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ABSTRACT 

 

Neurobiology of Bat Vocal Behavior. (December 2010) 

Christine Patrice Schwartz, B.S., Canisius College 

Chair of Advisory Committee: Dr. Michael Smotherman 

  

 

    Vocal plasticity is presumed to be a key element underlying the evolution of human 

speech and language, but the mechanisms and neuroanatomical basis for this plasticity 

remain largely unknown. The Mexican free-tailed bat, Tadarida brasiliensis, presents a 

unique opportunity to advance our understanding of the evolution and neurobiology of 

mammalian vocal communication because this animal displays elements of vocal 

complexity and plasticity that are more sophisticated than any mammal other than 

humans, including non-human primates.  Current models of vocal control in mammals 

do not account for the vocal complexity of free-tailed bats. The purpose of this 

dissertation is to fill that gap in knowledge by identifying a possible neuronal basis for 

vocal complexity in free-tailed bats. This will be achieved by 1) providing a detailed 

analysis of the free-tailed bat’s vocal behaviors, 2) mapping the distribution of 

neurotransmitter receptor types suspected of involvement in vocal control, 3) identifying 

brain regions that exhibit increased neuronal activity during vocalizing, and 4) 

pharmacologically manipulating putative vocal control regions to confirm and 

characterize their function in vocalizing.  
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 Analysis of Tadarida’s vocal behavior indicated that they have a vast vocal 

repertoire, including many different call types, context-dependent sensory-feedback 

driven vocal plasticity, and syntactically-organized stereotyped songs. Their vocal 

behavior changed seasonally, so I mapped the distribution of melatonin binding sites in 

the brain, finding high densities in the striatum, similar to dopamine receptor 

distribution.  I then used immunohistochemical labeling of the immediate early gene c-

fos to map neuronal activation in brains of highly vocal bats to find ROIs activated by 

vocal production.  This technique not only identified all previously known regions of the 

mammalian vocal motor pathway but also revealed activity in novel brain regions that 

could potentially account for vocal plasticity, including a localized region of the basal 

ganglia, the dorsolateral caudate nucleus, and the anterior cingulate region of the frontal 

cortex.  Pharmacological excitation of these regions evoked complex vocal sequences 

similar to the songs recorded in the field and lab.  These results support the hypothesis 

that the mammalian basal ganglia may play a crucial role in the plasticity and 

complexity of mammalian vocal behaviors.   
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NOMENCLATURE 
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3V    third ventricle 

4V   fourth ventricle 

ac   anterior commissure  

ACg    anterior cingulate cortex 

Aq    aqueduct 
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IC   inferior colliculus 

IP   interpeduncular nucleus 

LC   locus coeruleus 

LDTg   laterodorsal tegmental nucleus 

LH   lateral hypothalamus 

LHb   lateral habenula 

LL   lateral lemniscus 

LS   lateral septal nucleus 

LV    lateral ventricle 

mcp   middle cerebellar peduncle 

MD   mediodorsal thalamic nucleus 

ME    median eminence 

MHb   medial habenula 

MnR   medial raphe nucleus 

NAcc   nucleus accumbens 

PA   paraventricular hypothalamic nucleus 

PAG    periaqueductal gray 

PB   parabrachial nucleus 

Pir    piriform cortex 

Pn   pontine nuclei 

Pu    putamen 

RIP   raphe interpositus nucleus 
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RLI   rostral linear nucleus 

RtTg   reticulotegmental nucleus of the pons 

s5   sensory root of trigeminal nerve 

SC   superior colliculus 

SCN    suprachiasmatic nucleus 

scp   superior cerebellar peduncle 

SF   sylvian fissure 

SNc   substantia nigra pars compacta 

SPO    superior paraolivary nucleus 

VC   ventral cochlear nucleus 

VTA   ventral tegmental area 

 

Call Classification 

AH   arrowhead 

CF   constant frequency 

DFM   descending FM 

FM   frequency modulated 

LFM   low FM 

LL   long ladder 

LW   long wave 

SL   short ladder 

SW   short wave 
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UFM   upward FM 

ULF   upward long flat 

V   V call 

WAR   warble 

 

Other 

FLI   Fos-like immunoreactivity 

IHC   immunohistochemistry 

ROI   region of interest 
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CHAPTER I 

INTRODUCTION  

 

The neurological basis of many common speech and language disorders remains 

elusive, largely because little is known about how complex vocal motor patterns are 

generated in the mammalian brain.  Motor speech production in humans is a complex 

process requiring precise coordination of multiple muscle groups.  Not much is known 

about the interconnectedness of these motoneuronal pools and how their activities are 

coordinated to produce syllables.  Still even less is understood about how higher brain 

centers coordinate and link multiple syllables in time to produce meaningful words and 

phrases.  These major deficits in understanding are largely due to the lack of a 

mammalian model animal exhibiting both a relevant vocal behavior and suitability for 

neurophysiological studies.   

Among mammals, primates, rodents, and bats have been productive non-human 

models for studying the organization of the vocal motor pathways.  But they have not 

been well suited to the investigation of several of the key issues related to human speech 

and language disorders, because single syllable production is accounted for by brainstem 

vocal pattern generators, and there was no clear evidence that these or any other 

mammals use cortical mechanisms for producing complex vocal sequences.   Electrical  

 

____________ 
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and chemical stimulation of “vocalization regions” in the brains of non-human mammals 

produced calls identical to recorded natural calls, leaving nothing unaccounted for.  I 

will outline here what is known about the mammalian vocal motor pathways, and 

delineate how my work investigating the neural basis for a complex vocal behavior by 

the Mexican free-tailed bat, Tadarida brasiliensis, will fill in some of the gaps in the 

existing knowledge.     

The basic vocal motor pathway in mammals is a limbic-based visceromotor 

triggering of brainstem pattern generators.  The limbic system, specifically the anterior 

cingulate cortex (ACg), amygdala, and hypothalamus, sends inputs to the midbrain 

periaqueductal gray (PAG), which is responsible for vocal initiation.  This limbic input 

is believed to serve a key role in translating emotional cues and states of arousal into 

representative species-specific vocalizations (Jürgens and Pratt, 1979, Jürgens, 1982, 

Jürgens and Lu, 1993, Jürgens et al., 1996).  Also, the ACg is thought to provide 

voluntary control over calling (Sutton et al., 1974). The PAG coordinates respiratory and 

laryngeal motor neurons of the parabrachial nucleus and nucleus ambiguus necessary for 

vocalization through the reticular formation (Yajima et al., 1981, Larson and Kistler, 

1986, Jürgens, 2002).  This non-human vocal motor pathway has been constructed 

mostly with a variety of lesion studies and electrical stimulations.  Electrical and 

chemical stimulation of the PAG produces vocalizations in all mammals studied, 

including species of bats, while lesioning this core vocal structure results in mutism 

(Jürgens and Ploog, 1970, Suga et al., 1973, Yajima et al., 1980, Lu and Jürgens, 1993, 

Jürgens, 2002).  Partial lesions of the PAG abolish some vocalizations while leaving 
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others intact, suggesting that different regions of the PAG may be important for different 

vocalization types (Jürgens and Pratt, 1979, Newman and MacLean, 1982).  The ACg 

also produces vocalizations when stimulated, but only when the PAG is intact, indicating 

that the ACg projects to the PAG (Robinson, 1967, Jürgens and Ploog, 1970, Sutton et 

al., 1974, Gooler and O'Neill, 1987).  Additionally, the PAG receives inputs from other 

regions of the brain, including medial prefrontal cortex, gyrus rectus, insular cortex, 

basal ganglia, hypothalamus, amygdala, and thalamus (Dujardin and Jurgens, 2005).  

This suggests that the PAG integrates information from many sources.   

However, the PAG is not involved in all aspects of vocalization.  Stimulation of 

the laryngeal area of the motor cortex produces vocal fold movements even when the 

PAG is lesioned, indicating that an additional pathway exists that bypasses the PAG 

entirely, the neocortical pathway (Jürgens and Zwirner, 1996).  However, in monkeys, 

lesions of this area of the motor cortex do not affect production of normal calls 

(Kirzinger and Jürgens, 1982), and it is suggested that this pathway may be involved in 

learned or complex vocal behaviors which are not exhibited by the species used in the 

experiments.  Vocal fold movements elicited by the laryngeal motor cortex were blocked 

by chemical injection into the reticular formation, indicating that this is the site where 

the neocortical and limbic vocal motor pathways potentially join together (Jürgens and 

Ehrenreich, 2007).  The reticular formation was also found to be a projection area of the 

laryngeal motor cortex through tract tracing (Simonyan and Jurgens, 2005).  Other areas 

receiving projections include caudate nucleus, putamen, and several thalamic nuclei.  

Overall, the neocortical pathway for vocal motor control is suggested to be involved in 



 4

learned or more complex vocal utterances, but no non-human mammal has provided 

evidence of this hypothesis. 

Humans, on the other hand, exhibit extremely complex vocal behavior.  To 

achieve the remarkable degree of voluntary control and complexity of voice exhibited by 

humans, it is hypothesized that the human brain evolved a system of direct projections 

from supplementary motor cortex onto the brainstem motor nuclei controlling laryngeal, 

articulatory and respiratory musculature not found in other mammals and that these 

projections are the distinguishing neural feature underlying human speech.  Human 

speech is produced through the activation of specialized regions of premotor cortex, 

including portions of the supplementary motor area (SMA) and frontal operculum, and 

subcortical projection areas in the basal ganglia and thalamus (Hardcastle, 1981, Gracco, 

1991, Murphy et al., 1997, Schulz et al., 2005, Guenther, 2006).  Activity within the 

SMA is regulated by the basal ganglia as part of a feed-forward loop connecting the 

striatum, frontal cortex and thalamus.  The striatum, a central component of the so-called 

“motor loop”, may play a critical role in regulating the precise timing and sequencing of 

respiratory, laryngeal and articulatory components of speech.  All of the neocortical and 

subcortical regions identified above as primary elements of voice control in humans 

have never been identified as part of the species-specific vocal control pathways in other 

mammals (Jürgens, 2002, Schulz et al., 2005), but the hardware is still present.  Cortico-

striatal-thalamic loops play a more generalized, well-recognized role in the control of 

voluntary movements in all mammals and as mentioned previously, there does appear to 

be a neocortical pathway in non-human mammals based out of the motor cortex 
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(Jürgens, 2009).  This cortical region projects to the striatum and thalamus, so it is 

possible that this same motor loop vocal pathway exists in non-human mammals.  The 

hypothesized role of the neocortical pathway in non-human mammals is mediating 

learned and complex vocalizations, an idea that needs an animal model and supporting 

evidence, which I aim to provide with this dissertation.   

In the following sections, I will report on an extensive study of the vocal motor 

pathway in the Tadarida brasiliensis.  Chapter II details the materials and methods used 

for all experiments.  In Chapter III, I characterize the free-tailed bat vocal repertoire, 

providing evidence of complex vocal behavior that provides an excellent candidate 

system for exploring the neocortical vocal pathway.  In Chapter IV, I examine the neural 

distribution of melatonin and dopamine, two systems potentially vital to the vocal motor 

pathway.  In Chapter V, I use a neural activation marker to pinpoint areas of the brain 

activated during vocalization in an effort to better characterize the non-human 

mammalian vocal motor pathway.  And finally, in Chapter VI, I provide a conclusion 

and set the bar for future work. 
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CHAPTER II 

METHODS 

 

Animals 

The animals used for all of these experiments were Mexican free-tailed bats, 

Tadarida brasiliensis.  The population living in Brazos County, Texas (the location of 

Texas A&M University) was previously characterized as a non-migratory hybrid 

population of two subspecies of Tadarida brasiliensis (Schmidly et al., 1977) possessing 

distinguishing morphological characteristic of both the non-migratory T.b. cynocephala 

found in the eastern portion of the state and the migratory T.b. mexicana found in the 

central part of the state.  In the evenings of March through October, large numbers of 

foraging free-tailed bats are easily encountered within the College Station city limits and 

throughout the surrounding countryside, which is mostly rural.  There is also a small 

subset of animals that remain in the area all year round.  The university’s football 

stadium, Kyle Field, appears to be the largest central roosting site for free-tailed bats in 

Brazos County, although small groups of roosting bats are relatively easy to find in local 

parking garages, bridges and freeway culverts.   

 All animal husbandry and experimental protocols were in accordance with NIH 

guidelines for experiments involving vertebrate animals and were approved by the local 

IACUC.  All experiments for this dissertation were approved and covered under Animal 

Use Protocol #2007-254. 
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Field colony 

Some vocal behavior data was obtained from wild bats.  Echolocation sounds from 

foraging Tadarida brasiliensis were recorded from several different sites in Brazos 

County, including three small ponds, two large pastures, and on the College Station 

campus of Texas A&M University.  Also, bat communication calls were recorded from 

three sites in the football stadium over the course of a year to get an illustration of the 

seasonality of their vocal behavior.   

Several experiments required the capture of wild bats.  All of the male bats used 

in autoradiography, western blotting, and immunohistochemistry experiments were 

obtained from a small, all-male natural roosting site in the football stadium.  Females 

were difficult to find, and were obtained from a separate roost.  Females were only used 

in the vocal behavior studies and the melatonin receptor experiment.  Females were not 

excluded from the other studies, but simply were not found in sufficient numbers to 

make a meaningful comparison across sexes possible.  The bats were obtained from the 

stadium colony the day before their experimental protocol.  They were isolated from the 

captive colony (see Captive colony below) and kept in a soundproof room overnight to 

help alleviate any stress associated with capture.  The bats were then used in experiments 

the following morning.   

 

Lab colony 

A captive colony of Tadarida brasiliensis occupy two rooms (4x5x3 m3) in the 

Department of Biology vivarium on the College Station campus of Texas A&M 
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University.  These bats were collected from the large colony in the Texas A&M 

University football stadium, Kyle Field.  The captive colony consists of approximately 

30 individuals, all males.  The rooms have regulated light-dark cycles adjusted with a 

light timer to mimic the natural external photoperiod.  The two rooms are connected with 

a large sliding door that remains open to provide more room for flight.  The rooms are 

temperature and humidity controlled.  Artificial roost sites are available in each room.  

Bats were trained to feed themselves, and are fed a diet of mealworms supplemented 

with vitamins and essential fatty acids.  This colony of bats was only used for recordings 

of echolocation calls, buzzes, and songs in the lab and the pharmacology experiments. 

 

Acoustic Recordings 

Recording and analysis of calls for vocal behavior experiments 

Foraging calls were recorded from March 2005 through October 2006 during the 

bats’ peak periods of nightly foraging activity, which was found to vary seasonally.  For 

ultrasound acquisition I used the UltraSoundGate 116 (Avisoft Bioacoustics, Berlin, 

Germany: 750 kHz sample rate, 8-bit resolution).  The condenser microphone 

(Ultrasoundgate CM16) had a flat frequency response between 10 and 100 kHz (± 4dB); 

performance of the microphone was checked with simultaneous recordings made with a 

calibrated Brüel and Kjær type 4939 ¼”free-field microphone (Brüel and Kjær, 

Denmark).   Sounds were stored and analyzed on a notebook PC computer at a sample 

rate of 250 kHz at 16 bits/sample.  For recordings made at ponds, the microphone was 

positioned four feet above ground at the edge of the pond and directed upwards at a 45-
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degree angle over the pond.  The three ponds used in this study varied from 10 to 20 

meters in diameter, and thus the average distance between the bats and microphone 

when the bats emitted buzzes over the pond was roughly 5-10 meters.  For recordings 

made within the city and on campus, the microphone was positioned facing directly 

upwards.  For recordings of communication calls and songs coming from “natural” 

roosting sites located within the stadium, the microphone was placed 1 m from and 

directed towards the opening of roost sites, which were thin crevices running along the 

length of the stadium interior (concrete expansion joints beneath the seats).  Weekly 

recordings were made at the stadium from January-December 2006 to obtain seasonal 

vocalization data.  Sounds were also recorded in the lab under the following conditions: 

1) from individual males defending specific roost sites within the bat vivarium, 2) from 

social groups of 3-5 bats in a small cage in the flight chamber, 3) from individual bats on 

a feeding platform in either the vivarium or in the flight chamber, and 4) during flight in 

the flight chamber.  The flight chamber was a 6.1m long by 3.0m high by 1.5m wide 

carpeted flight room, with walls and ceiling lined with acoustic foam (Sonex 1, 3” foam, 

Acoustical Solutions, Inc., Richmond VA) and temperature maintained within a range of 

80 to 90˚ Fahrenheit during recording sessions. 

 

Analysis of echolocation calls and buzzes 

Signals were analyzed using both the commercial software program SASLab Pro, 

version 4.38 (Avisoft Bioacoustics) and Batsound (Pettersson Electronics).  Signals were 

displayed simultaneously as spectrograms and oscillograms.  Interpulse intervals (IPIs) 
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and call durations were measured from the oscillograms and inspected visually for tight 

correlations with the accompanying spectrogram.  For temporal analyses, I used 256-

point fast Fourier transforms (FFTs) with 93.75% overlap, providing 976 Hz spectral 

and .064 ms temporal resolutions.  For spectral analyses I used 512-point FFTs, giving 

488 Hz spectral and 0.128 ms temporal resolutions.  For inspection of finer details of call 

parameters, the FFT window was adjusted accordingly.  Spectral analyses included 

measures of the minimum frequency (Fmin), which correlated with the ending frequency 

of the calls, the maximum frequency (Fmax), which correlated with starting frequency of 

the calls, and the frequency of the peak intensity of the call (Fpeak).  Following standards 

defined in Surlykke and Moss (2000), I took Fpeak from the power spectrum of the call 

and defined Fmin and Fmax as the frequencies at the lower and upper bandwidths of the 

spectrum at –15 dB relative to the intensity of the peak frequency.  As noted in an earlier 

study of the bat Eptesicus fuscus (Surlykke and Moss, 2000) this method of 

standardizing spectral measurements proved reliable for search and approach call 

measures, but is less accurate as signal-to-noise ratios decline, particularly during the 

buzz phase.  For the measures of spectral parameters of faint calls contained within 

buzzes recorded in the field, only those buzzes in which the standardized measures 

appeared consistent with measurements taken by hand using the cursor in 1024-point 

FFTs were included in the final analysis.  Declining signal-to-noise ratios were not a 

significant problem for buzzes recorded from stationary bats in the lab: because of the 

potential for a differential effect of atmospheric attenuation on the measurements of buzz 

spectral parameters in the field versus the lab only those buzzes recorded in the field that 
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included multiple upper-frequency harmonics were included for detailed analysis. 

However, the measurements presented here for foraging bats are in close agreement with 

previous published accounts of Tadarida brasiliensis echolocation calls under similar 

conditions (Simmons et al., 1978). These five standardized measures (IPI, Dur, Fpeak, 

Fmin, and Fmax) are probably insufficient for providing a complete description of the 

myriad of ways free-tailed bats manipulate their call structure, however these measures 

do provide an objective and straight-forward foundation for interpreting key 

observations presented here.  I used the statistical software package SigmaStat version 

3.1 (Systat Software Inc., Point Richmond CA) for comparison of data sets.   All results 

are presented as means ± standard deviations, and statistically significant differences 

were tested for using the Mann-Whitney rank sum test or a 1-way ANOVA.  P values 

are provided where appropriate as indicators of the level of significance. 

 

Classification of communication calls 

To characterize the Tadarida communication repertoire, I developed a 

classification system based on previously established bat call classification methods 

(Kanwal et al., 1994, Bohn et al., 2008).  I focused my broad classification mostly on 

two parameters, call duration and frequency range, which resulted in 15 different call 

types:  long waves, short waves, strums, chirps, short ladders, long ladders, trills, low 

FMs, upward FMs, descending FMs, upward long flats, buzzes, arrowheads, warbles, 

and V calls (Figure 1).   
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Figure 1.  Communication Call Classification for Tadarida brasiliensis.  An example 
spectrogram of each call type is provided.  A. long ladder, B. upward long flat, C. 
descending FM, D. arrowhead, E. short wave, F. short ladder, G. upward FM, H. warble, 
I. long wave, J. low FM, K. chirp, L. trill, M. strum, N. buzz, O. V call. 
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• Long wave calls start at a low frequency (<20kHz) and rapidly sweep 

upward to a peak before dropping, arching, or rolling.  They are longer 

than 25 milliseconds.  Short wave calls are similar to long waves but 

shorter, ranging from 10-25 milliseconds.  They start out like long waves, 

but stop at or just after the call peaks, and they do not fall back to the 

original starting frequency.  Wave calls (both long and short) frequently 

occur in sequences of up to 10 in a row. 

• Strums are broadband and appear very noisy on spectrograms.  This call 

type also frequently occurs in sequences.  They are one of the longer 

syllables (>40 milliseconds) and are very low frequency (<20kHz) for the 

duration of the call.  They do not have any significant frequency 

modulations.  Because of their noisy appearance, they are easily 

recognizable. 

• Chirps include a wide range of very short calls, 5-10 milliseconds long.  

This classification is highly variable and includes both CF and FM calls, 

both ascending and descending.  

• Ladder calls are calls with many prominent harmonics (>4).  This 

classification includes both CF calls and FM calls with a slow frequency 

incline or decline.  They differ from wave calls because they do not come 

to a peak.  Short ladder calls are 10-30 milliseconds, long ladder calls are 

>30 milliseconds in duration.  The lowest harmonic of this call type is 

usually around 20-30 kHz.   
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• Trills are sets of 2-7 FM calls that are very short duration (5-7 

milliseconds).  The intervals between the calls are consistent, usually 3-7 

milliseconds.  The peak frequency of the calls is also consistent 

throughout the trill.  The frequency range of the trill calls is around 40-20 

kHz.   

• Buzzes look similar to trills, but they are longer, 5-20 calls within one 

buzz.  Also, the peak frequency, intercall intervals, and call durations all 

decrease as the buzz progresses.  

• Low FM calls look similar to the calls contained within the trills, except 

that the frequency drops well below 20 kHz.  They are short duration (5-

10 milliseconds). 

• Upward FM calls vary in length from 10-25 millseconds.  They sweep up 

in frequency slowly and smoothly.  They are different from the wave calls 

because they only go up in frequency; they never reach a peak or decline 

in frequency.   

• Descending FM calls are exactly like upward FMs, except that they 

decline in frequency instead of ascending. 

• Upward long flat calls begin at a lower frequency (around 10 kHz) and 

rise like long wave calls, but they reach a peak and remain at that constant 

frequency, usually around 25-30 kHz.  These are longer duration, around 

40 milliseconds.   
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• Arrowhead calls are 10-25 milliseconds long.  They look like an upside 

down V on a spectrogram and are roughly symmetrical.   

• V calls are the exact opposite of arrowhead calls; they look like a V on a 

spectrogram.  Again, this call type is also roughly symmetrical on either 

side of the center peak. 

• Warble calls start at a high frequency (50-60 kHz) and decline in 

frequency unevenly, usually ending above 25 kHz.  They look rippled on 

a spectrogram.  The duration of this call type is around 20-40 

milliseconds.   

 

 In addition to the 15 call type classifications, I characterized two communication 

call types seen in isolated bats based on associated behaviors (Figure 2).  Protest calls 

are loud, aggressive short ladder type calls elicited by agitated bats.  I recorded many of 

these calls when handling aggressive singing males or newly captured bats.  I was also 

able to record another call type in isolated bats, the food solicitation call.  These calls 

were produced by tame, hand fed bats begging for food.  These calls are lower frequency 

(<25kHz) and differ by individual. 

 

Characterization of the Tadarida song 

Songs were recorded both in the field and in the lab as mentioned previously.  In 

addition to audio recordings, video recordings were taken of singing bats in the lab to 
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establish the behavioral context accompanying the singing behavior.  Singing males 

were examined to establish any physical changes.   

