects. The study protocol was reviewed and approved by Texas A&M 

University Institutional Review Board for the use of human subjects in research (2008-

125) and all participants gave written consent. Twenty-nine postmenopausal women 

were recruited from the local Bryan/College Station, Texas community. Nineteen 

women completed the study. The subjects were women whose last menstrual period was 

over 1 y prior to enrollment of the study by natural or surgical means with or without 

ovaries. Subjects were able to walk briskly for 20 min without chest pain or fatigue, 

were non-smokers with no history of CVD, stroke or diabetes, had normal liver function 

tests, normal fasting glucose, normal resting electrocardiogram, and serum total 

cholesterol of less than 6.72 mmol/L, and must not be taking lipid lowering drugs. 

Baseline characteristics of the participants are found in Table 7. 
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TABLE 7 Baseline characteristics for subjects1 
   
Item Mean SE  
Age, y 57.8 1.7  
Body weight, kg 70.7 4.0  
Body mass index, kg/m2 26.4 1.4  
Android fat, % total fat 45.6 2.6  
Gynoid fat, % total fat 49.6 1.5 
Total body fat, % 42.2 1.9  
1Data are means ± SE for 19 women. 

  

 

 
Study design. This experiment tested the hypothesis that risk factors for CVD 

would be lower in postmenopausal women after consumption of ground beef naturally 

enriched with MUFA than after consumption of ground beef enriched with SFA. The 19 

women were allotted to groups for a crossover design. The first group was fed high-SFA 

ground beef for a 6 wk period, and following a 4 wk habitual diet washout period, was 

rotated to a high-MUFA ground beef. The second group was fed a high-MUFA test 

ground beef for a 6 wk period, and following a 4 wk habitual diet washout period, was 

rotated to a high-SFA test ground beef. 

The beef was supplied to the participants in the form of 114 g, raw ground beef 

patties. The frozen, vacuum-packaged ground beef patties for an entire diet period were 

delivered to the participants on or before the first day of the diet period. The participants 

were asked to replace one of their normal meat servings with a patty 5 d/wk. No 

restrictions were placed on how the patty was to be prepared other than the patty should 

be cooked to an internal temperature of 71˚C, one patty should be prepared at a time, and 
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all of the patty should be consumed in one sitting. The subjects were not informed as to 

which test patty they had been assigned.  

Baseline testing. At study entrance, each subject underwent: a complete history, 

physical exam by a physician, height and body weight measurements, and a DEXA scan.  

Test patties. The low-MUFA ground beef patties were made from chub pack 

ground beef, purchased from a local retail outlet with a MUFA:SFA ratio of 0.9. The 

high-MUFA patties were made from Akaushi ground beef (Heartbrand Beef, Yoakum, 

TX) with a MUFA:SFA ratio of 1.3 (Table 8). Patties were individually vacuum-packed, 

quick-frozen and boxed by diet type. Patties were formulated to contain 20% fat, but 

after cooking, the low-MUFA patties contained 19.4 g/100g and the high-MUFA patties 

contained 22.5/100g 

 

 
TABLE 8 Fatty acid composition of low MUFA and high MUFA ground beef 

patties1 
  
Fatty acid Low MUFA High MUFA 

g/100-g cooked ground beef patty 
Total lipid   19.4  22.5 
14:0 (myristic) 0.60 0.59  
14:1 (myristoleic) 0.09 0.35  
16:0 (palmitic) 4.88 5.30  
16:1 (n-7) (palmitoleic) 0.56 0.98  
18:0 (stearic) 3.41 2.73  
18:1 (trans-11) (trans-vaccenic) 0.78 0.66 
18:1 (n-7) (cis-vaccenic) 0.29 0.49 
18:1 (n-9) (oleic) 7.34 10.24  
18:2 (n-6) (linoleic) 0.36 0.44  
MUFA:SFA ratio 0.9 1.3  

1Data are means for three batches of ground beef per treatment group. 
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Collection and handling of blood samples. Blood was collected from an arm 

vein prior to initiation of the dietary treatments, at the end of each diet phase 24 h before 

and after exercise. Plasma was harvested from the blood collected with 15% EDTA. 

Serum was harvested from the blood with clot separation. All serum and plasma samples 

were stored at -80°C. 

Fatty acid composition of plasma and test ground beef. Fatty acids were 

measured in the baseline plasma, plasma taken after 6 wk of each test beef treatment, 24 

h before and 24 h after exercise. Additionally, fatty acid composition, along with total fat 

and moisture of the dietary ground beef patties were measured. Total lipid was extracted 

and methylated as described (143, 144). Fatty acid methyl esters were analyzed with a 

Varian gas chromatograph (model CP-3800 fixed with a CP-8200 autosampler, Variam 

Inc., Walnut Creek, CA). Separation of fatty acid methyl esters was accomplished on a 

fused silica capillary column CP-Sil88 [100m x 0.25mm (i.d.)] (Chrompack Inc., 

Middleburg, The Netherlands) with helium as the carrier gas (1.2 mL/min). Oven 

temperatures began at 150°C and were increased to 160°C at a rate of 1°C/min. The 

oven temperature rose further to 167°C at a rate of 0.2°C/min. The temperature 

increased a rate of 1.5°C/min to a final temperature of 225°C where it was held for 26 

mins. Injector and detector temperatures were at 270°C. Individual fatty acid methyl 

esters were identified using genuine standards (Nu-check Prep, Inc., Elysian, MN and 

Sigma-Alderich Co.) and expressed as a g/100 g total fatty acid methyl esters analyzed 

or as g/100 g hamburger patty. 
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Fat and moisture of the dietary ground beef patties were measured by CEM 

Corp’s SMART Trac Moisture and Fat Analysis system (157). 

Lipoprotein analysis. Serum aliquots kept at -80°C were sent to SpectraCell 

Laboratories, Inc. (Houston, TX) for complete lipoprotein density and particle number 

analyses. A complete “Lipoprotein Particle Profile™” test was provided using the 

lipoprotein subgroup particle number analysis method. Lipoprotein particles were 

stained with a fluorescent dye and separated utilizing a patented continuous gradient 

over a range of d = 1.00 – 1.30 g/cm3 generated by analytical ultracentrifugation. Once 

separated, the fluorescence of the lipoprotein particles was measured in a high 

performance liquid chromatography type flow system. For processing the fluorescence 

response was normalized to a cholesterol scale with a proprietary algorithm. Values 

corresponding to each lipoprotein subgroup at their specific densities were determined 

using a multiple Gaussian fit/integration routine (158). 

Diet records. Prior to each diet phase, and once during each phase, participants 

completed a 4-d record (to include one weekend day). The diet records were analyzed 

for nutrient composition to establish baseline observations, and encourage compliance 

with total patty consumption requirement. The records were analyzed using Nutritionist 

Pro (Axxya Systems, Stafford, TX). 

Statistical analysis. Data were analyzed as a paired t-test, comparing baseline 

(habitual) values to values after 6 wk on the test diet.  Thus, each participant served as 

her own control.  Because each participant randomly rotated through all three diets, 

reported values are means ± standard error of the mean (SE) for n = 19 observations. 
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Results 

Dietary records indicated that when on a test diet, participants consumed a 

greater amount of total MUFA and oleic acid in patterns consistent with their test ground 

beef interventions. There were no significant differences in cholesterol, protein, or 

carbohydrate intake (Table 9).   

 
 
TABLE  9 Total daily energy intake per day from major nutrients for habitual diets 

(Baseline) and for test diets of women rotated through test ground beefs low 
in monounsaturated fatty acids (Low MUFA) or high in monounsaturated 
fatty acids (High MUFA)1 

Nutrient Baseline Low MUFA High MUFA 
Total energy, kcal 1,662 ± 131 1,601 ± 98 1,688 ± 113 
Protein, g 67.8 ± 4.9 74.0 ± 5 74.2 ± 5.2 
Carbohydrate, g 189 ± 16 177 ± 15 188 ± 14 
Fat, g 62.2 ± 6.8 65.3 ± 3.8 69.1 ± 4.7 
Saturated fat, g 20.0 ± 2.3 23.6 ± 1.7 24.2 ± 1.8 
Monounsaturated fat, g 15.1 ± 1.9 19.3 ± 1.1a 21.6 ± 1.5a 

Polyunsaturated fat, g 8.1 ± 0.8 6.4 ± 0.5 8.0 ± 1.0 
Trans-unsaturated fat, g 0.8 ± 0.2 1.0 ± 0.3 1.1 ± 0.2 
Cholesterol, mg 202 ± 21 274 ± 40 241 ± 28 
Oleic acid, g 12.8 ± 1.7 16.5 ± 1.0a 18.6 ± 1.4a 

Linoleic acid, g 6.1 ± 0.7 4.8 ± 0.5 6.1 ± 0.8 
Linolenic acid, g 0.7 ± 0.1 0.4 ± 0.1a 0.6 ± 0.1 
Eicosapentaenoic acid, g 0.04 ± 0.02 0.06 ± 0.04 0.06 ± 0.04 
Docosahexaenoic acid, g 0.05 ± 0.02 0.12 ± 0.07 0.12 ± 0.07 
Fiber, g 18.3 ± 2.6 18.1 ± 2.4 16.9 ± 1.5 
Sugar, g 68.3 ± 5.9 70.8 ± 8.6 81 ± 10.6 
Sodium, mg 2,903 ± 205 2,4166 ± 198 2,428 ± 139a 

Potassium, mg 1,924 ± 218 2,185 ± 242 2,262 ± 190 
Vitamin A, IU 5,193 ± 798 5,886 ± 1058 6,911 ± 1455 
Vitamin C, mg 94.1 ± 17.3 79.4 ± 12. 5a 223.6 ±137.2 
Calcium, mg 750.4 ± 70.6 699.4 ± 68.7 818.4 ± 96.4 
Iron, mg 13.1 ± 1.6 14.0 ± 1.4 14.2 ±1.2 
Thiamin, mg 1.3 ± 0.2 1.2 ± 0.1 1.3 ± 0.2 
Riboflavin, mg 1.8 ± 0.3 2.1 ± 0.3 1.9 ± 0.3 
Niacin, mg 18.7 ± 3.8  23.1 ± 4.3 23.2 ± 3.9 
Folate, µg 386 ± 79 322 ± 43 324 ± 50 

1Data were derived from 4-d diet records, including one weekend day, collected during each test 
period. Data for the habitual diet were obtained at baseline before patty consumption began. 
aMeans without common superscripts differ (P ≤ 0.05). Data are means ± SE for 19 women. 
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Serum total cholesterol, LDL, HDL, and buoyant HDL2b cholesterol 

concentrations were significantly increased due to the consumption of the high-MUFA 

test patties (Figure 4 and 7; Table 10 and 13), whereas serum VLDL, RLP, and IDL 

particle concentrations were increased with the consumption of the low-MUFA test 

patties (Table 11 and Figure 5). 

