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ABSTRACT 

An Exact Algorithm for Optimal Areal Positioning Problem with Rectangular Targets 

and Requests (December 2010) 

Manish Bansal, B.Tech., N.I.T.K. India 

Chair of Advisory Committee: Dr. Kiavash Kianfar 

 

In this thesis, we introduce a new class of problems, which we call Optimal Areal 

Positioning (OAP), and study a special form of these problems. OAPs have important 

applications in earth observation satellite management, tele-robotics, multi-camera 

control, and surveillance. In OAP, we would like to find the optimal position of a set of 

floating geometric objects (targets) on a two-dimensional plane to (partially) cover 

another set of fixed geometric objects (requests) in order to maximize the total reward 

obtained from covered parts of requests. In this thesis, we consider the special form of 

OAP in which targets and requests are parallel axes rectangles and targets are of equal 

size. A predetermined reward is associated with covering an area unit of each request. 

Based on the number of target rectangles, we classify rectangular OAP into two 

categories: Single Target Problem (STP) and Multi-Target Problem (MTP). The 

structure of MTP can be compared to the planar p-center which is NP-complete, if p is 

part of the input. In fact, we conjecture that MTP is NP-complete. The existing literature 

does not contain any work on MTP. The research contributions of this thesis are as 

follows:  

 We develop new theoretical properties for the solution of STP and devised a 

new solution approach for it. This approach is based on a novel branch-and-

bound (BB) algorithm devised over a reduced solution space. Branching is done 

using a clustering scheme. Our computational results show that in many cases 

our approach significantly outperforms the existing Plateau Vertex Traversal 
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and brute force algorithms, especially for problems with many requests 

appearing in clusters over a large region. 
 

 We perform a theoretical study of MTP for the first time and prove several 

theoretical properties for its solution. We have introduced a reduced solution 

space using these properties. We present the first exact algorithm to solve MTP. 

This algorithm has a branch-and-bound framework. The reduced solution space 

calls for a novel branching strategy for MTP. The algorithm has a main branch-

and-bound tree with a special structure along with two trees (one for each axis) to 

store the information required for branching in the main tree in an efficient 

format. Branching is done using a clustering scheme. We perform computational 

experiments to evaluate the performance of our algorithm. Our algorithm solves 

relatively large instances of MTP in a short time.  
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CHAPTER I 

INTRODUCTION 

 

1.1. Optimal Areal Positioning (OAP): An Introduction 

We define Optimal Areal Positioning (OAP) as a class of problems in geometric 

optimization. In OAP, we would like to find the optimal positions of   floating 

geometric objects (targets) on the two-dimensional plane to (partially) cover another set 

of    fixed geometric objects (requests) in order to maximize the total reward obtained 

from covered parts of requests. We denote request   by    and target   by   . The 

coverage reward is calculated as follows: For any request             
     is the 

covered part of the request (by one or more targets) and           
      denotes the 

area of this covered part. Then the reward obtained from this request will be        

     
     , where    is the reward rate of request  , i.e. the reward per area unit of the 

request. The goal is to find the optimal position of the targets such that the total reward 

obtained from the coverage of the requests by the targets is maximized. 

In this thesis, we address particular forms of OAP in which the targets and requests 

are of rectangular shape with axes parallel to x and y axes and the targets are of equal 

size. Based on the number of targets, this form is further classified into two categories: 

1) Single Target Problem (STP), in which we consider the positioning of only one target 

rectangle; 2) Multi Target Problem (MTP), in which we consider positioning multiple 

target rectangles. The STP and MTP will be formally defined in detail in Chapters III 

and IV, respectively.    

 
____________ 
This thesis follows the style of the series Lecture Notes in Computer Science (LNCS). 



 2 

OAP in general, and STP/MTP in particular, are motivated by several applications 

including camera frame selection in earth observing satellites and controlled surveillance 

cameras (Chapter II). Additionally, these problems have applications in what we refer to 

as areal facility location, where instead of aggregating the customers in centroids, the 

facilities and customers are considered as areas and the amount of coverage (service) to 

each customer is determined by the overlap of the facilities’ range of coverage with that 

customer’s area. 
 

 The only previous work directly related to STP is the work of Song et al. [29]. In 

fact they proposed their algorithms for an extension of this problem in the earth 

observing satellite context. They presented a brute force search algorithm and introduced 

another algorithm called plateau vertex traversal (PVT) which works better than brute 

force. They showed that the PVT algorithm is of complexity     
   while the brute force 

approach is     
  . Based on our literature review, MTP has not been addressed before. 

Latest research in geometric optimization, particularly rectangle coverage problems and 

related applications is reviewed in Chapter II.  

 

1.2. Contributions  

 In this thesis we develop new theoretical properties for the solution of STP and 

devise a new solution approach for it (refer Chapter III). This approach is based 

on a novel branch-and-bound (BB) algorithm devised over a reduced solution 

space. The solution space is reduced based on the derived theoretical properties 

of the optimal solution. Branching is done using a clustering scheme.  
 

 We present computational experiments on our algorithm for STP. The results 

show that in several cases our approach significantly outperforms the existing 

Plateau Vertex Traversal, especially for problems with many requests appearing 

in clusters over a large region. 
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 We perform a theoretical study of MTP and prove several theoretical properties 

for its solution (we conjecture that MTP is NP-complete and that it can be proved 

by reducing the planar p-center problem to MTP). We introduce a reduced 

solution space using these properties. 

 
 We present the first exact algorithm to solve MTP. This algorithm has a branch-

and-bound framework. The reduced solution space is essential to our algorithm 

and calls for a novel branching strategy for MTP. The algorithm has a main 

branch-and-bound tree with a special structure along with two trees (one for each 

axis) to store the information required for branching in the main tree in an 

efficient format. Therefore it is memory and performance efficient. Branching is 

done using a clustering scheme. Our algorithm is capable to quickly concentrate 

on regions with higher chance of containing the optimal solution. Based on our 

literature review no work has been done so far on MTP and our theoretical 

results and algorithm is the first attempt to solve the problem exactly and 

efficiently.  
 

 We perform computational experiments to evaluate the performance of our 

algorithm. Our algorithm solves relatively large instances of MTP in a short time. 

Using our algorithm, in average problems with two targets and 50 requests are 

solved in about 1 second. Problems with three targets and 25 requests are solved 

in about 90 seconds, and problem with four targets and 10 requests are solved in 

about 19 minutes. For larger problems the time of our algorithm increases to 

more than an hour, which is still an extremely small fraction of a brute force 

search. The algorithm is not only fast but it is also memory efficient. Although 

the number of nodes shown in the computations is very large but the maximum 

number of node open during execution of is very small using a depth first search 

strategy that only creates the nodes when they are to be considered.  
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1.3. Organization of the Thesis 

The thesis organization is as follows: In Chapter II we will review the applications 

that motivate our problems. We review the previous research done to solve STP and 

other problems in satellite imaging, such as selecting and scheduling the images to be 

taken by an earth observing satellite, as well as camera security surveillance. We also 

present a brief survey of some other related applications. We also present the related 

theoretical work done in geometric optimization.  
 

In Chapter III we define STP and provide a new solution approach to solve the 

problem exactly. We present the theoretical properties that we use in designing our 

branch-and-bound algorithm.  We then present the different component of our algorithm 

and their pseudo codes. We also present our computational experiments and discuss the 

performance of our algorithm versus PVT algorithm.  
 

In Chapter IV we introduce MTP and perform a theoretical study of the problem. We 

prove several theoretical properties for its solution. We then present our novel branch-

and-bound algorithm to solve MTP exactly along with the pseudo codes of its several 

components. We provide an example to explain the algorithm and present our 

computational experiments on our algorithm to show that it efficiently solves large 

instances of the problem. 
 

In Chapter V we conclude by a summary and a discussion of several paths for future 

research. 
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CHAPTER II 

APPLICATIONS, BACKGROUND AND RELATED WORK 

 

The STP and MTP are geometric optimization problems which determine optimal 

placement of   rectangles on a plane to cover (partially) requests in order to maximize 

total reward. Although, researchers have worked on the problems involving rectangle 

coverage, fitting and intersection, we will see that the previous research is limited to a 

single study on the STP and no work has been done before to solve the MTP.      
 

Subsection 2.1 covers the applications which are the motivation behind our 

problems. We review the research done to solve problems in satellite imaging, i.e. 

selecting and scheduling the images to be taken by an earth observing satellite, camera 

security surveillance, and briefly give a survey of some other related applications. In 

Subsection 2.2, we discuss some related theoretical work done in geometric 

optimization. 

 

2.1. Motivation and Applications 

      The STP and MTP are motivated by applications in camera frame selection in earth 

observing satellites and security cameras installation for surveillance. We discuss these 

applications in the following subsections.   

 

2.1.1. Earth Observing Satellite Problems 

The mission of an Earth Observing Satellite is to acquire images of specified areas 

on the Earth surface, in response to observation requests from customers. Perhaps the 

closest work to the topic of this thesis is that of Song et al. [29]. They proposed 

algorithms for an extension of this problem in the earth observing satellite context. 

Several simultaneous requests for photographing a region (issued by different users) are 

sent to the satellite camera and a single imaging frame must be chosen for the camera. 
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The reward from covering one area unit of a request by the frame depends on the relative 

importance of the user. The position of a target frame for the camera is to be chosen such 

that the total reward obtained is maximized. In their version of the problem the reward is 

not only related to the amount of coverage but also to the ratio of the requested 

resolution to the actual image resolution. If the resolution factor is removed their 

problem reduces to the STP. Therefore their algorithms also solve the STP. They 

presented a brute force search algorithm and introduced another algorithm called Plateau 

Vertex Traversal (PVT) which works better than brute force. They showed that the PVT 

algorithm is of complexity     
   while the brute force approach is     

   where the 

number of requests is   . 
 

Song and Goldberg [30] proposed an approximation algorithm for generalized 

version of STP i.e. when requests are not necessarily rectangular. The algorithm runs in 

  
 

  
  time where number of requests is   and approximation bound is  . Main 

differences between their generalized version of problem and STP [29] are shape of 

input, computational speed and accuracy. In [30], input requests are not necessarily 

rectangular as considered in [29] and speed is preferred over accuracy.  
 

