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ABSTRACT 

 

Parameter Estimation of Complex Systems from Sparse and Noisy Data. 

 (December 2010) 

Yunfei Chu, B.S., Tsinghua University; 

M.S., Tsinghua University 

Chair of Advisory Committee: Dr. Juergen Hahn 

 

Mathematical modeling is a key component of various disciplines in science and 

engineering. A mathematical model which represents important behavior of a real 

system can be used as a substitute for the real process for many analysis and synthesis 

tasks. The performance of model based techniques, e.g. system analysis, computer 

simulation, controller design, sensor development, state filtering, product monitoring, 

and process optimization, is highly dependent on the quality of the model used. 

Therefore, it is very important to be able to develop an accurate model from available 

experimental data. 

Parameter estimation is usually formulated as an optimization problem where the 

parameter estimate is computed by minimizing the discrepancy between the model 

prediction and the experimental data. If a simple model and a large amount of data are 

available then the estimation problem is frequently well-posed and a small error in data 

fitting automatically results in an accurate model. However, this is not always the case. 

If the model is complex and only sparse and noisy data are available, then the estimation 

problem is often ill-conditioned and good data fitting does not ensure accurate model 

predictions. Many challenges that can often be neglected for estimation involving simple 

models need to be carefully considered for estimation problems involving complex 

models. 

To obtain a reliable and accurate estimate from sparse and noisy data, a set of 

techniques is developed by addressing the challenges encountered in estimation of 

complex models, including (1) model analysis and simplification which identifies the 
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important sources of uncertainty and reduces the model complexity; (2) experimental 

design for collecting information-rich data by setting optimal experimental conditions; 

(3) regularization of estimation problem which solves the ill-conditioned large-scale 

optimization problem by reducing the number of parameters; (4) nonlinear estimation 

and filtering which fits the data by various estimation and filtering algorithms; (5) model 

verification by applying statistical hypothesis test to the prediction error. 

The developed methods are applied to different types of models ranging from models 

found in the process industries to biochemical networks, some of which are described by 

ordinary differential equations with dozens of state variables and more than a hundred 

parameters. 
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1. INTRODUCTION 

 

Mathematical modeling is an important component of various disciplines in science 

and engineering.  Though mathematical modeling, a real world problem can be 

translated into an equivalent mathematical problem, which facilitates the solution 

(Hangos and Cameron, 2001). In process engineering, models are widely used as 

replacements of the real system, in analysis, simulation, optimization, control, 

monitoring, and filtering (Fig. 1-1).  

 

 

 
 

Fig. 1-1. Model-based techniques. 

 

 

However, a model is just an approximation of a real system and there are differences 

between the model and the real system. Since a model-based technique is designed based 

on the model, yet the conclusions are often applied to the real system, the quality of any 

____________ 
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technique that involves a model is closely dependent on the accuracy of the model. 

Therefore, model building is a core component of all model-based techniques. It should 

be noted that obtaining the model is the single most time consuming task in the 

application of model-based techniques and a majority (over 75%) of costs associated 

with a project can be attributed to modeling (Hjalmarsson, 2009). In fact, one of the 

chief barriers to the more widespread use of nonlinear models in advanced model-based 

techniques in the chemical/petroleum industry is the cost of model development and 

validation (Hussain, 1999). It is therefore important to understand what makes a 

modeling problem difficult and how to tackle the resulting difficulties. 
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Fig. 1-2. Diagram of estimation procedure. (The real system is represented by the blue 

curve, the estimated model is represented by the red curve, and the collected data is 

represented by the greed points) 

 

 

In mathematical modeling, the model structure is often determined by analysis of the 

underlying physical and chemical laws while the parameters are often updated from 
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experimental data. A diagram of an estimation procedure is shown in Fig. 1-2. Since the 

role of a model is to imitate the real system, it is the goal of parameter estimation is to 

reduce the discrepancy between the model and the real system. However, since a perfect 

model of any real system is never known, it is impossible to minimize the discrepancy 

directly. Instead, a set of data are sampled from the real system, as a representation of 

the real system, to evaluate the performance of predictions of the model. Then the value 

of model parameters is adjusted to reduce the fitting error which is a criterion to measure 

the discrepancy between the model and the data. 

The fact that the parameter values are often determined by solving an optimization 

for data fitting often causes a misunderstanding that an estimation problem is just a 

special type of nonlinear programming problem, i.e., a least squares optimization 

problem. Admittedly solving the optimization problem is an important step in estimation 

and this problem is non-trivial for estimation of a nonlinear system. However, estimation 

is far more than simply an optimization problem for data fitting. It is clear from Fig. 1-2 

that data fitting is just a way to achieve the actual goal to approximate the real system. A 

small value in the fitting error does not necessarily imply a small value in the 

discrepancy between the estimated model and the real system. 

It should be noted that in the procedure of the data generation the representation 

error will occur unavoidably, which is the discrepancy between the data and the real 

system. Common representation errors include the measurement noise, discretization 

from sampling, and limited operating conditions for data collection. The data can never 

exactly describe the real system and the effect on the estimation results produced by the 

representation error in the data needs to be investigated carefully. 

In the case of estimation of a simple model with a lot of data, the estimation problem 

is frequently well-posed and a small error in data fitting typically results in an accurate 

model. However, this is not always true. In the case of a complex model with sparse and 

noisy data, the estimation problem is often ill-conditioned and the phenomenon of over-

fitting can occur where good data fitting can lead to poor model prediction capability. 
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Many issues are often neglected for estimation of a simple model, but need to be 

considered carefully for estimation of a complex model. 

The first problem is the information-richness of the data. For estimation of a simple 

model, the amount of available data often far exceeds what is needed for estimating a 

few parameters. However, in the case of a complex model, the information content of 

each data point becomes critical: (1) a large number of parameters may need to be 

estimated, and (2) data generation is often difficult since a complex model implies a 

complex real system where conduction of an experiment can be expensive and time-

consuming.  

The second problem is related to uncertainty in the model. Since some discrepancy 

between the model and the real system is inevitable, uncertainty is an inherent 

characteristic of a model. In a complex model, there are many sources of the uncertainty, 

however, not all of them have equal influence on the behavior of interest of the model. A 

frequently asked question in this situation is “What uncertain sources really matter for a 

given property of the model?” Since it is very difficult or even impossible to reduce all 

uncertain sources in a complex system through estimation from data, it is helpful in 

practice to identify the important ones. 

The third problem is the complexity of the model. Analysis of a complex model is 

difficult and there is usually no closed-form expression of the model predictions. The 

result of this is that simulation is the only way to investigate the model, however, 

simulation of a complex model is time consuming, especially if the model has to be 

solved repeatedly. This hinders the applications of a complex model, e.g. in the iterative 

optimization procedure for parameter estimation. Fortunately, complex models often 

contain a considerable degree of redundancy. It is possible and desirable to simplify a 

complex model and reduce it to a simple one, which can be more handily used for 

analysis and simulation. 

The forth problem is that parameter estimation problems of complex models can be 

ill-conditioned. If highly correlated model parameters need to be estimated from noisy 
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data then not all parameters will be identifiable in practice. A regularization mechanism 

is required to as part of the estimation procedure to ensure reliable parameter estimates. 

The fifth problem related to validation of the estimated model. For example, an ill-

conditioned estimation problem may often result in the situation where a small fitting 

error does not necessarily lead to a small prediction error. In those cases it is insufficient 

to just check the fitting error and more sophisticated validation approaches are required. 

A sixth problem results from the choice of estimation or filtering method. The 

question that needs to be answered is which methods are more appropriate for estimation 

of a complex model and how to integrate them with other procedures, e.g. regularization 

methods, in parameter estimation. 

 

 

model analysis and 

simplification

experimental design

regularization of 

estimation problem

nonlinear estimation 

and filtering

model verification

Identify the important sources of 

uncertainty and reduce model 

complexity

Collect most informative data by 

setting optimal experimental 

conditions

Solve the ill conditioned large scale 

optimization by reducing the 

number of parameters

Fit the data by various estimation 

and filtering algorithms

Verify the result by statistical 

hypothesis test
 

 

Fig. 1-3. Outline of research work in estimation of complex models. 
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To address the challenges encountered in estimation of complex models, a set of 

methodologies from model analysis and simplification to data fitting is developed in this 

dissertation. An overview over these techniques is shown in Fig. 1-3. 

 

Stage 1: Model analysis and simplification 

The purpose of this stage is to gain insight into a model by discovering the key 

factors which should be focused on. A large-scale model consists of a large number of 

parameters, however, the system behavior is often mainly determined by just a few of 

them. Sensitivity analysis is a powerful tool to identify these important components. In 

this work several new techniques for global sensitivity analysis were developed, which 

overcome some drawbacks of commonly used techniques. After identification of 

important components, the complex model can be reduced to a simple one facilitating 

the following analysis. 

 

Stage 2: Optimal experimental design 

This stage collects data for parameter estimation or model identification by adjusting 

the experimental conditions. Procedures include input design, sampling point selection, 

and sensor location. The main difficulty of experimental design is the inevitable 

parameter uncertainty since experimental design is always applied before parameter 

estimation can be performed. To deal with this problem, several robust strategies are 

introduced in this work. 

 

Stage 3: Regularization of estimation problem 

This stage focuses on solving the ill-conditioned problem of parameter estimation of 

complex systems. Parameter set selection is introduced as a technique to regularize the 

ill-conditioned problem and to reduce the effect of noise on the estimated parameter 

value. Additionally, parameter set selection serves as a simplification produce for the 

optimization problem resulting from parameter estimation. Procedures are presented in 
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this work to solve the resulting combinatorial selection problem under the effect of 

parameter uncertainty. 

 

Stage 4: Nonlinear estimation and filtering 

This stage fits the model parameters to experimental data. The common least squares 

estimation and maximum likelihood estimation techniques can be applied. The 

parameters can also be augmented as states and methods of nonlinear filtering can be 

applied.  

 

Stage 5: Verification 

It is determined at this stage if the experimental design and estimation results are 

sufficiently accurate. The fitting error is commonly used as a criterion, however, it may 

be insufficient for drawing definite conclusions in some cases. Statistical tests can be 

used to provide reasonable results. 

 

The outline of this dissertation is as follows: Section 2 presents a comprehensive 

review of existing techniques involved in parameter estimation of complex systems. A 

comparative study of different sensitivity analysis techniques is presented in Section 3. 

Section 4 presents a robust parameter selection method for nonlinear dynamic systems 

and the integration of parameter selection with experimental design is presented in 

Section 5. An efficient algorithm via parameter clustering to solve the combinatorial 

selection problem is presented in Section 6 and in Section 7 a method to improve the 

prediction accuracy is discussed. A new robust method for experimental design is 

presented in Section 8. Conclusions are given in Section 9. 

 



 

 

8 

2. LITERATURE REVIEW 

 

2.1 Sensitivity analysis techniques 

Sensitivity analysis is a powerful tool to study how model parameter variations can 

qualitatively or quantitatively influence model behavior. The analysis can improve the 

understanding of the complex model as it can be used to rank the contribution of 

individual parts of the model to the feature of interest. A variety of approaches to 

sensitivity analysis have been developed (Borgonovo, 2006; Cacuci and Ionescu-Bujor , 

2004; Frey and Patil, 2002; Hamby, 1994; Helton, 1993; Iman and Helton, 1988; 

Ionescu-Bujor and Cacuci , 2004; Klepper, 1997; Marino et al., 2008; Rabitz, 1983; 

Rubinstein, 1989; Saltelli et al., 2000, 2004, 2005, 2006, 2008; Turanyi, 1990; Wagner, 

1995; Wallace, 2000). Four commonly used methods are investigated in this section: (i) 

differential analysis (Dickinson and Gelinas, 1976; Frank, 1978; Hwang et al., 1978), 

which approximates the model by the first-order Taylor series; (ii) the Morris method 

(Morris, 1991) which calculates the average sensitivity over an interval by computing 

sensitivity at several points in the parameter space; (iii) a sampling-based method 

(Hornberger and Spear, 1981; Iman et al., 1981), which computes a probabilistic-based 

mapping from the uncertain input to the output; and (iv) the variance-based method 

(Atherton et al., 1975; Cukier et al., 1973), which is based on the contributions of 

individual variables to the variance of the model output.  

Differential analysis is a local method while the other three are global methods. 

Local sensitivity analysis perturbs one parameter at a time in a small range around the 

nominal values. The main drawback of local techniques is that the sensitivity value is 

generally dependent on the parameter value which is not precisely known prior to 

parameter estimation. Global sensitivity analysis simultaneously varies several 

parameters, often over a large range of the parameter values. As a result, global 

sensitivity analysis techniques are able to provide a more accurate description of the 

sensitivity than local analysis if the uncertainty of the parameter values is significant. 
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Sensitivity analysis has become a key step for mathematical modeling and analysis. 

This is also reflected by the wide range of its applications in chemical or biochemical 

engineering to identify the important parameters (Bentele et al., 2004; Cho et al., 2003; 

Daescu et al., 2003; Dunker et al., 1984; Hu and Yuan, 2006; Ingalls and Sauro, 2003; 

Perumal et al., 2009; Rabitz, 1981, 1987; Sandu et al., 2003; Yue et al., 2006; Zi et al., 

2005). Sensitivity analysis also plays an important role in identifiability test (Brun, et al., 

2001; Vajda and Rabitz, 1994; Vanrolleghem et al., 1995; Sun et al., 2001; Yeh, 1986), 

parameter selection (Brockmann et al., 2008; Brun et al. 2002; Machado et al., 2009; 

Yao et al., 2003; Weijers and Vanrolleghem, 1997), experimental design (Bardow, 2008; 

Buzzi-Ferraris and Forzattia, 1983; Franceschini and Macchietto, 2008; Hosten, 1974; 

Schittkowski, 2007), model reduction (Hay et al., 2009; Degenring et al., 2004; Ho, 

2008; Liu et al., 2005; Sun and Hahn, 2006; Vajda et al., 1985), sensor network design 

(Cobb and Liebst, 1997; Stanimirovic et al., 2008; Zamprogna et al., 2005), state 

filtering (Huang et al., 2003; Jwo and Cho, 2007; Sorensen et al., 2006), controller 

design (Higham et al., 2004; Nikandrov and Swartz, 2009; Nagy and Braatz, 2003; Oniki, 

1973; Sokolowski, 1987), and process optimization (Balsa-Canto et al., 2001; Castillo et 

al., 2006; Ozyurt and Barton, 2005). 

A general form of the nonlinear dynamic system on which the analysis is performed 

on is assumed to be 

( , , )=x f x u θ�  with 0(0) =x x  (2-1) 

( , , )=y g x u θ  (2-2) 

where xn∈x R  is the state vector, un∈u R  is the input vector, yn
∈y R  is the output 

vector and 
nθ∈θ R  is the parameter vector.  

 

Differential analysis 

Differential analysis is the most widely used method for sensitivity analysis. The 

technique approximates the output function by the truncated Taylor series 
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( ) ( ) ( )T

T

1
, ,

2 yn y
t t

∂
+ ∆ ≈ + ∆ + ⊗ ∆ ∆

∂ θ
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θ
, (2-3) 

where 
,T yn nθ∂ ∂ ∈y θ R�  is the Jacobian matrix of y 
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and 
,yn n n

y

θ θ∈H R is the Hessian matrix 
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 ∂
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∂ ∂ 
 ∂
 

= ∂ ∂ 
 
 

∂ 
 ∂ ∂ 

θ θ

H θ θ

θ θ

�

. (2-5) 

Both Jacobian matrix and Hessian matrix should be evaluated at the parameter point at 

which the Taylor series is expended and the approximation can be applied only when the 

parameter variation ∆θθθθ is small. So this is a local technique. The Jacobian matrix and the 

Hessian matrix indicate the parameter effect on the output and they are defined as the 

first order local sensitivity and the second order local sensitivity respectively. 

Besides the parameter sensitivity, the sensitivity of the output with respect to initial 

state value and the input value can also be calculated. The time function of the input 

( )tu  is frequently parameterized by a finite set of parameters, denoted by u. To simplify 

the expression, the initial states and the parameterized inputs are concatenated into an 

augmented parameter vector x un n nθ + +∈ψ R  
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0

 
 =  
  

θ

ψ x

u

. (2-6) 

Various methods are developed to calculate the local sensitivity for systems 

described by Eq. (2-1) and Eq. (2-2).  Among them, the method of direct differentiation 

is commonly used. The sensitivity values of the state variables x(t) with respect to a 

parameter ψi can be calculated by differentiating both sides of the state equations (2-1) to 

obtain 

T
,    1

x u

i i i

d
i n n n

dt
θψ ψ ψ

∂ ∂ ∂ ∂
= + = + +

∂ ∂ ∂ ∂

x f x f

x
� . (2-7) 

If ψi is an initial value of a state, then the second term of the right hand side of Eq. (2-7) 

is zero. The initial conditions of the differential equations are given by 

00

,  if  or 

,  if ( )

i i

j ii t
j

ψ ψ

ψψ
=

∈ ∈∂
= 

=∂ 

0 θ ux

e x
, (2-8) 

where xn

j ∈e R  is a vector with entries of 1 on its j-th element and entries of 0 on all 

other elements. By solving the sensitivity equations (2-7) and the state equations (2-1) 

simultaneously the sensitivity values are calculated along the state/output trajectories. 

The second order sensitivities can be calculated by differentiating both sides of Eq. 

(2-7) 

2 2 2 2 2

T T T
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                      ( ) ,    , 1

i j i j i j j i i j

N f x u

j i

d

dt

i j n n nθ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
+ ⊗ = + +

∂ ∂

x f x f x f x f

x x x

x x
I H �

 (2-9) 

where 
,x x xn n n

f ∈H R is the Hessian matrix of f. To calculate the second order sensitivities, 

Eq. (2-9), Eq. (2-7) and Eq. (2-1) are solved simultaneously. 

Based on the sensitivity of the state vector, the sensitivity of the output can be 

calculated as 
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T
,    1 x u

i i i

i n n nθψ ψ ψ

∂ ∂ ∂ ∂
= + = + +

∂ ∂ ∂∂

y g x g

x
�  (2-10) 

and 

2 2 2 2 2
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j i
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ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
+ ⊗ = + +

∂ ∂

y g x g x g x g

x x x

x x
I H �

 (2-11) 

where 
,x x xn n n

g ∈H R  the Hessian matrix of  g. 

Various algorithms and software packages exist for efficiently solving the 

differential equations for the sensitivity calculations (Byrnea and Hindmarsh, 1987), e.g., 

VODE (Brown et al., 1989), DASPK
 
(Brown et al., 1994) or SUNDIALS (Hindmarsh et 

al., 2005). In this dissertation, the Matlab ODE solver is used as the sensitivity 

calculations can easily be incorporated with the other calculations. 

 

Morris method 

Unlike the differential analysis, the techniques for global sensitivity analysis do not 

employ the structure of the dynamic model described by Eq. (2-1) and Eq. (2-2). The 

model is only used to simulate the output value as a black-box model does. The Morris 

method (Morris, 1991) is a common screening method and it calculates the sensitivity 

measure by perturbing one parameter at a time 

( ) ( )1 1, , , , , , , , , ,
( )

i i m i m

i

i

t t
t

θ θ θ θ θ θ± ∆ −
=

∆

y y
d

� � � �
 (2-12) 

by a certain amount ∆i , where di(t) is called the elementary effect of the i-th parameter 

at time t.  

Similarly to the differential analysis techniques, the elementary effects are also 

dependent on the nominal value of the parameters. However, the elementary effects are 

computed as an average over a number of points in parameter space and will, therefore, 

reflect an average of the sensitivity over a region of the parameter space. The mean of 

the elementary effect is defined as the sensitivity measure 
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1
( )

r

ij

j

t
r
∑d  (2-13) 

where dij(t) is the elementary effect of the i-th parameter at the j-th sampling point and r 

is the number of sampling points used (Cropp and Braddock, 2002; Morris, 1991; Zador 

2005). This measure of sensitivity is also commonly normalized to ensure that the use of 

different units does not affect sensitivity analysis results. 

 

Sampling-based approach (Kolmogorov-Smirnov statistic) 

Sampling-based approaches for sensitivity analysis are very popular because of their 

conceptual simplicity and ease of implementation. These methods characterize the 

uncertainty by assigning a probability distribution 

( ) ( ) ( )1 np p p
θ

θ θ=θ �  (2-14) 

to every parameter θi of the parameter vector θ. The distribution function represents 

some of the knowledge about the uncertainty of the parameters. While a normal 

distribution can be a good representation for many systems where mean and variance are 

fairly well-known, a uniform distribution is often used if only the uncertainty range of 

the parameters is known (Saltelli et al., 2005, 2008). 

The first step of sampling-based methods is to generate a sample set of parameter 

vectors from the distribution of the individual parameters. Three sampling procedures 

are widely used (Helton and Davis, 2002, 2003; McKay et al., 2000): random sampling, 

stratified sampling, and Latin hypercube sampling. The random sampling has the most 

obvious statistical meaning but the Latin hypercube sampling is more efficient for large 

number of parameters and is used in this work. 

The next step is to evaluate the individual contribution of each parameter. Various 

methods can be used to calculate the sensitivity, such as regression analysis, correlation 

analysis, stepwise regression and rank transformation (Helton et al., 2005, 2006; Saltelli 

et al., 2000). In this section the Kolmogorov-Smirnov statistic is used as the sensitivity 

measure. The values of the output are recorded for simulations with varying parameter 

values. The difference between the values of the outputs for these different parameter 
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values and a nominal value of the output is computed and compared against a threshold. 

If the value is less than the threshold than the parameter value is classified as part of an 

“acceptable set”, however, if the difference is larger than the threshold then the 

parameter value is assumed to belong to an “unacceptable set”. The difference between 

the cumulative frequency distributions of the two sets is defined as the sensitivity 

measure of the output with respect to the parameter. The greater the difference between 

the two cumulative functions, the more sensitive is the output with respect to the 

parameter. The sensitivity measure of the sampling-based approach is 

sup ( , ) ( , )ai ui
x

KS F t x F t x= −  (2-15) 

where Fai and Fui are the cumulative functions respectively corresponding to the 

‘acceptable set’ and the ‘unacceptable set’ of the parameter θi. The greater the difference 

between the two cumulative functions, the more sensitive is the output with respect to 

the parameter. 

 

Variance based method 

Like the method based on the Kolmogorov-Smirnov statistic, the variance-based 

sensitivity characterizes the prior information of the parameter uncertainty by a 

probability density function (2.14). The conditional variance characterizes the individual 

contribution of a parameter to the total variance of the output, which is calculated by 

( )

( ) ( )( )

( ) ( ) ( ) ( ) ( )

2

2

   Var E , |

E E , | E ,

, , .

j i

j i j

j k k k j k k k i i i

k i k i k k

y t

y t y t

y t p d y t p d p d

θ

θ

θ θ θ θ θ θ
≠ ≠

    

    = −     

 
= − 

 
∏ ∏ ∏ ∏∫ ∫ ∫ ∫ ∫

θ

θ θ

θ θ� �

 
(2-16) 

There are two terms contained in the bracket in Eq. (2-16). The first term is the 

conditional mean of the output according to a particular parameter 
i

θ  and the second one 

is the mean of the output over all parameters. The global sensitivity is often defined as 

the conditional variance divided by the total variance of the output (Saltelli et al., 2008) 
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( )

( )

Var E , |

Var ,

j i

j

y t

y t

θ    
  

θ

θ
 (2-17) 

or the normalized conditional variance (Chu et al., 2007) 

( )

[ ]

Var E , |

Var

j i

i

y t θ

θ

    θ
. (2-18) 

The advantage of the normalized conditional variance is that the global sensitivity is in 

some sense comparable to the local sensitivity as both have the same unit. Computation 

of the conditional variance is not trivial and various approaches for its computation have 

been presented, including the regression method (McKay, 1997; McKay et al., 1999), 

Sobol’s method (Homma and Saltelli, 1996; Saltelli, 2002; Sobol, 2001), Bayesian 

approach (Oakley and O'Hagan, 2004; Zhang et al., 2009), high dimensional model 

representation (HDMR) (Li et al., 2002; Rabitz and Alis, 1999; Ziehn and Tomlin, 2009), 

state dependent parameter (SDP) (Ratto et al., 2007), polynomial chaos expansions (PCE) 

(Sudret, 2008), Fourier amplitude sensitivity test (FAST) (Cukier et al., 1973, 1975, 

1978; McRae et al., 1982; Schaibly and Shuler, 1973), and extensions of FAST (Saltelli 

et al., 1999, 2010). 

If the model is linear and parameters are independent 

( ) ( ),
j jk k

k

y t a t θ=∑θ  (2-19) 

then the conditional mean of the parameter 
i

θ  is given by 

( ) ( ) ( ) [ ]E , | E
j i ji i jk k

k i

y t a t a tθ θ θ
≠

  = +  ∑θ  (2-20) 

and the mean is 

( ) ( ) [ ]E , E
j jk k

k

y t a t θ  =  ∑θ . (2-21) 

The conditional variance from Eq. (2-16) results in 
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 
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In this case the global sensitivity given by Eq. (2-18) matches the magnitude of the local 

sensitivity. 

( )

[ ]
( )

( )Var E , | ,

Var

j i j

ji

i i

y t y t
a t

θ

θ θ

   ∂   = =
∂

θ θ
. (2-23) 

If the model is nonlinear and the parameter uncertainty is small, then the global 

sensitivity computed by these means returns results that approximate those computed by 

the absolute value of the local sensitivity analysis (Chu et al., 2007).  

 

2.2. Optimal experimental design 

Experimental design seeks to determine the experimental conditions to collect 

informative data that will improve the precision of estimated parameters. A large amount 

of literature exists on design of experiments, including several textbooks (e.g., Atkinson 

et al., 2007; Chaudhuri and Mykland, 1993; Emery and Nenarokomov, 1998; Forssell 

and Ljung, 2000; Franceschini and Macchietto, 2008; Hill, 1978; Kiefer and Wolfowitz, 

1959; Ljung, 1999; Pronzato, 2008; Walter and Pronzato, 1990; Whittle, 1973). 

For dynamic systems, the task of experimental design includes choosing input and 

output ports (Alonso et al., 2004; Harris et al., 1980; Keller and Bonvin, 1992; Singh and 

Hahn, 2005; 2006), designing the profile of the input signal (Levadi, 1966; Mehra, 1974; 

Hildebrand and Gevers, 2003), selection sampling points from output trajectory 

(D'Argenio, 1981; Knopman and Voss, 1987; Kutalik et al., 2004), and setting the initial 

value of the state variables (Saccomani et al., 2003). Each of these variables of a 

experiment has a significant bearing upon the information contained in the data for 

estimation. 



 

 

17 

 Optimal experimental design depends upon the assumed model including the model 

structure and the assumptions about the error distribution. Assume a regression model 

for design is given by 

( )= +y g θ ε�  (2-24) 

where ( ) ( )
T

1 ,  ,  
tn

y t y t =  y� � ��  is the measured output, ( ) ( )
T

1( ) , , , ,
tn

g t g t =  g θ θ θ� is 

the predicted value and ( ) ( )
T

1 ,  ,  
tn

t tε ε =  ε �  is the measurement noise. For dynamic 

systems the regression model is defined implicitly by a set of differential equations 

describing the system. If a system is nonlinear then an analytical expression of the 

regression model rarely exists. 

Information about the noise is often required for experimental design, where it is a 

common assumption that noise is normally distributed with zero mean and a covariance 

matrix of Σ . To simplify the notation in the following, a Cholesky decomposition of the 

inverse of the covariance matrix can be performed, i.e. 1 T− =Σ C C . A new regression 

model can then be obtained by multiplying both sides of the regression model shown in 

Eq. (2-24) by the matrix C. The noise vector of this new model is Cε  which has a 

covariance matrix equal to the identity matrix. Due to this pre-processing, the covariance 

matrix of the noise can be assumed to be the identity matrix  

=Σ I  (2-25) 

without loss of generality.  

If the covariance matrix of the noise is unknown it is possible to augment the 

parameter vector to include elements of the covariance matrix and estimate the 

covariance matrix simultaneously with other parameters. However, this approach further 

complicates the parameter estimation and experimental design and it is not uncommon to 

assume that one knows the covariance matrix of the noise in experimental design.  

To measure the quality of a designed experiment a criterion is required. One criterion 

is the covariance matrix of the estimated parameters. It is possible to directly generate a 

distribution of estimated values of the parameters by using a Monte Carlo method. In 

this case, the experimental design can be performed using multiple sampling points of 
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the estimated parameter values (Asprey and Macchietto, 2000; Balsa-Canto et al., 2007; 

Hengl ea al., 2007; Joshi et al., 2006). However, these approaches can be 

computationally expensive since the covariance matrix can only be computed after the 

parameters have been estimated and it is also affected by the estimation algorithm. 

Alternatively, the Fisher information matrix (FIM) can be used as the inverse of the FIM 

provides the Cramer-Rao lower bound for the covariance matrix (Walter and Pronzato, 

1990). It is desirable to minimize a criterion involving the inverse of the FIM or 

equivalently to maximize a criterion of the FIM in order to reduce a measure of the 

covariance matrix. 

The outputs of a nonlinear dynamic system are affected by process and measurement 

noise and in general no closed-form solution of the FIM exists. However, for the purpose 

of simplicity only the measurement noise is commonly considered. 

