

AN EXACT ALGORITHM FOR OPTIMAL AREAL POSITIONING PROBLEM

WITH RECTANGULAR TARGETS AND REQUESTS

A Thesis

by

MANISH BANSAL

Submitted to the Office of Graduate Studies of
Texas A&M University

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2010

Major Subject: Industrial Engineering

AN EXACT ALGORITHM FOR OPTIMAL AREAL POSITIONING PROBLEM

WITH RECTANGULAR TARGETS AND REQUESTS

A Thesis

by

MANISH BANSAL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Kiavash Kianfar
Committee Members, Wilbert Wilhelm
 Thomas Schlumprecht
Head of Department, Brett Peters

December 2010

Major Subject: Industrial Engineering

 iii

ABSTRACT

An Exact Algorithm for Optimal Areal Positioning Problem with Rectangular Targets

and Requests (December 2010)

Manish Bansal, B.Tech., N.I.T.K. India

Chair of Advisory Committee: Dr. Kiavash Kianfar

In this thesis, we introduce a new class of problems, which we call Optimal Areal

Positioning (OAP), and study a special form of these problems. OAPs have important

applications in earth observation satellite management, tele-robotics, multi-camera

control, and surveillance. In OAP, we would like to find the optimal position of a set of

floating geometric objects (targets) on a two-dimensional plane to (partially) cover

another set of fixed geometric objects (requests) in order to maximize the total reward

obtained from covered parts of requests. In this thesis, we consider the special form of

OAP in which targets and requests are parallel axes rectangles and targets are of equal

size. A predetermined reward is associated with covering an area unit of each request.

Based on the number of target rectangles, we classify rectangular OAP into two

categories: Single Target Problem (STP) and Multi-Target Problem (MTP). The

structure of MTP can be compared to the planar p-center which is NP-complete, if p is

part of the input. In fact, we conjecture that MTP is NP-complete. The existing literature

does not contain any work on MTP. The research contributions of this thesis are as

follows:

 We develop new theoretical properties for the solution of STP and devised a

new solution approach for it. This approach is based on a novel branch-and-

bound (BB) algorithm devised over a reduced solution space. Branching is done

using a clustering scheme. Our computational results show that in many cases

our approach significantly outperforms the existing Plateau Vertex Traversal

 iv

and brute force algorithms, especially for problems with many requests

appearing in clusters over a large region.

 We perform a theoretical study of MTP for the first time and prove several

theoretical properties for its solution. We have introduced a reduced solution

space using these properties. We present the first exact algorithm to solve MTP.

This algorithm has a branch-and-bound framework. The reduced solution space

calls for a novel branching strategy for MTP. The algorithm has a main branch-

and-bound tree with a special structure along with two trees (one for each axis) to

store the information required for branching in the main tree in an efficient

format. Branching is done using a clustering scheme. We perform computational

experiments to evaluate the performance of our algorithm. Our algorithm solves

relatively large instances of MTP in a short time.

 v

DEDICATION

This thesis is dedicated to all my teachers, particularly to my first teacher and one

of the best teachers in my life, my Mother, Mrs. Raksha Bansal. She helps me to

maintain a constant focus for my education and career development. It is also dedicated

to my father, Mr. YashPal Bansal, who teaches me the lessons of hard work and honesty.

He has inculcated in me the capability to solve wide variety of problems in real life.

This thesis is also dedicated to my younger brother, Aayush Bansal, my paternal

uncles, Mr. Subhash Bansal and Prof. C.P. Bansal, and all other family members for

their unstinted support. It is also dedicated to all my math’s teachers in high school

especially Mr. Shyam, Mr. Narender Gupta and Ms Meera, and all my friends. Finally, I

would like to dedicate this thesis to my advisor, Dr. Kiavash Kianfar, for inspiring me to

take challenging research. He has taught me to make my way through the toughest

problems in the world, not only in mathematics but also in real life.

 vi

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Kianfar, and my committee

members, Dr. Wilhelm, and Dr. Schlumprecht, for their guidance and support

throughout the course of this research.

Thanks also go to my friends and colleagues for their encouragement. Special

thanks to my friend, Chandan Aggarwal, for introducing me to the webpage of Dr. Song.

Finally, thanks to my department faculty and staff, external faculty and campus

employers for making my time at Texas A&M University a great experience.

 vii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

AKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

CHAPTER

 I INTRODUCTION .. 1

 1.1 Optimal Areal Positioning (OAP): An Introduction 1
 1.2 Contributions ... 2
 1.3 Organization of the Thesis .. 4

 II APPLICATIONS, BACKGROUND AND RELATED WORK 5

 2.1 Motivation and Applications ... 5
 2.2 Related Theoretical Work in Geometric Optimization 10

 III SINGLE TARGET PROBLEM .. 13

 3.1 Introduction ... 13
 3.2 Structure of Branch-and-Bound Algorithms 15
 3.3 Novel Branch-and-Bound Algorithm for STP 16
 3.4 Computational Results .. 23

 IV MULTI-TARGET PROBLEM ... 28

 4.1 Introduction ... 28
 4.2 Theoretical Properties of MTP .. 32
 4.3 Novel Branch-and-Bound Algorithm for MTP 37
 4.4 An Example for BB Algorithm ... 49

 viii

CHAPTER Page

 4.5 Computational Results .. 59

 V CONCLUSIONS AND FUTURE WORK ... 64

 5.1 Conclusions ... 64
 5.2 Future Work .. 65

REFERENCES .. 67

VITA……………………………………………………………………………….. 71

 ix

LIST OF FIGURES

FIGURE Page

 2.1 Finding the view-frames for 4 security cameras in security
 cameras in surveillance of a port using OAP 8

 3.1 An illustrative example of the coverage problem with a single
 target and its optimal solution .. 14

 3.2 x and y RCVs for and and reward graphs at

 17

 3.3 Main body of the BB algorithm ... 19

 3.4 Functions used in BB algorithm ... 21

 3.5 Graph of lower bound improvement versus time for an instance 27

 3.6 Graph of lower bound improvement versus time for another
 instance ... 27

 4.1 An illustrative example of the coverage problem with two targets
 and its optimal solution ... 30

 4.2 An illustrative example of the coverage problem with three targets
 and its optimal solution ... 30

 4.3 An illustrative example of the coverage problem with four targets
 and its optimal solution ... 31

 4.4 RCVs and TCVs on x and y axes are shown for an MTP with two
 requests and two targets when the second target is fixed at a
 position ……………………………………………………………… 33

 4.5 BB algorithm .. 39

 4.6 Branching in BB algorithm .. 42

 4.7 Functions used in BB algorithm ... 44

 4.8 Bounding functions .. 47

 x

 FIGURE Page

 4.9 An example of trimming and splitting of request 4 48

 4.10 An illustrative example of coverage problem with two targets 51

 4.11 An example of BBtree .. 52

 4.12 Cluster Tree for x axis .. 54

 4.13 Cluster Tree for y axis .. 55

 4.14 Graphical representation for node A in BBtree 56

 4.15 Graphical representation for node B in BBtree 56

 4.16 Graphical representation for node C in BBtree 56

 4.17 Graphical representation for node D in BBtree 56

 4.18 Graphical representation for node E in BBtree 57

 4.19 Graphical representation for node F in BBtree 57

 4.20 Graphical representation for node G in BBtree 57

 4.21 Graphical representation for node H in BBtree 57

 4.22 Graphical representation for node I in BBtree 58

 4.23 Graphical representation for node K in BBtree 58

 4.24 Graphical representation for node L in BBtree 58

 4.25 Graphical representation for optimal node in BBtree 58

 4.26 Graph of lower bound improvement versus time for instance in
 Fig. 4.2 .. 63

 4.27 Graph of lower bound improvement versus time for an instance in
 Fig. 4.3 .. 63

 xi

LIST OF TABLES

TABLE Page

 3.1 Problem categories ... 24

 3.2 Experiment 1: Instances with requests distributed over a large region
 (5K by 5K) .. 26

 3.3 Experiment 2: Instances with requests distributed over a region
 (1K by 1K) .. 26

 4.1 Reward contribution from each request in Figs. 4.1, 4.2 and 4.3............... 29

 4.2 Problem categories ... 59

 4.3 Experiment 1: Instances with two targets and requests distributed over
 a region .. 61

 4.4 Experiment 2: Instances with three targets and requests distributed over
 a region .. 62

 4.5 Experiment 3: Instances with four targets and requests distributed over
 a region .. 62

 1

CHAPTER I

INTRODUCTION

1.1. Optimal Areal Positioning (OAP): An Introduction

We define Optimal Areal Positioning (OAP) as a class of problems in geometric

optimization. In OAP, we would like to find the optimal positions of floating

geometric objects (targets) on the two-dimensional plane to (partially) cover another set

of fixed geometric objects (requests) in order to maximize the total reward obtained

from covered parts of requests. We denote request by and target by . The

coverage reward is calculated as follows: For any request
 is the

covered part of the request (by one or more targets) and
 denotes the

area of this covered part. Then the reward obtained from this request will be

 , where is the reward rate of request , i.e. the reward per area unit of the

request. The goal is to find the optimal position of the targets such that the total reward

obtained from the coverage of the requests by the targets is maximized.

In this thesis, we address particular forms of OAP in which the targets and requests

are of rectangular shape with axes parallel to x and y axes and the targets are of equal

size. Based on the number of targets, this form is further classified into two categories:

1) Single Target Problem (STP), in which we consider the positioning of only one target

rectangle; 2) Multi Target Problem (MTP), in which we consider positioning multiple

target rectangles. The STP and MTP will be formally defined in detail in Chapters III

and IV, respectively.

This thesis follows the style of the series Lecture Notes in Computer Science (LNCS).

 2

OAP in general, and STP/MTP in particular, are motivated by several applications

including camera frame selection in earth observing satellites and controlled surveillance

cameras (Chapter II). Additionally, these problems have applications in what we refer to

as areal facility location, where instead of aggregating the customers in centroids, the

facilities and customers are considered as areas and the amount of coverage (service) to

each customer is determined by the overlap of the facilities’ range of coverage with that

customer’s area.

 The only previous work directly related to STP is the work of Song et al. [29]. In

fact they proposed their algorithms for an extension of this problem in the earth

observing satellite context. They presented a brute force search algorithm and introduced

another algorithm called plateau vertex traversal (PVT) which works better than brute

force. They showed that the PVT algorithm is of complexity
 while the brute force

approach is
 . Based on our literature review, MTP has not been addressed before.

Latest research in geometric optimization, particularly rectangle coverage problems and

related applications is reviewed in Chapter II.

1.2. Contributions

 In this thesis we develop new theoretical properties for the solution of STP and

devise a new solution approach for it (refer Chapter III). This approach is based

on a novel branch-and-bound (BB) algorithm devised over a reduced solution

space. The solution space is reduced based on the derived theoretical properties

of the optimal solution. Branching is done using a clustering scheme.

 We present computational experiments on our algorithm for STP. The results

show that in several cases our approach significantly outperforms the existing

Plateau Vertex Traversal, especially for problems with many requests appearing

in clusters over a large region.

 3

 We perform a theoretical study of MTP and prove several theoretical properties

for its solution (we conjecture that MTP is NP-complete and that it can be proved

by reducing the planar p-center problem to MTP). We introduce a reduced

solution space using these properties.

 We present the first exact algorithm to solve MTP. This algorithm has a branch-

and-bound framework. The reduced solution space is essential to our algorithm

and calls for a novel branching strategy for MTP. The algorithm has a main

branch-and-bound tree with a special structure along with two trees (one for each

axis) to store the information required for branching in the main tree in an

efficient format. Therefore it is memory and performance efficient. Branching is

done using a clustering scheme. Our algorithm is capable to quickly concentrate

on regions with higher chance of containing the optimal solution. Based on our

literature review no work has been done so far on MTP and our theoretical

results and algorithm is the first attempt to solve the problem exactly and

efficiently.