In case of the STP, the PVT algorithm of [29] works great when the number of 

requests is small or moderate; however as we will see in the Chapter III, as the number 

of requests gets larger the branch-and-bound algorithm that we have proposed for STP 

works significantly faster. Xu and Song [37] have addressed p-frame problem, an 

extension of single frame problem [29] for   camera frames. They assumed that the   

camera frames have no overlap on their coverage and a request is satisfied only if it is 

fully covered by a camera frame. They developed a lattice based approximation 

algorithm to solve the p-frame problem in   
 

  
 

  

  
  time for a given approximation 

bound  . This work is merged with a paper [38] to provide a complete algorithm for 

request assignment and the camera parameter selection problems, and system design for 

autonomous surveillance [39]. In 2010, Xu et. Al. [40] proposed exact algorithms to 
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solve 2-frame problem in     
  ,        and       times for fixed,   discrete and 

continuous camera resolution levels, respectively. If the resolution factor and all the 

assumptions are removed, their problems [37, 39] convert to MTP which will be solved 

exactly in Chapter IV. 
 

Some other problems related to earth observing satellites have been studied too. Hall 

et al [15] studied the satellite space mission scheduling problem for non-agile satellites 

(SPOT5): Given a set of jobs on a satellite (each having fixed duration, an available time 

window, and a weight), the goal is to schedule the jobs by selecting a feasible sequence 

of jobs which maximizes the sum of weights. They argued that the problem is NP-

complete since it is a generalization of the problem of sequencing with release times and 

deadlines. Gabrel [12] proposed to formulate the scheduling problem (referred to as the 

shot sequence problem in [12]) using mathematical programming and graph theory. In 

order to obtain approximation solutions and better upper bounds, the problem can be 

translated into sum of simple longest paths problems as sub-problems. The formulation 

in [12] assumes that any shot can be taken by only one camera at most once and at a 

unique moment.  
 

Vasquez and Hao [33] presented a formulation of the daily photograph scheduling 

problem as a generalized version of the knapsack model, followed by development of a 

tabu search algorithm. Later, they [34] introduced tight upper bounds. These bounds are 

obtained with a partition-based approach following the “divide and conquer” principle. 

The management of Agile Earth Observing Satellites (AEOS), which has two additional 

degrees of freedom i.e. a three-axis robotic camera that can be steered during each time 

window, has been investigated by  Lemaître et al.[23].  They have presented different 

methods: greedy algorithm, dynamic programming algorithm, constraint programming 

approach and local search method.  
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2.1.2. Security Cameras 

Security cameras mounted on different structures (buildings, towers, etc.) are 

important tools being used more and more everyday to monitor public and commercial 

facilities against various threats. Millions of dollars are being spent by local 

governments on installing these security systems. Pre-installed cameras are also used in 

other contexts such as environmental research, traffic control, border protection, etc. 

Availability of cameras is clearly subject to budget constraints. Therefore in practice 

adjusting the view-frames of the limited number of available cameras (i.e. where they 

are looking) to optimally monitor a large region becomes an important (and complex) 

problem. This problem arises in both manual and automatic control of cameras.  

 
OAP can be directly applied to address problems of this nature. Here we describe an 

example in the context of port security (Fig. 2.1). Consider a certain number of (pan-tilt-

zoom) security cameras installed on one or more towers to monitor a part of a large port. 

The view-frames of these cameras are controlled by an automatic system. We would like 

the system to automatically adjust the view-frames of cameras to optimally monitor the 

Optimal camera view-

frames (Frames) 

Potential areas of threat 

(Requests); in this 

example the requests are 

rectangular; the thickness 

of the rectangle border 

represents the reward 

rate i.e. threat level. 

Figure 2.1. Finding the view-frames for 4 security cameras in surveillance 
of a port using OAP (the cameras will pan-tilt-zoom onto the designated 
optimal frames) 
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port in order to minimize the possibility of missing a threat. This problem can be 

formulated as an OAP. Based on the activities going on in the port for a given time 

window, human agents or preprogrammed automatic systems identify (as input to the 

system) several areas of potential threat on a panoramic picture of the port. These areas 

represent the “requests” in the OAP. They are the bordered rectangles in Fig. 2.1. The 

threat level of different areas may be different depending on their sensitivity, volume of 

activity, and vulnerability. A reward rate is associated to each request proportionate to 

the level of threat in that area in that time window. The sought-after camera view-frames 

are the “targets” in the OAP. By solving the OAP, the automatic control system finds the 

optimal positions of view-frames (color-filled rectangles in Fig. 2.1) such that the total 

level of threat that they cover is maximized. Then the cameras pan-tilt and zoom on 

those view-frames. 

 

2.1.3. Other Related Applications 

There are other problems related to covering. Identifying the minimum number of 

discs with fixed radius to cover a given set of points in the plane is an example. This 

problem has been addressed as NP-hard problem in a number of articles. Hochbaum and 

Mass [14] presented polynomial approximation algorithms for different versions of 

geometric covering problems, including covering by discs. Agnetis et al. [2] addressed 

the disc covering problem on a line - the problem of covering (or full surveillance of) a 

single line segment with radar sensors having a circular field of view at minimum cost. 

This has been referred as the robust k-center problem and analyzed in [2]. Agnetis et al. 

mentioned that for identical radius sensors, a simple polynomial search solves for 

optimal radius and number of sensors. But the problem becomes hard when the sensors 

are modeled with variable diameter discs. 
 

The deployment of wireless transmission networks is related to the geometric Disc 

Covering Problem. Surveys on covering problems dealing with this particular 

application can be found in [7, 20, 32]. Huang and Tseng [20] surveyed the solution to 



 10 

the following covering problems in wireless sensor networks: 1) The Art Gallery 

Problem introduced by Chvátal [7], where one has to find the minimum number of 

watchmen (or cameras) needed to observe every wall of an art gallery room.  2) Energy-

conserving protocols and coverage-preserving sensor scheduling scheme which 

determine when a sensor node can be turned off and when it should be rescheduled to 

become active again.  3) Surveillance issues of achieving certain sensing coverage and 

communication connectivity requirements and evaluating the quality of service provided 

by a particular sensor network. 4) The Circle Covering Problem which is to arrange 

identical circles on a plane that can fully cover the plane. Thai et al. [32] have presented 

an overview of coverage problems in wireless sensor networks. We reviewed several 

papers dealing with this particular application as the disc coverage problem is defined 

from several points of view due to a wide-range of applications. Among all the 

problems, only the k-coverage problem in [32] sounds closer to our MTP. But the k-

coverage problem deals with finding a set of sensors such that every point in an area is 

covered by at least k- distinct sensor nodes, which is completely different from the 

definition of the MTP. 

  

2.2. Related Theoretical Work in Geometric Optimization 

The STP and MTP are problems belonging to the class of geometric optimization 

problems. Lu. et al. [24] have addressed several problems belonging to the class of 

rectangle intersection in computational geometry. They solved following problems for a 

set of   rectangles: a) calculating the area of the region that is covered by at least one 

rectangle or by two or more rectangles, b) finding the maximum number of rectangles 

that overlap and c) calculating the distance between the closest pair of non overlapping 

rectangles. The algorithms presented in their paper employ a divide-and-conquer 

technique. 
 

 In 1998, Agarwal and Sharir [1] reviewed the progress in the design of algorithms 

for various geometric optimization problems in a survey. They reviewed several 
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techniques used to tackle the problems in geometric optimization, including facility 

location, proximity problems, statistical estimators and metrology, placement and 

intersection of polygons and polyhedral, and ray shooting and other query type 

problems. The techniques addressed in [1] are parametric searching, geometric 

alternatives to parametric searching, prune-and-search techniques. From computational 

point of view, Latin and Lbbecke [19] addressed the problem of covering a polygon with 

a minimum number of rectangles. Another rectangle placement problem is considered by 

Amos and Oran [21] whose goal is to find a placement of maximum number of 

rectangles while scheduling a sequence of rectangles on a matrix. A matrix is a 

rectangular area on a two-dimensional plane. They presented an           time 

approximation algorithm. Saha and Das [27] considered the coverage of a set of   points 

on a plane by two parallel rectangles placed in arbitrary orientation, such that the area of 

the larger rectangle is minimized. They solved the problem in       time using an 

      space. The problem of minimizing the total area of two rectangles placed to cover 

a given set of points on a plane can also be solved by the approach in [27]. Ahn and Bae 

[3] extended the two-rectangle covering problem by considering: 1) the rectangles are 

free to rotate but must remain parallel to each other, and 2) one rectangle is axis-parallel 

but the other rectangle is allowed to have an arbitrary orientation. They presented 

           time algorithms for solving both problems, which is an improvement to the 

algorithm in [27]. 
 

The MTP is an extension of STP when multiple targets are to be positioned. The 

structure of this problem can be compared to the planar p-center or p-median problems 

which are NP-complete, if p is part of the input [25]. In fact, we conjecture that MTP is 

NP-complete by reducing p-center problem to MTP. The p-center and p-median 

problems deal with points instead of area though: in p-center given a set of demand 

points, the goal is to locate p service points on the plane to minimize the maximum 

distance of a demand point to its nearest service point. In p-median the goal is to 

minimize the summation of such distances. The 2-center problem is a special case of the 
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general p-center problem. This problem has been studied in several papers [6, 11, 16, 

28], and the currently best algorithm for its solution runs in polynomial time [11, 16]. 
 

In the plane, p-center problem was investigated by Drezner [8] and Vijay [35] for 

Euclidean distances and by Dzerner [9] for rectilinear distance. The Euclidean p-center 

problem is equivalent to the following two related problems: 1) Covering every point in 

the area by p circles with the smallest possible radius. 2) Locating p objects such that the 

total weight of points within a fixed distance of some object is maximized. Likewise, the 

rectilinear p-center problem is to cover every point in the area by p squares of minimum 

area. A text by Handler and Mirchandani [17] addresses networks location problems 

corresponding to p-center extensively, and excellent reviews of the p-center problem on 

trees and graphs can be found in Handler [17] and Tansel et al. [31].  
 

Another closely related problem is the p-dispersion problem, which is to locate p 

facilities in an area or a graph such that the minimal distance between two facilities is 

maximized. The p-dispersion problem in a square is equivalent to packing p circles with 

maximal radius in a square as discussed in Drezner and Erkut [10]. Research in this field 

has followed two directions. The first deals with finding packing with proven optimality 

and the second aims toward finding algorithms with better complexity. 
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CHAPTER III 

SINGLE TARGET PROBLEM 

 

3.1. Introduction 

In this chapter, we consider positioning a single rectangular target on two-

dimensional plane to partially cover a set of existing rectangular areas (requests) to 

maximize total coverage reward. More specifically this problem can be described as 

follows (see Fig. 3.1):    rectangular areas, called request rectangles or simply requests, 

are designated on a two-dimensional plane. Their positions and sizes are known, i.e. for 

request  , denoted by   , we know the values           and   , where    and    are the 

coordinates of the lower left corner of the request and    is its width (length along x 

axis) and    is its length (length along y axis). All requests have axes parallel to x and y 

axes. We would like to find the optimal position of a floating target rectangle (simply 

called target and denoted by  ), with the known dimensions    and    and axes parallel 

to x and y axes, such that the coverage reward obtained from this positioning is 

maximized. The coverage reward is calculated as follows: Let      denote the part of 

request   that is covered by target and         denote the area of this covered part. 