In the case of additive Gaussian noise the FIM is very closely related to the 

parameter sensitivity matrix. After the pre-processing procedure to whiten the noise, the 

measurement noise can be assumed to be normally distributed with the zero mean and 

the unit covariance matrix. As a result the measurements are also normally distributed 

given by 

( ) ( ) ( ) ( )
2 T

| 2 exp 1 2 ( ) ( )
yn

p π
−  = − − −

 
y θ y y θ y y θ� � �  (2-26) 

and the Fisher information matrix, F, is given by 

( ) ( ) ( )

( )( )
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T T
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        .
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∂ ∂ 

=  ∂ ∂ 

∂ ∂   = − −   ∂ ∂ 

∂ ∂ 
=  

∂ ∂ 

F θ y θ y θ
θ θ

y y
y y θ y y θ

θ θ

y y

θ θ

� �

� �  (2-27) 

The FIM becomes the cross product of the local sensitivity matrix defined as 

T

∂
=

∂

y
S

θ
. (2-28) 
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If the measurement noise is not normally distributed, calculation of FIM becomes more 

complicated (Das et al., 2010; Spall, 2005).  

To reduce variations in the estimated parameter values, it is desired to maximize 

some measure of the Fisher information matrix to reduce its inverse. Such a measure can 

consist of a real function that operates on the Fisher information matrix, e.g., the 

experimental optimality criteria (Kiefer, 1959, 1974; Steinberg and Hunter, 1984). The 

most popular experimental optimality criterion is the D-optimality criterion (deAguiar et 

al., 1995; St. John and Draper, 1975; Wynn, 1972) which maximizes the logarithm of the 

determinant of the Fisher information matrix: 

( ) ( )* max max detD Dϕ ϕ= =F F . (2-29) 

This criterion minimizes the volume of the confidence ellipsoid with an arbitrary fixed 

confidence level for a least square estimator. Other common criteria include the E-

optimality which maximizes the smallest eigenvalue of the Fisher information matrix 

( ) ( )*

minmax maxE Eϕ ϕ λ= =F F , (2-30) 

the modified E-optimality criterion which minimizes the condition number 

( ) ( )* min minME MEϕ ϕ κ= =F F , (2-31) 

and the A-optimality criterion which minimizes the trace of the invese 

( ) ( )* 1min min tr
A A

ϕ ϕ −= =F F . (2-32) 

These criteria values will be far from the optimum if the Fisher information matrix is ill-

conditioned. The criterion functions evaluate a design from different perspectives and to 

combine all aspects of interest a compound design criterion can be formulated with 

appropriate weights on each criterion (Atkinson and Bogacka, 1997, 2002; Cook and 

Wong, 1994). 

While local sensitivity analysis can be applied to nonlinear models, there are several 

points that need to be carefully considered. One is that the results returned by local 

sensitivity analysis of a nonlinear system depend upon the values of the parameters that 

one wants to estimate. Obviously these values are not exactly known prior to estimation. 

The effect of the parameter values on the sensitivity values and, accordingly, on the 
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experimental design criterion represents one of the main problems associated with 

experimental design of nonlinear systems.  

Several approaches have been developed to deal with this dependency. The most 

widely-used one is local design (Box and Lucas, 1959; Chernoff, 1953) which assumes 

that the true parameter values are close to the nominal values. If this is the case then the 

sensitivity vectors evaluated at the nominal values of the parameters can be used to 

design an experiment. However, this approach neglects the parameter uncertainty. 

Another approach is sequential design (Box and Hunter, 1962; Ford and Silvey, 1980; 

Wynn, 1970) which iterates between local design and parameter estimation. Using this 

technique, an experiment is designed based on the sensitivity evaluated at the previously 

estimated parameter values; the parameter values are then re-estimated based upon data 

generated from the designed experiment. The newly estimated parameter values are used 

for experimental design for the next iteration. The main drawback of this technique is 

that iterating between experimental design and parameter estimation may not result in a 

small number of experiments that need to be performed. This drawback is a significant 

one as reducing the experimental effort is one of the driving factors behind performing 

experimental design. Curvature based methods (Bates and Watts, 1980; Benabbas et al., 

2005) which calculate the higher order sensitivity provide another direction to deal with 

the uncertainty in design of experiments. 

Robust design (Asprey and Macchietto, 2002; Box and Draper, 1975; Dette et al., 

2005) is an alternative to the aforementioned experimental design methods. Robust 

design evaluates the sensitivity not only at one point in the parameter space, but instead 

at many individual points. Approaches for robust design include, the min-max method 

(Hoel, 1965; Pronzato and Walter, 1988; Rojas et al., 2007; Goodwin et al. 2008) and 

the Bayesian method (Pronzato and Walter, 1985; Chaloner, 1993; Chaloner and 

Verdinelli, 1995). However, these robust methods are computationally expensive due to 

the evaluation of the sensitivity over a range of possible parameter values. 

For a dynamic system the experimental design can be formulated as an optimal 

control problem to optimize a criterion function and various algorithms and software 
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have been developed (e.g., Banga et al., 2002; Bauer et al., 2000; Cook and Nachtsheim, 

1980; Hamada et al., 2001; Korkel et al., 2004; Lohmann et al., 1992; Rasch et al. 2009; 

Schittkowski, 2009). However, most algorithms are applied to solve the local design 

problem. Due to the complexity of the optimization method heuristic methods are also 

helpful (Bohachevsky et al., 1986; Heredia-Langner et al., 2003; Lejeune, 2003). 

 

2.3. Identifiability test and parameter selection 

Successful parameter estimation depends, among other things, on parameter 

identifiability. Parameter identifiability can be determined either analytically or 

numerically (Grewal and Glover, 1976; Ljung, 1999; Walter 1987; Walter and Pronzato, 

1990). Analytical identifiabilty investigates uniqueness of the solution derived from 

parameter estimation while numerical identifiability focuses on the robustness of the 

solution to the noise in the data. Additionally, analytical identifiabilty can be either 

global or local. While global identifiability includes local identifiability as a special case, 

it is significantly more difficult to determine global identifiability as approaches based 

upon differential algebra (Audoly et al., 1998, 2001; Ljung and Glad, 1994; Margaria et 

al., 2001), Taylor series approximations and similarity transformations (Chappell et al., 

1990; Cobelli and DiStefano, 1980; Pohjanpalo, 1978; Vajda et al., 1989) are restricted 

to small systems. Local identifiability on the other hand is relatively straightforward to 

test by computing the rank of the parameter output sensitivity matrix. The state vector 

can be augmented with the parameters and observability of this augmented vector can be 

performed as it also includes parameter identifiability (Hermann and Krener, 1977). 

However the observability test is not trivial to perform and interpret for nonlinear 

systems. As the techniques introduced in this work are based upon these concepts, the 

definitions of identifiability (Jacquez and Perry, 1990; Rothenbe, 1971) are briefly 

reviewed next. 

 

Definition 2.1: A parameter point θ0 is said to be locally identifiable if there exists an 

open neighborhood of θ0 containing no other θ which produces the identical output y. 
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Condition 2.1: Let θ0 be a parameter point and the sensitivity matrix T( ) = ∂ ∂S θ y θ  has 

constant rank in a neighborhood of θ0. Then θ0 is locally identifiable if and only if S(θ0) 

has the full column rank. 

 

It should be noted that it is a necessary condition that the rank of the sensitivity 

matrix does not change. If this condition is removed then the full column rank of the 

sensitivity matrix is just a sufficient condition for local identifiability, i.e., a rank-

deficient sensitivity matrix does not imply that the parameters are not locally identifiable. 

The condition of constant rank has to be checked analytically and evaluating this 

condition for one nominal value of the parameters is usually not sufficient. 

Analytical identifiability guarantees the existence of a unique solution in at least a 

small neighborhood of the nominal point. However, analytically identifiable of 

parameters does not guarantee accurate estimation in practice. If the sensitivity matrix 

has the full column rank but is ill-conditioned, then noise in the data will result in large 

variations of the estimated parameter values. While the parameters in this case are 

identifiable based upon the analytical conditions, it is questionable that accurate 

parameter estimates can be obtained in practice and it can be said that the system is not 

numerically identifiable. 

Numerical identifiability (Jacquez and Greif, 1985) can be determined from the 

parameter covariance matrix. If the entries in the covariance are large then the 

parameters are not numerical identifiable. However, the covariance matrix can only be 

computed after the parameters have been estimated and it is affected by the choice of the 

estimation algorithm. As an alternative, the Fisher information matrix can be used as its 

inverse provides the Cramer-Rao lower bound for the covariance matrix (Ljung, 1999; 

Walter and Pronzato, 1990). 

If some of the parameters are not numerically identifiable then a set of identifiable 

parameters are often selected for estimation. The Fisher information matrix of a subset 

of parameters becomes 
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( ) ( )
TT= =

L
F L FL SL SL  (2-33) 

where the selection matrix L is given by 

1 2 ns
i i i

 =
 

L e e e� . (2-34) 

The set { }1 2, , ,
sni i i�  denotes the index of the selected parameters and ei is the i-th column 

of the identity matrix. The parameter selection problem then results in determining the 

matrix L which maximizes the value of a chosen measure of the Fisher information 

matrix from Eq. (2-33). This results in a combinatorial problem where ns estimable 

parameters need to be selected from the set of n parameters. This type of problem is non-

trivial to solve for a large number of parameters, especially if uncertainty in the 

parameters values is taken into account.  

Various methods for parameter selection based on sensitivity analysis have been 

proposed in the literature. These include, but are not limited to, a collinearity index 

method (Brun et al., 2001), a column pivoting method (Velez-Reyes and Verghese, 

1995), an extension of the relative gain array (Sandink et al., 2001), a Gram-Schmidt 

orthogonalization method (Lund and Foss, 2008; Yao et al. 2003), a recursive approach 

based upon principal component analysis (Li et al., 2004), and a combination of Hankel 

singular values and singular value decomposition (Sun and Hahn, 2006). A systematic 

approach for parameter selection is based on optimality criteria computed from the 

Fisher information matrix as the inverse of Fisher information matrix provides a lower 

bound for the covariance matrix of parameter estimators. A subset of identifiable 

parameters can be selected based upon optimizing some experimental criteria such as the 

D-optimality or the modified E-optimality criterion of the Fisher information matrix 

(Brun et al., 2001; Weijers and Vanrolleghem, 1997). Applications of parameter 

selection are wide-spread, ranging from ecological systems (Anh et al., 2006), power 

systems (Hiskens, 2001), production systems (Bastogne et al., 2007), chemical reactions 

(Kou et al., 2005), biochemical networks (Gadkar et al., 2005a, 2005b), to wastewater 

treatment processes (Sin and Vanrolleghem, 2007). 
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Selection of a subset of identifiable parameters for estimation results in a parameter 

set selection problem which is not trivial to solve. The orthogonalization method (Yao et 

al., 2003; Lund and Foss, 2008), which uses a modification of the Gram-Schmidt 

procedure, is one approach for solving this problem and involves the following steps: 

 

Step 0 (Initiation). Set the number of parameters selected to zero, i.e., 0
s

n = , and the 

projected sensitivity vectors to (0)

i i
=s s , 1, ,i nθ= � . 

Step 1 (Selection). Let 1
s s

n n= +  and select the parameter indexed by k which is 

determined by 

( )
T

( ) ( )
arg max s sn n

i i
i

k = s s . (2-35) 

Step 2 (Stopping test). If ( )
T

( ) ( )s sn n

k k
λ<s s  (given threshold level) then stop. 

Step 3 (Projection). Let 
( )
( )

T
( ) ( )

( 1) ( ) ( )

T
( ) ( )

s s

s s s

s s

n n

i kn n n

i i k
n n

k k

+ = −
s s

s s s
s s

 and return to Step 1. 

 

The key step is to project the sensitivity vectors of the unselected parameters on to 

the space orthogonal to that spanned by the sensitivity vectors of the previously selected 

parameters to remove the parameter’s effect on the output covered by the previously 

selected parameters. The orthogonalization method has been widely used for analysis of 

biochemical reaction networks (Gadkar et al., 2005a, 2005b; Yue et al., 2006; Jaqaman 

and Danuser, 2006; Chu and Hahn, 2007; Jayasankar et al., 2009) since results returned 

by this technique have a clear interpretation and it is easy to implement. 

A drawback of the orthogonalization method is that it is a heuristic approach to 

select identifiable parameters. A more systematic approach would be to optimize an 

experimental criterion of the Gram matrix of the sensitivity vectors, e.g. the D-optimality 

criterion (Brun et al., 2002) 

( )Tmax det ( ) ( )
z

S z S z  (2-36) 
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where { }0,1
nθ∈z  denotes if a parameter is selected (zi=1) or not (zi=0) and ( )S z  is a 

submatrix of S consisting of the columns indexed by zi=1. The determinant will have a 

small value close to zero if the sensitivity matrix is nearly rank-deficient. While it has 

been shown that the orthogonalization method is a forward selection method that 

maximizes the D-optimality criterion at each individual step (Chu and Hahn, 2007), it 

would be desirable to use a procedure which truly optimizes the D-optimality criterion. 

 

2.4. Model reduction via balancing 

Balancing of controllability gramians and observability gramians is a popular 

technique used in model reduction. Balancing of linear dynamic systems has been 

introduced by Moore (1981) and was later expanded to a certain class of nonlinear 

systems by Scherpen (1993). As the algorithms of balancing for a nonlinear system can 

present numerical difficulties, a class of balancing methods based upon empirical data 

has also been investigated (Hahn and Edgar, 2001, 2002a, 2002b, Hahn et al., 2003; Lall 

et al., 2002).  

 

 

 
 

Fig. 2-1. Illustration of the role that states play in the input-output relationship. (The 

input u(k) applies over the interval of (-∞, 0) while the output y(k) is in [0, ∞). 

Controllability analysis investigates the effect of inputs on the states while observability 

analysis analyzes the effect of initial perturbations of the states on the outputs.) 
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All balancing approaches are based upon the idea of retaining the states of a system 

that are most important when both controllability and observability are taken into 

account. Controllability analysis investigates the required energy of the inputs over the 

time interval ( ),0−∞  to drive the system from the initial state ( ) 0−∞ =x  to a current 

state ( ) 00 =x x . An illustration of this concept is shown in Fig. 2-1. Controllability 

analysis of a linear system can be performed by computing the controllability gramian 

WC. The eigenvectors of WC, corresponding to the largest eigenvalues, span the space 

which can most easily be reached using appropriate changes in the inputs. 

Observability analysis investigates the effect that the current state ( ) 00 =x x  has on 

the outputs of the system over the time interval ( )0,∞ . Conversely, if a state has a large 

effect on the outputs then the value of the state can be easily inferred from the output 

data. For linear systems, this state-to-output behavior can be measured by the 

observability gramian WO. The directions in state space which can most easily be 

inferred from the output data are given by the eigenvectors of WO corresponding to the 

largest eigenvalues. 

Once both gramians have been computed, a state transformation that balances the 

gramians, i.e., a transformation that turns both of them into diagonal matrices that are 

identical, can be applied: 

T=x T x�  (2-37) 

where x is the original state vector, x�  is the transformed state vector and T is the 

transformation matrix. One specific approach that computes T for the case where both 

gramians are full rank is given in Algorithm (2-1) below. 

After balancing, each state of the transformed system is as observable as it is 

controllable and the importance of each state to the input-output behavior is given by the 

magnitude of the corresponding entries in Λ. 
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Algorithm (2-1): Compute transformation matrix T for balancing 

Step 1. Compute the gramians WC and WO. 

Step 2. Perform a Cholesky decomposition of WC, i.e., WC  = LL
T
. 

Step 3. Compute the eigenvalue decomposition of L
T
WOL, i.e., L

T
WOL = UΛU

T
,  

            where T

xn=U U I  and 1 2, , ,
xn

λ λ λ =  Λ � . 

Step 4. The matrix T is given by: 1 4−=T LUΛ . 

 

 

 

2.5. Implementation of techniques using numerical algorithm 

 

Simultaneous perturbation stochastic approximation 

An optimization problem under uncertainty of some variables can be formulated by 

maximizing the expectation of a criterion function 

max E ( , )ϕv
w

w v  (2-38) 

where w represents a vector of the decision variables and v is a random variable 

following some distribution. The expectation can be computed by integrating the 

criterion function over the range of v, which is then followed by maximizing the 

expectation as a function of w. In this case, a gradient-based method can be used to 

update the value of w 

1k k k k
a+ = +w w g  (2-39) 

where gk is the gradient value in the k-th iteration 

E ( , )
k k

ϕ
∂

=
∂

vg w v
w

. (2-40) 

However, for dynamic systems the state equations and the sensitivity equations need 

to be solved to compute one value of the criterion function resulting in a large 

computational burden. This is a point that needs to be addressed for solving this type of 

optimization problem. 
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The gradient of the expectation can be expressed by 

ˆE ( )
k k

= vg g v  (2-41) 

where ˆ ( )
k

g v  is gradient of the criterion function at some value of v 

ˆ ( ) ( , )
k k

ϕ
∂

=
∂

g v w v
w

. (2-42) 

The gradient ˆ
k

g  which is a stochastic variable is an unbiased estimate of gk and can be 

used to update w 

1
ˆ

k k k k
a+ = +w w g . (2-43) 

Use of the stochastic gradient ˆ
k

g  instead of the gradient of the expectation gk to solve 

the optimization problem is called a stochastic approximation (Robbins and Monro, 

1951). 

There are three procedures to compute the stochastic gradient: Calculate the partial 

derivative directly (Robbins and Monro, 1951), approximate the gradient by the ratio of 

the finite differences (Kiefer and Wolfowitz, 1952), or to approximate the gradient by a 

simultaneous perturbation (Spall, 1992):  

1

( , ) ( , )

2

ˆ

( , ) ( , )

2

k k k k k k k k

k k

k

k k k k k k k k

k kp

c c

c

c c

c

ϕ ϕ

ϕ ϕ

 + − −
 ∆ 
 =
 

+ − − 
 ∆ 

w ∆ v w ∆ v

g

w ∆ v w ∆ v

�  (2-44) 

where the perturbation is given by ∆k=[∆k1, ..., ∆kp]
T
. A sampling point of vk is generated 

to evaluate ˆ
kg . 

The parameters for SPSA can be selected as 

( )1ka a k A
α

= + +  (2-45) 

and 

( )1kc c k
γ

= + . (2-46) 

Common values of α and γ are 1 and 1/6. Each component of the perturbation ∆k can use 

a Bernoulli ±1 distribution with probability of 1/2 for each ±1 outcome (Spall, 1998). 
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Evaluation of multi-dimensional integrals 

Computation of a multi-dimensional integral is one of the main tasks for many 

sensitivity analysis methods, e.g., computation of the conditional variance in variance-

based global sensitivity analysis and the quasi linearization method.  

A multi-dimensional integral over the parameter space can be expressed as 

( )
1 1

1 1
0 0

, ,f n nI f d d
θ θ

θ θ θ θ= ∫ ∫� � �  (2-47) 

where the integration intervals are normalized with the lower bound set to zero and the 

upper bound set to unity. 

Evaluation of such multi-dimensional integrals is not trivial. One general approach 

uses a Monte Carlo method (Robert and Casella, 2004). Monte Carlo methods generate a 

set of uniformly independent random points of the parameters, { }1, , Nθ θ� �� , and use the 

average value of the function over the samples to approximate the integral 

( )
1

1 N

N R k

k

I S f
N =

= ∑ θ�  (2-48) 

where SR is the volume of the integration region. For the unit hyper-cube shown in Eq. 

(2-48), the value of SR equals unity and the presence of this variable in the expression 

does not affect the numerical value, but does ensure that expression shown in Eq. (2-49) 

has the same unit as the one from Eq. (2-48). As given by the law of large numbers, IN 

will approach If as the number of sampling points N approaches infinity 

lim N f
N

I I
→∞

= . (2-49) 

Apart from the independently distributed random sequences, there are also deterministic 

sequences, called equi-distributed sequences, that are able to satisfy the condition given 

by Eq. (2-50). One method that uses deterministic equi-distributed sequences to evaluate 

the integral is the quasi Monte Carlo method (Niederreiter, 1978). An advantage of the 

quasi Monte Carlo method is that it can converge faster than standard Monte Carlo 

approaches.  

One well-known equi-distributed sequence is generated from a set of rationally linear 
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independent numbers 
T

1, ,
nθ

ω ω =  ω �  ( 2nθ ≥ ), i.e., for any integer 1, , nθ
λ λ�  

0i i

i

λ ω =∑  implies all 0iλ = . (2-50) 

The sequence ( ){ } mod 1
k

k=θ ω�  is equi-distributed and the convergence condition 

given by Eq. (2-49) holds (Kuipers and Niederreiter, 1974). A continuous version of this 

sequence also exists (Kuipers and Niederreiter, 1974; Weyl, 1938) and is given by 

( )( ) ( )
1 1

1
0 0 0

1
lim  mod 1

T

n
T

g d g d d
T θ

τ τ θ θ
→∞

=∫ ∫ ∫ω θ� � . (2-51) 

One important aspect of Eq. (2-52) is that the multi-dimensional integral can be 

transformed into a uni-dimensional integral, which is significantly easier to evaluate. 

If the rationally linear independence condition is satisfied, then all elements of ω  are 

irrational numbers. As computers use a finite precision for representing numbers, the 

irrational ω  can not be recorded accurately and the rationally linear independence can 

not hold in practice. Instead a condition approximating the rationally linear 

independence has been presented in the literature (Cukier et al., 1978; McRae et al., 

1982). Since only rational numbers can be recorded by a computer, the elements in ω  

can be assumed to be integers without loss of generality. While it is not possible for the 

condition from Eq. (2-51) to hold, the equation can be satisfied by small integers 

1, , nθ
λ λ�  in the sense that 

0i i

i

λ ω =∑  implies all 0iλ =  for any 1i

i

Mλ ≤ +∑ . (2-52) 

The number M is called the degree of independence which characterizes how close the 

condition given by Eq. (2-53) is to the one given by Eq. (2-51), which represents the 

general case for lim M → ∞ . If ω consists of only integers, then the function 

( )( ) mod 1g τω  is periodic with respect to τ  and the integral can be evaluated over 

only one period of T. It has been shown that the error in the integration stems from the 

approximation involving the rationally linear dependence and that this error can be 

controlled by choosing a value for M (Cukier et al., 1978). 
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Markov chain Monte Carlo 

Calculation of a random quantity according to a distribution can be performed by 

( ) ( ) ( )E q q p d=   ∫θ θ θ θ  (2-53) 

where q(θ) is a function of the random vector θ with the probability density function 

p(θ). One approach to compute the multidimensional integral is the Monte Carlo method. 

Various sampling points of θ are generated according to p(θ) and then the integral can be 

approximated by the averaged value of q(θ) over all sampling points. However, in some 

situations the target density function is complex, e.g. a posterior density function, and it 

is non-trivial to generate sampling points using a direct method. 

Markov chain provides a sophisticated sampling approach. A Markov chain is 

constructed so that its equilibrium distribution equals the desired one. The samples from 

the chain after transient steps are used to compute the expectation of the desired 

distribution. One class of methods to construct the Markov chain is given by the 

Metropolis-Hastings algorithm where an accept-reject procedure is used (Chib and 

Greenberg, 1995; Tierney, 1994). A specific algorithm is given by 

 

 

Algorithm (2-2): Construct a random walk chain 

Step 1. Initialize θ(0) =  θ0 and k = 0. 

Step 2. Generate a sample ψ from the normal distribution ( )2,
n

N
θψσ0 I . 

Step 3. Compute a potential value, θ' = θ(k)+ψ. 

Step 4. Generate a sample α from a uniform distribution in [ ]0,1 . 

Step 5. If ( ) ( )( )p p kα ′≤ θ θ  

( )1k ′+ =θ θ  

else 

( ) ( )1k k+ =θ θ . 

Step 6. Set k = k+1 and return to Step 2. 
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This algorithm generates a potential value by adding a random value to the current 

value in Step 3. The potential value is accepted with probability 

( ) ( )( ){ }min ,  1p p k′θ θ  in Step 5.  If the potential value is rejected then the current 

value is kept. The acceptance rate is a key factor for controlling the performance of a 

constructed Markov chain and it can be adjusted by choosing the variance 2

ψσ  in Step 2. 

A recommended value for the equilibrium acceptance rate is 0.234 (Roberts and 

Rosenthal, 2001). 

After the sampling points have been generated, the expectation (2) can be computed 

by 

( ) ( )( )
1

1
E lim

N

N
k

q q k
N→∞

=

=   ∑θ θ . (2-54) 

While it is not possible to use an infinite value for N in practice, N is generally chosen to 

be a large number. Similarly, the first few values of q(θ) are not included in the 

calculation  as the system will not be near its equilibrium state. 

 

Uniformly distributed random matrices 

A set of n-by-n orthogonal matrices is given by { }T:n

n
= =U U U IO . There is a 

unique distribution, denoted by µ, over the set n
O  which is invariant under 

multiplication from either side by an orthogonal matrix, i.e. for the random matrix X 

over n
O : 

( ) ( ) ( )µ µ µ= =UX XU X , for any n∈U O . (2-55) 

The distribution µ is called the uniform distribution of random orthogonal matrices 

(Anderson, 1984). A random orthogonal matrix X with the uniform distribution can be 

sampled using a QR factorization (Stewart, 1980). 
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Algorithm (2-3): Generation of uniformly distributed orthogonal matrix X 

Step 1. Generate a random n-by-n matrix Y where each element of Y is independently 

sampled from the standard normal distribution. 

Step 2. Compute the QR factorization of Y, i.e. Y = QR where the diagonal elements of 

R are all positive. 

Step 3. A random orthogonal matrix X is given by =X Q . 
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3. COMPARATIVE SENSITIVITY ANALYSIS STUDY OF COMPLEX 

REACTION NETWORKS 

 

3.1 Introduction 

Mathematical models are increasingly being used as an important tool to investigate 

the underlying mechanism in a complex reaction network. However, a complex model, 

e.g. a large-scale reaction network, usually includes a great number of variables and 

parameters, resulting in a time consuming and ill-conditioned problem for analysis, 

optimization, and estimation. A powerful tool to tackle a complex reaction network is to 

apply sensitivity analysis including both local techniques and global techniques. 

Sensitivity analysis is able to identify a few important components which the following 

analysis can be focused on. 

A great variety of techniques for sensitivity analysis exist. As no sensitivity analysis 

technique is known to work best for all situations, a comparison of the results returned 

by different techniques is required. In this section four techniques for sensitivity analysis 

are investigated by using a complex biochemical reaction network. These techniques are 

differential analysis, the Morris method, a sampling-based approach (Kolmogorov-

Smirnov statistic), and the Fourier amplitude sensitivity test (FAST).  

 

3.2 Model descriptions 

The IL-6 signaling pathway model analyzed in this section was developed in a recent 

paper (Singh et al. 2006), which describes signal transduction in hepatocytes induced by 

IL-6. This model contains two pathways: Janus-associated kinases & signal transducers 

and transcription factors are activated in one pathway while the other pathway involves 

the activation of mitogen-activated protein kinases. This model consists of 68 nonlinear 

ordinary differential equations which include 118 parameters. The equations are derived 

according to the law of mass action or Michaelis-Menten kinetics and the parameters are 

the kinetic rate constants.  
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Fig. 3-1. IL-6 signaling pathway. 

 

 

The state variables are the concentrations of the molecules in the pathway and the 

input variable is the concentration of IL-6 that stimulates the pathway. The output 

variable is the concentration of (STAT3N*)2 (dimer of activated STAT3 in the nucleus) 

as this transcription factor can be indirectly measured using a green fluorescent protein 
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(GFP) reporter system.  

Due to the complexity of the system it is not possible to predict a priori which parts 

of the model are the main contributors to the dynamic behavior of the signaling pathway. 

The diagram of the IL-6 signaling pathway is shown in Fig. 3-1. The set of differential 

equations which describes the reaction network as well as the nominal values of the 

kinetic parameters are given in Chu et al., 2007. 

 

3.3 Analysis of the signaling pathways and comparison of results 

The four techniques for sensitivity analysis are applied to the described IL-6 

signaling pathway model. The concentration of IL-6 serves as the input variable to the 

model for this analysis and it is changed from 0 to 0.5 nM at time 0. The simulations are 

carried out for a 24 hr time period as the dynamic response of the system is captured 

within this time interval. The time dependent sensitivity profile is sampled every minute 

to form the sensitivity vector. 

 

 

Table 3-1  

Summary of the sensitivity values calculated by the four methods. (The sensitivity 

values calculated by each method are given by the length of the sensitivity vector and are 

normalized by the largest sensitivity value.) 

Morris Sampling-based FAST 
No. 

Differential 

Analysis 99-101% 10-1000% 99-101% 10-1000% 99-101% 10-1000% 

1 kf7 1 kf7 1 kf26 1 kf7 1 kf7 1 kf7 1 kf7 1 

2 kf32 0.748 kf32 0.761 kf7 0.924 kf31 0.969 kf21 0.915 kf32 0.753 kf21 0.959 

3 kf21 0.713 kf21 0.740 kf21 0.861 Vm24 0.969 kf8 0.748 kf21 0.715 kf8 0.729 

4 kf8 0.706 kf8 0.732 kf27 0.779 kf32 0.891 kf26 0.738 kf8 0.707 kb7 0.652 

5 kb7 0.667 kb7 0.678 Vm24 0.683 kf27 0.827 Vm24 0.731 kb7 0.667 Vm24 0.624 

6 kf20 0.563 kf20 0.573 kf8 0.665 kf20 0.766 kf29 0.724 kf20 0.563 kf42 0.624 

7 kb20 0.549 kb20 0.564 kb28 0.635 kf8 0.687 kf31 0.703 kb20 0.551 kf27 0.609 

8 kf42 0.477 kf42 0.489 kf31 0.617 kb28 0.684 kf28 0.694 kf42 0.478 kf26 0.606 

9 Vm24 0.450 kf26 0.464 kf20 0.585 kf70 0.667 kf27 0.673 Vm24 0.451 kf20 0.558 
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Table 3-1 continued 

Morris Sampling-based FAST 
No. 