 The bat song was broken down into components, each of which was 

characterized.  Songs from different individual bats were compared to assess similarities 

and differences.  Natural songs were recorded over the course of a year to determine any 

seasonal variation. 

 

Recording and analysis of calls for c-fos immunohistochemistry protocol 

All acoustic experiments in the lab took place in the flight chamber mentioned 

above which is lined with acoustic foam which effectively isolated the experiment from 

all outside noise.  All bats were kept in a small wire cage (12x6x6 in) to prevent flying.  

Vocalizations were monitored by the same Bruel & Kjaer microphone mentioned 

previously.  Incoming signals were digitized with a National Instruments DAQmx, NI 

PCI-6251 (200 kHz, 16-bit sample rate), and viewed with Avisoft Recorder v3.0.  Call 

rate was determined as the number of calls per second over a thirty minute time period.  

Movements were tracked with a motion detector (Passive InfraRed Sensor, Parallax, 

Inc.) attached to the cage and monitored with the DATAPAC 2K2 system.  I calculated 

the movement as the percentage of experimental time the animal spent moving.  All 

auditory stimulations were played through a Sony amplifier (model # STR-DE598) 

driving a four-speaker array consisting of two Pioneer Ribbon Tweeters (ART-

55D/301080) and two Pioneer Rifle Tweeters (ART-59F/301081), arranged to project 

across the flight room directly in line with the cage. Each speaker provided a flat (±3 dB) 
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output at a maximum of 85-dB SPL.  Echolocation calls were generated using openEX 

software and the Tucker-Davis Technology (TDT) system III hardware.  The auditory 

stimulus used for these experiments were computer-generated bursts of white noise, 

which had a center frequency of 33 kHz and -6 dB bandwidth of 16 kHz. These stimuli 

were generated with RPvdsEx which was set to continuously generate bursts of white 

noise separated by 200 ms intervals for 30 minutes.  This acoustic stimulus was chosen 

because the parameters match those of natural echolocation calls 

 

 

 

 

Figure 2.  Communication Call Types Classified by Behavior.  This figure provides 
spectrogram examples for two social call types elicited in a specific behavioral context:  
food solicitation (A) and protesting (B). 
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Brain Preparation 

Brains were extracted for the autoradiography, western blotting, and 

immunohistochemistry experiments.  All animals were killed by injection of sodium 

pentobarbital (Euthasol) after their experimental protocol.  This method of sacrifice is 

rapid (<5 minutes), so it would not have an effect on gene expression where applicable.  

The brains were quickly removed, flash frozen in isopentane to minimize cell damage, 

and stored at -80°C (Sundquist and Nisenbaum, 2005).  For the autoradiography and 

immunohistochemistry experiments, serial coronal sections (16-20 µm) of the entire 

brain were cryosectioned, thaw mounted on Histobond microscope slides, and stored at -

80°C until use.  Adjacent brain sections were placed on separate sets of slides so that 

every fourth slice was in the same set.  This provided multiple slide sets from the same 

brain for control experiments and use of the same animal in more than one experiment.  

The brains used for western blotting were prepared in a different way (see “Western 

Blotting” section below). 

 

Autoradiography 

2-[125I]iodomelatonin 

We used slight modifications of previously described protocols for determining 

the distribution and characterization of melatonin binding sites (Duncan et al., 1986, 

Dubocovich and Takahashi, 1987, Lu, 1994).  The two slide sets were incubated in 0.5M 

Tris buffer with 0.1% bovine serum albumin at 21°C for one hour.  One slide set was 

then incubated in 100 pM IMEL (PerkinElmer) in Tris buffer and the second set was 
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incubated in 100 pM IMEL in Tris buffer with 1µM melatonin for two hours at 21°C.  

For the saturation experiment, the concentrations of IMEL used for this step ranged from 

1 pM to 1.2 nM and three different animals were used for each concentration.  The slide 

sets incubated with 1µM melatonin served as controls to determine nonspecific binding.  

All experimental and control slide sets were then washed in Tris buffer at 4°C for 30 

minutes and air dried.  The slides used for determining the distribution of melatonin 

binding sites were dried and apposed to BioMax Maximum Resolution autoradiographic 

film (Kodak) with a calibrated 14C standard for six weeks at -80°C.   

After developing the film, optical density measurements from five sections on 

the experimental slide set were averaged for each brain area for each animal using NIH 

Image J (Abramoff et al., 2004). The slides used for saturation studies were dried and 

apposed to phosphor imaging plates (Fujifilm) with a calibrated 14C standard and 

incubated for three days at 21°C.  The plates were then developed using a 

phosphorimager (Fujifilm BAS-5000).  The optical density of the caudate putamen was 

measured in five sections from the experimental slide set for each animal and averaged 

for each concentration in the same manner as above.  All sections were subsequently 

stained with cresyl violet to aid in brain structure identification.  Areas exhibiting IMEL 

binding were also measured on control brains to provide nonspecific binding control 

data.  A standard curve was generated using the optical densities from the calibrated 

standards.  2-[125I]iodomelatonin binding (nCi/mg protein) from each brain region was 

calculated using the values from the standard curve.  Nonspecific binding was subtracted 

from total binding to determine specific binding for each brain region.  Differences in 
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IMEL binding between sexes for each brain region were assessed using t-tests.  A 

nonlinear regression was performed on the data collected from the saturation experiment 

to determine Kd and Bmax. 

 

Dopamine receptors 

To determine the distribution of D1 dopamine receptors, I used slight 

modifications of a previously described protocol (Kim et al., 2000).  All slides were 

preincubated in assay buffer (50 mM Tris HCl buffer with 120 mM NaCl, 5 mM KCl, 2 

mM CaCl2, 1 mM MgCl2, pH 7.4) for 20 minutes.  Then, the experimental slide sets 

were incubated in assay buffer with 1 nM N-methyl-3H SCH 23390 (PerkinElmer) and 5 

µM ketanserin (5-HT2 seratonin receptor antagonist) for 1 hour at 23˚ Celsius.  Control 

slide sets were processed similarly, but also with the addition of 5 µM fluphenazine, a 

D1/D2 dopamine receptor antagonist.  All slide sets were then transferred to ice cold 

assay buffer for two rinses of 20 seconds each, followed by an ice cold water rinse of 10 

seconds.  Finally, all slide sets were then dried and apposed to BioMax Maximum 

Resolution autoradiographic film (Kodak) with a calibrated 14C standard for 17 weeks at 

-80˚ Celsius. 

Similarly, I used slight modifications of a previously described protocol for 

determining the distribution of D2 dopamine receptors (Lidow et al., 1991).  All slides 

were preincubated in assay buffer for 20 minutes.  Then the experimental slide sets were 

incubated in assay buffer with 1 nM methoxy-3H-raclopride (PerkinElmer) for 45 

minutes at 23˚ Celsius.  Control slide sets were processed similarly, but with the addition 
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of 10 µM butaclamol, a dopamine receptor antagonist.  All slide sets were then 

transferred to ice cold assay buffer for two rinses of 5 minutes each, followed by an ice 

cold water rinse of 5 seconds.  Finally, all slide sets were then dried and apposed to 

BioMax Maximum Resolution autoradiographic film (Kodak) with a calibrated 14C 

standard for 19 weeks at -80˚ Celsius. 

All D1 and D2 films were developed and optical density measurements from five 

sections on the experimental slide set were measured and averaged for each brain area 

for each animal using NIH Image J (Abramoff et al., 2004).  All sections were 

subsequently stained with cresyl violet to aid in brain structure identification.  Areas 

exhibiting binding were also measured on control brains to provide nonspecific binding 

control data.  The threshold for binding in the autoradiography experiments was 

determined by adjusting background level for each image according to the nonspecific 

binding levels obtained from the control slide sets exposed to melatonin.  Any area with 

binding higher than the nonspecific binding levels was analyzed.  A standard curve was 

generated using the optical densities from the calibrated standards.  3H SCH 23390 and 

3H-raclopride binding (nCi/mg protein) from each brain region was calculated using the 

values from the standard curve.  Nonspecific binding was subtracted from total binding 

to determine specific binding for each brain region.   

 

C-fos Western Blotting 

A vocalizing bat was sacrificed and its brain was removed and snap frozen in 

isopentane (methylbutane).  For each 500mg of tissue, I added 300 µl of lysis buffer 
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(150mM sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate, 50 mM Tris, pH 8.0) and homogenized the brain tissue with an electric 

homogenizer.  I centrifuged the homogenate for three periods of ten minutes, removed 

the supernatant, and put it in a fresh tube.  The samples were stored at -20˚ until use.   

To separate the proteins in the sample, I used sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) made with 10% polyacrylamide.  The 

gel was submerged in migration buffer (25 mM Tris base, 190 mM glycine, 0.1% SDS, 

pH 8.3).  The samples and a molecular weight marker were loaded into the gel with 

Laemmli 2X loading buffer (4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.004% 

bromophenol blue, 0.125 M Tris HCl) and run at 150 V for 1.5 hours.   

The proteins that were separated on the gel were now transferred to a membrane 

for staining.  I utilized a wet protein transfer, where the gel and transfer membrane 

(Millipore Immobilon-P PVDF membrane) were sandwiched between sponges and 

absorbent paper and clamped tightly together.  The sandwich was submerged in transfer 

buffer (same as above with 20% methanol in place of SDS) and run overnight at 30 mV. 

The membrane then underwent a staining procedure similar to the 

immunohistochemistry protocols in order to determine the specificity of the antibody.  

The membrane was first blocked in 5% non-fat milk in Tris buffer saline with Tween 20 

(TBS-T) for one hour at 20˚C under agitation.  Then, the membrane was incubated in c-

fos primary antibody with TBS-T and 3% BSA (Abcam, ab7963, 1:2000) for two hours 

at 20˚C under agitation.  The membrane was then washed in TBS-T several times before 

incubation with the HRP-conjugated secondary antibody (1:2000) in TBS-T for one hour 
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at 20˚C under agitation.  The membrane was washed again and then developed with 

SuperSignal West Pico Chemiluminescent Substrate.  The membrane was then drained, 

covered in plastic wrap, and exposed to X-ray film for 5 minutes.  The film was then 

developed and analyzed. 

 

Blocking peptide 

In order to more conclusively determine whether or not the antibody is specific, I 

used a blocking peptide to highlight any nonspecific binding.  After the protein transfer, 

I split the membrane into two pieces for the staining step.  The buffer with primary 

antibody was prepared and divided into two volumes.  C-Fos peptide (Abcam, ab7997, 

1:200) was added to one volume of buffer, and the other received an equivalent amount 

of buffer as a control.  The membranes were incubated in these buffers for two hours at 

20˚C under agitation as above.  The remaining steps of the staining section were 

performed the same as stated above, but the two membrane pieces were kept separate.   

 

C-fos Immunohistochemistry 

The primary antibody for c-fos, corresponding to N terminal amino acids 1-14 of 

human c-Fos, was obtained from Abcam (ab7963).  The secondary antibody was part of 

a kit from Vector Labs (Vectastain Elite ABC Kit).  Brain sections on slides were traced 

with a PAP pen (RPI #195506), fixed in ice cold methanol, incubated in a 0.3% H2O2 

solution, and then rinsed.  The slices were then blocked in normal serum and incubated 

with the primary antibody (1:5000) overnight at 4˚ Celsius.  The next day, the slides 
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were rinsed and then incubated with the biotinylated secondary antibody solution.  The 

slices were then rinsed again, incubated in Vectastain Elite ABC reagent, rinsed, and 

then finally incubated with diaminobenzidine (DAB) solution with nickel.  They were 

then rinsed, dehydrated, cleared and coverslipped.   In addition to c-fos, I also used this 

same immunohistochemistry protocol with a primary antibody to tyrosine hydroxylase 

(ab112, Abcam), the first enzyme in the dopamine synthesis pathway, to aid in 

determining the locations of regions in the striatum and substantia nigra. 

Pictures of the extent of each brain area were taken using an Infinity 2 

microscope camera connected to a computer running Infinity Capture application 

software (version 3.7.5, Lumenera Corporation).  Consecutive sections from both the 

right and left sides for each region of interest (ROI) were analyzed for each animal. The 

fos-like immunoreactivity (5-40 pixels in size) was counted using NIH Image J 

(Abramoff et al., 2004).  Cells were counted in random 0.012 x 0.012 mm square areas 

over each ROI (Beckett et al., 1997, Neophytou et al., 2000, Sadananda et al., 2008).  

Data from the right and left sides for bilateral structures were combined and the mean for 

each ROI for each animal was calculated.  The animals were then divided into their 

respective treatment groups and cell counts were compared between groups of bats using 

an analysis of variance (ANOVA) with treatment as the factor (echolocating, listening, 

or silent).  The comparisons of interest were echolocating vs. listening, echolocating vs. 

silent, and listening vs. silent.  All comparisons were analyzed using the Holm-Sidak 

method.   
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Tyrosine Hydroxylase and Dopamine-beta-hydroxylase  

Immunohistochemistry 

The same protocol used for c-fos immunohistochemistry was used for tyrosine 

hydroxylase and dopamine beta hydroxylase immunohistochemistry.  Both primary 

antibodies were obtained from Abcam (ab112, ab43868) and the same secondary kit was 

used.  The analysis was also the same, except that all the cells in the entire structure were 

analyzed rather than counting random squares.   

 

Pharmacology 

 Bats from the captive lab colony were used for these experiments.  All surgical 

tools were sterilized in an autoclave and further cleaned using a dry glass bead sterilizer 

(Steriguard).  Tools were also rinsed in a 2% chlorohexidine gluconate solution 

throughout the surgical process.  Preparatory surgical procedures are similar to methods 

published previously (Smotherman et al., 2003, Smotherman et al., 2006).  All bats 

underwent an initial surgery to drill a hole in the skull.  Inhalational anesthesia (2.5% 

isoflurane vaporized in air) was administered using a tube fitted over the bat’s face.  The 

bat was then placed in a custom-built stereotaxic apparatus for surgery.  Fur was 

trimmed from the top of the bat’s head and the bat was given an injection of lidocaine, a 

topical anesthetic, prior to the first incision and throughout the surgery as needed.  The 

skin on the top of the skull was cut, exposing the underlying muscles.  These muscles 

were moved aside and minimally cut to expose the skull.  The Tadarida skull has several 

landmarks to help navigate the brain below, particularly important were the sagittal 
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suture and the ridged region running perpendicular to this suture that lies directly over 

the division between the inferior and superior colliculi.  Using these anatomical 

landmarks and the lab brain atlas sections, I was able to calculate the locations of the 

ACg, dlCdN and PAG.  The ACg was approximately 3 mm forward of the SC/IC ridge 

and 1.2 mm deep, directly next to the midline.  The dlCdN was approximately 2 mm 

forward of the SC/IC ridge, 2 mm off the midline, and about 1.4 mm deep.  The PAG is 

250-500 microns lateral to midline and directly beneath the superior colliculus, which is 

visible at the surface of the brain.  Using these coordinates, I used the 3-axis 

piezoelectric microdrive (Siskiyou Inc., Grants Pass OR) stereotaxic equipment to find 

the area of the skull overlaying these ROIs.  Using a drill fitted with 0.8 mm bits, I 

drilled a hole in the skull corresponding to the X and Y coordinates of the region of 

interest.  I then covered the hole and exposed brain with bone wax, folded the skin and 

muscle tissue back over the skull, gave the bat an injection of buprenorphine, and placed 

it in a cage to monitor its recovery.  After the initial surgery, the bat was given three 

days to recover before receiving an injection.  The bats received additional follow-up 

buprenorphine injections as needed. 

 On the day of the drug injection, the bat was again anesthetized with isoflurane 

gas and placed in the stereotaxic apparatus.  The bone wax was removed from the hole in 

the skull, exposing the brain.  Glass micropipettes were made with a pipette puller, the 

tip diameter ranged from 2-5 micron, verified with a dissecting microscope.  Kainic acid 

and bicuculline (5 mM concentration) were used for injection into the brain.  Once the 

micropipette was loaded with drug, it was lowered into the brain to the depth calculated 
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previously.  The drug was pneumatically administered and the pipette was kept in the 

brain for 30 seconds after the injection.  The pipette was then removed, the isoflurane 

was shut off, and the bat was returned to a plastic cage with a microphone mounted 

overhead running UltraSoundGate 116 (Avisoft Bioacoustics, see “Acoustic 

Recordings” for more details).  Under normal circumstances a bat regains consciousness 

from the isoflurane and begins calling within 2 minutes of cessation.  All vocalizations 

were recorded for one hour after injection.  Controls included saline injections in the 

same brain regions as well as drug injections in anatomical control sites. 
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CHAPTER III 

VOCAL BEHAVIOR OF Tadarida brasiliensis* 

 

Introduction 

A central question in neuroscience is how complex motor patterns are 

coordinated in the brain.  Bats use several vocal behaviors that exhibit complexity and 

plasticity that can be advantageous in addressing this question, including echolocation 

calls, communication calls, and more complex patterns and sequences of both call types.  

Bats use echolocation to navigate and explore their surroundings both in flight and on 

the ground.  Tadarida brasiliensis’s diverse echolocation call repertoire spans a range of 

sonar signal designs usually reserved for comparisons across whole families of bats 

(Simmons et al., 1978), indicating that they are capable of vast vocal variability.  It is 

well established that echolocation calls are highly sensitive to acoustic cues derived from 

preceding echoes.  However, this sensitivity has not been extended to calls contained 

within the feeding buzz, since the intervals between calls within a buzz, typically on the 

order of a few milliseconds, are presumed to be too short to allow for auditory feedback 

control of call parameters.  The buzzes uttered by echolocating bats as they converge 

upon their fluttering prey represent a unique example of a precisely timed complex vocal 

motor pattern in a mammal other than humans, and yet little is known about the extent to 

which bats regulate the temporal and spectral components of their buzzes.  Instead, 
                                                 
* Part of the data in this chapter is reprinted with permission from “The Tiny Difference Between Foraging 
and Communication Buzzes Uttered by the Mexican Free-tailed Bat, Tadarida brasiliensis” by Christine 
Schwartz, Jedediah Tressler, Halli Keller, Marc Vanzant, Sarah Ezell, and Michael Smotherman, 2007.  
Journal of Comparative Physiology A, 193, 853-863, Copyright 2007 by Springer Science + Business 
Media 
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feeding buzzes more likely reflect a fixed vocal motor pattern operating independently 

of sensory feedback (Schuller and Radtke-Schuller, 1990, Dusterhoft et al., 2000, 

Jürgens, 2000, Fenzl and Schuller, 2002, 2005, Hage and Jurgens, 2006).  Thus the 

feeding buzz may represent a special opportunity to study the hierarchical organization 

of complex vocal motor patterns.  

 Several studies have reported that feeding buzzes uttered by foraging bats 

showed significant variations in duration (Griffin, 1958, Schnitzler et al., 1987, Kalko, 

1989, Surlykke et al., 1993, Schnitzler et al., 1994, Kalko, 1995b, Surlykke and Moss, 

2000), but most of these studies also reported a generally high degree of consistency in 

the basic spectral and temporal patterns of calls within feeding buzzes.  One recent study 

demonstrated that big brown bats truncated buzz durations to compensate for shorter 

distances between prey and background clutter (Moss et al., 2006).  Yet no reports have 

provided convincing evidence that sensory feedback modulates the fine structure of calls 

within a feeding buzz.   

 Free-tailed bats also have the ability to control their echolocation vocalizations to 

avoid periods of noise.  Bats given broadband noise jamming their normal echolocation 

frequency modified their calls across several parameters to compensate for the 

disturbance, a change that was made within seconds of stimulus onset (Ulanovsky et al., 

2004, Gillam et al., 2007, Tressler and Smotherman, 2009).  Free-tailed bats were also 

shown to shift the timing of their echolocation calls to avoid noisy stimuli (Jarvis et al., 

2010).  This demonstrates plasticity in the vocal behavior of Tadarida brasiliensis and 

also indicates that sensory feedback pertaining to the bat’s environment is involved in 
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the vocal motor pathway generating these calls.  This also provides an excellent 

opportunity to study the mammalian vocal motor pathway.     

In addition to echolocation calls, Tadarida brasiliensis also possesses a broad 

and dynamic repertoire of communication sounds including both isolated buzzes and 

buzzes incorporated into territorial songs (Ma et al., 2004).  While the echolocation 

spectrum of this species is impressive, the communication repertoire is even more vast; a 

previous report characterized 14 different communication calls with specific behaviors 

in the Mexican free-tailed bat (Bohn et al., 2008).  Communication calls are abundant in 

groups of bats, both in the field and in the lab, but these types of calls are generally not 

seen in solitary bats.  Several communication calls, including the buzz, are incorporated 

into songs associated with territorial and courtship behavior.  At first approximation, the 

buzzes seen in communication look strikingly similar to Tadarida’s foraging buzzes 

used in a different context.   

We provide here an analysis of Tadarida brasiliensis vocal behavior, including 

characterization of both echolocation calls and communication calls.  I provide a detailed 

analysis of the spectral and temporal dynamics of Tadarida’s foraging and 

communication buzzes, to assess whether or not these buzzes were identical vocal motor 

patterns being used in different behavioral contexts.  I hypothesized that if the feeding 

buzz was a fixed motor pattern, then the communication buzzes should closely resemble 

foraging buzzes in every detail.  Alternatively, I hypothesized that if auditory feedback 

played a significant role in shaping the spectral and temporal dynamics of calls within 

the buzz during flight, then a very predictable set of differences should appear in the 
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stationary communication buzzes relative to foraging buzzes recorded during flight.  In 

flight, call durations and inter-call intervals progressively shorten as bats approach a 

target, thus if similar changes observed within foraging buzzes are also driven by 

auditory feedback cues, then buzzes uttered by stationary bats should not exhibit 

progressive reductions in call durations or intervals.  Therefore, this analysis offered the 

opportunity to directly address whether or not auditory feedback influenced call 

parameters within foraging buzzes.  In addition to the detailed assessment of buzzes in 

different contexts, I also developed a classification system to characterize the 

communication repertoire of Tadarida brasiliensis, which I used to determine any sex-

related or seasonal differences in syllable use.  I also examine the structure and 

behavioral context of the territorial/courtship song.   

 

Results 

Echolocation calls used during foraging. 

A previous study (Simmons et al., 1978) provided a detailed description of the 

spectral and temporal parameters of echolocation calls used by free-tailed bats in transit 

but not while foraging. Here I will provide a basic description of the variability of 

echolocation call types used by the Brazos Valley population of free-tailed bats studied 

here while foraging, but the focus of my presentation will address details of feeding buzz 

temporal and spectral parameters.  Figure 3 offers a representative example of the typical 

series of changes in call structure that were observed to occur through a complete 

foraging sequence, including transitions from search to approach to buzz phases, and 
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these having been well documented previously in a wide range of bat species (Griffin, 

1958, Schnitzler et al., 1987, Kalko, 1989, Surlykke et al., 1993, Kalko, 1995a, Obrist, 

1995, Surlykke and Moss, 2000, Schnitzler and Kalko, 2001), will only be touched upon 

briefly for comparative purposes.   

 

 

 

 

Figure 3. Echolocation Sequence of a Foraging Bat.  Sequence of echolocation calls 
concluding with a feeding buzz emitted by a free-tailed bat foraging over a small pond. 
Approach phase ended with the transition from an increasing to a decreasing Fmin, or 
ending call frequency.  Buzz 1 and Buzz 2 are separated by an interval ≥ 20 ms.  
 