Then there will be a reward equal to           , where    is the reward rate of 

request  , i.e. the reward per area unit of the request. We would like to find the optimal 

position of the target (by position we mean    and   , the coordinates of its lower left 

corner) such that the total reward obtained from the coverage of requests  by the target is 

maximized. In other words we want to solve the following problem: 

        
               

  
   . 

Fig. 3.1 shows the picture and data along with the optimal position of the target for a 

solved problem with five requests. Based on the target position we see that the reward 

from request 1, 2, 3, 4 and 5 are                   , and        respectively 

so the total reward is 162. It is important to note that in this thesis, other than the  
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Figure 3.1: An illustrative example of the coverage problem with a single target and its 

optimal solution 
 
 
 

examples, there is no grid and all the problems are exactly in continuous space i.e. there 

is no discretization.   

 

As discussed in Chapter II, STP is motivated by several applications including 

camera frame selection in earth observing satellites or controlled surveillance cameras. 

See Chapter II for more details. In addition to this application we believe this problem 

can have application in what we refer to as areal facility location where instead of 

aggregating the customers in centroids, the facility and customers are considered as areas 

and the amount of coverage (service) to each customer is determined by the overlap of 

the facility area with that customer’s area. 
  

In this chapter we provide a new solution approach for STP. This approach is based 

on a novel branch-and-bound (BB) algorithm devised over a reduced solution space. The 

solution space is reduced based on some theoretical properties of the optimal solution. 

Similar theoretical properties are used by Song et al. [29]. As discussed in Chapter II, 

they presented a brute force search algorithm and introduced another algorithm called 

y 

x 

4 

2 
 2 

1 
3 

  5 

Optimally 
positioned target 

request 
  

lower left 
corner 
        

width 
   

length 
   

reward 
rate    

1 (0,7) 7 5 4 
2 (1,0) 5 10 6 
3 (5,5) 6 6 7 
4 (4,3) 6 6 3 
5 (9,2) 6 5 10 

 
details of target optimal 
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(max) 

reward   
width  
(    

length 
     

4 3 (3,7) 162 
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plateau vertex traversal (PVT) which works better than brute force. They showed that 

the PVT algorithm is of complexity     
   while the brute force approach is     

  . The 

PVT algorithm works great when the number of requests is small or moderate; however 

as the number of requests gets larger our extensive computational experiments show that 

our algorithm works significantly faster. This is especially true when the requests are 

scattered over a large area as our BB algorithm tends to focus quickly to the regions 

where there is a concentration of requests and higher rewards. For the same reason our 

algorithm tends to work significantly faster when the reward rates are more 

heterogeneous among the requests.   
 

In Subsection 3.2, we discuss the general framework of a BB algorithm. In 

Subsection 3.3, we present our theoretical structure of our algorithm and in Subsection 

3.4 we present our computational experiments and discuss the performance of our 

algorithm versus PVT algorithm. 

 

3.2. Structure of Branch-and-Bound Algorithms 

Branch-and-bound (BB) is the most widely used tool for solving large scale NP-hard 

combinatorial optimization problems. In 1960, Land and Doig [22] were the first to 

propose this method for integer programming.  
 

The schematic behind the algorithm for a maximization problem is as follows: The 

algorithm starts at the root node. The BB tree is a decision tree. Each node in the tree 

corresponds to a subset of the solution space. At each node, two main actions are 

performed: 1) bounding, this procedure calculates the upper bound for the best solution 

value obtainable in the solution space of each node from the tree. 2) decision making, 

based on the upper bound at a node and best known feasible solution value (i.e. best 

lower bound of the problem), the node is either pruned or branched.    

Pruning Step: A node can be pruned for two reasons: 1) if the upper bound value on 

that node is smaller than the best feasible solution value found so far. In this case there is 
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no point in searching the node for optimal solution anymore (this is the main idea behind 

BB). 2) if a solution is found, the lower bound will be updated if this solution has a 

larger objective value.  

Branching Step: If a node cannot be pruned, the solution space of the node is 

subdivided into two or more subspaces (by generating child nodes). This action is known 

as branching. There are different problem dependent strategies for choosing the 

branching scheme in a node and also for choosing the next node in the tree. 

 The problem is solved when all nodes are pruned and the best lower bound will be 

the optimal value. BB often leads to exponential time complexities in the worst case but 

if applied carefully, it can lead to algorithms that run reasonably fast on average. The 

efficiency of the method depends strongly on the branching (node-splitting procedure) 

and on the upper and lower bound estimators. In order to solve maximization problem 

using BB, interchange the lower bound by upper bound in the scheme mentioned above. 

More details and references can be found in [26] and [36]. 

 

3.3. Novel Branch-and-Bound Algorithm for STP 

In this subsection we present our algorithm for solving the STP problem.  We 

mentioned in Subsection 3.1 that we determine the positions of requests and the target by 

the coordinates of their lower left corner. We will use a fundamental observation 

(Lemma 3.1) in our BB algorithm. This observation helps us to reduce the continuous 

two-dimensional solution space to a set of discrete points. To identify these discrete 

points, first we define what we will refer to as critical x and y values. Given a request  , 

four critical   values and four critical   values corresponding to this request are defined 

as follows (see Fig. 3.2): 
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These critical values are shown for two requests in Fig. 3.2. Since the critical values are 

generated from requests so we call them RCVs. The RCVs are numbered from left to 

right from 1 to 4. We categorized RCVs into two types: RCVs 2 and 3 are type 1 

(denoted by RCV1) and RCVs 1 and 4 are type 2 (denoted by RCV2). According to Fig 
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Figure 3.2. x and y RCVs for   and    and reward graphs at      
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3.2,   
    

    
    

  are RCV1s and   
    

    
    

  are RCV2s. The graph at the bottom of 

the figure shows the reward function when the target moves parallel to the x axis with    

at    
   for this example. It is easy to see in Fig. 3.2 that the reward function for a fixed 

value of    is piecewise linear and its breakpoints occur at the x RCVs. A similar 

statement is true for a fixed    and critical   values. This is because the area covered by 

the target with one of its coordinates fixed is simply a linear function of the other 

coordinate. Now the fundamental result that we use to reduce the solution space to 

discrete points is as follows. A result similar to this is used in [29] in design of brute 

force and PVT algorithm.  

 

Lemma 3.1.  There is at least one optimal position (       for the target such that    is 

an x RCV1 and    is a y RCV1. 

Proof. Assume the position (          
    

   is an optimal position for the target and 

  
  is not an   RCV1. Notice that   

  cannot be an x RCV2 because if it is, then by 

moving the target parallel to x axis, either left or right, the reward increases, which is 

contrary to optimality of    
 . Now, by moving the target to the left or right with    fixed 

(i.e. parallel to the x axis) until    is equal to an    RCV1, the reward will not change 

because if the reward increases it contradicts optimality of   
 ; if the reward decreases, 

since the reward function at a fixed   is piecewise linear with breakpoints at   RCVs, by 

moving in the opposite direction, the reward increases, which is again contrary to 

optimality of   
 . Therefore the reward will remain the same and we will hit an   RCV. 

Notice that this RCV cannot be a RCV2 because, as explained above, if it is a RCV2, 

then by moving the target parallel to x axis, either left or right, the reward increases, 

which is contrary to optimality of    
 . Therefore we have found a new optimal solution 

in which    is an x RCV1.The same argument can be applied to   . Therefore there will 

be another optimal solution with both    and    being RCV1s.   □ 

As a result of Lemma 3.1, we only need to do our search over the points that are at 

the intersection of   and   RCVs (we call them critical points (CPs)). The Brute Force 
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Algorithm does this by calculating the reward function for every CP. At each CP the 

coverage of each request is calculated and the associated rewards are added and the 

critical point with the highest reward is found. The number of CPs is     
   and reward 

calculation for each is      . So the complexity is     
  , which is not efficient at all 

when    is a large number. The PVT algorithm [29] does a better job of calculating the 

reward. Instead of calculating the reward at each CP independently, it scans the CPs in 

movements parallel to one of the axes and finds the reward at the next CP by calculating 

the slope of the piecewise linear functions. This reduces the complexity to     
  .  

One drawback of the PVT algorithm is it still has to scan through all CPs. If there is 

a higher concentration of requests or large reward rates at some region of the plane, the 

chances of the optimal solution being in that region is higher. Our BB algorithm is 

designed to benefit from this feature. It quickly concentrates on such regions and finds a 

                    
 
[Initialization] 

1.                                                            
2.                                    
3.    

        
                  

      
[End of Initialization] 

 
4.       
5.               
6.                         

          [Upper Bound at node P is less than the best solution value known so far]                 
7.                                  
8.                                 [The target has fixed x, y coordinates] 
9.                                       
10.                     ; 
11.       
12.                  ; 
13.                        
14.        
15.           
16.                    
17.                                    
  Figure 3.3. Main body of the BB algorithm 
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good solution and then by calculating upper bounds on the reward if the target is in other 

regions tries to avoid explicit enumeration of CPs in those regions.  

Our BB algorithm implicitly searches the space of CPs. Like any BB algorithm (see 

[4]), our algorithm is performed over a tree, which we call BBtree, and uses bound to 

avoid explicitly enumerating all CPs. We denote the set of all   and   RCV1s by    and 

  , respectively. The nodes of this tree are called BBnodes. Each BBnode   in BBtree is 

associated with a subset    of    RCV1s and a subset    of   RCV1s. Therefore each                                                                                                                                    

node in fact corresponds to a rectangular mesh consisting of a subset of CPs. These 

subsets are created by clustering the sets   and    on two clustering trees. When 

required, the set of RCV1s in each cluster is further clustered (partitioned) into subsets. 

The subsets    and    at each BBnode   correspond to a cluster of   RCV1s and a 

cluster of   RCV1s respectively. The pseudo code for the main body of our BB 

algorithm is shown in Fig. 3.3.    denotes the lower bound on maximum reward and    
 

is the maximum reward possible from covering request   by the target if target can be 

placed anywhere, i.e.    
                    .  

The pseudo codes of the functions used within the BB algorithm are presented in Fig. 

