
 

CONTROLLING PERFORMANCE OF LAMINATED COMPOSITES USING 

PIEZOELECTRIC MATERIALS 

 

 

A Thesis 

by 

ZEAID FOUAD MOHAMMED HASAN 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

December 2010 

 

 

Major Subject: Mechanical Engineering 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Controlling Performance of Laminated Composites Using Piezoelectric Materials 

Copyright 2010 Zeaid Fouad Mohammed Hasan 



 

CONTROLLING PERFORMANCE OF LAMINATED COMPOSITES USING 

PIEZOELECTRIC MATERIALS 

 

A Thesis 

by 

ZEAID FOUAD MOHAMMED HASAN 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 

Approved by: 

Chair of Committee,  Anastasia Muliana 
Committee Members, J.N Reddy 
 Rashid Abu Al-Rub 
Head of Department, Dennis O’Neal 

 

 

December 2010 

 

Major Subject: Mechanical Engineering 
 



iii 
 

ABSTRACT 

 

Controlling Performance of Laminated Composites Using Piezoelectric Materials. 

(December 2010) 

Zeaid Fouad Mohammed Hasan, B.Sc., Jordan University of Science and Technology 

Chair of Advisory Committee: Dr. Anastasia Muliana 

 

Composite materials are increasingly used in aerospace, underwater, and 

automotive structures. Their use in structural applications is dictated by the outstanding 

strength and stiffness while being lightweight in addition to their flexibility in tailoring 

the desired performance in the design of structures.  The present study focuses on the 

failure analysis and shape control of smart composite laminates under coupled 

hygrothermal, electric and mechanical stimuli. A linear thermo-electro-elastic 

constitutive model for transversely isotropic materials is used for each ply in the 

composite laminates. The first-ply failure and ultimate laminate failure criteria of 

composite laminates are used to predict the failure stress and mode of the composite 

laminate where we incorporate various commonly known macroscopic failure criteria 

including Tsai-Hill, Tsai Wu, maximum stress and maximum strain for each lamina.   

We study the use of piezoelectric materials such as lead zirconate titanate (PZT) 

and piezoelectric fiber composites as actuators for controlling deformation in composite 

laminates; this study focuses on bending deformation. The purpose is to minimize 

unwanted deformation, such as the one due to hygrothermal effect, by applying counter 

http://www.google.com/url?sa=t&source=web&cd=1&ved=0CCIQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLead_zirconate_titanate&rct=j&q=pzt&ei=7HpgTIXAHYO88ga30rG6DQ&usg=AFQjCNE371f-6wvcMIkZBDhmCROMROZGMw&cad=rja�
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deformation to avoid failure in such composite laminates. In addition, analysis based on 

the Classical Laminate Theory (CLT) is performed for Carbon/Epoxy (AS4/3501-6) thin 

laminate with stacking sequence [90/45/-45/0]s under uniaxial and biaxial in-plane 

loading.  

One of the major types of failure in smart structures is caused by debonding of 

the actuator from the host structure which is caused by the high stress discontinuity 

between the interface of the host structure and the active part.  By using embedded 

actuators, such that the active part is incorporated into one of the layers of the composite 

beam during the manufacturing process, the stress concentration effect can be reduced 

while obtaining similar actuation values. Moreover, a control algorithm is proposed that 

enables the composite laminate to overcome the failure load by using piezoelectric 

materials where a counter electric voltage could be applied which prevents failure from 

occurring. Furthermore, computer software called “Hyper Composite” was developed 

using Action Script® and Adobe Flash® in order to perform stress and failure analysis for 

general composite laminates. Several carpet plots were also generated to show the 

interacting behavior of two independent variables such as Young’s modulus, Poisson’s 

ratio, shear modulus and the coefficient of thermal and moisture expansion at different 

percentile constitutions for the laminate different plies. This computer software is useful 

for estimating overall properties of smart composite laminates in designing smart 

composite structures. 
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NOMENCLATURE 

 