Differential 

Analysis 99-101% 10-1000% 99-101% 10-1000% 99-101% 10-1000% 

10 kf26 0.450 Vm24 0.463 kb7 0.556 kb29 0.641 ka26 0.654 kf26 0.451 kf48 0.551 

11 kf27 0.447 kf27 0.451 kb27 0.517 kf21 0.630 kb7 0.639 kf27 0.448 kf29 0.529 

12 kf45 0.419 kf45 0.427 kf29 0.509 kb27 0.611 kf48 0.600 kb27 0.421 kb27 0.523 

13 Km24 0.413 kf31 0.417 ka26 0.471 kb20 0.611 kb29 0.587 kf45 0.419 kf28 0.523 

14 ka26 0.408 Km24 0.417 Km24 0.468 kb7 0.609 Km24 0.586 Km24 0.415 kf31 0.520 

15 kf70 0.407 kf70 0.415 kf28 0.466 kf29 0.592 kf42 0.580 ka26 0.409 ka26 0.517 

16 kf31 0.406 ka26 0.415 kb29 0.463 kf19 0.588 kf70 0.573 kf70 0.408 kf32 0.511 

17 kb27 0.392 kb27 0.400 kf48 0.428 kf28 0.575 kb27 0.572 kf31 0.406 kf70 0.508 

18 kf28 0.388 kf28 0.395 kf70 0.389 ka26 0.571 kf20 0.557 kf28 0.389 kb28 0.498 

19 kb28 0.387 kb28 0.386 kf19 0.368 Km24 0.560 kb28 0.540 kb28 0.388 kb29 0.490 

20 kf29 0.365 kf29 0.376 kf42 0.363 kf26 0.540 kb20 0.517 kf29 0.367 Km24 0.450 

21 kb29 0.359 kb29 0.358 kf32 0.338 kb39 0.491 kb48 0.506 kb29 0.360 kb48 0.445 

22 kf71 0.330 kf71 0.338 kf18 0.323 kf16 0.463 kf32 0.409 kf71 0.331 kb20 0.439 

23 kb45 0.303 kb45 0.306 kf71 0.320 kb10 0.461 kf19 0.401 kb45 0.304 kf19 0.406 

24 kf19 0.260 kf19 0.265 kb48 0.312 kf13 0.435 kb18 0.294 kf19 0.269 kf45 0.358 

25 kf18 0.220 kf18 0.228 kb20 0.283 kf18 0.431 kf71 0.275 kb38 0.229 kf71 0.324 

26 kf36 0.215 kb18 0.218 kb18 0.278 Km35 0.419 kf18 0.262 kf18 0.221 kb18 0.310 

27 kb18 0.214 kf36 0.218 kf36 0.221 kb17 0.419 Vm35 0.233 kb48 0.220 kf18 0.307 

28 kb48 0.194 kf48 0.194 Vm35 0.220 kf45 0.399 kf45 0.223 kf36 0.219 kb45 0.284 

29 kf48 0.189 kb48 0.193 kf16 0.216 kf42 0.399 Km35 0.217 kb18 0.216 kf36 0.219 

30 kf6 0.148 kf6 0.146 kf17 0.179 kf6 0.388 kf17 0.217 kf48 0.197 kb17 0.186 

31 kf16 0.135 kf16 0.136 kf45 0.170 Vm35 0.384 kb39 0.180 kf6 0.169 kf17 0.172 

32 kf38 0.115 kf17 0.118 Km35 0.167 kf43 0.361 kf36 0.173 kf16 0.155 Vm35 0.164 

33 kb17 0.115 kf38 0.117 kb17 0.160 kf71 0.352 kf16 0.165 kf17 0.123 kf16 0.158 

34 kf17 0.114 kb17 0.116 kf6 0.123 kf17 0.341 kb45 0.163 kb17 0.118 kb39 0.151 

35 kf39 0.099 kf39 0.102 kf43 0.117 kf48 0.339 kb17 0.134 kb10 0.075 kf13 0.147 

36 kb38 0.098 kb38 0.099 kb45 0.104 kf36 0.331 kb38 0.125 Km35 0.066 Km35 0.109 

37 kf25 0.092 kf25 0.094 kb10 0.101 kb45 0.298 kf43 0.121 kf13 0.064 kf6 0.094 

38 kb71 0.071 kb71 0.072 kf13 0.099 kb18 0.297 kf6 0.119 kb39 0.047 kb10 0.090 

39 kf5 0.066 kf5 0.067 kb39 0.091 kb48 0.293 kf13 0.072 Vm35 0.043 kf43 0.073 

40 kb5 0.065 kf46 0.067 kb38 0.088 kb38 0.277 kb10 0.057 kf43 0.035 kb38 0.071 
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Local sensitivity analysis is performed on the model and additionally the three global 

sensitivity analysis techniques are used for a small uncertainty range (99%-101% 

nominal value of each parameter) and a large uncertainty range (10%-1000% nominal 

value) of the parameters.  
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(c)                                                                   (d) 

Fig. 3-2. Time dependent sensitivity profiles according to four techniques: (a) 

Differential analysis; (b) Morris method; (c) Sampling based method; (d) FAST method. 

(For the global sensitivity techniques, the sensitivity value is calculated for small 

parameter uncertainty (99%-100% of nominal value) represented by the solid line and 

for large parameter uncertainty (10%-1000% of nominal value) represented by the 

dashed line.) 
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As the used FAST algorithm is limited to the number of parameters that can be 

investigated and as the sampling-based approach tends to also be computationally 

demanding for systems with many parameters, the analysis for these two approaches are 

limited to the best 40 parameters identified by the Morris method. The reason for 

choosing the cutoff at the 40
th

 parameter is that the 40
th

 parameter has a sensitivity value 

that is less than 10% of the most important parameter identified by this technique. To 

compare the results by different techniques the lengths of the sensitivity vectors 

(normalized by the largest one) are listed and ordered in Table 3-1. The number of 

simulations for FAST is chosen to be 13001 as this number satisfies the Nyquist 

sampling theorem (Cukier et al., 1975). There are no restrictions on the number of 

simulations for the sampling-based approach and the same size with the FAST method is 

assigned. The time dependent sensitivity profiles of the activated transcription factor 

(STAT3N*)2 in the nucleus with respect to the parameter kf7 computed from the four 

techniques are shown in Fig. 3-2.  

 

Comparison of results by the four techniques for sensitivity analysis 

It can be concluded from Table 3-1 that the results returned by the Morris method 

and the FAST method for a small parameter range are nearly identical to the ones 

computed by local analysis. This is not surprising as results from both the Morris method 

and FAST will reduce to results from a local method if the parameter-output relationship 

is sufficiently smooth and the parameter vary only in a small uncertainty range.  

The ranking of the parameters for small changes for the sampling-based approach are 

also similar to the ones computed from differential analysis. The main differences 

between the results for these two methods arise from the different sensitivity measures 

used by the two techniques.  

When the uncertainty range of the parameters is large, the nonlinear properties of the 

system become dominant and the parameter interactions will have a significant effect on 

the results. This effect can also be seen in the sensitivity analysis results. For example, as 

the uncertainty range increases, the importance of the parameter kf32, as noted by its 
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position on the list, decreases from 2 to 21 by the Morris method, from 4 to 22 by the 

sampling based approach and from 2 to 16 by the FAST method. This change can serve 

as an indicator that local analysis may not always be appropriate when dealing with 

systems where parameter values are within a large uncertainty interval. 

The results obtained by the sampling-based method and the FAST method are similar 

for a large uncertainty range of the parameters. When comparing the results generated 

from these two methods to those computed by the Morris method, then it is found that 

while the set of important parameters is similar, that there is nevertheless a difference in 

the ranking of the parameters. This difference is due to the fact that the Morris method 

has a more limited capability of capturing nonlinear of the parameter-output behavior 

than a sampling-based approach or FAST. 

Due to the fact that the FAST method reduces to local sensitivity analysis, that it 

automatically generates time-dependent sensitivity profiles, and that it is 

computationally more efficient than the sampling-based approach if the contribution of 

the individual parameters to the uncertainty is calculated, the following discussion will 

focus on results returned by the FAST method. 

 

Different dynamic effects of the parameters 

It has been recognized that distinct temporal activation profiles of the same signaling 

proteins result in different gene-expression patterns and diverse physiological responses 

(Detre et al., 2006; Kholodenko, 2006. Hoffmann et al., 2002; Marshall, 1995) and, 

therefore, discriminating the temporal effects of the parameters is of great importance. 

The sensitivity values listed in Table 3-1 denote the total effect that a parameter has 

on the output. However, parameters can have the same cumulative effect while at the 

same time have distinct dynamic behavior. The time dependent sensitivity profiles are 

required to analyze time-dependent effect that parameters have on the output. 

According to the sensitivity profiles by FAST, the parameters can be classified 

roughly into three groups: (1) parameters, such as kf7, whose sensitivity plot initially 

increases rapidly and then decreases slowly; (2) parameters, such as kf32, whose 
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sensitivity plot increases sharply to a high peak and then decreases quickly to zero; and 

(3) parameters, such as kf29, whose sensitivity plot rises gradually to a significant level.  
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(c)                                                                   (d) 

Fig. 3-3. Different dynamic effects of the parameters. (a) Time dependent sensitivity 

profiles by FAST; (b) Effect by variations of kf7; (c) Effect by variations of kf32; (d) 

Effect by variations of kf29. (The parameter uncertainty range is from 10% to 1000% of 

the nominal value. The solid line is the concentration at the nominal value while the 

dashed lines are the concentrations at different values of the varied parameter.) 

 

 

The sensitivity profiles of the three parameters are shown in Fig. 3-3(a). To illustrate 

the different effects of different groups of parameters, the concentration of (STAT3N*)2 
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at different values of each parameter (while the other parameters are held constant at 

their nominal values) are shown in Fig. 3-3(b-d). When kf7 is perturbed, it has a 

considerable impact on the amplitude and on the duration of the output signal. The effect 

of kf32 is mainly observed over a certain time interval and it has a large effect on the 

amplitude but little long-term effect, whereas kf29 has a significant influence over the 

entire time span of the simulation. 

 

3.4 Conclusion  

Mathematical modeling and simulation of complex signaling pathways has received 

increasing attention in the area of quantitative cell biology over the least few years. As 

many of the underlying biological mechanisms are not fully understood, it is important 

to study the effect of uncertainties on a system and determine which parameters should 

be estimated from data to account for these uncertainties.  Towards this end, sensitivity 

analysis is a powerful tool to analyze mathematical models containing uncertain 

parameters. Four sensitivity analysis techniques were applied to the analysis of an IL-6 

signaling pathway in this section and the results were discussed.  

It can be concluded from the sensitivity analysis results that binding of the 

transcription factor STAT3 to the dimer of the phosphorylated receptor complex (IL6-

gp80-gp130-JAK*)2 is the most important reaction governing these pathways. Among 

the regulatory mechanisms in the pathway, reactions involving PP2 were determined to 

be the most important ones for the JAK/STAT pathway. Parameters associated with 

reactions involving SHP2 have a large effect on the initial response while parameters 

associated with reactions involving SOCS3 mainly affect the long-term behavior of the 

output. Parameters associated with reactions related to PP1 had the least effect of the 

ones mentioned here. On the Ras/MAPK side of the signaling pathway it was 

determined that that the receptor dimer binding to the exchange factor Sos through SHP2 

and Grb2 is the most important intermediate that is affecting the STAT3 dimer in the 

JAK/STAT pathway.  

Of these findings, the effect of MAPK on JAK/STAT is the most interesting as it 
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indicates a secondary level of control/regulation that is not obvious in current 

descriptions of IL-6 signaling or published data. Silencer RNA-mediated gene knockouts 

interfering with the formation of the (IL6-gp80-gp130-JAK*)2-SHP2*-Grb2-Sos 

complex can be used in future experiments to validate the effect of this secondary level 

of control on IL-6 signal transduction. 
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4. PARAMETER SET SELECTION FOR ESTIMATION FOR NONLINEAR 

DYNAMIC SYSTEMS 

 

4.1 Introduction 

Mathematical modeling plays an important role in study of complex dynamic 

systems and parameter estimation forms an essential component of deriving 

mathematical models. However, accurate estimation of parameters can be challenging as 

models can contain hundreds or even thousands of parameters while at the same time 

experimental data gathered for parameter estimation may be sparse and noisy. It is 

usually not possible to estimate the values of all the parameters accurately from the 

experimental data. It is the purpose of this section to develop a new approach for 

determining sets of parameters that should be estimated.  

Parameter sensitivity analysis and experimental design are closely related techniques. 

The Fisher information matrix (FIM) serves as a measure of how much information 

about the parameters can be extracted from an experiment (Atkinson et al., 2007; 

Pazman, 1986; Silvery, 1980). If the Fisher information matrix is far from being singular 

in some sense then parameters are practically identifiable (Walter and Pronzato, 1990). 

A subset of parameters which can be estimated accurately is selected based upon 

optimizing certain criteria (Kiefer, 1959) as it is usually not possible to estimate the 

values of all parameters. A combination of the D-optimality and the modified E-

optimality criteria has been used to determine identifiable parameters (Brun et al., 2002; 

Weijers and Vanrolleghem, 1997). If the Fisher information matrix is not close to being 

singular, then the norm of the sensitivity vectors is likely to be reasonably large and the 

angles between the sensitivity vectors are not small, either. Following these two rules, 

several parameter-selection techniques have been developed based on the sensitivity 

vectors, such as an orthogonalization method (Yao et al., 2003) and a recursive approach 

based upon principal component analysis (Li et al., 2004). 

However these parameter selection approaches are local methods since parameter 

sensitivities will vary depending upon the choice of nominal values of parameters. The 
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inherent uncertainty in the parameter values poses a challenge on parameter selection. 

Sequential design is the most common approach to handle the described challenge 

(Issanchou et al., 2005): a set of initial values for the parameters is used for experimental 

design and to estimate parameters. The newly estimated parameter values are then used 

for another round of experimental design where values of the parameters are re-

estimated. While such a procedure can be useful for systems where it is possible to 

perform a relatively large number of experiments, it can pose problems for systems such 

as intra-cellular signal pathways, as experiments can take weeks of preparation and can 

be expensive. Other procedures such as Bayesian methods (Chaloner and Verdinelli, 

1995; Han and Chaloner, 2004) and maximin methods (Dette, 1997; Muller, 1995) 

require intensive computation and may prohibit applicability to systems with a large 

number of parameters.  

Another challenge that arises for dynamic systems is that sensitivities need to be 

calculated along state trajectories which result in the Fisher information matrix being 

dependent not only on the parameter values but also on the initial states and inputs. It is 

the aim of this section to present a parameter set selection technique for dynamic 

systems described by nonlinear autonomous differential equations which will take the 

effect of uncertainties of the parameter values and initial states as well as changes of the 

inputs into account. Analysis of possible parameter sets to determine their likelihood to 

be the optimal set for parameter estimation as well as the magnitude of the region in 

parameter space under which a set will remain optimal form important components of 

this section.  

A collection of (sub-)optimal parameter sets is investigated rather than just focusing 

on the “optimal” set due to the following reasons: (i) the differences in the values of the 

optimality criteria between the “optimal” set and a suboptimal set may be negligible and 

it may not be possible to distinguish between them in practice; (ii) the “optimal” set may 

only be the best set at the nominal point and it may be worse than a suboptimal set if the 

nominal values of the parameters are slightly different than was originally thought; (iii) 

further analysis can concentrate on these important sets rather than considering all 
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possible subsets of parameters; (iv) some experimental limitations may not have been 

taken into account when deriving the “optimal” set of parameters and determining 

several sets of potential candidates for parameter estimation can allow more flexibility 

for conducting experiments. A collection of suboptimal sets is determined by a genetic 

algorithm and is subsequently analyzed to determine the key factors influencing the 

sensitivity and to compute which parameter sets work best when uncertainty in the 

nominal values of the parameters is taken into account.  

 

4.2 Presentation of a new parameter subset selection procedure 

This section presents a new procedure for parameter set selection for parameter 

estimation of nonlinear dynamic systems. The contribution of this technique is that it 

combines a method for selecting parameter sets with uncertainty analysis to determine 

when a parameter set that is suboptimal for the nominal values of the parameters may 

become optimal due to changes of the nominal values. A flow diagram of the procedure 

that is used in this section is shown in Fig. 4-1. 
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Fig. 4-1. Flow diagram of procedure for parameter subset selection. 

 

 

Parameter subset selection by GA 

Parameter selection procedures search for a subset of parameters which maximizes 

an optimality criterion. One specific form of such an optimization problem is given by 
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 (4-1) 

The decision vector {0,1}nθ∈z denotes whether a parameter is included in the selected 

parameter subset. If zi = 1 then θi belongs to the selected subset with the size of ns. The 

value of ns can be determined through prescreening by the orthogonalization method. 

FIM is the Fisher information matrix of all parameters. F(z) is the Fisher information 

matrix of the parameters included in the selected subset and it is equal to the principal 

submatrix of FIM with the indices of the non-zero decision variables (the entries of 

column ij and row ik,  j, k = 1…ns). 

This optimization problem results in a nonlinear integer programming problem. 

While an exhaustive search is a simple approach to find the optimal solution, this is not a 

practical approach for any problem of reasonable size. Sequential methods which add 

parameters to the subset one at a timer are able to significantly reduce the computational 

burden. It will be shown that the orthogonalization method is a sequential approach 

which maximizes the D-criterion at each step. To elaborate on this point the QR 

decomposition is used to express the orthogonalization 

=S QR , (4-2) 

where S is the normalized sensitivity matrix of the selected parameters, Q is an 

orthogonal matrix and R is an upper triangular matrix. The columns of Q form the unit 

orthogonal bases of the space spanned by the sensitivity vectors (the columns of S) and 

the columns of R are the coordinates of the sensitivity vectors on the orthogonal bases. 

When a new parameter is selected, its sensitivity vector is added to S, a new base is 

added to Q and the coordinates of the sensitivity vector on the bases are added to R. The 

new diagonal entry of R denotes the projected value of the last sensitivity vector on the 

space normal to the sensitivity vectors of the previously selected parameter. The 

orthogonal method maximizes the square of the new diagonal entry of R at each step 
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when a new parameter is selected. The determinant of the information matrix is related 

to the determinant of R by 

T T 2det( ) det( ) det( )= =S S R R R . (4-3) 

Because R is upper triangular the determinant of the information matrix is equal to the 

product of the squared diagonal entries of R. Accordingly, the orthogonalization method 

which maximizes the squared diagonal entry of R at each step can be regarded as a 

sequential method that maximizes the D-criterion at each step. However, due to the 

sequential nature of the orthogonalization method, it is possible that parameter sets with 

even larger criterion values may be missed as they can only be found by a simultaneous 

approach.  That being said, this procedure can still be implemented as a pre-screening 

tool as it is straightforward to implement and does not require extensive computations. 

It is important to select a set of estimable parameters for parameter estimation, 

however, the parameter set corresponding to the optimal criterion value at the nominal 

point may not always be the best choice due to the optimality criterion changing with the 

nominal values of the parameters. Accordingly, a procedure is required to not only to 

compute the optimal set of parameters but also to determine a collection of suboptimal 

parameter sets. This can be achieved by using a genetic algorithm (GA) (Goldberg, 1989; 

Michalewicz, 1994) to solve the optimization problems shown in Eq. (4-1). One distinct 

property of a GA is that it involves a population of potential solutions to the problem. 

Multiple candidate solutions are considered simultaneously and according to the 

evolution law good population member has a larger chance to be preserved in the new 

generation than unfit members. After many generations, the population will usually 

contain many members with high fitness values. This property makes GA very suitable 

to solve the problem of subset selection. A collection of (sub-)optimal solutions can be 

formed by choosing good candidates from each generation with a value of the optimality 

criterion larger than a threshold level α. This procedure will return a collection of 

parameter sets with near optimal value of the optimization problem shown in Eq. (4-1).   
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Determine the region in parameter space for which local results remain valid 

Due to continuity of the optimality criterion, the optimal subset selected at the 

nominal value will still be the best set in a neighborhood around the nominal point. 

However, if the nominal values of the parameters can vary significantly, then the results 

computed by local sensitivity analysis may not be accurate over the entire range. A 

technique is presented in this subsection which determines the smallest magnitude of 

parameter changes that is required such that the parameter set with the optimal value at 

the nominal point will lose its “top positions” to another set of parameters. The 

magnitude of the variation under which the chosen parameter set does not change is an 

indicator of the robustness of the results computed by the local method. 

Since an analytical expression describing the relationship between the criterion 

function and the nominal values of to the parameters is usually not known in practice, a 

linear approximation of the sensitivity vectors is used: 

2

T

i i i
θ θ θ

+∆

∂ ∂ ∂
= + ∆

∂ ∂ ∂ ∂
ψ ψ ψ ψ

y y y
ψ

ψ
. (4-4) 

The sensitivity matrix contains the sensitivity vectors of a subset of parameters 

1 2
, , ,

ns
i i i

θ θ θ� and can be expressed by 
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1 1 1

2 2
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i i i i i i
θ θ θ θ θ θ
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        ψ ψ ψ ψ
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I ψ

ψ ψ
� � �  (4-5) 

where Ψ is the vector which characterizes the operating conditions. To simplify the 

notation,  

( )
sI I I n

= + ⊗S S W I d  (4-6) 

will be used, where the matrices are 
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One should note that the linear approximation of the sensitivity vectors is used rather 

than the linear approximation of the optimality criterion itself as linearization of the 

sensitivity vector offers a more accurate approximation.  

Suppose that a parameter set at the nominal point (indicated by indices J) has a larger 

criterion value than another parameter set (indicated by indices I). The smallest 

perturbation required to change the order of two parameter sets can be calculated by the 

following optimization problem: 

( ) ( )
( )

( )

2

T T

L U

      min  

s.t.  

       

       

       .

D I I D J J

I I I P

J J J P
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= + ⊗

≤ ≤

d

S S S S

S S W I d

S S W I d

d d d

 (4-7) 

The last inequality constraint provides an upper and a lower bound for variation of the 

parameter vector such that constraints on parameters by physics can be taken into 

account. For example, all the kinetic parameters in a model referring to rate constants 

should always be positive. It should be noted that due to the linear approximation of the 

sensitivity matrix it may be possible that the variation calculated may not change the 

order of the two subsets. In this case the sensitivity values can be re-evaluated at the 

perturbed parameter value calculated by the first solution of optimization problem and 
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the optimization problem is solved again. This is an iterative procedure that is performed 

until a perturbation is found that will change the order of the criterion values of the two 

sets.  

 

Sampling-based method to identify sources of uncertainty that affect the value of the 

optimality criterion  

The technique presented in this subsection uses global sensitivity analysis to 

determine how sensitive the optimality criterion is to sources of uncertainty. For the 

most part, these sources of uncertainty are due to changes in the values of the parameters, 

however, changes in initial conditions can also be considered.  

A sampling-based method with Latin hypercube sampling is used in this section 

since it is the most efficient sampling way for large systems. The optimality criterion is 

evaluated at each sampling point by simulating the model. The Kolmogorov-Smirnov 

(KS) statistic of the criterion value with respect to a parameter is calculated to serve as 

the global sensitivity measures following the procedure described below: 

 

Step 1. Determine the uncertainty range of each parameter. 

Step 2. Generate uniformly distributed samples of the parameters by Latin hypercube 

sampling. 

Step 3. Calculate the first order sensitivities by solving the state equations and the 

sensitivity equations simultaneously for each sample value and compute the 

value of the optimality criterion. 

Step 4. Calculate the objective function for each sample  

( )
2

( ) ( )
D D

f k kφ φ φ= − ,  

where ( )
D

kφ is the criterion value calculated at the k-th sample, 
D

φ  is the 

criterion value calculated at the nominal value. 

Step 5. Calculate the mean value of  ( )f kφ  and group the sample values of each 

parameter into two sets. If ( )f kφ  is larger than the mean value, then the k-th 
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sample value of the parameter is placed into the ‘unacceptable set’; otherwise 

it is put into the ‘acceptable set’. 

Step 6. Compute the two cumulative distribution functions of the sample values 

contained in the two sets for each parameter and calculate the KS statistic. 

 

From the sampling points the criterion functions which are not subject to the 

parameter uncertainty can be calculated. Due to the uncertainty a subset of parameters 

can be estimated more accurate than another subset at one point but less accurate at 

another point. The mean criterion value of a subset indicates the overall performance of 

a subset. A good estimator of the mean criterion is the average criterion value on the 

sampling points. However it is the case that a subset can have a large mean criterion 

value because it has a very large criterion value in a small range but has low criterion 

value over most of the parameter space. In practice the situation where the subset has 

large criterion value is unlikely and it is more likely that the subset is worse than others. 

One may prefer to select the subset which has the largest probability to have the largest 

criterion value in the uncertain range. The probability of each subset to be the top one 

can be calculated from the sampling points as well. From the explanation above the two 

criteria may not be completely consistent and an example is in the case study in the next 

section. One is often at loss to choose the criterion before selection. This is another 

motivation to select a collect of subsets. After calculation of the value of the two criteria 

of the subsets one is easy to make a balance among different criteria. 

 

Quantitative investigation of the effect of uncertain factors on the optimality criterion 

Even though global sensitivity analysis is able to identify the important uncertain 

factors affecting the value of the optimality criterion, it is unable to determine 

quantitatively how changes in the nominal parameter values affect estimation accuracy. 

The gradient of the criterion function can provide such information and it can be used 

directly to determine the optimal setting of adjustable variables. The mathematical 

procedure for this technique is provided in the following. 
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Assume a selected subset is { }
1 2
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ns
i i iθ θ θ�  and the sensitivity matrix is 
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where S is evaluated at some value of the parameter ψ and the D-criterion is a function 

of ψ 

( )T( ) log det ( ) ( )Dφ =ψ S ψ S ψ . (4-9) 

Differentiation of the criterion function results in 

( ){ }1
T T( ) 2trace ( ) ( ) ( ) ( )Dd dφ

−

=ψ S ψ S ψ S ψ S ψ . (4-10) 

Since the differentiation of each element in the sensitivity matrix is 
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the differential of the sensitivity matrix is 
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Substituting Eq. (4-12) into the optimality criterion results in 

{ }1 2( ) 2trace
sD nd d d dφ  =  ψ A ψ A ψ A ψ� , (4-13) 

where 
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Finally, 

( )T T T

1 2( ) 2
sD nd dφ = + + +ψ a a a ψ� . (4-15) 

where ai
T
 is the i-th row of Ai and the partial derivative of 

D
φ with respect to ψ is 
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The magnitude of the gradient is an indicator of the effect that changes in a 

parameter have on the criterion function value. The sign of the gradient indicates 

whether a change of the value of a parameter increases or decreases the optimality 

criterion. The gradient shown in Eq. (4-16) is in fact the local sensitivity of the criterion 

function. However, this is not to be confused with the sensitivity of the output. The 

sensitivity of the output is used to compute the value of the criterion for parameter 

selection while the sensitivity of the criterion function is used to study the effects that 

parameter uncertainty has on the criterion value.  

 

4.3 Case studies 

Two examples are used to illustrate the developed techniques. The first case study 

deals with an exothermic continuously-stirred tank reactor while the second one analyzes 

a detailed model describing an IL-6 transduction network in liver cells. 

 

Parameter set selection for a CSTR 

This model describes an exothermic CSTR in which a first-order reaction A�B is 

taking place (Muske and Georgakis, 2003): 

,   exp( / )A AA B R k E RT c→ = − . (4-17) 

The reactor is described by the following differential equations 

( )

( ) ( )
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c

f

A A A A

f

A c

P P

fc
c c c

c c P c

F
c c c R

V

F H hA
T T T R T T

V C C V

F hA
T T T

V C V

ρ ρ

ρ

= − −

∆
= − + − −

= − +

�
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�

. (4-18) 

The three states of the system are the concentration of component A, the temperature of 

the reactor and the temperature of the coolant jacket. The reactor temperature is chosen 

as the only output of the system. 

All parameters in Eq. (4-18) are assumed to be constant. It can be seen that ρ and CP 

never appear by themselves and only in the form of their product in Eq. (4-18). Due to 
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this only the product of the two parameters can be estimated. The same situation arises 

for the product of ρc and CPc. To take this observation into account the parameters CP, 

and CPc are set to their nominal value and are not considered for parameter set selection. 

This leaves nine parameters (No.1-No.9 in Table 4-1) as candidates considered for 

estimation. The feed flow rate and the coolant flow rate are the two input variables. 

These 11 variables plus the 3 initial conditions of the states make up the augmented 

parameter vector for sensitivity analysis. The reactor volume, the cooling jacket volume 

and the heat transfer area are design parameters whose values are exactly known. Thus 

there is no need to consider them for parameter estimation. 