 We perform computational experiments to evaluate the performance of our

algorithm. Our algorithm solves relatively large instances of MTP in a short time.

Using our algorithm, in average problems with two targets and 50 requests are

solved in about 1 second. Problems with three targets and 25 requests are solved

in about 90 seconds, and problem with four targets and 10 requests are solved in

about 19 minutes. For larger problems the time of our algorithm increases to

more than an hour, which is still an extremely small fraction of a brute force

search. The algorithm is not only fast but it is also memory efficient. Although

the number of nodes shown in the computations is very large but the maximum

number of node open during execution of is very small using a depth first search

strategy that only creates the nodes when they are to be considered.

 4

1.3. Organization of the Thesis

The thesis organization is as follows: In Chapter II we will review the applications

that motivate our problems. We review the previous research done to solve STP and

other problems in satellite imaging, such as selecting and scheduling the images to be

taken by an earth observing satellite, as well as camera security surveillance. We also

present a brief survey of some other related applications. We also present the related

theoretical work done in geometric optimization.

In Chapter III we define STP and provide a new solution approach to solve the

problem exactly. We present the theoretical properties that we use in designing our

branch-and-bound algorithm. We then present the different component of our algorithm

and their pseudo codes. We also present our computational experiments and discuss the

performance of our algorithm versus PVT algorithm.

In Chapter IV we introduce MTP and perform a theoretical study of the problem. We

prove several theoretical properties for its solution. We then present our novel branch-

and-bound algorithm to solve MTP exactly along with the pseudo codes of its several

components. We provide an example to explain the algorithm and present our

computational experiments on our algorithm to show that it efficiently solves large

instances of the problem.

In Chapter V we conclude by a summary and a discussion of several paths for future

research.

 5

CHAPTER II

APPLICATIONS, BACKGROUND AND RELATED WORK

The STP and MTP are geometric optimization problems which determine optimal

placement of rectangles on a plane to cover (partially) requests in order to maximize

total reward. Although, researchers have worked on the problems involving rectangle

coverage, fitting and intersection, we will see that the previous research is limited to a

single study on the STP and no work has been done before to solve the MTP.

Subsection 2.1 covers the applications which are the motivation behind our

problems. We review the research done to solve problems in satellite imaging, i.e.

selecting and scheduling the images to be taken by an earth observing satellite, camera

security surveillance, and briefly give a survey of some other related applications. In

Subsection 2.2, we discuss some related theoretical work done in geometric

optimization.

2.1. Motivation and Applications

 The STP and MTP are motivated by applications in camera frame selection in earth

observing satellites and security cameras installation for surveillance. We discuss these

applications in the following subsections.

2.1.1. Earth Observing Satellite Problems

The mission of an Earth Observing Satellite is to acquire images of specified areas

on the Earth surface, in response to observation requests from customers. Perhaps the

closest work to the topic of this thesis is that of Song et al. [29]. They proposed

algorithms for an extension of this problem in the earth observing satellite context.

Several simultaneous requests for photographing a region (issued by different users) are

sent to the satellite camera and a single imaging frame must be chosen for the camera.

 6

The reward from covering one area unit of a request by the frame depends on the relative

importance of the user. The position of a target frame for the camera is to be chosen such

that the total reward obtained is maximized. In their version of the problem the reward is

not only related to the amount of coverage but also to the ratio of the requested

resolution to the actual image resolution. If the resolution factor is removed their

problem reduces to the STP. Therefore their algorithms also solve the STP. They

presented a brute force search algorithm and introduced another algorithm called Plateau

Vertex Traversal (PVT) which works better than brute force. They showed that the PVT

algorithm is of complexity
 while the brute force approach is

 where the

number of requests is .

Song and Goldberg [30] proposed an approximation algorithm for generalized

version of STP i.e. when requests are not necessarily rectangular. The algorithm runs in

 time where number of requests is and approximation bound is . Main

differences between their generalized version of problem and STP [29] are shape of

input, computational speed and accuracy. In [30], input requests are not necessarily

rectangular as considered in [29] and speed is preferred over accuracy.

In case of the STP, the PVT algorithm of [29] works great when the number of

requests is small or moderate; however as we will see in the Chapter III, as the number

of requests gets larger the branch-and-bound algorithm that we have proposed for STP

works significantly faster. Xu and Song [37] have addressed p-frame problem, an

extension of single frame problem [29] for camera frames. They assumed that the

camera frames have no overlap on their coverage and a request is satisfied only if it is

fully covered by a camera frame. They developed a lattice based approximation

algorithm to solve the p-frame problem in

 time for a given approximation

bound . This work is merged with a paper [38] to provide a complete algorithm for

request assignment and the camera parameter selection problems, and system design for

autonomous surveillance [39]. In 2010, Xu et. Al. [40] proposed exact algorithms to

 7

solve 2-frame problem in
 , and times for fixed, discrete and

continuous camera resolution levels, respectively. If the resolution factor and all the

assumptions are removed, their problems [37, 39] convert to MTP which will be solved

exactly in Chapter IV.

Some other problems related to earth observing satellites have been studied too. Hall

et al [15] studied the satellite space mission scheduling problem for non-agile satellites

(SPOT5): Given a set of jobs on a satellite (each having fixed duration, an available time

window, and a weight), the goal is to schedule the jobs by selecting a feasible sequence

of jobs which maximizes the sum of weights. They argued that the problem is NP-

complete since it is a generalization of the problem of sequencing with release times and

deadlines. Gabrel [12] proposed to formulate the scheduling problem (referred to as the

shot sequence problem in [12]) using mathematical programming and graph theory. In

order to obtain approximation solutions and better upper bounds, the problem can be

translated into sum of simple longest paths problems as sub-problems. The formulation

in [12] assumes that any shot can be taken by only one camera at most once and at a

unique moment.

Vasquez and Hao [33] presented a formulation of the daily photograph scheduling

problem as a generalized version of the knapsack model, followed by development of a

tabu search algorithm. Later, they [34] introduced tight upper bounds. These bounds are

obtained with a partition-based approach following the “divide and conquer” principle.

The management of Agile Earth Observing Satellites (AEOS), which has two additional

degrees of freedom i.e. a three-axis robotic camera that can be steered during each time

window, has been investigated by Lemaître et al.[23]. They have presented different

methods: greedy algorithm, dynamic programming algorithm, constraint programming

approach and local search method.

 8

2.1.2. Security Cameras

Security cameras mounted on different structures (buildings, towers, etc.) are

important tools being used more and more everyday to monitor public and commercial

facilities against various threats. Millions of dollars are being spent by local

governments on installing these security systems. Pre-installed cameras are also used in

other contexts such as environmental research, traffic control, border protection, etc.

Availability of cameras is clearly subject to budget constraints. Therefore in practice

adjusting the view-frames of the limited number of available cameras (i.e. where they

are looking) to optimally monitor a large region becomes an important (and complex)

problem. This problem arises in both manual and automatic control of cameras.

OAP can be directly applied to address problems of this nature. Here we describe an

example in the context of port security (Fig. 2.1). Consider a certain number of (pan-tilt-

zoom) security cameras installed on one or more towers to monitor a part of a large port.

The view-frames of these cameras are controlled by an automatic system. We would like

the system to automatically adjust the view-frames of cameras to optimally monitor the

Optimal camera view-

frames (Frames)

Potential areas of threat

(Requests); in this

example the requests are

rectangular; the thickness

of the rectangle border

represents the reward

rate i.e. threat level.

Figure 2.1. Finding the view-frames for 4 security cameras in surveillance
of a port using OAP (the cameras will pan-tilt-zoom onto the designated
optimal frames)

 9

port in order to minimize the possibility of missing a threat. This problem can be

formulated as an OAP. Based on the activities going on in the port for a given time

window, human agents or preprogrammed automatic systems identify (as input to the

system) several areas of potential threat on a panoramic picture of the port. These areas

represent the “requests” in the OAP. They are the bordered rectangles in Fig. 2.1. The

threat level of different areas may be different depending on their sensitivity, volume of

activity, and vulnerability. A reward rate is associated to each request proportionate to

the level of threat in that area in that time window. The sought-after camera view-frames

are the “targets” in the OAP. By solving the OAP, the automatic control system finds the

optimal positions of view-frames (color-filled rectangles in Fig. 2.1) such that the total

level of threat that they cover is maximized. Then the cameras pan-tilt and zoom on

those view-frames.

2.1.3. Other Related Applications

There are other problems related to covering. Identifying the minimum number of

discs with fixed radius to cover a given set of points in the plane is an example. This

problem has been addressed as NP-hard problem in a number of articles. Hochbaum and

Mass [14] presented polynomial approximation algorithms for different versions of

geometric covering problems, including covering by discs. Agnetis et al. [2] addressed

the disc covering problem on a line - the problem of covering (or full surveillance of) a

single line segment with radar sensors having a circular field of view at minimum cost.

This has been referred as the robust k-center problem and analyzed in [2]. Agnetis et al.

mentioned that for identical radius sensors, a simple polynomial search solves for

optimal radius and number of sensors. But the problem becomes hard when the sensors

are modeled with variable diameter discs.

The deployment of wireless transmission networks is related to the geometric Disc

Covering Problem. Surveys on covering problems dealing with this particular

application can be found in [7, 20, 32]. Huang and Tseng [20] surveyed the solution to

 10

the following covering problems in wireless sensor networks: 1) The Art Gallery

Problem introduced by Chvátal [7], where one has to find the minimum number of

watchmen (or cameras) needed to observe every wall of an art gallery room. 2) Energy-

conserving protocols and coverage-preserving sensor scheduling scheme which

determine when a sensor node can be turned off and when it should be rescheduled to

become active again. 3) Surveillance issues of achieving certain sensing coverage and

communication connectivity requirements and evaluating the quality of service provided

by a particular sensor network. 4) The Circle Covering Problem which is to arrange

identical circles on a plane that can fully cover the plane. Thai et al. [32] have presented

an overview of coverage problems in wireless sensor networks. We reviewed several

papers dealing with this particular application as the disc coverage problem is defined

from several points of view due to a wide-range of applications. Among all the

problems, only the k-coverage problem in [32] sounds closer to our MTP. But the k-

coverage problem deals with finding a set of sensors such that every point in an area is

covered by at least k- distinct sensor nodes, which is completely different from the

definition of the MTP.

2.2. Related Theoretical Work in Geometric Optimization

The STP and MTP are problems belonging to the class of geometric optimization

problems. Lu. et al. [24] have addressed several problems belonging to the class of

rectangle intersection in computational geometry. They solved following problems for a

set of rectangles: a) calculating the area of the region that is covered by at least one

rectangle or by two or more rectangles, b) finding the maximum number of rectangles

that overlap and c) calculating the distance between the closest pair of non overlapping

rectangles. The algorithms presented in their paper employ a divide-and-conquer

technique.