 [A]  =  Extensional stiffness matrix 

[B]  =  Coupling stiffness matrix 

[C]  =  Stiffness matrix 

[D]  =  Bending stiffness matrix 

E1  =  Longitudinal Young’s Modulus 

E2  = Transverse Young’s Modulus 

F1t  =  Longitudinal Tensile Strength 

F2t  =  Transverse Tensile Strength 

F6  =  In-plane shear Strength 

F1c  =  Longitudinal Compressive Strength 

F2c  =  Transverse Compressive Strength 

G12  =  In-plane Shear Modulus  

h  =  Laminate Thickness 

Mx, My = Bending Moments per unit length 

Nx, Ny = Normal force per unit length 

[Q]  =  Reduced Stiffness Matrix 

[T]  =  Transformation Matrix 

u  =  Displacement in x direction 

v  =  Displacement in y direction  

w  =  Displacement in z direction 

n  =  Number of plies in the laminate 

tk  =  Thickness of the ply 
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r1, r12 =  Stiffness Reduction Factors 

ν12  =  Major Poisson’s ratio 

ν21  =  Minor Poisson’s ratio 

α1  =  Longitudinal thermal expansion coefficient  

α2  =  Transverse thermal expansion coefficient  

β1  =  Longitudinal moisture expansion coefficient  

β2  =  Transverse moisture expansion coefficient 

dij  =  Piezoelectric strain coefficients 

eij  =  Piezoelectric stress coefficients 

ξi  =  Electric field components 

V  =  Electric potential 

ωij  =  Dielectric coefficients  
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CHAPTER I 

INTRODUCTION 

Composite materials are multiphase materials obtained through the artificial 

combination of different materials in order to attain properties that the individual 

components by themselves cannot attain. Applications of composite materials abound 

and continue to expand. They include aerospace, aircraft, automotive, marine, energy, 

infrastructure, armor, biomedical, and recreational (sports) applications. Aerospace 

structure, such as space antennae, mirrors, and optical instrumentation, make use of 

lightweight and extremely stiff graphite composite. A very high degree of dimensional 

stability under severe environmental conditions can be achieved because these 

composite can be designed to have nearly zero coefficients of thermal and hydric 

expansion. The high-stiff, high-strength, and low-density characteristics make 

composites highly desirable in primarily and secondary structures of both military and 

civilian aircraft. The Boeing 777 aircraft, for example, uses composites in fairings, floor 

beams, wing trailing edge surfaces, and empennage. The strongest sign of acceptance of 

composites in civil aviation is their use in the Boeing 787 aircraft and the world’s largest 

airliner Airbus A380. Composite materials, such as carbon/epoxy and graphite/titanium, 

account for approximately 50% of the weight of the Boeing 787, including most of the 

fuselage and wing. Composites are used in various forms in the transportation industry, 

including  automotive  parts and automobile,  truck, and  railcar frames.   In the energy  
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production field, carbon fiber composites have been used in the blades of wind turbine 

generators that significantly improve power output at a greatly reduced cost. 

Composites have unique advantages over monolithic materials, such as high 

strength, high stiffness, long fatigue life, low density, and adaptability to the intended 

function of the structure. Additional improvements can be realized in corrosion 

resistance, wear resistance, appearance, temperature-dependent behavior, environment 

stability, thermal insulation and conductivity, and acoustic insulation. Composites also 

afford the unique possibility of designing the material, the manufacturing procedure, and 

the structure in one unified and concurrent process. The large number of degrees of 

freedom available enables simultaneous material optimization for several given 

constraints, such as minimum weight, maximum dynamic stability, cost effectiveness, 

and so on. However, the entire process requires a reliable database of material properties 

standardized structural analysis method, modeling and simulation techniques, and model 

for materials processing. Composite laminates containing plies of two or more different 

types of materials are called hybrid composites and more specifically interplay hybrid 

composites. In some cases it may be advantageous to intermingle different types of 

fibers, such as glass and carbon or aramid and carbon, within the same unidirectional 

ply. Such composites are called intraply hybrid composites; of course one may combine 

intraply hybrid layers with other layers to form an intraply/interplay hybrid composite. 

Failure analysis of composite materials has been investigated by many researchers, a 

description of failure criteria’s developed in the past decades could be found in [1]. In 

general, failure of composite materials can be considered from microscopic or 
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macroscopic points of view. In the microscopic point of view failure of the composite 

materials is recognized due to the damage on the molecular level. This type of analysis is 

usually complicated and intractable, while, macroscopic behavior of composite materials 

can be deduced from the microscopic behavior [2]. In practice, macroscopic behavior is 

determined from the load-displacement data of a given test specimen, without the deep 

understanding of the activities at microscopic level. One important area of concentration, 

besides the failure load, is the mode of failure. Laminated composite may fail by fiber 

yielding, matrix yielding, and fiber breakage, delamination of layer or by fracture. The 

first three failure modes depend on the constituent’s strength properties, whereas 

delamination is basically due to stacking sequence of different laminas. Fracture is 

caused by the pre-existing voids and cracks in the constituent material. Macroscopic 

failure criteria, which are discussed here, are based on the tensile, compressive and shear 

strengths of the individual lamina. 