 
 
 
TABLE 10 Major lipoprotein cholesterol concentrations (mmol/L) for women 

rotated through test ground beefs low in monounsaturated fatty acids 
(Low MUFA) or high in monounsaturated fatty acids (High MUFA)1 

Lipoprotein  Low MUFA 
Baseline 

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

Total 
cholesterol, 
mmol/L 

5.09 ± 
0.17 

5.21 ± 
0.17 

5.08 ± 
0.2 

5.34 ± 
0.19** 

LDL, mmol/L 3.23 ± 
0.15 

3.24 ± 
0.14 

3.19 ± 
0.16 

3.35 ± 
0.15* 

HDL, mmol/L 1.56 ±  
0.07 

1.61 ± 
0.06 

1.56 ± 
0.07 

1.63 ± 
0.07** 

1 Data are means ± SE for 19 women. 
* P ≤ 0.10; ** P ≤ 0.05 
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FIGURE 4 Changes from baseline in total cholesterol, LDL, and HDL 
cholesterol concentration (mmol/L) of women rotated through test ground beefs 
low in monounsaturated fatty acids (Low MUFA) or high in monounsaturated fatty 
acids (High MUFA). Values are expressed as mean ± SEM, n = 19.  * P ≤ 0.10; ** P 
≤ 0.05 
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FIGURE 5 Changes from baseline in triglycerides (TAG), intermediate density 
lipoprotein (IDL), very low density lipoprotein (VLDL) and remnant lipoprotein 
(RLP) cholesterol concentration (mmol/L) of women rotated through test ground 
beefs low in monounsaturated fatty acids (Low MUFA) or high in 
monounsaturated fatty acids (High MUFA). Values are expressed as mean ± SEM, 
n = 19.  * P ≤ 0.10; ** P ≤ 0.05 
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TABLE 11 TAG, VLDL, RLP, and IDL cholesterol concentrations for women 
rotated through test ground beefs low in monounsaturated fatty acids 
(Low MUFA) or high in monounsaturated fatty acids (High MUFA)1 

Lipoprotein  Low MUFA 
Baseline 

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

VLDL, mmol/L 0.30 ± 
0.03 

0.35 ± 
0.03* 

0.34 ± 
0.03 

0.35 ± 
0.05 

RLP, mmol/L 0.75 ± 
0.04 

0.85 ± 
0.05** 

0.80 ± 
0.05 

0.87 ± 
0.07 

IDL, mmol/L 0.67 
0.03 

0.74 
0.04* 

0.71 
0.05 

0.77 
0.06 

TAG, mmol/L 1.12 ± 
0.13 

1.12 ± 
0.1 

1.11 ± 
0.1 

1.09 ± 
0.10 

1 Data are means ± SE for 19 women; * P ≤ 0.10; ** P ≤ 0.05 
 

 

Though total LDL cholesterol was increased with high-MUFA patty 

consumption, no significant difference was seen within LDL III, LDL IV, or Lp(a) 

(Figure 6 and Table 12). 

 
 
 
TABLE 12 LDL III, LDL IV, and Lp(a) lipoprotein cholesterol concentrations 

for women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA) or high in 
monounsaturated fatty acids (High MUFA)1 

Lipoprotein  Low MUFA 
Baseline 

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

Dense LDL III, 
mmol/L 

0.5517 ± 
0.04 

0.5603 ± 
0.03 

0.5097 ± 
0.04 

0.525 ± 
0.04 

Dense LDL IV, 
mmol/L 

0.1741 ± 
0.01 

0.1782 ± 
0.01 

0.1705 ± 
0.09 

0.1877 ± 
0.01 

Lp(a), mmol/L 0.7778 ± 
0.18 

0.7628 ± 
0.17 

0.771 ± 
0.17 

0.7423 ± 
0.18 

1 Data are means ± SE for 19 women. 
There were no significant differences among phases (P > 0.1) 
 

 



 60

 
 
FIGURE 6 Changes from baseline in LDL III, LDL IV, and Lp(a) cholesterol 
concentration (mmol/L) of women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA) or high in monounsaturated fatty acids 
(High MUFA). Values are expressed as mean ± SEM, n = 19. 
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FIGURE 7 Changes from baseline in HDL subfractions cholesterol 
concentrations (mmol/L) of women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA) or high in monounsaturated fatty acids 
(High MUFA). Values are expressed as mean ± SEM, n = 19. *** P ≤ 0.01 
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TABLE 13 HDL subfraction cholesterol concentrations for women rotated 
through test ground beefs low in monounsaturated fatty acids (Low 
MUFA) or high in monounsaturated fatty acids (High MUFA)1 

Lipoprotein  Low MUFA 
Baseline 

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

HDL2a, mmol/L 0.233 ± 
0.02 

0.2285 ± 
0.02 

0.2368 ± 
0.02 

0.2409 ± 
0.02 

Bouyant HDL2b, 
mmol/L 

0.6484 ± 
0.05 

0.6732 ± 
0.04 

0.6369 ± 
0.05 

0.6909 ± 
0.05 

HDL3, mmol/L 0.6743 ± 
0.02 

0.7031 ± 
0.02 

0.6892 ± 
0.02 

0.7004 ± 
0.02*** 

1 Data are means ± SE for 19 women. 
*** P ≤ 0.01 
 

VLDL and RLP particle concentration mirrored VLDL and RLP cholesterol 

increase with low-MUFA patty consumption. High-MUFA patty consumption did not 

have an effect on VLDL and RLP particle concentration (Figure 8 and Table 14). 
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FIGURE 8 Changes from baseline in VLDL and RLP particle concentration 
(nmol/L) of women rotated through test ground beefs low in monounsaturated fatty 
acids (Low MUFA) or high in monounsaturated fatty acids (High MUFA). Values 
are expressed as mean ± SEM, n = 19. **P ≤ 0.05  
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TABLE 14 VLDL and RLP particle concentrations  for women rotated through 
test ground beefs low in monounsaturated fatty acids (Low MUFA) 
or high in monounsaturated fatty acids (High MUFA)1 

Lipoprotein  Low MUFA 
Baseline 

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

VLDL, nmol/L 42.37 ± 
4.59 53 ± 5.05** 49.79 ± 4.34 51.26 ± 6.72 

RLP, nmol/L 120.68 ± 6.7 139.21 ± 8.81** 128.84 ± 9.26 137.47 ± 11.03 
1 Data are means ± SE for 19 women. 
** P ≤ 0.05 

 

Though LDL cholesterol was increased with the high-MUFA intervention, LDL, 

LDL III and LDL IV particle concentration, were not significantly increased (Figure 9 

and Table 15). The low-MUFA intervention did not have any effect on LDL or LDL 

subfraction particle concentrations. 
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FIGURE 9 Changes from baseline in LDL subfraction particle concentration 
(nmol/L) of women rotated through test ground beefs low in monounsaturated fatty 
acids (Low MUFA) or high in monounsaturated fatty acids (High MUFA). Values 
are expressed as mean ± SEM, n = 19. 
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TABLE 15 LDL and LDL subfraction particle concentrations for women rotated 
through test ground beefs low in monounsaturated fatty acids (Low 
MUFA) or high in monounsaturated fatty acids (High MUFA)1 

Lipoprotein  Low MUFA 
Baseline 

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

LDL Total, 
nmol/L 835 ± 44 842 ± 36 824 ± 46 867 ± 41 

Dense LDL III, 
nmol/L 

201 ± 
15 196 ± 9.7 186 ± 16 192 ± 14 

Dense LDL IV, 
nmol/L 81.6 ± 5.5 84.2 ± 5.2 80.3 ± 4.5 89.5 ± 7.0 
1 Data are means ± SE for 19 women. 
There were no significant differences among phases (P > 0.1) 
 

Total HDL and buoyant HDL2b particle concentration increased with the 

consumption of the high-MUFA patties, while there were no significant change in HDL 

and HDL subfraction particle concentrations (Figure 10 and Table 16). 

 

 

 

 

 

 
 
 
 
 
 

 



 67

 
FIGURE 10 Changes from baseline in HDL particle concentration (nmol/L) of 
women rotated through test ground beefs low in monounsaturated fatty acids (Low 
MUFA) or high in monounsaturated fatty acids (High MUFA). Values are 
expressed as mean ± SEM, n = 19. * P ≤ 0.10; *** P ≤ 0.01 
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TABLE 16 HDL particle concentrations for women rotated through test ground 
beefs low in monounsaturated fatty acids (Low MUFA) or high in 
monounsaturated fatty acids (High MUFA)1 

 Low MUFA 
Baseline  

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

HDL Total, 
nmol/L 10,648 ± 355 10,911 ± 370 10,723 ± 377* 11,129 ± 372 

HDL2a, nmol/L 2,141 ± 
151 

2,085 ± 
167 

2,160 ± 
183 

2,212 ± 
179 

Bouyant 
HDL3b, nmol/L 2,246 ± 172 2,327.05 ± 13 2,212 ± 181*** 2,397 ± 165 

HDL3, nmol/L 6,262 ± 
206 

6,499 ± 
254 

6,351 ± 
228 

6,520 ± 
219 

1 Data are means ± SE for 19 women. 
* P ≤ 0.10; *** P ≤ 0.01 
 
 
 

No significant differences were seen for inflammatory markers, C-reactive 

protein (hs-CRP) or homocystine. Insulin also remained unchanged (Table 17). 

 
 
 

TABLE 17 C-reactive protein, homocysteine, and insulin levels pre- and post-test 
patty consumption1 

 Low MUFA 
Baseline 

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

hs-CRP, mg/L 2.33 ± 
0.51 

2.57 ± 
0.53 

3.59 ± 
0.74 

2.45 ± 
0.59 

Insulin, uIU/ml 7.25 ± 
0.85 

7.31 ± 
0.79 

7.05 ± 
0.85 

7.49 ± 
0.83 

Homocysteine, 
µmol/L 

9.8 ± 
0.56 

9.73 ± 
0.57 

9.61 ± 
0.48 

10.13 ± 
0.63 

1 Data are means ± SE for 19 women. 
There were no significant differences among phases (P > 0.1) 
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Along with lipoprotein concentration, particle density and size was also measured, but 

no significant changes were seen (Table 18). 