3.4. Function       calculates the reward upper bound at each node (an upper bound on 

the reward when the target position is limited to the CPs corresponding to that node). 

     denotes a set of trimmed requests for node    These are obtained by original 

requests that are trimmed to the region that is reachable by the target when its position is 

limited to the region associated with the CPs of node    Based on definition of   , 

clearly summation of    for all        is an upper bound for reward at node   and 

that is the way we calculate       in our algorithm             finds the next node 

after pruning a node based on a depth first search strategy. Other search strategies can 

also be implemented in this function. 
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             : 
1.                    
2.                                                                                    
3.                                                                           
4.                           ; 
5.         
6.            
7.                   ; 
8.         
 

9.                                
10.                                    ;               [Move Right on BBTree] 
11.                                  
12.                                                   [Move Up on BBTree] 
13. Else                                                                   [Current node is root node] 
14.                        ;        
15.        
 

16.                                               
17.                                                 
18.                                                      

         [Create clusters for x clustering tree]             
19.                             
20.                               

                        
       

21.                        ; 
22.         
 

23.                                

24.                  
25.                                     [Break at the point when distance between RCV1s    ] 
26.                                             ;  

27.                                            
28.                 
29.         
30.                                

31.                                                            
32.                  
33.                                     
34.         

Figure 3.4. Functions used in BB algorithm 
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     In Fig. 3.3 observe that when in a node          is not greater than    the node is 

pruned and the next node is considered. Also when the target location is fixed, a better 

solution is found the LB is updated. Otherwise, the node is branched meaning that the 

CPs of that node are decomposed into smaller subsets.   
 

The branching is done using the           function. The branches are determined 

by clustering the set of   or   RCV1s. A selection rule to choose between    or    must 

be used. One possibility is branching over    until it has only one element and then 

branch over   . If we consider the case where branching is done over   , the set of   

RCV1s for each of its branches correspond to one of its clusters. If branching is not 

stopped because of pruning by bound we will reach a leaf BBnode. A leaf BBnode has 

one element in the set of CPs along each axis. In other words, at the leaf BBnode the 

target gets an exact position as the CPs give the left bottom corner’s coordinates of the 

target. 
 

 The clustering of    is performed by calling the             function. The clusters 

of each set are saved by the            function because they may be used in branching 

of future nodes again and we do not want to redo the clustering in that case. We pick the 

best clustering scheme out of following five clustering schemes for branching. As seen 

in Fig. 3.4, clustering, according to Scheme 1, is done as follows: the RCV1s in the set 

are sorted. Whenever the distance between two RCV1s is greater than a predetermined 

percentage ( ) of the maximum distance between two consecutive RCV1s ( ), we break 

the set at that point and create a new cluster. The efficiency of the BB method depends 

critically on the effectiveness of the branching. An appropriate value of ( ) is selected 

because the smaller values of   would reduce our algorithm to an exhaustive 

enumeration of the domain, on the other hand branching won’t occur for the bigger 

values of  . We also assign          to the clusters and consider branches in the order 

of priority. The priority value we use is the ratio of summation of the reward rates of the 

requests whose RCV1s are in the cluster to the number of RCV1s in the cluster. All 

other schemes perform clustering similar to Scheme 1 till the value of   in a cluster is 
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greater than the dimension of the target along the corresponding axis. Afterwards, 

Scheme 2 and 3 create two and three new clusters, respectively with equal number of 

RCV1s.  In Scheme 4, we break the set whenever distance between two RCV1s is equal 

to  . Scheme 5 creates three new clusters by breaking a cluster at points where distance 

between consecutive RCV1s is either equal maximum or second maximum in the 

cluster. When a cluster contains two RCV1s then the scheme 3 and 5 work like scheme 2 

and 4 respectively. We found based on our experiments that the Scheme 1 with   

    results in the smallest run times in average. The idea is of this branching scheme is 

to quickly focus on the regions of the plane that are populated by the requests and thus 

have higher probability of containing the optimal location.  
 

 The algorithm terminates when there are no more nodes to consider. Calculation of 

lower and upper bounds typically results in eliminating many CPs without calculating 

reward for them explicitly and that is the main reason that our algorithm works faster in 

many large problems. 

 
 3.4. Computational Results 

  We generated random instances with different number of requests and compared 

the performance of our algorithm with PVT algorithm. The brute force algorithm is 

worse than both for obvious reasons. The running time of the brute force algorithm 

easily exceeds 5 minutes for 500 requests and several hours for 4000 requests in all cases 

so we eliminate it from further consideration. We generated three categories of problems 

in terms of relative size of target and requests.  They are shown in Table 3.1. In 

categories A, the target is smaller or equal to average of request sizes. In category B, the 

target size is considerably larger than the average of request sizes. In categories C, the 

target size can be smaller, equal or larger than average of request sizes. The requests are 

randomly distributed over a square region of determined size. The random requests are 

generated in two steps. First, we generate three points in the region to represent locations 

of interest, which we call as center points. For each center point, we use a radius of 

interest. Then, we generate requested viewing zones. To generate a requested viewing 
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zone, we create six random numbers. One of them is used to determine which center 

point the request will be associated with. Two of them are used to generate the location 

of the lower left corner of the request, which is located within the corresponding radius 

of the associated center point. The remaining three random numbers are used to generate 

width, length and reward of requests.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

In Experiment 1, the results of which are shown in Table 3.2, the total region is large 

(5K by 5K). The reward rates of requests are from Uniform [1,150] distribution. We 

observe that in many instances specially the ones with large number of requests there is a 

significant improvement relative to PVT. This is between 50 to 80 percent in most cases 

(the instances in which BB works better are shaded). Note that our computations are 

averaged over three runs. The time improvement is 100 (PVTtime–BBtime) / PVTtime. 

The large total region causes random separate concentrations of requests in some areas 

and our BB algorithm pays off by focusing on concentrated areas and finding good 

lower bounds to avoid considering other areas. If the requests are distributed over a 

smaller area then the PVT algorithm tends to work better as BB will not be able to 

quickly find a LB that is considerably better than many node upper bounds. This is what 

we observe in Experiment 2 (Table 3.3). 
 

Our algorithm is capable to quickly concentrate on regions with higher chance of 

containing the optimal solution. This is supported by the time taken by our algorithm to 

Table 3.1. Problem categories 

Category             

A 8 6 Uniform[1,15] Uniform[1,11] 

B 8 6 Uniform[1,7] Uniform[1,5] 

C 4 3 Uniform[1,15] Uniform[1,11] 
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reach solution that is proved to be the optimal at the end, as shown in Tables 3.2, 3.3 and 

Figs. 3.5 and 3.6. In Figs. 3.5 and 3.6,   denotes the total time taken by BB algorithm to 

solve an instance and    is the time taken by    to reach the optimal value. It can be 

clearly observed that    is much lesser than  , in fact in many cases    is 3 to 30 percent 

of  . Even in Experiment 2,    is lesser than PVTtime for most of the cases. 
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Table 3.2. Experiment 1: Instances with requests distributed over a large region (5K by 5K)

PVT 

Algorithm

No. of Nodes Time when LB reaches 

Optimal value T 1 

Run Time    

T

Run Time

10 7 0 0.00 0.00  -

100 81 0 0.03 0.04 25%

500 329 0.06 0.49 1.00 51%

1000 1071 0.86 1.82 4.00 55%

2000 2015 2.23 10.34 16.00 35%

4000 4948 0.14 38.83 64.00 39%

10 8 0 0.00 0.00  - 

100 104 0 0.02 0.04 50%

500 302 0 0.22 1.00 78%

1000 622 0 0.84 4.00 79%

2000 1762 0.41 5.00 16.00 69%

4000 3535 0.9 19.72 64.00 69%

10 15 0 0.00 0.00  -

100 107 0 0.04 0.04  -

500 735 0.04 0.67 1.00 33%

1000 1948 0.95 1.72 4.00 57%

2000 6313 3.49 11.65 16.00 27%

4000 14165 1.07 42.71 64.00 33%

Time 

Improvement

BB Algorithm

Category

A

B

C

No. of 

Requests

 
 

 

     

Table 3.3. Experiment 2: Instances with requests distributed over a region (1K by 1K)

PVT Algorithm

No. of Nodes Time when LB reaches 

Optimal Value T 1

Run Time      

T

Run Time

10 7 0 0.00 0.00

100 81 0.01 0.08 0.04

500 329 1.02 2.20 1.00

1000 1071 2.87 13.03 4.00

2000 2015 5.26 41.97 16.00

4000 4948 120.63 188.54 64.00

10 8 0 0.00 0.00

100 104 0 0.05 0.04

500 302 0.02 0.98 1.00

1000 622 0.78 5.75 4.00

2000 1762 13.05 39.36 16.00

4000 3535 52.35 204.33 64.00

10 15 0 0.00 0.00

100 107 0.02 0.08 0.04

500 735 0.55 1.54 1.00

1000 1948 5.42 11.32 4.00

2000 6313 9.22 50.58 16.00

4000 14165 88.29 199.37 64.00

BB Algorithm

Category

A

B

C

No. of 

Requests
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 Fig. 3.6 Graph of Lower bound improvement versus time for another instance  

   t (sec) 

T    

     Fig. 3.5 Graph of Lower bound improvement versus time for an instance  

       t (sec)  

T    
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CHAPTER IV 

MULTI-TARGET PROBLEM 

 

4.1. Introduction 

In this chapter, we address the multi-target (MTP) problem defined in Chapter I. 

MTP was defined as the problem of positioning   target rectangles on the two-

dimensional plane to partially cover a set of existing rectangular areas (requests) to 

maximize total coverage reward. MTP has not been addressed in the literature before 

and here we perform the first theoretical study on this problem and present the first exact 

algorithm for MTP. More specifically this problem can be described as follows (see Fig.  

4.1):    rectangular areas, called request rectangles or simply requests, are designated on 

a two-dimensional plane. All requests have axes parallel to x and y axes. Their positions 

and sizes are known, i.e. for request  , denoted by   , we know the values 

          and   , where    and    are the coordinates of the lower left corner of the 

request and    is its width (length along x axis) and    is its length (length along y axis). 

We would like to find the optimal position of   floating target rectangles, denoted by 

            , (simply called target) such that the total coverage reward obtained from 

this positioning is maximized. The targets are also axes-parallel. The width and length of 

all targets are equal and denoted by    and   . The coverage reward is calculated as 

follows: Let       denote the part of request   that is covered by target   and          

denote the area of this covered part. Then there will be a reward equal to            , 

where    is the reward rate of request  , i.e. the reward per area unit of the request that is 

covered. Hence, we would like to find the optimal position of the targets (we take     
 

and    
, the coordinates of the lower left corner target   as its position) such that the total 

reward obtained from the coverage of requests by the targets is maximized. In other 

words we want to solve the following problem: 
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     . 