 In 1998, Agarwal and Sharir [1] reviewed the progress in the design of algorithms

for various geometric optimization problems in a survey. They reviewed several

 11

techniques used to tackle the problems in geometric optimization, including facility

location, proximity problems, statistical estimators and metrology, placement and

intersection of polygons and polyhedral, and ray shooting and other query type

problems. The techniques addressed in [1] are parametric searching, geometric

alternatives to parametric searching, prune-and-search techniques. From computational

point of view, Latin and Lbbecke [19] addressed the problem of covering a polygon with

a minimum number of rectangles. Another rectangle placement problem is considered by

Amos and Oran [21] whose goal is to find a placement of maximum number of

rectangles while scheduling a sequence of rectangles on a matrix. A matrix is a

rectangular area on a two-dimensional plane. They presented an time

approximation algorithm. Saha and Das [27] considered the coverage of a set of points

on a plane by two parallel rectangles placed in arbitrary orientation, such that the area of

the larger rectangle is minimized. They solved the problem in time using an

 space. The problem of minimizing the total area of two rectangles placed to cover

a given set of points on a plane can also be solved by the approach in [27]. Ahn and Bae

[3] extended the two-rectangle covering problem by considering: 1) the rectangles are

free to rotate but must remain parallel to each other, and 2) one rectangle is axis-parallel

but the other rectangle is allowed to have an arbitrary orientation. They presented

 time algorithms for solving both problems, which is an improvement to the

algorithm in [27].

The MTP is an extension of STP when multiple targets are to be positioned. The

structure of this problem can be compared to the planar p-center or p-median problems

which are NP-complete, if p is part of the input [25]. In fact, we conjecture that MTP is

NP-complete by reducing p-center problem to MTP. The p-center and p-median

problems deal with points instead of area though: in p-center given a set of demand

points, the goal is to locate p service points on the plane to minimize the maximum

distance of a demand point to its nearest service point. In p-median the goal is to

minimize the summation of such distances. The 2-center problem is a special case of the

 12

general p-center problem. This problem has been studied in several papers [6, 11, 16,

28], and the currently best algorithm for its solution runs in polynomial time [11, 16].

In the plane, p-center problem was investigated by Drezner [8] and Vijay [35] for

Euclidean distances and by Dzerner [9] for rectilinear distance. The Euclidean p-center

problem is equivalent to the following two related problems: 1) Covering every point in

the area by p circles with the smallest possible radius. 2) Locating p objects such that the

total weight of points within a fixed distance of some object is maximized. Likewise, the

rectilinear p-center problem is to cover every point in the area by p squares of minimum

area. A text by Handler and Mirchandani [17] addresses networks location problems

corresponding to p-center extensively, and excellent reviews of the p-center problem on

trees and graphs can be found in Handler [17] and Tansel et al. [31].

Another closely related problem is the p-dispersion problem, which is to locate p

facilities in an area or a graph such that the minimal distance between two facilities is

maximized. The p-dispersion problem in a square is equivalent to packing p circles with

maximal radius in a square as discussed in Drezner and Erkut [10]. Research in this field

has followed two directions. The first deals with finding packing with proven optimality

and the second aims toward finding algorithms with better complexity.

 13

CHAPTER III

SINGLE TARGET PROBLEM

3.1. Introduction

In this chapter, we consider positioning a single rectangular target on two-

dimensional plane to partially cover a set of existing rectangular areas (requests) to

maximize total coverage reward. More specifically this problem can be described as

follows (see Fig. 3.1): rectangular areas, called request rectangles or simply requests,

are designated on a two-dimensional plane. Their positions and sizes are known, i.e. for

request , denoted by , we know the values and , where and are the

coordinates of the lower left corner of the request and is its width (length along x

axis) and is its length (length along y axis). All requests have axes parallel to x and y

axes. We would like to find the optimal position of a floating target rectangle (simply

called target and denoted by), with the known dimensions and and axes parallel

to x and y axes, such that the coverage reward obtained from this positioning is

maximized. The coverage reward is calculated as follows: Let denote the part of

request that is covered by target and denote the area of this covered part.

Then there will be a reward equal to , where is the reward rate of

request , i.e. the reward per area unit of the request. We would like to find the optimal

position of the target (by position we mean and , the coordinates of its lower left

corner) such that the total reward obtained from the coverage of requests by the target is

maximized. In other words we want to solve the following problem:

 .

Fig. 3.1 shows the picture and data along with the optimal position of the target for a

solved problem with five requests. Based on the target position we see that the reward

from request 1, 2, 3, 4 and 5 are , and respectively

so the total reward is 162. It is important to note that in this thesis, other than the

 14

Figure 3.1: An illustrative example of the coverage problem with a single target and its

optimal solution

examples, there is no grid and all the problems are exactly in continuous space i.e. there

is no discretization.

As discussed in Chapter II, STP is motivated by several applications including

camera frame selection in earth observing satellites or controlled surveillance cameras.

See Chapter II for more details. In addition to this application we believe this problem

can have application in what we refer to as areal facility location where instead of

aggregating the customers in centroids, the facility and customers are considered as areas

and the amount of coverage (service) to each customer is determined by the overlap of

the facility area with that customer’s area.

In this chapter we provide a new solution approach for STP. This approach is based

on a novel branch-and-bound (BB) algorithm devised over a reduced solution space. The

solution space is reduced based on some theoretical properties of the optimal solution.

Similar theoretical properties are used by Song et al. [29]. As discussed in Chapter II,

they presented a brute force search algorithm and introduced another algorithm called

y

x

4

2
 2

1
3

 5

Optimally
positioned target

request

lower left
corner

width

length

reward
rate

1 (0,7) 7 5 4
2 (1,0) 5 10 6
3 (5,5) 6 6 7
4 (4,3) 6 6 3
5 (9,2) 6 5 10

details of target optimal

position

optimal
(max)

reward
width
(

length

4 3 (3,7) 162

 15

plateau vertex traversal (PVT) which works better than brute force. They showed that

the PVT algorithm is of complexity
 while the brute force approach is

 . The

PVT algorithm works great when the number of requests is small or moderate; however

as the number of requests gets larger our extensive computational experiments show that

our algorithm works significantly faster. This is especially true when the requests are

scattered over a large area as our BB algorithm tends to focus quickly to the regions

where there is a concentration of requests and higher rewards. For the same reason our

algorithm tends to work significantly faster when the reward rates are more

heterogeneous among the requests.

In Subsection 3.2, we discuss the general framework of a BB algorithm. In

Subsection 3.3, we present our theoretical structure of our algorithm and in Subsection

3.4 we present our computational experiments and discuss the performance of our

algorithm versus PVT algorithm.

3.2. Structure of Branch-and-Bound Algorithms

Branch-and-bound (BB) is the most widely used tool for solving large scale NP-hard

combinatorial optimization problems. In 1960, Land and Doig [22] were the first to

propose this method for integer programming.

The schematic behind the algorithm for a maximization problem is as follows: The

algorithm starts at the root node. The BB tree is a decision tree. Each node in the tree

corresponds to a subset of the solution space. At each node, two main actions are

performed: 1) bounding, this procedure calculates the upper bound for the best solution

value obtainable in the solution space of each node from the tree. 2) decision making,

based on the upper bound at a node and best known feasible solution value (i.e. best

lower bound of the problem), the node is either pruned or branched.

Pruning Step: A node can be pruned for two reasons: 1) if the upper bound value on

that node is smaller than the best feasible solution value found so far. In this case there is

 16

no point in searching the node for optimal solution anymore (this is the main idea behind

BB). 2) if a solution is found, the lower bound will be updated if this solution has a

larger objective value.

Branching Step: If a node cannot be pruned, the solution space of the node is

subdivided into two or more subspaces (by generating child nodes). This action is known

as branching. There are different problem dependent strategies for choosing the

branching scheme in a node and also for choosing the next node in the tree.

 The problem is solved when all nodes are pruned and the best lower bound will be

the optimal value. BB often leads to exponential time complexities in the worst case but

if applied carefully, it can lead to algorithms that run reasonably fast on average. The

efficiency of the method depends strongly on the branching (node-splitting procedure)

and on the upper and lower bound estimators. In order to solve maximization problem

using BB, interchange the lower bound by upper bound in the scheme mentioned above.

More details and references can be found in [26] and [36].

3.3. Novel Branch-and-Bound Algorithm for STP

In this subsection we present our algorithm for solving the STP problem. We

mentioned in Subsection 3.1 that we determine the positions of requests and the target by

the coordinates of their lower left corner. We will use a fundamental observation

(Lemma 3.1) in our BB algorithm. This observation helps us to reduce the continuous

two-dimensional solution space to a set of discrete points. To identify these discrete

points, first we define what we will refer to as critical x and y values. Given a request ,

four critical values and four critical values corresponding to this request are defined

as follows (see Fig. 3.2):

 17

These critical values are shown for two requests in Fig. 3.2. Since the critical values are

generated from requests so we call them RCVs. The RCVs are numbered from left to

right from 1 to 4. We categorized RCVs into two types: RCVs 2 and 3 are type 1

(denoted by RCV1) and RCVs 1 and 4 are type 2 (denoted by RCV2). According to Fig

Target
Size

Requests

 x

Critical values

Critical
 values

reward
from

 x

reward
from

reward
from

Figure 3.2. x and y RCVs for and and reward graphs at

 18

3.2,

 are RCV1s and

 are RCV2s. The graph at the bottom of

the figure shows the reward function when the target moves parallel to the x axis with

at
 for this example. It is easy to see in Fig. 3.2 that the reward function for a fixed

value of is piecewise linear and its breakpoints occur at the x RCVs. A similar

statement is true for a fixed and critical values. This is because the area covered by

the target with one of its coordinates fixed is simply a linear function of the other

coordinate. Now the fundamental result that we use to reduce the solution space to

discrete points is as follows. A result similar to this is used in [29] in design of brute

force and PVT algorithm.

Lemma 3.1. There is at least one optimal position (for the target such that is

an x RCV1 and is a y RCV1.

Proof. Assume the position (

 is an optimal position for the target and

 is not an RCV1. Notice that

 cannot be an x RCV2 because if it is, then by

moving the target parallel to x axis, either left or right, the reward increases, which is

contrary to optimality of
 . Now, by moving the target to the left or right with fixed

(i.e. parallel to the x axis) until is equal to an RCV1, the reward will not change

because if the reward increases it contradicts optimality of
 ; if the reward decreases,

since the reward function at a fixed is piecewise linear with breakpoints at RCVs, by

moving in the opposite direction, the reward increases, which is again contrary to

optimality of
 . Therefore the reward will remain the same and we will hit an RCV.

Notice that this RCV cannot be a RCV2 because, as explained above, if it is a RCV2,

then by moving the target parallel to x axis, either left or right, the reward increases,

which is contrary to optimality of
 . Therefore we have found a new optimal solution

in which is an x RCV1.The same argument can be applied to . Therefore there will

be another optimal solution with both and being RCV1s. □

As a result of Lemma 3.1, we only need to do our search over the points that are at

the intersection of and RCVs (we call them critical points (CPs)). The Brute Force

 19

Algorithm does this by calculating the reward function for every CP. At each CP the

coverage of each request is calculated and the associated rewards are added and the

critical point with the highest reward is found. The number of CPs is
 and reward

calculation for each is . So the complexity is
 , which is not efficient at all

when is a large number. The PVT algorithm [29] does a better job of calculating the

reward. Instead of calculating the reward at each CP independently, it scans the CPs in

movements parallel to one of the axes and finds the reward at the next CP by calculating

the slope of the piecewise linear functions. This reduces the complexity to
 .

One drawback of the PVT algorithm is it still has to scan through all CPs. If there is

a higher concentration of requests or large reward rates at some region of the plane, the

chances of the optimal solution being in that region is higher. Our BB algorithm is

designed to benefit from this feature. It quickly concentrates on such regions and finds a

[Initialization]

1.
2.
3.

[End of Initialization]

4.
5.
6.

 [Upper Bound at node P is less than the best solution value known so far]
7.
8. [The target has fixed x, y coordinates]
9.
10. ;
11.
12. ;
13.
14.
15.
16.
17.
 Figure 3.3. Main body of the BB algorithm

 20

good solution and then by calculating upper bounds on the reward if the target is in other

regions tries to avoid explicit enumeration of CPs in those regions.