 

 

Table 4-1 

Nominal value of CSTR parameters 

No. Parameter Variable Value 

1 Feed temperature T
f
 20 

o
C 

2 Feed composition c
f
A 2500 mol/m

3
 

3 Fluid density ρ 1025 kg/m
3
 

4 Heat of reaction ∆H 160 kJ/mol 

5 Activation energy E/R 255 K 

6 Preexponential factor k 2.5 h
-1

 

7 Coolant inlet temperature T
f
c 10 

o
C 

8 Coolant density ρc 1000 kg/m
3
 

9 Heat transfer coefficient h 1000 W/m
2
•

o
C 

10 Feed flow rate F 0.1 m
3
/h 

11 Coolant flow rate Fc 0.15 m
3
/h 

12 Initial state of composition cA0 1000 mol/m
3
 

13 Initial state of reactor temperature T0 20 
o
C 

14 Initial state of coolant temperature Tc0 20 
o
C 

 Reactor volume V 0.2 m
3
 

 Cooling jacket volume Vc 0.055 m
3
 

 Heat transfer area A 4.5 m
2
 

 Coolant heat capacity CPc 1.2 kJ/kg•
o
C 

 Fluid heat capacity CP 1.55 kJ/kg•
o
C 
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The sensitivities of the reactor temperature with respect to the parameters are 

calculated by the direct method and normalized. In a next step the orthogonalization 

method is applied. The results are shown in Table 4-2 where the overall sensitivity and 

the rank value are shown for each parameter. It can be seen that while the output may be 

sensitive to some parameters that these parameters may nevertheless have a small rank 

value as they are highly correlated to parameters already chosen for the set. The method 

indicates that the coolant density ρc, the pre-exponential factor k and the fluid density ρ 

form a set of three parameters that has the largest effect on the reactor temperature. The 

rank value of the 4
th

 parameter is less than 0.7% of sum of the first three, and therefore 

the size of the parameter set is chosen to be three (ns=3). The set {ρc, k, ρ} is a 

suboptimal selection under the D-optimality. In fact the set is the optimal in this case but 

this is not always true (the next case is an example). 

 

 

Table 4-2 

Parameters of the CSTR model ordered by the orthogonalization method 

Parameter ρc k ρ c
f
A h ∆H T

f
c E/R T

f
 

Rank Value 9.29 0.79 0.13 0.07 0.008 0.001 0 0 0 

Sensitivity 9.29 1.30 0.56 2.09 7.11 2.66 3.72 1.07 0.29 

 

 

The total number of the possible subsets of parameters is C
3
9=84 and, it is therefore 

possible to perform an exhaustive search evaluating each set of parameters. The ten sets 

with the highest criterion value are shown in Table 4-3. 2000 simulations with the 

augmented parameters varying from 0.5-2 (normalized value) have been performed to 

investigate the change of the criterion value with the uncertainty. The mean value of the 

criterion for each set for these 2000 simulations is listed in Table 4-3. It can be seen that 

there are significant differences between the criterion values at the nominal point and the 

mean values of the criteria for changes in the nominal value of the parameters. For 

example, the 8
th

 set of parameters results in a higher mean value of the criterion under 
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the influence of uncertainty in the parameter values than the best set for the nominal 

point. It can be concluded that determining a set of parameters to be estimated from data 

at a nominal point may not lead to an optimal conclusion. The last row in Table 4-3 

denotes the probability for each subset to be the optimal set for the simulations that were 

run for the uncertain parameters. The probability is computed by the number of 

simulations where a subset has the largest criterion value divided by the total number of 

the simulations that were performed. The 7
th

 parameter set from Table 4-3 has the largest 

probability to be the optimal set. 

 

 

Table 4-3 

Collection of suboptimal subsets for CSTR model 

No. 1 2 3 4 5 6 7 8 9 10 

ρ c
f
A c

f
A c

f
A ρ ρ ρ k c

f
A c

f
A 

k k ∆H E/R k E/R ∆H ρc ∆H k Parameter subset 

ρc ρc ρc ρc h ρc ρc h h h 

Criterion value -0.15 -0.23 -0.27 -0.53 -0.54 -0.61 -0.68 -0.85 -0.94 -0.98 

Mean criterion value -0.13 -1.35 -1.35 -1.38 -0.89 -0.27 -0.34 0.21 -0.77 -0.70 

Probability to be the 

optimum 
0.150 0.061 0.029 0.053 0.037 0.129 0.170 0.153 0.083 0.137 

 

 

It can be seen from this analysis that there is not one set of parameters that will be 

the best one for both criteria if uncertainty is taken into account. Instead it is more useful 

to provide a collection of parameter sets as well as criteria to evaluate them and to have a 

user chose certain set based upon experience with a process. For example, even though 

the 8
th

 subset has a slightly lower probability to be the best set compared to the 7
th

 set, 

the mean criterion value of the 8
th

 parameter set is larger than the one for the 7
th

 set. 

Therefore, the 8
th

 parameter set is the best choice for parameter estimation for this 

example. However, other criteria, e.g., experience that one has with a process, may also 

play a factor when choosing one parameter set over another one.  
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Table 4-4 

Smallest variation required to change order of a subset with the 1
st
 one for the CSTR 

model 

No. of subset 2 3 4 5 6 7 8 9 10 

Variation 

magnitude  
0.007 0.011 0.032 0.200 0.268 0.075 0.163 0.050 0.052 

 

 

Table 4-4 lists the smallest variation of the augmented parameters required to change 

the order of a parameter set with the 1
st
 set. From Table 4-4 it can be concluded that a 

small change in the nominal value of the parameters (0.7%) can change the selection of 

an optimal parameter set. Since the optimal set at the nominal point is extremely 

sensitive to the nominal values and since these nominal values are by definition 

imprecise, which is the reason why they need to be estimated, it is questionable if 

choosing an optimal parameter set simply based upon local sensitivity analysis returns 

meaningful results. Another important conclusion that can be drawn from the results 

shown in Table 4-4 is that the magnitude of the smallest perturbation required to change 

the order of two subsets is not proportional to the difference of the criterion value 

between the two sets. The difference of criterion value between the 6
th

 subset and the 1
st
 

subset is less than that between the 10
th

 subset and the 1
st
 subset. However, the variation 

required to change the order of the 6
th

 subset with the 1
st
 subset is much larger than the 

one required to make the 10
th

 set more important than the one currently ranked 1
st
. 

The global sensitivities of the criterion values with respect to the parameters are 

calculated to identify the influential uncertain sources. The KS statistic of the 1
st
 

parameter set, as one representative of a global sensitivity measure, is computed from 

the sampled points (Fig. 4-2(a)). To study how variations of the parameters affect the 

criterion values the gradient of the criterion function are also computed and shown in Fig. 

4-2(b). The gradient is in fact the local sensitivity of the criterion function. It can be 
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concluded that the local and global sensitivity results in different information. The initial 

value of the coolant temperature Tc0 (No. 14) has the largest magnitude of the local 

sensitivity while the coolant density ρc (No. 8) has the largest global sensitivity.  
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Fig. 4-2. Sensitivity analysis of criterion value. (a) Global sensitivity of criterion value; 

(b) Local sensitivity of criterion value; (c) Change of criterion value with variation of T
f
, 

ρc and T0. 
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To investigate the reasons behind these different observations for local and global 

analysis, the criterion values have been plotted for variations of some specific 

parameters in Fig. 4-2(c). It can be seen that varying Tc0 strongly changes the criterion 

value at the nominal value but has a diminishing effect for large values of Tc0. Also the 

criterion value does not decrease monotonically as Tc0 decreases. The criterion value 

changes monotonically with changes in ρc in the whole range. On the other hand, the 

feed temperature T
f
 (No. 1) has only marginal effects by changes in its nominal value 

and it has small value of both global sensitivity and local sensitivity. 

 

Parameter subset selection of an IL-6 signaling pathway 

Modeling and analysis of intracellular signaling networks is an important area in 

systems biology. Signaling pathways are the cellular information routes by which cells 

sense their surroundings and adjust to environmental changes or hormonal stimuli. The 

signaling network includes various components which detect, amplify, and integrate 

diverse external signals to generate responses such as changes in enzyme activity or gene 

expression. 

The IL (interleukin)-6-type cytokines are an important family of mediators involved 

in the regulation of the acute-phase response to injury and infection (Heinrich et al., 

2003). Several models of the IL-6 signaling pathway have been proposed and a recently 

developed model is presented in the paper by Singh et al. 2006, which describes signal 

transduction in hepatocytes induced by IL-6 (Fig. 3-1). This model contains two 

signaling mechanisms: Janus-associated kinases (JAK) & signal transducers and 

transcription factors 3 (STAT3) are activated in one pathway while the other pathway 

involves the activation of mitogen-activated protein kinases (MAPK). The model is 

described by 68 nonlinear ordinary differential equations including 118 parameters. The 

equations are derived according to the law of mass action or Michaelis-Menten kinetics 

and the parameters are the kinetic rate constants. The states are the concentrations of the 

molecules involved in the pathway. The input is the concentration of IL-6 that stimulates 

the pathway and the output is the concentration of the transcription factor (STAT3N*)2 
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(dimer of activated STAT3 in the nucleus). For the detailed model of the differential 

equations and the nominal values of parameters one can see Singh et al. 2006, and Chu 

et al. 2007. 

The investigated model contains a total of 118 parameters. Since the analysis 

procedure could be computationally prohibitive for such a large number of parameters, 

only the 50 most important parameters, as identified by the sensitivity value, will be 

investigated here. Also, 16 of the 68 states have initial conditions different from zero and 

variations in these initial conditions are also considered in this section.  

The order of parameters selected by the orthogonalization method is shown in Table 

4-5. (The parameter kfi is the rate constant of the forward reaction in the i-th pathway and 

kbi is the rate constant of the backward reaction of in the i-th pathway.) It can be seen that 

having more than 6 parameters does not provide much of a benefit as the additional 

contribution of the 7
th

 parameter is less than 1% to what can already be achieved by 

choosing 6 parameters. Accordingly the size of the subset is determined to be 6 (ns=6).  

 

 

Table 4-5 

First 10 parameters in the IL-6 model ordered by the orthogonal method 

No. 1 2 3 4 5 6 7 8 9 10 

Parameter kf7 kf31 kf21 kf70 kf6 kf48 kf45 kf26 kf18 kf8 

Rank value 637.3 239.6 187.5 63.2 46.3 23.0 11.7 5.3 3.2 1.0 

 

 

The total number of possible sets with six parameters is C
6
50, which is roughly 

1.6•10
7
. It is not possible to perform an exhaustive search in this case due to the large 

number of possible sets, however, a selection procedure based upon a GA can still be 

applied. A certain threshold for determining a cutoff of sets to be considered has been 

found by trial and error. This cutoff has been set to a value of 55 (α=55) resulting in 38 

parameter sets which are considered for further analysis. The ten parameter sets with the 

largest criterion values are shown in Table 4-6. It can be seen that the differences in the 
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criterion values between these ten sets is small, which can serve as an indicator that 

further analysis may be warranted rather than simply using the “optimal” set for 

parameter estimation.  
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(a)                                                             (b) 

Fig. 4-3. Results calculated by sampling-based method for IL-6 model. (a) Mean 

criterion value of a subset; (b) Probability for a subset to be the optimal one. 

 

 

The mean criterion value is calculated for 2000 simulations where the nominal 

values of the augmented parameters can vary from 30% to 300% and the results are 

shown in Fig. 4-3(a). The mean criterion value of the 1
st
 subset is about 38.5 while the 

10
th

 and the 13
th

 subsets have larger mean value. The probability of a subset to be the 

optimal one due to uncertainty in the nominal values is shown in Fig. 4-3(b). The 1
st
 

subset which is optimal at the nominal point has small probability to preserve its top 

position for small changes in the (estimated) nominal value. Its probability of being the 

top choice is only 8% of the probability of the 28
th

 set, and there are 35 parameter sets 

that have larger probability of being the optimal choice. It can be concluded that if the 

uncertainty effects are not considered then the selected parameter set may be far from 

being the optimal one. 
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Table 4-6 

10 sets of parameters with largest performance indices for the IL-6 model 

No. 1 2 3 4 5 6 7 8 9 10 

kf31 kf31 kf31 kf31 kf7 kf7 kf31 kf31 kf31 kf31 

kf21 kf21 kf21 kf21 kf31 kf31 kf21 kf21 kf21 kf21 

kf70 kf6 kf70 kf6 kf21 kf21 kf70 kf70 kf70 kf6 

kf6 kf48 kf6 kf32 kf6 kf70 kf48 kf16 kf6 kf48 

kf48 kf32 kf32 kf26 kf48 kf6 kf16 kf32 kf32 kf32 

Parameter 

subset 

kf32 kf26 kb48 kb48 kf26 kf48 kf32 kb48 kf42 kf27 

Criterion 

value 
56.83 56.82 56.63 56.62 56.58 56.57 56.51 56.32 55.92 55.89 

 

 

The smallest distance from the nominal point to the point at which another parameter 

set has larger criterion value than the 1
st
 parameter set is shown in Table 4-7. It can be 

seen that a small perturbation of 0.2% of the nominal values in parameter space is able to 

change the optimal solution. This observation also indicates that the 1
st
 subset which was 

determined by local analysis is likely to lose its top position due to uncertainties in the 

nominal values of the parameters. 

 

 

Table 4-7 

Smallest variation required to change the order of a subset with the 1
st
 one for the IL-6 

model 

No. of subset 2 3 4 5 6 7 8 9 10 

Smallest variation 0.002 0.07 0.05 0.06 0.08 0.08 0.10 0.13 0.15 

 

 

To study how individual parameters change the criterion value, the global 

sensitivities and the local sensitivities of the criterion with respect to the 1
st
 parameter set 

are shown in Fig. 4-4. It can be seen that the initial concentration of JAK (No. 54) which 

has the largest magnitude of the local sensitivity also has the 3
rd

 largest contribution 
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when global sensitivity analysis is applied. Similarly the initial concentration of SHP2 

(No. 55) which is determined as being most important by global sensitivity also has the 

2
nd

 largest magnitude for local sensitivity.  
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(a)                                                                (b) 

Fig. 4-4. Sensitivity analysis of criterion value of the best subset in the IL-6 model. (a) 

Global sensitivities of criterion value; (b) Local sensitivities of criterion value. 

 

 

From the local sensitivities it can be seen how some biological mechanism affect the 

estimation accuracy. The initial concentration of STAT3C (No. 55) has the largest local 

sensitivity and an increase of the initial value raises the optimality criterion. STAT3C is 

one of the main proteins in the JAK/STAT signaling pathway. The initial concentration 

of JAK (No. 54) also has large positive sensitivity. JAK is an essential component for 

forming the receptor complex which is in turn required to initiated signal transduction. 

The initial concentration of SHP2 (No. 56) has the largest magnitude among the negative 

sensitivities. Increase of the initial value of SHP2 will decrease the value of the 

optimality criterion for this parameter set. SHP2 is an important protein for signaling 

through the MAPK pathway. The initial conditions of the two inhibitors PP1 (No. 57) 

which deactivates STAT3C in the cytoplasm and PP2 (No. 58) which deactivates 

STAT3N in the nucleus also have a negative effect on the value of the objective function.  
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Similar argument can be made for important parameters of the signal transduction 

pathway model. The parameter kf7 (No.1) has the larger positive sensitivity than any 

other parameters. kf7 is involved in the reaction where STAT3 is activated by the 

receptor complex and large values of kf7 increase the rate of activation. The parameter 

kf32 (No.2) has the largest negative sensitivity. kf32 is involved in the reaction where 

SHP2 enables signal transduction through the MAPK pathway which limits the 

transduction through the JAK/STAT pathway. 

It is important to point out that the concentration of the cytokine IL-6 (No. 51) has 

only a mildly positive effect as is determined by local sensitivity analysis. The reason for 

this is that the nominal value of the input is so large that the cells are saturated with IL-6 

and a change in the value of IL-6 will only have a minor effect on the output. However, 

it should be pointed out that this behavior will be very different if the IL-6 concentration 

were lower by an order or magnitude or more.  

 

4.4 Conclusion 

Selection of parameters which can be estimated accurately from data is a prerequisite 

for successful estimation. While it is straightforward to perform parameter sensitivity 

analysis to determine a set of parameters to be estimated, it may happen that the 

determined set is not the best one for estimation. The reason for this is that results from 

local parameter sensitivity analysis depend upon the nominal values of the parameter, 

which are by definition not precisely known, and on values of the initial conditions and 

inputs. This section investigated these points as a family of parameter sets can be 

selected by the D-optimality criterion in combination with the orthogonalization method, 

where the optimization was performed based upon a genetic algorithm.  

In a second step, the smallest perturbation required to change the optimal solution is 

determined to check if the results returned by the local method are acceptable. It has 

been illustrated in the case studies that the optimal solution can be extremely sensitive to 

parameter uncertainty and a more detailed analysis may be required. This analysis 

should start by determining which sources of uncertainty are affecting the value of an 
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optimality criterion. A method based upon global sensitivity analysis and another 

techniques based upon local sensitivity analysis of the criterion value are presented in 

this section. Furthermore, the mean criterion value and the probability for a subset to be 

the optimal one for a specified region of the parameter space are used to evaluate the 

chosen sets of parameters.  

The result of the presented technique is a collection of candidate sets of parameters 

for estimation with detailed information about the effect of uncertainty in the parameter 

values, initial conditions, and inputs on the optimality criterion. The provided 

information is also helpful for evaluating data used for parameter estimation or 

designing future experiments. 
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5. INTEGRATING PARAMETER SELECTION WITH EXPERIMENTAL 

DESIGN UNDER UNCERTAINTY FOR NONLINEAR DYNAMIC SYSTEMS 

 

5.1 Introduction 

Parameter estimation involving large-scale dynamic models is an important but also 

a challenging task (Ljung, 1999; Nelles, 2001. Walter and Pronzato, 1997). One problem 

for parameter estimation is that complex models often contain dozens or even hundreds 

of parameters while only a limited amount of data is available as conducting experiments 

can be time consuming and costly. Therefore, many models of complex systems are 

often over-parameterized and not all the parameters are estimable in practice. If 

parameters are not practically estimable then a small amount of noise in the data will 

result in large variations of the estimated values of the parameters and the parameters 

cannot be estimated accurately (Walter and Pronzato, 1990). One solution to this is to 

select a subset of parameters to be estimated while all other parameters are fixed at a 

constant value. 

Parameter selection has been used in a variety of applications. However, one 

important drawback of common parameter selection schemes based upon the FIM or 

sensitivity vectors is that these techniques depend upon the chosen values of the 

parameters for nonlinear systems, even though the exact values of the parameters are not 

known prior to estimation. It has been demonstrated that parameter uncertainty will have 

a significant effect on the parameter selection. 

Another avenue for improving results obtained from parameter estimation is to 

collect a meaningful data set via experimental design. The objective of experimental 

design is to determine initial conditions and to adjust time-varying inputs to generate a 

data set with an optimal amount of information. The effect that uncertainty in the 

parameter values has on experimental design needs to be taken into account for 

nonlinear systems and robust strategies should be applied. 

Parameter selection and experimental design are often considered separately, 

however, results from the two procedures affect each other for nonlinear systems: 
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Parameter set selection is highly dependent on the experiment condition while the 

experimental design is also dependent on the parameters selected for estimation. For 

example, it can happen that the best experiment design for a specific set of parameters 

may be a bad choice for another parameter set. 

This section presents an integrated approach to parameter set selection and 

experimental design which also takes parameter uncertainty into account. This is 

achieved by formulating an optimization problem which is a mixed-integer nonlinear 

programming problem (MINLP) that optimizes a criterion of the FIM. As this is a non-

trivial problem, a hybrid method combining a genetic algorithm (GA) and a 

simultaneous perturbation stochastic approximation (SPSA) is developed. The technique 

computes a collection of (sub-)optimal parameter sets, rather than a single optimal set, as 

well as the optimal experimental settings to estimate the sets. 

 

5.2 Integrating selection of parameters with experimental design 

This section first presents an example that illustrates the effect that parameter set 

selection, experimental design, and uncertainty in the model parameter values have on 

one another. This is followed by the formulation of the optimization problem whose 

result represents the solution of the integrated experimental design and parameter set 

selection procedure under uncertainty. The last subsection describes solution techniques 

used for solving this optimization problem. 

 

Motivating example 

Consider a system with one input, three parameters, and two output variables: 

2 2
1 11 2 3 3 3

2 2
2 22 3 3 3

5 /12 3 1/ 2

4 5 / 4 3/ 2

y u

y u

εθ θ θ θ θ

εθ θ θ θ

 + + + +   
= +    

+ − +    
, (5-1) 

where y=[y1, y2]
T
 are output variables, θθθθ=[θ1, θ2, θ3]

T
 are parameters, u is an input 

variable determining the experimental condition, and εεεε=[ε1, ε2] represent noise with a 

Gaussian distribution with 
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( )E =ε 0 , ( )Var =ε I .  

Not all three parameters can be determined uniquely since the sensitivity matrix  

2

3

T 2

3

1 1 5 /12 3

0 4 5 / 4 3

u

u

θ

θ

 + +∂
=  

∂ − + 

y

θ
 (5-2) 

is column-rank deficient. 

As the sensitivity matrix has a rank of two, two parameters are selected for 

estimation. There are three possible combinations of parameters to be estimated and the 

D-criterion for each possible set of parameters is given by 

( )1,2 4ln 2ϕ = , 

( )2

1,3 32ln 3 5 / 4uϕ θ= − + , 

( )2 2 4 2

2,3 3 3ln (26 5 / 6) 169 65 / 6 25 /144u u uϕ θ θ= + + + + + , 

(5-3) 

where φi,j denotes the criterion value of the set consisting of parameters i and j. Using 

Bayesian statistics, the unknown parameters can be regarded as random variables and 

some distribution function can be used to characterize the parameter uncertainty. In this 

example the parameters are assumed to be uniformly distributed from 0 to 2 and the 

nominal value is assumed to be the mean value ( 1
i

θ = ). The input is assumed to be in 

the range from -1 to 1 with a nominal value of zero, 0u = . 

Since the criterion value is a function of the parameters and the input variables, there 

are several possibilities for computing a function value. One approach is to determine 

the criterion with all parameters and inputs set to their nominal value: 

( ),uϕ ϕ= θ . (5-4) 

The most commonly used methods for parameter selection make use of Eq. (5-4), which 

assumes that the nominal values of the parameters are close to the true values and that 

the input variables have only a minor effect on the criterion value. However, this 

assumption may not be accurate and a good set of parameters evaluated at their nominal 

values may become suboptimal for other values. Instead, it is better to use the mean 

criterion value over the uncertain range of the parameters: 



 

 

71 

[ ] ( )E E ,uϕ ϕ=   θ θ
θ . (5-5) 

A parameter set which has a large mean criterion value has a good average performance 

over the uncertainty range of the parameters. The criteria from Eq. (5-4) and Eq. (5-5) 

have so far not taken into account that the input variables can be changed. When 

integrating parameter set selection and experimental design, the mean criterion values 

have to be evaluated at their optimal input trajectory, which may be different for each 

parameter set:  

[ ] ( ) ( )
* * *E E ,  with arg max E ,

u
u u uϕ ϕ ϕ = =    θ θ θ
θ θ . (5-6) 

 

 

Table 5-1 

Evaluation of each subset of parameters using different criteria 

Conditions ϕ1,2 ϕ1,3 ϕ2,3 

,  u u= =θ θ ; Eq. (5-4) 2.77 2.89 0.70 

u u= , average over θ  ; Eq. (5-5) 2.77 2.69 0.50 

*

,i ju u= , average over θ ; Eq. (5-6) 2.77 2.69 5.34 

 

 

Table 5-1 lists the criterion values for Eq. (5-4, 5-5, 5-6) of each parameter set given 

by Eq. (5-3). It can be concluded from Table 5-1 that the nominal criterion indicates that 

the parameter set {θ1, θ3} is the optimal choice for estimation. However if parameter 

uncertainty is taken into account then the parameter set {θ1, θ2} is the best choice. If 

experimental design is considered in addition to uncertainty in the parameter values then 

the parameter set {θ2, θ3} is the optimal choice for parameter estimation. The fact that 

different evaluations of the criteria result in selecting different parameters demonstrates 

that parameter selection is highly dependent on the experimental condition. Additionally, 
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uncertainty in the parameter values can not be neglected as it can also have a significant 

impact on the results. 

 

Problem formulation 

For simple models, like the illustrative example, it is possible to determine the 

optimal parameter set and the optimal experimental design analytically. However, this is 

almost never the case in practice where more complex nonlinear dynamic systems are 

found. This section describes the problem formulation whose solution will result in the 

criterion given by Eq. (5-6). 

Variables of a model that affect parameter estimation can be classified as belonging 

to one of the following four categories: (i) time-varying input variables, u(t), that can be 

manipulated; (ii) time-invariant inputs, v, that can only be adjusted at the beginning of 

an experiment and will remain constant thereafter; (iii) parameters, θ, whose values are 

not known and need to be estimated; and (iv) unknown factors, δδδδ, whose values are not 

known and will not be estimated. The Fisher information matrix, F, is a function of these 

four types of variables  

( ( ), , , )t=F F u v θ δ . (5-7) 

To evaluate the FIM some knowledge about all four kinds of variables is required. 

Although the value of the parameters and the unknown factors can not be obtained 

accurately, some a priori information about their uncertainty such as the range or 

distribution of their values is often available. These two types of variables can then be 

described by random variables according to some distributions based on the knowledge 

of their uncertainty. The criterion function should always be evaluated over the 

uncertainty range of the parameters and unknown factors instead of at their nominal 

values. 

The values of the inputs determine the experimental conditions for generating the 

data set to be used for parameter estimation. Since the inputs can be manipulated they 

should be varied such that an information rich data set is obtained. It has been shown 

that the selection of parameters is dependent on the experimental design while at the 
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same time the optimal values of the input variables is also dependent on the parameters 

selected for estimation. Therefore, parameter set selection and experimental design need 

to be performed simultaneously.  

A new formulation of the parameter set selection and experimental design problem is 

required to take the effect that these four types of variables have on the FIM into account. 

Eq. (5-8) describes the resulting optimization problem: The objective function is the 

expectation of the criterion value based upon the FIM over a range of values for θθθθ and δδδδ. 

The first two constraints are the system equations while the third and the fourth 

constraints are the sensitivity equations. The sensitivity matrix is formed by combining 

the sensitivity values at different time points. Some columns of the sensitivity matrix are 

selected according to the decision variable z to compute the FIM only for the parameters 

to be selected. The number of parameters per set, nz, can be determined by singular value 

decomposition of the sensitivity matrix. The input variables u(t) and v determine the 

experimental conditions. 
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(5-8) 

As the manipulated variables u(t) are a function of time belonging to an infinite-

dimensional function space, it is required to convert this infinite-dimensional problem 

into a finite-dimensional one by parameterizing the input variables.
35

 Various 

expressions can be used and a common one is to describe each ui(t) by a polynomial with 

parameters ai,j,k:  

1

, , , , 1 , ,1 , ,0( ) ,   n n

i i j n i j n i j i j ju t a t a t a t a t T
−

−= + + + + ∈� , (5-9) 

where ui(t) is the i-th input variable and Tj is the j-th time interval. For simplicity 

parameterization by the zero order polynomial is often used in practice. The vector u  

T

1,1,1 , ,i j k
a a =  u � �  (5-10) 

is used to denote the coefficients parameterizing the input variables and will replace u(t) 

in the optimization problem given by Eq. (5-8). 
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After parameterization of the input variables the optimization problem results in a 

mixed-integer nonlinear programming problem (MINLP). These types of optimization 

problem are generally not trivial to solve. Furthermore, two additional aspects have to be 

taken into account that increase the complexity of the problem: (1) The objective 

function includes an expectation and it may not be possible to evaluate this expectation 

exactly if the number of uncertain factors, inputs, and parameters is large; and (2) One is 

generally less interested in determining a single optimal set of parameters to be 

estimated but rather in obtaining a collection of parameter sets that have a high criterion 

value. If the values of the criterion have similar magnitudes for several sets of 

parameters, then the choice of which set to use for parameter estimation can be made 

based upon insight into the system. Since it is not possible to accurately describe the 

uncertain factors, it is a reasonable assumption to choose any of the parameter sets and 

its corresponding experimental conditions that results in a large criterion value. 

One approach to evaluate the expectation is to numerically integrate the value over 

all uncertain factors. In this case, the determination of the continuous decision variables 

becomes a nonlinear programming problem and existing software such as LOQO 

(Vanderbei and Shanno, 1999), UOBYQA (Powell, 2002), SNOPT (Gill et al., 2002), or 

IPOPT (Wachter and Biegler, 2006) can be used. The solution of the nonlinear 

programming problem can then be coupled with solution of the binary programming 

problem that selects the parameters to be estimated.  

However, numerical integration over the uncertain factors and parameters is 

computationally demanding. The first order sensitivity values of the parameters are 

required to calculate the criterion value of the FIM. For dynamic systems the 

sensitivities are calculated by solving a set of differential equations. These sensitivity 

equations need to be solved for a number of values in the uncertain range of the 

parameters and uncertain factors to compute a value of the expectation. Computation of 

the expectation at each iteration of the optimization is a task that becomes too 

computationally intensive for large number of uncertain factors and parameters. One 

alternative to this is to use a method of the stochastic approximation. While stochastic 
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methods also have their own set of drawbacks, they can be applied for determining 

approximate solutions of optimization problems of a significant scale. Since the goal for 

selecting parameter sets is not to come up with one optimal set, but rather to return a 

collection of sets that are good candidates for parameter estimation, there is no 

significant drawback to finding an approximate solution from using a stochastic 

technique. SPSA is computationally inexpensive as it is a derivative-free method that 

only requires two criterion values to approximate the gradient in each iteration step 

(Chin, 1997). 