 

We note that in MTP, the coverage reward obtained from the covered part of a 

request does not depend on which and how many targets cover that part. Figs. 4.1, 4.2 

and 4.3 show the pictures and data along with the optimal positions of the 2, 3 and 4 

targets respectively, for the problem with five requests (We have obtained these solution 

using the algorithm we will describe in Subsection 4.4). Based on the targets’ positions, 

the reward from requests 1, 2, 3, 4 and 5 are as displayed in Table 4.1.  

 

 

Table 4.1. Reward contribution from each request in Figs. 4.1, 4.2 and 4.3 

No. of Targets Rewards from requests Total Reward 

2                          319 

3                              439 

4                               561 
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Figure 4.2. An illustrative example of the coverage problem with three targets and its 
optimal solution 
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Figure 4.1. An illustrative example of the coverage problem with two targets 

and its optimal solution 
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Figure 4.3. An illustrative example of the coverage problem with four targets and its 
optimal solution 

 

 

The MTP is an extension of STP (discussed in Chapter III). For applications and 

other related problems refer to Chapter II. The structure of MTP can be compared to the 

planar p-center or p-median problems which are NP-complete, if p is part of the input 

[25]. In fact, we conjecture that MTP is NP-complete and that it can be proved by 

reducing the planar p-center problem to MTP. This is a line of future research that we 

are working on (Chapter V). The remainder of this chapter will be as follows: We 

perform a theoretical study of MTP in Subsection 4.2 and prove several theoretical 

properties for its solution. In Subsection 4.3, we present the theoretical structure of our 

novel algorithm followed by an example in Subsection 4.4. This is a branch-and-bound 

algorithm which includes a main branch-and-bound tree along with two trees (one for 

each axis) to store the information required for branching in the main tree in an efficient 

format. Branching is done using a clustering scheme. The theoretical properties of the 

solution calls for a novel branching strategy for MTP. In Subsection 4.5, we present our 
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computational experiments on our algorithm and show that it efficiently solves large 

instances of the problem. 

                                                                                             
4.2. Theoretical Properties of MTP 

In this subsection, we establish several theoretical properties for the solution to the 

MTP. We extend the concept of Critical Values (CV) (which was discussed in 

Subsection 3.3 for STP), to MTP and prove several results regarding the role of CVs in 

the solution to MTP. These results will reduce the continuous two-dimensional solution 

space to a set of discrete points. However we will see that the reduced space has a more 

complex structure and depends on the relative position of targets too. 
 

We saw in Chapter III that in STP the CVs are generated by requests (we called them 

RCVs). In MTP in addition to RCVs, we have a new type of CVs that are generated by 

targets, which we will refer to as Target CVs or (TCVs). Let us first recall the concept of 

RCVs. Given a request  , four x RCVs and four   RCVs corresponding to this request 

are defined as follows (see Fig. 3.2): 

  
             

         
              

        

  
              

         
                 

        

The RCVs are numbered from left to right from 1 to 4. We categorized RCVs into two 

types: The critical values are of two types: RCVs 2 and 3 are type 1 (denoted by RCV1) 

and RCVs 1 and 4 are type 2 (denoted by RCV2). According to Fig 3.2,   
    

    
    

  

are RCV1s and   
    

    
    

  are RCV2s.  
 

In MTP, each target with a fixed position defines a set of three TCVs for other 

targets along each axis. Fig. 4.4 shows the TCVs generated by a target   with a lower 

left corner of            for a target  . The x and y TCVs are as follows: 
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Reward generated 
by the moving 
target from    
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Second target 
(Fixed) 

Request   

The moving 
target moves 
along this 
line. 

First target 
(free and moving) 

   
         

            
        

    
   

   
         

                
         

      
    
   

Request   

Fig. 4.4. RCVs and TCVs on x and y axes are shown for an 
MTP with two requests and two targets when the second target 
is fixed at a position.   

  means the  th RCV for the  th request. 
For any  ,   

  is an RCV1 for      , and an RCV2 for  
     . The positions of targets are represented by their lower 
left corner coordinates. The lower part of the figure shows the 
reward (generated from each requests and total) when the first 
target moves parallel to x axis such that its lower left corner y 
coordinate is at   

 . Two cases are shown: when the fixed target 
exists (black) vs. the STP case, i.e. when the fixed target does 
not exist (gray). The functions are piecewise linear and 
existence of the second target changes the reward obtained from 
the first target 
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We emphasize that unlike RCVs, the TCVs are defined when the location of a target 

is fixed.  
 

Assume that we move target 1 parallel to the x axis from left to right such that its 

lower left corner is at       
 . The graphs at the bottom of Fig, 4.4 show the reward 

generated by the target 1 resulting from requests 1, 2, and 1 and 2 together, respectively. 

The gray graphs show the reward assuming that target 2 is not present and the black 

graphs show the new reward functions when target 2 is fixed at the shown location. It is 

easy to observe that like in Fig. 3.2, here the reward graphs for target 1 are still 

piecewise linear functions. This is because the area covered by the target with one of its 

coordinates fixed is simply a linear function of the other coordinate. However the 

breakpoints of this function are not limited to RCVs but also include the TCVs. A 

similar statement is true for movement along a fixed     and y CVs.  
 

Having both RCVs and TCVs we can extend the notion of critical points (CPs) 

defined in Subsection 3.3 for STP to MTP. As a result a CP for an MTP problem is a 

point that its x coordinate is an x RCV or TCV and its y coordinate is y RCV or TCV. 
 

We will prove in this subsection that the solution space of MTP can be limited to a 

subset of CPs. First we prove a lemma that will be helpful later: 

 

Lemma 4.3.  Consider two targets    and   . If    is a TCV generated by      then     is 

also a TCV generated by    .The same is true for     and    . 

Proof. If    is a TCV generated by    then according to the definition of TCV in 

Subsection 4.2,     belongs to                    . When     =       , it implies 

that            which is a TCV generated by   . If        then we are done. 

Likewise,            implies that           which is again a TCV generated by 

   for    . Thus, we can say that if     is a TCV generated by     then     is also a TCV 

generated by   . The same argument applies to TCVs along y axis.       □   
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Theorem 4.4. There is at least one optimal solution      
     

            such that 

the following conditions hold: 

(a)    
  is an x RCV1 for at least one           and     

  is a y RCV1 for at least 

one          .  

(b) For every           ,     
  is an x RCV1 or TCV  and    

  is a y RCV1 or TCV. 

Proof. Assume the optimal solution is                        If it does not satisfy 

condition (a), say if there is no   for which      is an x RCV1, then we show that an 

optimal solution can be found that satisfies this condition. Note that there will not be any 

  for which      is an x RCV2 because if there is, then by moving the target parallel to x 

axis, either left or right, the reward increases, which is contrary to optimality 

of                      . For this, in the solution                        move all 

targets together (without changing their relative positions) to the left or right such that  

     for all           is fixed (i.e. parallel to the x axis) until the first time    
 for one 

of the targets              becomes equal to an   RCV. The reward will not change 

because if the reward increases it contradicts optimality of                ; if the 

reward decreases, since the reward function at fixed                is piecewise linear 

with breakpoints at   RCV, by moving in the opposite direction, the reward increases, 

which is  again contrary to optimality of               . Therefore the reward will 

remain the same and we will hit an   RCV.  Notice that this RCV cannot be a RCV2 

because if it is a RCV2, then by moving all targets parallel to x axis, either left or right, 

the reward increases, which is contrary to optimality of                       . 

Therefore we have found a new optimal solution in which    is an x RCV1. The same 

argument can be used to find an optimal solution in which    is a y RCV1 if that is not 
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already satisfied. Now reassign                       to denote this new solution that 

satisfies condition (a).  
 

If                       does not satisfy condition (b), then again we show that we 

can find another optimal solution that does. Assume            is the target set for 

which      is neither an x RCV1 nor an x TCV for    . Notice that      cannot be a 

RCV2 because if it is a RCV2, then by moving the target parallel to x axis either left or 

right, the reward increases, which is contrary to optimality of                      .  

Now pick a target     and move it to the left (or right) with     fixed (i.e. parallel to the 

x axis) until     is equal to the first x RCV1 or TCV to the left (right) of     . The reward 

will not change because if the reward increases it contradicts optimality of     ; if the 

reward decreases, since the reward function at a fixed y is piecewise linear with 

breakpoints at x RCV1s and TCVs, by moving in the opposite direction, the reward 

increases, which is again contrary to the optimality of     . Therefore the reward will 

remain the same and the target will either hit an x RCV1 or TCV. If the target hits an x 

TCV generated by another target           then according to Lemma 4.3, target    

also lies on an x TCV. Hence we remove target   and    from the target set  , while if the 

target hits an x RCV, then we only remove target  . The process is repeated until      

i.e. all targets are either on an x RCV1 or TCV. The same argument is applied to optimal 

position of targets along y axis. Therefore there will be another optimal solution in 

which for every           ,       is an x RCV1 or TCV  and      is a y RCV1 or TCV . □ 

If we define the notion of “isolated subset of targets,” we can generalize part (a) of 

Theorem 4.4. A subset   of targets is called an isolated subset of targets if no target in    

touches or overlaps with a target in          .  
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Theorem 4.5.  There is at least one optimal solution      
     

            such that 

every isolated subset of targets             satisfies the following condition:    
  is an 

x RCV1 for at least one     and     
  is a y RCV1 for at least one    .  

Proof: The proof is similar to the proof of Theorem 4.4 part (a) applied on all the 

isolated subsets   that do not satisfy this condition (instead of only the whole target set 

       ). We only need to add that while doing the movement in the proof of Theorem 

4.4(a), if the first time    
 for one of the targets              becomes a CV, that CV is 

a TCV, we stop and update the optimal solution to this solution and the set   is not an 

isolated subset in this new solution anymore. □ 

      

4.3. Novel Branch-and-Bound Algorithm for MTP 

In this subsection we present our algorithm for solving the MTP. As a result of 

Theorem 4.4, we only need to search over the CPs to find an optimal solution. But 

observe that the CPs depend on not only RCVs but also TCVs and, as explained before, 

TCVs are generated by a target when its position is fixed. This causes a great deal of 

complication in searching the solution space. An eminently inefficient algorithm is a 

brute force search over all possible locations for all targets over all CPs. The reward 

function for every possibility is calculated and the maximum reward gives the optimal 

solution. This algorithm is of course of exponential complexity: The number of 

possibilities for positioning of   targets is roughly     
    and reward calculation for 

each takes          time. So total complexity of brute force algorithm is roughly 

    
        . 