Our BB algorithm implicitly searches the space of CPs. Like any BB algorithm (see

[4]), our algorithm is performed over a tree, which we call BBtree, and uses bound to

avoid explicitly enumerating all CPs. We denote the set of all and RCV1s by and

 , respectively. The nodes of this tree are called BBnodes. Each BBnode in BBtree is

associated with a subset of RCV1s and a subset of RCV1s. Therefore each

node in fact corresponds to a rectangular mesh consisting of a subset of CPs. These

subsets are created by clustering the sets and on two clustering trees. When

required, the set of RCV1s in each cluster is further clustered (partitioned) into subsets.

The subsets and at each BBnode correspond to a cluster of RCV1s and a

cluster of RCV1s respectively. The pseudo code for the main body of our BB

algorithm is shown in Fig. 3.3. denotes the lower bound on maximum reward and

is the maximum reward possible from covering request by the target if target can be

placed anywhere, i.e.
 .

The pseudo codes of the functions used within the BB algorithm are presented in Fig.

3.4. Function calculates the reward upper bound at each node (an upper bound on

the reward when the target position is limited to the CPs corresponding to that node).

 denotes a set of trimmed requests for node These are obtained by original

requests that are trimmed to the region that is reachable by the target when its position is

limited to the region associated with the CPs of node Based on definition of ,

clearly summation of for all is an upper bound for reward at node and

that is the way we calculate in our algorithm finds the next node

after pruning a node based on a depth first search strategy. Other search strategies can

also be implemented in this function.

 21

 :
1.
2.
3.
4. ;
5.
6.
7. ;
8.

9.
10. ; [Move Right on BBTree]
11.
12. [Move Up on BBTree]
13. Else [Current node is root node]
14. ;
15.

16.
17.
18.

 [Create clusters for x clustering tree]
19.
20.

21. ;
22.

23.

24.
25. [Break at the point when distance between RCV1s]
26. ;

27.
28.
29.
30.

31.
32.
33.
34.

Figure 3.4. Functions used in BB algorithm

 22

 In Fig. 3.3 observe that when in a node is not greater than the node is

pruned and the next node is considered. Also when the target location is fixed, a better

solution is found the LB is updated. Otherwise, the node is branched meaning that the

CPs of that node are decomposed into smaller subsets.

The branching is done using the function. The branches are determined

by clustering the set of or RCV1s. A selection rule to choose between or must

be used. One possibility is branching over until it has only one element and then

branch over . If we consider the case where branching is done over , the set of

RCV1s for each of its branches correspond to one of its clusters. If branching is not

stopped because of pruning by bound we will reach a leaf BBnode. A leaf BBnode has

one element in the set of CPs along each axis. In other words, at the leaf BBnode the

target gets an exact position as the CPs give the left bottom corner’s coordinates of the

target.

 The clustering of is performed by calling the function. The clusters

of each set are saved by the function because they may be used in branching

of future nodes again and we do not want to redo the clustering in that case. We pick the

best clustering scheme out of following five clustering schemes for branching. As seen

in Fig. 3.4, clustering, according to Scheme 1, is done as follows: the RCV1s in the set

are sorted. Whenever the distance between two RCV1s is greater than a predetermined

percentage () of the maximum distance between two consecutive RCV1s (), we break

the set at that point and create a new cluster. The efficiency of the BB method depends

critically on the effectiveness of the branching. An appropriate value of () is selected

because the smaller values of would reduce our algorithm to an exhaustive

enumeration of the domain, on the other hand branching won’t occur for the bigger

values of . We also assign to the clusters and consider branches in the order

of priority. The priority value we use is the ratio of summation of the reward rates of the

requests whose RCV1s are in the cluster to the number of RCV1s in the cluster. All

other schemes perform clustering similar to Scheme 1 till the value of in a cluster is

 23

greater than the dimension of the target along the corresponding axis. Afterwards,

Scheme 2 and 3 create two and three new clusters, respectively with equal number of

RCV1s. In Scheme 4, we break the set whenever distance between two RCV1s is equal

to . Scheme 5 creates three new clusters by breaking a cluster at points where distance

between consecutive RCV1s is either equal maximum or second maximum in the

cluster. When a cluster contains two RCV1s then the scheme 3 and 5 work like scheme 2

and 4 respectively. We found based on our experiments that the Scheme 1 with

 results in the smallest run times in average. The idea is of this branching scheme is

to quickly focus on the regions of the plane that are populated by the requests and thus

have higher probability of containing the optimal location.

 The algorithm terminates when there are no more nodes to consider. Calculation of

lower and upper bounds typically results in eliminating many CPs without calculating

reward for them explicitly and that is the main reason that our algorithm works faster in

many large problems.

 3.4. Computational Results

 We generated random instances with different number of requests and compared

the performance of our algorithm with PVT algorithm. The brute force algorithm is

worse than both for obvious reasons. The running time of the brute force algorithm

easily exceeds 5 minutes for 500 requests and several hours for 4000 requests in all cases

so we eliminate it from further consideration. We generated three categories of problems

in terms of relative size of target and requests. They are shown in Table 3.1. In

categories A, the target is smaller or equal to average of request sizes. In category B, the

target size is considerably larger than the average of request sizes. In categories C, the

target size can be smaller, equal or larger than average of request sizes. The requests are

randomly distributed over a square region of determined size. The random requests are

generated in two steps. First, we generate three points in the region to represent locations

of interest, which we call as center points. For each center point, we use a radius of

interest. Then, we generate requested viewing zones. To generate a requested viewing

 24

zone, we create six random numbers. One of them is used to determine which center

point the request will be associated with. Two of them are used to generate the location

of the lower left corner of the request, which is located within the corresponding radius

of the associated center point. The remaining three random numbers are used to generate

width, length and reward of requests.

In Experiment 1, the results of which are shown in Table 3.2, the total region is large

(5K by 5K). The reward rates of requests are from Uniform [1,150] distribution. We

observe that in many instances specially the ones with large number of requests there is a

significant improvement relative to PVT. This is between 50 to 80 percent in most cases

(the instances in which BB works better are shaded). Note that our computations are

averaged over three runs. The time improvement is 100 (PVTtime–BBtime) / PVTtime.

The large total region causes random separate concentrations of requests in some areas

and our BB algorithm pays off by focusing on concentrated areas and finding good

lower bounds to avoid considering other areas. If the requests are distributed over a

smaller area then the PVT algorithm tends to work better as BB will not be able to

quickly find a LB that is considerably better than many node upper bounds. This is what

we observe in Experiment 2 (Table 3.3).

Our algorithm is capable to quickly concentrate on regions with higher chance of

containing the optimal solution. This is supported by the time taken by our algorithm to

Table 3.1. Problem categories

Category

A 8 6 Uniform[1,15] Uniform[1,11]

B 8 6 Uniform[1,7] Uniform[1,5]

C 4 3 Uniform[1,15] Uniform[1,11]

 25

reach solution that is proved to be the optimal at the end, as shown in Tables 3.2, 3.3 and

Figs. 3.5 and 3.6. In Figs. 3.5 and 3.6, denotes the total time taken by BB algorithm to

solve an instance and is the time taken by to reach the optimal value. It can be

clearly observed that is much lesser than , in fact in many cases is 3 to 30 percent

of . Even in Experiment 2, is lesser than PVTtime for most of the cases.

 26

Table 3.2. Experiment 1: Instances with requests distributed over a large region (5K by 5K)

PVT

Algorithm

No. of Nodes Time when LB reaches

Optimal value T 1

Run Time

T

Run Time

10 7 0 0.00 0.00 -

100 81 0 0.03 0.04 25%

500 329 0.06 0.49 1.00 51%

1000 1071 0.86 1.82 4.00 55%

2000 2015 2.23 10.34 16.00 35%

4000 4948 0.14 38.83 64.00 39%

10 8 0 0.00 0.00 -

100 104 0 0.02 0.04 50%

500 302 0 0.22 1.00 78%

1000 622 0 0.84 4.00 79%

2000 1762 0.41 5.00 16.00 69%

4000 3535 0.9 19.72 64.00 69%

10 15 0 0.00 0.00 -

100 107 0 0.04 0.04 -

500 735 0.04 0.67 1.00 33%

1000 1948 0.95 1.72 4.00 57%

2000 6313 3.49 11.65 16.00 27%

4000 14165 1.07 42.71 64.00 33%

Time

Improvement

BB Algorithm

Category

A

B

C

No. of

Requests

Table 3.3. Experiment 2: Instances with requests distributed over a region (1K by 1K)

PVT Algorithm

No. of Nodes Time when LB reaches

Optimal Value T 1

Run Time

T

Run Time

10 7 0 0.00 0.00

100 81 0.01 0.08 0.04

500 329 1.02 2.20 1.00

1000 1071 2.87 13.03 4.00

2000 2015 5.26 41.97 16.00

4000 4948 120.63 188.54 64.00

10 8 0 0.00 0.00

100 104 0 0.05 0.04

500 302 0.02 0.98 1.00

1000 622 0.78 5.75 4.00

2000 1762 13.05 39.36 16.00

4000 3535 52.35 204.33 64.00

10 15 0 0.00 0.00

100 107 0.02 0.08 0.04

500 735 0.55 1.54 1.00

1000 1948 5.42 11.32 4.00

2000 6313 9.22 50.58 16.00

4000 14165 88.29 199.37 64.00

BB Algorithm

Category

A

B

C

No. of

Requests

 27

 Fig. 3.6 Graph of Lower bound improvement versus time for another instance

 t (sec)

T

 Fig. 3.5 Graph of Lower bound improvement versus time for an instance

 t (sec)

T

 28

CHAPTER IV

MULTI-TARGET PROBLEM

4.1. Introduction

In this chapter, we address the multi-target (MTP) problem defined in Chapter I.

MTP was defined as the problem of positioning target rectangles on the two-

dimensional plane to partially cover a set of existing rectangular areas (requests) to

maximize total coverage reward. MTP has not been addressed in the literature before

and here we perform the first theoretical study on this problem and present the first exact

algorithm for MTP. More specifically this problem can be described as follows (see Fig.

4.1): rectangular areas, called request rectangles or simply requests, are designated on

a two-dimensional plane. All requests have axes parallel to x and y axes. Their positions

and sizes are known, i.e. for request , denoted by , we know the values

 and , where and are the coordinates of the lower left corner of the

request and is its width (length along x axis) and is its length (length along y axis).

We would like to find the optimal position of floating target rectangles, denoted by

 , (simply called target) such that the total coverage reward obtained from

this positioning is maximized. The targets are also axes-parallel. The width and length of

all targets are equal and denoted by and . The coverage reward is calculated as

follows: Let denote the part of request that is covered by target and

denote the area of this covered part. Then there will be a reward equal to ,

where is the reward rate of request , i.e. the reward per area unit of the request that is

covered. Hence, we would like to find the optimal position of the targets (we take

and
, the coordinates of the lower left corner target as its position) such that the total

reward obtained from the coverage of requests by the targets is maximized. In other

words we want to solve the following problem:

 29

 .

We note that in MTP, the coverage reward obtained from the covered part of a

request does not depend on which and how many targets cover that part. Figs. 4.1, 4.2

and 4.3 show the pictures and data along with the optimal positions of the 2, 3 and 4

targets respectively, for the problem with five requests (We have obtained these solution

using the algorithm we will describe in Subsection 4.4). Based on the targets’ positions,

the reward from requests 1, 2, 3, 4 and 5 are as displayed in Table 4.1.