 

 

As noted previously (Simmons et al., 1978), Tadarida use relatively long, 

constant-frequency (CF) or very shallow frequency-modulated (FM) “search” calls when 

flying in open space (Figure 4).  I analyzed 100 series of 10 sequential search calls taken 

randomly from approximately 80 hours of recordings at six different sites; in each case I 

visually identified sequences in which the temporal and spectral parameters of the calls 

indicated that they were emitted by a single bat passing overhead.  I attempted to avoid 
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pseudoreplication by allowing at least 10 minutes between sequences selected for 

analysis, by subjective analysis of the records wherein it was often possible to recognize 

the continued activity of a single bat, and by choosing data sets from a combined total of 

28 different recording dates and locations. Mean call frequencies (Fpeak), call durations, 

and interpulse intervals (IPIs) were calculated for each sequence, and the resulting 100 

means were pooled to generate the graphs shown in Figure 4 B-D.  Overall, the mean 

search call duration was 14.6 ± 1.4 ms. The mean inter-pulse interval was 274 ± 71 ms, 

however the distribution of IPIs was multimodal (Figure 4B), which is consistent with a 

conclusion that these bats typically emitted calls on alternating wing beats, which would 

appear to have been roughly 125 ms apart (the mode at 250 ms is presumed to reflect the 

time between 2 wing beats).  Since this estimate is in close agreement with previous 

estimates of wingbeat rates of other similarly sized bats (Holderied and Helversen, 

2003), I did not analyze this parameter further.  The mean search call frequency was 

26.4 ± 1.6 kHz, and only included one prominent harmonic.  To provide a standardized 

measure of call bandwidth, the Q10dB value, I measured the –10dB bandwidth of 100 

individual search calls taken from 100 different sequences; the mean search call 

bandwidth was 1.2 ± 0.6kHz, with a mean Q10dB of 23.2 ± 4.9 (Q10dB =Fpeak divided by 

the bandwidth of the call at 10 dB below the peak intensity).  A power spectrum for a 

representative search call is shown in Figure 5.  
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Figure 4.  A Series of Search Phase Echolocation Calls.  The last call in (A) immediately 
preceded the first call appearing in figure 3.  B, C and D illustrate population-level 
variability in search call durations (B), inter-call intervals (C), and call frequencies, Fpeak 
(D).  Measurements of search phase calls were pooled from the means of 100 different 
sequences of 10 consecutive calls collected from a total of 28 different recording dates 
and locations in Brazos County, Texas. 

 

 

 

Search calls were replaced by a series of progressively steeper linearly 

frequency-modulated FM “approach” calls as the bat rapidly approaches a target.  

Approach calls were characterized by progressively shorter durations, a large increase in 

the starting frequency (Fmax), an overall increase in bandwidth, and a small rise in the 

ending frequency (Fmin) of the call (Figures 3 and 5).  For approach phase calls recorded 

in the field, the Fpeak was typically located at or within approximately 2 kHz of Fmin 

(Figure 5).  Fmin increased up to an average maximum value of 29.5 ± 1.3 kHz for the 

last approach call emitted before entering the buzz phase (n=100 calls preceding 100 



 35

buzzes).  For the same data set, the mean –15 dB bandwidth was 8.4 ± 2.0 kHz, although 

this may underestimate the actual bandwidth due to variability in the recorded Fmax.  In 

the best recordings, non-overlapping second and third harmonic components were 

generally present in approach calls.  As the bats transitioned from the approach to the 

“buzz” phase, both Fmax and Fmin were lowered (Figure 5).   

Previous studies have separated feeding buzzes into two phases: the first phase 

(Buzz 1) was characterized by the transition from increasing to decreasing Fmin values, 

thereby defining the boundary between the end of approach phase and the beginning of 

Buzz 1, (Schnitzler et al., 1987, Surlykke et al., 1993, Surlykke and Moss, 2000).  The 

transition from Buzz 1 to Buzz 2 is more variable in its definition across species, but in 

the big brown bat, Eptesicus fuscus, whose echolocation calls share strong similarities 

with Tadarida, this transition was characterized by an abrupt decrease in IPI and a 

slower decrease in Fmin (Surlykke and Moss, 2000).  The above definition of the 

transition from approach to buzz 1 derived from other bats appears appropriate for 

Tadarida brasiliensis (see Figures 3 and 5), however, the definition of the transition 

from buzz 1 to buzz 2 is different for Tadarida brasiliensis because the temporal 

patterns of their calls within the buzz are different from Eptesicus.  I found that the 

transition from a buzz 1 to a buzz 2 was correlated with the appearance of a single IPI 

greater than 20 ms that appeared in every buzz (Figure 3), which was followed by a 

sudden drop in IPI and from there on a smooth sequential decrease in IPIs, durations, 

and Fmin.   I suggest, based upon an analysis of 100 feeding buzzes, that Buzz 1 always 

ends with a doublet, characterized by a single short IPI (mean 12.7 ± 2.5 ms, n=100), 
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which was followed a 20-24 ms IPI (mean of 22.4 ± 0.6 ms, n=100) that preceded buzz 

2.  I hypothesize that this 20-24 ms IPI separating buzz 1 and buzz 2 is used for a rapid 

inspiration immediately prior to the main portion of the buzz, but at this time I have no 

way of testing this. Although respiratory temporal patterns are surely different in flight 

versus stationary conditions, I presume that the IPIs contained within buzz 2, which 

began at 10.9 ± 2.5 ms, are too short to allow for intervening inspirations, but the limited 

evidence available (Smotherman et al., 2006) suggests that vocalizing bats are capable of 

taking a breath within intervals as short as 20-25 ms, which is similar in duration to the 

one separating buzz 1 and buzz 2.  Based on this, I adopted a physiological definition of 

Buzz 2 that characterizes it as a single complex vocal motor pattern constrained by 

respiratory temporal dynamics.  Like Eptesicus fuscus (Surlykke and Moss, 2000), 

Tadarida were occasionally observed to extend their buzzes by emitting a series of two 

or three buzzes conjoined by brief 20-30 ms IPIs, but for the purpose of the analyses 

presented here I treated these as separate, sequential buzzes rather than a single 

protracted buzz. Only the first buzz in any series of multiple buzzes was included in the 

analysis.  For my analysis of buzz variability and for the purpose of comparing foraging 

and communication buzzes, I herewith define the foraging buzz as a single buzz 2, 

beginning and terminating with any IPI greater than 20 ms. This distinction is essential 

because although communication buzzes closely resemble the buzz 2 phase, they do not 

follow a buzz 1 phase. 



 37

 

 

Figure 5.  Power Spectra Comparison of Foraging Echolocation Calls.  A comparison of 
the power spectra for a representative search phase call, the last approach phase call, and 
the first call in buzz phase 2.  All three calls were taken from a single series of foraging 
calls spanning a period of 1.5 seconds. The bat was hunting over a pond.  Intensities are 
given relative to the peak intensity of the loudest of the three calls, the approach call. 
 

 

 

The foraging buzz 

 From a much larger data set, I selected 100 feeding buzzes from foraging free-

tailed bats that had good signal-to-noise ratios and in which at least two harmonic 

components were visible.  I initially separated the data into solitary and group foraging 

conditions, but a statistical analysis failed to identify any significant differences in the 

temporal or spectral dynamics of buzzes emitted alone versus those emitted in the 
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presence of other foraging bats.  Therefore the data were pooled for subsequent analyses 

and presentation.  Figure 6 illustrates the observed variability in buzz durations. 

Foraging buzzes lasted an average of 153 ± 44 ms, and included an average of 19 ± 6 

calls (Figure 6): the longest was 300 ms and contained 45 individual calls.  There was a 

predictably linear relationship between number of calls and overall buzz duration (Figure 

6A), and the slope of this relationship (6.7 ms per additional call) was just above the 

fastest rate at which the bats were able to emit calls within a buzz (approximately 6.4 ms 

between call onsets, or 156 Hz).  The measured slope in Figure 6A is higher than the 

maximum call rate because the first call durations and IPIs within the buzz (3.8 ± 0.9 ms 

and 10.9 ± 2.5 ms, respectively) were roughly twice as long as the mean final durations 

and IPIs in the buzz (1.8 ± 0.6 ms and 4.6 ± 0.6 ms, respectively), and it took 

approximately 10 calls to approach the maximum call rate.  Figure 7 (A, B) offers two 

more examples of foraging buzzes differing in duration and number of calls.  I looked 

for but found no consistent indication that buzz durations varied significantly with 

recording site, while alternatively I found ample evidence of a broad range of buzz 

durations at every recording site. 
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Figure 6.  Relationship Between Buzz Length and Number of Calls.  This figure shows a 
comparison of the relationship between the number of calls within a buzz and the 
resulting buzz duration (A). B illustrates the relative distributions of foraging and 
communication buzzes composed of different call numbers, while C compares the 
relative distribution of foraging and communication buzzes of differing durations.  For 
the foraging buzz data in A, m=6.7 ms/call, r2 = 0.85, and for the communication buzz 
data, m= 6.6 ms/call, r2=0.97.  For B, mean and median numbers of calls were 19 ± 6 
and 19 calls (foraging) and 30 ± 13 and 31 calls (communication).  For C, mean and 
median durations were 153 ± 44 ms and 150 ms (foraging) and 191 ± 88 ms and 185 ms 
(communication). N=100 foraging and 58 communication buzzes. 
 

 



 40

 

Figure 7.  Examples of Foraging and Communication Buzzes.  A and B are foraging 
buzzes, while C and D are communication buzzes.  C is a buzz taken from the end of a 
territorial song.  D is an example of a communication buzz uttered alone.  Both c and d 
include examples of echolocation calls before and after the buzz, illustrating the CF-FM 
call structure used in cluttered spaces. 
 

 

 

The communication buzz 

Communication buzzes were recorded emanating from Tadarida’s natural roost 

sites in Kyle Field and from captive bats living in the vivarium (Figure 7 C,D).  Both 

isolated communication buzzes and buzzes uttered as part of the Tadarida brasiliensis 

territorial song (Ma et al., 2004) were recorded and analyzed.  During routine behavioral 

observations of self-feeding Tadarida brasiliensis within the vivarium, I observed 
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individual bats emitting buzzes on the feeding station when other bats approached the 

food dish.  These buzzes were often coupled with aggressive physical confrontations. 

Similarly, when hand-feeding bats on the feeding platform, some bats would emit buzzes 

as they attempted to chase other bats off the feeding platform.  These observations 

indicated to us that the buzz was used in a communicative rather than an echolocation 

context. Characterization of the complete song as “territorial” was based upon personal 

communications with Ms. Barbara French (Bat Conservation International, Austin TX) 

and Dr. George Pollak (University of Texas, Austin) and upon video recordings that 

reflect the vigorous defensive behavior that accompanies song production by solitary 

male bats defending a roost site.   When the communication buzz is included in the 

territorial song, it always appears as the terminating sequence of the song, very similar to 

the way the “terminal” buzz also represents the conclusion of the foraging echolocation 

sequence.  A total of 58 communication buzzes were analyzed in detail, including 36 

isolated buzzes and 22 buzzes taken from the ends of territorial songs.  Separate analyses 

of isolated communication buzzes versus buzzes included in the territorial song revealed 

no significant differences in the temporal or spectral parameters of the buzzes or calls 

contained within these subsets, therefore these two data sets were pooled into a common 

set of “communication buzzes”.  The vocal repertoire of Tadarida brasiliensis also 

includes a trill, which I have recorded from both flying and stationary bats.  These trills 

are easily distinguished from short buzzes because they typically consist of 5 to 7 

syllables separated by longer (12-15 ms), constant-duration IPIs, rather than the rapidly 

shortening IPIs seen in buzzes.  Trills could also be distinguished from buzzes based on 
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differences in other spectral and temporal measurements, but these details will be 

presented in a separate report. Trills were not included in the communication buzz data 

set. 

Communication buzzes were significantly longer than foraging buzzes (Figure 

6), averaging 191 ± 88 ms (P< 0.001), and included significantly more calls (30 ± 13, P< 

0.002).  The slope of the relationship between number of calls and overall buzz duration 

(Figure 6A) was statistically indistinguishable (6.5 ms per additional call) from foraging 

buzzes, but the entire relationship appears offset relative to foraging buzzes (Figure 6A) 

because communication buzzes typically began with shorter IPIs and usually reached the 

maximum call by the 5th call, rather than the 10th call in foraging buzzes (Figure 8B).   

Figure 8 presents the results of a detailed measurement of the call durations and IPIs 

taken from the first 20 calls of all the buzzes that contained 20 or more elements (79 

foraging buzzes and 37 communication buzzes). Figure 9 presents the spectral analyses 

of Fpeak, Fmax and Fmin for the same data set. The first IPI in communication buzzes was 

7.5 ± 3.2 ms, and the first 10 IPIs in communication buzzes were all statistically shorter 

than their counterpart IPIs in foraging buzzes (P< 0.001).  The maximum call rate within 

communication buzzes, 6.5 ms per call or 154 Hz, was the same as for foraging buzzes 

(Figure 8B).  In contrast to the obvious difference in IPIs between buzz types, call 

durations began, progressed, and ended with statistically indistinguishable values for 

both foraging and communication buzzes (Figure 8A).  Call durations began at 3.8 ± 0.9 

ms and 4.4 ± 1.4 ms for foraging and communication buzzes respectively, (P > 0.05) and 
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decreased continuously throughout the first 20 calls in both cases to minimum values of 

1.8 ± 0.6 and 1.8 ± 0.4 ms, respectively. 

 

 

 

 

Figure 8.  The Sequences of Changes in Call Durations and Inter-pulse Intervals in 
Foraging and Communication Buzzes.  A represents call durations and B represents 
interpulse intervals.  Data shown are the mean ± SD of the first 20 calls/intervals for all 
buzzes consisting of at least 20 calls (n=79 foraging and 37 communication buzzes).  
There was no significant difference in call durations in foraging versus communication 
buzzes, however IPIs were significantly different (P<.001) from the first to the 12th IPI. 
 

 

 

Comparing spectral parameters of foraging and communication buzzes 

A previous report (Simmons et al., 1978) noted that Tadarida brasiliensis uses 

different call structures when echolocating in open space versus in their roosts or other 

cluttered spaces.  In their natural roosts, in the bat vivarium and in our flight chamber, 
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Tadarida switched away from the roughly linearly-modulated FM sweeps emitted while 

foraging outside (Figure 7 A,B) to emitting echolocation calls that contain a short 

constant-frequency (CF) component followed by an brief FM sweep (Figure 7 C,D and 

Figure 9A).  In some cases (Figure 7) the CF component was preceded by an initial 

upward FM component, although the shape and duration of the CF component appeared 

to vary among bats.  The CF component of the call is typically the loudest part of the 

call.  Figure 10B compares the power spectra obtained from an outside “approach” call 

with one obtained from echolocation call emitted in the lab (Figure 10A).  Besides the 

distinct peak of the initial CF component present in the call recorded in confined spaces, 

one can glean from this comparison that in fact the overall bandwidth of the two call 

types at approximately –50 dB relative to Fpeak are not very different (Figure 10B).  

Rather than making a change in call frequency, my interpretation is that when 

echolocating in cluttered and confined spaces, Tadarida shift the maximum energy of 

their calls to the uppermost portions of their normal bandwidth and extend the duration 

of the calls initial segment to further enhance resolution in a cluttered environment.   
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Figure 9.  A Comparison of Mean Spectral Parameters of the First Five Calls in Foraging 
and Communication Buzzes. This uses the same data set as Figure 8.  Fmin and Fmax are 
the lower and upper frequencies, respectively, at –15dB relative to Fpeak. 
 

 

 

 It also appeared to be the case that when echolocating in cluttered spaces these 

bats put more energy into several upper harmonics (Figure 7), which dramatically 

widened the overall bandwidth of the calls in a manner, similar to an adaptation 

observed across different European FM bats that forage at different distances to clutter 

(Siemers and Schnitzler, 2004); the closer to clutter they hunt, the wider the call 

bandwidth.  However, since in my experiments the distance from the microphone to the 

bats was much greater for buzzes recorded in the field compared to those recorded in our 

vivarium, I cannot unequivocally establish that the absence of multiple higher harmonics 

in calls recorded in the field was not simply due to atmospheric attenuation.   

 For echolocation calls recorded in the lab the mean call duration was 4.5 ± 0.1 

ms (n=500 calls, data pooled from 100 calls each from five bats).  The mean Fpeak, Fmax 
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and Fmin were 39.2 ± 11.8 kHz, 45.8 ± 7.3 kHz, and 29.5 ± 11.8 kHz respectively.  In 

contrast to recordings of approach phase calls recorded in the field, in the lab Fpeak was 

always more closely associated with Fmax than Fmin, which reflects the change to a CF-

FM call structure.  Furthermore, Fmax rather than Fmin was the least variable call 

frequency measurement in the lab recordings.  The –15 dB bandwidth was greater in the 

lab recordings, probably because the microphone was positioned only a meter away from 

the bat, but the measured Fmin was similar to the field recorded approach calls.  These 

results are consistent with the previously reported changes in call structure (Simmons et 

al., 1978) and their conclusion that Tadarida brasiliensis modify their echolocation call 

structure from an FM to a CF-FM call upon entering their roost. 

 In the communication buzzes shown in Figure 7 C and D, it is evident that calls 

contained within the communication buzz are of the CF-FM type, and do not exhibit the 

same spectro-temporal structure of calls contained within foraging buzzes shown in 

Figures 3 and 7A,B.  To provide a more objective comparison of the spectral parameters 

of calls within foraging and communication buzzes, Figure 9 depicts measurements of 

Fpeak, Fmax and Fmin for the first five calls of foraging buzzes (7A) and communication 

buzzes (7B).  As was the case in foraging approach calls, the Fpeak was always closer to 

the Fmin in foraging buzzes, whereas in communication buzzes the Fpeak was always 

closer to the Fmax.  For the first call in the buzz, measurements of Fpeak, Fmax and Fmin 

were all significantly higher in the communication buzzes compared to foraging buzzes, 

however all three values dropped much more steeply over the first five calls in 

communication versus foraging buzzes.   By the fifth call there was no significant 
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difference (P< 0.05) in the Fmax and Fmin of foraging and communication buzzes, but the 

Fpeak remained significantly higher.  Figure 10C compares the power spectra of the first 

call in a foraging buzz with the first call in a communication buzz.  These data illustrate 

that the change in call structure from an FM to a CF-FM call that accommodates the 

transition to echolocation in cluttered spaces appears to be maintained in the structure of 

calls comprising the communication buzzes. 

 

 

 

 

Figure 10.  Echolocation Calls in Confined Space.  (A) An example of the CF-FM call 
structure utilized by free-tailed bats echolocating in their roost.  B compares the power 
spectrum of an approach call recorded from a bat foraging over a pond with the spectrum 
of an echolocation call emitted in the roost (call shown in A).  C compares the power 
spectra of the first calls in a foraging buzz and a communication buzz. 
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In-flight buzzes uttered in cluttered spaces 

Finally, I sought to characterize what foraging buzzes looked like when emitted 

by bats flying within the cluttered confines of our vivarium, within which the acoustic 

environment would be identical to the conditions under which the communication 

buzzes were recorded.  I was unsuccessful in training our free-tailed bats to seek and 

catch either flying insects (waxmoths) or tethered insects within our vivarium as has 

been done with the big brown bat (Eptesicus fuscus) (Griffin, 1958, Moss et al., 2006), 

however I found that I could provoke buzzes from flying bats in the vivarium by 

randomly tossing obstacles (small foam balls) in the air across their flight path.  Using 

this simple method I recorded 18 in-flight buzzes from three different bats under 

conditions in which only one bat was present in the room at a time.   Since the bats were 

not catching prey items, I will refer to these as orientation buzzes.  These were bats from 

which I had previously recorded territorial songs and communication buzzes.   Under 

these conditions, the mean orientation buzz duration was 104 ± 18 ms, and consisted of 

an average of 12 ± 3 calls per buzz.  The duration of the first call within the orientation 

buzzes was 3.5 ± 0.7 ms, and subsequent calls followed a pattern of change that was 

statistically indistinguishable from both foraging and communication buzzes.  The first 

IPI of the orientation buzzes was 9.7 ± 2.2 ms, which was significantly longer than the 

first IPIs of the communication buzzes (7.5 ± 3.2 ms; P< 0.05) but also not quite as long 

as the first IPIs of the foraging buzzes (10.9± 2.5 ms; P> 0.05) although this difference 

was not significant.  The calls within the orientation buzzes were of the CF-FM type; the 

mean Fpk was 36.3 ± 3.2 kHz, which was closer to the mean Fmax (39.1±2.4 kHz) than 
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the mean Fmin (24.5±3.8 kHz).  Thus, buzzes uttered in flight within a cluttered space 

exhibited spectral parameters basically identical to those found in communication 

buzzes, yet the initial temporal patterns of call emissions within the buzz were more 

similar to those of foraging buzzes uttered by flying bats. 

 

Communication call analysis 

We analyzed 15 different call types in both males and females:  long waves, short 

waves, strums, chirps, short ladders, long ladders, trills, low FMs, upward FMs, 

descending FMs, upward long flats, buzzes, arrowheads, warbles, and V calls (Figure 1).  

I found that both sexes used all 15 call types and the relative proportion of call types 

used was not different between males and females (Figure 11).  Wave calls were the 

most predominantly used calls, followed by strums and chirps.  Wave calls and strums 

were often seen repeated in long chains by the same bat.  The only sex difference in 

communication behavior was the fact that the males incorporated several call types into 

a stereotyped sequence (see Song Analysis).  Overall, the proportion of calls was the 

same, but males orchestrated some syllables into a song. 
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Figure 11. Distribution of Call Types Across Sex.  A comparison of the 15 classified call 
types between males and females reveals that both sexes use the same call types with 
about the same frequency.  The graph in A provides a direct comparison of the calls used 
by sex and B provides an individual sex distribution. 
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 We also noted two call types associated with specific behaviors that occurred 

when single bats were isolated from the colony, protest calls and food solicitation calls 

(Figure 2).  Protest calls were produced by agitated bats when handled, while food 

solicitation calls were produced by begging bats that were trained to take food from a 

caretaker.  These calls were emitted by both males and females.  The protest calls could 

be classified as short ladders, but the food solicitation calls were more difficult to 

classify based on my system.  These calls had different structures between individuals 

and look very similar in structure to Tadarida pup isolation calls (Gelfand and 

McCracken, 1986). 

 We explored the seasonality of vocal behavior by looking at seasonal variation in 

the field in a few individual syllables:  trills and communication buzzes, which are part 

of the courtship song (see Song Analysis below), along with a syllable seen in the winter, 

the strum (Figure 12).  Strums were prevalent during the winter, comprising about 20% 

of all calls used compared to less than 1% of calls used during the summer (Figure 13).  

Interestingly, buzzes and trills showed the same trend, but opposite of strums.  During 

the summer, buzzes and trills comprised approximately 20% of all calls used and during 

the winter less than 1%.  However temperature appears to also play a small role.  On one 

recording day in late March there was a big drop in temperature (55 degrees Fahrenheit) 

similar to the temperatures the bats encounter over the winter (Figure 14).  No songs 

were recorded on that day, along with no buzzes or trills.  However, strums were 

recorded and I hypothesized that this call type is potentially correlated with torpor, 

although these calls are recorded at a very small percentage during the summer as well.   
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Figure 12.  Seasonal Syllable Distribution.  The seasonal distribution of trills (green), 
buzzes (orange), and strums (blue) shows that song syllables (trills and buzzes) are seen 
in the spring and summer, while strums are used more frequently in the winter, 
indicating that the vocal repertoire of Tadarida brasiliensis changes seasonally.  Syllable 
frequency was calculated as the number of a syllable type divided by the total recorded 
time.   
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Figure 13.  Summer Versus Winter Syllable Preference. This figure shows the relative 
syllable usage of a population of bats for winter (January and February) and summer 
(May and June). Syllable frequency was calculated as the total number of a syllable type 
divided by the total number of calls for the two month period.  Strums occupy about 25 
percent of the repertoire in the winter, while buzzes and trills fill that portion during the 
summer.   
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Figure 14.  Temperature Effect on Syllable Use.  This graph shows the relative 
distribution of trills (black), buzzes (red), and strums (green) per total number of calls on 
each recording day over the course of a year.  Anytime the emperature (blue) dropped 
below 60°F, no buzzes or trills were used, only strums.  Additionally, in general the total 
number of calls decreased in lower temperatures. 
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Song analysis 

  We recorded vocalizations from bats in the football stadium over the course of a 

year in an effort to characterize Tadarida brasiliensis vocal behavior and to assess 

whether any seasonal changes in call types used occurred.  In early spring, I saw the 

appearance of vocal patterns emerging that I also was able to record in the lab.  This 

very distinct compilation consists of three types of syllables combined together in a 

specific order to form a 10-15 syllable long song with a duration of approximately 1-2 

seconds (Figure 15).  The three syllables are trills, buzzes, and a signature syllable that is 

unique for each individual bat. A fourth syllable, an introductory syllable, is not always 

included.  Trills consist of 1-4 short duration (3-7 ms) downward FM calls.  Buzzes are 

discussed in detail above (see “The communication buzz”).  The signature syllables 

appear to be the individual male’s method of making his song distinctive and unique.  