Hemelrijck et al. [3] developed a test bench for testing composite laminates 

under biaxial loading. In addition, a comined numerical and experimental method was 

obtained to determine the inplane stiffness parameters from testing a single cruciform 

test specimen. A full three-dimensional finite element model was used and the numerical 

results were validated with strain gauge, digital image correlation, and electronic speckle 

pattern interferometry data. Reddy and Pandey [4] developed a finite-element 

computational procedure based on the first-ply failure analysis of laminated composite 

plates where the procedure was based on the first-order shear deformation theory and a 

tensor polynomial failure criterion that contains the maximum stress, maximum strain, 
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the Hill, Tsai-Wu and Hoffman failure criteria as special cases. By using each criterion, 

a first-ply failure analysis of composite laminates subjected to in-plane and/or bending 

loads was performed. Mayes and Hansen [5] used a constituent stress-based failure 

criterion to construct a nonlinear progressive failure algorithm for investigating the 

material failure strengths of composite laminates. The proposed failure analysis was 

used to simulate the nonlinear laminate behavior and progressive damage of selected 

laminates under both uniaxial and biaxial loading. A micromechanics based theory was 

incorporated in their analysis in order to extract the stress and strain fields for 

composites constituents during a routine finite element analysis. Yang et al. [6] studied 

the effects of multi-axial loading of composite shafts under monotonic and fatigue 

conditions on its failure. They proposed a damage criterion for multi-axial monotonic 

loading considering the contribution of both normal and shear stresses on the plane of 

failure. In addition, several multi-axial fatigue failure models were proposed considering 

mean and cyclic normal stress and shear stress at the plane of failure, as well as the mean 

and cyclic normal strain and shear strain at the plane of failure and their capability for 

predicting the fatigue life of the composite under study. The experimental data showed 

an excellent agreement with the proposed model for various loading conditions. Takeda 

et al. [7] focused on understanding the deformation and progressive failure behavior of 

glass/epoxy plain weave fabric-reinforced laminates subjected to uniaxial tension at 

cryogenic temperatures. Cryogenic tensile tests were conducted on the woven-fabric 

laminates and a finite element model for progressive failure analysis of woven-fabric 

composite panels was also developed. The failure of the epoxy resin matrix in the 
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transverse fiber bundle was predicted to occur using the maximum strain failure 

criterion. A comparison was made between the finite element predictions and the 

experimental data which show good agreement. 

Pipes et al. [8] have studied the hygrothermal response of laminated composite 

systems. A plate element is used to analyze the laminae stresses resulting from 

hygrothermal and mechanical loading. A six-ply graphite/epoxy laminate is considered 

for the analysis of hygrothermal effects. The effective moisture bending and in plane 

force resultants are developed and combined with thermal loads. Shen and Springer [9] 

have studied the effects of moisture and temperature on ultimate strength of Thornel 

300/Fiberite 1034 epoxy composite. Eight-ply T300/1034 specimens have been placed in 

environmental chambers in which temperature and relative humidity have been 

controlled and kept constant. The ultimate tensile strength has been measured with 

material temperatures and moisture contents ranging from 200°K to 422°K and 0% to 

1.5%, respectively. It was found that the ultimate strengths of 0° and 45° laminates 

change insignificantly due to variation of temperature and moisture. In the case of 90° 

laminates, the reduction in strength is as high as 60 to 90%. Upadhyay and Lyons [10] 

have studied the effect of hygrothermal conditions on polymer matrix composite (PMC) 

laminates. The hygrothermal conditions are incorporated by changing the stiffness 

coefficients of the laminate. Empirical relations between the moisture content and 

temperature level are given by Chamis [11]. Nonlinear theory is adopted in calculating 

the elastic deflections and the results are compared to that of a linear theory. Two types 

of loads, namely, in-plane and uniform transverse load are applied on these laminates. It 
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is found that the presence of moisture and temperature in a laminate significantly affects 

the deflections caused by the loads. It is also observed that the linear theory yields high 

differences between dry and wet results. 

In new generations the driving force for technological changes has led to a new 

family of engineered materials and structures exhibiting multifunctional capabilities 

which are naturally seen in biological systems, leading to a new era of smart materials. 