Table 4.1. Reward contribution from each request in Figs. 4.1, 4.2 and 4.3

No. of Targets Rewards from requests Total Reward

2 319

3 439

4 561

 30

Figure 4.2. An illustrative example of the coverage problem with three targets and its
optimal solution

y

x

4

2

1
3

 5

Optimally
positioned target

request

lower left
corner

width

length

reward
rate

1 (0,7) 7 5 4
2 (1,0) 5 10 6
3 (5,5) 6 6 7
4 (4,3) 6 6 3
5 (9,2) 6 5 10

details of target optimal

position

optimal
(max)

reward
width
(

length

4 3
(3,7)
(7,5) 439
(9,2)

y

x

4

2

1
3

 5

Optimally
positioned target

request

lower left
corner

width

length

reward
rate

1 (0,7) 7 5 4
2 (1,0) 5 10 6
3 (5,5) 6 6 7
4 (4,3) 6 6 3
5 (9,2) 6 5 10

details of target optimal

position

optimal
(max)

reward
width
(

length

4 3 (3,7)
(9,4) 319

Figure 4.1. An illustrative example of the coverage problem with two targets

and its optimal solution

 31

Figure 4.3. An illustrative example of the coverage problem with four targets and its
optimal solution

The MTP is an extension of STP (discussed in Chapter III). For applications and

other related problems refer to Chapter II. The structure of MTP can be compared to the

planar p-center or p-median problems which are NP-complete, if p is part of the input

[25]. In fact, we conjecture that MTP is NP-complete and that it can be proved by

reducing the planar p-center problem to MTP. This is a line of future research that we

are working on (Chapter V). The remainder of this chapter will be as follows: We

perform a theoretical study of MTP in Subsection 4.2 and prove several theoretical

properties for its solution. In Subsection 4.3, we present the theoretical structure of our

novel algorithm followed by an example in Subsection 4.4. This is a branch-and-bound

algorithm which includes a main branch-and-bound tree along with two trees (one for

each axis) to store the information required for branching in the main tree in an efficient

format. Branching is done using a clustering scheme. The theoretical properties of the

solution calls for a novel branching strategy for MTP. In Subsection 4.5, we present our

y

x

4

2

1
3

 5

Optimally
positioned target

request

lower left
corner

width

length

reward
rate

1 (0,7) 7 5 4
2 (1,0) 5 10 6
3 (5,5) 6 6 7
4 (4,3) 6 6 3
5 (9,2) 6 5 10

details of target optimal
position

optimal (max)
reward width

(
length

4 3

(1,7)
(5,5) 561
(9,4)
(5,8)

 32

computational experiments on our algorithm and show that it efficiently solves large

instances of the problem.

4.2. Theoretical Properties of MTP

In this subsection, we establish several theoretical properties for the solution to the

MTP. We extend the concept of Critical Values (CV) (which was discussed in

Subsection 3.3 for STP), to MTP and prove several results regarding the role of CVs in

the solution to MTP. These results will reduce the continuous two-dimensional solution

space to a set of discrete points. However we will see that the reduced space has a more

complex structure and depends on the relative position of targets too.

We saw in Chapter III that in STP the CVs are generated by requests (we called them

RCVs). In MTP in addition to RCVs, we have a new type of CVs that are generated by

targets, which we will refer to as Target CVs or (TCVs). Let us first recall the concept of

RCVs. Given a request , four x RCVs and four RCVs corresponding to this request

are defined as follows (see Fig. 3.2):

The RCVs are numbered from left to right from 1 to 4. We categorized RCVs into two

types: The critical values are of two types: RCVs 2 and 3 are type 1 (denoted by RCV1)

and RCVs 1 and 4 are type 2 (denoted by RCV2). According to Fig 3.2,

are RCV1s and

 are RCV2s.

In MTP, each target with a fixed position defines a set of three TCVs for other

targets along each axis. Fig. 4.4 shows the TCVs generated by a target with a lower

left corner of for a target . The x and y TCVs are as follows:

 33

from

Reward generated
by the moving
target from

from

Second target
(Fixed)

Request

The moving
target moves
along this
line.

First target
(free and moving)

Request

Fig. 4.4. RCVs and TCVs on x and y axes are shown for an
MTP with two requests and two targets when the second target
is fixed at a position.

 means the th RCV for the th request.
For any ,

 is an RCV1 for , and an RCV2 for
 . The positions of targets are represented by their lower
left corner coordinates. The lower part of the figure shows the
reward (generated from each requests and total) when the first
target moves parallel to x axis such that its lower left corner y
coordinate is at

 . Two cases are shown: when the fixed target
exists (black) vs. the STP case, i.e. when the fixed target does
not exist (gray). The functions are piecewise linear and
existence of the second target changes the reward obtained from
the first target

 34

We emphasize that unlike RCVs, the TCVs are defined when the location of a target

is fixed.

Assume that we move target 1 parallel to the x axis from left to right such that its

lower left corner is at
 . The graphs at the bottom of Fig, 4.4 show the reward

generated by the target 1 resulting from requests 1, 2, and 1 and 2 together, respectively.

The gray graphs show the reward assuming that target 2 is not present and the black

graphs show the new reward functions when target 2 is fixed at the shown location. It is

easy to observe that like in Fig. 3.2, here the reward graphs for target 1 are still

piecewise linear functions. This is because the area covered by the target with one of its

coordinates fixed is simply a linear function of the other coordinate. However the

breakpoints of this function are not limited to RCVs but also include the TCVs. A

similar statement is true for movement along a fixed and y CVs.

Having both RCVs and TCVs we can extend the notion of critical points (CPs)

defined in Subsection 3.3 for STP to MTP. As a result a CP for an MTP problem is a

point that its x coordinate is an x RCV or TCV and its y coordinate is y RCV or TCV.

We will prove in this subsection that the solution space of MTP can be limited to a

subset of CPs. First we prove a lemma that will be helpful later:

Lemma 4.3. Consider two targets and . If is a TCV generated by then is

also a TCV generated by .The same is true for and .

Proof. If is a TCV generated by then according to the definition of TCV in

Subsection 4.2, belongs to . When = , it implies

that which is a TCV generated by . If then we are done.

Likewise, implies that which is again a TCV generated by

 for . Thus, we can say that if is a TCV generated by then is also a TCV

generated by . The same argument applies to TCVs along y axis. □

 35

Theorem 4.4. There is at least one optimal solution

 such that

the following conditions hold:

(a)
 is an x RCV1 for at least one and

 is a y RCV1 for at least

one .

(b) For every ,
 is an x RCV1 or TCV and

 is a y RCV1 or TCV.

Proof. Assume the optimal solution is If it does not satisfy

condition (a), say if there is no for which is an x RCV1, then we show that an

optimal solution can be found that satisfies this condition. Note that there will not be any

 for which is an x RCV2 because if there is, then by moving the target parallel to x

axis, either left or right, the reward increases, which is contrary to optimality

of . For this, in the solution move all

targets together (without changing their relative positions) to the left or right such that

 for all is fixed (i.e. parallel to the x axis) until the first time
 for one

of the targets becomes equal to an RCV. The reward will not change

because if the reward increases it contradicts optimality of ; if the

reward decreases, since the reward function at fixed is piecewise linear

with breakpoints at RCV, by moving in the opposite direction, the reward increases,

which is again contrary to optimality of . Therefore the reward will

remain the same and we will hit an RCV. Notice that this RCV cannot be a RCV2

because if it is a RCV2, then by moving all targets parallel to x axis, either left or right,

the reward increases, which is contrary to optimality of .

Therefore we have found a new optimal solution in which is an x RCV1. The same

argument can be used to find an optimal solution in which is a y RCV1 if that is not

 36

already satisfied. Now reassign to denote this new solution that

satisfies condition (a).

If does not satisfy condition (b), then again we show that we

can find another optimal solution that does. Assume is the target set for

which is neither an x RCV1 nor an x TCV for . Notice that cannot be a

RCV2 because if it is a RCV2, then by moving the target parallel to x axis either left or

right, the reward increases, which is contrary to optimality of .

Now pick a target and move it to the left (or right) with fixed (i.e. parallel to the

x axis) until is equal to the first x RCV1 or TCV to the left (right) of . The reward

will not change because if the reward increases it contradicts optimality of ; if the

reward decreases, since the reward function at a fixed y is piecewise linear with

breakpoints at x RCV1s and TCVs, by moving in the opposite direction, the reward

increases, which is again contrary to the optimality of . Therefore the reward will

remain the same and the target will either hit an x RCV1 or TCV. If the target hits an x

TCV generated by another target then according to Lemma 4.3, target

also lies on an x TCV. Hence we remove target and from the target set , while if the

target hits an x RCV, then we only remove target . The process is repeated until

i.e. all targets are either on an x RCV1 or TCV. The same argument is applied to optimal

position of targets along y axis. Therefore there will be another optimal solution in

which for every , is an x RCV1 or TCV and is a y RCV1 or TCV . □

If we define the notion of “isolated subset of targets,” we can generalize part (a) of

Theorem 4.4. A subset of targets is called an isolated subset of targets if no target in

touches or overlaps with a target in .

 37

Theorem 4.5. There is at least one optimal solution

 such that

every isolated subset of targets satisfies the following condition:
 is an

x RCV1 for at least one and
 is a y RCV1 for at least one .

Proof: The proof is similar to the proof of Theorem 4.4 part (a) applied on all the

isolated subsets that do not satisfy this condition (instead of only the whole target set

). We only need to add that while doing the movement in the proof of Theorem

4.4(a), if the first time
 for one of the targets becomes a CV, that CV is

a TCV, we stop and update the optimal solution to this solution and the set is not an

isolated subset in this new solution anymore. □

4.3. Novel Branch-and-Bound Algorithm for MTP

In this subsection we present our algorithm for solving the MTP. As a result of

Theorem 4.4, we only need to search over the CPs to find an optimal solution. But

observe that the CPs depend on not only RCVs but also TCVs and, as explained before,

TCVs are generated by a target when its position is fixed. This causes a great deal of

complication in searching the solution space. An eminently inefficient algorithm is a

brute force search over all possible locations for all targets over all CPs. The reward

function for every possibility is calculated and the maximum reward gives the optimal

solution. This algorithm is of course of exponential complexity: The number of

possibilities for positioning of targets is roughly
 and reward calculation for

each takes time. So total complexity of brute force algorithm is roughly

 .

As we conjecture MTP to be NP-hard, there is almost no chance that a polynomial

algorithm to solve MTP can be devised. The algorithm we have designed in this thesis

has a BB framework and is the first algorithm proposed to solve MTPs. Our algorithm

follows a clever method to implicitly search the CP solution space. In this subsection we

address the different components of this algorithm. If there is a higher concentration of

 38

requests or large reward rates at some region of the plane, the chances of the optimal

solution being in that region is higher. One of the main features of our BB algorithm is

that it is designed to quickly concentrate on such regions to find good solutions (lower

bounds). Having good lower bounds, it then avoids explicit enumeration of CPs in many

other regions by calculating upper bounds on the reward if the targets are in those

regions.

4.3.1. Main Body of BB

The pseudo code for the main body of our BB algorithm is shown in Fig. 4.5. Like

any BB algorithm (see [4]), our algorithm is performed over a tree, which we call

BBtree, and uses bounds to avoid explicitly enumerating all CPs. The nodes of this tree

are called BBnodes. BBnode in BBtree corresponds to subsets of CVs, called node

x CV subsets and denoted by

 , and subsets of CVs, called node y CV

sub sets and denoted by

 . A subset

 contains the candidate x CVs for

target in that BBnode. A similar statement is true for

 Each particular subset

 is

either a subset of x RCV1s or a singleton x TCV. A similar statement is true for any

particular subset
 . As a result, each node corresponds to rectangular mesh where the

mesh is determined by the subsets
 and

 . In Fig. 4.5, lines 1-8 initialize the BB

algorithm. The input data is initialized. The BBtree is initialized by creating the root

node The properties and store branching axis and branching target of

each node, respectively and will be used for branching. The definition and usage of these

indicators will be addressed later in Subsection 4.3.2. The function

creates a child node for the node in the BBtree with the same x and y CV subsets as

those of its parent node (if is not Null). It also assigns the and properties of

the child node the same value as and , respectively. The root node has

no parent so we set all the sets

 equal to , the set of all x RCV1s, and

all the sets

 equal to , the set of all y RCV1s.