 
 
 

TABLE 18 Particle density and size pre- and post-test patty consumption1 

 Low MUFA 
Baseline 

Low MUFA 
Final 

High MUFA 
Baseline 

High MUFA 
Final 

HDL mean 
density 

1.0922 ± 
0.0008 

1.0921 ± 
0.0008 

1.0928 ± 
0.0011 

1.0917 ± 
0.0009 

LDL mean 
density 

1.0294 ± 
0.0002 

1.0296 ± 
0.0002 

1.0292 ± 
0.0002 

1.0295 ± 
0.0002 

LDL mean size, 
nm 

20.18 ± 
0.02 

20.16 ± 
0.02 

20.22 ± 
0.03 

20.2 ± 
0.02 

1 Data are means ± SE for 19 women. 
There were no significant differences among phases (P > 0.1) 

 
 
 
Major plasma fatty acids were unchanged due to patty consumption (Figure 11 

and Table 19), while long chain fatty acids were consistently depressed by the low-

MUFA test patties (Figure 12 and Table 19). trans-Vaccenic acid (trans-aa) increased 

with the high-MUFA patties and trans-10, cis-12 conjugated linolenic acid (t10,c12 

CLA) increased with the low-MUFA test patties (Figure 13 and Table 19).  
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FIGURE 11 Changes from baseline in major plasma fatty acids of women rotated 
through test ground beefs low in monounsaturated fatty acids (Low MUFA) or high 
in monounsaturated fatty acids (High MUFA). Values are expressed as mean ± 
SEM, n = 19. 
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FIGURE 12 Changes from baseline in long chain plasma fatty acids of women 
rotated through test ground beefs low in monounsaturated fatty acids (Low MUFA) 
or high in monounsaturated fatty acids (High MUFA). Values are expressed as 
mean ± SEM, n = 19. ** P ≤ 0.05 
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FIGURE 13 Changes from baseline in trans plasma fatty acids of women rotated 
through test ground beefs low in monounsaturated fatty acids (Low MUFA) or high 
in monounsaturated fatty acids (High MUFA). Values are expressed as mean ± 
SEM, n = 19. * P ≤ 0.10; ** P ≤ 0.05 
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TABLE 19 Plasma fatty acid concentrations (g/100 g fatty acids) of women 
rotated through test ground beefs low in monounsaturated fatty acids 
(Low MUFA) or high in monounsaturated fatty acids (High MUFA)1 

Fatty Acid Pre Low 
MUFA 

Post Low 
MUFA 

Pre High 
MUFA 

Post High 
MUFA 

14:0 0.34± 
0.05 

0.33 ± 
0.04 

0.39 ± 
0.05 

0.45 ± 
0.06 

14:1 0.06 ± 
0.02 

0.08 ± 
0.03** 

0.05 ± 
0.02 

0.08 ± 
0.02 

16:0 18.15 ± 
0.79 

18.27 ± 
0.47 

17.12 ± 
1.07 

18.61 ± 
0.59 

16:1 0.88 ± 
0.19 

2.07 ± 
1.09 

1.25 ± 
0.23 

1.11± 
0.23 

18:0 8.63 ± 
0.61 

8.19 ± 
0.27 

8.10 ± 
0.19 

8.39 ± 
0.31 

18:1t10 0.13 ± 
0.05 

0.14 ± 
0.06 

0.08 ± 
0.03 

0.11± 
0.04 

18:1t11 0.18 ± 
0.05 

0.21 ± 
0.06 

0.11 ± 
0.03 

0.24 ± 
0.06** 

18:1 17.82 ± 
0.67 

18.59 ± 
0.59 

19.0 ± 
0.45 

19.25 ± 
0.62 

18:1c11 1.38 ± 
0.08 

1.39 ± 
0.11 

1.44 ± 
0.07 

1.45 ± 
0.05 

18:2 31.20 ± 
1.1 

32.27 ± 
1.02 

32.98 ± 
0.78 

32.17 ± 
1.11 

18:3 0.54 ± 
0.06 

0.43 ± 
0.06 

0.48 ± 
0.06 

0.51 ± 
0.05 

18:2c9t11 0.06 ± 
0.02 

0.06 ± 
0.02 

0.06 ± 
0.02 

0.07 ± 
0.02 
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TABLE 19     continued 

Fatty Acid Pre Low 
MUFA 

Post Low 
MUFA 

Pre High 
MUFA 

Post High 
MUFA 

18:2t10c12 0.06 ± 
0.02 

0.14 ± 
0.04*  

0.06 ± 
0.02 

0.08 ± 
0.03 

20:2 0.35 ± 
0.2 

0.80 ± 
0.35 

0.56± 
0.31 

0.68 ± 
0.29 

Unkn 1 2.03 ± 
0.24 

1.88 ± 
0.11 

1.88 ± 
0.1 

1.84 ± 
0.11 

20:4 7.42 ± 
0.46 

7.80 ± 
0.49 

7.50± 
0.38 

7.36 ± 
0.6541 

22:0 0.21 ± 
0.12 

0.45 ± 
0.2 

0.65± 
0.3 

0.34 ± 
0.2* 

20:5 0.44 ± 
0.08 

0.48 ± 
0.07 

0.49 ± 
0.07 

0.56 ± 
0.07 

24:0 0.31 ± 
0.04 

0.21 ± 
0.04*** 

0.29 ± 
0.04 

0.26 ± 
0.04 

24:1 0.12 ± 
0.03 

0.05 ± 
0.02** 

0.05 ± 
0.02 

0.08 ± 
0.02 

22:6 1.41 ± 
0.16 

1.20 ± 
0.14 

1.23 ± 
0.14 

1.26 ± 
0.09 

Unkn 2 2.09 ± 
0.57 

1.06 ± 
0.35** 

1.62 ± 
0.41 

1.26 ± 
0.35 

28:0 6.93 ± 
1.47 

4.16 ± 
0.93** 

6.17 ± 
1.15 

4.85 ± 
1.04 

 1 Data are means ± SE for 19 women.  
* P ≤ 0.10; ** P ≤ 0.05; ***P ≤ 0.01 
 
 

  

 



 75

 Tables 20 and 21 present correlations between plasma fatty acids and lipoprotein 

cholesterol concentrations, LDL particle and size, HDL particle density, triglycerides, 

insulin, homocysteine and hs-CRP. Palmitoleic acid was significantly increased with 

low-MUFA patty consumption. and was positively correlated with homocysteine, 

VLDL, RLP and IDL, but negatively correlated with Lp(a). t10c12 CLA also was 

increased with the low-MUFA intervention and was correlated positively with 

triglycerides, hs-crp, insulin, VLDL, RLP, and LDL and negatively correlated with HDL 

cholesterol. Plasma trans-vaccenic acid was increased with high-MUFA patty 

consumption, and was correlated positively with total cholesterol, LDL, VLDL, RLP, 

IDL, LDL III and LDL IV. The low-MUFA intervention decreased 24:0, 24:1, Unknown 

2 and 28:0 plasma concentrations (Figure 12). Lignocenic acid (24:0) was negatively 

correlated with LDL IV and Lp(a), nervonic acid (24:1) was negatively correlated with 

triglycerides, LDL III, LDL IV, LDL mean density and Lp(a). Unknown 2 was 

negatively correlated with total cholesterol, LDL, LDL III, LDL IV, HDL 2b and Lp(a) 

and motanic acid (28:0) was negatively correlated with total cholesterol, LDL IV and 

HDL 2b and positively correlated with hs-CRP and insulin. 

 



 

TABLE 20 Simple correlations between plasma fatty acids and cholesterol fractions, triglycerides, hs-CRP, insulin 
and homocysteine1 

 Total 
Cholesterol LDL       HDL TAG hs-CRP Insulin Homocysteine VLDL RLP IDL

16:0      0.28 0.29 NC NC NC NC NC NC NC NC 

16:1       

         

        

        

       

         

   

      

     

        

0.37 0.34 NC NC NC NC 0.39 0.23 0.23 NC 

18:1 NC 0.22 NC 0.44 NC NC NC 0.35 0.29 0.28 

18:1t11 NC NC NC NC NC NC NC 0.24 0.26 0.28 

18:1c11 0.33 0.33 NC 0.28 NC NC NC NC NC NC

18:2 NC NC 0.27 -0.23 -0.30 NC NC -0.29 NC NC

18:2 
c9t11 NC NC NC NC NC 0.23 NC NC NC NC

18:2 
t10c12 NC NC -0.24 0.42 0.27 0.29 NC 0.35 0.25 0.23 

20:4 NC NC 0.30 -0.47 -0.22 -0.27 NC -0.32 NC NC

22:6 NC NC NC -0.28 NC -0.26 -0.25 -0.35 -0.28 -0.27 

28:0 -0.26 NC NC NC 0.25 0.23 NC NC NC NC
1Correlations data pooled 76 measurements. 
All r values stated are significant, P ≤ 0.05; NC = no correlation 
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TABLE 21 Simple correlations between plasma fatty acids and cholesterol subfractions, HDL mean density, LDL 
particle size and density1 

 LDL III LDL IV HDL 2b HDL 2a HDL 3 
HDL 
mean 

density 

LDL 
mean 

density 

LDL 
mean 
size 

Lp(a) 

16:0         0.27 NC NC NC NC NC NC NC NC

16:1        

        

         

        

        

         

         

        

0.30 NC NC NC 0.23 NC NC NC NC

18:0 NC NC NC NC NC NC -0.23 NC 0.34 

18:1t10 NC NC NC NC 0.24 NC NC NC NC

18:1t11 NC -0.31 NC 0.25 NC NC NC NC NC

18:1c11 0.45 0.38 NC NC NC NC NC NC NC

18:2 NC NC 0.30 NC NC NC NC NC NC

20:4 NC NC 0.32 NC NC NC NC NC NC

28:0 NC -0.25 -0.24 NC NC NC NC NC NC
1Correlations data pooled 76 measurements. 
All r values stated are significant, P ≤ 0.05; NC = no correlation 
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Discussion 

This study focused on the relationship between the ground beef MUFA:SFA ratio 

impact on total lipoproteins, lipoprotein subfractions and inflammatory markers 

associated with increased CVD risk. LDL and HDL particle diameter measurement were 

used to identify the presence of particularly atherogenic LDL or antiatherogenic HDL. 

Small, dense LDL are recognized as a risk factor for CVD, as this form of LDL is more 

susceptible to oxidative damage (6, 159) and promotes vascular inflammation (160, 

161). Measurement of HDL particle diameter is important, as it can be diagnostic of 

metabolic changes leading to small dense LDL and the antioxidative capacity of HDL 

(160). 