The signature syllables are variable in all parameters, but they tend to be longer (14-20 

ms) than the calls contained in the trill.  In the song, the bat begins with 1-3 introductory 

syllables, although this introduction is not always included, then alternates between trills 

and signature syllables for several repetitions before terminating the song with a buzz.  

This structure, however, is just a rough outline.  The bats vary every aspect of the song 

both individually and between individuals (Figure 15).  The duration of the entire song is 

variable due to changes in the different components.  The introduction varies in length 

and is often absent.  The alternation between signature syllables and trills is not always 

1:1 and the number of each syllable type changes as well.  The song can end with more 

than one buzz.  The number of calls within the trills and buzzes can vary greatly and 
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even the signature syllable can have some modifications.  There is a lot of room for 

variation in this song, while still maintaining a basic structure.  This basic song structure 

is highly consistent among male bats and is not produced by females.  However, females 

do use both trills and buzzes, as mentioned in the previous section.  

 

 

 

 

 

Figure 15.  Tadarida brasiliensis Courtship/Territorial Song Structure.  A-C display 
songs from three different male bats.  The three main song components, trills (green), 
buzzes (red), and signature syllables (blue) are labeled on each song.  This figure 
illustrates that the Tadarida song displays the same basic structure, but exhibits a lot of 
variability as well.   
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 In addition to audio recordings, I was also able to record videos of singing bats in 

the lab.  Singing males established territories in the available hanging tubes in the 

vivarium, which they aggressively defended against other males.  If another male 

attempted to enter the tube, the singing male sang loudly and repeatedly, while rubbing 

his chest and penis on the walls of the tube, behaviors previously observed in males 

during the mating period (Keeley and Keeley, 2004).  If the male did not fly away 

immediately, the singing male would run down the tube and force the trespasser out.  

However, singing males allowed approaching females to enter and reside in the territory.  

Physical examination of singing males showed that these bats had enlarged testes and an 

enlarged pit on their ventral surface identified as a gular gland.  This gland is a 

specialized sebaceous gland that produces and secretes an oily substance with a musky 

odor used for scent marking (Gutierrez and Aoki, 1973).  While I did not observe any 

mating, the behaviors exhibited by the males matched previous reports of Tadarida 

mating behavior (French and Lollar, 1998, Keeley and Keeley, 2004).  Thus, my 

observations indicate that the Tadarida song is associated with courtship and 

territoriality.   

Because the song is associated with courtship and territoriality, I wanted to 

determine whether song production was seasonal.  In the field, I first recorded songs in 

early March and consistently saw singing behavior through the end of October (Figure 

16).  This timing corresponds with the beginning of the Tadarida mating season in the 

field (Keeley and Keeley, 2004).  The bats in the lab colony followed a similar schedule; 

I began to record songs in March.  The bats began using song components, trills and 
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buzzes, to a small degree in the weeks prior to the emergence of the song and there was 

also a big surge of trills and buzzes in early November, right after songs disappear from 

recordings (Figure 12).   

 

 

 

 

 

Figure 16.  Seasonality of Song.  This figure shows that the Tadarida song is seasonal, 
showing up in March and disappearing by November.  Song frequency was calculated as 
the number of songs divided by the total recorded time.   
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Discussion 

Echolocation 

The echolocation calls of Tadarida brasiliensis can vary greatly depending on the 

environment.  I found that when echolocating in open spaces, they use CF or very 

shallow FM search calls.  Upon approaching a target, the bats emit a series of 

progressively steeper linearly frequency-modulated FM “approach” calls which leads up 

to a buzz.  However, in confined spaces, Tadarida does not use the same FM approach 

calls as in the field, but switches to echolocation calls that contain a short constant-

frequency (CF) component followed by a brief FM sweep.  My interpretation of this 

change is that when echolocating in cluttered and confined spaces, Tadarida shift the 

maximum energy of their calls to the uppermost portions of their normal bandwidth and 

extend the duration of the call’s initial segment to further enhance resolution in a 

cluttered environment.  This ability to modify the structure of their echolocation calls is 

interesting because it shows that the bats are modulating their calls in a context-

dependent way, using feedback from the environment and making changes.  This is 

valuable to the study of vocal behavior because it shows that echolocation is plastic and 

complex.  Also it is a reliable and robust behavior that bats will do even when alone, 

which is important for gene expression studies, where it is important to eliminate any 

unnecessary stimulations that could cloud and clutter gene expression in response to 

vocalization.   
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Communication 

In my communication call analysis, I classified Tadarida social group 

vocalizations into 15 different call types.  What was particularly striking about the 

communication call analysis, aside from the number of call types this species is capable 

of producing and the variability within the classifications, was the fact that the 

proportion of call types used by male and female bats was not really different, even 

though males produce complex courtship songs and females do not.  A characterization 

of mustached bat vocal behavior also does not report any sex differences (Kanwal et al., 

1994), but this species is not known to sing.  The sac-winged bat is reported to have a 

male courtship song, but the report does not indicate whether females use the same 

syllables (Behr and von Helversen, 2004).  This suggests that whatever neural substrate 

controlling singing behavior in male bats could exist in females as well, but that they are 

lacking the trigger to activate it.  In songbirds, males are always reported as the singers, 

but there is a growing body of evidence reporting that females also sing, less frequently 

than males, and only at specific times, such as periods of competition or when caring for 

their young (Langmore, 1998).  One view is that female birdsong is an anomaly and only 

a byproduct of high androgen levels, but Langmore believes that female song is an 

adaptive and possibly sexually selected trait.  Without debating the function of female 

birdsong, one definite conclusion that can be drawn from this is that females could 

produce these complex vocal behaviors with the correct stimulation, whether it is high 

androgen levels, periods of intense competition or something else.  Females and males 

use the same syllables, but only males produce song, most likely because males have 
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elevated testosterone levels during mating season that activate the neural substrate 

necessary for song production.  It is possible that given the same factors, females could 

incorporate those basic syllables into a sequence. 

 In addition to my classification system of 15 different call types, I also recorded 

and classified two call types associated with specific behaviors, protest and food 

solicitation calls.  These two call types are important because they are social calls that 

the bats produce even when they are separated from other bats.  Just as with 

echolocation, these calls could be very valuable to the study of vocal control because the 

bat can produce these calls alone.  Also, this could provide an interesting comparison of 

echolocation and communication.  

 Three of the classified call types were analyzed from weekly recordings for an 

entire year to assess seasonality of vocal behavior.  The strum was one of the dominant 

syllables in the subdued winter repertoire.  It was also found at a very small percentage 

of total calls the rest of the year.  I hypothesize that this syllable is associated with cold 

temperatures and torpor, because it is predominantly seen in the winter and on colder 

days.  Also, I rarely record this syllable type in the vivarium, which is maintained at a 

higher temperature.  The two song syllables, trills and buzzes, exhibited about the same 

seasonal trend as the courtship song, although they showed up in the recordings a week 

prior to the first recording of songs and there was a surge of buzzes and trills the week 

after songs disappeared from the recordings in early November.  These are only single 

data points, but it is possible that the neural mechanism facilitating the song 

development and production seasonally builds up and breaks down gradually.  In many 
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singing birds, neural attributes of song control nuclei undergo changes seasonally, 

including changes in size, neuron number and density, and synaptic and dendritic 

morphology (Smith et al., 1997).  In canaries, song syllable repertoire changes 

seasonally, and they use syllables that are sexually attractive to females during the 

mating season (Leitner et al., 2001).  The emergence of these attractive syllables 

correlates with increased testosterone levels.  Other singing birds have seasonal changes 

in their repertoires as well, along with changes in testosterone (Smith et al., 1997).  It is 

likely that testosterone plays a role in Tadarida singing behavior, especially considering 

the accompanying phenotype of aggressive behavior, enlarged testes and overactive 

gular gland.  However, testosterone could not be the only factor.  The fact that singing 

behavior is seasonal suggests that melatonin could be involved.  Nightly melatonin 

durations gradually decrease in the spring and early summer and gradually increase in 

late summer and fall.  It is possible that seasonal information from melatonin is the 

driving force behind the seasonal production of the free-tailed bat courtship song.  In 

songbirds, melatonin receptors are present in the song control system, so localizing these 

receptors in the free-tailed bat could answer some of the questions about how courtship 

song is controlled.   

   

Buzzes 

Foraging and communication buzzes uttered by the Mexican free-tailed bat 

Tadarida brasiliensis are similar in several key ways:  They are both distinguished by 

the rapid procession of many short calls culminating with a common maximum call rate 
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of approximately 150 Hz.  Within each buzz type call durations are identical at the 

beginning and ending of the buzz and follow identical patterns of change within the 

buzz.  IPIs began longer and shortened rapidly in both buzz types, and in both cases the 

call frequency and bandwidth were progressively lowered over the time-course of the 

buzz.  Tadarida’s foraging and communication buzzes are different in that foraging 

buzzes began with significantly longer IPIs, in that the communication buzzes were 

typically 25% longer than foraging buzzes, and that calls contained within the 

communication buzzes were of the CF-FM type rather than the FM type used by 

foraging bats.  The observed similarities in foraging and communication buzzes are 

sufficient for us to conclude that these two buzz types are the result of a common vocal 

motor template being used in different behavioral contexts.  I hypothesize that both 

spectral and temporal differences may be attributable to differences in acoustic 

conditions, the demands of coordinating feeding with flying, and significant differences 

in respiratory mechanics of flying versus stationary bats. 

The most revealing aspect of the comparison between foraging and 

communication buzzes is that the calls comprising the communication buzz exhibit 

spectral parameters consistent with an adaptation for echolocating in cluttered space.  

Behavioral observations leave little doubt that these buzzes are being used for 

communicative, not echolocative, purposes:  I have observed and recorded buzzes being 

emitted by bats grappling for possession of a mealworm. If the buzzes were not being 

used for echolocation, then presumably there would have been no benefit in altering call 

structures to enhance acoustic resolution in cluttered or confined spaces.   It’s also 
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unlikely that the switch to CF-FM calls is relevant to the intended receiver since the 

receiver is not in a position to use the sounds to better resolve the acoustic scene, which 

in most cases would be a charging bat.  Instead, it appears likely that the incorporation of 

CF-FM calls into communication buzzes reflects the reflexive nature of the auditory 

feedback pathway that drives the switch from FM to CF-FM calls when the bats enter 

the roost (Simmons et al., 1978).  This interpretation leads to the conclusion that this 

auditory feedback pathway operates independent of the neural substrate that coordinates 

buzzes, which is consistent with experimental results with other species of bats 

indicating a role for midbrain, or at least sub-cortical, feedback influences on syllable 

structure (Metzner, 1989, Gaioni et al., 1990, Smotherman et al., 2003, Smotherman and 

Metzner, 2005). 

The observation that communication buzzes were typically longer than foraging 

buzzes may reflect several influences.  Firstly, I hypothesize that there is a functional 

relationship between respiratory capacity and buzz duration, in which case the duration 

of a communication buzz would have the potential to reflect either the size or health of 

the emitter, thereby creating a selective pressure favoring longer communication buzzes.  

Alternatively, foraging buzzes may have appeared shorter in field recordings because 

their durations were precisely coordinated with foraging conditions (Moss et al., 2006), 

and the conditions in which I recorded foraging bats simply favored shorter buzzes.  I 

recorded foraging buzzes in the field that were longer than the average communication 

buzz, so there seems to be no functional limitation to foraging buzzes that would 

otherwise explain the difference in mean buzz durations.  On the other hand, the 
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observation that orienting buzzes emitted in the vivarium were significantly shorter than 

foraging buzzes in open spaces is consistent with previous conclusions that buzz 

durations are closely matched to the distance of approaching background clutter. 

The buzzes uttered by echolocating bats represent a unique example of a mammalian 

complex vocal motor pattern.  Echolocation buzzes by any species of bat are comprised 

of many individual calls that exhibit precisely defined spectral and temporal properties 

typically found only within the buzz.  Single calls but not buzzes can be elicited by 

electrical or chemical microstimulation of the midbrain periaqueductal gray (PAG) and 

the neighboring paralemniscal region (Suga et al., 1973, Schuller, 1986, Schuller and 

Radtke-Schuller, 1986, Suga and Horikawa, 1986, Schuller and Radtke-Schuller, 1990, 

Fenzl and Schuller, 2002, 2005).  Auditory-vocal feedback pathways appear to pass from 

the midbrain auditory nuclei through the paralemniscal region (Metzner, 1989) and 

parabrachial nucleus (Smotherman and Metzner, 2003, Smotherman et al., 2006) before 

being integrated with the descending vocal motor pathways at or below the level of the 

PAG (Moss and Sinha, 2003).  Somewhere in the bat brain above the level of the PAG is 

a buzz motor template, and in Tadarida brasiliensis this template can be accessed in 

support of two very different behaviors.  Evidence presented here indicates that free-

tailed bats can modulate the expression of this buzz template.  This is significant because 

a similar neural template responsible for orchestrating complex multi-syllabic vocal 

sequences has so far only been identified in one other mammal, namely humans.  Thus 

the differences between foraging and communication buzzes uttered by Mexican free-

tailed bats may be small, but therein may lie the keys to understanding how the 
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mammalian brain orchestrates single syllables into phrases, and ultimately phrases into 

songs and even speech. 

 

Song 

Tadarida brasiliensis courtship/territorial song is a complex sequence of three 

syllable types that are also found separately in the free-tailed bat vocal repertoire.  The 

song occurs seasonally, emerging at the beginning of mating season.  I found that the 

song had a distinct structure, but there was considerable variability in that structure, both 

intra- and inter-individually.  The song exhibits a fixed pattern which was shown to have 

syntax (Bohn et al., 2009), which suggests that the neural substrate controlling this 

complex behavior includes more than the visceromotor pathway.  This would be an 

excellent candidate for studying vocal control and exploring the role of the neocortical 

pathway, but the song is unreliable in the lab and the colony environment is not suitable 

for gene expression studies.  Singing males will not sing if separated from the colony, 

which makes sense behaviorally, since the song is triggered by approaching bats and 

courtship opportunities.  The ideal situation for maximal gene expression is to have a 

solitary bat in a controlled environment, which is not feasible with singing bats at this 

time. 

 

Conclusion 

Overall, I conclude that Tadarida brasiliensis has uniquely sophisticated vocal 

abilities, including the production of a wide vocal repertoire of single syllables, the 



 67

ability to modulate calls based on context and environment, and the capacity to create 

stereotyped yet variable vocal sequences.  These capabilities make the Mexican free-

tailed bat an excellent non-human mammalian model for vocal behavior.  However, due 

to ambiguities associated with the environment of the experiment in using singing bats, I 

have chosen to focus my proposed gene expression studies on a more reliable and 

controllable, yet still complex vocal behavior: echolocation.   
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CHAPTER IV 

MELATONIN AND DOPAMINE DISTRIBUTION IN THE BRAIN OF MEXICAN 

FREE-TAILED BATS*  

 

Melatonin Introduction 

Melatonin, an indoleamine neurohormone produced and released by the pineal 

gland, is an important regulator of vertebrate circadian rhythms and seasonal processes 

(Cassone and Menaker, 1984, Wiechmann, 1986, Lincoln, 2006).  Melatonin levels are 

low during the day and high at night, making it an effective conveyer of both time of day 

and time of year, exerting its circadian and circannual actions through discrete 

populations of melatonin receptors.  In many seasonally breeding mammals, melatonin 

durations relay information about photic cues to other parts of the brain and body to 

ensure that reproduction and associated behaviors occur at the optimal time.  

Reproductive behaviors can be induced in pinealectomized hamsters if given melatonin 

infusions mimicking longer days of spring (Maywood et al., 1990, Goldman, 1991).  

Similarly, pinealectomized sheep, short day breeders, can be reproductively induced if 

given melatonin infusions mimicking shorter days (Karsch et al., 1988).  Lesions of 

melatonin binding sites in the mediobasal hypothalamus of male Syrian hamsters blocks 

normal testis regression and the associated drops in gonadotropic hormone levels that 

                                                 
* Part of the data reported in this chapter is reprinted with permission from “Distribution of 2-
[125I]iodomelatonin Binding in the Brain of Mexican Free-tailed Bats (Tadarida brasiliensis)” by Christine 
Schwartz, Paul Bartell, Vincent Cassone, and Michael Smotherman, 2009.  Brain, Behavior, and 
Evolution, 73, 16-25, Copyright 2009 S. Karger AG Basel. 
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normally occur with exposure to short days, suggesting that melatonin acts on the 

reproductive axis through this region (Maywood and Hastings, 1995).  Melatonin also 

appears to be involved in songbird seasonal reproduction, playing a role in the seasonal 

regulation of song nuclei volume.  In starlings, melatonin implants attenuated the long 

day increase in the volume of the song nucleus HVC and reduced the volume of another 

song nucleus, Area X (Bentley et al., 1999).  Thus, melatonin appears to act through 

receptors in discrete brain areas to control seasonal behaviors.  When examining 

seasonal behaviors where the neuroanatomy is not understood, mapping of melatonin 

receptor distributions could provide useful insight into the neural networks underlying 

these behaviors.   

2-[125I]iodomelatonin (IMEL) binding assays (Vakkuri et al., 1984) are a reliable 

method for determining the distribution of melatonin receptors in many vertebrates.  In 

mammals, melatonin-binding sites are found in the hypothalamus and pituitary, 

specifically the median eminence (ME) and pars tuberalis (PT), regions known to 

directly regulate reproduction, and also in the suprachiasmatic nuclei (SCN), the site of 

the mammalian circadian clock and recipient of the monosynaptic tract providing light 

input from the retina, important for environmental entrainment (Cassone, 1990).  

Additionally, melatonin binding sites are found relatively infrequently in a species-

specific manner in other brain regions, including parts of the cortex, thalamus, and 

hypothalamus (Duncan et al., 1986, Weaver et al., 1989, Stankov et al., 1991b).  In birds, 

melatonin-binding sites are found in the visual system (including visual SCN) and in the 

song control systems of passerines (Rivkees et al., 1989, Gahr and Kosar, 1996, 
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Whitfield-Rucker and Cassone, 1996, Bentley and Ball, 2000).  A description of 

melatonin receptor distribution in the brain areas of Tadarida could help to identify areas 

involved in the seasonal processes of breeding and song control as they do in other 

species.   

Mexican free-tailed bats, Tadarida brasiliensis, provide a unique opportunity to 

comparatively study the role of melatonin because these animals display a variety of 

seasonal behaviors normally found separately in either mammals or birds, such as 

migration (Fleming and Eby, 2003) and courtship singing behavior (Bohn et al., 2008).  

In this study, I use in vitro autoradiography to localize and characterize melatonin-

binding sites in the Mexican free-tailed bat brain.  I hypothesize that IMEL binding sites 

will be found in the ME/PT and also in the SCN, as sites in these regions are found in 

most mammals.  Furthermore, I anticipate that if other IMEL binding sites were present 

in the bat brain, these sites could be directly involved in migration or seasonal 

reproductive behaviors, including courtship song production.  I also look for sexual 

dimorphisms in IMEL binding in this study, due to sexual dimorphisms present in 

reproductive behavior.   

 

Results 

Distribution of IMEL-binding sites 

We used a custom brain atlas developed in our lab for Tadarida brasiliensis to 

identify the brain areas reported in this paper.  The basal ganglia are large, easily 
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recognizable structures located beneath the external capsule, anterior to the thalamus.  

The caudate nucleus and putamen, hereafter referred to collectively as the caudate 

putamen, are one structure in rodents and look very similar in bats, except that the 

internal capsule more pronouncedly bisects the two structures, similar to the pattern in 

primates.  The positions of the globus pallidus, ventral pallidum, and nucleus accumbens 

were inferred by cytoarchitectonic features as determined using cresyl violet and 

cytochrome oxidase stains, and the positions of these structures were similar to those 

described in rats (Paxinos and Watson, 1998).  Similarly, I identified the SCN, ME, and 

PT based on their relative sizes and positions in the brain.  The hippocampus, including 

dentate gyrus, was also identified based on location and cytoarchitectonics of the 

structures.  A comprehensive review of the available neuroanatomical resources from 

other bat species also helped identify the major brain regions reported in this paper 

(Prasada Rao and Kanwal, 2004, Maseko and Manger, 2007).    

The entire Tadarida brain, from the most rostral tip of the olfactory bulbs to the 

caudal-most extension of the brainstem nucleus ambiguus, was evaluated to determine 

where IMEL binding sites were present.  The threshold for binding was determined by 

adjusting background level for each image according to the nonspecific binding levels 

obtained from the control slide sets exposed to melatonin.  Any area with binding higher 

than the nonspecific binding levels was analyzed.  I found binding sites, in order from 

highest to lowest amount of binding, in the ME/PT, SCN, caudate putamen, nucleus  
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accumbens, and the granular dentate gyrus of the hippocampus in all bats studied (Figure 

17).   The nucleus accumbens was the first region with binding to appear in the rostral to 

caudal direction, followed by the caudate putamen.  Binding in these areas persisted for 

the entire duration of the structures and was relatively uniform throughout each 

structure.  The highest receptor densities were found in the hypothalamus, in the ME and 

SCN.  I include the PT of the pituitary along with the ME as one structure for my 

analysis because while it is likely that IMEL binding sites are present there due to their 

prevalence in many other mammals (Stankov et al., 1992, Nonno et al., 1995a, Williams 

et al., 1995, Williams et al., 1996), these small structures are located so close together 

and the free-tailed bat is such a small animal that I was unable to differentiate between 

them on the autoradiographic film, an issue seen in many of the small mammals 

examined (Weaver et al., 1989, Weaver et al., 1990).  In the hippocampus, I quantified 

the most caudal portion of the granular dentate gyrus.  The levels of binding in the 

rostral portions of the granular dentate gyrus were low and quite variable or even absent 

in some of the bats surveyed.  Binding in the caudal regions was more consistent and 

dense, so I chose to focus my analysis there.   
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Figure 17.  Presence of Melatonin Receptors in the Singing Tadarida brasiliensis Brain. 
Row A indicates the plane of the coronal slice, B shows a representative IMEL 
autoradiograph, C provides the accompanying brain atlas, D shows the cresyl violet 
stained sections, and E shows nonspecific binding in control brains.   
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In my final analysis, I quantified the relative amount of binding in each brain 

region for both males and females (Table 1).  Two of the seven females and one of the 

seven males only provided data for some of the brain regions because of cryosectioning 

differences that resulted in the loss of some brain sections.  The brains of males and 

females were analyzed separately to assess any sexual dimorphism in IMEL binding, 

however, where no significant differences were found, the brain regions are presented 

together.  No significant differences between sexes were found for the ME/PT region 

(0.136 ± 0.0780 µCi/g, n=13), but binding in the SCN of males (0.0619 ± 0.0247 µCi/g, 

n=7) was significantly higher (p=0.048, t=2.206 with 12 d.f) than in females (0.0383 ± 

0.0136 µCi/g, n=7).  IMEL binding in the caudate putamen and nucleus accumbens of 

the basal ganglia, (0.0382 ± 0.0237 and 0.0280 ± 0.0174 µCi/g respectively, n=13) and 

in the dentate gyrus of the hippocampus (0.0173 ± 0.00771 µCi/g, n=11) were not 

significantly different between sexes.   In addition, in one animal, I observed binding in 

the frontal cortex, including the anterior cingulate cortex.  While I can only report actual 

binding values for this one individual (0.0193 µCi/g), it is possible that IMEL binding 

sites occur here in the other animals as well, but in levels too low to quantify with 

autoradiographic techniques.   
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In addition, six male bats taken out of torpor were also analyzed to determine if 

there were any seasonal changes in melatonin receptor distribution or density.  2-

[125I]iodomelatonin binding sites were found in the exact same areas of the brain in these 

torpid bats and there was no significant difference in IMEL binding density between the 

male bats collected in the summer and the torpid male bats collected in the winter.   