 

As we conjecture MTP to be NP-hard, there is almost no chance that a polynomial 

algorithm to solve MTP can be devised. The algorithm we have designed in this thesis 

has a BB framework and is the first algorithm proposed to solve MTPs. Our algorithm 

follows a clever method to implicitly search the CP solution space. In this subsection we 

address the different components of this algorithm. If there is a higher concentration of 



 38 

requests or large reward rates at some region of the plane, the chances of the optimal 

solution being in that region is higher. One of the main features of our BB algorithm is 

that it is designed to quickly concentrate on such regions to find good solutions (lower 

bounds). Having good lower bounds, it then avoids explicit enumeration of CPs in many 

other regions by calculating upper bounds on the reward if the targets are in those 

regions.  

 

4.3.1. Main Body of BB 

The pseudo code for the main body of our BB algorithm is shown in Fig. 4.5. Like 

any BB algorithm (see [4]), our algorithm is performed over a tree, which we call                                                                      

BBtree, and uses bounds to avoid explicitly enumerating all CPs. The nodes of this tree 

are called BBnodes. BBnode   in BBtree corresponds to   subsets of   CVs, called node 

x CV subsets and denoted by    
 
        , and   subsets of   CVs, called node y CV   

sub sets and denoted by   
 
        . A subset   

   contains the candidate x CVs for 

target   in that BBnode. A similar statement is true for   
 
  Each particular subset   

  is 

either a subset of x RCV1s or a singleton x TCV. A similar statement is true for any 

particular subset   
 . As a result, each node corresponds to   rectangular mesh where the 

mesh    is determined by the subsets   
  and   

 . In Fig. 4.5, lines 1-8 initialize the BB 

algorithm. The input data is initialized. The BBtree is initialized by creating the root 

node      The properties       and       store branching axis and branching target of 

each node, respectively and will be used for branching. The definition and usage of these 

indicators will be addressed later in Subsection 4.3.2. The function                 

creates a child node for the node   in the BBtree with the same x and y CV subsets as 

those of its parent node   (if   is not Null). It also assigns the    and    properties of 

the child node the same value as       and      , respectively. The root node    has 

no parent so we set all the   sets    

 
         equal to   , the set of all x RCV1s, and 

all the   sets    
 
         equal to   , the set of all y RCV1s. 

 



 39 

 

 
 

 

First an initial lower bound      on the objective is calculated. This is done using 

                    function (line 8), which is discussed in Subsection 4.3.3 Then at 

any given node   an upper bound is calculated for the value of the objective at that node 

using the function                This function will be addressed in detail in 

Subsection 4.3.3. If this upper bound is not greater than     the node is pruned (by 

bound) and we move to the next node using the                function (explained 

Figure 4.5. BB algorithm 
 

 
                      
 

[Initialization] 

1.                                                           
2.                                   
3.                      
4.              

5.          

 
     

6.          

 
     

7.         
8.                         ; 

[End of Initialization] 

 
9.       
10.               
11.                                 

          [Upper Bound at node P is less than the best solution value known so far] 
12.                              

13.                  
 
     

 
                           

              [All targets have fixed x, y coordinates] 

14.                                    
 
   

 
            

15.                              
16.           
17.                              
18.              
19.           
20.                   
21.                                    
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in Subsection 4.3.2). If that is not the case, then lines 13-15 handle the case where all the 

x and y CV subsets of the node are singletons (i.e. all targets have fixed x and y 

coordinates). This corresponds to a solution and in this case               generates 

the exact total reward of this solution. Since this total reward is greater than   ,    and 

the best solution so far (          are updated. The node is pruned by solution and we 

move to the next node using the                function.  

The final case is when there is no pruning by bound or solution. In this case, we 

branch using the Branch(P) function. There are several details concerning this function 

that are described in Subsection 4.3.2. In general, branching at any node   includes 

creating new nodes by clustering one particular subset out of the    subsets   
 ,  

 
   

     , into smaller subsets but because of the existence of TCVs there are several other 

special cases that our           along with                and 

                   functions handle to deal with enumeration of TCVs (see 

Subsection 4.3.2). The algorithm terminates when all nodes are pruned and there are no 

more nodes to move to.          and    will give the optimal solution and its 

associated optimal reward, respectively. The pseudo codes of the functions used within 

the main body of BB algorithm will be explained in following subsections. 

4.3.2. Branching Details 

 The branching is done using           as shown in Fig. 4.6. According to our 

node definition in Subsection 4.3.1, in our algorithm, branching of a node is performed 

either by decomposing (clustering) a subset of RCV1s or by generating TCVs on of the 

axes x or y for the position of a particular target.     ) and       are indicators 

denoting the axis and the target on which branching is performed at node  , respectively.  

 In our algorithm, we start branching at the root node by clustering    
 . That is 

why in Fig. 4.5 (line 3) we have          and            at the initialization. A 

depth first strategy is then used, and deeper branches are generated on   axis. This 

continues until   
  becomes a singleton at some node. This means that target 1 now has a 
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fixed x position. This prompts start of branching on the next target (i.e target 2) and adds 

xTCVs generated by the target 1 to the set of possible locations for target 2. Therefore, 

the branching on target 2, in addition to the nodes with   
  corresponding to clusters of x 

RCV1s, will also create nodes with singleton   
  containing each of x TCVs generated 

by target 1 for target 2. This branching mechanism is repeatedly used until a node in 

which all targets have fixed x coordinates is reached. Then the branching on y axis starts. 

Lines 1-11 in Fig. 4.6, handle the branching on x axis as explained above. The comments 

in the pseudo code clarify the correspondence with different possible cases discussed 

above.  
 

     We note that the clustering of x RCV1s to populate   
  is performed on a clustering 

tree similar to what was presented in Subsection 3.3. The              
 
     in Fig. 4.6 

line 5 returns the first cluster created on the clustering tree after clustering the set of x 

RCVs corresponding to   
 . The prioritization of clusters is performed the same way as 

in Subsection 3.3. If the cluster has not been created in the branching of other targets, 

then it is created for the first time using the           
 
  function in line 6 of Fig. 4.6 

(see Fig. 3.4 for the pseudo code of this function).  
 

    Lines 10-21 of Fig, 4.6 handle the branching on y axis. An important point to keep in 

mind is that while branching on x axis, the sequence in which targets are selected for 

branching does not matter because all targets are identical. We consider an ascending 

order of target indexes as the sequence of selection. But while branching on y axis, each 

target has a fixed x coordinate associated with it. If all targets are fixed on x RCV1s, i.e. 

  
  is a singleton x RCV1 for all          , then the ascending order of targets can be 

used for branching on y axis. But if any of the singleton   
 ,          , is a x TCV  

the all permutations of targets must be used on branching. This is handled in lines 13-21 

of Fig. 4.6 using the set of targets with unfixed y coordinates. If a target selected for 
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branching at node           has just got a fixed y coordinate at node   and more than 

one target have unfixed y coordinates (are available for branching) at node  , then we 

create a new child node, where a target with lowest index is selected for branching. This 

strategy will cause all permutations to be considered in branching.  

    In Fig.4.7, lines 1-9 determine traversal on BBtree using depth first strategy. 

               finds the next node to be implemented in main function. Function 

                           gives right sibling of node   by creating another child 

node for parent of  , say  . The method to create next child of   is as follows: Lines 13-

            
1.                       [Branching should be performed on x axis at node P] 
2.                           [At least one target does not have a fixed x coordinate]  

3.                                 
     

      

4.                                            
     

           

                          [Create clusters for x clustering tree] 

5.                                       
     

    
6.                                                      [Select next target for branching] 

7.                [All targets have fixed x coordinates at node  ] 
8.                                                            
9.                
10.                         [Branching should be performed on y axis at node P] 

11.                   
 
                               

12.                                                         
13.               
14.                                                                                       
15.                                  [A target just got fixed y coordinate at node  ] 
16.                                                                
17.                       
18.                                                                 
19.                                                        
20.                         
21.                 
22.        
23.           
 

Figure 4.6. Branching in BB algorithm 
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17 consider the case where branching is done on x axis and the set of   RCV1s for its 

branch correspond to its cluster. If branching target at node           has a fixed x 

coordinate at node   and branches corresponding to clusters has already been created, 

then TCVs are generated by fixed targets. Lines 18-23 create branch and assign a new 

distinct TCV generated by targets fixed along   axis at node  , to subset   
 , where   is 

branching target at node  . To avoid redundancy, only TCVs different from RCV1s 

should be considered. In lines 24-28 while branching on x axis, if all targets have a fixed 

x coordinate and at least one of them is an x TCV, then new child node   is created 

where a target, with index next to the index of branching target at node  , is selected for 

branching. While branching on y axis, if all targets are fixed on x RCV1s at node  , i.e. 

  
  is a singleton x RCV1 for all          , then the next child is created either 

corresponding to clusters for the branching target at   or TCVs generated by targets with 

fixed y coordinate at node  .  Otherwise, in lines 32-36, while branching on y axis at 

node  , if branching target at           has a fixed y coordinate at node   then a new 

child node   is created, where a target with lowest index and which does not have a 

fixed y coordinate is selected for branching. This will cause all permutations to be 

considered for branching. Lines 38-45 consider the case where branching target at node 

  does not have a fixed y coordinate. In this case the set of y RCV1s for its branch 

correspond to its cluster. If there does not exist any branching target for node 

          and branches corresponding to clusters have already been created, then 

TCVs are generated by fixed targets. Lines 42-47 create branch and assign a new distinct 

TCV generated by targets fixed along x axis at node  , to subset   
 , where   is 

branching target at node  . To avoid redundancy, only TCVs different from RCV1s 

should be considered. In this way                gives next child node using 

                           and moves up on BBtree if the child node does not exist. 

The idea is of this branching scheme is to quickly focus on the regions of the plane that 

are populated by the requests and thus have higher probability of containing the optimal 

location.   
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1.                        [Current node is root node] 
2.                                 
3.       
4.                                
5.                          
6.                                               [Move Right on BBTree] 
7.                   
8.                                                          [Move Up on BBTree] 

9.        
 

                     
10.                     
11.                        
12.                    [Branching should be performed on x axis at node Q] 
13.                              [At least one target does not have a fixed x coordinate] 

14.                                  
     

    

15.                                    [There are x RCV clusters remaining for target BT(Q)] 

16.                                                 
         

17.                                                                
18.                                                    [If a target just got a fixed x coordinate]  

19.                                                                                       
                                                                                    
                           [Create x TCV corresponding to targets having fixed x coordinate] 

20.                                                   

21.                                                           
     

                        
22.                                    
23.                          
24.                [               all targets have fixed x coordinates at node Q ] 

25.                               
 
                           

26.                                                                          
27.                          
28.                 
 