 39

First an initial lower bound on the objective is calculated. This is done using

 function (line 8), which is discussed in Subsection 4.3.3 Then at

any given node an upper bound is calculated for the value of the objective at that node

using the function This function will be addressed in detail in

Subsection 4.3.3. If this upper bound is not greater than the node is pruned (by

bound) and we move to the next node using the function (explained

Figure 4.5. BB algorithm

[Initialization]

1.
2.
3.
4.

5.

6.

7.
8. ;

[End of Initialization]

9.
10.
11.

 [Upper Bound at node P is less than the best solution value known so far]
12.

13.

 [All targets have fixed x, y coordinates]

14.

15.
16.
17.
18.
19.
20.
21.

 40

in Subsection 4.3.2). If that is not the case, then lines 13-15 handle the case where all the

x and y CV subsets of the node are singletons (i.e. all targets have fixed x and y

coordinates). This corresponds to a solution and in this case generates

the exact total reward of this solution. Since this total reward is greater than , and

the best solution so far (are updated. The node is pruned by solution and we

move to the next node using the function.

The final case is when there is no pruning by bound or solution. In this case, we

branch using the Branch(P) function. There are several details concerning this function

that are described in Subsection 4.3.2. In general, branching at any node includes

creating new nodes by clustering one particular subset out of the subsets
 ,

 , into smaller subsets but because of the existence of TCVs there are several other

special cases that our along with and

 functions handle to deal with enumeration of TCVs (see

Subsection 4.3.2). The algorithm terminates when all nodes are pruned and there are no

more nodes to move to. and will give the optimal solution and its

associated optimal reward, respectively. The pseudo codes of the functions used within

the main body of BB algorithm will be explained in following subsections.

4.3.2. Branching Details

 The branching is done using as shown in Fig. 4.6. According to our

node definition in Subsection 4.3.1, in our algorithm, branching of a node is performed

either by decomposing (clustering) a subset of RCV1s or by generating TCVs on of the

axes x or y for the position of a particular target.) and are indicators

denoting the axis and the target on which branching is performed at node , respectively.

 In our algorithm, we start branching at the root node by clustering
 . That is

why in Fig. 4.5 (line 3) we have and at the initialization. A

depth first strategy is then used, and deeper branches are generated on axis. This

continues until
 becomes a singleton at some node. This means that target 1 now has a

 41

fixed x position. This prompts start of branching on the next target (i.e target 2) and adds

xTCVs generated by the target 1 to the set of possible locations for target 2. Therefore,

the branching on target 2, in addition to the nodes with
 corresponding to clusters of x

RCV1s, will also create nodes with singleton
 containing each of x TCVs generated

by target 1 for target 2. This branching mechanism is repeatedly used until a node in

which all targets have fixed x coordinates is reached. Then the branching on y axis starts.

Lines 1-11 in Fig. 4.6, handle the branching on x axis as explained above. The comments

in the pseudo code clarify the correspondence with different possible cases discussed

above.

 We note that the clustering of x RCV1s to populate
 is performed on a clustering

tree similar to what was presented in Subsection 3.3. The

 in Fig. 4.6

line 5 returns the first cluster created on the clustering tree after clustering the set of x

RCVs corresponding to
 . The prioritization of clusters is performed the same way as

in Subsection 3.3. If the cluster has not been created in the branching of other targets,

then it is created for the first time using the

 function in line 6 of Fig. 4.6

(see Fig. 3.4 for the pseudo code of this function).

 Lines 10-21 of Fig, 4.6 handle the branching on y axis. An important point to keep in

mind is that while branching on x axis, the sequence in which targets are selected for

branching does not matter because all targets are identical. We consider an ascending

order of target indexes as the sequence of selection. But while branching on y axis, each

target has a fixed x coordinate associated with it. If all targets are fixed on x RCV1s, i.e.

 is a singleton x RCV1 for all , then the ascending order of targets can be

used for branching on y axis. But if any of the singleton
 , , is a x TCV

the all permutations of targets must be used on branching. This is handled in lines 13-21

of Fig. 4.6 using the set of targets with unfixed y coordinates. If a target selected for

 42

branching at node has just got a fixed y coordinate at node and more than

one target have unfixed y coordinates (are available for branching) at node , then we

create a new child node, where a target with lowest index is selected for branching. This

strategy will cause all permutations to be considered in branching.

 In Fig.4.7, lines 1-9 determine traversal on BBtree using depth first strategy.

 finds the next node to be implemented in main function. Function

 gives right sibling of node by creating another child

node for parent of , say . The method to create next child of is as follows: Lines 13-

1. [Branching should be performed on x axis at node P]
2. [At least one target does not have a fixed x coordinate]

3.

4.

 [Create clusters for x clustering tree]

5.

6. [Select next target for branching]

7. [All targets have fixed x coordinates at node]
8.
9.
10. [Branching should be performed on y axis at node P]

11.

12.
13.
14.
15. [A target just got fixed y coordinate at node]
16.
17.
18.
19.
20.
21.
22.
23.

Figure 4.6. Branching in BB algorithm

 43

17 consider the case where branching is done on x axis and the set of RCV1s for its

branch correspond to its cluster. If branching target at node has a fixed x

coordinate at node and branches corresponding to clusters has already been created,

then TCVs are generated by fixed targets. Lines 18-23 create branch and assign a new

distinct TCV generated by targets fixed along axis at node , to subset
 , where is

branching target at node . To avoid redundancy, only TCVs different from RCV1s

should be considered. In lines 24-28 while branching on x axis, if all targets have a fixed

x coordinate and at least one of them is an x TCV, then new child node is created

where a target, with index next to the index of branching target at node , is selected for

branching. While branching on y axis, if all targets are fixed on x RCV1s at node , i.e.

 is a singleton x RCV1 for all , then the next child is created either

corresponding to clusters for the branching target at or TCVs generated by targets with

fixed y coordinate at node . Otherwise, in lines 32-36, while branching on y axis at

node , if branching target at has a fixed y coordinate at node then a new

child node is created, where a target with lowest index and which does not have a

fixed y coordinate is selected for branching. This will cause all permutations to be

considered for branching. Lines 38-45 consider the case where branching target at node

 does not have a fixed y coordinate. In this case the set of y RCV1s for its branch

correspond to its cluster. If there does not exist any branching target for node

 and branches corresponding to clusters have already been created, then

TCVs are generated by fixed targets. Lines 42-47 create branch and assign a new distinct

TCV generated by targets fixed along x axis at node , to subset
 , where is

branching target at node . To avoid redundancy, only TCVs different from RCV1s

should be considered. In this way gives next child node using

 and moves up on BBtree if the child node does not exist.

The idea is of this branching scheme is to quickly focus on the regions of the plane that

are populated by the requests and thus have higher probability of containing the optimal

location.

 44

1. [Current node is root node]
2.
3.
4.
5.
6. [Move Right on BBTree]
7.
8. [Move Up on BBTree]

9.

10.
11.
12. [Branching should be performed on x axis at node Q]
13. [At least one target does not have a fixed x coordinate]

14.

15. [There are x RCV clusters remaining for target BT(Q)]

16.

17.
18. [If a target just got a fixed x coordinate]

19.

 [Create x TCV corresponding to targets having fixed x coordinate]

20.

21.

22.
23.
24. [all targets have fixed x coordinates at node Q]

25.

26.
27.
28.

Figure 4.7. Functions used in BB algorithm

 45

4.3.3. Bounding

 In Fig.4.8, denotes the lower bound on maximum reward and
 is the

maximum reward possible from covering request by a target if target can be placed

anywhere, i.e.
 . Lines 3-7 find request with

and trim or split (will be explained later in this subsection) the request such that new set

of requests are not covered by target placed at lower left corner of request The set of

requests is updated by adding new set of requests and removing request . These

steps are repeated for each target to find maximum reward possible from the updated set

of requests and lower bound is calculated by adding them.

29. [Branching should be performed on y axis at node Q]

30.

31.
32.
33.
34.
35. [A target just got fixed y coordinate at node]
36.
37.

38.

39. [There are y RCV clusters remaining for target BT(Q)]

40.

41.
42.
43.

 [Create y TCV corresponding to targets having fixed y coordinate]

44.

45.

46.
47.
48.
49.
50.
51.

Figure 4.7. (cont’)

 46

Function calculates the reward upper bound at each node (an

upper bound on the reward when the targets’ position is limited to subsets of CVs

corresponding to that node). The bounding function depends on the number of CVs in all

 subsets at a node. When all subsets have one element, is calculated by trimming

and splitting the requests (Fig.4.8) and otherwise, by using PVT algorithm [29]. The

PVT algorithm scans the CPs in movements parallel to one of the axes and finds the

reward at the next CP by calculating the slope of the piecewise linear functions. We

store the reward at each CP in a two-dimensional array, denoted as regional reward

array (RR), where each dimension corresponds to RCV1s at root node along an axis. In

Fig.4.8, lines 29-37 calculate by summing maximum rewards among the CPs in the

rectangular meshes (or RR) for all targets. If a target lies on an x TCV, say , then we

find maximum reward among columns and of RR. The are the greatest and

smallest x RCV1, respectively, such that . Also, if there does not exist any

RCV1, or then we only consider column or , respectively. Similarly, if

a target lies on a y TCV then we find maximum reward among rows and of RR.

This bound does not consider overlapping of the targets and hence gives value greater

than optimal value.

Lines 11-27 trim or split requests to gives optimal value when all targets are fixed.

The trimming is performed by only reducing either length or width of a request, while

splitting is the division of a request region into more than one rectangular requests. Fig

4.9 gives an example of trimming and splitting of a request. In Fig. 4.9, we assume that

target with dark boundaries is fixed and to find the reward from request 4, by the target

with dashed boundaries, we first trim the request to a region, which we call RTrim1 and

then split the trimmed area into two requests to remove region of the request already

covered by the fixed target. It is important to note that request splitting (creation of

additional requests) takes place if and only if a corner of fixed target lies inside the

request.

 47

1.
2.

3.
4.

5.

6.
7.
8.
9.

 :

10.

11.

 [All targets have fixed x, y coordinates]

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.

30.

 [are the greatest and smallest x RCV1,respectively, st.]

31.

32.

33.

 []

34.

35.
36.

37.
38.

 Figure 4.8. Bounding functions

 48

 In line 13, denotes a set of trimmed requests for target at node These are

obtained by trimming original requests to the target region in lines 14-18. The requests

are further trimmed or split (lines 19-25) to new requests such that no point of the new

requests is covered by the targets already considered. The optimal value is calculated by

summing for all new requests. That is the how we calculate in our

algorithm. Calculation of lower and upper bounds typically results in eliminating many

subsets of CPs without calculating reward for them explicitly and that is the main

reason that our algorithm works fast and memory efficient.

y

x

4
2 2

1
3

 5

y

Figure 4.9. An Example of trimming and splitting of request 4

RTrim1

Area after removing region covered by fixed
blue target.