 

Characterization of IMEL-binding sites 

Saturation experiments were performed to characterize the binding affinity and 

maximum number of melatonin receptors found in the basal ganglia.  The caudate 

putamen was chosen because its relatively large size allowed for analysis of several 

sections for each animal.  Nonlinear regression analysis on data from my saturation 

experiments revealed a high affinity binding site (equilibrium dissociation constant (Kd) 

is 22.3 ± 15.1 pM) in the caudate putamen of Tadarida brasiliensis (Figure 18).  

Because the value obtained was in the picomolar range, the binding sites can be 

characterized as high affinity.  Specific binding plateaued at approximately 200 pM, 

demonstrating that binding is saturable and the total number of binding sites (Bmax) was 

0.1992 ± 0.0285 fmol/mg protein (Figure 18).  
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Table 1.  2-[125I]iodomelatonin Binding in Male Versus Female Tadarida brasiliensis 
Brains. (means ± SD). 
 

 

Brain Region 

 

Males 

 

Females 

 

p 

 

t 

(d.f) 

 

Nucleus 
Accumbens 

(NAc) 

 

0.0213 ± 0.0100 

(n = 7) 

 

0.0358 ± 0.0222 

(n = 6) 

 

0.147 

 

-1.562 
(11) 

 

Caudate Putamen 

(CPu) 

 

0.0297 ± 0.0176 

(n = 7) 

 

0.0481 ± 0.0281 

(n = 6) 

 

0.179 

 

1.435 
(11) 

 

Suprachiasmatic 
nuclei 

(SCN) 

 

0.0619 ± 0.0247 

(n = 7) 

 

0.0383 ± 0.0136 

(n = 7) 

 

0.048 

 

2.206 
(12) 

 

Median 
eminence/Pars 

tuberalis 

(ME/PT) 

 

0.187 ± 0.0909 

(n = 7) 

 

0.0932± 0.0701 

(n = 6) 

 

0.181 

 

1.724 
(11) 

 

Dentate gyrus 

(DG) 

 

0.0148 ± 0.00336 

(n = 6) 

 

0.0204 ± 0.0106 

(n = 5) 

 

0.253 

 

-1.222 
(9) 
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Figure 18.  Saturation of IMEL Binding to Tadarida brasiliensis Caudate Putamen. The 
saturation curve is shown in A.  Specific binding was calculated by subtracting 
nonspecific binding from total binding.  Each point represents three different animals.   
B shows a Scatchard plot illustrating the results of a nonlinear regression analysis  
indicating a high affinity binding site with Kd = 22.3 ± 15.1 pM and Bmax = 0.1992 ± 
0.0285 fmol/mg protein.    
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Discussion 

This study provides a report of melatonin receptor localization and 

characterization in the Mexican free-tailed bat, Tadarida brasiliensis.  2-

[125I]iodomelatonin binding sites were found in the caudate putamen, nucleus 

accumbens, ME/PT, SCN, and hippocampus (Figure 17, Table 1).  Saturation 

experiments revealed a saturable high affinity binding site (Figure 18).   

 

Melatonin binding sites in typical mammalian regions 

2-[125I]iodomelatonin binding sites were found in the bat brain in areas 

previously reported in other mammals: the SCN and ME/PT.  The mammalian SCN is 

the circadian pacemaker and receives monosynaptic input from the retina, allowing the 

animal to entrain to the photic environment (Cassone and Menaker, 1984, Cassone, 

1990).  Melatonin production by the pineal is controlled by the SCN via a polysynaptic 

pathway and the presence of melatonin receptors in the SCN provide the mechanism for 

melatonin to feedback to the SCN and inhibit its activity.  Melatonin receptors in the 

ME/PT region mediate the effects of melatonin on reproductive behavior and physiology 

(Cassone, 1990, 1998).  Lesions of melatonin binding sites in the mediobasal 

hypothalamus of male Syrian hamsters blocked the normal testis regression and 

gonadotropic hormone level drop associated with exposure to short days, suggesting that 

melatonin acts on the reproductive axis through these sites (Maywood and Hastings, 

1995).  In the same study, secretion of the reproductive hormone prolactin was 

unaffected by the mediobasal hypothalamic lesions, but it was speculated that prolactin 
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levels are instead controlled by melatonin binding sites in the pituitary, specifically pars 

tuberalis.  The presence of melatonin receptors in the bat SCN and ME/PT appears to be 

consistent with the assumption that these areas control reproductive behaviors in bats via 

mechanisms common to most mammals.   

 

Sexual dimorphism in 2-[125I]iodomelatonin binding 

The SCN was the only area to show sexual dimorphism in IMEL binding in 

Tadarida, with higher binding observed in males.  My findings represent the first case of 

sexual dimorphism in IMEL binding in a mammalian brain region.  The only other 

reported instances of sexual dimorphism in IMEL binding are in the song control system 

of birds and parts of the visual system and preoptic area in quail, which all displayed 

higher binding in males (Gahr and Kosar, 1996, Whitfield-Rucker and Cassone, 1996, 

Aste et al., 2001).  The reasons for these differences are unclear, but could potentially be 

the result of sexually dimorphic neurotransmitters, specifically GABA, which, when 

given at physiological doses, increases IMEL binding in several brain regions of the 

quail, including the preoptic area (Canonaco et al., 1994).  In addition, sexually 

dimorphic GABA-like immunoreactivity was found in the song control system of zebra 

finches (Grisham and Arnold, 1994).  While both of these examples are from the bird 

literature, it seems reasonable that something similar could be occurring in bats.  The 

sexual dimorphism in IMEL binding in the bat SCN might contribute to differences seen 

in male and female reproductive behaviors, but it must be presumed that changes in SCN 
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physiology would generally affect all circadian behaviors, due to its role as pacemaker 

of the mammalian circadian system.   

 

2-[125I]iodomelatonin binding in the telencephalon 

The hippocampus is important for short-term memory and spatial navigation.  2-

[125I]iodomelatonin binding in the hippocampus was previously reported in other 

mammals, including primates, rabbits, cattle, and red deer (Stankov et al., 1991a, 

Stankov et al., 1993, Nonno et al., 1995b, Williams et al., 1996).  In bats the 

hippocampus could be important for migration, as seasonally migrating bats are 

consistent in their routes and final destinations (Fleming and Eby, 2003).  Several 

species of birds exhibit seasonal changes in hippocampal volume associated with 

behaviors requiring enhanced spatial memory, such as food hoarding and brood 

parasitism (Smulders et al., 1995, Clayton et al., 1997, Smulders et al., 2000).  However, 

melatonin receptors have not been found in the bird hippocampus (Cassone et al., 1995), 

and evidence suggests that photoperiod is only indirectly responsible for changes in 

hippocampal volume (MacDougall-Shackleton et al., 2003).  Seasonal changes in 

hippocampal volume have not been found in mammals with similar food hoarding 

behaviors, such as the food-caching gray squirrel, even though the behavior is seasonal 

(Lavenex et al., 2000).  There is no evidence of seasonal or circadian changes in memory 

capacity or hippocampal functioning that might illustrate a potential role for melatonin 

in the mammalian hippocampus.  It is possible that in mammals certain seasonal 

behaviors like migration and reproduction might be supported by melatonin receptors in 
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the hippocampus facilitating increased memory capacity without concurrent changes in 

hippocampal volume.  I found no difference in IMEL binding between males and 

females, indicating that the role of melatonin receptors in the free-tailed bat 

hippocampus is most likely unrelated to sexually dimorphic reproductive behaviors. 

Three areas of the basal ganglia of the Mexican free-tailed bat brain were found 

to contain putative melatonin receptors:  the caudate nucleus, putamen, and nucleus 

accumbens.  2-[125I]iodomelatonin binding in the mammalian putamen was previously 

reported only in red deer (Williams et al., 1996).  2-[125I]iodomelatonin binding in the 

nucleus accumbens, a ventral component of the basal ganglia, was previously observed 

in mice (Weaver et al., 1990).  Melatonin injections into the nucleus accumbens of rats 

changed their locomotor activity (Gaffori and Van Ree, 1985, Paredes et al., 1999), but 

the presence of melatonin receptors in the nucleus accumbens has not been confirmed in 

the rat.  What is particularly striking about the melatonin receptor profile in the bat basal 

ganglia is that putative melatonin receptors were observed throughout the three regions 

of the basal ganglia at relatively high densities, which has not been observed in other 

mammals.  This distribution is more reminiscent of the high densities of IMEL binding 

observed in homologous regions of the songbird brain (Gahr and Kosar, 1996, 

Whitfield-Rucker and Cassone, 1996, Bentley et al., 1999), which may be correlated 

with similarities in the seasonal migratory, foraging, and reproductive behaviors 

displayed by birds and bats.  It is also more reminiscent of what the distribution of 

dopamine receptors would look like, which presents some interesting questions about 
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melatonin’s potential interactions with dopamine (Gehlert et al., 1992, Levant et al., 

1993).   

2-[125I]iodomelatonin binding in the bat basal ganglia is interesting because the 

basal ganglia are generally involved in the coordination of complex behaviors, including 

the orchestration of complex motor sequences (Aldridge and Berridge, 1998, Graybiel, 

2000, 2001, Berridge et al., 2005, Grillner et al., 2005).  The caudate nucleus is credited 

with planning complex behaviors, and the putamen is believed to act as a substrate for 

the integration of multisensory, memory and contextual cues for the ongoing control of 

behaviors.  This control is achieved by a striatal-thalamo-cortical feedback loop through 

the basal ganglia that selectively activates or modulates subsequent motor patterns 

(Graybiel, 2000, Hikosaka et al., 2000, Alm, 2004).  Extrapyramidal inputs from the 

motor cortex converge with sensory and memory cues in the basal ganglia to regulate the 

activity of excitatory thalamic neurons projecting back onto the motor cortex via 

inhibitory outputs to the globus pallidus.  I did not find IMEL binding in the primary 

output centers of the basal ganglia, the globus pallidus and the substantia nigra 

(Graybiel, 2000, Grillner et al., 2005).  Disruption of basal ganglia circuits seriously 

disrupts motor coordination in mammals, but less dramatic pharmacological 

manipulations of synaptic activity can profoundly influence the initiation and drive to 

complete specialized complex behaviors (Berridge and Aldridge, 2000a, b, Berridge et 

al., 2005).  Melatonin receptors in the Tadarida basal ganglia could contribute to the 

regulation of seasonally specific behaviors such as migration, foraging patterns, prey 

preferences, and reproductive behaviors, including separation of the sexes, the formation 
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of maternity roosts, and male courtship behaviors such as singing and territorial displays  

(Altringham, 1996).    

In songbirds, IMEL binding is found in Area X, the avian homologue of the basal 

ganglia (Gahr and Kosar, 1996, Whitfield-Rucker and Cassone, 1996, Bentley and Ball, 

2000).  Area X is the part of the song control system involved in learning and 

development of song (Brenowitz et al., 1997).  In a manner analogous to its general 

function in mammals, the avian basal ganglia is believed to contribute to the 

development of the characteristic sequence stereotypy of oscine courtship songs (Doupe 

et al., 2004, Doupe et al., 2005).  Through the anterior forebrain pathway, the bird basal 

ganglia contribute to both the variability of the song during development (Brainard and 

Doupe, 2000, Kao and Brainard, 2006) and its stereotypy (Scharff and Nottebohm, 

1991).  I do not know if the basal ganglia in the free-tailed bat are involved in the 

production of the courtship song, but current models of how non-human mammalian 

vocalizations are generated in the brain do not include the basal ganglia.  Humans 

however, do rely upon basal ganglia functions for normal speech production (Alm, 

2004). 

In addition to the areas containing IMEL binding sites in all bats, I also found 

binding in the frontal cortex, including the anterior cingulate cortex, of one male animal 

in quantifiable levels.  It is possible that binding sites were present here in the other 

animals, but in levels too low to quantify with autoradiographic techniques.  Frontal 

cortex binding was previously reported in primates and rabbits (Stankov et al., 1991a, 

Stankov et al., 1993).  Similar to these previous findings, the IMEL binding sites of the 
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Tadarida frontal cortex were not restricted to a specific cortical layer, but rather 

appeared to be relatively uniform through all layers.  The significance of the IMEL 

binding in the frontal cortex is unclear.   

 

Characterization of 2-[125I]iodomelatonin binding sites 

The Kd and Bmax values determined for the IMEL binding sites in the caudate 

putamen of the free-tailed bat (22.3 ± 15.1 pM and 0.1992 ± 0.0285 fmol/mg protein, 

respectively) were within the same range as reported for rabbit, horse, sheep, and human 

(Stankov et al., 1991a, Stankov et al., 1991b, Yuan et al., 1991).  These values indicate 

that binding sites in the caudate putamen are most likely to be the Mel1a receptor, which 

has a  Kd of 20-40 pM (Reppert et al., 1996).  Researchers have identified three different 

melatonin receptors, Mel1a, Mel1b, and Mel1c, and all but Mel1c have been found in the 

mammalian brain (Dubocovich, 1995, Reppert et al., 1996, Reppert, 1997).  It is unlikely 

that the receptors found in the caudate putamen are Mel1b receptors because the Kd range 

for this receptor is around 160 pM.  The melatonin receptors have been cloned and 

belong to a family of guanine nucleotide binding protein (G protein)-coupled receptors 

(Ebisawa et al., 1994, Reppert and Weaver, 1995).  This was supported prior to the 

actual cloning of the genes by showing that IMEL binding could be inhibited by the 

presence of a non-hydrolyzable GTP analog (GTPγS), which was subsequently 

demonstrated in several species (Stankov et al., 1992, Stankov et al., 1993, Wiechmann 

and Wirsig-Wiechmann, 1994, Williams et al., 1995, Williams et al., 1996).  Further 
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investigations identifying which melatonin receptors are located in each bat brain region 

are needed.  

 

Absence of seasonal effects on 2-[125I]iodomelatonin binding 

It is presumed that seasonal changes in nightly melatonin durations drive 

seasonal changes in behavior, but it is possible that seasonal changes in receptor 

numbers may also contribute.  In ground squirrels and hamsters it was found that IMEL 

binding in the PT was shown to decrease when the animals were in hibernation (Stanton 

et al., 1991, Skene et al., 1993).  However, I found no significant difference in IMEL 

binding between bats collected in the summer and the torpid bats collected in the winter.  

Ground squirrels and hamsters are true hibernators, while the free-tailed bats only go 

through periods of daily torpor.  Torpor periods are shorter and the animals wake and 

raise their body temperature to normal levels more frequently.  Because free-tailed bats, 

which migrate to avoid long periods of cold temperatures, do not go through the lengthy 

depression of body temperature that these other mammals endure might explain why no 

differences in IMEL binding density were found to be associated with torpor.  Torpor 

can be induced in bats at any time of year by exposure to cold temperatures regardless of 

photoperiodic conditions, which suggests that torpor is not regulated by the same 

seasonal and neuroendocrine cues that initiate hibernation.  Seasonal differences in 

IMEL binding in the PT was also shown in mink, but this was not reported to be shown 

specifically in hibernating animals (Messager et al., 1997).   
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Mexican free-tailed bats have many other seasonal behaviors in addition to 

torpor, including migration and courtship behaviors, which could potentially be 

associated with seasonal changes in IMEL binding.  For example, in songbirds, there are 

significant differences in IMEL binding associated with different seasons in the song 

control system (Whitfield-Rucker and Cassone, 1996, Bentley and Ball, 2000).  

However, while Tadarida brasiliensis exhibits prominent seasonal behaviors, in 

particular, a courtship singing behavior similar to birds, no significant seasonal 

differences in IMEL binding associated with season were found in any brain region.  

This suggests that the seasonal control of behaviors in this species is probably not 

occurring through changes in melatonin receptor numbers, but perhaps through some 

other mechanism.   

 

Conclusion 

The Mexican free-tailed bat, Tadarida brasilensis, is a unique mammalian model 

for the comparative study of melatonin and melatonin receptors.  The bat brain showed 

IMEL distribution patterns consistent with that observed in other mammals, but also 

with high densities of receptors distributed in the basal ganglia.  The function of 

melatonin receptors in the mammalian basal ganglia is unknown, but their comparable 

localization to the song control nuclei in songbirds may provide a clue about their 

function in bats.  Since the free-tailed bats exhibit a suite of behaviors similar to birds, 

like flying, singing, and long-distance seasonal migration patterns, my results may shed 

light on how melatonin regulates seasonal behaviors in the vertebrate brain.  
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Additionally, since the melatonin binding sites were distributed in the striatum, it is of 

interest to determine whether this distribution matches the distribution of the dopamine 

receptors, which are found in this same area in other mammals.   

 

Dopamine Introduction 

Dopamine is a monoamine neurotransmitter synthesized in the body from the 

amino acid tyrosine.  It is produced in the brain in the substantia nigra pars compacta and 

ventral tegmental area (SNc-VTA) of the midbrain.  Tyrosine is modified by tyrosine 

hydroxylase (TH) into 3,4-dihydroxyphenylalanine (L-DOPA), which is then converted 

by aromatic L-amino acid decarboxylase into dopamine.  There are five types of 

dopamine receptors, D1, D2, D3, D4, and D5, but D1 and D2 receptors the most 

commonly found types.  Dopamine has a variety of functions in the brain, including 

roles in motivation, mood, sleep, movement, and learning, among others.  Disruptions in 

the dopamine system are at the heart of many pathological conditions, including 

Huntington’s disease, Parkinson’s disease, Tourette’s syndrome, and schizophrenia, 

which have helped identify some of dopamine’s many functions through their associated 

symptoms. 

 Dopamine is the main modulatory neurotransmitter in the basal ganglia, a 

network of interconnected subcortical nuclei centrally located in the brain that interact 

with many different areas (Alm, 2004).  The input nucleus of this network is the 

striatum, composed of the caudate nucleus, putamen, and nucleus accumbens (Hikosaka 

et al., 2000, Alm, 2004).  The striatum receives input from most of the cerebral cortex.  
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The main output nuclei are the interior part of the globus pallidus and the substantia 

nigra pars reticulata, which project back to the cortex by way of the thalamus and also to 

the brain stem.  The basal ganglia also include some internal modulators, the 

subthalamic nucleus, the external portion of the globus pallidus, and the SNc/VTA, 

which specifically modulates the activity of the striatum with dopamine.   

   A variety of successful radiolabeled dopamine receptor agonists and antagonists 

have been used to study the distribution of D1 and D2 receptors in mammals (Urwyler 

and Coward, 1987, Filloux et al., 1988, Lidow et al., 1991, Gehlert et al., 1992, Kirouac 

and Ganguly, 1993, Levant et al., 1993, Hall et al., 1994, Kim et al., 2000).  Both D1 and 

D2 binding sites were found mainly in the striatum (caudate nucleus, putamen, and 

nucleus accumbens), but also scattered in some areas of the cortex and olfactory bulbs.  

In addition, sites of dopamine synthesis in the brain have been identified using 

antibodies against TH (Jones and Beaudet, 1987, Lavoie et al., 1989).  These sites have 

been found in the SNc/VTA of the midbrain.   

 Determining the distribution of dopamine receptors is of particular interest in the 

Mexican free-tailed bat, Tadarida brasiliensis, because a previous report from our lab 

showed the distribution of melatonin binding sites throughout the striatum where it 

would be hypothesized that dopamine binding sites should be found (Schwartz et al., 

2009).  Because of this interesting result, I wanted to explore the distribution of the 

common dopamine receptor types in the free-tailed bat brain to see if the melatonin 

binding site distribution closely resembles the distribution of either one or both 

dopamine receptor types.  In this report, I use autoradiography to identify D1 and D2 
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dopamine binding sites in the Tadarida brasiliensis brain.  I also use TH 

immunohistochemistry to find the areas of the brain involved in dopamine synthesis and 

dopamine β-hydroxylase (DβH) immunohistochemistry, which converts dopamine to 

norephinephrine, to further characterize my TH results. 

 

Results 

We established the positions of the regions of the striatum in the Tadarida 

brasiliensis brain in a previous paper (Schwartz et al., 2009).  The positions of the 

SNc/VTA and parabrachial nucleus were inferred by cytoarchitectonic features as 

determined using cresyl violet and cytochrome oxidase stains, and the positions of these 

structures were similar to those described in rats (Paxinos and Watson, 1998).  Several 

other neuroanatomical resources from other bat species also helped identify the brain 

regions reported in this paper (Prasada Rao and Kanwal, 2004, Maseko and Manger, 

2007).   The entire Tadarida brain, from the most rostral tip of the olfactory bulbs to the 

caudal-most extension of the brainstem nucleus ambiguus, was evaluated to determine 

where dopamine binding sites and TH and DβH IHC were present.  

D1 and D2 receptors were found in the same areas of the Tadarida brain, the 

nucleus accumbens and the caudate putamen of the basal ganglia (Figure 19).  Binding 

was higher in the caudate putamen (D1: 0.00131 ± 0.000193 µCi/g, n = 5; D2: 0.00159 ± 

0.000249, n = 4) than in the nucleus accumbens, (D1: 0.000984 ± 0.000141 µCi/g, n = 5; 

D2: 0.00118 ± 0.000381, n = 4).   
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TH was found in the substantia nigra, ventral tegmental area, and parabrachial 

nucleus/locus coerulus (Figure 20).  In the SNc I found 70.221 ± 18.119 cells/mm², in 

the VTA 151.415 ± 32.077 cells/mm², and in the PB/LC 447.954 ± 70.897 cells/mm². 

DβH was found only in the parabrachial nucleus/locus coerulus, 641.842 ± 

109.434 cells/mm² (Figure 21). 

 

 

 

 

 

Figure 19.  Autoradiographic Localization of D1 and D2 Dopamine Receptors in the 
Free-tailed Bat Brain.  A shows a representative autoradiograph showing  binding in the 
striatum in four adjacent brain sections incubated with 3H SCH 23390, a D1 receptor 
antagonist.  Likewise, B shows a representative autoradiograph showing binding in the 
striatum in four adjacent brain sections incubated with 3H raclopride, a D2 receptor 
antagonist. 
 

 

A B 
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Figure 20.  Tyrosine Hydroxylase Binding in the Tadarida brasiliensis Brain.  This 
figure shows the results from tyrosine hydroxylase immunohistochemistry.  A, C, E, and 
H are brain atlas drawings showing the location of the pictures directly following.  B 
shows part of the striatum, where there are no cell bodies present with TH, but there are 
synapse terminals present which show up light gray.  D shows TH binding in the 
substantia nigra pars compacta.  Cell bodies with TH show up as black dots.  F shows 
binding in the ventral tegmental area.  H shows binding in the parabrachial nucleus and 
locus coeruleus.  J provides a brain guide illustrating the positions of A, C, E, and H.   
. 
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Figure 20 cont. 
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Figure 20 cont 
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Figure 21.  Dopamine-beta-hydroxylase Binding in the Tadarida brasiliensis Brain.  
This figure shows the results from dopamine-beta-hydroxylase immunohistochemistry.  
A gives a brain atlas drawing of the position of the picture in B, which shows DβH 
binding in the parabrachial nucleus and locus coeruleus.  C provides a brain guide 
illustrating the position of A.   
 