Figure 4.7. Functions used in BB algorithm 
 



 45 

 

 
 
 

4.3.3. Bounding 

    In Fig.4.8,    denotes the lower bound on maximum reward and    
 is the 

maximum reward possible from covering request   by a target   if target   can be placed 

anywhere, i.e.    
                    . Lines 3-7 find request   with          

and trim or split (will be explained later in this subsection) the request such that new set 

of requests are not covered by target   placed at lower left corner of request    The set of 

requests   is updated by adding new set of requests    and removing request  . These 

steps are repeated for each target to find maximum reward possible from the updated set 

of requests and lower bound is calculated by adding them.      

29.                        [Branching should be performed on y axis at node Q] 

30.                   
 
                               

31.                                                           
32.               
33.                                                                                   
34.                                                                           
35.                                   [A target just got fixed y coordinate at node  ] 
36.                                                                 
37.                           

38.                                          
     

    

39.                                             [There are y RCV clusters remaining for target BT(Q)] 

40.                                                         
         

41.                                                                 
42.                                                         
43.                                                                                                     

                                                        
                                    [Create y TCV corresponding to targets having fixed y coordinate] 

44.                                                            

45.                                                                     
     

                 
46.                                            
47.                                
48.                         
49.                 
50.        
51.           
 

 
 

Figure 4.7. (cont’) 
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Function               calculates the reward upper bound at each node (an 

upper bound      on the reward when the targets’ position is limited to subsets of CVs 

corresponding to that node). The bounding function depends on the number of CVs in all 

   subsets at a node. When all subsets have one element,    is calculated by trimming 

and splitting the requests (Fig.4.8) and otherwise, by using PVT algorithm [29]. The 

PVT algorithm scans the CPs in movements parallel to one of the axes and finds the 

reward at the next CP by calculating the slope of the piecewise linear functions. We 

store the reward at each CP in a two-dimensional array, denoted as regional reward 

array (RR), where each dimension corresponds to RCV1s at root node along an axis. In 

Fig.4.8, lines 29-37 calculate    by summing maximum rewards among the CPs in the 

rectangular meshes (or RR) for all targets. If a target lies on an x TCV, say  , then we 

find maximum reward among columns    and    of RR. The      are the greatest and 

smallest x RCV1, respectively, such that       . Also, if there does not exist any 

RCV1,      or     then we only consider column   or   , respectively. Similarly, if 

a target lies on a y TCV then we find maximum reward among rows   and    of RR. 

This bound does not consider overlapping of the targets and hence gives value greater 

than optimal value.  

Lines 11-27 trim or split requests to gives optimal value when all targets are fixed. 

The trimming is performed by only reducing either length or width of a request, while 

splitting is the division of a request region into more than one rectangular requests. Fig 

4.9 gives an example of trimming and splitting of a request. In Fig. 4.9, we assume that 

target with dark boundaries is fixed and to find the reward from request 4, by the target 

with dashed boundaries, we first trim the request to a region, which we call RTrim1 and 

then split the trimmed area into two requests to remove region of the request already 

covered by the fixed target. It is important to note that request splitting (creation of 

additional requests) takes place if and only if a corner of fixed target lies inside the 

request. 
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1.             
2.             

3.                       
4.                      

5.                             

6.                                                            
7.                                                       
8.                      
9.             

 
             : 

10.       

11.       
 
     

 
                          [All targets have fixed x, y coordinates] 

12.                      
13.                          
14.                           
15.                                                                      
16.                                                                         
17.                                          
18.                          
19.                           
20.                                         
21.                                                                                         
22.                                                                                    
23.                                                 
24.                                   
25.                          
26.                                

   

27.                  
28.      
29.                        

30.                               
 
                                          

                             [     are the greatest and smallest x RCV1,respectively,  st.         ] 

31.                              
 
   

32.                         

33.                               
 
                                       

                            [                                         ] 

34.                              
 
  

35.                         
36.                                                 

37.                  
38.        

 Figure 4.8. Bounding functions 
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  In line 13,    denotes a set of trimmed requests for target   at node    These are 

obtained by trimming original requests to the target region in lines 14-18. The requests 

are further trimmed or split (lines 19-25) to new requests such that no point of the new 

requests is covered by the targets already considered. The optimal value is calculated by 

summing    for all new requests. That is the how we calculate               in our 

algorithm. Calculation of lower and upper bounds typically results in eliminating many 

subsets of   CPs without calculating reward for them explicitly and that is the main 

reason that our algorithm works fast and memory efficient. 

  

 

y 

x 

4 
2  2 

1 
3 

  5 

y 

Figure 4.9. An Example of trimming and splitting of request 4 

RTrim1 

Area after removing region covered by fixed 
blue target. 

Fixed Target  Split Requests 
Target  
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 4.4. An Example for BB Algorithm 

In this subsection, we introduce an example for MTP and show how our algorithm 

solves it. Fig. 4.10 shows the picture and data of coverage problem with seven requests 

and two targets. We reduce the continuous two-dimensional solution space to a set of 

discrete points for both targets. In Figs. 4.12 and 4.13,    and    are the initial set of 

RCV1s along x and y axis respectively for the problem. A set of x RCV1s    
       

  

represents   th child of a cluster of x RCV1s   
       in cluster tree for x axis. Similarly, 

a node on cluster tree for y axis can be defined. Our BB algorithm is performed over a 

tree which we call BBtree, as shown in Fig. 4.10 and it uses bound to avoid explicitly 

enumerating all points in solution space. Each of the Figs. 4.14-4.25, corresponds to a 

node in BBtree and in order to represent the solution space for the targets at a node, we 

use orange dots and blue colored circles on x and y axis. In the figure, two different 

shaded regions are areas which can be covered by the two target rectangles respectively.  

In Fig. 4.11, we initialize BBtree by creating node A associated with    and    for 

each target.    and    denotes the lower bound and upper bound on maximum reward 

respectively. At node A,    is obtained by positioning the targets at the lower left 

corners of request 5 and 3, using function               in Fig. 4.8. The       

          does not consider the overlapping with other requests. The    is 

calculated using PVT algorithm [29] and trimming or splitting of requests (for more 

details refer to Subsection 4.3.3). In BBtree, a node is branched when    is greater than 

   at the node and the branches are determined either by clustering the set of x or y 

critical values or a singleton x or y TCV. At node A, we branch over   
        

corresponding to its clusters in cluster tree for x axis. The clustering of    and    is 

performed as follows: In a sorted set of RCV1s, whenever the distance between two 

consecutive RCV1s is greater than 50% of the maximum distance between two 

consecutive RCV1s, we break the set at that point and create a new cluster as shown in 

Figs. 4.12 and 4.13. We also assign          to the clusters and consider branches in 

the order of priority. The priority value we use is the summation of the reward rates of 



 50 

the requests whose RCV1s are in the cluster divided by number of RCV1s in cluster. 

Note that we create clusters in cluster tree only when they are to be required in BBtree. 

Also, we are using a depth first search strategy that only creates the BBnodes when they 

are to be considered. We branch over   
  until it has only one element at node   and then 

branch over   
 . It is important to note that in Fig. 4.11, we are not showing all nodes of 

BBtree. The sequence of nodes not shown in BBtree is represented by a downwards 

dashed arrow in the figures. The branching on target 2, in addition to the nodes with   
  

corresponding to clusters of x RCV1s, also creates nodes I (in Fig. 4.11) with singleton 

  
  containing each of x TCVs generated by target 1 for target 2. In order to avoid 

redundancy, the TCV should be different from the elements of    otherwise the node is 

pruned as shown by cross mark below node I in the figure.  This branching mechanism is 

repeatedly used until node E in which all targets have fixed x coordinates is reached. 

Since at node E all targets are fixed on x RCV1s, i.e.   
  is a singleton x RCV1 for all 

       , so we use the ascending order of targets for branching on y axis. But if any of 

the singleton   
 ,        , is a x TCV like at node J then all permutations of targets 

must be used on branching (as shown in Fig. 4.11). Note that in order to cover all 

possible cases of our algorithm in this example, we have modified few nodes in the 

BBtree (Fig. 4.11) and their    and   . 

Figs. 4.14-4.25 show how the branching at a node subdivides the subspace into two 

or more subspaces. All nodes below node F in BBtree are branched along y axis in 

similar manner as branched along x axis, until both targets get fixed along y axis. At 

node H both targets’ location are fixed (Fig. 4.21) and a better solution is found to 

update the   . Since the node H is an end leafnode, so we find next node by creating 

right sibling of node H or next child node of           and moves up on BBtree if the 

child node does not exist. The algorithm terminates when there are no more nodes to 

consider which means after pruning node K and L, the BBtree gives    equal to optimal 

solution value. Fig. 4.25 is the graphical representation of a optimal node of the BBtree. 

Calculation of lower and upper bounds typically results in eliminating many 



 51 

combinations of the CPs in without calculating reward for them explicitly and the 

branching scheme enables the algorithm to quickly concentrate on regions with higher 

chance of containing the optimal solution. 

                                

request 
  

lower left 
corner 
        

width 
   

length 
   

reward 
rate    

1 (0,7) 7 5 4 
2 (1,0) 5 10 6 
3 (5,5) 6 6 7 
4 (4,3) 6 6 3 
5 (9,2) 6 5 10 
6 (-3,-1) 3 1 0.5 
7 (15,2) 4 3 1 

 

y 

x 

4 

2 
 2 

1 
3 

5 6 

7 

Fig. 4.10: An illustrative example of coverage problem with two targets 

Targets 

target 
  

width 
   

length 
   

1 4 3 
2 4 3 
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       Target fixed along the axis 
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Figure 4.11. An example of BBtree 

I 
J 



 53 

 
 
 
 

 
 
 
 
 
 
 
 

  
         

 

         
    

       

              Figure 4.11. (Cont’) 

  
     

 

  
     

 

  
    

       
 

           
 

  
    

       
 

           
 

  
    

  
 

  
    

  
 

  
    

     
 

  
    

       
 

          
       

 

       
       

       

              

       

       

             

       

              

  
        

 

   Refer Fig. 4.11 

              

       

         
     

      

J        

       

        Sequence of nodes not shown 
     Target fixed along the axis 
        Node Pruned 
        Branches not shown  



 54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                      

  
                            

 
 

  
       

 

  
          

 

  
                     

 
 

  
             

 

  
        

 

  
        

 

  
        

 

  
        

 

Figure 4.12 . Cluster tree for x axis 
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Figure 4.13. Cluster tree for y axis 
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Figure 4.14. Graphical 
representation for node A in BBtree 

Figure 4.15. Graphical 
representation for node B in BBtree 

Figure 4.16. Graphical 
representation for node C in BBtree 

Figure 4.17. Graphical 
representation for node D in BBtree 
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Figure 4.21. Graphical 
representation for node H in BBtree 

Figure 4.20. Graphical 
representation for node G in BBtree 

Figure 4.19. Graphical 
representation for node F in BBtree 

Figure 4.18. Graphical 
representation for node E in BBtree 
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Figure 4.25. Graphical representation 
for Optimal Node in BBtree 

Figure 4.24. Graphical 
representation for node L in BBtree 

Figure 4.23. Graphical 
representation for node K in BBtree 

Figure 4.22. Graphical 
representation for node I in BBtree 

x 

4 

2 
 2 

1 
3 

  
5 

y 

6 

7 

x 

4 

2 
 2 

1 
3 

  
5 

y 

6 

7 

y 

4 

2 

1 
3 

  
5 

y 

x 

6 

7 

y 

x 

4 

2 

1 
3 

  
5 

6 

7 



 59 

4.5. Computational Results 

  We generated random instances with different number of requests and targets and 

analyze the performance of our algorithm. Similar to STP, we generated three 

categories of problems in terms of relative size of target and requests.  They are shown 

in Table 4.2. In categories A, the target is smaller or equal to average of request sizes. 