Since a stochastic optimization method is used for determining the continuous 

variables in this section, it is sensible to also use a stochastic technique for determining 

the discrete variables. Genetic algorithm will be used for the discrete variables as they 

return a population of possible solutions as a result of the algorithm. This property is 

consistent with the aim to determine multiple sets for parameter selection. Also, since z 

is a vector of binary variables, no reformulation is required for determining z via a GA. 

 

A hybrid method combining GA and SPSA 

A hybrid heuristic method which integrates GA and SPSA is developed in this 

subsection. A GA is used to update the discrete decision variable z while SPSA updates 

the continuous variables u and v. Since the focus is on how to combine the two 

algorithms, a basic implementation of each algorithm is used. In this hybrid algorithm 

the GA schedules which parameter sets will have their input variables updated by the 

SPSA. The fitness function is computed after the input variables have been updated in 

order to generate a new generation for the GA. If a parameter set is removed from the 

current generation, the information about the number of iteration steps which have been 

completed by the SPSA and the determined input trajectory are recorded. If a previously 

removed parameter set reappears in a later generation of the GA, then the last recorded 

input trajectory is used as the starting point for SPSA and not a nominal trajectory. A 

diagram of the algorithm is shown in Fig. 5-1. 
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terminated ?

Select top subsets from the populations of GA

For each subset if the maximum iteration of 

SPSA is not attained update the input 

variables by SPSA

Record the subsets and the optimal setting of 

inputs for each subset

Pre-screening and initialization

YES

NO

Generate next population of GA by the 

operations of selection, crossover and 

mutation 

Update the input variables for each subset in 

the population by SPSA

Calculate the mean criterion value as the 

fittness function of GA

Modify the fitness value by the sharing 

function 

 

Fig. 5-1. The procedure for integrating parameter set selection with experimental design. 
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The input variables for each parameter set in the current GA population are updated 

by SPSA. Since parameter sets with large fitness values are more likely to remain in the 

population, they have a larger chance to have their input variable profiles updated by 

SPSA. When the input variables of a parameter set are updated, the mean criterion value 

over the uncertain variables should be evaluated. At each step of SPSA, the criterion 

values at 2 different sampling points of parameters are. The criterion value is averaged 

across different iterations as an approximation of the mean criterion value. As the input 

variables converge to an optimal value, the differences among the input values between 

two successive iterations are reduced. Accordingly, the averaged criterion value 

computed from different iterations will approach the averaged criterion value at the 

optimal input. 

Each parameter set in the current population has its input variables updated by the 

SPSA. However, the SPSA does not to determine the optimal input trajectory for each 

parameter set in the current population. Instead, the SPSA performs several iterations to 

improve the input trajectories for each parameter set in the current population. Due to 

this is it ensured that a parameter set with a high fitness value which has large 

probability to appear in the population of GA will have its input trajectory updated 

frequently resulting in a good approximation of its optimal input trajectory. On the other 

hand, not too much computation time is wasted on parameter sets that are likely to be 

removed from a population due to their low fitness value. The number of iterations 

performed by SPSA to update the continuous variables during each generation depends 

upon the update history of the parameter set and on the generation number. The reason 

for this is that the values of the input variables are likely far from their optimal values 

during the first few generations and can change significantly, whereas the input variable 

profiles will only require minor modifications for parameter sets that have remained in 

the population for several generations. 

To clarify the procedure of iterating between the GA and the SPSA, an artificial case 

is presented in Fig. 5-2. Three parameter sets determined by the GA are chosen for 

update by SPSA. Each parameter set is associated with a value of the vector variable z, 
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mean criterion value φ, input variable u and the current iteration number n for SPSA. 

The number n denotes how many iterations of SPSA are used to update the input 

variables for each parameter set in the current population of GA. SPSA updates the 

profile of the input variable u, i.e., in this case a scalar value, and the iteration number of 

SPSA is changed from 0 to 10. Next, the updated input variables are used to calculate 

the mean criterion value for each parameter set and the mean criterion values represent 

the fitness functions used by the GA to generate the second generation. Since parameter 

set 3 has the smallest criterion value, it will be removed from the second generation. 

However, its information is retained. The input variable u for each parameter set in the 

population is again updated by SPSA and the mean criterion value for each parameter set 

is recalculated at the new value of the input variable. GA uses the criterion value to 

generate the next generation and the parameter set 3 is reintroduced into the population. 

Since the information of parameter set 3 is preserved, the input variable can be updated 

from the already recorded information by SPSA.  

When the solution is near the optimal one, fewer iterations of SPSA are required to 

update the decision variables. For example, 10 iterations of SPSA are performed for each 

parameter set in the 1
st
 generation. However, as the input variables approach their 

optimal values the number of iterations can be reduced to decrease the computational 

effort. Only 5 iterations of SPSA are performed for parameter sets 1 and 2 in the 2
nd

 

generation of the GA since the input trajectories of these parameter sets have already 

been updated once. Since parameter set 4 is first introduced in the 2
nd

 iteration, its input 

trajectory is updated by 10 iterations of SPSA. When the input variables of parameter 

sets 1 and 2 are updated in the third generation then the number of iterations by SPSA 

can be further reduced to 3. This procedure is repeated until the input trajectories have 

converged to desired values or until the maximum number of generations of the GA has 

been reached. In this example the number of iterations for SPSA is determined however 

the number can be adapted by the improvement of the objective function. 
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Fig. 5-2. Illustration of steps of algorithm by using an example problem. 
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5.3 Case studies 

This section presents two detailed case studies illustrating the presented procedure. 

The first case study deals with a continuously-stirred tank reactor (CSTR) while the 

second case study involves a model of a signal transduction pathway. 

 

Application of the procedure to a CSTR 

This model describes an exothermic CSTR in which a first-order reaction A�B is 

taking place (Muske and Georgakis, 2003) 

,   exp( / )A AA B R k E RT c→ = − . (5-11) 

The reactor is described by the following differential equations 
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. (5-12) 

The three states of the system are the concentration of component A, the temperature of 

the reactor, and the temperature of the coolant jacket. The reactor temperature is chosen 

as the only output of the system. 

The variables in the system belong to one of 5 categories listed in Table 5-2. The 

first 9 variables shown in Table 5-2 are the parameters considered for estimation. The 

initial concentration is not measured and belongs to the category of unknown factors. 

The two inlet flows can be manipulated and they are the time-varying input variables. 

The coolant temperature can be manipulated as well but its value is constant as it 

belongs to the category of time-invariant input variables. The last three variables are 

known parameters which will not be considered in the following analysis. 

 

 



 

 

82 

Table 5-2 

Nominal values of variables in the CSTR model 

Parameter Variable Nominal Value Type symbol 

Feed temperature T
f
 20 

o
C 

Feed concentration c
f
A 2500 mol/m

3
 

Fluid heat capacity CP 1600 kJ/ m
3
•

o
C 

Heat of reaction ∆H 160 kJ/mol 

Activation energy E/R 255 K 

Preexponential factor k 2.5 h
-1

 

Coolant inlet temperature T
f
c 10 

o
C 

Coolant heat capacity CPc 1200 kJ/ m
3
•

o
C 

Heat transfer coefficient h 1100 W/m
2
•

o
C 

Parameters θ 

Initial concentration cA0 1000 mol/m
3
 Unknown factor δ 

Feed flow rate F 0.1 m
3
/h 

Coolant flow rate Fc 0.15 m
3
/h 

Time variant input 

variables 
u(t) 

Initial coolant 

temperature 
Tc0 30 

o
C 

Time invariant 

input variables 
v 

Reactor volume V 0.2 m
3
 

Cooling jacket volume Vc 0.055 m
3
 

Heat transfer area A 4.5 m
2
 

Known parameters  

 

 

All the variables are normalized by their nominal values to remove the possibility 

that scaling affects the procedure. The uncertain parameters and the unknown factor are 

assumed to be uniformly distributed in the range from 25% to 175% of their nominal 

values. It is assumed that the input variables can be changed from 50% to 150% of their 

nominal values. It is possible to use distributions other than uniform distributions for 

describing the uncertainty without modifying the procedure. The zeroth order 

polynomial is used to parameterize the input variables. The time horizon for collecting 

data is 8 hrs and it is assumed that the manipulated input variables can be changed every 

hour. 

A singular value decomposition of the FIM is computed for the nominal values of 

the parameters and a pre-determined input profile to determine the number of parameters 

to be estimated. The first singular value is 0.8, followed by 0.1 and all other singular 

values are smaller then 0.05. Accordingly, it is appropriate to set the number of 

parameters to be estimated to two (nz=2). 
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Fig. 5-3. Input trajectories. (a) Feed flow rate F; (b) Coolant flow rate Fc. 
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An exhaustive search over all parameter sets can be performed and a genetic 

algorithm is not required for this example as the total number of parameter sets 

containing two parameters is only 36. The optimal input trajectories can be computed by 

SPSA for each subset of parameters. The values of the parameters for SPSA were chosen 

to be: α=1, γ=1/6, a=1, c=0.2, A=100. The maximal number of iteration is set to 500. 

The algorithm is implemented in Matlab and the computation time for determining the 

optimal input trajectories for a parameter set is approximately 3 minutes on a computer 

with a P-IV CPU and 2 GB of memory. The time dependent profiles of the two input 

variables, the feed flow (F) and the coolant flow (Fc), are shown in Fig. 5-3. 

Additionally, the time invariant input variable, Tc0, is set to 60% of its nominal value. 

The values of the three criteria are listed for all parameter sets in Table 5-3. Column 

3 shows the optimal mean criterion values calculated according to Eq. (5-6). Column 4 

contains the mean criterion values calculated according to Eq. (5-5) and Column 5 

shows the nominal criterion values calculated according to Eq. (5-4). The nominal inputs 

for all results in columns 4 and 5 are those shown in Fig. 5-3. The procedure has been 

repeated several times to ensure that the results are reproducible as using stochastic 

optimization techniques and computing an expectation of a criterion over a set of 

uncertain parameters introduces stochastic elements into the procedure. The results of 

these repeated numerical experiments was that the parameter set to be estimated remains 

unchanged and only minor differences can be found in the criterion values. 
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Table 5-3 

Criterion values for all parameter sets consisting of 2 parameters 

No. Subsets 
Optimal mean 

D-criterion 

Mean D-

criterion 

Norminal D-

criterion 

1 CPc, h 6.70 6.06 5.20 

2 T
f
c, h 6.46 6.11 5.78 

3 ∆H, h 6.26 5.29 4.98 

4 T
f
c, CPc 6.25 5.75 5.67 

5 ∆H, CPc 6.20 5.09 4.92 

6 c
f
A, CPc 5.99 4.51 4.61 

7 c
f
A, h 5.94 4.78 4.62 

8 CP, CPc 5.86 4.57 3.79 

9 CP, h 5.57 4.32 3.43 

10 k, CPc 5.42 4.27 4.18 

11 k, h 5.26 4.16 4.03 

12 E/R, CPc 4.74 3.68 3.83 

13 E/R, h 4.45 3.56 3.68 

14 CP, T
f
c 2.91 2.18 1.57 

15 T
f
, CPc 2.40 1.45 1.34 

16 T
f
, h 2.34 1.51 1.24 

17 ∆H, T
f
c 2.12 1.34 1.05 

18 c
f
A, T

f
c 1.94 1.24 1.37 

19 CP, ∆H 1.84 1.14 0.52 

20 k, T
f
c 1.82 1.25 1.37 

21 c
f
A, CP 1.74 0.74 0.28 

22 E/R, T
f
c 1.12 0.62 1.00 

23 CP, k 0.55 -0.53 -1.16 

24 c
f
A, k 0.27 0.01 0.22 

25 c
f
A, ∆H 0.22 0.02 0.34 

26 ∆H, k -0.29 -0.44 -0.32 

27 CP, E/R -0.37 -1.16 -1.54 

28 c
f
A, E/R -0.40 -0.58 -0.14 

29 ∆H, E/R -0.92 -0.98 -0.63 

30 T
f
, T

f
c -1.32 -1.70 -1.66 

31 T
f
, CP -2.16 -3.04 -3.62 

32 T
f
, ∆H -2.64 -2.74 -2.86 

33 T
f
, c

f
A -2.86 -3.21 -3.00 

34 T
f
, k -3.80 -3.96 -4.12 

35 T
f
, E/R -4.46 -4.61 -4.51 

36 E/R, k -5.54 -6.72 -6.55 
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Application of the procedure to a signal transduction network  

A model of the JAK/STAT signaling pathway (Yamada et al., 2003) is used in this 

subsection to illustrate the techniques for parameter selection and experimental design 

for complex dynamic systems. Fig. 5-4 shows the structure of the signaling pathway 

under investigation. The model includes 32 state variables and 53 parameters. The input 

is the concentration of IFN-γ while the output is the concentration of STAT1n*-

STAT1n* which is a transcription factor and can be indirectly measured using a green 

fluorescent protein reporter system. The reactions in the pathway are numbered and the 

parameter names are derived from the reaction number. 

 

 

 

Fig. 5-4. Structure of the JAK/STAT signaling pathway. 

 

 

All the variables are normalized by their nominal values for this case study. The 

uncertain parameters and the unknown factors are assumed to be uniformly distributed in 

the range from 50% to 150% of their nominal values. The input is assumed range from 
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50% to 150% of its nominal value. Little is known about the uncertainty distribution of 

these parameters and a uniform distribution is no more or less likely to accurately 

describe the parameter values than any other distribution. The experiment is performed 

over a period of 8 hrs and the input can be changed every 30 minutes and remains 

constant in between the changes. 

A singular value decomposition of the FIM is used to determine the number of 

parameters to be estimated. Selecting four parameters for estimation is sufficient as the 

condition number of the FIM is large and the magnitude of the singular values drops 

significantly after the fourth singular value (nz=4). 

The presented algorithm is implemented in Matlab. The size of the population of the 

GA is set to 30, 3 elites are used, and the maximum generation number is set to 100. The 

parameter, D, of the sharing function is set to one. Roulette selection, scattered crossover, 

and uniform mutation are used. The following parameter values are chosen for SPSA: 

α=1, γ=1/6, a=0.7, c=0.2, A=100.  

The input sequence is assumed to consist of 16 values as the variable can be changed 

every 30 minutes over a time horizon of 8 hrs. Determining an input sequence with 16 

changes for a problem where a stochastic optimization method is used, will likely 

produce slightly different results each time the optimization is performed. Accordingly, a 

term that penalizes deviations of the input from its nominal value has been added to the 

objective function from Eq. (5-8): 

( )
2*

,,
, arg max  E ( , , , )

u
ϕ λ= − −  θ δz u

z u F z u θ δ u u , (5-13) 

where u  is the nominal value of u and 
u

λ  is a penalty coefficient for changes in the 

manipulated variable. Including this penalty term ensures that the input is only changed 

from the nominal value if such a change has a significant positive effect on the criterion 

value. Fig. 5-5 shows the mean input values and their standard deviations for one 

parameter set where the problem was solved ten times. 
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Fig. 5-5. Averaged input signal and error bars for ten solutions of the algorithm. 

 

 

It required approximately 28 hrs of computation time on a computer with a P-IV 

CPU and 2 GB of memory to obtain the collection of 30 (sub-)optimal parameter sets 

shown in Table 5-4 and the corresponding optimal experimental conditions for the sets. 

Table 5-4 lists the 30 parameter sets with the optimal mean criterion value for their 

respective experimental conditions (Eq. 5-6) shown in the third column. For comparison 

purposes, the mean criterion value (Eq. 5-5) at the nominal operating conditions (column 

4) and the nominal criterion value (Eq. 5-4) are also shown in the table (column 5).  

It can be seen there is a significant difference in the ranking of the individual 

parameter sets. The set consisting of {kf5, kf6, kf21, kf29} has the largest nominal criterion 

value, however, it is only ranked at the 21
st
 position by the mean criterion value. More 

importantly, 3 of the 4 parameters selected for this set by the nominal D-criterion are 

different from the parameters chosen by the optimal mean D-criterion. 
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Table 5-4 

Criterion values for 30 selected parameter sets 

No. Subsets 
Optimal mean 

D-criterion 

Mean D-

criterion 

Norminal D-

criterion 

1 kf6, kf19, kf33, kb30 4.941 3.187 4.028 

2 kf6, kf19, kf28, kb30 4.792 3.248 3.907 

3 kf6, kf21, kf33, kb30 4.791 3.838 4.232 

4 kf6, kf19, kf29, kb30 4.763 3.384 4.007 

5 kf6, kf21, kf29, kb30 4.756 3.592 4.169 

6 kf6, kf19, kf26, kf33 4.692 3.646 4.423 

7 kf6, kf19, Vm24, kf33 4.689 3.644 4.423 

8 kf6, kf19, Vm24, kf29 4.682 3.482 4.562 

9 kf6, kf19, kf21, kf29 4.630 3.450 4.748 

10 kf6, kf19, kf21, kf28 4.628 3.465 4.747 

11 kf6, kf19, Vm24, kf28 4.547 3.359 4.480 

12 kf6, kf19, kf26, kf29 4.523 3.484 4.562 

13 kf6, kf21, kf29, kb18 4.438 3.262 4.555 

14 kf6, kf21, kf28, kb18 4.416 3.279 4.556 

15 kf6, kf18, kf21, kf28 4.404 3.349 4.606 

16 kf6, kf19, kf21, kb30 4.398 3.619 4.528 

17 kf6, kf21, kf26, kf28 4.394 3.234 4.387 

18 kf6, kf18, kf21, kf33 4.363 3.373 4.353 

19 kf5, kf6, kf21, kf29 4.327 3.269 4.898 

20 kf6, kf21, kf28, kb30 4.324 3.474 4.111 

21 kf5, kf6, kf19, kf28 4.311 3.267 4.675 

22 kf6, kf18, kf33, kb30 4.297 2.595 3.049 

23 kf6, kf21, kf33, kb18 4.251 3.303 4.304 

24 kf6, kf19, kf25, kf33 4.242 3.151 3.886 

25 kf6, kf21, kb18, kb30 4.222 3.430 4.351 

26 kf6, kf19, kf31, kb30 4.215 2.635 3.048 

27 kf6, kf18, kf21, kb30 4.204 3.500 4.400 

28 kf6, kf21, kf29, Km24 4.185 2.963 3.977 

29 kf6, kf16, kf21, kf29 4.172 3.428 2.901 

30 kf6, kf21, kf26, kf33 4.162 3.604 4.284 

 

 

Another important observation is that the criterion value changes significantly, when 

the experimental conditions are optimized for a chosen parameter set. This is especially 
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important insofar as the nominal setting of the input values were chosen in a matter that 

ensures a reasonable level of excitation as the input was varied from its smallest to its 

largest values in pulses of varying duration. However, improving experimental design 

does not only affect the values of the criteria, but also the ranking of different parameter 

sets. The set {kf6, kf19, kf33, kb30} has the largest optimal mean criterion value, however, 

when the input is fixed at the nominal point this parameter set is ranked the 26
th

 by the 

mean criterion value. It is also noted that this parameter set only has the 23
rd

 largest 

nominal criterion value. This exemplifies that some potentially good parameter sets may 

be missed if parameter uncertainty is neglected and if the effect of experimental design 

is ignored. 

While it may seem trivial to determine if a set is the best or the 26
th

 best among 

hundreds of thousands of possible sets, it is important to point out that there are 

significant differences in the criterion values even among the best 30 sets shown in 

Table 5-4. This becomes even more important once it is recognized that the criterion 

value involves computation of the logarithm of the determinant of the FIM. 

This example illustrates the complex nature of the optimization problem given by Eq. 

(5-8). Future work will focus on decomposition of the optimization problem to reduce 

the computational burden and enable application of the presented procedure to even 

larger models. 

 

5.4 Conclusions 

This section presented an integrated approach for selecting parameters for estimation 

and experimental design while taking uncertainty in the parameter values into account. 

Integrating these two approaches is important insofar as experimental design and 

selection of parameters to be estimated influence one another for nonlinear systems. 

Additionally, the nominal values of parameters that have yet to be estimated also have an 

effect on both experimental design and parameter set selection. The integrated approach 

formulates an optimization problem where the expectation of a criterion involving the 

Fisher information matrix is maximized by varying the parameters to be estimated and 
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the experimental conditions. This optimization problem is a MINLP which is non-trivial 

to solve. A hybrid method combining a genetic algorithm and a simultaneous 

perturbation stochastic approximation is developed to determine an approximate solution. 

The presented solution technique uses an iterative approach where the GA determines 

the discrete variables representing the set of parameters to be estimated, and the SPSA 

computes the values of the continuous variables, i.e., the experimental conditions. 

One other aspect of the presented work in this section is that a collection of 

parameter sets, each with its own optimal experimental design, is determined, rather than 

one optimal result. The reason for this is that one may have a specific preference for 

estimating certain parameters or using specific experimental conditions, even though this 

may restrict the results and not be optimal. However, by providing a collection of 

solutions and a measure for the quality of the determined parameter set/experimental 

design, it is possible to make an informed decision about which result to use. 
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6. PARAMETER SET SELECTION VIA CLUSTERING OF PARAMETERS 

INTO PAIR-WISE INDISTINGUISHABLE GROUPS OF PARAMETERS 

 

6.1 Introduction 

Mathematical modeling continues to play a key role in various branches of 

engineering and science. The structure of these models is generally determined from 

insight into the system while the parameter values are taken from the literature or in 

some cases estimated from experimental data. While it would be preferable to estimate 

as many parameters from data as possible, the number of parameters in these models 

usually exceeds the number of those which can be reliably estimated from available data. 

If parameters are not identifiable then even a low level of noise in the data will result in 

large variations of the estimated value of the parameters and the parameters can not be 

estimated accurately. A commonly used regularization is to select a subset of parameters 

to be estimated while all other parameters are fixed at a constant value. 

Most of the parameter selection approaches can be formulated as a combinatorial 

optimization problem, however, solving these optimization problems is nontrivial. For 

systems with only few parameters an exhaustive search can be used. However, the total 

number of possible combination of parameters is too large to be enumerated even for 

systems with only a few dozen parameters. Stochastic search techniques such as genetic 

algorithms can provide a solution for larger systems, however, convergence of these 

algorithms is not guaranteed. Another approach is to use a sequential approach where 

one parameter is selected at a time. The main disadvantage of these types of approaches 

is that some combinations of parameters may give better results, but could be excluded 

because of parameters selected at earlier steps. 

The methods mentioned above focus on searching the space of possible parameter 

sets, a procedure that is strongly affected by the number of parameters of the model. This 

section presents a different approach for parameter selection. The number of parameters 

to be considered is first reduced by determining several groups of parameters where the 

parameters within a group are pair-wise indistinguishable, i.e., they cannot be estimated 
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together. It is then possible to only consider one parameter per group for the parameter 

set selection procedure. This technique significantly reduces the combinatorial problem 

resulting from a large number of parameters and enables solution of the parameter set 

selection problem using existing approaches. 

This section develops the analytic and numerical methods for sorting parameters into 

groups. It is shown that parameters in an analytical pair-wise indistinguishable set can be 

re-parameterized by a new parameter. A procedure for carrying out this step numerically 

is also shown. While the numerical procedure cannot guarantee pair-wise 

indistinguishability, it does have the advantage that it can be used to lump parameters 

with very similar effects into the same group.  

Clustering of parameters into groups can be viewed as some form of model reduction 

as the number of parameters to be considered is reduced in the process. The difference of 

the behavior of the original model with all parameters and the model with a reduced 

parameter set can be described by a measure. The magnitude of this measure can be 

controlled by the number of groups of parameters to be considered as is investigated in 

this section. It is illustrated in an example that the presented procedure can not only find 

an adequately good solution compared to the forward selection or an approach based 

upon a genetic algorithm but it can also give important insight into the effect that 

parameters have on the model output.  

 

6.2 Parameter set selection via clustering of parameters into pair-wise 

indistinguishable groups of parameters 

As the number of parameters in many fundamental models far exceeds the number of 

parameters that can be accurately estimated from available data, it is necessary to 

determine a subset of parameters which can be estimated. Parameter selection can be 

viewed as a special case of model reduction as only the values for some parameters are 

determined from parameter estimation while all other parameters are assumed to remain 

at their constant value.  
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This section presents two techniques for determining subsets of parameters to be 

estimated. The first technique is an analytical approach which derives the condition for 

which the output of a system with fewer parameters is identical to the one for the entire 

parameter set. The second method is a numerical approach which does not require that 

the outputs are identical but instead investigates the error bound that results from 

including fewer parameters in a model. 

 

Analytical approach 

Determining which parameters can be lumped in a model is a problem that is related 

to parameter identifiability. Each time a parameter is not locally identifiable, it is 

possible to reduce the parameter by setting it to a constant value. If the effects that two 

parameters have on the output are identical then each parameter may be individually 

identifiable, however, only one of the two parameters needs to be considered and the 

other can be set to a constant value. The following definition and proposition provide the 

mathematical description of this situation. 

 

Definition 6-1: A parameter set is said to be a pair-wise indistinguishable set when any 

two parameters in the set are not locally identifiable. 

 

It can be seen that if the two parameters are not locally identifiable then their 

sensitivity matrix is rank deficient. This implies that the sensitivity vectors of two 

parameters are parallel. The effect that variations of any parameter in a pair-wise 

indistinguishable set have on the output can be compensated by changing any other 

parameter of the set while the others were set to the nominal value. The statement is 

backed up by Proposition 6-1. 

 

Proposition 6-1. 

Assume the output m∈y R  is an analytical function of the parameter n∈θ R  

( )=y f θ , (6-1) 



 

 

95 

and θ  is a nominal value of the parameter. If the sensitivity value of the output with 

respect to θi (i=1,…,r) is nonzero 

0,   1, ,   and  1, ,s

i

f
i r s m

θ

∂
≠ = =

∂
� � . (6-2) 

then for any θ in a neighborhood of θ , there exist a function ( )ψ θ  such that  

( ) ( )( )1 1 1 1 1 1 1, , , , , , , , , , , , , ,r r r n r n r nθ θ θ θ θ θ θ ψ θ θ θ θ− + − +=f f� � � � �  (6-3) 

if and only if the sensitivity vectors of the output with respect to θi (i=1,…,r) are parallel 

to each other 

0,          1, , 1i

i r

i rα
θ θ

∂ ∂
+ = = −

∂ ∂

f f
�  (6-4) 

where αi is a function of θ. (The proof of Proposition 6-1 can be found in Chu and Hahn, 

2009.) 

 

While two parameters in a pair-wise indistinguishable set may have zero sensitivity 

value, i.e., each parameter is not locally identifiable, this case would violate the 

condition of nonzero sensitivity values from Proposition 6-1. As this is a trivial case, it 

can be easily excluded by checking the sensitivity values for each parameter.  

Proposition 6-1 states that the effects that changes of the values of parameters in a 

pair-wise indistinguishable group have on the outputs can be lumped. As a result of this, 

only one parameter is needed to represent the group and all other parameters can be 

fixed at their nominal values. Accordingly, the output function can be re-parameterized 

to have fewer parameters, where one possible re-parameterization is given by 

Proposition 6-1.  

 

Illustrative example 

A simple nonlinear regression model is used to illustrate the presented analytical 

procedure. Let 
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( ) ( )1 2 3

1 2 3 3

1 2 3

, , ,h
θ θ θ

θ θ θ θ
θ θ θ

+ 
= = 
 

f g , (6-5) 

where it can easily be seen that a substitution 1 2h θ θ=  can be made. However, this result 

is derived here using the procedure presented above. The sensitivity vectors for θ1 and θ2 

are computed to be 

2

2 31

θ

θ θθ

 ∂
=  

∂  

f
 and 

1

1 32

θ

θ θθ

 ∂
=  

∂  

f
. (6-6) 

These two sensitivity vectors are parallel and are related by the following differential 

equation: 

2

1 1 2

0
θ

θ θ θ

∂ ∂
− =

∂ ∂

f f
. (6-7) 

Eq. (6-7) can be used to compute the re-parameterization of h . The characteristic 

ordinary differential equation is given by 

1 2

2 11

d dθ θ

θ θ
=

−
. (6-8) 

which can be solved by separation of variables and the solution is 

1 2 Cθ θ = , (6-9) 

where C is a constant. A first integral is 1 2h θ θ=  and it is chosen as the variable for re-

parameterizing the model. By fixing one parameter, like 1 1θ θ= , it can be obtained 

( ) ( )1 2 3 1 1 2 1 3, , , ,θ θ θ θ θ θ θ θ=f f . (6-10) 

Change of the two parameters, θ1 and θ2, can be replaced by changing only θ2 while θ1 is 

fixed at the nominal value. 

 

Numerical approach 

The procedure presented in the last section results in a set of characteristic ordinary 

differential equations which need to be solved. As it is rarely possible to analytically 

solve this expression, a numerical approach to clustering parameters into groups is 

presented here. This numerical approach does not require the sensitivity vectors to be 
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parallel, however, the angle between the sensitivity vectors should be small. In this case 

the parameters can be viewed as being pair-wise indistinguishable with a certain 

numerical precision. 