 



 95

Discussion 

 In this study, both D1 and D2 receptors were found in the caudate putamen and 

nucleus accumbens, showing the exact same distribution as the melatonin binding sites 

in the previous section.  This receptor distribution is also similar to those found in other 

species.  Additionally, TH immunohistochemistry revealed immunoreactivity in the 

SNc/VTA, locus coerulus and parabrachial nucleus, while DβH immunohistochemistry 

was found in the locus coerulus and parabrachial nucleus, also similar to other species.   

 

Localization of dopamine receptor sites  

 In the rat, dopamine receptors were found throughout the forebrain with 

autoradiography, with the highest levels in the caudate putamen, nucleus accumbens, 

and olfactory tubercle (Boyson et al., 1986).  Lower levels were detected in areas of the 

cortex, amygdala, globus pallidus, and hippocampus, among others.  There could be D1 

and D2 receptors in other areas of the free-tailed bat brain which were too low to find 

with this technique.  D1 receptor density was at least 3 fold higher than D2 receptor 

density in all areas in the rat, while in the bat, the two receptor types were approximately 

the same.  Humans, monkeys, and cats have a similar distribution and D1/D2 ratio to 

that seen in the rat (Richfield et al., 1987, Camps et al., 1989, Lidow et al., 1991).  It is 

suggested that this higher ratio was due to the fact that an antagonist was used for the D1 

receptor type while an agonist was used for the D2 receptor type since dopamine 

antagonists bind both high and low affinity states of receptors while agonists only label 

the high affinity states (Camps et al., 1990).  I used antagonists for both receptor types in 
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my experiments which could explain the nearly 1:1 ratio that I see in my data.  Also, 

another analysis in humans using SCH-23390 and raclopride showed a similar ratio to 

the bat, suggesting that the radioligands used might be contributing to the resulting 

receptor densities (Hall et al., 1988). 

 

Sites of dopamine synthesis 

 TH immunoreactivity was previously found in the same areas I found in the bat, 

the SNc and VTA in the rat and cat, known regions of dopamine synthesis (Jones and 

Beaudet, 1987, Lavoie et al., 1989). TH was also reported in the locus coerulus and 

parabrachial nucleus of the cat (Jones and Beaudet, 1987).  My findings in the DβH IHC 

suggest that these hindbrain regions are not dopaminergic but catecholaminergic, but a 

double labeling study in cattle suggests that there are some dopaminergic cells in this 

region as well (Berod et al., 1982).   

 

Interaction of dopamine and melatonin 

 Overall, both the D1 and D2 receptor distribution in the striatum matches the 

distribution of melatonin binding sites I found previously.  This does not indicate that 

there is a colocalization of these receptors, but it does provide an interesting correlation 

suggesting some interaction between the two.  Melatonin does appear to play a role in 

the striatum, particularly in relation to dopamine.   Ionotophoretic injection of melatonin 

into the striatum attenuated excitatory responses of striatal neurons to somatosensory 

cortex stimulation (Escames et al., 1996).  Similarly, melatonin application inhibited 
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spontaneously active caudate putamen neurons (Castillo-Romero et al., 1993).  This is 

thought to occur by increasing the affinity of the D2 receptor (Hamdi, 1998).  Melatonin 

is known to play a similar modulatory role in the retina and hypothalamus, inhibiting 

dopamine release (Dubocovich, 1983, Zisapel and Laudon, 1983).  It is possible that 

melatonin also plays a role in the dopamine synthesis pathway.  Melatonin injection in 

late afternoon increased TH activity in the caudate nucleus of hamsters, possibly due to a 

change in affinity of the enzyme (Alexiuk and Vriend, 2007).  The injections also 

increased serotonin concentrations, suggesting that dopamine, melatonin, and serotonin 

are all interconnected.  In addition to having a role as a modulator, melatonin has some 

protective properties, acting as an antioxidant.  Melatonin prevented degeneration of 

neurons in the SNc in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) and rats treated with rotenone, both models of Parkinson’s disease (Lin et al., 

2008, Ma et al., 2009).  This has led to the recommended use of melatonin as a 

therapeutic agent in treatment of Parkinson’s disease symptoms (Mayo et al., 2005).   

 

Conclusion 

 In conclusion, this characterization of the Tadarida brasiliensis dopamine system 

indicated that the free-tailed bats are not dissimilar from other mammals.  However, this 

does raise some interesting questions about the interactions between dopamine and 

melatonin in the striatum, whether or not they also interact with serotonin, melatonin’s 

role as an antioxidant, and the physiological significance of melatonin in the striatum.  It 

is still unclear whether melatonin in the striatum or any of the other brain regions is 
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related to the seasonality of Tadarida brasiliensis vocal behavior, but this remains a 

distinct possibility.  Melatonin binding sites are found in the bird song system (Gahr and 

Kosar, 1996, Whitfield-Rucker and Cassone, 1996, Bentley and Ball, 2000), so while I 

cannot concretely conclude anything from this study, it provides us with some target 

areas for the mammalian vocal motor pathway to explore further. 
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CHAPTER V 

ECHOLOCATION-INDUCED NEURONAL ACTIVATION IN THE MEXICAN 

FREE-TAILED BAT BRAIN 

 

Introduction 

Despite a broad diversity in mammalian vocal behaviors, a limited number of 

brain structures are suspected of involvement in the production of innate mammalian 

vocalizations (Newman, 2010). Vocal production in mammals is initiated by activity in 

forebrain limbic structures, including the amygdala, hypothalamic nuclei and the anterior 

cingulate cortex, which in turn act through a midbrain gating mechanism in the 

periaqueductal gray (PAG) to coordinate activity in laryngeal and respiratory 

motoneuronal pools in the brainstem (Jürgens, 2002). Importantly however, this pathway 

(Figure 22) has been constructed almost entirely from lesion studies coupled with 

electrical and chemical microstimulation of the brain regions from which normal 

sounding vocalizations can be elicited.  Few studies have described neuronal activity 

from the vocal control pathways of spontaneously vocalizing mammals (Larson and 

Kistler, 1986, Zealear and Larson, 1988, Farley et al., 1992a, Farley et al., 1992b, 

Dusterhoft et al., 2004), which leaves lingering questions about whether the neural 

circuits revealed by these methods accurately reflect the neural basis of spontaneous 

vocal communication in mammals. 

 

 



 100

 

Figure 22.  Mammalian Vocal Motor Pathway Model.   

 

 

 

Compared to other mammals, humans appear to have a very different neural 

substrate for speech production, and while this may be justified by the extraordinary 

complexity of speech, current models of speech motor control are largely based on non-

invasive functional imaging techniques in naturally behaving humans (Fox et al., 1996, 

Guenther, 2006, Tourville et al., 2008).  Humans exhibit behavioral traits not common 

among mammals, including vocal learning, plasticity, and the use of syntax in vocal 
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communication.  These vocal behaviors are dependent upon forebrain brain circuits that 

exist outside of the limbic-based visceromotor pathway that drives innate vocalizations, 

and the paucity of evidence for these types of vocal behaviors in non-human mammals 

may account for their perceived functional impotence in mammalian vocal control.  

However, recent studies have revealed that mammalian vocal behaviors may be 

more complex than previously appreciated.  Many mammals, including primates, 

cetaceans and bats, are now known to make sensory- and context-specific changes in the 

acoustic structure of their vocalizations (Foote et al., 2004, Madsen et al., 2005, 

Scheifele et al., 2005, Egnor and Hauser, 2006, Egnor et al., 2007, Smotherman, 2007, 

Versace et al., 2008), are capable of vocal learning (Weilgart and Whitehead, 1997, 

Boughman, 1998, Tyack and Clark, 2000, Knörnschild et al., 2006, Knornschild et al., 

2010), and can incorporate multiple syllables into complex syntactical vocal patterns 

(Payne and McVay, 1971, Mitani and Marler, 1989, Weilgart and Whitehead, 1997, 

Behr and von Helversen, 2004, Rendell and Whitehead, 2005, Behr et al., 2006, Bohn et 

al., 2008, Bohn et al., 2009).  These vocal behaviors would be supported by a model that 

incorporates forebrain components of the human speech model as modulatory elements 

in the vocal motor pathway, as predicted by Jürgens (2009).  Such a shift in thinking 

would be promoted by any evidence of neuronal activity in neocortical or basal ganglia 

structures analogous to those associated with vocal production in humans in a non-

human mammal model exhibiting one or more of the sophisticated vocal behaviors listed 

above.   
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Echolocating bats possess an extraordinary ability to precisely modulate the 

sound of their voice to accommodate changes in environmental acoustic conditions and 

behavioral context (Kalko and Schnitzler, 1998, Ulanovsky et al., 2004, Gillam et al., 

2007, Schwartz et al., 2007, Smotherman, 2007, Tressler and Smotherman, 2009, Jarvis 

et al., 2010).  To test the hypothesis that there are other areas of the brain involved in 

spontaneous vocal behaviors that were not exposed by microstimulation methods, I 

compared the expression levels of the immediate early gene c-fos in 15 neuroanatomical 

regions of interest (ROIs) in spontaneously vocalizing versus silent and listening free-

tailed bats (Tadarida brasiliensis).  The cellular expression of c-fos has been shown to 

be a reliable indicator of neuronal activation (Chaudhuri, 1997, Chaudhuri et al., 2000, 

Sundquist and Nisenbaum, 2005).  Previous studies have used c-fos 

immunohistochemistry to map the vocal centers in electrically-stimulated tamarins 

(Jürgens et al., 1996), and a similar study used fluorodeoxyglucose autoradiography to 

achieve similar results in electrically-stimulated vocalizing rats (Gonzalez-Lima, 2010).  

To date however, no studies have mapped c-fos expression in a spontaneously vocalizing 

mammal.  My results are constrained by the fact that the animals had to be allowed a 

modest amount of freedom to move or they would not vocalize, but the results presented 

here provide clear answers to two key questions: firstly, are all the brain areas identified 

as vocal control centers by microstimulation studies actually active during spontaneous 

vocalizing, and secondly, are there any additional brain regions active in spontaneously 

vocalizing animals that might account for the vocal behaviors not explained by the 
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current model of mammalian vocal motor control.  If so, these brain regions would 

become important targets of future studies of vocal control in mammals.   

 

Experimental Groups and Data Analysis 

Behavior 

Three different behavioral groups were used for this experiment: 1) bats that 

were actively echolocating in a quiet environment, 2) silent bats in a quiet environment, 

and 3) bats listening to artificial acoustic stimuli while remaining silent.  All bats 

underwent the same handling procedures leading up to the experimental trial; however 

previous studies have shown that there were significant differences in behavior between 

bats and within the same bat across trials. Rather than try to force bats to either vocalize 

or remain silent, bats were placed in the test cage and positioned in the center of the 

recording chamber and their vocal behavior was quantified in real time for the 30 minute 

trial. An actively echolocating free-tailed bat may emit up to 5 or 6 calls per second, 

averaging up to 300 calls per minute for 10 to 15 minutes at a time. It is unusual for a 

stationary bat to maintain this call rate continuously for 30 minutes, but it is not unusual 

for an actively calling bat to discontinuously emit between 3000 and 6000 total calls 

within a 30 minute experimental trial.  If at the end of 30 minutes a bat had emitted more 

than 3000 echolocation calls it was classified as an “echolocating bat”.  Alternatively, 

some bats sit quietly in the test cage for the 30 minute trial. These bats may only emit 

calls sporadically at rates averaging less than 10 per minute. If at the end of the 30 

minute trial a bat had emitted less than 300 total calls, the bat was classified as a “silent 
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bat”.  Consequently, all of the bats in the silent group emitted no calls during the 30 

minute trial.  If a bat emitted between 300 and 3000 calls, it wasn’t classified as either 

silent or echolocating and the bat was returned to the colony.  At the end of each 30 

minute experimental trial the bat’s echolocation performance was assessed and a 

decision was made whether or not to sacrifice the bat for immunohistochemistry.  

Despite individual difference in vocal behavior, there were a few simple things I 

could do to either encourage or inhibit vocalizing.  For example, bats placed in a novel 

environment will echolocate in order to explore their surroundings.  For the echolocation 

group, I took advantage of this in the following way: The cage containing the 

echolocating bat was placed in the center of the recording chamber and then surrounded 

by a tightly-fitting isolation box lined with acoustic foam two hours before the 

experiment.  This greatly reduced the number of echolocation pulses uttered to near zero 

during the 2-hour time period preceding the actual experimental trial. Keeping the bat in 

a quiet, isolated environment limits outside stimulation to ensure maximal gene 

expression during the experiment (Chaudhuri, 1997).  At the beginning of the 

experiment, the isolation box was removed, which effectively encouraged some bats to 

echolocate and explore the suddenly larger environment beyond their cage during the 

experiment trial period.  The recording chamber was a novel environment to the bats, 

which also helped to encourage echolocation.  Repeated exposure to the recording 

chamber greatly diminished subsequent call rates in this species.  For the echolocating 

bats included in this study, mean call rates ranged from 0.686 calls/second to 4.5 

calls/second and the time spent moving ranged from 31.8% to 49%.  The bats in the 
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echolocation group exclusively used echolocation calls; any data from a bat that emitted 

social calls was not used.  All the bat’s calls were recorded, and the files were manually 

checked for any calls that were not echolocation calls (Jarvis et al., 2010).  The animals 

called for 30 minutes and were kept an additional 30 minutes in isolation before being 

sacrificed.  Subjects differed in call rate, temporal patterning of calls, and other 

parameters, but I only used animals that called continuously over the 30 minute period 

(no silent gaps >5 minutes).  C-fos protein is detectable as early as 30 minutes after the 

onset of stimulation, in this case, the point when the bat started to call (Chaudhuri et al., 

2000). 

Alternatively, to increase the probability of a bat remaining silent for the trial 

period, bats were placed in the center of the recording chamber but not in an isolation 

box, and left alone for at least two hours before the experimental trial: once the bats 

became acclimated to the recording chamber their call rates were greatly reduced simply 

from the boredom of being in the recording chamber. All vocalizations were recorded 

during the two hour period preceding the trial to be sure that the bats were sufficiently 

quiet to ensure maximal gene expression, and video monitoring in real time assured that 

the silent bats hadn’t fallen asleep, but were awake and aware of their surroundings. In 

general, head and ear movements as well as conspicuous grooming behaviors were taken 

as evidence that the bats were awake while silent.  This group received no stimulus and 

did not call and provided the baseline data for the experiments. 

The listening group contained silent bats that listened to computer-generated 

echolocation calls without calling themselves.  I used the same approach as for the silent 
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bats, by allowing them to become accustomed to (or bored with) their environment so 

that they called less during the experiments.  None of the bats vocalized in response to a 

playback, so this was not an issue.  After the 30 minute listening phase, the animals were 

kept for another 30 minutes in silence before being sacrificed.  All vocalizations were 

monitored for the entire experiment.  Any animal that called was not used.   

 

Data analysis 

 We came up with 15 regions of interest (ROIs) to analyze for FLI in the bat 

brain, based on current and hypothesized models of non-human vocal motor control and 

accompanying mammalian vocalization literature (Figure 22, Table 2).  Additionally, I 

analyzed one auditory region.  The anterior cingulate cortex (ACg), PAG, parabrachial 

nucleus (PB), amygdala, and the hypothalamic nuclei were chosen because electrical 

stimulation of these regions results in vocalization (Jürgens and Ploog, 1970, Gooler and 

O'Neill, 1987).  Also, the ACg, PAG, and PB are part of the current vocal motor 

pathway.  The amygdala, ACg, hypothalamic nuclei, lateral habenula, PAG, and raphe 

nuclei were chosen because they resulted in increased FLI from electrically stimulated 

vocalizing monkeys (Jürgens et al., 1996).  Nucleus accumbens, ACg, amygdala, the 

hypothalamic nuclei, substantia nigra pars compacta, and raphe nuclei were shown to be 

afferents of vocal regions of the PAG (Dujardin and Jurgens, 2005).  The ACg, caudate 

nucleus, putamen, mediodorsal thalamic nucleus, and PB are all recipients of projections 

from the larynx area of the motor cortex (Simonyan and Jurgens, 2002, 2003).  

Additionally, the basal ganglia and thalamus are important components of the human 
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speech and birdsong vocal models and form the basis for the hypothesized motor cortical 

vocal control pathway (Jürgens, 2009). 

Locations of the caudate nucleus, putamen, nucleus accumbens, substantia nigra 

and parabrachial nucleus were found using the resulting sections from the TH antibody 

protocol (Figure 20).  The ACg was considered to be the portion of the cingulate cortex 

rostral to the anterior commissure (Gooler and O'Neill, 1987).  The remaining structures 

(Table 2) were found using our lab generated brain atlas and published bat brain 

resources from other labs (Prasada Rao and Kanwal, 2004, Maseko and Manger, 2007, 

Schwartz et al., 2009).  They were also verified with a comparison to mice and rats 

(Paxinos and Watson, 1998, Franklin and Paxinos, 2008). The bat brain is very similar in 

structure and size to the mouse brain.  

Pictures of the extent of each brain area were taken using an Infinity 2 

microscope camera connected to a computer running Infinity Capture application 

software (version 3.7.5, Lumenera Corporation).  Consecutive sections from both the 

right and left sides for each ROI were analyzed for each animal.  The FLI (5-40 pixels in 

size) was counted using NIH Image J (Abramoff et al., 2004).  Cells were counted in 

random 0.012 x 0.012 mm square areas over each ROI (Beckett et al., 1997, Neophytou 

et al., 2000, Sadananda et al., 2008).  Data from the right and left sides for bilateral 

structures were quantified separately at first to assess any lateralized activation, but I did 

not find any ROI with differences in activation on one side, so the right and left sides 

were combined and the mean for each ROI for each animal was calculated.  The animals 

were then divided into their respective treatment groups and cell counts were compared 
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between groups of bats using an analysis of variance (ANOVA) with treatment as the 

factor (echolocating, listening, or silent).  The comparisons of interest were echolocating 

vs. listening, echolocating vs. silent, and listening vs. silent.  All comparisons were 

analyzed using the Holm-Sidak method.   

In order to determine if movement had an effect on the FLI in echolocating bats, 

I performed a linear regression analysis on the FLI for each brain region versus time 

spent moving.  I also looked at the effect of call rate using the same method.  

Additionally, I also performed a linear regression analysis on a larger group of bats 

(N=21) to ascertain the relationship between movement and call rate.   

 

Results 

C-fos western blotting experiment 

 The results from the c-fos western blot showed a band at approximately 42 kDa 

that was blocked with the c-fos peptide (Figure 23).  This result is consistent with the 

predicted molecular weight (Abcam).  
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Figure 23.  C-fos Western Blot.  This picture shows the results of the c-fos western 
blotting protocol.  In A, a band corresponding to 42 kDa indicating that the antibody 
used is binding to the correct protein.  In B, a c-fos blocking peptide was used to block 
specific binding, so no band is present. 
 

 

 

C-fos immunohistochemistry on echolocating, listening, and silent bats 

We analyzed 15 ROIs in the forebrain, midbrain, and hindbrain of Tadarida 

brasiliensis (Table 2).   

In the forebrain, I analyzed the anterior cingulate cortex (ACg), basolateral 

amygdala (BLA), striatum of the basal ganglia, paraventricular (PA) and lateral (LH) 

hypothalamic nuclei, lateral habenula (LHb), and mediodorsal thalamic nucleus (MD).  

The striatum was divided into five ROIs, the nucleus accumbens (Acb), caudate putamen 

(CPu), dorsolateral caudate nucleus (dlCdN), ventromedial caudate nucleus (vmCdN), 

and putamen (Pu) (Figure 24).  The CPu was considered to be the rostral joined portion 

of the CdN and the Pu prior to its bisection by the internal capsule.  The CdN, 

categorized as the caudal portion of the former CPu dorsal to the internal capsule, was 
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divided into two equal parts based on location, the dlCdN and the vmCdN.  The Pu, the 

caudal portion of the former CPu ventral to the internal capsule, was analyzed as one 

structure.  The ACg, BLA, PA, LH, LHb, and MD were also not divided any further.   

In the midbrain, I analyzed the substantia nigra pars compacta (SNc) of the basal 

ganglia and PAG.  The SNc was analyzed as one structure.  The PAG was divided into 

four areas: dorsal (dPAG), ventral (vPAG), left central (lPAG), and right central (rPAG).  

Each of these four PAG areas was then separated on the rostral-caudal axis into four bins 

for separate analysis.   

In the hindbrain, I analyzed the median (MRn) and dorsal raphe (DR) nuclei, and 

PB for c-fos immunoreactivity.  None of the hindbrain areas were divided into 

substructures. 

In my analysis, I quantified the cell counts of each ROI for each of the three 

experimental groups (Table 2).  One echolocating bat and one silent bat only provided 

data for some of the brain regions because of cryosectioning errors that resulted in the 

loss of some brain sections.  Overall, I found significantly higher cell counts in the ACg, 

dlCdN, PA, LH, LHb, SNc, all PAG regions, MRn, DR, and PB in echolocating bats 

when compared to listening and silent bats (Table 2, Figures 24-27).  Cell counts in the 

MD were significantly higher in both echolocating and listening bats when compared to 

silent bats.  No significant differences between groups were found in Acb, CPu, vmCdN, 

Pu, or BLA.  An atlas representation of the cell locations for each ROI is provided in 

Figures 24, 25, 26 and 27, showing in particular that the cells in both the dlCdN and SNc 

were found in very discrete areas of these structures. 
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Table 2.  FLI Counts for Echolocating, Listening, and Silent Bats.  Values are ± SD (n).  
The counts provided for each region are the average number of stained cells per 
analyzed area (0.12 x 0.12 mm²).  The letters below the FLI values indicate significance, 
if a letter is different from another letter in the same row, those values are significantly 
different (A is significantly different from B).  P values are given in the last column. 
 

  
Echolocating 

 

 
Listening 

 
Silent 

 
P 

 
Acg 

 
4.354 ± 0.887 (8) 

A 

 
0.840 ± 0.456 (5) 

B 

 
0.300 ± 0.151 (8) 

B 

 
<0.001 

 
BLA 

 

 
0.250 ± 0.177 (8) 

A 

 
0.160 ± 0.055 (5) 

A 

 
0.138 ± 0.074 (8) 

A 

 
0.164 

 
Acb 

 

 
0.338 ± 0.292 (8) 

A 

 
0.387 ± 0.189 (5) 

A 

 
0.186 ± 0.090 (7) 

A 

 
0.250 

 
CPu 

 

 
0.487 ± 0.285 (8) 

A 

 
0.380 ± 0.164 (5) 

A 

 
0.214 ± 0.157 (7) 

A 

 
0.083 

 
dlCdN 

 

 
8.677 ± 3.246 (8) 

A 

 
1.183 ± 0.346 (5) 

A 

 
1.240 ± 0.283 (8) 

A 

 
<0.001 

 
vmCdN 

 

 
0.912 ± 1.147 (8) 

A 

 
0.020 ± 0.045 (5) 

A 

 
0.488 ± 0.304 (8) 

A 

 
0.133 

 
Pu 

 

 
0.138 ± 0.130 (8) 

A 

 
0.124 ± 0.089 (5) 

A 

 
0.139 ± 0.118 (8) 

A 

 
0.974 

 
PA 

 
7.417 ± 3.607 (8) 

A 

 
2.567 ± 1.610 (5) 

B 

 
3.083 ± 3.150 (8) 

B 

 
0.015 

 
 

LH 
 

 
3.979 ± 0.998 (8) 

A 

 
0.967 ± 0.380 (5) 

B 

 
1.000 ± 0.408 (8) 

B 

 
<0.001 

 
LHb 

 

 
7.438 ± 2.527 (8) 

A 

 
1.540 ± 1.004 (5) 

B 

 
2.275 ± 1.094 (8) 

B 

 
<0.001 

 
MD 

 

 
8.188 ± 2.302 (8) 

A 

 
6.280 ± 1.431 (5) 

A 

 
3.612 ± 1.336 (8) 

B 

 
<0.001 

 
SNc 

 

 
7.571 ± 2.290 (7) 

A 

 
1.740 ± 0.573 (5) 

B 

 
1.163 ± 0.550 (8) 

B 

 
<0.001 
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Table 2 cont. 