Smart Materials and Intelligent Structures have been a matter of interest since the late 

1970s, when the benefits of embedding optical fibers in composite materials were 

recognized [12]. The structures with surface mounted or embedded sensors and actuators 

that have the capability to sense and adapt to external stimuli are referred to as smart 

structures [13]. The feedback circuitry linking sensing and actuating is external to the 

sensor and actuator components; this in fact distinguishes between a smart structural 

systems from an intelligent structural system. Intelligent structural systems involve smart 

components in which the functions of sensing, feedback control, and actuating are all 

integrated. This type of system finds applications in aircraft wings, helicopter rotors and 

automobiles. One of the main motivations behind the vast attentions on smart materials 

and structures in recent years is its ability to incorporate active materials into the 

structure as sensors and actuators so that it could be used to monitor the integrity/health 

of the structure to enable a structure to change its shape or its material properties [14], or 

to control vibration [15].  These lead to improving performance and service life of the 

system. The research on the use of piezoelectric materials as distributed sensors and 

actuators for smart structural system was initiated more than forty years ago beginning 
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with the book by Tiersten [16] on piezoelectric plate vibration, and several other books 

have also appeared on the mechanics of piezoelectric and smart plates and shells [17-

19].  

        In shape control one intends to specify the spatial distribution, or the shape, of an 

actuating control unit, such that the displacement field of a structure distorted from its 

original shape eventually vanishes, or such that the structure follows some desired field 

of path. The disturbances that distort the shape of structures may be transient (dynamic), 

or they may be slowly varying in time (quasi-/static). Shape control represents a branch 

of structural engineering that is closely related to control engineering. When the external 

disturbances as well as their effects upon the structural deformation are known in 

advance, the necessary control actuation may be estimated from an inverse structural 

analysis. Such a procedure is sometimes called a passive control strategy. When we do 

not know the external disturbances in advance, or when the structural properties are 

uncertain, yet we are able to measure some deformations; principles of automatic or 

active control can be utilized in order to solve the problem. Many researchers can be 

recognized for their unique work in shape control using piezoelectric material, Lee and 

Moon [20-22] have several contributions in shape control using piezoelectric layers, 

where these layers were developed and experimentally implemented so as to excite a 

specific structural mode, or to measure a specific modal content of the structural 

vibrations excited by external disturbances. Koconis et al. [23] investigated the changes 

in shapes of fiber-reinforced composite beams, plates, and shells affected by embedded 

piezoelectric actuators analytically. Tzou et al. [24] studied the distributed structural 
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control of elastic shell continua using spatially distributed modal piezoelectric actuators 

and some generic distributed feedback algorithms with spatial feedback functions were 

formulated. Finite difference modeling and shape control of piezoelectric actuator 

embedded elastic plates was also considered by Agrawal et al. [25], estimating optimal 

actuation voltages to match the deflection of the plate to a desired deflection. Several 

other solutions related to smart structures could be found in [26-27]. 

The mechanics of smart material systems involves coupling between electric, 

magnetic, thermal, mechanical and other effects. In addition to this coupling, it may be 

necessary to account for geometric and material nonlinearities. An example is the use of 

an electromechanical transducer that is characterized by five important properties 

including the resonant frequency, acoustic impedance, mechanical damping coefficient, 

electromechanical coupling coefficient, and the electric impedance. If nonlinear 

electroelastic equations are included in the model, some or all of these properties can be 

tuned; for instance, in an electrostrictive material, the electromechanical coupling 

coefficient can be tuned with a bias field [13]. In order to tune the first fundamental 

resonant frequency of the transducer, thin rubber layers are introduced in a multi-layer 

PZT laminate [28]. The thin rubber layers necessitate the use of nonlinear elastic 

relations, such nonlinearity in electroelastic formulations was considered by Toupin [29], 

also, a two-dimensional theory of electrostriction was considered by Knops [30] and 

solved a simplified boundary value problem using complex potentials. 