A similarity measure of the effect of two parameters on the output can be defined by  

T

2 2

cos
i k

ik

i k

φ =
s s

s s
, (6-11) 

where [ ]0, 2ikφ π∈  is the angle between the sensitivity vectors si and sk. The value of 

the similarity measure ranges from zero to one where a value of unity indicates that the 

two vectors are parallel to one another and that the two parameters cannot be 

distinguished. A value of zero refers to the sensitivity vectors of the parameters being 

orthogonal, i.e., the parameters have a distinct effect on the outputs. It should be noted 

that the absolute value is used for the similarity measure as it is of little importance 

which orientation the sensitivity vectors have.  

The parameters can be clustered into groups based upon the similarity measure. 

Agglomerative hierarchical clustering is used here since it is easy to determine from the 

hierarchical tree how many groups the parameters should be clustered into. However, 

other clustering algorithms (Duda et al., 2006; Theodoridis and Koutroumbas, 2006) 

could be used with only a minor difference in the outcome. 

Agglomerative hierarchical clustering forms groups by repeatedly merging different 

groups of parameters. Initially, each parameter is in a group by itself. In a second step, 

the two groups with the largest similarity measure are merged into a new group. The 

similarity within a group can be controlled by the number of groups that one chooses to 

have. 

Since the parameters in a numerically pair-wise indistinguishable set have similar 

effects on the output, a parameter in the set can be selected as the representative for the 

group. Parameter set selection is simplified by this procedure as the number of 

parameters can be reduced to the number of groups. However, since the sensitivity 

vectors of the parameters in a group are not perfectly parallel, it has to be taken into 
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account that there will be a discrepancy between the parameter-output effect of the 

original system and the one with a reduced number of parameters.  

This discrepancy can be measured by the prediction gap between the two functions 

( ) ( ) ( )
2

mind = −
ψ

θ f θ g ψ , (6-12) 

where f is the original output function and g is derived from f when only one parameter 

per group is considered and all other ones are fixed at their nominal values. The 

individual parameters of ψ  are the representative parameters for each group and are a 

subset of θ . The prediction gap indicates how well a model with a reduced parameter set 

can approximate the behavior of the original model. 

It is non-trivial to compute this discrepancy for general nonlinear functions. Due to 

this an approximation of d based upon linearization is used in this section. The truncated 

Taylor series approximation of the original function, f, with respect to the parameters is 

given by 

( ) ( ) ( )T

∂
≈ + −

∂

f
f θ f θ θ θ

θ
, (6-13) 

and the approximated Taylor expression of the function g is 

( ) ( ) ( )

( ) ( )

T

        
i

i

i s

i s

ψ θ
θ

∂
≈ + −

∂

∂
= + −

∂
∑

g
g ψ g ψ ψ ψ

ψ

f
f θ

 (6-14) 

where si is the index for the remaining parameters. The approximation of the discrepancy 

becomes 

( ) ( )− = −f θ g ψ Sx Ty , (6-15) 

where 
T

∂
=

∂ θ

f
S

θ
, 

T

∂
=

∂ s θ

f
T

θ
, = −x θ θ  and = − sy ψ θ . The discrepancy is dependent 

on the value of parameters and the worst case can be considered 

2
21

max mind
=

= −
yx

Sx Ty . (6-16) 
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Since the discrepancy may increase unbounded with an increased in the length of x, a 

constraint is placed on the length of x.  

The similarity of parameters within a group can be controlled by determining the 

number of groups for the parameter set. In the extreme case where each group only 

contains one parameter, the discrepancy between the original function and the one with a 

reduced parameter set is zero. However, the discrepancy will increase as fewer groups 

are used and the similarity within groups decreases. It will be shown in the following 

that the discrepancy can be bounded by a decreasing function of the least similarity 

value found in a group. 

 

Proposition 6-2. Let sk be the k-th column vector of the matrix S. Then the discrepancy 

2
21

max min k
yx

d y
=

= −Sx s  (6-17) 

can be bounded by 

22

2
1 cos s i

i k

d φ
≠

≤ − ∑ s , (6-18) 

where cos sφ  is the smallest similarity value in the group. (The proof of Proposition 6-2 

is in Chu and Hahn, 2009.) 

 

Proposition 6-2 provides a bound for one group. Summation of the upper bounds for 

each group results in an upper bound for the entire problem.  

 

Proposition 6-3. Let 
il

s  be the li-th column of the matrix S where l is the index of the 

group and i is the index of the sensitivity vector in a group. The discrepancy (Eq. 23) can 

be bounded by 

2

l

l

d d≤ ∑ , (6-19) 

where dl is the discrepancy of the l-th group. (The proof of Proposition 6-3 is Chu and 

Hahn, 2009.) 
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Application of determining pair-wise indistinguishable groups of parameters for 

parameter estimation 

One important step for parameter estimation is to select the set of parameters to be 

estimated. It is possible to formulate the parameter set selection procedure as an 

optimization problem, such as 

( )
1

1

*

( , )

( , )

1 2

       arg max  log det ( )

s.t.  ( )  with  that 1,  1

       z

       z {0,1},  1 .

ns

n js

i i

i i j i s

n s

i

i z j n

z z n

i n

=

= = =

+ + + =

∈ =

z
z F z

F z F
�

�
�

�

�

 (6-20) 

where the decision vector {0,1}n∈z denotes whether a parameter is included in the 

selected parameter subset. If zi=1 then θi belongs to the selected subset with the size of ns. 

The matrix F is the Fisher information matrix of all parameters. F(z) is the Fisher 

information matrix of the parameters included in the selected subset and it is equal to the 

principal submatrix of F with the indices of the non-zero decision variables (the entries 

of column ij and row ik,  j, k = 1…ns). 

The optimization problem given by Eq. (6-20) is nontrivial to solve as the number of 

possible combinations of parameters grows drastically with the number of parameters in 

the problem. Reducing the number of parameters to be considered can significantly 

reduce the computational burden. The parameter clustering algorithm can be used as 

described in the previous subsection. Since only one parameter per set can be reliably 

estimated from data, only one parameter per group needs to be considered. Even though 

it is possible to select any parameter in a group as the representative parameter, the 

parameter with the greatest length of the sensitivity vector is selected by the algorithm. 

The reason for doing so is that the value of a parameter with a large sensitivity vector 

would need to be changed by a smaller amount during the parameter estimation 

procedure than the value of a parameter with a small sensitivity vector, even though both 

parameters would be estimated from the same data set.  For example, if the sensitivity 

vector of one parameter is an order of magnitude larger than the one for another 

parameter in the same set, then the estimated value for the change in the parameters 
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would be an order of magnitude larger for the parameter corresponding to the smaller 

sensitivity vector. Since it can be assumed that the initial values of the parameters are 

reasonably close to their true values, it follows that estimating the parameters which 

require a smaller adjustment of their values is an acceptable approach.  

The number of binary variables from Eq. (6-20), i.e., the number of parameters in the 

problem is then reduced from n, the number of all parameters to ng, the number of 

groups. 

 

Algorithm of parameter selection base on parameter clustering 

Step 1. Calculate the sensitivity vectors of the outputs with respect to the 

parameters. 

Step 2. Determine ns, number of parameters in the subset that will be estimated, 

by singular value decomposition of the sensitivity matrix. 

Step 3. Set parameters whose sensitivity vectors have small length (e.g., less than 

5% of the largest one) to their nominal values. 

Step 4. Cluster the parameters into ng (ng≥ns) groups by hierarchical clustering 

based upon the similarity measure from Eq. (6-11). 

Step 5. For each group select the parameter which has the largest sensitivity 

vector as the representative of the group. 

Step 6. Select ns parameters from ng representatives to optimize the criterion 

function by solving the optimization problem given by Eq. (6-20). 

 

The number of parameters per set from Step 2 can be determined by the rank of the 

sensitivity matrix. Each column of the sensitivity matrix is a sensitivity vector of a 

parameter. The number of columns is equal to the number of parameters. However, due 

to correlation between parameters, the sensitivity matrix may be ill-conditioned. The 

rank of the sensitivity matrix can be determined by the number of singular values greater 

than a certain threshold. The value of the threshold should be problem-specific, however, 

it is possible to use some rule of thumb. If there is a gap of an order of magnitude or 
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more between the singular values then it is appropriate to choose the number of 

parameters to be estimated equal to the number of singular values that are larger than the 

cut-off determined by this gap. Step 3 represents a simple methodology for reducing the 

parameter set as no parameter with a small length of the sensitivity vector needs to be 

considered. Step 4 performs clustering of the remaining parameters into groups. The 

decrease of the number of groups clustered will reduce the computation resources for the 

optimization problem while increasing the discrepancy between the reduced model and 

the original model. The number of groups should be determined as the smallest one 

which can let the discrepancy less than a threshold value. The parameter with the largest 

sensitivity vector for each group is chosen as the representative of this group in Step 5. 

Step 6 selects the parameters to be considered for solution of the optimization problem 

from Eq. (6-20) by taking one parameter per cluster as described in Step 5. 

The presented technique can significantly reduce the computational burden for 

solving the optimization problem given by Eq. (6-20) as the computational effort for 

solution of this problem grows drastically with the number of parameters to be 

considered. 

 

6.3 Case study 

To illustrate the technique presented in this section, a model of a signal transduction 

pathway for hepatocytes stimulated by Interleukin-6 is used which is updated from 

Singh et al., 2006. The model, shown in Fig. 6-1, contains two pathways: Janus-

associated kinases & signal transducers and transcription factors are activated in one 

pathway while the other pathway involves the activation of mitogen-activated protein 

kinases. This model consists of 66 nonlinear ordinary differential equations and includes 

115 parameters. The state variables are the concentrations of the proteins in the pathway 

and the input variable is the concentration of Interleukin-6 outside of the cell that 

initiates signal transduction. The output variable is the concentration of (STAT3N*)2 

(dimer of activated STAT3 in the nucleus) as this transcription factor can be indirectly 

measured using a green fluorescent protein (GFP) reporter system. A detailed description 
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of the original version of the model and the nominal values of the parameters can be 

found in the literature (Singh et al., 2006, Chu and Hahn, 2009), however, the model has 

been updated to describe the mechanism that SOCS3 and SHP2 compete for the same 

binding site on the receptor. 

 

 

 

 

 

Fig. 6-1. Model of the Interleukin-6 signaling pathway. 
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The Fisher information matrix is computed in a first step. The sensitivity value is 

sampled every minute during the time interval from 0 to 12 hr to form the sensitivity 

vector. Singular value decomposition of the sensitivity matrix determines that the 9
th

 

through 115
th

 singular values are close to zero. Accordingly, a parameter set consisting 

of 8 parameters will be selected. In a second step, the lengths of the sensitivity vectors 

are analyzed. 70 of the parameters have sensitivity vectors with a length that is less than 

5% of the length of the largest sensitivity vector. These 70 parameters will be set to their 

nominal values and not considered further. The problem to be solved turns into a 

problem where a combination of 8 parameters needs to be chosen from a set of 45 

parameters such that the D-optimality criterion is maximized. If an exhaustive search 

were to be performed then the number of possible parameter sets that would have to be 

evaluated would be ~ 82 10× . For the purpose of comparison, the forward selection (the 

orthogonalization method), a solution of the optimization problem via genetic algorithm, 

and the clustering method introduced in this section are applied and discussed in the 

following.  

Fig. 6-2 shows the dendrogram of hierarchical clustering of parameters. It can be 

concluded that the similarity values between some of the parameters is very high as their 

sensitivity vectors are almost parallel. The diagram also illustrates how the selection of 

the similarity value influences the number of group. For example, if 11 groups are used 

then the smallest similarity value is equal to 0.941 which is illustrated by the dashed line. 

An increase in the number of groups leads to an increase of the lowest similarity value of 

the system. 
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Fig. 6-2. Dendrogram of hierarchical clustering of parameters. 

 

 

Reducing the parameter space via parameter clustering can be viewed as one type of 

model reduction. The discrepancy between the original model and the reduced model is 

important as it indicated how many groups need to be selected to appropriately represent 

the original model. As discussed in Proposition 6-2 and Proposition 6-3, the model 

discrepancy can be bounded by the least similarity measure. At the same time, the 

smallest similarity measure can be determined by choosing the number of groups from 

the dendrogram in Fig. 6-2. Therefore the number of groups can be determined by 

assuming the discrepancy to be less than a certain threshold value. Table 6-1 lists the 

least similarity measure and the discrepancy value for different number of groups. If the 

parameters are clustered into more groups, then the least similarity measure is increased 

and the discrepancy value is decreased. In this case the number of groups is determined 

to be equal to 11 as the discrepancy value drops below 0.05. 
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Table 6-1 

Results of the clustering method for different number of groups 

No. of groups 8 9 10 11 12 13 14 15 

Least similarity 0.917 0.925 0.930 0.941 0.943 0.966 0.968 0.969 

Discrepancy 0.240 0.149 0.095 0.046 0.045 0.021 0.02 0.02 

 

 

The parameter with the largest sensitivity vector in each group is chosen as the 

representative parameters for the group. The parameters selected for estimation are now 

chosen from the set of 11 representative parameters instead of the original 45 parameters. 

The optimization problem has reduced to determining a set of 8 parameters out of 11 

possible parameters to maximize the D-optimality criterion of the Fisher information 

matrix, as compared to the original problem that involved choosing a set of 8 parameters 

out of 45 parameters. The computational effort decreases significantly, from ~ 82 10×  

possible combinations to 165, due to this reduction in the number of parameters that 

need to be considered.  

 

 

Table 6-2 

Results by the three methods 

 Parameters selected Criterion 

Clustering kf7, ka26, kf21, kf19, kf6, kf45, kf25, Vm24 4.391 

Forward selection kf7, kf21, kf70, kf16, kf27, kf19, kf42, kf25 3.918 

Genetic algorithm kf7, ka26, kf21, kf19, kf6, kf45, kf25, Vm24 4.391 

 

 

The results returned by the presented algorithm need to be put in a proper context of 

what would be achieved using other method for determining parameter sets. In order to 

do this, a comparison between the presented technique, the forward selection, and 

solution of the D-optimality criterion optimization problem via a genetic algorithm has 

been performed. The summary of these results is shown in Table 6-2. It can be seen that 

the presented technique outperforms the forward selection as the forward selection adds 
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one parameter at a time to the parameter set and does not take into account that 

combinations of parameters may give better results than choosing one parameter at a 

time. As a result of this, the forward selection procedure does not determine a set of 

parameters that maximizes the D-optimality criterion. 

The genetic algorithm returned the same results as the technique based upon 

parameter clustering as the optimal solution, even though the GA determined the best 8 

parameters from the set of 45 parameters that were still considered after pre-screening. 

While both the GA and the clustering technique returned the same results, it should be 

pointed out that a GA requires more computational effort and  it is not guaranteed that a 

GA will converge to an optimal solution. Also, it is possible to combine the clustering 

technique with a GA that only considers one parameter per cluster. The main reason this 

was not performed in this example was because determining 8 parameters from a set of 

11 is a small enough problem that an exhaustive search can easily be implemented.    

While parameter selection for parameter estimation is a main application area for 

determining pair-wise indistinguishable parameters, there are other areas where the 

presented technique has value. For example, it is well known that robustness is a 

common property of biological networks, e.g., resilience to perturbations in current 

conditions. The kinetic parameters in a biochemical network can change due to alteration 

of enzyme activity caused by a mutation or a disease. However, biological networks 

have a certain tolerance regarding variations in kinetic parameters while still being able 

to maintain their functions. One important reason for robustness is redundancy built into 

a network. As some components of a network may fail, there are other components that 

have a similar effect which allows the network to function properly. Determining 

indistinguishable sets can reveal some of these redundancies inherent to a system.  

Investigation of pair-wise indistinguishable sets can also identify key parts of a 

network which can be further investigated. While it is straightforward to determine 

important parameters by comparing the lengths of sensitivity vectors, it is non-trivial to 

compare the different effects that changes in sensitivity over time have on a system. It 

has been shown that parameters which have similar cumulative effects can have distinct 
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dynamic behaviors. It has also been recognized that distinct temporal activation profiles 

of the same signaling proteins can result in different gene-expression patterns and 

diverse physiological responses. Clustering of parameters involves investigation of 

similarity of time-dependent sensitivity profiles. It should be noted that some groups 

only contain one parameter, such as kf16, kf25 and kf31 in the shown example. These 

parameters have distinct sensitivity profiles and their effects cannot be compensated for 

by other parameters. 

 

6.4 Conclusions 

This section presented a technique for determining which parameters should be 

estimated in a model. While it is possible to solve this problem by maximizing the D-

optimality criterion of the Fisher information matrix, it has to be recognized that the 

computational effort required for solving such a problem grows drastically with the 

number of parameters under investigation. The technique presented in this section 

addresses this problem as parameters which have a similar effect on the outputs are 

clustered and only one parameter per group needs to be considered for solution of the 

optimization problem. 

This section presented the underlying theory for determining pair-wise 

indistinguishable parameter sets and also developed an algorithm that can be used for 

determining the parameters to be estimated.  The approach has been illustrated in a case 

study involving a signal transduction network. The technique was able to reduce the 

optimization problem from determining a set of 8 parameters out of a total of 115 

parameters to finding a set of 8 parameters out of 11 parameters. A comparison with the 

results returned by forward selection and by a genetic algorithm has been made and it 

was found that the technique computed a better set of parameters than the one 

determined by forward selection. The results computed by the genetic algorithm were 

identical to the ones computed by the presented technique, even though the genetic 

algorithm investigated a much larger parameter space than the 11 parameters selected by 
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clustering. This example serves as an illustration of the technique as the optimal solution 

was found with very little computational effort. 
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7. IMPROVING PREDICTION CAPABILITIES OF MODELS OF COMPLEX 

BIOCHEMICAL REACTION NETWORKS VIA PARAMETER SELECTION 

AND ESTIMATION 

 

7.1 Introduction 

Parameter estimation is generally conducted by minimizing an objective function 

describing the difference between predicted model outputs and experimental 

measurements. A significant effort has been placed on developing computationally 

efficient parameter estimation techniques (Mendes and Kell, 1998; Rodriguez-Fernandez 

et al., 2006; Gennemark and Wedelin, 2007; Balsa-Canto et al., 2008). These techniques 

mainly focus on computational approaches for determining the solution that minimizes 

the objective function and do not address how sensitive the estimated values are to noise 

in the data. The importance of this point needs to be emphasized as models of 

biochemical reaction networks often contain a large number of correlated parameters 

while the experimental data is often scarce and noisy, resulting in not all parameters 

being identifiable in practice. 

Estimation of an unidentifiable model is an ill-posed problem and the optimal 

solution is not unique or may not be stable (Aster et al., 2005). Noise in the data will 

lead to a large variation of the estimated parameter values. Since not all parameters can 

be estimated accurately, the focus of estimation of complex biochemical models should 

be placed on improvement of the accuracy of the model prediction (Gutenkunst et al., 

2007; Piazza et al., 2008; Wilkinson et al., 2008; Dimelow and Wilkinson, 2009; 

Hlavacek, 2009), rather than on obtaining the best fit of the model to the data. In essence, 

a procedure that ensures that the model does not over-fit the data is required, similar to 

techniques found in system identification (Aster et al., 2005; Walter and Pronzato, 1997). 

The main difference between this approach and techniques used for system identification 

is that the model structure here is determined from insight into the system and it is 

known that the model will have more parameters than can be estimated. 
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A common regularization approach is to reduce the number of free parameters. This 

is achieved by selecting a subset of parameters that will be estimated while all other 

parameters are fixed at their nominal values. Determining which parameters should be 

estimated is called the parameter selection problem and plays a key role for the ability of 

a model to fit data. However, most parameter selection techniques concentrate on 

parameter identifiability with a lesser emphasis on accuracy of the model predictions. 

Even though the concepts are related, improving the prediction accuracy of a model is 

not equivalent to improving identifiability.  

The aim of this paper is to develop a technique for determining parameter values 

from limited amount of potentially noisy data with the goal of enhancing the accuracy of 

model predictions. A forward selection method is presented which minimizes the mean 

squared error of the prediction. A comparison with the well-cited orthogonalization 

method (Yao et al., 2003; Lund and Foss, 2008) is made. Both techniques belong to a 

class of forward selection procedures, however, each has a different objective function 

which is minimized and different criteria are employed at each step for selecting 

parameters. The advantage of the presented method is that it produces a more accurate 

prediction than the orthogonalization method. An additional advantage is that the 

presented technique provides a criterion that determines how many parameters should be 

estimated and explicitly takes parameter uncertainty into account. A numerical 

experiment for estimation of parameters of an NF-κB signal transduction network 

(Lipniacki et al., 2004) is conducted to illustrate the presented method. It is shown that 

estimation of an appropriately selected subset of parameters is sufficient to fit the data 

and results in more accurate model predictions than estimating all parameters.  

 

7.2 Motivating example 

This section illustrates the differences of two parameter set selection procedures, one 

focusing on parameter identifiability and one dealing with prediction accuracy. It will 

also be highlighted that it may be appropriate to estimate only a subset of parameters of 

a model if the effects that the parameters have on the outputs are highly correlated.  
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Assume the following linear regression model for the illustrative example:  

= +y Sθ ε�  (7-1) 

where the noise vector ε is Gaussian distributed with zero mean and a variance of σ
2
I 

and the matrix S is given by 

T

1 0 0 0 1 0 0 0

1 0 0 1 0 0

1 0 1 0

0 0

1 0 0 1 0 0
m nm

a a

a a

a a
×

 
 
 
 =
 
 
  

S

� � �

� � �

� � � � �

� � � � � � � � �

� � �

. (7-2) 

The model has m free parameters and it is assumed that n�m data points are given and 

that the value of a is positive (a>0). When the value of a is small, then the columns of S 

are almost linearly dependent and many combinations of parameter values have similar 

output values resulting in an ill-conditioned model for estimation.  

When all parameters are estimated, the mean squared error for the estimated 

parameters is 

( ) ( ) ( ) ( )2
T

* * 2

2

2 1ˆ ˆ ˆMSE E
a m

na
σ

+ − = − − =
  

θ θ θ θ θ  (7-3) 

where θ̂  is the estimated parameter value by the least squares method and *
θ  is the true 

value. The mean squared error of the prediction is 

( ) ( ) ( )
T

* * 2ˆ ˆ ˆMSE =E mσ − − =  
y y y y y  (7-4) 

where ŷ  is the prediction under the parameter estimated and *y  is the true value. It can 

be seen that the two mean squared errors are distinctively different. When the value of a 

decreases the mean squared error of the parameters will increase, however, the mean 

squared error of the prediction is not dependent on the value of a. An experimental 

design which increases the value of a improves parameter identifiabilty but has no effect 

on the accuracy of output predictions. Furthermore, accurate prediction of the output can 

be more easily achieved than accurate estimation of the parameter values for over-

parameterized models as the MSE shown in Eq. (7-4) is independent of a. This result 
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supports a recent observation that updating biochemical reaction networks should focus 

on the prediction rather than obtaining exact parameter values (Gutenkunst et al., 2007; 

Wilkinson et al., 2008). 

Since the effects of parameters on the outputs are correlated, it is sufficient to only 

estimate a small number of parameters. In this case a small value of a indicates that it is 

sufficient to estimate only one parameter. For illustration purposes, the true parameter 

value is assumed to be * 1iθ = , 1i m= � . If only the parameter θ1 is estimated and the 

values of the other parameters are fixed at 0, which are different from the true values, 

then the mean squared error of the prediction is 

( ) ( ) ( ) ( )
T

* * 2 2

1 1 1
ˆ ˆ ˆMSE =tr E 1m naσ − − = + −  
y y y y y  (7-5) 

where 1ŷ  is the prediction when only θ1 is estimated. 

Comparing the two mean squared errors from Eq. (7-4) and Eq. (7-5) it can be 

concluded that estimation of only one parameter is preferred to estimation of all 

parameters in the case of 

• Highly correlated parameters, i.e., a small value of a 

• Considerable noise levels, i.e., a large value of  σ
2
 

• Limited amount of experimental data, i.e., a small value of n 

• A large number of parameters, i.e., a large value of m 

In fact, all of these conditions are commonly encountered for estimation problems 

involving complex models of biochemical reaction networks. While the chosen example 

was a generic one to illustrate a point, it is likely that benefits can be achieved from 

estimating only a subset of the parameters of a model if one or more of these conditions 

hold. 

 

7.3 Parameter set selection procedure 

This section introduces a parameter set selection approach that minimizes the mean 

squared error of the prediction. This approach bears some similarity with conventional 

parameter set selection methods as it is based on parameter sensitivity analysis. However, 
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unlike other methods, the presented technique aims to improve the accuracy of model 

output predictions rather than to improved parameter identifiability. Using the sensitivity 

matrix, the regression model can be linearized at the true value of the parameters 

( ) ( ) ( )* *= + −y θ y θ S θ θ  (7-6) 

where ( ) *

T

=
= ∂ ∂

θ θ
S g θ θ . Without loss of generality, the parameter vector can be 

decomposed into two parts 

s

u

 
=  
 

θ
θ

θ
 (7-7) 

where sθ   is the vector of parameters selected for estimation and uθ is the vector of the 

remaining unselected parameters. Correspondingly the sensitivity matrix can be 

decomposed into two parts 

[ ]=S T W . (7-8) 

The linearized model can be written as 

( ) ( ) ( ) ( )* * *,s u s s u u= + − + −y θ θ y θ T θ θ W θ θ . (7-9) 

If only the selected parameters are estimated and the unselected parameters are fixed at 

the nominal value uθ , then the model for estimation of the selected parameters becomes 

( ) ( )

( ) ( ) ( )* * *

,

.

s s s u

s s u u

=

= + − + −

y θ y θ θ

y θ T θ θ W θ θ
 (7-10) 

The least squares estimate of the parameter is given by 

( ) ( ) ( )

( ) ( ) ( )

1
* T T * *

1 1
T T T T *

ˆ

.

s s u u

u u

−

− −

 − = − − − 

= − −

θ θ T T T y y θ W θ θ

T T T ε T T T W θ θ

�

 (7-11) 

The error between the prediction and the true value is obtained 

( ) ( ) ( ) ( )
1 1

* T T T T *ˆ
s u u

− − − = + − −  
y y θ T T T T ε I T T T T W θ θ  (7-12) 

where ( )ˆˆ
s s s

=y y θ . The mean squared error is given by 
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( ) ( )( ) ( )( )

( ) ( ) ( )

T
* *

T 1
2 * T T T T *

ˆ ˆ ˆMSE Es s s

s u u u un σ
−

 = − −
  

 = + − − −  

y y y θ y y θ

θ θ W W W T T T T W θ θ

 (7-13) 

where 
s

n  is the number of selected parameters. It can be seen that the mean squared 

error consists of two terms. The first part is the variance term which results from the 

noise in the data and it is proportional to the number of free parameters used and the 

variance of the noise. The second one is the bias term which stems from the difference 

between the fixed values of the unselected parameters and their true values. 

The parameters selected for estimation can be determined by minimizing the mean 

squared error. To illustrate the relationship between the results and the choice of the 

selection vector z, let 

( )=T S z  and ( )= −W S 1 z  (7-14) 

where 1 is a vector where each element has a value of unity. Then the optimization 

problem for parameter selection is given by 

( )2 *

1

min ,
n

i

i

z
θ

σ δ
=

+∑
z

z θ  (7-15) 

where the number of selected parameters is equal to the sum of elements in z and 

( )*,δ z θ  is the bias term in Eq. (7-13) after substitution of Eq. (7-14). 

However, this problem can not generally be solved since the objective function is 

dependent on the true value of parameters which is never known prior to estimation. 

This dependence results from the evaluation of the sensitivity matrix as well as the 

difference between the fixed values of the unselected parameters and their true values. 

However, there are several options for dealing with this type of problem, each one 

involving an approximation. The simplest one replaces the true parameter values by their 

nominal values, however, this is not a very realistic assumption and can return 

questionable results. 

A second option is to formulate the problem as a minimax problem. In this case, the 

largest value of the bias term for all feasible parameter values is calculated and the 
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parameters are selected such that they minimize the largest bias value. However, the 

minimax procedure is difficult to implement since the explicit expression of the 

sensitivity as a function of the parameter values can usually not be explicitly obtained 

for realistic examples and numerical evaluation of the expression is computationally 

expensive. Furthermore, optimizing for the worst possible parameter values may lead to 

a conservative result since this case may rarely occur. 

A third option is to uses available information about the parameters distribution to 

characterize the parameter uncertainty. The mean value of the bias term over the range 

of the uncertain parameters is calculated and then the parameters are selected by 

minimizing the mean value. In this case, the problem is given by 

( )*

2 *

1

min E ,
n

i

i

z
θ

σ δ
=

 +  ∑ θz
z θ . (7-16) 

This option is more mathematically tractable than the minimax procedure and is adopted 

in this paper. The mean value can be calculated by a Monte-Carlo method: a set of points 

of the parameter values are sampled according to the parameter distribution and the 

mean value is calculated from the sampled values. 

While it has been discussed how the issue of parameter uncertainty can be handled 

for formulation of the optimization problem, the remaining combinatorial problem is still 

not trivial to solve, especially for biochemical reaction networks with a large number of 

parameters. Even though stochastic methods like genetic algorithm can be applied, it can 

generally not be guaranteed that the found solution is indeed optimal or reproducible. 