In category B, the target size is considerably larger than the request sizes. In categories 

C, the target size can be smaller, equal or larger than average of request sizes. The 

requests are randomly distributed over a square region of determined size. The random 

requests are generated in two steps. First, we generate three points in the region to 

represent locations of interest, which we call as center points. For each center point, we 

use a radius of interest. Then, we generate requested viewing zones. To generate a 

requested viewing zone, we create six random numbers. One of them is used to 

determine which center point the request will be associated with. Two of them are used 

to generate the location of the lower left corner of the request, which is located within 

the corresponding radius of the associated center point. The remaining three random 

numbers are used to generate width, length and reward of requests. We picked the best 

clustering scheme out of five clustering schemes, explained in Subsection 3.3. We used 

Scheme 1 with       in all our experiments.  

 
 
 
 
 
 
 
  

 

 

 

  

Table 4.2. Problem categories 

Category             

A 8 6 Uniform[1,15] Uniform[1,11] 

B 8 6 Uniform[1,7] Uniform[1,5] 

C 4 3 Uniform[1,15] Uniform[1,11] 
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In Experiments with 2, 3 and 4 targets, the results which are shown in Table 4.3, 4.4 and 

4.5 respectively, the total region is of size (100 by 100). The reward rates of requests are 

from Uniform [1,10] distribution. Our BB algorithm solves relatively large instances of 

MTP in a short time. Using our algorithm, problems with two targets and 100 requests 

are solved in 3 seconds. Problems with three targets and 25 requests are solved in as few 

as 35 seconds, and problem with four targets and 15 requests are solved in as few as 220 

seconds. For larger problems the time of our algorithm increases to more than an hour, 

which is still an extremely small fraction of a brute force search. Our algorithm pays off 

by focusing on concentrated areas and finding good lower bounds to avoid considering 

other areas. This is supported by the time taken by our algorithm to reach solution that is 

proved to be the optimal at the end, as shown in Tables 4.3, 4.4 and 4.5 and Figs. 4.25 

and 4.26. In Figs. 4.25 and 4.26,   denotes the total time taken by BB algorithm to solve 

an instance and    is the time taken by    to reach the optimal value. It can be clearly 

observed in graphs between LB and time that BB algorithm quickly finds the optimal 

spot as    is much lesser than  , in fact in many cases    is 2 to 35 percent of  .  
 

  The algorithm is not only fast but it is also memory efficient. Although the 

number of nodes shown in the computations is very large but the maximum number of 

node open during execution of is very small using a depth first search strategy that only 

creates the nodes when they are to be considered.  
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Table 4.3. Experiment 1

Instances with two targets and requests  distributed over a region

No. of 

Nodes
Time when LB reaches 

Optimal value T1  (in Sec)

Run Time    

T (in Sec)

5 240 0.01 0.04

10 539 0 0.08

15 566 0 0.09

20 632 0 0.10

25 4597 0.05 0.66

50 7511 1.25 1.37

100 354520 7.67 92.66

5 1019 0.01 0.14

10 275 0.02 0.04

15 1196 0.14 0.17

20 2181 0.12 0.32

25 1839 0.21 0.30

50 8341 1.35 1.47

100 21336 2.6 5.05

5 163 0.03 0.03

10 98 0.02 0.02

15 354 0.02 0.06

20 541 0.04 0.11

25 1551 0.19 0.25

50 4402 0.86 0.98

100 16776 3.38 3.94

BB Algorithm

Category

A

B

C

No. of 

Requests
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Table 4.4. Experiment 2

Instances with three targets and requests  distributed over a region

No. of 

Nodes

Time when LB 

reaches Optimal 

value T1 (in Sec)

Run Time             

T (in Sec)

5 12543 0.69 2.19

10 44152 0.54 7.78

15 82717 1.3 14.52

20 145735 5.47 27.31

25 933775 2.19 167.67

50 3728494 424.884 854.49

5 110596 0.17 19.63

10 31867 1.2 5.44

15 174028 16.22 31.22

20 496859 29.63 89.87

25 332794 43.36 65.20

50 8165629 1241.33 1862.97

5 2203 0.3 0.42

10 998 0.04 0.21

15 18811 0.29 3.53

20 58915 0.56 11.65

25 164262 11.65 34.46

50 686382 165.131 175.84

BB Algorithm

Category

A

B

C

No. of 

Requests

 
 
 
Table 4.5. Experiment 3

Instances with four targets and requests  distributed over a region

No. of Nodes Time when LB reaches 

Optimal value T1 

Run Time           

T

10 4008052 102.538 s 17 min 

15 92247920 35 min 7h 35 min

20 458965905 2 h 40 min 40 h

25 211689650 3 h 48 min More than 50 h

10 6523670 391.383 s 29 min

15 33102537 1 h 2h 17 min

20 119490394 17 min 8 h 30 min

25 157509381 5 h 12 min 11 h 

10 44217 4.45 s 11.001

15 895430 21.302 s 219.072

20 5242345 1 min 22 s 22 min 30 sec

25 26312750 17 min 15 s 1 h 42 min

A

B

C

BB Algorithm

Category
No. of 

Requests
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     Fig. 4.27 Graph of lower bound improvement versus time for instance in Fig.4.3  

       t (sec)  

   T 

     Fig. 4.26 Graph of lower bound improvement versus time for instance in Fig.4.2  

       t (sec)  

   T 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 
5.1. Conclusions 

We introduced a new class of problems, which we called Optimal Areal Positioning 

(OAP), and studied a special class of OAPs. In OAP, we find the optimal position of a 

set of floating geometric objects (targets) on two-dimensional plane to (partially) cover a 

set of another set of fixed geometric objects (requests) in order to maximize the total 

reward obtained from covered parts of requests. These problems have important 

applications in earth observation satellite management, tele-robotics, multi-camera 

control and surveillance. In this thesis, we considered a special form of OAP in which 

the targets and requests are parallel axes rectangles and targets are of equal size. Based 

on the number of targets, we classified this form into two categories: Single Target 

Problem (STP) and Multi-Target Problem (MTP). 

 In this thesis, we developed new theoretical properties for the solution of STP 

and devised a new solution approach for it (refer Chapter III). This approach is 

based on a novel branch and bound (BB) algorithm devised over a reduced 

solution space. The solution space is reduced based on the theoretical properties 

we derived. Branching is done using a clustering scheme.  
 

 We presented computational experiments on our algorithm for STP. The results 

show that in several cases our approach significantly outperforms the existing 

Plateau Vertex Traversal, especially for problems with many requests appearing 

in clusters over a large region.  
 

 We performed a theoretical study of MTP and proved several theoretical 

properties for its solution (we conjecture that MTP is NP-complete and that it can 

be proved by reducing the planar p-center problem to MTP). We introduced a 

reduced solution space using these properties.  
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 We presented the first exact algorithm. This algorithm has a branch and bound 

framework. The reduced solution space is essential to our algorithm and calls for 

a novel branching strategy for MTP. The algorithm has a main branch-and-bound 

tree with a special structure along with two trees (one for each axis) to store the 

information required for branching in the main tree in an efficient format. 

Therefore it is memory and performance efficient. Branching is done using a 

clustering scheme. Our algorithm is capable to quickly concentrate on regions 

with higher chance of containing the optimal solution. Based on our literature 

review no work has been done so far on MTP and our theoretical results and 

algorithm is the first attempt to solve the problem exactly and efficiently. 

 
  We performed computational experiments to evaluate the performance of our 

algorithm. Our algorithm solves relatively large instances of MTP in a short time. 

Using our algorithm, in average problems with two targets and 100 requests are 

solved in about 1 second. Problems with three targets and 25 requests are solved 

in about 90 seconds, and problem with four targets and 10 requests are solved in 

about 19 minutes. For larger problems the time of our algorithm increases to 

more than an hour, which is still an extremely small fraction of a brute force 

search. The algorithm is not only fast but it is also memory efficient. Although 

the number of nodes shown in the computations is very large but the maximum 

number of node open during execution of is very small using a depth first search 

strategy that only creates the nodes when they are to be considered.  

 

 5.2. Future Work 

Several future research paths can be followed based on the problems and algorithms     

developed in this thesis: 

 NP Completeness: In this thesis, we have conjectured that MTP is NP-complete 

and that it can be proved by reducing the planar p-center problem to MTP. This 

is a line of future research that we are working on. 
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 Clustering Scheme and Bounds: In the thesis, we picked the best clustering 

scheme out of five clustering schemes for branching (see Subsection 3.3). New 

clustering schemes can be introduced to make the algorithm more intelligent and 

faster. The idea of these schemes would be to more quickly focus on the regions 

of the plane that are populated by the requests and thus have higher probability of 

containing the optimal location. Our computations show that total time taken to 

complete the BB algorithm is more than three times the time required for the BB 

to reach the solution that is proved to be optimal at the end. This means that if 

stronger upper bounds can be developed we may be able to reduce the solution 

time by orders of magnitude.  

 

 New Forms of OAP: We can consider various new forms of OAP in which 

targets and requests can be any geometric objects on the two-dimensional plane 

or targets can be of unequal sizes. Also, the predetermined reward associated 

with covering an area unit of each request can be a function of resolution. This 

can bring in the scaling of the target as an additional decision variable. Note that 

the BB algorithm can easily solve the problems with discrete resolution.  

 

 OAP in higher dimensions: We can even extend OAP to higher dimensions. 

Immediate extensions can be 3D-STP and 3D-MTP in which targets and 

rectangles are parallel axes cubes.  
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