Because of recent advances in understanding of how inflammation instigates 

CVD (6), we also measured hs-CRP (162). Although a cross-sectional study showed a 

positive association between red meat and hs-CRP (163), the current intervention study 

showed no effect of ground beef consumption and hs-CRP levels.  

The high-MUFA ground beef contained nearly 4 g more MUFA per patty than 

did the low-MUFA ground beef, mainly in the form of oleic acid. Each participant on the 

high-MUFA diet consumed nearly 20 g more MUFA per week than those consuming the 

low-MUFA ground beef. This pattern of intake was documented in the dietary records. 

We chose not to strictly control dietary intake of nutrients by participants. We stipulated 

only that the ground beef patties replaced an equal portion of meat (beef or otherwise) 

that they normally would have consumed. This encouraged compliance and allowed us 

to evaluate the effects of the test ground beef patties in a more natural, free-living 
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setting. The data indicate that the increase in HDL-C without a significant increase in 

LDL cholesterol was due to the increased consumption of MUFA, probably oleic acid. 

Changes in plasma fatty acids supported the diet dependent changes in 

lipoprotein metabolism. Overall the low-MUFA intervention negatively impacted 

plasma triglycerides and increased 14:1 and t10c12 CLA, and decreased 24:0, 24:1, 

Unknown 2, and 28:0. For the most part these changes in plasma fatty acids correlated 

with undesirable effects such as increased VLDL, RLP, IDL, triglycerides, total 

cholesterol and decreased HDL-C although not all were observed after the low-MUFA 

intervention. It is possible that the increase in HDL-Cl, specifically HDL2b, seen with the 

high-MUFA intervention was due in part to the increase in plasma 18:1t11 and decrease 

in 22:0, as these fatty acids were positively correlated with HDL-C. Few studies have 

identified 28:0 in plasma, but the negative correlation seen between 28:0 (and Unknown 

2, a possible desaturation product of 28:0) and total cholesterol is consistent with the 

cholesterol lowering effects of D003. D003 is a mixture of very long chain fatty acids 

from sugar cane wax with octaconsanoic acid (28:0) as its main component. This 

mixture inhibits cholesterol metabolism in fibroblasts by modulating 3-hydroxy-3-

methyl coenzyme A (HMG-CoA) reductase activity and possibly HMG-CoA synthase 

activity (164). 

We recently reported the effects of two high-fat, hamburger preparations on 

cholesterol metabolism in a group of mildly hypercholesterolemic men (131). In that 

study, 10 men were first fed 35% fat hamburger high in SFA and trans-fat (MUFA:SFA 

= 0.95), and then were rotated to 35% hamburger high in MUFA (MUFA:SFA = 1.31). 
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As in the current study, neither of the test hamburger patties increased LDL-C. However, 

the high-SFA hamburger significantly reduced HDL-C and increased plasma TAG; these 

values returned to baseline values after consumption of the high-MUFA hamburger. The 

high-SFA ground beef also decreased LDL particle diameter, which was reversed by the 

high-MUFA ground beef. In this study, neither the low-MUFA ground beef nor the high-

MUFA ground beef affected LDL diameters (nm), density (g/gm3), or concentration 

(mmol/dL), which indicates that neither ground beef type affected LDL risk factors for 

CVD. However, the low-MUFA ground beef increased the concentrations of VLDL and 

RLP particles, effects that were not observed in women who consumed high-MUFA 

ground beef. RLP cholesterol is derived from VLDL remnants in fasting humans (165), 

and an increase in the concentration of RLP particles is considered a risk factor for CVD 

(166, 167). A unique and positive finding of this study is that the high-MUFA ground 

beef increased buoyant HDL2b cholesterol concentration and HDL2b particle 

concentration. There is convincing evidence that, of the subclasses of HDL particles, 

HDL2b cholesterol is cardioprotective because patients with premature CVD have 

reduced HDL2b (168), and families with low HDL2b have increased carotid intima-media 

thickness (associated with CVD) (27). Thus, high-MUFA ground beef not only increased 

HDL cholesterol, it increased the most cardioprotective subclass of HDL particles. 
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CHAPTER IV 

HIGH-OLEIC GROUND BEEF, EXERCISE, AND RISK FACTORS FOR 

CARDIOVASCULAR DISEASE IN POSTMENOPAUSAL WOMEN 

 

Introduction 

 Postmenopausal women are at high risk for cardiovascular disease (CVD) (169, 

170). Dietary interventions with low total fat consumption in postmenopausal women 

have not demonstrated significant reduction in CVD risk (171). While optimal dietary 

content continues to be debated and red meat consumption is discourage by the 

American Heart Association, the major monounsaturated fatty acids (MUFA) in ground 

beef, oleic acid, has been studied in more detail and found to lower LDL-cholesterol 

without affecting the beneficial HDL-cholesterol (HDL-C) (125, 126). In contrast to 

wavering dietary recommendations, existing literature broadly supports the beneficial 

effects of a single session of exercise on blood lipids in postmenopausal women (62, 

172). Exercise results in a decrease in LDL cholesterol (LDL-C) and an increase in 

HDL-C (118, 173, 174). Even a single session of endurance exercise can beneficially 

alter serum lipids (62, 175). Additionally, studies have found a reduction in hs-CRP and 

fasting glucose levels in response to exercise (162, 176, 177). Few studies to date have 

examined the metabolic and inflammatory response to exercise in combination with an 

increase in the monounsaturated:saturated fatty acid (MUFA:SFA) ratio of beef. 

Therefore, the objective of this study was to establish the relation between the 
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MUFA:SFA ratio of ground beef and the metabolic and inflammatory responses to a 

single session of aerobic exercise in postmenopausal women. 

 

Methods 

 Subjects. Twenty-nine postmenopausal women were recruited from the local 

Bryan/College Station, Texas community. Nineteen women completed the diet portion 

of the study, while seventeen completed both the exercise and diet portions. Detailed 

subject information can be found in Chapter III.  

Study design. Detailed study design can be found in Chapter III. Briefly, 17 

women were allotted to groups for a crossover design. The participants were asked to 

consume one low- or high-MUFA patty 5d/wk during the 6 wk test periods. Patty 

composition is listed in Table 2. 

Baseline testing. At study entrance, each subject underwent a complete history, a 

DEXA scan, height and body weight measurements, and peak oxygen consumption 

assessed with an automated metabolic gas-analysis system during a maximal effort 

graded exercise test according to the Bruce protocol (178). Heart rate and rhythm were 

monitored continuously throughout the graded exercise by a 12-lead electrocardiogram 

(EKG) and a rating of perceived exertion and manual blood pressures were obtained 

during the last 30 s of each stage and at maximal exercise. Review of graded exercise, 

EKG, and health history along with a physical exam were performed by a cardiologist. 

Exercise component. At the completion of each diet phase and once in the 

washout period, the participants underwent a bout of exercise. After abstaining from any 
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physical exercise for at least 3 d and fasting for 12 h, each subject reported to the J.L. 

Huffines Institute at Texas A&M University for a 24-h pre-exercise blood sampling. The 

following day subjects returned to the laboratory to complete the sub-maximal, 

experimental exercise session. Specifically, the subjects were asked to walk on a motor-

driven treadmill at 75% of their predetermined VO2peak
 for the duration required to 

expend 500 kcal of energy. Heart rate was monitored continuously and expired gases 

were measured every 10 min of exercise with a portable metabolic system (Medical 

Graphics VO2000) to ensure that the prescribed intensity and caloric expenditure were 

maintained. The speed and grade of the treadmill was adjusted as necessary to maintain 

the required intensity and caloric expenditure. Twenty-four hours after the acute exercise 

session, fasting blood samples were obtained for post-exercise analysis.  

Collection and handling of blood samples. Blood was collected from an arm 

vein prior to initiation of the dietary treatments, at the end of each diet phase 24 h before 

and after exercise. Plasma was harvested from the blood collected with 15% EDTA. 

Serum was harvested from the blood with clot separation. All serum and plasma samples 

were stored at -80°C. 

Fatty acid composition of plasma and test ground beef. Fatty acids were 

measured in the baseline plasma, plasma taken after 6 wk of each test beef treatment, 24 

h before and 24 h after exercise and expressed as a g/100 g total fatty acids analyzed (see 

Chapter III for procedure details). 

Blood chemistry and complete blood count. Serum samples were sent on the 

same day as the draw to St. Joseph Regional Health Center Bryan, TX for a complete 
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chemistry profile. Whole blood collected in a vaccutainer tube treated with 15% EDTA 

was sent on the same day as the draw to St. Joseph Regional Health Center for a 

complete blood count. The complete blood count was performed on the blood draws 

done 24 h before and after exercise to calculate the plasma volume shift caused by the 

acute exercise session.  

Lipoprotein analysis. Serum aliquots kept at -80°C were sent to SpectraCell 

Laboratories, Inc. (Houston, TX) for complete lipoprotein density and particle number 

analyses. A complete “Lipoprotein Particle Profile™” test was provided using the 

lipoprotein subgroup particle number analysis method (179). 

Diet records. Prior to each diet phase, and once during each phase, participants 

completed a 4-d record (to include one weekend day). The diet records were analyzed 

for nutrient composition to establish baseline observations, and encourage compliance 

with total patty consumption requirement. The records were analyzed using Nutritionist 

Pro (Axxya Systems, Stafford, TX). 

Statistical analysis. Data were analyzed as a paired t-test, comparing baseline 

(habitual) values to values after 6 wk on the test diet.  Thus, each participant served as 

her own control.  Because each participant randomly rotated through all three diets, 

reported values are means ± standard error of the mean (SE) for n = 17 observations. 
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Results 

Diet records indicated a change in monounsaturated fatty acids with no 

difference in energy percentage from protein or carbohydrate (Table 22). Detailed diet 

record analysis can be found in Chapter III. 

 
 
 

TABLE 22 Percent energy from fat, carbohydrate, and protein1 

 Baseline Low MUFA High MUFA 

Fat, % 34 ± 2.3 37 ± 1.6 37 ± 1.5 

Carbohydrate, % 48 ± 2.7 44 ± 2.1 45 ± 2.5 

Protein, % 17 ± 0.8 19 ± 0.9 18 ± 0.8 
1Data were derived from 4-d, including one weekend day, diet records collected during 
each test period. Data for habitual diet were obtained at baseline before patty 
consumption began. Means ± SE for 19 women. 
 