Another approach is to use a forward selection procedure, which is a sequential method 

that selects one parameter at each step. Since the variance term in the mean squared error 

shown in Eq. (7-16) is independent of the specific parameters selected, the objective 

function for the forward selection can be given by the bias: 

( )*

*min E ,δ 
 θz

z θ . (7-17) 

The forward selection procedure minimizes the objective function (7-17) by 

decomposing the multi-dimensional search into a sequential uni-dimensional search. All 

elements of z are initially set to zero. In a first step, the objective function is evaluated 
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for all situations where only one element of z is equal to one. The smallest value of the 

objective function is found and the corresponding element in z is set to one. In a second 

step, the objective function is evaluated for all situations where only two elements in z 

are equal to one, but where the element determined in the first step has to be one of these 

two. The elements in z which have the smallest value of the objective function for all 

possible cases are set to one. This procedure is repeated where in each step one 

additional element of z is given a value of one. 

An advantage of the forward selection procedure is that a stopping rule naturally 

arises: the variance term in the mean squared error increases with the number of 

parameters selected while the bias term decreases. Initially, the bias term is dominant 

and selection of more parameters reduces the mean squared error. However, after a 

certain number of parameters have been selected, the variance term dominates and 

selecting more parameters will increase the mean squared error. Since the increase in the 

variance term is proportional to the number of selected parameters by a factor of 2σ , the 

forward selection procedure should be stopped when the reduction in the bias term by 

adding a new parameter is less than 2σ . 

 

Relationship to the orthogonalization method 

One important aspect of any theoretical contribution is to put the work into the 

proper context of existing approaches. A comparison is made here between the presented 

method and the orthogonalization method since both methods belongs to a class of 

forward selection procedures. This comparison will be made based upon two properties: 

comparison of the objective functions of the two methods and comparison of the 

criterion for selecting the next parameter at each step. 

Some assumptions need to be made for carrying out this comparison. Since the 

orthogonalization method is a local technique and does not take dependence of the 

sensitivity matrix on the parameter values into account, the sensitivity matrix is assumed 

to be a constant matrix in the following comparison. For notational purposes, assume the 

decomposition of the sensitivity matrix is [ ]=S T W  corresponding to the selected 
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parameters and unselected parameters. In the presented method the parameter 

uncertainty is assumed to be 

( )*E =θ θ  and ( )*Var =θ I . (7-18) 

The objective function of the orthogonalization method is the determinant of the 

Gram matrix of T. The determinant of the Gram matrix of S is 

( ) ( ) ( )( )1
T T T T T Tdet det det

−

= −S S T T W W W T T T T W . (7-19) 

The matrix ( )
1

T T T T
−

−W W W T T T T W  appears in the bias term in Eq. (7-13) and 

represents the Schur complement of TT T  in T
S S . Since the determinant of T

S S  is a 

constant which is not dependent on the selected parameters, maximizing ( )Tdet T T  is 

equivalent to minimizing ( )( )1
T T T Tdet

−

−W W W T T T T W . Under the assumption 

mentioned above, the objective function from Eq. (7-17) of the presented method is 

given by 

( ) ( )( ) ( )

( )( )
*

1
* T T T T *

1
T T T T

E , tr Var

tr .

uδ
−

−

   = −    

= −

θ
z θ W W W T T T T W θ

W W W T T T T W

 (7-20) 

It is apparent that both methods aim to minimize some measure of the matrix 

( )
1

T T T T
−

−W W W T T T T W . However, each method uses different measures as one 

makes use of the product of the eigenvalues of the matrix and the other of the sum of the 

eigenvalues, as represented by the determinant and the trace of the matrix, respectively. 

It is should be noted that minimizing the trace of ( )
1

T T T T
−

−W W W T T T T W is not 

equivalent to maximizing the trace of TT T  as there is no relationship for the trace that is 

equivalent to the one for the determinant used in equation in Eq. (7-19). 

The criterion for the orthogonalization method to add a new parameter at each step is 

the squared norm of the projected sensitivity vector 
( )sn

i
s . The projected sensitivity 
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vector 
( )sn

i
s  is in fact the residual vector ir  of the sensitivity vector 

i
s  regressed on the 

sensitivity vectors of the selected parameters: 

( )
1

T T

i i i

−

= −r w T T T T w  (7-21) 

where 
i

w  is i-th column in W. The residual characterizes the effect of an unselected 

parameter on the output which is not covered by the effects of the selected parameters. 

The forward selection selects the parameters which has the largest residual as given by 

the squared norm of the residual vector. However, the presented method sequentially 

minimizes the trace as seen by Eq. (7-20) and it is equal to the sum of squared residuals 

( )( )1
T T T T Ttr i i

i

−

− =∑W W W T T T T W r r . (7-22) 

Thus the criterion for the presented method to select a parameter at each step is that the 

selection leads to the smallest sum of the residuals of the unselected parameters. In other 

words, the orthogonalization method selects the parameter which has the largest effect 

not covered by the selected parameters at each step while the presented method selects 

the parameter which results in the smallest value of the total effects produced by the 

remaining parameters. 

 

 

 

Fig. 7-1. Illustration of the different selections made by the two forward selection 

methods. 
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An illustration of the different results returned by the two forward selection 

procedures is given in Fig. 7-1 and the following explanations. Assume that there are the 

four sensitivity vectors { }1 2 3 4, , ,s s s s . In both cases 1s  and 2s  are fixed at the same 

position but 3s  and 4s  are different for Case I and Case II. The orthogonalization 

method selects 1s  first in both cases while the presented method select 1s  first in case I 

but selects 2s  first in case II as the effects of 3s  and 4s  are similar to the effect of 2s . In 

fact if the length of the four sensitivity vectors is fixed but the directions may change, 

then the orthogonalization method will select 1s  first in all situations while the presented 

method will make the first selection according to the lengths of the sensitivity vectors as 

well as the directions. The later selection can produce a more accurate prediction. 

Additionally, it is a disadvantage of the orthogonalization technique that there is no clear 

rule that indicates when to stop adding parameters to the set to be estimated. However, it 

should be noted that Eq. (7-20) cannot be used if the sensitivity matrix depends on the 

parameter values, while the forward selection technique that maximizes the criterion 

shown in Eq. (7-17) is still applicable. Not being able to take parameter uncertainty into 

account is another disadvantage of the orthogonalization method compared with the 

presented method. 

 

7.4 Detailed case study 

 

Model description 

NF-κB (nuclear factor kappa B) is a transcription factor that plays a key role in 

regulating numerous genes involved in pathogen or cytokine inflammation, immune 

response, cell proliferation and survival. A model of the NF-κB signaling pathway 

(Lipniacki et al., 2004) is used in this work to illustrate the presented technique. This 

model consists of 15 nonlinear ordinary differential equations and includes 26 

parameters with nonzero nominal value. The state variables are the concentrations of the 

proteins in the pathway and the concentrations of free nuclear NF-κB  is selected as the 
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output. The nominal value of the parameters, the initial value of the states, and the 

Matlab codes for the model are available in the reference of Lipniacki et al. (2004). 

 

Simulation parameters used for the case study 

The algorithms used for model simulation, sensitivity calculation, parameter 

selection and estimation are all implemented in Matlab. The simulations cover a time 

span from 0 to 8 hrs. The output is sampled every 15 minutes over this time interval and 

measurement noise is assumed to have zero mean and a covariance matrix of 20.05 I  

( 2 0.0025σ = ). The true parameter values are assumed to be uniformly distributed in the 

range from 25% to 175% of the nominal values of the parameters. Though the value of 

the kinetic parameters may sometimes change by orders of magnitude, it is not 

completely unrealistic to have the estimated parameter value within a bound closer to the 

nominal values (Wilkinson et al., 2008).  

 

Parameter selection 

The sensitivity of the output with respect to the parameters is calculated by the direct 

differential method (Rabitz et al., 1983; Turanyi, 1990) which solves the sensitivity 

equations simultaneously with the system equations. The sensitivity matrix is formed by 

sampling the sensitivity value at the given time points. To calculate the mean value of 

the criterion from Eq. (7-17), 10
4
 parameter values are randomly sampled over their 

uncertainty range. For each parameter value the sensitivity matrix is evaluated and 

recorded. Table 7-1 shows the results of the forward selection procedure where the 

parameters are sequentially selected. The value of the objective function (7-17) at each 

step is listed in the table as well for the selected parameter sets. It can be seen that when 

the number of selected parameters increases, that the value of the bias decreases. Initially 

adding a new parameter will generate a decrease in the value of the bias which is larger 

than the variance, however, after selection of the 7
th

 parameter the decrease resulting 

from selecting the 8
th

 parameter is ( )0.0011 0.0002 0.0009− =  , which is less than the 

variance of the noise ( 2 0.0025σ = ). This is a good indicator to stop the procedure after 
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the first 7 parameters { }1 1 3 5 4 3, , , , , ,a a v ai c a k c c c have been selected for estimation. The 

orthogonalization method has also been applied to this problem for comparison purposes. 

For this method parameters are selected based on the sensitivity matrix evaluated at the 

nominal value of the parameters. Since there is no clear criterion for how many 

parameters should be selected, the procedure was also stopped after the 7
th

 parameter has 

been selected. The following parameter set was obtained for estimation: 

{ }4 3 5 1 1 1, , , , , ,v a ak c a c i i a . It should be noted that three out of the selected seven parameters 

are different for the results returned by the two techniques. The effect that the choice of 

these different parameter sets has on the prediction accuracy of the output will be 

investigated in the following subsections. 

 

 

Table 7-1 

Forward selection procedure to minimize the mean squared error 

step 1 2 3 4 5 6 7 8 9 

parameter i1a c1a a3 kv c5  c4 c3a i1 kprod 

bias 0.3018 0.1132 0.0385 0.0189 0.0076 0.0039 0.0011 0.0002 0.0001 

 

 

Parameter estimation and evaluation of prediction accuracy 

Several data sets are created for different true values of the parameters of the system 

in order to provide a realistic representation of the model uncertainty. 10 parameter 

values are randomly sampled where the parameters are assumed to have a uniform 

distribution over their uncertainty range. Furthermore, 50 data sets are generated for 

each set of parameter values by adding noise to the data. Three different sets of 

parameters are estimated from the created data sets and comparisons are made: the 

presented method that selects parameters to minimize the mean squared error of 

prediction (referred to as the ‘presented method’), the method that selects parameters by 

the orthogonalization procedure (referred to as the ‘orthogonalization method’) and one 

method that estimates all of the parameters. 
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Table 7-2 shows the averaged fitting errors over 50 data sets for each of the 10 

parameter values returned by the three methods. The fitting error is the sum of squared 

errors between the predicted output and the measured data divided by the variance of the 

noise: 

( ) ( )( ) ( )( )
T

2

1ˆ ˆ ˆe
σ

= − −θ y θ y y θ y� �  (7-23) 

where θ̂  is the nonlinear least squares estimate of parameters. It can be seen that 

estimation of all parameters returns a smaller fitting error in all cases than can be 

achieved by either of the two parameter set selection techniques. However, even though 

less than one quarter of the parameters are fitted by the techniques that use parameter set 

selection, the fitting error is close to the one returned by estimation of all parameters. It 

can be concluded for this biochemical reaction network that the effects that the 

parameters have on the output are highly correlated and that not all parameters can be 

reliably estimated in practice. 

 

 

Table 7-2 

Comparison of average fitting error for the different techniques applied to ten different 

data sets 

parameter 

value 
 1 2 3 4 5 6 7 8 9 10 

presented  

method 
21.61 24.50 19.83 13.26 20.12 22.09 24.05 17.14 25.47 13.72 

estimation of all 

parameters  
19.26 22.30 17.71 11.20 18.83 19.87 21.08 15.51 23.36 11.84 

averaged 

fitting 

error 
orthogonalization 

method 
21.53 24.49 19.01 15.80 19.96 21.72 25.01 17.08 26.82 13.61 

 

 

When the noise level is significant a small fitting error does not necessarily imply a 

small prediction error, e.g., as given by the sum of the squared errors between the 

predicted output and the true value of the output: 
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( ) ( )( ) ( )( )
T

* *

2

1ˆ ˆ ˆd
σ

= − −θ y θ y y θ y . (7-24) 

The averaged prediction errors for the 50 data sets generated for each of the 10 different 

cases are shown in Table 7-3 for the three procedures. 

 

 

Table 7-3 

Comparison of mean squared error for the different techniques applied to ten different 

data sets 

parameter 

value 
 1 2 3 4 5 6 7 8 9 10 

presented  

method 
3.915 3.592 4.033 6.371 3.580 3.671 4.048 4.337 3.850 4.529 

estimation of 

all parameters 
6.252 6.478 5.816 8.762 5.987 6.199 5.807 6.569 5.811 6.747 

averaged 

fitting 

error 
orthogonalizat

ion method 
4.618 3.967 4.558 11.291 3.988 4.326 5.997 5.150 6.208 5.130 

 

 

It can be seen for all the 10 different parameter values that the averaged prediction 

error returned by the presented method is less than that returned by estimation of all 

parameters as well as that returned by the orthogonalization method. As the data sets 

used in this example include 50 entries, a statistical test is required to confirm if the 

difference in the averaged values returned by the three methods in Table 7-3 is 

significant. A hypothesis test is formulated as follows: 

0 1:  against :
A B A B

H m m m H m m m− = − >  (7-25) 

where 
A

m , 
B

m  and m  denote the mean value returned by method A, method B and the 

gap, respectively. The subscript A denotes the orthogonal method or estimation of all 

parameters while the subscript B denotes the presented method in the comparison. The 

test checks if the null hypothesis can be rejected for a given significant level α  and a 

difference m . If this is the case then the difference between the averaged values is 

statistically significant. To further explain this procedure, m  is first set to zero and the 
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P-value of the test is calculated, i.e., the smallest α  such that the null hypothesis can be 

rejected. Next α  is set to 0.05 and 
c

m , the largest m , is calculated such that the null 

hypothesis can be rejected. From the value of 
c

m  it can be concluded with 95% 

confidence to what degree a method compares favorably to another technique. 
c

m  serves 

as a good indicator for describing the gap between the performance of two methods 

rather than the differences in the averaged values. 

 

 

Table 7-4 

Statistical significance test of the performance of the presented method vs. estimation of 

all parameters 

parameter value 1 2 3 4 5 6 7 8 9 10 

P-value 3.85E-9 5.68E-8 2.33E-9 4.67E-8 4.60E-8 2.05E-9 3.18E-9 8.38E-7 3.92E-5 2.25E-7 

value of 
c

m  1.77 2.1 1.36 1.81 1.76 1.93 1.33 1.54 1.57 1.59 

c
m % 0.452 0.585 0.337 0.284 0.492 0.526 0.329 0.355 0.408 0.351 

 

 

The P-value and the value of 
c

m  are listed in Table 7-4 for a comparison of the 

presented method and estimation of all parameters. All P-values are close to zero, i.e., it 

can be concluded with a probability close to one that the presented method returns better 

results than estimation of all parameters and that the differences in the mean squared 

errors is not the result of randomness in the data set. All values of 
c

m  in the table are 

positive which also confirms this interpretation. The table also lists the relative 

significant gap %
c

m  which is the value of 
c

m  divided by the averaged squared error by 

the presented method in Table 7-3. The conclusion from the table is that the presented 

method returns a smaller prediction error than estimation of all parameters by at least 

28.4%, by at most 58.5% and on average by 41.2%. 

 

 



 

 

126 

Table 7-5 

Statistical significance test of the performance of the presented method vs. the 

orthogonalization method 

parameter 

value 
1 2 3 4 5 6 7 8 9 10 

P-value 9.50E-3 3.43E-4 8.12E-4 7.38E-7 1.39E-3 1.70E-5 6.4E-15 1.57E-8 5.3E-10 2.54E-8 

value of 
c

m  0.21 0.2 0.26 3.41 0.19 0.41 1.72 0.64 2.05 0.44 

c
m % 0.054 0.056 0.064 0.535 0.053 0.112 0.425 0.148 0.532 0.097 

 

 

Similarly, the P-value and the value of 
c

m  are listed in Table 7-5 for a comparison of 

the presented method and the orthogonalization method. From the values it can be 

concluded that the presented method outperforms the orthogonalization method. 

However, the gap between the two techniques is smaller than what is shown in Table 7-4, 

indicating that the orthogonalization method is likely to return a better result than 

estimation of all parameters.  

 

7.5 Conclusions 

An observed universal property of complex biochemical networks is the “sloppiness” 

of parameter sensitivities: The eigenvalues of the Gram matrix of the sensitivity vectors 

can vary by many orders of magnitude (Gutenkunst et al., 2007). This indicates that 

parameters in a model are strongly correlated and effects on the output produced by 

changes of a parameter can be compensated by changes of another one. These “sloppy” 

parameter sensitivities result in an unidentifiable model, i.e., many combinations of 

parameter values can result in similar model predictions. This observation is also 

confirmed by other results involving parameter estimation (Piazza et al., 2008; Dimelow 

and Wilkinson., 2009). This “sloppiness” property indicates that focusing on exact 

parameter values may not be the best route for deriving models and instead the focus 

should be shifted to the accuracy of model predictions (Gutenkunst et al., 2007; 

Wilkinson et al., 2008; Hlavacek, 2009).  
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Based upon these observations, a method that improves accuracy of model 

predictions is developed in this work. The technique selects a subset of the parameters 

for parameter estimation and fixes the remaining parameters at their nominal values. 

Correlations among the effects that changes of the parameters have on the outputs are 

considered when selecting a subset of parameters. It should be emphasized that selecting 

a subset of parameters for estimation not only simplifies the estimation procedure itself, 

but can also lead to better prediction accuracy as over-fitting is avoided.  

The technique presented in this work is different from other parameter set selection 

methods because it aims at improving the accuracy of the model prediction rather than to 

improve parameter identifiability. The method belongs to a class of forward selection 

techniques which sequentially minimizes the mean squared error of the prediction. The 

effect of parameter uncertainty on the objective function is explicitly taken into account 

in this parameter selection technique. In addition to this, a criterion that determines how 

many parameters should be selected for estimation is derived for this procedure based 

upon a tradeoff between the variance and the bias in the mean squared error. 

The presented method for parameter selection is evaluated in a detailed case study 

involving a model of the NF-κB signal transduction pathway. The results returned by the 

presented method are compared with results by estimation of all parameters as well as 

those by the orthogonalization method. Even though only a subset of parameters is 

estimated by this technique, the fitting errors are almost as small as the ones for 

estimating all parameters. This supports the conclusion that many combinations of 

parameter values are able to generate equally good fitting (Gutenkunst et al., 2007; 

Piazza et al., 2008; Wilkinson et al., 2008; Dimelow and Wilkinson, 2009; Hlavacek, 

2009). However, it has also been shown that the presented technique can result in better 

prediction accuracy than estimation of all parameters as well as better prediction 

accuracy than those resulting from the orthogonalization method. 
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8. QUANTITATIVE OPTIMAL EXPERIMENTAL DESIGN USING GLOBAL 

SENSITIVITY ANALYSIS VIA QUASI LINEARIZATION 

 

8.1 Introduction 

Experimental design has received a significant amount of attention in statistics and 

system identification (Ljung, 1999; Steinberg and Hunter, 1984; Walter and Pronzato, 

1990). Qualitative design is one aspect of experimental design and consists of selecting 

input/output variables and identifiable parameters. Quantitative design, on the other hand, 

deals with determining input shapes and sampling schedules based on optimization of a 

suitable criterion. Local parametric sensitivities, i.e., partial derivatives of the output 

with respect to parameters, play an important role in both qualitative and quantitative 

experimental design. Various criteria for experimental design have been developed 

based on local sensitivity analysis. 

Global sensitivity analysis has more recently received a lot of attention as an 

alternative to local sensitivity analysis. Global sensitivity analysis characterizes the 

effect of a parameter on the output while explicitly taking information about parameter 

uncertainty into account. A significant amount of work has been done using global 

sensitivity analysis instead of local sensitivity analysis for experimental design 

(Brockmann et al., 2008; Chhatre et al., 2008; Cho et al., 2003; Degerman et al., 2009; 

King et al., 2007; Kontoravdi et al., 2005; Martinez et al., 2009; Sidoli et al., 2005; 

Varella et al., 2010; Yue et al., 2008; Zi et al., 2005). However, these efforts mainly 

focused on qualitative experimental design, i.e., determining important parameters that 

should be estimated. While it has been recognized that global sensitivity analysis 

outperforms local sensitivity for determining important parameters, reports of 

quantitative optimal experimental design by global sensitivity analysis, e.g. selection of 

sampling points and determination of input profiles by optimizing a experimental 

criterion, are rare (for an exception, see Martinez et al, 2009). 

The main obstacle to using global sensitivity analysis techniques for quantitative 

optimal experimental design is that there is a lack of optimality criteria that can be 
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applied to the global sensitivity values. The common experimental criteria are derived 

for linear systems where the results returned by each criterion characterize a specific 

attribute related to the precision of the estimated parameter values. These criteria are real 

functions of the design matrix of the linear model. In the case of a nonlinear model the 

local sensitivity matrix can be used as the design matrix; while it is possible to use the 

experimental criteria on the local sensitivity matrix, it has to be taken into account that 

the nonlinear behavior of the model is not taken into account in this case. However, it 

should be pointed out that the use of experimental criteria can not be easily extended to 

the global sensitivity matrix. If criteria developed for the local sensitivity matrix are 

applied to the global sensitivity matrix, such as was done by Martinez et al., 2009, then 

the experimental designs may be inconsistent with the traditional designs as the global 

sensitivity measures are not guaranteed to reduce to the local sensitivity when the 

parameter uncertainty is negligible, or even when the model is linear. A consequence of 

this is that it is difficult to interpret the results returned by an experimental criterion 

applied to the global sensitivity matrix. 

It is the goal of this section to develop a new global sensitivity analysis measure to 

be used for optimal experimental design. This global sensitivity analysis is performed 

via quasi linearization and the computed global sensitivity matrix is shown to be an 

extension of the design matrix of the linearized model. Due to this property, the existing 

experimental criteria can be applied to the global sensitivity matrix. The technique is 

consistent with traditional experimental design as results from the global sensitivity 

analysis reduce to the ones derived using local sensitivity analysis if the model is linear 

or if the parameter uncertainty is approaching zero. However, the presented approach is 

a global technique as the parameter uncertainty is explicitly taken into account during 

the computation. Due to this, quantitative experimental design based on the global 

sensitivity analysis can be performed, which may result in an improvement compared to 

a design based upon local sensitivity analysis. The technique is illustrated in three case 

studies, one where the parameter identifiability is tested, one where the optimal sampling 

points are determined, and one where the optimal input profile is computed. 



 

 

130 

8.2 Motivation behind derivation of a new global sensitivity analysis technique 

The main drawback of local sensitivity analysis applied to nonlinear systems is that 

the sensitivity values are affected by the parameter values. To overcome this drawback a 

wide variety of global sensitivity methods have been developed. It is generally accepted 

that global sensitivity analysis is superior to local sensitivity analysis for identification of 

influential parameters as is also evidenced by a large number of applications of global 

sensitivity analysis. However, the use of global sensitivity analysis for designing inputs 

and outputs has been much more limited and no generally acceptable criterion for 

quantitative experimental design involving global sensitivity analysis has been proposed 

in the literature. The reason for this is that quantitative experimental design generally 

uses a criterion of the sensitivity matrix for determining experimental conditions; 

however, it is unclear how existing experimental design criteria can be applied to the 

sensitivity values computed from global sensitivity analysis techniques.  

Even though it is straightforward to construct the global sensitivity matrix, similar to 

the local sensitivity matrix, and it has been suggested to apply existing experimental 

criteria to the global sensitivity matrix, the results of such a design can be problematic. 

The reason for this statement is that such a design involving the global sensitivity matrix 

is inconsistent with the traditional designs,  e.g., if the global sensitivity matrix fails to 

reduce to the design matrix when the model is linear. One resulting problem is that it that 

interpretation of the results returned by such a method are unclear. A simple example is 

presented here to illustrate this point. Consider the following two linear regression 

models  

Model I: 
( )
( )

1 1 2 1 2

2 1 2 1 2

,

,

g

g

θ θ θ θ

θ θ θ θ

= +

= +
 ,                Model II: 

( )
( )

1 1 2 1 2

2 1 2 1 2

,

,

g

g

θ θ θ θ

θ θ θ θ

= +

= −
. (8-1) 

These models do not contain noise terms as it is the purpose of this illustrative example 

to assess structural identifiability. The local sensitivity matrix is the design matrix as 

given by 

I

1 1

1 1

 
=  
 

S  and II

1 1

1 1

 
=  − 

S . (8-2) 
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The identifiability of the parameters can be determined directly from the value of the 

experimental criterion. The D-optimality criterion value is zero for Model I since the 

sensitivity matrix is rank deficient while the criterion value is nonzero for Model II due 

to the full rank of the sensitivity matrix. As a result, the parameters in Model I are 

unidentifiable while the ones for Model II are identifiable. However, the D-optimality 

criterion values of the global sensitivity matrix calculated from the conditional variance 

are both zero since the global sensitivity matrices are identical and equal to SI, which 

would falsely suggest that both models are unidentifiable. The reason for the incorrect 

results returned by this method based upon global sensitivity is that the sign information 

is lost in the computation of the conditional variance and that this global sensitivity 

matrix does not reduce to the design matrix. 

It should be pointed out that the presented example just used one global sensitivity 

analysis method to illustrate a point. Since a wide variety of methods for global 

sensitivity analysis exist, it is beyond the scope of this section to compare all of them. 

Instead the focus is on variance-based methods as they have been frequently applied in 

qualitative experimental design to indentify influential parameters. Other global 

sensitivity indices, e.g., the Kolmogorov-Smirnov statistic also fail to reduce to the local 

sensitivity due to several reasons. In contrast to these approaches, the technique 

introduced in this section can be used for global sensitivity analysis, but also reduces to 

existing techniques for small uncertainty in the parameters. It can be shown that this 

method includes the sensitivity defined by the Pearson correlation coefficient as a special 

case. 

 

8.3 Optimal experimental design using global sensitivity analysis via quasi 

linearization 

 

Development of a new global sensitivity measure for optimal experimental design 

The development of a new global sensitivity analysis technique that can be used for 

quantitative optimal experimental design, instead of existing local sensitivity analysis 
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methods, is the main contribution of this section. This technique has the advantage that 

parametric uncertainty can be explicitly taken into account by applying existing 

experimental design criteria to the global sensitivity matrix developed in this section. 

This extension of local methods to global sensitivity analysis is achieved via quasi 

linearization. 

While the exact values of parameters are never known before estimation is 

performed, it is common that some prior information about the parameter uncertainty is 

available. The region of possible parameter values is often characterized by a hyper-

rectangle and each parameter is distributed within an interval. A reasonable choice of the 

nominal value of a parameter is the mean parameter value [ ]nominal E=θ θ . To simplify 

the notation, deviation variables are introduced by subtracting the nominal value from 

the original one, i.e., original nominal= −θ θ θ , and then the nominal value of the deviation 

variable is 

=θ 0  . (8-3) 

The interval of an uncertain parameter is assumed as 

L U, ∈  θ θ θ  (8-4) 

where L
θ  is the lower bound and U

θ  is the upper bound. Similarly, the output can be 

transformed such that 

( ) =g θ 0  . (8-5) 

It should be noted that introducing deviation variables only represents a change of 

notation and has no effect on the parameter sensitivity analysis itself and/or the 

experimental design. 

Since the goal is to perform experimental design for nonlinear systems, a linear 

approximation of the original model can be useful. Using the notation introduced in Eq. 

(8-3)-(8-5) a regression model can be written in deviation variables as  

( ) i i

i

θ≈∑g θ s . (8-6) 

This linear approximation also provides a straightforward technique for evaluating 
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sensitivity: According to this expression, the coefficient vector 
i

s  is the sensitivity vector 

of the parameter 
i

θ . 

The most common approximation is the local linearization resulting in the local 

sensitivity value. However, several alternatives to the described local linearization exist, 

one of which will be used in this section. One alternative is to regard the regression 

model as a nonlinear system mapping of the inputs of θ  to the outputs ( )g θ . To study 

the behavior of the system and investigate the effect of the inputs, the system is 

stimulated by an input  

( )i i i ivθ α ψ=   (8-7) 

where U L

i i i
α θ θ= −  is the magnitude of the uncertainty and the input function is chosen 

such that 

[ ]0,1iψ ∈  and ( )
L U

U L U L
,i i

i i

i i i i

v
θ θ

ψ
θ θ θ θ

 
∈  

− − 
 . (8-8) 

The best linear approximation to the nonlinear model for this specific input can be 

calculated by minimizing the squared errors of the approximation 

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )( ) ( ) ( )

0 1

0 1

0 1

2
1 1

1 1 1
0 0, , ,

2
1 1

1 1 1
0 0, , ,

2
1

1 1 1
0, , ,

 min , ,

min , , ,

min , , ,

n

n

j j n j

n n n k k k k k

k k

j n n n k j k k k k

j k k

j n n n k j k k k k
s t s t s t

k k

v v v d

g t v v s t v d

g t v v s t v d

θ θ θ
θ

θ θ θ
θ

θ θ θ
θ

α ψ α ψ α ψ ψ

α ψ α ψ α ψ ψ

α ψ α ψ α ψ ψ

−

 
= − 

 

 
= − 

 

∑ ∏∫ ∫

∑ ∑ ∏∫ ∫

∑ ∏

s s s

s s s

g s
�

�

�

� �

� �

� �
1

0
.

j

∑ ∫ ∫

 
(8-9) 

where ( ) ( )
T

1 , ,
tk k k n

s t s t =  s � .  