Fixed Target Split Requests
Target

 49

 4.4. An Example for BB Algorithm

In this subsection, we introduce an example for MTP and show how our algorithm

solves it. Fig. 4.10 shows the picture and data of coverage problem with seven requests

and two targets. We reduce the continuous two-dimensional solution space to a set of

discrete points for both targets. In Figs. 4.12 and 4.13, and are the initial set of

RCV1s along x and y axis respectively for the problem. A set of x RCV1s

represents th child of a cluster of x RCV1s
 in cluster tree for x axis. Similarly,

a node on cluster tree for y axis can be defined. Our BB algorithm is performed over a

tree which we call BBtree, as shown in Fig. 4.10 and it uses bound to avoid explicitly

enumerating all points in solution space. Each of the Figs. 4.14-4.25, corresponds to a

node in BBtree and in order to represent the solution space for the targets at a node, we

use orange dots and blue colored circles on x and y axis. In the figure, two different

shaded regions are areas which can be covered by the two target rectangles respectively.

In Fig. 4.11, we initialize BBtree by creating node A associated with and for

each target. and denotes the lower bound and upper bound on maximum reward

respectively. At node A, is obtained by positioning the targets at the lower left

corners of request 5 and 3, using function in Fig. 4.8. The

 does not consider the overlapping with other requests. The is

calculated using PVT algorithm [29] and trimming or splitting of requests (for more

details refer to Subsection 4.3.3). In BBtree, a node is branched when is greater than

 at the node and the branches are determined either by clustering the set of x or y

critical values or a singleton x or y TCV. At node A, we branch over

corresponding to its clusters in cluster tree for x axis. The clustering of and is

performed as follows: In a sorted set of RCV1s, whenever the distance between two

consecutive RCV1s is greater than 50% of the maximum distance between two

consecutive RCV1s, we break the set at that point and create a new cluster as shown in

Figs. 4.12 and 4.13. We also assign to the clusters and consider branches in

the order of priority. The priority value we use is the summation of the reward rates of

 50

the requests whose RCV1s are in the cluster divided by number of RCV1s in cluster.

Note that we create clusters in cluster tree only when they are to be required in BBtree.

Also, we are using a depth first search strategy that only creates the BBnodes when they

are to be considered. We branch over
 until it has only one element at node and then

branch over
 . It is important to note that in Fig. 4.11, we are not showing all nodes of

BBtree. The sequence of nodes not shown in BBtree is represented by a downwards

dashed arrow in the figures. The branching on target 2, in addition to the nodes with

corresponding to clusters of x RCV1s, also creates nodes I (in Fig. 4.11) with singleton

 containing each of x TCVs generated by target 1 for target 2. In order to avoid

redundancy, the TCV should be different from the elements of otherwise the node is

pruned as shown by cross mark below node I in the figure. This branching mechanism is

repeatedly used until node E in which all targets have fixed x coordinates is reached.

Since at node E all targets are fixed on x RCV1s, i.e.
 is a singleton x RCV1 for all

 , so we use the ascending order of targets for branching on y axis. But if any of

the singleton
 , , is a x TCV like at node J then all permutations of targets

must be used on branching (as shown in Fig. 4.11). Note that in order to cover all

possible cases of our algorithm in this example, we have modified few nodes in the

BBtree (Fig. 4.11) and their and .

Figs. 4.14-4.25 show how the branching at a node subdivides the subspace into two

or more subspaces. All nodes below node F in BBtree are branched along y axis in

similar manner as branched along x axis, until both targets get fixed along y axis. At

node H both targets’ location are fixed (Fig. 4.21) and a better solution is found to

update the . Since the node H is an end leafnode, so we find next node by creating

right sibling of node H or next child node of and moves up on BBtree if the

child node does not exist. The algorithm terminates when there are no more nodes to

consider which means after pruning node K and L, the BBtree gives equal to optimal

solution value. Fig. 4.25 is the graphical representation of a optimal node of the BBtree.

Calculation of lower and upper bounds typically results in eliminating many

 51

combinations of the CPs in without calculating reward for them explicitly and the

branching scheme enables the algorithm to quickly concentrate on regions with higher

chance of containing the optimal solution.

request

lower left
corner

width

length

reward
rate

1 (0,7) 7 5 4
2 (1,0) 5 10 6
3 (5,5) 6 6 7
4 (4,3) 6 6 3
5 (9,2) 6 5 10
6 (-3,-1) 3 1 0.5
7 (15,2) 4 3 1

y

x

4

2
 2

1
3

5 6

7

Fig. 4.10: An illustrative example of coverage problem with two targets

Targets

target

width

length

1 4 3
2 4 3

 52

 Sequence of nodes not shown
 Target fixed along the axis
 Node Pruned
 Branches not shown

 324

A

B

C

D

E

F

G

H

K L

Refer Fig. 4.11
(Cont’)

Figure 4.11. An example of BBtree

I
J

 53

 Figure 4.11. (Cont’)

 Refer Fig. 4.11

J

 Sequence of nodes not shown
 Target fixed along the axis
 Node Pruned
 Branches not shown

 54

Figure 4.12 . Cluster tree for x axis

 55

Figure 4.13. Cluster tree for y axis

 56

Figure 4.14. Graphical
representation for node A in BBtree

Figure 4.15. Graphical
representation for node B in BBtree

Figure 4.16. Graphical
representation for node C in BBtree

Figure 4.17. Graphical
representation for node D in BBtree

y

x

4

2
 2

1
3

5

5 6

7

x

4

2
 2

1
3

5

y

6

5

7

x

4

2
 2

1
3

5

y

6

7

5
4

2
 2

1
3

5

y

6

7

 57

x

Figure 4.21. Graphical
representation for node H in BBtree

Figure 4.20. Graphical
representation for node G in BBtree

Figure 4.19. Graphical
representation for node F in BBtree

Figure 4.18. Graphical
representation for node E in BBtree

x

4

2
 2

1
3

5

y

6

7
x

4

2
 2

1
3

5

y

6

7

x

4

2
 2

1
3

5

y

6

7

y

x

4

2
 2

1
3

5

6

7

 58

Figure 4.25. Graphical representation
for Optimal Node in BBtree

Figure 4.24. Graphical
representation for node L in BBtree

Figure 4.23. Graphical
representation for node K in BBtree

Figure 4.22. Graphical
representation for node I in BBtree

x

4

2
 2

1
3

5

y

6

7

x

4

2
 2

1
3

5

y

6

7

y

4

2

1
3

5

y

x

6

7

y

x

4

2

1
3

5

6

7

 59

4.5. Computational Results

 We generated random instances with different number of requests and targets and

analyze the performance of our algorithm. Similar to STP, we generated three

categories of problems in terms of relative size of target and requests. They are shown

in Table 4.2. In categories A, the target is smaller or equal to average of request sizes.

In category B, the target size is considerably larger than the request sizes. In categories

C, the target size can be smaller, equal or larger than average of request sizes. The

requests are randomly distributed over a square region of determined size. The random

requests are generated in two steps. First, we generate three points in the region to

represent locations of interest, which we call as center points. For each center point, we

use a radius of interest. Then, we generate requested viewing zones. To generate a

requested viewing zone, we create six random numbers. One of them is used to

determine which center point the request will be associated with. Two of them are used

to generate the location of the lower left corner of the request, which is located within

the corresponding radius of the associated center point. The remaining three random

numbers are used to generate width, length and reward of requests. We picked the best

clustering scheme out of five clustering schemes, explained in Subsection 3.3. We used

Scheme 1 with in all our experiments.

Table 4.2. Problem categories

Category

A 8 6 Uniform[1,15] Uniform[1,11]

B 8 6 Uniform[1,7] Uniform[1,5]

C 4 3 Uniform[1,15] Uniform[1,11]

 60

In Experiments with 2, 3 and 4 targets, the results which are shown in Table 4.3, 4.4 and

4.5 respectively, the total region is of size (100 by 100). The reward rates of requests are

from Uniform [1,10] distribution. Our BB algorithm solves relatively large instances of

MTP in a short time. Using our algorithm, problems with two targets and 100 requests

are solved in 3 seconds. Problems with three targets and 25 requests are solved in as few

as 35 seconds, and problem with four targets and 15 requests are solved in as few as 220

seconds. For larger problems the time of our algorithm increases to more than an hour,

which is still an extremely small fraction of a brute force search. Our algorithm pays off

by focusing on concentrated areas and finding good lower bounds to avoid considering

other areas. This is supported by the time taken by our algorithm to reach solution that is

proved to be the optimal at the end, as shown in Tables 4.3, 4.4 and 4.5 and Figs. 4.25

and 4.26. In Figs. 4.25 and 4.26, denotes the total time taken by BB algorithm to solve

an instance and is the time taken by to reach the optimal value. It can be clearly

observed in graphs between LB and time that BB algorithm quickly finds the optimal

spot as is much lesser than , in fact in many cases is 2 to 35 percent of .

 The algorithm is not only fast but it is also memory efficient. Although the

number of nodes shown in the computations is very large but the maximum number of

node open during execution of is very small using a depth first search strategy that only

creates the nodes when they are to be considered.

 61

Table 4.3. Experiment 1

Instances with two targets and requests distributed over a region

No. of

Nodes
Time when LB reaches

Optimal value T1 (in Sec)

Run Time

T (in Sec)

5 240 0.01 0.04

10 539 0 0.08

15 566 0 0.09

20 632 0 0.10

25 4597 0.05 0.66

50 7511 1.25 1.37

100 354520 7.67 92.66

5 1019 0.01 0.14

10 275 0.02 0.04

15 1196 0.14 0.17

20 2181 0.12 0.32

25 1839 0.21 0.30

50 8341 1.35 1.47

100 21336 2.6 5.05

5 163 0.03 0.03

10 98 0.02 0.02

15 354 0.02 0.06

20 541 0.04 0.11

25 1551 0.19 0.25

50 4402 0.86 0.98

100 16776 3.38 3.94

BB Algorithm

Category

A

B

C

No. of

Requests

 62

Table 4.4. Experiment 2

Instances with three targets and requests distributed over a region

No. of

Nodes

Time when LB

reaches Optimal

value T1 (in Sec)

Run Time

T (in Sec)

5 12543 0.69 2.19

10 44152 0.54 7.78

15 82717 1.3 14.52

20 145735 5.47 27.31

25 933775 2.19 167.67

50 3728494 424.884 854.49

5 110596 0.17 19.63

10 31867 1.2 5.44

15 174028 16.22 31.22

20 496859 29.63 89.87

25 332794 43.36 65.20

50 8165629 1241.33 1862.97

5 2203 0.3 0.42

10 998 0.04 0.21

15 18811 0.29 3.53

20 58915 0.56 11.65

25 164262 11.65 34.46

50 686382 165.131 175.84

BB Algorithm

Category

A

B

C

No. of

Requests

Table 4.5. Experiment 3

Instances with four targets and requests distributed over a region

No. of Nodes Time when LB reaches

Optimal value T1

Run Time

T

10 4008052 102.538 s 17 min

15 92247920 35 min 7h 35 min

20 458965905 2 h 40 min 40 h

25 211689650 3 h 48 min More than 50 h

10 6523670 391.383 s 29 min

15 33102537 1 h 2h 17 min

20 119490394 17 min 8 h 30 min

25 157509381 5 h 12 min 11 h

10 44217 4.45 s 11.001

15 895430 21.302 s 219.072

20 5242345 1 min 22 s 22 min 30 sec

25 26312750 17 min 15 s 1 h 42 min

A

B

C

BB Algorithm

Category
No. of

Requests

 63

 Fig. 4.27 Graph of lower bound improvement versus time for instance in Fig.4.3

 t (sec)

 T

 Fig. 4.26 Graph of lower bound improvement versus time for instance in Fig.4.2

 t (sec)

 T

 64

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

We introduced a new class of problems, which we called Optimal Areal Positioning

(OAP), and studied a special class of OAPs. In OAP, we find the optimal position of a

set of floating geometric objects (targets) on two-dimensional plane to (partially) cover a

set of another set of fixed geometric objects (requests) in order to maximize the total

reward obtained from covered parts of requests. These problems have important

applications in earth observation satellite management, tele-robotics, multi-camera

control and surveillance. In this thesis, we considered a special form of OAP in which

the targets and requests are parallel axes rectangles and targets are of equal size. Based

on the number of targets, we classified this form into two categories: Single Target

Problem (STP) and Multi-Target Problem (MTP).