 
 

The average energy expenditure for the three acute exercise bouts were 502 ± 

0.58 kcal which lasted an average of 77 ± 1.35 min; there were no significant differences 

in energy expenditure among bouts (Table 23).  
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TABLE 23 Average energy expenditure and exercise duration with each bout of 
exercise1 

 Acute bout 1 Acute bout 2 Acute bout 3 

Energy expenditure, 
kcals 501 ± 0.73 502 ± 0.54 503 ± 1.5 

Duration, m 79 ± 2.7 77 ± 2.4 76 ± 2.1 
1Data are means ± SE for 17 women. 
There were no significant differences among phases (P > 0.1) 
 
 
 

Plasma volume increased significantly between pre-exercise and 24-h post-

exercise for acute bout during the high-MUFA intervention (Table 24). Therefore results 

are presented as raw data and those values based on plasma volume are also presented as 

shifted to account for plasma volume changes due to exercise.   

 
 
 

TABLE 24 Plasma volume shifts due to exercise1 

Exercise bout Mean plasma shift, % 

Exercise bout during Low-MUFA intervention 1.6 ± 0.92 

Exercise bout during washout 2.4 ± 1.15 

Exercise bout during high-MUFA intervention 3.6 ± 1** 

1Data are means ± SE for 17 women. 
**P ≤ 0.05 

 
 
 
Activity records reflected no significant change in activity throughout the three 

phases (Table 25). 
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TABLE 25 Average energy expenditure per day estimated from self reported 7-d 
activity records for each study phase1 

 Phase 1 Phase 2 Phase 3 

Energy expended, 
kcal/d 2,323 ± 85 2,399 ± 104 2,413 ± 110 

1Data are means ± SE for 14 women. 
There were no significant differences among phases (P > 0.1) 
 
 
 
TABLE 26 Cholesterol concentrations in response to a single exercise session as 

the women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), high in monounsaturated 
fatty acids (High MUFA), or habitual diet (Washout)1 

 

Low 
MUFA 

pre- 
exercise 

Low 
MUFA  
post- 

exercise 

High 
MUFA 

pre- 
exercise 

High 
MUFA 
post- 

exercise 

Washout 
pre- 

exercise 

Washout  
post- 

exercise 

Raw total 
cholesterol, 
mmol/L 

5.30 ± 
0.17 

5.31 ± 
0.21 

5.26 ± 
0.22 

5.18 ± 
0.22 

5.02 ± 
0.15 

5.09 ± 
0.22 

Adjusted total 
cholesterol, 
mmol/L 

5.30 ± 
0.17 

5.39 ± 
0.22 

5.26 ± 
0.22 

5.36 ± 
0.22 

5.02 ± 
0.15 

5.21 ± 
0.22 

Raw LDL-C, 
mmol/L 

3.30 ± 
0.15 3.45 ± 

0.19 

3.34 ± 
0.17 

3.36 ± 
0.16 

3.16 ± 
0.14 

3.26 ± 
0.18 

Adjusted LDL-
C, mmol/L 

3.30 ± 
0.15 

3.50 ± 
0.19* 

3.34 ± 
0.17 

3.48 ± 
0.18* 

3.16 ± 
0.14 

3.34 ± 
0.18* 

Raw HDL-C, 
mmol/L 

1.65 ± 
0.06 

1.58 ± 
0.07 

1.64 ± 
0.08 

1.62 ± 
0.05 

1.53 ± 
0.06 

1.51 ± 
0.06 

Adjusted HDL-
C, mmol/L 

1.65 ± 
0.06 

1.61 ± 
0.07 

1.64 ± 
0.08 

1.68 ± 
0.05 

1.53 ± 
0.06 

1.54 ± 
0.06 

1Data are means ± SE for 17 women. 
*P ≤ 0.1 
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FIGURE 14 Changes from baseline in cholesterol (mmol/L) in response to a single 
exercise session as the women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), high in monounsaturated fatty acids 
(High MUFA), or habitual diet (Washout). Values are expressed as mean ± SEM, n 
= 17. 
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FIGURE 15 Changes from baseline in cholesterol (mmol/L) when adjusted for 
plasma volume shifts of women in response to a single exercise session as the 
women rotated through test ground beefs low in monounsaturated fatty acids (Low 
MUFA), high in monounsaturated fatty acids (High MUFA), or habitual diet 
(Washout). Values are expressed as mean ± SEM, n = 17.  *P ≤ 0.01. 
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The exercise bouts had no significant effect on raw total cholesterol, LDL-C, or 

HDL-C, but when values are adjusted for plasma volume shifts, an increase in LDL-C 

24 h after the exercise bout was seen during the low-MUFA intervention and the 

washout period (Table 26; Figures 14 and 15). 

 Raw triglycerides were decreased after each exercise bout with the greatest 

response during the washout period. After adjustment for plasma volume shifts only the 

decrease in triglycerides seen after exercise during the washout period remained 

significant. Both raw and shifted VLDL cholesterol levels showed a significant ground 

beef effect as levels were decreased after exercise only during ground beef intervention. 

Raw RLP cholesterol was decreased after exercise during the high-MUFA intervention, 

but this effect was not seen when values were adjusted for plasma volume shifts. No 

changes in IDL cholesterol were observed after exercise (Table 27; Figures 16 and 17). 

Both raw and shifted LDL III and LDL IV cholesterol were left unchanged after 

the exercise bout in all phases. When adjusted for plasma volume shifts, Lp(a) was 

significantly increased after exercise during the washout phase and the high-MUFA 

intervention (Table 28; Figures 18 and 19). 
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FIGURE 16 Changes from baseline in triglycerides (TAG), intermediate density 
lipoprotein (IDL), very low density lipoprotein (VLDL), and remnant lipoprotein 
(RLP) cholesterol concentration (mmol/L) of women in response to a single exercise 
session as the women rotated through test ground beefs low in monounsaturated 
fatty acids (Low MUFA), high in monounsaturated fatty acids (High MUFA), or 
habitual diet (Washout). Values are expressed as mean ± SEM, n = 17. *P < 0.01; 
**P ≤ 0.05; ***P ≤ 0.001. 
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TABLE 27 TAG, VLDL, RLP, and IDL cholesterol concentrations of women in 
response to a single exercise session as the women rotated through 
test ground beefs low in monounsaturated fatty acids (Low MUFA), 
high in monounsaturated fatty acids (High MUFA), or habitual diet 
(Washout)1 

 

Low 
MUFA 

pre- 
exercise 

Low 
MUFA  
post- 

exercise 

High 
MUFA 

pre- 
exercise 

High 
MUFA 
post- 

exercise 

Washout 
pre- 

exercise 

Washout  
post- 

exercise 

Raw 
TAG, 
mmol/L 

1.06 ± 
0.11 

0.94 ± 
0.1* 

1.11 ± 
0.11 

1.01 ± 
0.1* 

1.16 ± 
0.12 

0.94 ± 
0.07*** 

Adjusted 
TAG, 
mmol/L 

1.06 ± 
0.11 

0.96 ± 
0.1 

1.11 ± 
0.11 

1.05 ± 
0.11 

1.16 ± 
0.12 

0.96 ± 
0.07** 

Raw 
VLDL, 
mmol/L 

0.35 ± 
0.04 

0.27 ± 
0.03*** 

0.38 ± 
0.05 

0.31 ± 
0.05*** 

0.32 ± 
0.03 

0.32 ± 
0.04 

Adjusted 
VLDL, 
mmol/L 

0.35 ± 
0.04 

0.28 ± 
0.03*** 

0.36 ± 
0.05 

0.32 ± 
0.0487 

0.32 ± 
0.03 

0.33 ± 
0.04 

Raw RLP, 
mmol/L 

0.86 ± 
0.06 

0.80 ± 
0.06 

0.86 ± 
0.08 

0.79 ± 
0.08** 

0.72 ± 
0.05 

0.76 ± 
0.09 

Adjusted 
RLP, 
mmol/L 

0.86 ± 
0.06 

0.81 ± 
0.06 

0.86 ± 
0.08 

0.81 ± 
0.08 

0.72 ± 
0.05 

0.78 ± 
0.08 

Raw IDL, 
mmol/L 

0.75 ± 
0.05 

0.71 ± 
0.05 

0.75 ± 
0.06 

0.70 ± 
0.07 

0.66 ± 
0.04 

0.71 ± 
0.07 

Adjusted 
IDL, 
mmol/L 

0.75 ± 
0.05 

0.73 ± 
0.05 

0.75 ± 
0.06 

0.72 ± 
0.07 

0.66 ± 
0.04 

0.72 ± 
0.07 

1Data are means ± SE for 17 women. 
*P ≤ 0.01; **P ≤ 0.05; ***P ≤ 0.01 
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FIGURE 17 Changes from baseline in triglycerides (TAG), intermediate density 
lipoprotein (IDL), very low density lipoprotein (VLDL), and remnant lipoprotein 
(RLP) cholesterol concentration (mmol/L) when adjusted for plasma volume shift 
of women in response to a single exercise session as the women rotated through test 
ground beefs low in monounsaturated fatty acids (Low MUFA), high in 
monounsaturated fatty acids (High MUFA), or habitual diet (Washout). Values are 
expressed as mean ± SEM, n = 17. **P ≤ 0.05; ***P ≤ 0.001. 
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TABLE 28 LDL subfraction cholesterol concentrations of women in response to 
a single exercise session as the women rotated through test ground 
beefs low in monounsaturated fatty acids (Low MUFA), high in 
monounsaturated fatty acids (High MUFA), or habitual diet 
(Washout)1 

 