The last line in Eq. (8-9) exemplifies that the optimization can be performed 

separately for different time points 
j

t . To simplify the notation, the index of 
j

t  is 

omitted 

( ) ( )( ) ( )
0 1

2
1 1

1 1 1
0 0, , ,

min , ,
n

n n n k k k k k
s s s

k k

J g v v s v d
θ θ θ

θ

α ψ α ψ α ψ ψ
 

= − 
 

∑ ∏∫ ∫�

� �  . (8-10) 
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This expression is a least squares optimization and the solution can be calculated from 

0,  1
i

J
i n

s
θ

∂
= =

∂
�   (8-11) 

which directly leads to 

1 1 1 1

0 0 0 0
=0, 1

i k j i j k j

jk k

gv d v v d s i nθψ α ψ
 

− = 
 

∑∏ ∏∫ ∫ ∫ ∫� � �   (8-12) 

where the solution using matrix notation is given by 

1
1 1 1 1 1 1

1 1 1 1 1
0 0 0 0 0 0

1

1 1 1 1 1 1

1 1
0 0 0 0 0 0

k n n k k

k k k

n
n k n n n k n k

k k k

v v d v v d gv d
s

s v v d v v d gv d

θ θ

θ
θ θ θ θ θ

α ψ α ψ ψ

α ψ α ψ ψ

−
   
    
    

=     
    

     
   

∏ ∏ ∏∫ ∫ ∫ ∫ ∫ ∫

∏ ∏ ∏∫ ∫ ∫ ∫ ∫ ∫

� � � �

� � � � �

� � � �

. (8-13) 

A multi-dimensional integral needs to be evaluated for each element of the matrix 

and the vector on the right side of Eq. (8-13). To limit the computational effort, it is 

assumed that the input functions are orthogonal: 

( ) ( )
1 1

0 0
0i i j j k

k

v v dψ ψ ψ =∏∫ ∫�   for any i j≠ . (8-14) 

Then the sensitivity value can be computed from 

( ) ( )( ) ( )

( )

1 1

1 1 1
0 0

1 1 2

0 0

, ,
n n n i i k

k
i

i i i k

k

g v v v d

s
v d

θ θ θ
α ψ α ψ ψ ψ

α ψ ψ
=

∏∫ ∫

∏∫ ∫

� �

�

. (8-15) 

Another reason to choose orthogonal input functions is that the defined sensitivity value 

will reduce to the local sensitivity value when the range of parameter uncertainty tends 

to zero. For an illustration of this statement, suppose that the uncertainty range of each 

parameter decreases simultaneously with the same α ; then the limit of Eq. (8-15) is 
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(8-16) 

Selecting appropriate inputs for Eq. (8-7) is a critical step in this quasi-linearization 

procedure. The range condition given by Eq. (8-8) and the orthogonality condition from 

Eq. (8-14) should be satisfied. Additionally, the inputs should sufficiently stimulate the 

system to create a rich data set for the global sensitivity computed by Eq. (8-15).  

Several candidates for input functions are commonly used in various types of 

nonlinear systems analysis: piecewise constant functions, ramp functions, and sinusoidal 

functions. In particular, sinusoidal functions are commonly used as frequency response 

characteristics can be determined and the sensitivity given by equation (8-15) is related 

to the Fourier coefficient of the output.  

However, one is not restricted to these input types and can instead determine the 

input function according to the prior distribution of the parameter, if this distribution is 

known. Using this approach, the independent variable iψ  is regarded as a random 

variable with a uniform distribution over the unit interval. According to the distribution 
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of the parameter iθ , ( )iF θ , the input function can be selected as 

( ) ( )11
i i i

i

v Fψ ψ
α

−=  . (8-17) 

A multi-dimensional integral needs to be evaluated to compute the global sensitivity 

from Eq. (8-15). In most cases, an analytical solution does not exist and a standard 

Monte Carlo method can be applied instead: A set of values of ψ  are sampled according 

to the uniform distribution and recorded as { }kψ where k is an index for the run of 

simulation. The parameter value is calculated using the input function and the output is 

evaluated at each parameter point to generate a set of { }kg . In the special case where the 

input function is a linear function 

i i iθ αψ=  (8-18) 

the sensitivity results in 

( )
1 1

1 1
0 0

1 1
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, , n n i i
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g d
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∏∫ ∫

∏∫ ∫
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�

 . (8-19) 

The calculation by the Monte Carlo method is then given by 

( ),

i

k k k k

i i
gk k

i ik k k k

i i i i i

k k

g g

s g
θ

ψ θ
σ

ρ θ
σα ψ ψ θ θ

= = =
∑ ∑

∑ ∑
  (8-20) 

where k

iψ  and k

iθ  are the i-th elements of the sample vectors kψ  and k
θ , respectively. 

For this special case, the sensitivity is the uncentered Pearson correlation coefficient 

( ), igρ θ  normalized by the ratio of the standard deviations of the output and the 

parameter.  

A more efficient approach to evaluate the multi dimensional integral is the quasi 

Monte Carlo method. A set of rationally linear independent numbers { }nω  is selected. 

The multi-dimensional integral is then transferred to a uni-dimensional integral 
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1 1

1 1 1
0 0

1 1 1
0

   , ,

 mod 1 , ,  mod 1  mod 1

n n n i i k

k

T

n n n i i

g v v v d

g v v v d

θ θ θ

θ θ θ

α ψ α ψ ψ ψ

α ω τ α ω τ ωτ τ=

∏∫ ∫

∫

� �

�

  (8-21) 

where the upper bound of the integral, T, equals the least common multiple of { }1 nω  

since the function ( )( ) mod 1n nv ω τ  is periodic with a period of 1
n

ω .  

 

 

 

 

Fig. 8-1. Flowchart of experimental design based on global sensitivity analysis. 
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Optimal experimental design involving global sensitivity 

The global sensitivity vector si is formed by computing the global sensitivity value at 

different sampling points in time. Since Eq. (8-6) is a linear approximation, the 

experimental design optimality criteria derived for linear models can also be used in this 

case.  The only modification is that the sensitivity matrix consists of the global 

sensitivity values, as computed from Eq. (8-15), instead of the local sensitivity values. 

Since the global sensitivity is able to reduce to the local sensitivity, the design by global 

sensitivity analysis reduces to the one by local sensitivity analysis when the parameter 

uncertainty is small. At the same time, the effect of parameter uncertainty is taken into 

account in the presented procedure and, as a result, the technique can be applied to 

models with a significant degree of uncertainty. 

The flowchart for the experimental design procedure based on global sensitivity 

analysis is shown in Fig. 8-1. The first step is to determine the parameter bounds using 

available information. This information can be obtained from the literature, preliminary 

experiments, or by modeling and analyzing the mechanisms. The next step is to 

parameterize the experimental conditions. For example, the input profile is often 

represented by some form that involves only a few parameters, such as a series of 

piecewise constant functions, to reduce the resulting optimization problem to a finite-

dimensional problem. Other experimental conditions that can be parameterized are 

selection of measurements, sampling points, or initial conditions. All of these variables 

can be included in the decision vector. The optimal design is then determined by solving 

an optimization problem. The objective function of this optimization problem is an 

experimental criterion based on the global sensitivity matrix calculated from Eq. (8-15). 

The most popular criterion is the determinant of the Gram matrix of the sensitivity 

matrix or the trace of the inverse of the Gram matrix, however, other criteria can also be 

applied. 

 

8.4 Three illustrative examples 

This section presents three examples that illustrate different aspects of the presented 
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experimental design procedure. The first example is a generic one while the second and 

third examples describe chemical reactors. 

 

Identifiability test of a simple model 

This test of structural parameter identifiability aims to check whether the parameter 

values can be determined uniquely from noise free data. If multiple solutions exist for 

parameter estimation, then the parameters are not identifiable and the estimation 

problem is ill-posed. Identifiability of a linear regression model is directly related to the 

rank of the design matrix. If the design matrix has full column rank then the parameters 

are identifiable and if the matrix is rank deficient, then the parameters are not 

identifiable. For a nonlinear model the identifiability can be locally evaluated by the 

rank of the local sensitivity matrix. If the sensitivity matrix is full rank in a 

neighborhood of a given point, then the parameters are identifiable in a neighborhood of 

this point. It should be noted that the sensitivity value at only one point may be 

insufficient for determining identifiability as the rank of the sensitivity matrix may 

change in the neighborhood of this point.  

Consider the model 

( )

( )

3

1 1 2 1 2

3

2 1 2 1 2

,

,

g

g

θ θ θ θ

θ θ θ θ

= +

= −
 (8-22) 

where [ ]1 2, ,θ θ α α∈ −  and the nominal value vector is =θ 0 . As this is a relatively 

simple example, it is possible to compute an analytical solution for the sensitivity 

analysis and to conclude that the model is identifiable over this region. 

In a first step, the local sensitivity matrix is computed for the nominal values  

1 0

1 0

 
=  
 

S . (8-23) 

This sensitivity matrix has a rank of one, which contradicts the observations made about 

the system above. The reason for this is that the local sensitivity matrix changes rank in a 

neighborhood containing the nominal value. 

As a second method, the global sensitivity matrix is computed using a variance-
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based method, where the parameter uncertainty is characterized by a uniform 

distribution over the region 

2

2

3
1

7

3
1

7

α

α

 
 
 =
 
 
 

S . (8-24) 

This sensitivity matrix also has a rank of one. The reason for this result is that the 

information about the sign is lost while computing the conditional variance. 

To compare these results, the global sensitivity matrix is computed via quasi 

linearization from Eq. (8-15) for the same parameter uncertainty as the one used for the 

variance-based method 

2

2

3
1

5

3
1

5

α

α

 
 

=  
 −
  

S . (8-25) 

The rank of the sensitivity matrix is two, unless α approaches zero in which case Eq. (8-

25) reduces to Eq. (8-23). The results are consistent with what is known about the 

system.  

Apart from identifiability, it is also important to compare other results returned by 

these three methods. For example, the local sensitivity identifies the parameter 1θ  as the 

influential parameter regardless of the range of parameter uncertainty. In contrast to this, 

both global sensitivity methods determine that the uncertainty range has an effect on 

which of the two parameters is most influential. If the range is small then the parameter 

1θ  is influential, however, if the range is large then the parameter 2θ  becomes more 

important. This is due to the structure of the system where the parameter 1θ  appears 

linearly while the parameter 2θ  is taken to the third power in Eq. (8-22). This ability to 

take the parameter uncertainty into account is one of the advantages of global sensitivity 

analysis.  
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Batch reactor with two reactions in series 

Suppose two consecutive reactions are taking place in a batch reactor (Fogler, 2005) 

1 2A B C
k k→ →    

in which species B is the desired product. The reactions are irreversible and first order 

with regard to species A and B, respectively. For the initial concentrations, ( )0 1AC =  

mol/l and ( )0 0BC = , the concentration of B is  

( )1 21

2 1

k t k t

B

k
C e e

k k

− −= −
−

. (8-26) 

Even though this is a linear dynamic system, the output BC  is nonlinearly dependent on 

the parameters 1k  and 2k . The ranges of the kinetic parameters are chosen as 

[ ]1 1 11 1k α α∈ − +  and [ ]2 2 21 1k α α∈ − +  (8-27) 

and the nominal values are -1

1 1 mink =  and -1

2 1 mink = . 

Three sensitivity measures are calculated for the two parameters: the local sensitivity, 

the global sensitivity via the conditional variance computed by FAST and the global 

sensitivity via the quasi linearization. The set of rationally independent numbers are 

selected as 1 3ω =  and 2 7ω = . To demonstrate the effect of parameter uncertainty on the 

experimental design, two sets of uncertain ranges are used: a small uncertainty with 

-1

1 0.1 minα =  and -1

2 0.1 minα =  and a large uncertainty with -1

1 0.9 minα =  and 

-1

2 0.9 minα = . In both cases the parameters are assumed to be uniformly distributed 

over these intervals. 

In the case of -1

1 0.1 minα =  and -1

2 0.1 minα = , the sensitivity profiles are shown in 

Fig. 8-2. The global sensitivity via quasi linearization reduces to the local sensitivity. For 

the global sensitivity via the variance-based method, only the magnitude of the 

sensitivity value reduces to the local sensitivity since the global sensitivity values are 

always non-negative.  
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(a)                                                                   (b) 

Fig. 8-2. Sensitivity of the concentration of the species B with respect to (a) k1 and (b) k2 

in the case of small uncertainty. (The uncertainty ranges are -1

1 0.1 minα =  and 

-1

2 0.1 minα = .) 
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(a)                                                                    (b) 

Fig. 8-3. Sensitivity of the concentration of the species B with respect to (a) k1 and (b) k2 

in the case of large uncertainty. (The uncertainty ranges are -1

1 0.9 minα =  and 

-1

2 0.9 minα = .) 
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In the case of -1

1 0.9 minα =  and -1

2 0.9 minα = , the three methods return different 

sensitivity profiles for both parameters as is shown in Fig. 8-3. The local sensitivity 

profile is the same as the one for the small uncertainty case since the sensitivity value is 

unaffected by the uncertainty. However, the values of each global sensitivity measure are 

different for the two cases since the information about the parameter uncertainty is taken 

into account for the calculation of the sensitivity value. 

A comparison of the experimental designs returned by the three sensitivities is 

performed by selecting the optimal sampling points based on the D-optimality criterion 

of the sensitivity matrix. The candidate sampling points were chosen every 0.2 min for a 

time span from 0 to 10 min. At least two and at most 50 sampling points were required to 

estimate the two parameters. The optimal sampling points were computed using the three 

sensitivity measures for each number of sampling points. The sets of the sampling points 

for small uncertainties are shown in Fig. 8-4(a) and those for large uncertainties are 

shown in Fig. 8-5(a). For some number of sampling points the results returned by the 

different methods are identical and those results are not shown. 

To evaluate the performance of each method over the entire uncertainty region the 

Bayesian D-optimality criterion is calculated for each design. The Bayesian D-optimality 

criterion is the mean value of the D-optimality evaluated according to the parameter 

uncertainty 

( ) ( ) ( ),BD D i

i

p dϕ ξ ϕ ξ θ= ∏∫ ∫ θ θ�  (8-28) 

where ξ  denotes a experimental design, ( ),Dϕ ξ θ  is the D-criterion of the local 

sensitivity matrix evaluated at a parameter point θ  for the given design, and ( )p θ  is the 

density function of the parameters. The value of ( ),Dϕ ξ θ  assesses the design in a 

neighborhood of the parameter value θ  and the mean value describes the overall 

performance of a design over the entire uncertainty region. The Bayesian criterion is a 

widely used approach to evaluate a design under uncertainty and is generally 

acknowledged to be superior to the criterion value at only one given point. 
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(b) 

Fig. 8-4. Experimental designs in the case of small uncertainty. (a) Selected time points; 

(b) Bayesian D-criterion. (The uncertainty ranges are -1

1 0.1 minα =  and -1

2 0.1 minα = .) 
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(b) 

Fig. 8-5. Experimental designs in the case of large uncertainty. (a) Selected time points; 

(b) Bayesian D-criterion. (The uncertainty ranges are -1

1 0.9 minα =  and -1

2 0.9 minα = .) 
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The Bayesian criteria of the designs computed by the three sensitivity analysis 

techniques for small uncertainties are shown in Fig. 8-4(b). Since the parameter 

uncertainty is negligible, the Bayesian criterion is close to the local D-criterion at the 

nominal point, i.e., the design based on the local sensitivity matrix is near optimal. The 

design based upon global sensitivity analysis via quasi linearization achieves 

approximately the same performance as the local design since the global sensitivity 

reduces to the local sensitivity. However, the design by global sensitivity analysis using 

conditional variances returns a smaller value of the Bayesian criterion. 

The results of the Bayesian criterion for large uncertainties are shown in Fig. 8-5(b). 

The design based upon global sensitivity analysis via quasi linearization returns the best 

performance while the design based upon local sensitivity analysis returns the smallest 

criterion value. The design by local sensitivity analysis achieves the best performance 

when the true parameters are close to the nominal parameter values. However, if the 

parameter uncertainty is significant then the best design at one point can be the worst at 

another point and on average the local design is sub-optimal. The designs by global 

sensitivity analysis return better results than the local design since the parameter 

uncertainty is taken into account. 

To verify the significance of the difference in the mean criterion values shown in Fig. 

8-4(b) and Fig. 8-5(b) a hypothesis test is performed  

0 1: 0 against : 0A B A BH m m H m m− = − >  (8-29) 

where mA and mB are the mean values of method A and method B, respectively. In this 

case the subscript A denotes the design by the quasi linearization method while the 

subscript B denotes the design by the local method or the design by the variance-based 

method. The P-value of the test for every case is close to zero which indicates that the 

difference between the mean values is significant.  

 

Reactor with van de Vusse reaction kinetics 

The second case study deals with an isothermal CSTR in which a van de Vusse 

reaction is taking place (van de Vusse, 1964) 
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A B C
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k k

k

k
D

→ →←

→

   

The model consisting of the component balances for species A and B is given by 

( )
( )

2

1 2 4

1 2 3

A A B A Af A

B A B B

A

C k C k C k C u C C

C k C k k C uC

y C

= − + − + −

= − + −

=

�

�  .  

The objective is to design a profile of the input u and the initial conditions CA0 and CB0 to 

generate an output y so that the kinetic parameters k1, k2, k3, k4 can be accurately 

estimated. The nominal values of the kinetic parameters were taken from the literature 

(Doyle et al., 1995) and are listed in Table 8-1.  

The kinetic parameters for estimation were assumed to be log-uniformly distributed 

from 50% of the nominal value to 200% of the nominal value where the nominal value is 

the mean value. The A-optimality criterion is used to find the optimal experimental 

condition. This criterion minimizes the sum of the variances of the estimated parameters. 

Since the parameters have different units, they are normalized by dividing them by their 

nominal values 
i i i

k kθ = , 1 4i = � . After normalization all parameters have no unit and 

are distributed from 0.5 to 2 with the mean equal to 1. 

 

 

Table 8-1 

Values of the parameters 

type variable nominal value range unit 

k1 50 25~100 h
-1

 

k2 100 50~200 h
-1

 

k3 100 50~200 h
-1

 

parameter for 

estimation 

k4 10 5~20 l mol
-1

 h
-1

 

u - 0~100 h
-1

 

CA0 - 0~5 mol l
-1

 design variable 

CB0 - 0~5 mol l
-1

 

constant CAf 10 - mol l
-1
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The data for estimation were generated by adding Gaussian distributed noise with 

zero mean and variance 2 0.01σ =  to the output. The output was sampled every 0.01 hr 

in the range from 0 hr to 0.5 hr. The input was assumed to be piecewise constant over the 

time interval and during each 0.05 hr the input was fixed at some level. The range of the 

initial values was chosen to be from 0 to 5 mol l
-1

. 

Fig. 8-6(a) shows the optimal profiles of the input according to the A-optimality 

criterion computed by the local sensitivity analysis and Fig. 8-6(b) shows the profile 

computed by the global sensitivity analysis via quasi linearization. There are distinct 

differences between the two input profiles. The initial values returned by the two designs 

are identical for CA0=0 and CB0=5 mol l
-1

. 

The A-optimal design minimizes the variance of the estimated parameters. If the true 

parameter values are identical to the nominal values then the local design is optimal. To 

calculate the variance of the estimated parameter values, 100 data sets were generated by 

adding different noise signals to the output and estimate the parameters for each data set. 

The variance of the parameters is computed from the estimated parameter values. The 

variance of the parameters for the design using local sensitivity analysis is 0.0769 while 

the variance of the parameters for the design involving global sensitivity analysis is 

0.0795. However, if the true parameter values are not close to the nominal values, then 

the design by local sensitivity analysis may return poorer results than the design by 

global sensitivity analysis. To illustrate the effect of parameter uncertainty on the design, 

100 parameter values were sampled over the uncertainty range. The averaged variances 

returned by the local sensitivity analysis experimental design is 0.1108 and the averaged 

variance returned by the global sensitivity analysis experimental design is 0.1039. Fig. 8-

6(c) shows the distribution of the differences of the variances of estimated parameters 

between the two designs. It can be seen that the design using global sensitivity analysis 

returns on average smaller variances than the design based upon local sensitivity 

analysis. 
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(c) 

Fig. 8-6. Optimal input profile by (a) Local design and (b) Global design. (c) 

Distribution of differences in the variance of estimated parameters by the two designs. 
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8.5 Conclusions 

Local sensitivity analysis is a widely used technique in experimental design, however, 

the dependence of the sensitivity results on the parameter values makes the design only 

valid in a neighborhood of the nominal parameter values. Global sensitivity analysis 

does not have this drawback and provides a promising alternative for experimental 

design. However, most existing global sensitivity analysis techniques do not reduce to 

local sensitivity analysis procedures, even if the model under investigation is linear. As a 

result, most applications of global sensitivity analysis deal with qualitative experimental 

design, i.e., determination of important parameters. 

This section presented a global sensitivity analysis technique that can under 

appropriate conditions reduce to a local sensitivity analysis method. The technique is 

derived via quasi linearization of the nonlinear model and the parameter uncertainty is 

explicitly taken into account in the calculation of the global sensitivity. This technique is 

then incorporated into a quantitative experimental design procedure as it represents an 

extension of an existing local sensitivity analysis procedure. Existing optimal design 

criteria, such as the D-optimality criterion or the A-optimality criterion, can be applied to 

the global sensitivity matrix to select optimal sampling points and determine the optimal 

input profile. It was shown in case studies that the design based on global sensitivity 

analysis outperforms the design based on local sensitivity analysis if the entire 

uncertainty space of the parameters is considered. 
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9. CONCLUSIONS 

 

This dissertation presents several new techniques that deal with problems related to 

parameter estimation of complex models. Reducing model complexity is one of the keys 

to reliable parameter estimation and sensitivity analysis plays a key role in this task. The 

work compares several widely-used local and global methods for sensitivity analysis and 

also develops new techniques to overcome the drawbacks of existing methods. These 

techniques can be applied to identify the important sources of uncertainty, which, in turn, 

contribute most to variation in the model behavior. Further analysis can then focus on 

the identified important components while other unimportant components can be safely 

eliminated. 

Sensitivity analysis is a very useful screening tool, however, an approach that 

regularizes the ill-conditioned estimation problem is still required. This work presents 

several methods for parameter selection to determine a subset of estimable parameters. 

The subsequent estimation algorithm only adjusts the value of these selected parameters 

to fit the data while the unselected parameters are fixed at a constant value. The 

parameter selection methods not only reduce the effect of noise in the data and return 

reliable estimation results but also reduce the computational load of the parameter 

estimation problem. 

Another key to improve the estimation accuracy is to increase the information 

content in the experimental data. This goal can be achieved by optimal experimental 

design including determination of input profiles, choice of the outputs, and selection of 

sampling points. Some new techniques for robust experimental design are developed in 

this work.  

The developed methods are applied to different types of models ranging from models 

found in the process industries to biochemical network models, some of which are 

described by ordinary differential equations with dozens of state variables and more than 

a hundred parameters. 
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9.1 Contributions 

Specifically, the contributions of this dissertation are listed in chronological order: 

 (1) This work compared commonly used sensitivity analysis techniques and applied 

them to a complex model of the IL-6 signaling transduction network. New insights into 

the sensitivity results and the underlying mechanism of the network were discovered. 

(Chu et al., 2007) 

(2) This work developed a robust parameter selection procedure for estimation of 

complex nonlinear dynamic systems. The effect of the parameter uncertainty on the 

selection was taken into account and the returned result was a collection of parameter 

subsets rather than only one subset, which was a desirable property in practice. The 

relationship of the frequently-used orthogonal selection approach with the forward 

selection framework was investigated. (Chu and Hahn, 2007) 

(3) This work created an approach to incorporate parameter selection and 

experimental design. The two approaches were often performed separately, however, 

they were highly correlated. The optimality of each individual procedure might not 

guarantee the optimality for the whole so it was more reasonable to consider them 

simultaneously. To solve the resulting mix integer nonlinear programming under 

uncertainty, an efficient method combining stochastic approximation and genetic 

algorithm had been presented. (Chu and Hahn, 2008) 

(4) This work presented a novel algorithm to solve the combinatorial problem of 

parameter selection. The indistinguishability of parameters was investigated first and the 

indistinguishable parameters were then grouped by a hierarchical clustering algorithm. 

The grouping significantly reduced the search region and simplified the solution. The 

method was as efficient as other forward selection methods however it was able to return 

a better result. Parameter clustering also provided a useful tool to investigate the 

underlying mechanism of the analyzed model. (Chu and Hahn, 2009) 

(5) This work developed a method to increase the prediction accuracy of a model 

from parameter selection and estimation. The relation and difference between output 

predictability and the parameter identifiability were investigated. A new 



 

 

153 

orthogonalization method was presented which could solve the resulting optimization 

problem efficiently while returning a more accurate prediction than other methods. (Chu 

et al., 2009) 

(6) This work presented a robust technique for experimental design based on global 

sensitivity analysis. A new global sensitivity analysis method was developed. The 

property, which distinguished it from other global sensitivity analysis methods, was that 

the results were consistent with the local sensitivity analysis. The technique could take 

the parameter uncertainty into account while avoiding calculation of the partial 

derivatives which made it less computationally demanding than other robust design 

strategies. (Chu and Hahn, 2010) 

 

9.2 Future work 

Several extensions of the presented work are possible. 

 

Solution to the combinatorial design problem 

Some experimental designs, e.g. sampling time selection and sensor location can be 

formulated as a combinatorial problem of selecting rows from the sensitivity matrix to 

maximize an experimental criterion. For some criteria the continuous relaxation of the 

combinatorial problem is a convex problem, the global optimal solution of which can be 

found efficiently. Taking advantage of the continuous relaxation problem can provide an 

upper bound for the discrete optimization problem. Future work can focus on branch-

and-bound algorithms to solve the combinatorial problem for sensor location. Parameter 

selection is another combinatorial problem that select columns from a sensitivity matrix, 

however, it is more difficult to formulate as no such advantage can be employed.  

 

Regularization of state estimation problem 

State estimation infers the values of unmeasured state variables from measured state 

variables. State estimation is an important research area in process engineering and a 

large variety of techniques have been developed. Similar to parameter estimation, state 
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estimation of a complex system can also be ill-conditioned.  Future work can extend the 

regularization procedure for the parameter estimation problem to state estimation. 

Further, the procedure can be extended to the simultaneous estimation of both 

parameters and states to provide answers to questions such as which parameters should 

be estimated to infer the state variables of interest, or can a reduced order model provide 

a more accurate inference of the given states than the full order model? 

 

Sensitivity analysis of black-box models 

Empirical black-box models like neural networks are an important tool to model the 

input-output relationship of given data. A main problem in applications of such type of 

models is to determine the model structure. A complex structure can result in more 

accurate models, however, it increases the risk of over-fitting the data. Parameter 

selection methods can be generalized to black-box models to deal with over-fitting.  

 

Process design under uncertainty 

Uncertainty is an inherent characteristic of any process system. The potential effect 

of uncertainty on model-based optimization results for process design is often not 

negligible. The techniques of uncertainty and sensitivity analysis studied in this work 

can be applied to the solution of the optimization problem. First the uncertainty of the 

parameter values in the design problem can be summarized. Next sensitivity analysis can 

be applied to identify the important sources of the uncertainty which can significantly 

influence the optimal solution. The focus can then be placed on these important 

uncertain parameters. 

 

Analysis including subsequent applications 

The uncertainty and sensitivity analysis in this work is applied to the output of the 

model. However a model is often built for subsequent applications, e.g. control or 

monitoring. It is desired to perform the analysis on the final results of these applications. 

For example, a model is often used to design a controller. Some controllers are sensitive 
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to model uncertainty while others are more robust. Such application-oriented uncertainty 

and sensitivity analysis can be very helpful in practice.  

 

Structural uncertainty and sensitivity analysis 

The uncertainty and sensitivity analysis can be applied to identify the important 

uncertain parameters. However, in the initial stage of mathematical modeling even the 

structure of a model is often not exactly known and it is helpful to determine which parts 

of the model are important. This kind of questions can be answered by extending the 

sensitivity analysis to some on-off switching parameters. These parameters indicate if 

the corresponding part of the model is included (with the value of 1) or not (with the 

value of 0). The analysis of these switching parameters can also be performed 

simultaneously with analysis of other parameters, however, since the value of some 

parameters is binary, a new techniques for sensitivity analysis and interpretation for the 

results are needed. 

 

Measure of nonlinearity 

A nonlinear model generally results in more problems than a linear one and more 

sophisticated techniques are required. However, these sophisticated techniques are more 

difficult to implement. It is natural to ask the question when a simple method will fail 

and a sophisticated alternative has to be applied. For example it is well known that local 

sensitivity analysis is valid for linear or mildly nonlinear models and global sensitivity 

analysis is more preferable even if the computation is more expensive. However, there is 

no clear answer to the question of at which degree of nonlinearity of a model the local 

technique will fail. Similarly, it is unclear if it is required for a given model to apply a 

global technique. However, these types of questions can be answered with an extension 

of the techniques presented in this work. 
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