 In this thesis, we developed new theoretical properties for the solution of STP

and devised a new solution approach for it (refer Chapter III). This approach is

based on a novel branch and bound (BB) algorithm devised over a reduced

solution space. The solution space is reduced based on the theoretical properties

we derived. Branching is done using a clustering scheme.

 We presented computational experiments on our algorithm for STP. The results

show that in several cases our approach significantly outperforms the existing

Plateau Vertex Traversal, especially for problems with many requests appearing

in clusters over a large region.

 We performed a theoretical study of MTP and proved several theoretical

properties for its solution (we conjecture that MTP is NP-complete and that it can

be proved by reducing the planar p-center problem to MTP). We introduced a

reduced solution space using these properties.

 65

 We presented the first exact algorithm. This algorithm has a branch and bound

framework. The reduced solution space is essential to our algorithm and calls for

a novel branching strategy for MTP. The algorithm has a main branch-and-bound

tree with a special structure along with two trees (one for each axis) to store the

information required for branching in the main tree in an efficient format.

Therefore it is memory and performance efficient. Branching is done using a

clustering scheme. Our algorithm is capable to quickly concentrate on regions

with higher chance of containing the optimal solution. Based on our literature

review no work has been done so far on MTP and our theoretical results and

algorithm is the first attempt to solve the problem exactly and efficiently.

 We performed computational experiments to evaluate the performance of our

algorithm. Our algorithm solves relatively large instances of MTP in a short time.

Using our algorithm, in average problems with two targets and 100 requests are

solved in about 1 second. Problems with three targets and 25 requests are solved

in about 90 seconds, and problem with four targets and 10 requests are solved in

about 19 minutes. For larger problems the time of our algorithm increases to

more than an hour, which is still an extremely small fraction of a brute force

search. The algorithm is not only fast but it is also memory efficient. Although

the number of nodes shown in the computations is very large but the maximum

number of node open during execution of is very small using a depth first search

strategy that only creates the nodes when they are to be considered.

 5.2. Future Work

Several future research paths can be followed based on the problems and algorithms

developed in this thesis:

 NP Completeness: In this thesis, we have conjectured that MTP is NP-complete

and that it can be proved by reducing the planar p-center problem to MTP. This

is a line of future research that we are working on.

 66

 Clustering Scheme and Bounds: In the thesis, we picked the best clustering

scheme out of five clustering schemes for branching (see Subsection 3.3). New

clustering schemes can be introduced to make the algorithm more intelligent and

faster. The idea of these schemes would be to more quickly focus on the regions

of the plane that are populated by the requests and thus have higher probability of

containing the optimal location. Our computations show that total time taken to

complete the BB algorithm is more than three times the time required for the BB

to reach the solution that is proved to be optimal at the end. This means that if

stronger upper bounds can be developed we may be able to reduce the solution

time by orders of magnitude.

 New Forms of OAP: We can consider various new forms of OAP in which

targets and requests can be any geometric objects on the two-dimensional plane

or targets can be of unequal sizes. Also, the predetermined reward associated

with covering an area unit of each request can be a function of resolution. This

can bring in the scaling of the target as an additional decision variable. Note that

the BB algorithm can easily solve the problems with discrete resolution.

 OAP in higher dimensions: We can even extend OAP to higher dimensions.

Immediate extensions can be 3D-STP and 3D-MTP in which targets and

rectangles are parallel axes cubes.

 67

REFERENCES

[1] Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM

Computing Surveys 30, 412-458 (1998)

[2] Agnetis, A., Grande, E., Mirchandani, P.B., Pacifici, A.: Covering a line segment

with variable radius discs. Computers and Operations Research 36(5),1423–1436

(2009)

[3] Ahn, H.K., Bae, S.W.: Covering a point set by two disjoint rectangles. Algorithms

and Computation. In: Proceedings of the 19th International ISAAC Symposium,

Gold Coast, Australia, 728-39 (2008)

[4] Bansal, M., Kianfar, K.: Optimal positioning of multiple rectangular targets to

cover rectangular request areas. working paper (2010)

[5] Bansal, M., Kianfar, K.: An exact algorithm for coverage problem with a single

rectangle. In: Proceedings of the IIE Annual Meeting, Industrial Engineering

Research Conference, Cancun (2010)

[6] Chan, T.Y.: More planar two-center algorithms. Computational Geometry: Theory

and Applications 13,189-198 (1999)

[7] Chvátal V.: A combinatorial theorem in plane geometry. Journal of Combinatorial

Theory 18,39–41 (1975)

[8] Drezner, Z.: The p-center problem: – Heuristic and optimal algorithms. Journal of

the Operational Research Society 35, 741–748 (1984)

[9] Drezner, Z.: On the rectangular p-center problem. Naval Research Logistics

Quarterly 34, 229–234 (1987)

[10] Drezner, Z., Erkut, E.: Solving the continuous p-dispersion problem using non-

linear programming. Journal of the Operational Research Society 36, 516–520

(1995)

[11] Eppstein, D.: Fast construction of planar two-centers. In Proc. of the 8th ACM-

SIAM Symposium on Discrete Algorithms, Miami 131–138 (1997)

 68

[12] Gabrel, V.: Improved linear programming bounds via column generation for daily

scheduling of earth observation satellite. LIPN, Univ. 13 Paris, Nord, France,

Technical Report (1999)

[13] Geoffrion, A.M.: Lagrangian relaxation for integer programming. Mathematical

Programming Study 2, 82–114 (1974)

[14] Hochbaum DS, Maas, W.: Approximation schemes for covering and packing

problems in image processing and VLSI. Journal of the ACM 32(1), 130–6 (1985)

[15] Hall, N.G., Magazine, M.J.: Maximizing the value of a space mission. European

Journal of Operations Research 78, 224–241 (1994)

[16] Halperin, D., Sharir, M., Goldberg, K.: The 2-center problem with obstacles.

Journal of Algorithms 42, 109–134 (Jan. 2002)

[17] Handler, Mirchandani, P. B.: Location on Networks. The M.I.T. Press,

Cambridge, Massachusetts (1979)

[18] Handler, G.Y.: p-Center problems. In: Mirchandani, P.B., Francis, R.L. (eds.)

Discrete Location Theory. Wiley Inter-Science, New York, 305–347 (1990)

[19] Heinrich-Litan, L., Lbbecke, M.E.: Rectangle Covers Revisited Computationally.

In: Proceedings of the Fourth International Workshop on Efficient and Experimental

Algorithms (WEA 05), LNCS 3503, 55-66. Springer-Verlag (2005)

[20] Huang, C.F., Tseng, Y.C.: A survey of solutions to the coverage problems in

wireless sensor networks. Journal of Internet Technology 6, 18 (2005)

[21] Israeli, A., Sharon, O.: An approximation algorithm for sequential rectangle

placement. Information Processing Letters 108, 407-411 (2008)

[22] Land, A.H., Doig, A.G.: An automatic method for solving discrete programming

problems. Econometrica 28, 497–520 (1960)

[23] Lemaitre, M., Verfaillie, G., Jouhaud, F., Lachiver, J.M., Bataille, N.: Selecting

and scheduling observations of agile satellites. Aerospace Science Technology 6,

367–381, (2002)

 69

[24] Lu, M., Varman, P.: Optimal algorithms for rectangle problems on a mesh-

connected computer. Journal of Parallel and Distributed Computing 5(2), 154-171

(1988)

[25] Megiddo, N., Supowit, K.J.: On the complexity of some common geometric

location problems. SIAM Journal on Computing 13, 182–196 (1984)

[26] Nemhauser, G. L., Wolsey, L.: A. Integer and Combinatorial Optimization. Wiley-

Interscience, New York, USA (1988)

[27] Saha, C., Das, S.: Covering a set of points in a plane using two parallel rectangles.

In: Proc. of the 17th International Conference on Computing: Theory and

Applications (ICCTA), 214-218 (2007)

[28] Sharir, M.: A near-linear algorithm for the planar 2-center problem. Discrete

Computational Geometry 18, 125-134 (1997)

 [29] Song, D., van der Stappen, A.F., Goldberg, K.: Exact algorithms for single frame

selection on multi-axis satellites. IEEE Transactions on Automation Science and

Engineering 3(1), 16-28 (2006)

[30] Song, D., Goldberg, K.: Approximate Algorithms for a Collaboratively Controlled

Robotic Camera. IEEE Transactions on Robotics 23(5), 1061-1070 (2007)

[31] Tansel, B.C., Francis, R.L., Lowe, T.J.: Duality: covering and constraining p

center problems on trees. In: Mirchandani, P.B., Francis, R.L. (eds.), Discrete

Location Theory, John Wiley & Sons, New York (1990)

[32] Thai, M.T., Wang, F., Du, H., Jia, X.: Coverage Problems in Wireless Sensor

Networks: Designs and Analysis. International Journal of Sensor Networks (special

issue on Coverage Problems in Sensor Networks) 3, 191-200 (2008)

[33] Vasquez, M., Hao, J.K.: A logic-constraint knapsack formulation of a tabu

algorithm for the daily photograph scheduling of an earth observation satellite.

Journal of Computational Optimization and Applications 20(2), 137–157 (2001)

[34] Vasquez, M., Hao, J.K.: Upper bounds for the SPOT5 daily photograph

scheduling problem. Journal of Combinatorial Optimization 7(1), 87-103 (2002)

 70

[35] Vijay, J.: An algorithm for the p-center problem in the plane. Transportation

Science 19, 235–245 (1985)

[36] Wolsey, L. A. Integer Programming. Wiley, New York, USA (1998)

[37] Xu, Y., Song, D., Yi, J., van der Stappen, F.: An approximation algorithm for the

least overlapping p-frame problem with non-partial coverage for networked robotic

cameras. In: IEEE international conference on robotics and automation (ICRA),

Pasadena, CA, 1011–1016 (2008)

[38] Xu, Y., Song, D.: Systems and algorithms for autonomously simultaneous

observation of multiple objects using robotic ptz cameras assisted by a wide-angle

camera. In: International conference on intelligent robots and systems (IROS), St.

Louis, USA (2009)

[39] Xu, Y., Song, D.: Systems and algorithms for autonomous and scalable crowd

surveillance using robotic ptz cameras assisted by a wide-angle camera.

Autonomous Robots 29, 53-66 (2010)

[40] Xu, Y., Song, D., Yi, J.: Exact Algorithms for Non-Overlapping 2-Frame Problem

with Non-Partial Coverage for Networked Robotic Cameras. In: the 6th annual

IEEE Conference on Automation Science and Engineering (CASE 2010), Toronto,

Ontario, Canada (2010)

 71

VITA

Name: Manish Bansal

Address: C/O Texas A&M University,
 Industrial and Systems Engineering, Zachry Bldg.
 College Station, TX-77843-3131

Permanent C/O Sh. Y.P. Bansal,
Address: 16 Ashoka Colony,
 Karnal, India-132001

Email Address: mb.tamu@gmail.com

Education: B.Tech., Electrical Engineering, National Institute of Technology,
 Kurukshetra, India, 05/2007

 M.S., Industrial and Systems Engineering, Texas A&M University,
 College Station, 12/2010