  
Echolocating 

 

 
Listening 

 
Silent 

 
P 

 
dPAG 

 
1 
 

2 
 

3 
 

4 

 
10.332 ± 2.593 (8) 

A 
7.425 ± 3.986 

A 
10.479 ± 3.572 

A 
10.771 ± 2.577 

A 
12.167 ± 3.234 

A 

 
3.026 ± 1.352 (5) 

B 
2.160 ± 1.941 

B 
3.667 ± 1.312 

B 
2.633 ± 1.325 

B 
3.500 ± 1.532 

B 

 
2.245 ± 0.921 (8) 

B 
1.875 ± 1.666 

B 
2.271 ± 1.188 

B 
2.250 ± 1.330 

B 
2.521 ± 1.364 

B 

 
<0.001 

 
<0.001 

 
<0.001 

 
<0.001 

 
<0.001 

 
lPAG 

 
1 
 

2 
 

3 
 

4 
 

 
6.451 ± 2.113 (8) 

A 
8.275 ± 3.061 

A 
5.813 ± 2.498 

A 
6.583 ± 2.136 

A 
5.438 ± 2.121 

A 

 
1.904 ± 0.528 (5) 

B 
2.040 ± 1.187 

B 
1.700 ± 0.681 

B 
1.733 ± 0.279 

B 
2.167 ± 0.645 

B 

 
1.158 ± 0.354 (8) 

B 
1.900 ± 0.793 

B 
0.646 ± 0.663 

B 
0.833 ± 0.684 

B 
1.375 ± 0.635 

B 

 
<0.001 

 
<0.001 

 
<0.001 

 
<0.001 

 
<0.001 

 
rPAG 

 
1 
 

2 
 

3 
 

4 
 

 
6.924 ± 1.943 (8) 

A 
9.325 ± 2.496 

A 
5.771 ± 2.870 

A 
7.229 ± 3.094 

A 
5.771 ± 2.415 

A 

 
2.122 ± 1.010 (5) 

B 
2.360 ± 1.322 

B 
1.867 ± 0.877 

B 
2.000 ± 1.505 

B 
2.300 ± 1.181 

B 

 
1.477 ± 0.896 (8) 

B 
2.275 ± 1.126 

B 
0.616 ± 0.322 

B 
0.875 ± 0.659 

B 
1.458 ± 0.689 

B 

 
<0.001 

 
<0.001 

 
<0.001 

 
<0.001 

 
<0.001 

 
vPAG 

 
1 
 

2 
 

 
4.479 ± 1.986 (8) 

A 
2.225 ± 1.202 

A 
5.979 ± 2.837 

A 

 
1.367 ± 1.008 (5) 

B 
0.800 ± 0.548 

B 
1.733 ± 1.593 

B 

 
0.323 ± 0.269 (8) 

B 
0.125 ± 0.149 

B 
0.396 ± 0.408 

B 

 
<0.001 

 
<0.001 

 
<0.001 

 
DR 

 

 
8.091 ± 2.569 (8) 

A 

 
2.363 ± 0.553 (5) 

B 

 
1.511 ± 0.937 (8) 

B 

 
<0.001 

 
MnR 

 

 
7.250 ± 1.900 (8) 

A 

 
1.280 ± 0.179 (5) 

B 

 
1.543 ± 1.176 (7) 

B 

 
<0.001 
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Table 2 cont. 

  
Echolocating 

 

 
Listening 

 
Silent 

 
P 

 
PB 

 
m 
 
l 

 
7.119 ± 1.904 (7) 

A 
5.690 ± 3.056(7) 

A 
3.286 ± 2.277 (7) 

B 

 
1.833 ± 1.381 (4) 

B 

 
0.500 ± 0.385 (7) 

B 

 
<0.001 

 
LL 

 

 
6.333 ± 2.594 (8) 

A 

 
5.867 ± 1.609 (5) 

A 

 
1.542 ± 0.434 (8) 

B 

 
  <0.001  
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Figure 24.  C-fos Binding in Frontal Cortex and Basal Ganglia. A-G are brain atlas 
drawings showing the positions of the different parts of the cortex and striatum that were 
analyzed.  In addition, B-G show the progression of c-fos binding in the dorsolateral 
caudate nucleus.  H provides a brain guide illustrating the location of the brain atlas 
drawings.  I is a picture of c-fos binding in the anterior cingulate cortex (position shown 
by the box in B).  J is a picture of c-fos binding in the dorsolateral caudate nucleus 
(position shown by the box in F).   
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Figure 24 cont. 
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Figure 25.  C-fos Binding in Epithalamus and Hypothalamus. A and B are brain atlas 
drawings showing the positions of the pictures of c-fos binding in D-F.  C provides a 
brain guide illustrating the locations of A and B.  D shows c-fos binding in the lateral 
hypothalamus (position shown by the box in A).  E shows c-fos binding in the lateral 
habenula (position shown by upper box in B).  F shows c-fos binding in the 
paraventricular hypothalamic nucleus (position shown by the lower box in B). 
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Figure 25 cont. 
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Figure 26.  C-fos Binding in the Midbrain.  A-C are brain atlas drawings showing the 
positions of the pictures of c-fos binding in D-E.  Additionally A and B show the 
progression of c-fos binding in the substantia nigra pars compacta.  D provides a brain 
guide illustrating the locations of A-C.A picture of the binding in the SNc is shown in E 
(the position is shown by the box in A).  F shows c-fos binding in the PAG (position 
shown by the box in C).     
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Figure 26 cont. 
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Figure 27.  C-fos Binding in the Hindbrain.  A and B are brain atlas drawings showing 
the positions of the pictures of c-fos binding in D-F.  C provides a brain guide 
illustrating the locations of A and B.  D is a picture of c-fos binding in the dorsal raphe 
nucleus (the position is shown by the upper box in A).  E shows c-fos binding in the 
median raphe nucleus (position shown by lower box in A).  F shows c-fos binding in the 
parabrachial nucleus (position shown by the box in B). 
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Figure 27 cont. 
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In the PAG, I attempted to pinpoint any areas with particularly high FLI by 

separating this relatively large structure into pieces on both the dorsal-ventral axis and 

the rostral-caudal axis.  However, all of these sections of the PAG in the echolocating 

group had significantly higher FLI than both the listening and silent bats (Table 2, Figure 

26).  But there were some insignificant differences in the number of cells between some 

of the PAG regions.  The areas of the PAG that had the highest cell counts were dPAG 

bins 4, 3, and 2 and both lPAG and rPAG bin 1.  The collective dPAG had the highest 

FLI out of all ROIs analyzed, while the collective vPAG had one of the lowest.   

Similarly, in the PB, since FLI in echolocating bats was significantly higher than 

the silent and listening bats (Table 2, Figure 27), I analyzed the medial and lateral PB 

separately to see if one region had more FLI.  The medial PB had significantly higher 

FLI than the lateral PB.  The FLI counts of the lateral PB by itself were not significantly 

different from those of the listening bats.  Some of this PB data was published 

previously (Smotherman et al., 2009). 

In the hypothalamus, I analyzed PA and LH (Table 2, Figure 25).  In the PA, 

there was a lot of variation between groups.  Although the echolocating group ended up 

having significantly higher FLI than the other two groups, there were animals in the 

listening and silent groups that had cell counts in the range found in the echolocating 

group, suggesting that activity in this area might not be attributable to echolocation only.  

However, this is not the case for the LH.  This region had the lowest FLI count for all 

ROIs analyzed, but all bats were very consistent according to their treatment.    
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 Two ROIs in the basal ganglia resulted in higher FLI in echolocating bats.  The 

FLI in the forebrain dlCdN shows up in a very discrete area of the caudate nucleus 

(Figure 24).  In general, the caudate nucleus area is encompassed by the external capsule 

on the dorsal side, internal capsule laterally, and corpus callosum medially.  The dlCdN 

is the upper half of this structure.  Where the FLI begins, the cells are scattered 

throughout the dlCdN, but more concentrated medially, where the structure comes to a 

point between the external capsule and the corpus callosum.  As the structure progresses 

back caudally, the hippocampus appears on the medial side, the dlCdN gradually 

diminishes in size, and the FLI becomes even more concentrated in that medial point.  

FLI in the dlCdN was observed bilaterally.  Interestingly, FLI was not significant in the 

vmCdN.   

 The second basal ganglia region with higher FLI in echolocating bats is the 

midbrain SNc.  The SNc is located on the medial side of the substantia nigra pars 

reticulata, which is just medial to the hippocampus.  Again, FLI in this ROI shows up in 

a discrete area (Figure 26).  FLI is absent in the dorsal tip of this structure and is more 

concentrated in the center and ventral portions.   

 The thalamic MD was the only ROI significantly different from the silent group 

in both echolocating and listening bats.  This area is directly dorsal and medial to the 

LHb. 

 The remaining ROIs with significant FLI, ACg, LHb, MRn, and DR, all had a 

consistent distribution of FLI throughout the entire structure.  
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 In addition to the established 15 ROIs potentially involved in vocalization, I also 

analyzed one auditory structure, the lateral lemniscus (LL), as a control.  I found that 

FLI in the LL was significantly higher in both vocalizing and listening bats when 

compared to silent bats. 

 

Effect of call rate and movement on cell counts 

 We also analyzed call rate (calls/second) and time spent moving (%) in relation 

to cell counts within the ROIs that had significantly higher FLI only in echolocating bats 

to determine if higher call rates or more movement produced higher cell counts.  I found 

no positive correlation between call rate or time spent moving and cell counts.  

However, only animals in the echolocating group had cell counts significantly higher in 

these regions than silent and listening bats, so there is clearly an effect associated with 

this group.  This indicates that the cell counts were most likely correlated with some 

other parameter, including but not limited to temporal pattern of calls, frequency, or call 

variability.  To determine the effect of movement on call rate, I used data from a larger 

pool of bats (n=21) and found that movement and call rate were weakly correlated 

(R²=0.3788), meaning that a bat is more likely to call while it is moving (Figure 28).  

However, this weak relationship still does not account for the majority of vocalization, it 

only illustrates that in echolocation vocalization and movement are loosely linked.   
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Figure 28.  Movement Versus Call Rate.  This graph plots the relationship between 
movement and call rate for 21 echolocating bats, showing that they are weakly 
correlated (R²=0.3788).  However, this graph also shows that there is a great deal of 
variability in this relationship. 
 

 

 

Pharmacology of vocal motor pathway regions of interest 

To further explore some of the regions activated by echolocation, I injected the 

glutamate agonists kainic acid and bicuculline into the dlCdN, ACg, and PAG, all of 

which resulted in vocalization (Figure 29).  The calls resulting from injections into the 

dlCdN were song-like sequences with several syllable types including buzzes.  From the 

ACg, both normal looking echolocation calls and song-like sequences similar to the ones 

seen in the dlCdN experiments were recorded.  From the PAG, I got single syllable 

echolocation-like (downward FM sweeps) calls.   
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Figure 29.  Pharmacological Excitation of Three Vocal Regions of Interest.  This figure 
shows the vocalizations elicited after injection of a glutamate agonist into the PAG (A-
B), ACg (C-F), and dlCdN (G-I).  Each spectrogram is from a different individual bat. 
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Discussion 

This study reports on vocalization induced c-fos immunoreactivity in the brains 

of Mexican free-tailed bats, Tadarida brasiliensis.  Neuronal activation was found in the 

anterior cingulate cortex, dorsomedial caudate nucleus, paraventricular and lateral 

hypothalamic nuclei, lateral habenula, substantia nigra pars compacta, PAG, median and 

dorsal raphe nuclei, and parabrachial nucleus of echolocating animals, but not listening 

or silent animals (Figure 22, Table 2).   

 

Vocalization induced c-fos expression in known vocal structures 

The basic vocal motor pathway in mammals is a limbic-based visceromotor 

triggering of brainstem pattern generators (Figure 22).  The limbic system, specifically 

the anterior cingulate cortex (ACg), provides voluntary control over calling, sending 

inputs to the midbrain periaqueductal gray (PAG), responsible for vocal initiation.  The 

PAG coordinates respiratory and laryngeal motor neurons of the parabrachial nucleus 

(PB) and nucleus ambiguus (NA) necessary for vocalization (Yajima et al., 1981, Larson 

and Kistler, 1986, Jürgens, 2002).  Electrical stimulation of the PAG produces 

vocalizations in all mammals studied, including species of bats, while lesioning this core 

vocal structure results in mutism (Jürgens and Ploog, 1970, Suga et al., 1973, Yajima et 

al., 1980, Jürgens, 2002).  The ACg produces PAG-mediated vocalizations when 

stimulated (Robinson, 1967, Jürgens and Ploog, 1970, Sutton et al., 1974, Gooler and 

O'Neill, 1987).  Additionally, the PAG receives inputs from other regions of the brain, 

including medial prefrontal cortex, gyrus rectus, insular cortex, basal ganglia, 
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hypothalamus, amygdala, and thalamus, found through retrograde tract tracing (Dujardin 

and Jurgens, 2005).   

 It was expected that I would find echolocation-induced c-fos expression in basic 

core vocal structures like the ACg, PAG and PB.  These serve as an indicator of the 

reliability of this gene and the technique used for this application.  However, to gain 

further understanding of these regions, I broke the PAG and PB down into segments and 

analyzed these separately to ascertain whether there were any areas that were 

specifically active or inactive.  I divided the PAG into sections both on the rostral-caudal 

axis and on the dorsal-ventral axis, but all areas analyzed had significantly higher cell 

counts than matching regions in the listening and silent animals (Table 2, Figure 26).  

There were some regions with insignificantly higher FLI counts, in particular the caudal 

most sections of the dorsal PAG and the rostral lateral PAG.  Accounts of electrical 

stimulation in the PAG reported that stimulation in the dorsolateral PAG resulted in 

vocalization in both the macaque and the bat (Suga et al., 1973, Larson, 1985).  

Particularly in the bat stimulation study, the electrode site appears to be in the caudal 

dorsolateral PAG, judging from the neighboring structures, including the inferior 

colliculus and dorsal raphe nucleus (Suga et al., 1973).  My highest FLI count was found 

in the dorsal PAG around the same area, suggesting that this section of the PAG might 

be particularly important for the vocal motor pathway.   

 We also broke the PB down into two sections, the medial and lateral PB.  I found 

that FLI in the medial PB was significantly higher than in the lateral PB and that when 

they were separated; FLI in the lateral PB was no longer significantly different from the 
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listening bats.  It is not surprising that these two subregions of the PB would have 

different activation.  The medial PB stimulates laryngeal afferents, while the lateral PB 

stimulates pulmonary afferents (Smotherman et al., 2009).  Since the echolocating 

animals were the only group vocalizing, and therefore using the larynx, this group 

should be the only group with activation in the medial PB. 

 The ACg was not broken down any further.  This area was analyzed based on the 

results from previous stimulation studies (Gooler and O'Neill, 1987).  Vocalizations 

were elicited in this study from sites in the anterior cingulate cortex rostral to the anterior 

commissure.  Similar results were found in the squirrel monkey (Jürgens and Ploog, 

1970).  In addition to its known role in the vocal initiation pathway, there is a body of 

evidence that suggests that the ACg is important for audio-vocal integration.  This ROI 

receives extensive input from auditory regions in the superior temporal gyrus (STG), 

including auditory association cortex, in non-human primates (Paus, 2001).  Also, a 

subset of neurons in the STG reacted to both auditory stimuli and electrical stimulation 

of vocal regions of the ACg (Müller-Preuss et al., 1980).  In experienced human singers, 

fMRI reveals that the ACg is activated during compensation when auditory feedback to 

the subject was manipulated to indicate a shift in pitch (Zarate and Zatorre, 2005, 2008).  

This suggests that the ACg is important for vocal modulation in addition to vocal 

initiation. 
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Potential hypothalamic vocal areas 

 The paraventricular nucleus of the hypothalamus is a central component of the 

mammal stress response, coordinating both the endocrine system and autonomic nervous 

system (Engelmann et al., 2004, Benarroch, 2005).  There is little evidence to support 

the involvement of this region in vocalization, aside from a stimulation study where 

electrical stimulation of this area resulted in aggressive vocalizations and displays, 

which could be categorized as a stress response (Jürgens et al., 1967).  I did find 

significantly higher FLI in echolocating bats in my experiment, but there were some bats 

in each experimental group with similarly high levels of FLI.  Due to the extensive 

evidence in the literature that this area is involved in the stress response, I attribute high 

FLI in the PVN of some bats to be in response to the stress associated with participation 

in the experiments.   

Similarly, it is unclear what role the lateral hypothalamus plays in vocal 

behavior.  The LH receives projections via the medial forebrain bundle, which collects 

inputs from the olfactory regions, striatum, prefrontal cortex, and limbic regions, among 

others (Nieuwenhuys et al., 1982).  The LH is also interconnected with several of my 

designated ROIs, including the ACg, LHb, PVN, raphe nuclei, PAG, and PB (Saper et 

al., 1979, Berk and Finkelstein, 1982).  These connections suggest that the LH could 

provide an integrative role, using sensory input provided through the medial forebrain 

bundle to influence vocal behavior through the vocal initiation pathway or the serotonin 

system. 
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Vocalization induced c-fos expression in the basal ganglia: Evidence for the motor 

cortical vocal control pathway 

It has been recently proposed that another pathway controls plasticity and 

patterning, the motor cortical vocal control pathway (Figure 22), a cortico-basal ganglia-

thalamic loop which originates in the larynx area of the motor cortex, a model based on 

the vocal motor systems of humans and songbirds (Jürgens, 2009).  Stimulation of this 

cortical area in the squirrel monkey causes vocal fold adduction, even with inactivation 

of the PAG (Jürgens and Zwirner, 1996).  Anterograde tracer injected into the larynx 

area of the motor cortex indicates that there is a direct connection to the reticular 

formation which then projects to the NA, completely bypassing the PAG (Simonyan and 

Jurgens, 2003, Jürgens and Ehrenreich, 2007).  This motor cortical vocal control 

pathway hypothesis attempts to explain the key aspects of mammalian vocalization that 

have been virtually neglected in past mammalian studies: vocal plasticity and patterning.   

In relation to this hypothesis, probably the most interesting areas discovered in 

these experiments were the dorsolateral caudate nucleus and the substantia nigra pars 

compacta of the basal ganglia.  The basal ganglia are a network of interconnected 

subcortical nuclei with a central location in the brain important for interaction with many 

different areas (Alm, 2004).  The input nucleus of this network is the striatum, composed 

of the caudate nucleus, putamen, and nucleus accumbens (Hikosaka et al., 2000, Alm, 

2004).  The striatum receives input from most of the cerebral cortex.  The main output 

nuclei are the interior part of the globus pallidus and the substantia nigra pars reticulata, 

which project back to the cortex by way of the thalamus and also to the brain stem.  The 
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basal ganglia also include some internal modulators, the subthalamic nucleus, the 

external portion of the globus pallidus, and the substantia nigra pars compacta, which 

specifically modulates the activity of the striatum.  Interestingly, no areas of the basal 

ganglia were induced by electrically-stimulated vocalizations (Jürgens et al., 1996), but 

nucleus accumbens and globus pallidus were reported as afferents to the PAG in squirrel 

monkeys (Dujardin and Jurgens, 2005).   

FLI in the basal ganglia supports Jürgens’ hypothesis about a separate motor 

cortical pathway for patterning and modulation, and also, as Jürgens’ hypothesis is based 

on the human and birdsong models of vocalization, this also supports the idea that the 

vocal motor pathway in non-human mammals is more closely related to what is known 

in these groups that was previously thought.  Although Jürgens’ pathway is centered 

around the putamen instead of the caudate nucleus, the evidence presented for the 

hypothesized pathway would also support the caudate nucleus being the striatal portion 

of the loop, as this region also receives a direct projection from the larynx area of the 

motor cortex (Simonyan and Jurgens, 2003, Jürgens, 2009).  Additionally, the 

dorsolateral striatum, including dorsolateral caudate nucleus and putamen, is considered 

the sensorimotor portion of the striatum which receives inputs from motor, premotor, 

and sensory cortical areas (Groenewegen, 2003).  This motor loop hypothesis is not 

exclusive to vocal motor behavior.  This is the central idea behind general mammalian 

motor skill learning and production (Hikosaka et al., 2002, Doyon et al., 2003).   

The basal ganglia generally seem to play a role in sequence ordering and timing.  

In rodents, the dorsolateral striatum and the substantia nigra are involved in syntactic 
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grooming behaviors, shown by increased firing of cells in these areas during movements 

within the grooming sequence but not during the same movements performed singly 

(Aldridge et al., 1993, Aldridge et al., 2004).  A key area in the bird song system for 

song development, variability, and sequence maintenance is Area X, an area 

homologous to the mammalian striatum (Jarvis et al., 1998, Liu and Nottebohm, 2005).   

The basal ganglia’s role in order and timing is particularly noted in several 

pathologies.  Patients with obsessive-compulsive disorder and Tourette’s syndrome, both 

disorders involving uncontrolled repetitions, show abnormalities in the striatum when 

observed with positron emission tomography (PET) and fMRI (Graybiel, 2000).  

Similarly, in autism, where in addition to social and communicative problems, a key 

symptom is stereotyped and repetitive behaviors, patients exhibit an enlarged caudate 

nucleus (Langen et al., 2007).  Basal ganglia abnormalities are also a likely candidate for 

the issue at the heart of stuttering (Alm, 2004).  Huntington’s and Parkinson’s diseases 

are caused by basal ganglia lesions, particularly depletion of dopaminergic cells in the 

substantia nigra pars compacta, and both present with motor and speech problems 

(Graybiel, 2000).  These pathologies of the basal ganglia have a common underlying 

feature in that all these patients are unable to control the under or over production of 

motor function and this has a profound effect on a person’s ability to function at a 

normal capacity.   

C-fos expression in the dorsolateral striatum and the substantia nigra pars 

compacta in echolocating bats falls directly in line with the role these areas are thought 

to play in sequencing and timing.  Echolocation calls occur in long trains at regular 
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intervals and provide the bat with a spatial map of its environment.  The returning 

echoes dictate future calls, which are modified to accommodate close obstacles or to 

pinpoint prey items.  As mentioned previously, Tadarida brasiliensis possesses the 

ability to rapidly alter its echolocation frequencies to avoid acoustic jamming, a method 

used by some insect species to avoid predation (Miller and Surlykke, 2001, Tressler and 

Smotherman, 2009).  These bats can also alter the timing of their calls to take advantage 

of quiet periods within noise (Jarvis et al., 2010).  These quick modifications and vocal 

plasticity would require that the bat possess a sophisticated system of vocal control 

allowing for vocal modulation and rapid processing of auditory feedback.  Additionally, 

the males of this species produce a complex courtship song which is both species 

stereotyped and individually adapted which would seemingly require at the very least 

auditory feedback and possibly a neural mechanism for vocal learning (Bohn et al., 

2008, Bohn et al., 2009).  The hypothesized candidate system for vocal modulation, 

incorporating a cortico-striatal-thalamic motor loop (Figure 22), is supported by my 

finding of vocalization-induced FLI in the dorsolateral striatum.   

 

Dopamine and serotonin in the vocal motor pathway 

The sites of synthesis and release of two major neurotransmitter systems, 

dopamine and serotonin were found to have vocalization-induced FLI in free-tailed bats.  