Low 
MUFA 

pre- 
exercise 

Low 
MUFA  
post- 

exercise 

High 
MUFA 

pre- 
exercise 

High 
MUFA 
post- 

exercise 

Washout 
pre- 

exercise 

Washout  
post- 

exercise 

Raw LDL III, 
mmol/L 

0.54 ± 
0.03 

0.51 ± 
0.03 

0.53 ± 
0.04 

0.53 ± 
0.03 

0.51 ± 
0.04 

0.52 ± 
0.03 

Adjusted 
LDL III, 
mmol/L 

0.54 ± 
0.03 

0.52 ± 
0.03 

0.53 ± 
0.04 

0.55± 
0.03 

0.51 ± 
0.04 

0.53 ± 
0.03 

Raw LDL 
IV, mmol/L 

0.18 ± 
0.01 

0.18 ± 
0.01 

0.19 ± 
0.02 

0.19 ± 
0.01 

0.18 ± 
0.01 

0.18 ± 
0.01 

Adjusted 
LDL IV, 
mmol/L 

0.18 ± 
0.01 

0.18 ± 
0.01 

0.19 ± 
0.02 

0.20 ± 
0.01 

0.18 ± 
0.01 

0.19 ± 
0.01 

Raw Lp(a), 
mmol/L 

0.71 ± 
0.19 

0.71± 
0.19 

0.67 ± 
0.19 

0.68 ± 
0.18 

0.69 ± 
0.19 

0.68 ± 
0.18 

Adjusted 
Lp(a), 
mmol/L 

0.71 ± 
0.19 

0.72 ± 
0.19 

0.67 ± 
0.19 

0.71 ± 
0.19** 

0.69 ± 
0.19 

0.71 ± 
0.19* 

1Data are means ± SE for 17 women. 
*P ≤ 0.1; **P ≤ 0.05 
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FIGURE 18 Changes from baseline in LDL subfraction cholesterol concentrations 
(mmol/L) of women in response to a single exercise session as the women rotated 
through test ground beefs low in monounsaturated fatty acids (Low MUFA), high 
in monounsaturated fatty acids (High MUFA), or habitual diet (Washout). Values 
are expressed as mean ± SEM, n = 17. 
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FIGURE 19 Changes from baseline in LDL subfraction cholesterol concentrations 
(mmol/L) when adjusted for plasma volume shift of women in response to a single 
exercise session as the women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), high in monounsaturated fatty acids 
(High MUFA), or habitual diet (Washout). Values are expressed as mean ± SEM, n 
= 17. *P ≤ 0.01; **P ≤ 0.05.  
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 Raw buoyant HDL2b was decreased as a result of a high-MUFA exercise 

interaction, but when adjusted for plasma volume shifts no effect of exercise was 

observed (Table 29; Figures 20 and 21).  

 
 
 
TABLE 29 HDL subfraction cholesterol concentrations of women in response to 

a single exercise session as the women rotated through test ground 
beefs low in monounsaturated fatty acids (Low MUFA), high in 
monounsaturated fatty acids (High MUFA), or habitual diet 
(Washout)1 

 

Low 
MUFA 

pre- 
exercise 

Low 
MUFA  
post- 

exercise 

High 
MUFA 

pre- 
exercise 

High 
MUFA 
post- 

exercise 

Washout 
pre- 

exercise 

Washout  
post- 

exercise 

Raw 
HDL2a, 
mmol/L 

0.24 ± 
0.02 

0.22 ± 
0.02 

0.26 ± 
0.02 

0.25 ± 
0.02 

0.21 ± 
0.02 

0.20 ± 
0.02 

Adjusted 
HDL2a, 
mmol/L 

0.24 ± 
0.02 

0.23 ± 
0.02 

0.26 ± 
0.02 

0.26 ± 
0.02 

0.21 ± 
0.02 

0.21 ± 
0.02 

Raw 
HDL2b, 
mmol/L 

0.70 ± 
0.03 

0.67 ± 
0.04 

0.72 ± 
0.05 

0.67 ± 
0.04* 

0.64 ± 
0.05 

0.63 ± 
0.04 

Adjusted 
HDL2b, 
mmol/L 

0.70 ± 
0.03 

0.68 ± 
0.04 

0.72 ± 
0.05 

0.70 ± 
0.04 

0.64 ± 
0.05 

0.64 ± 
0.04 

HDL3, 
mmol/L 

0.70 ± 
0.03 

0.69 ± 
0.02 

0.71 ± 
0.02 

0.70 ± 
0.02 

0.69 ± 
0.02 

0.67 ± 
0.02 

HDL3, 
mmol/L 

0.70± 
0.03 

0.70 ± 
0.02 

0.71 ± 
0.02 

0.72 ± 
0.02 

0.69± 
0.02 

0.69 ± 
0.02 

1Data are means ± SE for 17 women. 
*P ≤ 0.01 
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FIGURE 20 Changes from baseline in HDL subfraction cholesterol 
concentrations (mmol/L) of women in response to a single exercise session as the 
women rotated through test ground beefs low in monounsaturated fatty acids (Low 
MUFA), high in monounsaturated fatty acids (High MUFA), or habitual diet 
(Washout). Values are expressed as mean ± SEM, n = 17. *P ≤ 0.01 
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FIGURE 21 Changes from baseline in HDL subfraction cholesterol 
concentrations (mmol/L) when adjusted for plasma volume shift of women in 
response to a single exercise session as the women rotated through test ground beefs 
low in monounsaturated fatty acids (Low MUFA), high in monounsaturated fatty 
acids (High MUFA), or habitual diet (Washout). Values are expressed as mean ± 
SEM, n = 17. 
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 Raw VLDL particle concentrations mirrored concentrations of RLP cholesterol 

and were decreased after exercise during both low- and high-MUFA interventions, but 

not during the washout period. This effect remained when values were adjusted for 

plasma volume shifts. Raw RLP particle concentration is also decreased after exercise 

with both beef interventions, but not during the washout period. When adjusted for 

plasma volume shifts, no effect was observed for RLP particle concentrations (Table 30; 

Figures 22 and 23).    

 
 
 
TABLE 30 VLDL and RLP particle concentrations of women in response to a 

single exercise session as the women rotated through test ground 
beefs low in monounsaturated fatty acids (Low MUFA), high in 
monounsaturated fatty acids (High MUFA), or habitual diet 
(Washout)1 

 

Low 
MUFA 

pre- 
exercise 

Low 
MUFA  
post- 

exercise 

High 
MUFA 

pre- 
exercise 

High 
MUFA 
post- 

exercise 

Washout 
pre- 

exercise 

Washout  
post- 

exercise 

Raw VLDL, 
nmol/L 

53.41 ± 
5.53 

39.12 ± 
4.6*** 

53.41 ± 
7.4 

46.29 ± 
7.18*** 

48.29 ± 
4.2 

48.35 ± 
6.35 

Adjusted 
VLDL, 
nmol/L 

53.41 ± 
5.53 

39.87 ± 
4.73*** 

53.41 ± 
7.4 

47.80 ± 
7.26** 

48.29 ± 
4.2 

49.13 ± 
6.17 

Raw RLP, 
nmol/L 

141.82 ± 
9.67 

127.41± 
10.14** 

139.47± 
12.59 

127.59 ± 
13.64** 

121.76 ± 
8.48 

127.76 ± 
14.24 

Adjusted 
RLP, nmol/L 

141.82 ± 
9.67 

129.85 ± 
10.63 

139.47± 
12.59 

131.88 ± 
13.76 

121.76 ± 
8.48 

130.01 ± 
14.08 

1Data are means ± SE for 17 women. 
**P ≤ 0.05; ***P ≤ 0.01 
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FIGURE 22 Changes from baseline in VLDL and RLP particle concentrations 
(nmol/L) in response to a single exercise session as the women rotated through test 
ground beefs low in monounsaturated fatty acids (Low MUFA), high in 
monounsaturated fatty acids (High MUFA), or habitual diet (Washout). Values are 
expressed as mean ± SEM, n = 17. **P ≤ 0.05; ***P ≤ 0.001. 
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FIGURE 23 Changes from baseline in VLDL and RLP particle concentrations 
(nmol/L) changes from baseline when adjusted for plasma volume shifts in response 
to a single exercise session as the women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), high in monounsaturated fatty acids 
(High MUFA), or habitual diet (Washout).  Values are expressed as mean ± SEM, n 
= 17. **P ≤ 0.05; ***P ≤ 0.001. 
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LDL particle concentration, when adjusted for plasma volume shifts, was 

increased after exercise during the high-MUFA intervention. No other effects were seen 

for LDL total, LDL III, and LDL particle concentrations (Table 31; Figures 24 and 25).   

 

TABLE 31 LDL particle concentrations in response to a single exercise session as 
the women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), high in monounsaturated 
fatty acids (High MUFA), or habitual diet (Washout)1 

 

Low 
MUFA 

pre- 
exercise 

Low 
MUFA  
post- 

exercise 

High 
MUFA 

pre- 
exercise 

High 
MUFA 
post- 

exercise 

Washout 
pre- 

exercise 

Washout  
post- 

exercise 

Raw LDL, 
nmol/L 

869.4± 
37.3 

893.9 ± 
48.8 

880.9± 
43.8 

882.3± 
42.3 

824.5 ± 
41.8 

843.2± 
48.3 

Adjusted 
LDL, nmol/L 

869.4 ± 
37.3 

908.2 ± 
50.3 

880.9 ± 
43.8 

915.2 ± 
46.5* 

824.5 ± 
41.8 

862.3 ± 
49.6 

Raw LDL III, 
nmol/L 

199 ± 
10.4 

186.9± 
11.9 

194.8 ± 
15.4 

193.18± 
11.5 

185.3 ± 
13.4 

179.7 ± 
10.5 

Adjusted 
LDL III, 
nmol/L 

199.0 ± 
10.4 

189.9 ± 
12.3 

194.7 ± 
15.4 

200.6 ± 
12.7 

185.3 ± 
13.4 

183.8 ± 
10.8 

Raw LDL 
IV, nmol/L 

86 ± 
5.4 

86.3 ± 
4.9 

92.7 ± 
7.5 

89.18 ± 
6.4 

85.1 ± 
5.3 

88.2 ± 
4.5 

LDL IV, 
nmol/L 

86 ± 
5.4 

87.7 ± 
5.0 

92.7 ± 
7.5 

92.6 ± 
6.9 

85.1 ± 
5.3 

90.4 ± 
4.8 

1Data are means ± SE for 17 women. 
P ≤ 0.1 
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FIGURE 24 Changes from baseline in LDL subfraction particle concentrations 
(nmol/L) in response to a single exercise session as the women rotated through test 
ground beefs low in monounsaturated fatty acids (Low MUFA), high in 
monounsaturated fatty acids (High MUFA), or habitual diet (Washout). Values are 
expressed as mean ± SEM, n = 17. 
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FIGURE 25 Changes from baseline in LDL subfraction particle concentration 
(nmol/L) when adjusted for plasma volume shifts in response to a single exercise 
session as the women rotated through test ground beefs low in monounsaturated 
fatty acids (Low MUFA), high in monounsaturated fatty acids (High MUFA), or 
habitual diet (Washout). Values are expressed as mean ± SEM, n = 17. *P ≤ 0.10. 
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Exercise and exercise diet interactions had no significant effect on HDL total and 

subclasses particle concentrations (Table 32; Figures 26 and 27). 

 
 
 
TABLE 32 HDL particle concentrations in response to a single exercise session 

as the women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), high in monounsaturated 
fatty acids (High MUFA), or habitual diet (Washout)1 

 

Low 
MUFA 

pre- 
exercise 

Low 
MUFA  
post- 

exercise 

High 
MUFA 

pre- 
exercise 

High 
MUFA 
post- 

exercise 

Washout 
pre- 

exercise 

Washout  
post- 

exercise 

Raw HDL, 
nmol/L 

11,285± 
348 

10,879 ± 
358 

11,370 ± 
390 

11,107 ± 
265 

10,612 ± 
318 

10,434± 
346 

Adjusted HDL, 
nmol/L 

11,285 ± 
348 

11,050 ± 
383 

11,370 ± 
390 

11,486 ± 
256 

10,612 ± 
318 

10,661 ± 
344 

Raw HDL2a, 
nmol/L 

2,268 ± 
173 

2,083 ± 
182 

2,399 ± 
177 

2,294 ± 
150 

1,937 ± 
147 

1,921 ± 
142 

Adjusted HDL2a, 
nmol/L 

2,268 ± 
173 

2,115 ± 
187 

2,399 ± 
177 

2,365 ± 
147 

1,937 ± 
147 

1,961 ± 
143 

Raw HDL2b, 
nmol/L 

2,424 ± 
131 

2,320 ± 
146 

2,475 ± 
173 

2,361 ± 
136 

2,206 ± 
166 

2,202 ± 
141 

Adjusted HDL2b, 
nmol/L 

2,423 ± 
131 

2,356 ± 
150 

2,474 ± 
173 

2,444 ± 
142 

2,206 ± 
166 

2,248 ± 
142 

Raw HDL3, 
nmol/L 

6,593 ± 
246 

6,476 ± 
213 

6,496 ± 
235 

6,452 ± 
181 

6,470 ± 
209 

6,311 ± 
245 

Adjusted HDL3, 
nmol/L 

6,593 ± 
246 

6,579 ± 
231 

6,496 ± 
235 

6,678 ± 
189 

6,470 ± 
209 

6,452 ± 
248 

1Data are means ± SE for 17 women. 
There were no significant differences among phases (P > 0.1) 
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FIGURE 26 Changes from baseline in HDL lipoprotein particle concentration 
(nmol/L) in response to a single exercise session as the women rotated through test 
ground beefs low in monounsaturated fatty acids (Low MUFA), high in 
monounsaturated fatty acids (High MUFA), or habitual diet (Washout). Values are 
expressed as mean ± SEM, n = 17. 
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FIGURE 27 Changes from baseline in HDL lipoprotein particle concentration 
(nmol/L) when adjusted for plasma volume in response to a single exercise session 
as the women rotated through test ground beefs low in monounsaturated fatty acids 
(Low MUFA), high in monounsaturated fatty acids (High MUFA), or habitual diet 
(Washout). Values are expressed as mean ± SEM, n = 17. 
 

 

 



 109

hs-CRP was significantly increased after the exercise bout in all three phases. 

This effect remained after adjustments for plasma volume shift were made. 

Homocysteine was significantly increased after exercise during the washout phase. After 

adjustment for plasma volume shifts, this effect became more significant. Insulin was 

unchanged after exercise (Table 33). 

 
 
 
TABLE 33 C-reactive protein, homocysteine and insulin levels in response to a 

single exercise session as the women rotated through test ground 
beefs low in monounsaturated fatty acids (Low MUFA), high in 
monounsaturated fatty acids (High MUFA), or habitual diet 
(Washout)1 

 

 
Low 

MUFA 
Pre 

Exercise 

Low 
MUFA 

Post 
Exercise 

High 
MUFA 

Pre 
Exercise 

High 
MUFA 

Post 
Exercise 

Washout 
Pre 

Exercise 

Washout 
Post 

Exercise 

Raw hs-CRP, 
mg/L 

2.32 ± 
0.45 

2.98 ± 
0.72* 

2.261 ± 
0.58 

3.39 ± 
0.73** 

1.98 ± 
0.42 

2.91 ± 
0.69** 

Adjusted hs-
CRP, mg/L 

2.32 ± 
0.45 

3.26 ± 
0.74* 

2.26 ± 
0.58 

3.78 ± 
0.73** 

1.98 ± 
0.42 

2.97 ± 
0.71** 

Raw insulin, 
µIU/ml 

6.88 ± 
0.79 

6.18 ± 
0.73 

7.28 ± 
0.9 

6.36 ± 
0.51 

6.51 ± 
0.57 

6.78 ± 
0.63 

Adjusted 
insulin, µIU/ml 

6.88 ± 
0.79 

6.30 ± 
0.77 

7.28 ± 
0.9 

6.57 ± 
0.52 

6.51 ± 
0.57 

6.92 ± 
0.63 

Raw 
homocysteine, 
µmol/L 

9.71 ± 
0.62 

9.49 ± 
0.44 

9.85 ± 
0.72 

9.78 ± 
0.78 

9.28 ± 
0.48 

9.94 ± 
0.64* 

Adjusted 
homocysteine, 
µmol/L 

9.71 ± 
0.62 

9.64 ± 
0.47 

9.85 ± 
0.72 

10.11 ± 
0.78 

9.28 ± 
0.48 

10.16 ± 
0.65** 

1Data are means ± SE for 17 women. 
*P ≤ 0.1; **P ≤ 0.05; 
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HDL mean density and LDL size increased while LDL mean density decreased 

after exercise during the low-MUFA intervention. HDL density was increased after 

exercise during the high-MUFA intervention. There were no changes in HDL or LDL 

mean density or LDL size after exercise during the washout period (Table 34). 

 
 
 
TABLE 34 Particle density and size in response to a single exercise session as the 

women rotated through test ground beefs low in monounsaturated 
fatty acids (Low MUFA), high in monounsaturated fatty acids (High 
MUFA), or habitual diet (Washout)1 

 

Low 
MUFA 

Pre 
Exercise 

Low 
MUFA 

Post 
Exercise 

High 
MUFA 

Pre 
Exercise 

High 
MUFA 

Post 
Exercise 

Washout 
Pre 

Exercise 

Washout 
Post 

Exercise 

HDL mean 
density 

1.0918 ± 
0.0008 

1.0938 ± 
0.0011*** 

1.0912 ± 
0.0009 

1.0931 ± 
0.001** 

1.0877 ± 
0.005 

1.0916 ± 
0.0009 

LDL mean 
density 

1.0295 ± 
0.0002 

1.0287 ± 
0.0002** 

1.0296 ± 
0.0002 

1.0293 ± 
0.0002 

1.0292 ± 
0.0003 

1.0295 ± 
0.0003 

LDL mean 
size, nm 

20.17 ± 
0.02 

20.27 ± 
0.03*** 

20.19 ± 
0.02 

20.22 ± 
0.02 

20.22 ± 
0.03 

20.20 ± 
0.03 

1Data are means ± SE for 17 women. 
 **P ≤ 0.05; ***P ≤ 0.01 
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 Plasma fatty acids are expressed as g/100 g fatty acids (Table 35). Because the 

values have no dependence on plasma volume, no adjustment for plasma volume shifts 

was needed. Palmitoleic acid, cis-vaccenic, and α-linolenic were decreased after exercise 

only during the high-MUFA intervention. Oleic acid was decreased after exercise during 

the washout period and high-MUFA intervention. Plasma 20:2 was increased with 

exercise during the washout period. c9t11 CLA, unknown 1 and 20:5 were decreased 

during the low-MUFA intervention after the exercise bout (Figures 28 and 29; Table 35). 

 
 
 
TABLE 35 Plasma fatty acid levels in response to a single exercise session as the 

women rotated through test ground beefs low in monounsaturated 
fatty acids (Low MUFA), high in monounsaturated fatty acids (High 
MUFA), or habitual diet (Washout)1 

Fatty 
Acid 

Pre Low 
MUFA 

Post Low 
MUFA 

Pre 
Washout 

Post 
Washout 

Pre High 
MUFA 

Post High 
MUFA 

14:0 0.32 ± 
0.05 

0.31 ± 
0.05 

0.42 ± 
0.05 

0.36 ± 
0.06 

0.43 ± 
0.02 

0.38 ± 
0.03 

14:1 0.07 ± 
0.02 

0.08 ± 
0.03  

0.05 ± 
0.02 

1.28 ± 
1.21 

0.09 ± 
0.01 

0.08 ± 
0.01 

16:0 18.35 ± 
0.52 

18.32 ± 
0.78 

17.71 ± 
1.27 

16.14 ± 
1.33 

18.56 ± 
0.24 

17.66 ± 
0.25  

16:1 2.15 ± 
1.22 

0.99 ± 
0.22 

1.09 ± 
0.21 

0.95 ± 
0.19 

1.12 ± 
0.09 

1.0 ± 
0.08* 

18:0 8.20 ± 
0.30 

8.20 ± 
0.30 

8.62 ± 
0.71 

8.19 ± 
0.32 

8.37 ± 
0.12 

8.0 ± 
0.09 

18:1t10 0.13 ± 
0.06 

0.09 ± 
0.05 

0.10 ± 
0.04 

0.10 ± 
0.04 

0.12 ± 
0.02 

0.09 ± 
0.01 

18:1t11 0.22 ± 
0.06 

0.11 ± 
0.03 

0.15 ± 
0.05 

0.21 ± 
0.07 

0.26 ± 
0.03 

0.24 ± 
0.02 

18:1 18.57 ± 
0.66 

18.13 ± 
0.75 

19.0 ± 
0.38 

17.44 ± 
0.58** 

19.28 ± 
0.25 

17.35 ± 
0.18*** 

18:1c11 1.37 ± 
0.12 

1.42 ± 
0.09 

1.45 ± 
0.08 

1.42 ± 
0.09 

1.45 ± 
0.02 

1.35 ± 
0.03 

18:2 32.14 ± 
1.13 

31.57 ± 
1.17  

31.71 ± 
1.23 

30.75 ± 
1.06 

31.94 ± 
0.44 

31.55 ± 
0.44 
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TABLE 35 Continued 