In the dopaminergic system, dopamine is produced and released by neurons in the 

substantia nigra pars compacta.  These dopaminergic neurons project to the striatum, the 

site of both D1 and D2 dopamine receptors, where I also found FLI in a small restricted 
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area of the caudate nucleus.  In the serotonin system, serotonin is produced and released 

by the raphe nuclei, and is then released all over the brain. 

 These two systems have been implicated previously in vocal control systems.  

Monoamine oxidase (MAO) inhibitors specific for the breakdown of serotonin and 

dopamine decreased the frequency of squirrel monkey isolation calls, but not other 

behaviors associated with isolation, such as vigilance checking or locomotor behavior 

(Newman et al., 1991).  Also, the MAO inhibitor specific for the breakdown of 

dopamine but not serotonin increased the duration and decreased the peak frequency of 

the isolation calls.  Another study in rats showed that dopamine depletion decreased the 

bandwidth of ultrasonic vocalizations, while all other behaviors normally associated with 

these mating/courtship vocalizations were left intact (Ciucci et al., 2007).  Also, 

occurrence of rat pup isolation calls were significantly decreased following serotonergic 

lesions, but the animals developed and behaved normally otherwise (Winslow and Insel, 

1990).  In songbirds, dopamine plays a role in the anterior forebrain pathway of the song 

system, important for song development in juveniles and vocal plasticity in adults, while 

also mediating song differences due to social context (Sasaki et al., 2006).  In humans, a 

clinical report indicated that two patients became afflicted with dysphonia, a general 

term for disorders of the voice, including but not limited to breathiness or hoarseness, 

due to intake of selective serotonin reuptake inhibitors (Petitpain et al., 2005).  The 

majority of patients with Parkinson’s disease exhibit dysarthria, a speech disorder 

affecting articulation, with common symptoms including nasality, monotone, slurring, 

and others.  Treatment with Levodopa (L-DOPA), the precursor to dopamine, improves 
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these patients’ speech (Sanabria et al., 2001).  These results all imply that serotonin and 

dopamine play a role in the modulation of calls.   

 

Lateral habenula circuit: Possible vocal loop modulator 

The lateral habenula is not a known vocal region, but it may be involved in vocal 

behavior indirectly.  It receives input from the striatum and the rest of the basal ganglia 

by way of the globus pallidus internal segment (Hikosaka et al., 2008).  It also receives 

input from the lateral hypothalamus.  It then projects to the substantia nigra pars 

compacta and ventral tegmental area (SNc/VTA) and also to the dorsal and medial raphe 

nuclei.  The lateral habenula inhibits dopamine neurons of the SNc/VTA and also 

modulates serotonin release in the raphe nuclei (Hikosaka et al., 2008, Yang et al., 

2008).  While it is unclear what role this structure plays in vocalization, it was 

previously reported to be vocalization-induced in tamarins, along with the raphe nuclei 

(Jürgens et al., 1996).  It is possible that the lateral habenula has a modulating role in 

vocalization by affecting the dopamine system, the serotonin system, or both.  In my 

study, echolocation-induced c-fos activity was also found in the SNc, dorsolateral 

caudate nucleus, lateral hypothalamus, and raphe nuclei, all regions on the giving inputs 

to or receiving inputs from the lateral habenula. 
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Relationship between moving and calling 

Our data indicates that there is a weak correlation between moving and 

echolocating.  The fact that these are loosely linked makes sense because echolocation is 

used for navigation and spatial awareness.  A bat that is moving, particularly in the dark, 

is going to echolocate in order to “see” its surroundings.  I cannot say conclusively that 

all of the c-fos immunoreactivity seen is strictly due to vocalizing, because I cannot 

completely separate calling from moving in echolocation.  However, I also cannot say 

that all of the c-fos immunoreactivity is strictly due to moving.  While I can only make 

observations about regions involved in echolocation, moving and calling collectively, 

instead of just vocalizing, I now have several specific target areas with which I can 

continue to parse together a more concrete mammalian vocal motor network. 

 

Auditory regions and evidence for audio-vocal integration 

           Audio-vocal integration is important for complex vocal behavior like the ability to 

modulate calls quickly due to changes in environment, which I see in the free-tailed bat 

(Tressler and Smotherman, 2009, Jarvis et al., 2010).  Additionally, this integration 

would be important for vocal learning, where a subject modifies vocalizations as a result 

of experience with vocalizations from other individuals (Janik and Slater, 1997).  Vocal 

learning has been shown previously in bat species (Boughman, 1998, Knörnschild et al., 

2006, Knornschild et al., 2010).  Additionally, several species exhibit courtship songs 

similar to those seen in vocal learning birds (Behr and von Helversen, 2004, Bohn et al., 

2008, Bohn et al., 2009), but song development in juvenile bats has not yet been studied.  
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While it is unclear if Tadarida brasiliensis exhibits vocal learning in the development of 

the courtship song, it is a distinct and likely possibility.  Therefore, audio-vocal 

integration is particularly important in this species.  This experiment provided no real 

concrete evidence for audio-vocal integration, but it does loosely support a few of the 

running theories, in that I found FLI in the proposed cortico-striatal-thalamic loop and 

also in the ACg.  

 

Pharmacological activation of echolocation-activated regions of interest 

To further characterize a few of the ROIs activated by echolocation and to 

determine whether these regions were vocalization-induced rather than movement-

induced, I pharmacologically activated them with two different glutamate agonists.  I 

injected the PAG, ACg, and dlCdN and vocalizations were elicited from all three, 

strongly supporting a role for these three regions in the non-human mammalian vocal 

motor pathway.   

 The vocalizations recorded after PAG stimulation were short duration downward 

FM sweeps that looked similar to echolocation calls (Figure 29A, B).  These calls were 

similar to reported call types recorded from PAG stimulation in other bats (Suga et al., 

1973, Fenzl and Schuller, 2002).  Single syllable vocalizations have also been stimulated 

from this region in monkeys, mice, and other mammals (Jürgens, 2002).  The PAG is an 

established member of the visceromotor vocal motor pathway and these results replicate 

what has been found in other mammalian species.   
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 Similarly, after injections in the ACg, I recorded natural-looking echolocation 

calls, similar to results reported previously in another bat species (Figure 29C) (Gooler 

and O'Neill, 1987).  However, the more exciting and unexpected result was that 

additionally in this region, glutamate agonist injection produced song-like sequences 

(Figure 29D-F).  Several sequences had all of the courtship/territorial song components 

(Figure 15) that even occurred in the correct order (for a representative sequence, see 

Figure 29F).  My results are particularly interesting because previous reports have 

indicated that the ACg has a more subdued role in the vocal motor pathway acting only 

as a vocal initiator through the PAG.  Nothing even resembling the complex 

vocalizations seen in these experiments has been reported in another mammal after 

stimulation of the ACg.  Stimulation of the ACg in the monkey and bat resulted in single 

syllable vocalizations similar to those elicited after PAG stimulation, supporting the idea 

that the ACg acts as a vocal initiator through the PAG (Robinson, 1967, Jürgens and 

Ploog, 1970, Gooler and O'Neill, 1987).  Lesions to this region in monkeys reduce 

spontaneous vocalizations and the ability to master a vocal operant conditioning task 

(Sutton et al., 1974, MacLean and Newman, 1988).  The resulting songs elicited from 

the free-tailed bat suggest that the ACg has a more significant role in sequence formation 

and complex vocalizations, along with a role in echolocation.  It is possible that the ACg 

actually contributes to the neocortical pathway along with playing a role in the 

visceromotor pathway.  It is unclear what caused the different call types elicited from 

this area, but it is possible that dose might play a role.  The pneumatic delivery of the 

drug makes it difficult to control the amount of drug injected, so it is difficult to 
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confidently report the dosage.  Future work with cannula injections will allow me to 

better control for total amount of drug injected and will allow me to determine any dose 

effect.   

 Finally, injections into the dorsolateral caudate nucleus also resulted in song-like 

sequences.  Stimulating calls from this area of the striatum is extremely important 

because it supports the previous c-fos findings that this region is involved in the vocal 

motor pathway, particularly since this area has only been hypothesized to be part of the 

vocal motor pathway in mammals.  The sequences produced from excitation of this 

region consisted of several different syllables, some very similar to the syllables found in 

courtship/territorial songs (Figure 29G-I).  Preliminary observation seemed to indicate 

that these sequences were more variable that those recorded after ACg stimulation, both 

in syllable type and syllable order.  There are no reports in the literature about 

vocalizations elicited by stimulation of any region of the striatum in mammals, and 

Robinson reported no results from stimulations of the caudate nucleus and putamen in 

the rhesus monkey (Robinson, 1967).  However, the avian homologue of the striatum is 

part of the vocal system in songbirds (Jarvis et al., 2005) and is active during human 

speech (Schulz et al., 2005).  Additionally, the striatum in general is thought to play a 

role in several human speech disorders, including stuttering and Tourette’s syndrome, 

along with other disorders with speech symptoms, including Parkinson’s disease and 

autism (Graybiel, 2000, Alm, 2004, Langen et al., 2007).  These results support a role 

for the dlCdN in the vocal motor pathway in non-human mammals as well.   
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Conclusions 

C-fos immunohistochemistry revealed echolocation-induced activation of regions 

in the known and hypothesized vocal-motor pathways, providing support for the 

neocortical motor loop hypothesis.  This work effectively answered both of my 

questions, vocal regions found in microstimulation studies were activated in naturally 

vocalizing bats and there were additional areas activated in naturally vocalizing bats that 

were not previously known that could account for some of the more complex vocal 

behaviors seen in the free-tailed bat.  Additionally, pharmacological excitation of three 

of these regions produced vocalization, further supporting their involvement in the non-

human mammalian vocal motor pathway. 
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CHAPTER VI 

CONCLUSIONS 

 

One of the most compelling questions in science is how and why humans 

evolved their capacity for speech.  This question has been difficult to address 

experimentally because of the very uniqueness of speech and language.  Primates do not 

possess anything even remotely resembling a “proto-speech” or “sub-speech”.  Instead, 

primate vocal communication is largely identical to most other mammals, no more 

similar to human speech than a cat’s meow or a dog’s bark.  However many mammals 

exhibit discreet evidence of vocal complexity that when fully understood may, in 

combination with data from other animals, begin to provide partial answers to the origins 

and neural basis of speech.  Instead of hunting for an evolutionary progression in vocal 

complexity, investigators must instead explore specific features of vocal control in many 

different animals and test hypotheses about how and why specific aspects of vocal 

complexity. Once the behaviors are characterized I can begin to identify the underlying 

brain regions and specialized neural circuits that may collectively provide an accounting 

of complex vocal behaviors such as speech.  In support of this larger goal, the focus of 

this dissertation was to identify the neuroanatomical basis of vocal control in a mammal 

that exhibits more complex and plastic vocal behaviors than any primate other than 

humans.  In this dissertation I have shown that the free-tailed bat, Tadarida brasiliensis, 

has a vast vocal repertoire, including many different call types, the capacity for context-

dependent vocal plasticity, and the formation of a complex, stereotyped vocal sequence 
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(i.e. songs).  I have shown that certain aspects of their vocal behavior and syllable usage 

was seasonal, and since melatonin is known to regulate seasonal behaviors in other 

animals, I mapped the distribution of melatonin binding sites in the brain.  When I found 

high densities of melatonin receptors present in the striatum (in addition to other more 

common areas found in other mammals), I examined the distribution of D1- and D2-type 

dopamine receptors, which showed a strong correlation between the distribution of the 

melatonin and dopamine receptors.  This indicates that melatonin’s interactions with 

dopaminergic pathways may play a role in the seasonal regulation of vocalizing, and 

thereby indirectly implicates the basal ganglia in vocal control.   

The basal ganglia are not included in current models of mammalian vocal 

control, but there are several additional reasons to suspect their involvement in free-

tailed bat vocal behavior. Firstly, the bat songs I described were more similar to 

birdsongs than to any known mammalian vocalization, and it is well known that 

birdsong production depends upon basal ganglia pathways for both song learning and 

production.  Secondly, in both songbirds and humans the basal ganglia have been 

assigned a special role in vocal plasticity.  The free-tailed bat’s echolocation behavior 

has become a model of mammalian vocal plasticity, and notably current models of vocal 

production cannot account for this plasticity. Thus, major aspects of the free-tailed bat’s 

vocal behavior are strongly suggestive of basal ganglia function.  My evidence that 

melatonin-dopamine interactions in the basal ganglia may also contribute to vocal 

control is supportive of this conclusion.  It was based on this evidence that I sought to 

identify the best available neuroanatomical technique to test the hypothesis that there 
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should be neuronal activity in the basal ganglia during vocalizing, namely 

immunohistochemical localization of immediate early gene expression following 

prolonged bouts of vocalizing.  

 I studied immediate early gene expression in echolocating, listening, and silent 

bats to find ROIs activated by the act of vocalizing but not by hearing oneself.  C-fos 

immunohistochemistry showed that a small region of the caudate nucleus was activated 

during echolocation behavior.  Additionally, several other regions were also active, 

including all the previously identified major vocal centers, such as the ACg, PAG and 

PB.  These results indicate that there were areas of the brain involved in vocalization that 

had not been identified in previous vocalization research.  The reason for this likely has 

to do with the fact that the primary techniques used in all previous studies, namely 

electrical stimulation and extracellular recordings in restrained animals, would have been 

poorly suited to the modulatory nature of the basal ganglia’s function in vocal control.  

In other words, if the primary function of the basal ganglia in vocal control is to mediate 

the effects of social context and sensory-feedback on vocal plasticity, then these circuits 

would not necessarily have been activated by electrical stimulations of the cortex or 

midbrain vocal control centers.  Instead, by using c-fos immunohistochemistry I was 

able to identify novel brain regions that were activated during normal vocal behaviors in 

freely moving animals. 

 This work provides evidence that in addition to the well known visceromotor 

vocal pathway, an extrapyramidal pathway may be involved in more complex 

mammalian vocal behaviors such as those exhibited by free-tailed bats.  Tadarida 
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brasiliensis is capable of more than the simple single syllable vocalizations that have 

dominated vocal motor pathway research.  Using naturally vocalizing bats allowed me to 

avoid the constraints of other model systems, and while I sacrificed some experimental 

control with this tactic, I found several brain regions to explore further, such as key 

regions of the basal ganglia known to be involved in vocal plasticity in other animals.  

To further characterize the role of several ROIs in vocal behavior, I did some 

preliminary pharmacology experiments, which have shown that injecting the excitatory 

drugs such as the glutamate receptor agonist kainic acid and the GABAA receptor 

antagonist bicuculline methiodide into either the dorsolateral caudate nucleus or the 

anterior cingulate cortex resulted in prolific activation of the vocal motor pathway.  The 

vocalizations recorded from these experiments ranged from rapidly repeated single 

syllables to stereotyped song-like sequences, similar to the courtship/territorial songs 

recorded in the field and in the lab.  Indeed, the diversity of complexity of evoked 

vocalizations achieved by injecting excitatory drugs into these two brain areas in the 

free-tailed bat is well beyond anything reported in other mammals or even songbirds.  

Some of the sequences elicited from ACg stimulation looked remarkably similar to 

naturally recorded songs (Figures 15, 29).  Preliminary observations indicated that the 

sequences elicited from the CdN were more variable in syllable type and order. 

 This dissertation provides support for an extrapyramidal motor loop as part of the 

main vocal motor pathway (Figure 22), and it also poses some new questions.  First, 

what additional role is the ACg playing in the vocal motor pathway?  The current model 

of vocalization has this region acting as a vocal initiator, dependent on the PAG and 
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reticular formation for vocal production.  However, the pharmacology results indicate 

that this region is involved in more complex vocal behaviors such as the execution of 

stereotyped sequences.  Second, what role do the limbic areas play in vocal behavior?  

This work has revealed some additional brain regions potentially involved, including the 

lateral hypothalamus, lateral habenula, substantia nigra pars compacta, and raphe nuclei.  

These areas have not previously been included in the vocal motor pathway, but the 

results from the c-fos immunohistochemistry experiment indicate that they are active 

during vocalization.  And finally, third, how does this work relate to what is known 

about human speech production?  These experiments produced evidence for the 

extrapyramidal pathway in mammals and also revealed some additional areas potentially 

involved in vocalization.  Below I provide answers to these questions, and discuss how 

these interpretations can provide a roadmap for a better understanding of the evolution 

and neural basis of human speech.   

 To address the first question, it is obvious from my results that the anterior 

cingulate cortex must play a substantial role in the vocal motor pathway.  Chemical 

stimulation of this area produced complex sequences in the free-tailed bat, but previous 

studies using electrical and pharmacological microstimulations of this region in monkeys 

and bats reported only simple single syllable calls (Robinson, 1967, Jürgens and Ploog, 

1970, Gooler and O'Neill, 1987).  It is possible that the ACg is involved in complex 

vocal behavior in some species but not others, but since several of the previous species 

studied only use simple single syllable vocalizations, stimulation of this area would 

probably only result in that type of vocalization.  However, stimulations in this region in 
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the mustached bat, known to exhibit syntax in some of its vocal combinations, produced 

single syllable vocalizations as well (Kanwal et al., 1994).  Still, the simple fact that I 

were able to stimulate complex vocal sequences from the ACg indicates that this region 

deserves a second look.   

 Other evidence also supports the ACg’s importance in the vocal motor pathway.  

This cortical area receives projections from the larynx area of the motor cortex (Jürgens, 

1976).  Stimulation of the laryngeal motor cortex moves the vocal folds of the larynx, 

but does not elicit vocalization in the squirrel monkey (Jürgens, 1974).  The laryngeal 

motor cortex projects to the reticular formation, bypassing the PAG (Jürgens and 

Zwirner, 1996).  This is the basis for the hypothesized neocortical vocal motor pathway 

which is separate from the visceromotor pathway containing the ACg and PAG (Jürgens, 

2009).  I do not know whether stimulation in the laryngeal area of the motor cortex in 

the bat would elicit vocalization, but since I was able to trigger complex vocal behaviors 

from the ACg, it seems possible that this region is also part of a motor loop that 

coordinates vocal complexity and that this area potentially interacts with the laryngeal 

motor cortex and associated motor loop.  The vocal pathway including the ACg is 

classically thought to run through the PAG because chemical lesions in the PAG 

suppressed ACg-induced vocalization (Jürgens and Lu, 1993).  However, ACg also 

projects to the reticular formation, presumably bypassing the PAG similar to the 

laryngeal motor cortex area, and to areas of motor cortex (Pandya et al., 1981, Wyss and 

Sripanidkulchai, 1984).  The fact that effectively paralyzing the PAG blocked ACg-

induced vocalization might also be accounted for by the PAG’s  role in respiration 
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(Subramanian et al., 2008).  It is unclear whether the chemically-lesioned animals could 

vocalize at all, because no other vocalization-inducible area was tested.   

The ACg interacts with more than just motor cortex.  It also projects to the 

striatum and receives more thalamic afferents than any other cortical area, supporting the 

idea that it is part of a motor loop (Devinsky et al., 1995).  This also suggests that the 

ACg has an integrative role, since the thalamus is a major relay center of cortical and 

subcortical regions.  In addition to thalamic input, the ACg also receives projections 

from many cortical areas, including auditory cortex (Paus, 2001).  There is some 

evidence that the ACg is important for audio-vocal integration.  In experienced human 

singers, the ACg is active when making pitch corrections, suggesting that this region is 

important for vocal modulation, correcting the vocal output based on the correct 

template (Zarate and Zatorre, 2005, 2008).  Both from my experimental results and the 

evidence present in the literature, it seems likely that the ACg plays a larger role in the 

vocal motor pathway than just vocal initiation.   

To address the second question, the role of limbic areas in vocal behavior, the 

literature indicates that these areas are all interconnected.  The lateral habenula, 

substantia nigra, lateral hypothalamus, and raphe nuclei are not part of the classic vocal 

motor pathway models.  All of the limbic regions activated during echolocation in my 

experiments are associated with each other through the lateral habenula, in a circuit 

thought to incorporate limbic-based emotion and motivation into motor action selection  

(Hikosaka et al., 2008).  The lateral habenula receives input from the lateral 

hypothalamus and caudate putamen (through globus pallidus).  Lateral habenula then 
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projects to the substantia nigra and raphe nuclei, modulating the release of dopamine and 

serotonin respectively.  The dopaminergic and serotonergic systems interact within the 

basal ganglia in complex way, making it difficult to dissect specific functions of these 

systems in the vocal motor pathway.  Dopamine has known roles in learning, motivation, 

and voluntary movement, all of which are important for vocalization.  Serotonin is 

involved in many aspects of cognition and attention, which might be particularly 

important for seasonal reproductive behaviors such as the bat song.  Additionally, 

several reports in the literature indicate that these neurotransmitters interact with each 

other in the striatum (Sasaki-Adams and Kelley, 2001, Esposito et al., 2008).  It seems 

likely that these limbic areas are involved in motivation for vocalization, providing input 

to the vocal motor pathway pertaining to the emotional state of the animal and predicted 

reward value of the behavior.  However, it is unclear whether these areas are involved in 

vocal behavior at all, although all of these regions except the substantia nigra were also 

activated by electrical stimulation-induced vocalization (Jürgens et al., 1996).  

Considering the potentially central role of the habenula for integrating the many diverse 

inputs regulating vocalizing, more work is certainly called for to determine the role of 

the lateral habenula circuit in vocalization.   

In addressing the third question, it is important to review what is currently known 

about human speech.  Humans possess a direct connection from the motor cortex to the 

laryngeal motor neurons in the nucleus ambiguus which is supposedly absent in 

mammals, although few studies have actually been carried out and other mammals do 

have direct connections from the cortex to the respiratory circuitry and oral articulators, 
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including the motoneurons controlling the lips, tongue, and jaw (Schulz et al., 2005).  

Regions of the prefrontal cortex, supplementary motor areas, and anterior cingulate 

cortex are all activated during human speech, along with the PAG and areas of the basal 

ganglia and thalamus which form motor loops with the cortex.  It seems that in the 

human vocal pathway, both the ancient visceromotor pathway and an updated and 

improved version of the neocortical pathway function in tandem to coordinate the 

diverse suite of motoneurons necessary to produce the complex sounds underlying 

speech.  The fact that there is a direct connection between the motor cortex and the 

motoneuronal pools coordinating vocalization and respiration affords more fine-tuned 

vocal control than that seen in non-human mammals.  It is unclear whether non-primates 

have cortical brain regions performing functions analogous to prefrontal cortex in the 

human vocal control pathway.  Preuss (1995) proposes that what was considered to be 

dorsolateral prefrontal cortex in the rat based on mediodorsal thalamic nuclei and 

dopaminergic innervations is actually premotor cortex and anterior cingulate cortex, and 

that these non-primate mammals do not have true prefrontal cortex regions.  This is 

important in my study of the mammalian vocal motor pathway because prefrontal cortex 

is an important structure for human speech production (Schulz et al., 2005).  If bats and 

other non-primates lack a prefrontal cortex, then the anterior cingulate cortex could form 

the evolutionary basis for prefrontal vocal centers that evolved in humans.  Thinking 

about the ACg as functionally analogous to a “pre-prefrontal cortex” supports the idea 

that this area has a more significant role in the vocal motor pathway of non-human 

mammals.   
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This work answered some questions about the non-human mammalian vocal 

motor pathway and created a basic foundation for relating mammalian vocal control to 

similar circuits in humans and songbirds, but it also created many more questions to be 

answered.  My hypothesized vocal motor pathway is provided in Figure 30, including 

the limbic vocal areas activated in vocalization and also a more important role for the 

ACg.  This hypothesis sets the stage for future work and hopefully a greater 

understanding of mammalian vocalization.  

 

 

 

 

Figure 30. Revised Non-human Mammalian Vocal Motor Pathway. 
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