Fatty Acid Pre Low 
MUFA 

Post Low 
MUFA 

Pre 
Washout 

Post 
Washout 

Pre High 
MUFA 

Post 
High 

MUFA 

18:3 0.42 ± 
0.07 

0.37 ± 
0.05 

0.54 ± 
0.07 

0.45 ± 
0.03 

0.52 ± 
0.02 

0.45 ± 
0.03* 

18:2c9t11 0.07 ± 
0.02  

0.04 ± 
0.02* 

0.06 ± 
0.02 

0.05 ± 
0.03 

0.07 ± 
0.01 

0.04 ± 
0.01 

18:2t10c12 0.11 ± 
0.04 

0.05 ± 
0.02 

0.04 ± 
0.02 

0.05 ± 
0.02 

0.08 ± 
0.01 

0.10 ± 
0.01  

20:2 0.67 ± 
0.37 

0.28 ± 
0.13 

0.32 ± 
0.20 

0.91 ± 
0.37* 

0.72 ± 
0.12 

0.47 ± 
0.11 

Unkn 1 1.88 ± 
0.12 

1.69 ± 
0.11*** 

2.13 ± 
0.27 

1.86 ± 
0.14 

1.86 ± 
0.04 

1.79 ± 
0.04 

20:4 8.05 ± 
0.51 

10.53 ± 
2.38 

7.17 ± 
0.28 

7.83 ± 
0.79 

7.36 ± 
0.26 

7.78 ± 
0.19 

22:0 0.19 ± 
0.12 

0.07 ± 
0.03 

0.53 ± 
0.31 

0.42 ± 
0.25  

0.36 ± 
0.08 

0.43 ± 
0.09 

20:5 0.50 ± 
0.08 

0.41 ± 
0.08** 

0.54 ± 
0.11 

0.45 ± 
0.08 

0.57 ± 
0.03 

0.51 ± 
0.03 

24:0 0.22 ± 
0.04 

0.25 ± 
0.04 

0.27 ± 
0.05 

0.38 ± 
0.09 

0.26 ± 
0.02 

0.25 ± 
0.02 

24:1 0.06 ± 
0.02 

0.07 ± 
0.02 

0.08 ± 
0.02 

0.11 ± 
0.04 

0.09 ± 
0.01 

0.07 ± 
0.01 

22:6 1.29 ± 
0.15 

1.28 ± 
0.13 

1.34 ± 
0.14 

1.25 ± 
0.19 

1.25 ± 
0.04 

1.16 ± 
0.06 

Unkn 2 1.11 ± 
0.39 

1.15 ± 
0.23 

1.67 ± 
0.46 

2.18 ± 
0.53 

1.31 ± 
0.14 

2.13 ± 
0.19 

28:0 4.19 ± 
1.04 

4.58 ± 
0.70 

6.21 ± 
1.26 

7.21 ± 
1.49 

5.0 ± 
0.42 

7.14 ± 
0.55 

1Data are means ± SE for 17 women. 
*P ≤ 0.01; **P ≤ 0.05; ***P ≤ 0.01 
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FIGURE 28 Changes from baseline in major plasma fatty acids in response to a 
single exercise session as the women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), high in monounsaturated fatty acids 
(High MUFA), or habitual diet (Washout). Values are expressed as mean ± SEM, n 
= 17. **P ≤ 0.05; P ≤ 0.01  
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FIGURE 29 Change from baseline in trans plasma fatty acids in response to a 
single exercise session as the women rotated through test ground beefs low in 
monounsaturated fatty acids (Low MUFA), high in monounsaturated fatty acids 
(High MUFA), or habitual diet (Washout). Values are expressed as mean ± SEM, n 
= 17. P ≤ 0.10 
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Discussion 

 Adjusting values due to plasma volume shifts is controversial. Some consider the 

adjustment for plasma volume changes essential when comparing pre- and post-exercise 

markers so as to not confuse exercise effects with simple changes in plasma volume. 

Others confirm that plasma volume shifts as a result of exercise, but argue that it is the 

concentration of the parameter that is of most biological significance, irrespective of 

plasma volume shifts. To address both exercise effects independent of volume shifts and 

potential biological effects, both raw and adjusted data were presented. Whereas most 

exercise reduces plasma volume, many other factors like hydration, heat stress, physical 

training, exercise duration and exercise intensity can influence plasma volume. 

Frequently, variation in findings can be attributed to plasma volume shifts and whether 

or notadjustments were made (180). In this study, an average increase in plasma volume 

was observed in each phase, but was statistically significant only after exercise during 

the high-MUFA intervention. This increase in plasma volume most likely was due to 

access to water during exercise and encouraged fluid consumption post-exercise. 

 Activity records reported desired consistent activity throughout the three study 

phases. When estimated calories burned from the activity records are compared to 

caloric intake, a negative energy balance was suggested. In light of the suggested 

negative energy balance, stable weight was maintained throughout the study. The 

discrepancy may be due to under-reporting or estimating dietary intake and over-

reporting or estimating activity.   
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 Although exercise is a common recommendation for increasing HDL-C, no 

change in HDL-C or HDL particle number with exercise was seen in this study. Also, no 

changes in the HDL subfractions were observed except a decrease in buoyant HDL2b 

after exercise during the high-MUFA intervention. Measurements were taken only at 24-

h post-exercise and many of studies reported an increase in HDL-C either immediately 

after exercise (62, 122) or at 48-h post-exercise (122). Gordon et al. (122) attributes the 

delayed response in adjusted HDL-C to an exercise session lasting less than 2 h which 

was the case for the current study. The women in this study, though postmenopausal, had 

higher than average baseline HDL-C. It is possible a larger volume of work is required 

to elicit a post-exercise increase in HDL-C when baseline levels are high (181). During a 

diet intervention x exercise interaction study in which sedentary men were supplemented 

omega-3 fatty acids, no change in total HDL-C or HDL-C subfractions was observed 

after the 3 d of exercise. The current study only utilized one isolated bout of exercise, 

and no change in HDL particle distribution was observed. 

 Raw and adjusted triglycerides were decreased after exercise along with a 

reduction in raw VLDL after exercise during both ground beef interventions. An 

increase in lipoprotein lipase after exercise may be responsible for the reduction in 

VLDL, other triglyceride rich lipoproteins, and triglycerides (182). A beneficial increase 

in LDL diameter was observed after exercise during the low-MUFA intervention, which 

was consistent to the exercise effects seen after three consecutive days of exercise (181). 

 An increase in inflammatory markers is viewed as a negative (8). Raw hs-CRP 

was increased after every bout of exercise, but was elevated acutely as a response to the 
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stress of exercise. When individuals train over time, the inflammatory response to 

exercise is reduced (183). Treadmill walking induces microtrauma to the muscle fibers 

resulting in an acute inflammatory state and leads to muscle repair and hypertrophy 

(184). Cholesterol and fatty acids are an important component of cellular membranes. As 

muscles repair and grow, the demand for cholesterol increases. The increased cellular 

need for cholesterol and fatty acids after exercise for muscle repair and growth (185), 

may explain the shift in lipoprotein metabolism seen in this study. LDL cholesterol and 

LDL particle size increased and triglycerides and VLDL decreased. That mirrors the 

increased extrahepatic tissue demand for cholesterol and fatty acids necessary for muscle 

repair and growth. The reduction in HDL2b supports this notion as reverse cholesterol 

transport is likely reduced during this time of skeletal muscle repair and growth.  

 In summary, an acute bout of exercise independent and in conjunction with 

dietary interventions can elicit beneficial effects such as a reduction in plasma 

triglycerides, VLDL, and RLP along with an increase in LDL diameter. 
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CHAPTER V  

CONCLUSIONS  

 

 As time progresses more diseases stemming from poor lifestyle choices, like 

CVD, are plaguing industrialized nations. The evaluation of diet and exercise regimens 

to prevent such diseases would therefore seem important.  Epidemiological studies have 

shown that red meat consumption is associated with an increased risk of CVD (186, 

187), but the epidemiological data remain unclear (188) Red meat contributes important 

nutrients to the diet, including iron, vitamin B12, and high-quality protein (189), but 

recommendations for a “heart healthy” diet do not encourage red meat consumption 

likely due to its saturated fat content (190). The fatty acid profiles in beef can be altered 

through production methods including feed type, length of feeding, age at time of 

slaughter and genetics of the cattle (131, 132, 139). The present studies aimed to 

evaluate the effect of different fatty acids in beef on CVD risk factors. An earlier, 

recently published study was designed similarly to the present studies, and evaluated the 

effects of the MUFA:SFA ratio of hamburger on lipoprotein and lipid profiles in mildly 

hypercholesterolemic men. When looking at the overall effects of the MUFA:SFA ratio 

of ground beef on major cholesterol fractions and triglycerides, one effect remains 

consistent through three independent studies: the high-MUFA ground beef (MUFA:SFA 

≥ 1.10) significantly increased HDL cholesterol (Table 36). While many other risk factor 

are associated with CVD and are evaluated in the present studies total HDL cholesterol 

is most consistently negatively associated with CVD risk (191). 
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TABLE 36 Overall effects of MUFA:SFA ratio of ground beef on major 
cholesterol fractions and triglycerides1 

 MUFA:SFA effect on cholesterol fractions and triglycerides 
Study 1 0.71 0.83 1.10 
 Total ±2 Total ± Total ± 
 LDL  ± LDL  ± LDL  ± 
 HDL ± HDL ± HDL ↑ 
 TAG ± TAG ± TAG ± 
    
Study 2  0.90 1.3 
  Total ± Total ↑ 
  LDL  ± LDL  ↑ 
  HDL ± HDL ↑ 
  TAG ± TAG ± 
    
Study 3  0.95 1.31 
  Total --- Total --- 
  LDL  ± LDL  ± 
  HDL ↓ HDL ↑ 
  TAG ↑ TAG ↓ 
1Study 1 = Study from Chapter II, Study 2 = Study from Chapter III, Study 3 = Adams et 
al. (131). 
2± = no change, --- = not reported, ↑ = increased, ↓ = decreased 
 
 

 

 It is not the intention of the study to recommend daily consumption of one high-

MUFA ground beef serving, but these studies failed to show consistent negative effects 

of ground beef intake. These studies argue that ground beef, especially high-MUFA 

ground beef, can be incorporated into a healthy diet to provide beneficial health effects 

with exercise or diet alone. To further evaluate the inconsistent negative effects of 

ground beef seen in these studies such as, increased HDL density, LDL, VLDL, RLP 

and IDL cholesterol additional studies which measure theses biomarkers are needed. 
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When diet influenced lipid metabolism, exercise attenuated the diet effects returning the 

cholesterol concentrations to baseline. 

 The area of lipoprotein metabolism, especially that of HDL subfractions and 

functionality, has many unanswered questions (12). It is known total HDL cholesterol is 

a strong negative predictor of CVD events. Desired characteristics of HDL and HDL 

subfractions are equivocal. Even less is known about the effects of dietary interventions 

on HDL functionality. As more is learned about lipoprotein metabolism and 

functionality, how it relates to the CVD process and the impacts of diet and exercise, 

reliable recommendations to improve or preserve health can be given.   
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