9 
 

1.1 Motivation 

The design and analysis of composite structures, especially those that incorporate 

different types of active materials between the composite laminates remain of interest to 

researchers in many engineering disciplines. The reason is due to their outstanding 

mechanical performance added to their lowweight and unique and tailorable physical 

properties while having the ability to take corrective actions under external stimuli’s 

such as thermal or mechanical. The past few decades have seen the development and 

integration of active materials into a variety of host structures as a superior means of 

measuring and controlling its behavior. Piezoceramics remain the most widely used 

“smart” or active material because they offer high actuation authority and sensing over a 

wide range of frequencies. Specifically, piezoceramic materials have been extensively 

studied and employed in aerospace structures by performing shape control. Active Fiber 

Composite (AFC) and Macro Fiber Composite (MFC) are types of piezoceramic 

material that offer structural flexibility and high actuation authority. The present study 

focuses on the use of several different types of piezoelectric materials on the shape 

control of composite laminates and observes each types ability to induce bending on the 

composite beam. While extensive studies on failure in  laminated composites have been 

conducted, understanding the failure behavior of smart composite structures are limited, 

therefore, the failure analysis of smart composite laminates is also considered in the 

current study for two types of loadings conditions, uniaxial and biaxial, including 

hygrothermal effects of the composites laminates. Carpet plots are also provided for 

several different material properties which are mainly used in design aspects of 
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composite materials. A control methodology is also proposed that is used for feedback 

control using active materials where, practical simulation implementation is also 

provided. 

1.2 Research Objective 

This study focuses on the failure analysis of composite laminates under coupled 

mechanical, hygrothermal and electrical effects. The studied smart composite laminates 

follow linear thermo-electro-elastic behavior. The first-ply failure and ultimate laminate 

failure criteria of composite laminates are used in order to predict the failure load and 

mode of a composite laminate where we incorporate various commonly known 

macroscopic failure criteria including Tsai-Hill, Tsai Wu, Maximum stress and 

Maximum Strain. A detailed calculations based on the Classical Laminate Theory (CLT) 

is performed for Carbon/Epoxy (AS4/3501-6) laminate with stacking sequence [90/45/-

45/0]s under uniaxial tensile loading. In Addition, we study the use of piezoelectric 

materials as actuators for shape control of composite laminates such as PZT and other 

piezoelectric fiber composites such as Active fiber composites (AFC) and Micrfiber 

composites (MFC). One of the major types of failure in smart structures is caused by 

debondining of the actuator from the host structure [31] which is caused by the high 

stress discontinuity between the interface of the host structure and the active part, by 

using embedded actuators, such that, the active part is incorporated into one of the layers 

of the composite beam during the manufacturing process, the shear stress discontinuity 

can be minimized while obtaining similar actuation values. Moreover, a control 

algorithm is proposed that enables the composite laminate to overcome the failure load 
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by using an active material such as AFC, MFC and PZT where, a counter electric 

voltage could be applied which prevents failure from occurring. The finite element 

software Abaqus is used to verify the present approach. Furthermore, computer software 

called “Hyper Composite” was developed using Action Script® and Adobe Flash® in 

order to perform stress and failure analysis for general composite laminates. Several 

carpet plots were also generated to show the interacting behavior of two independent 

variables such as Young’s modulus, Poisson’s ratio and shear modulus at different 

percentile constitutions for the laminate different plies. 

1.3 Thesis Outline 

In Chapter II, we begin by introducing some of the basic concepts and 

terminologies used in composite materials followed by the thermodynamic relations for 

coupling thermal, electrical and mechanical properties. In addition, we present the 

macromechanical stress analysis of a single lamina and laminates that are generally used 

in composite materials analysis based on the classical lamination theory including 

hygrothermal and electric effects.  

Chapter III presents an overview on the types of actuators that are used in shape 

control of smart structures including piezoelectric fiber composites such as AFC and 

MFC. A detailed analytical solution for a cantilever beam based on the theory of 

elasticity is presented for a composite material made of two different constituents; the 

results were compared with solutions obtained from mechanics of materials and a finite 

element (FE) implemented using the commercial software Abaqus. The aim of 

presenting this solution is to gain strong confidence in the element type and mesh size 
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used in FEwhile dealing with more complex structures. The effect of using several 

different types of actuators on the behavior of a composite laminate are also studied and 

compared with each other in order to observe their power to bend the plate enough to 

counteract any type of external stimuli such as thermal or mechanical deformations. 

Chapter IV presents the failure analysis of composite laminates including 

hygrothermal and electric effects using the first-ply failure and ultimate laminate failure 

criteria of composite laminates to predict the failure load and mode of a composite 

laminate under a uniaxial tensile load where various commonly known macroscopic 

failure criteria were used including Tsai-Hill, Tsai Wu, Maximum stress and Maximum 

Strain.  

Chapter V introduces the computer software “Hyper Composite” and compares 

its results with those previously obtained in Chapter IV; moreover, the results are 

compared with available experimental results in the literature. A failure control 

algorithm is proposed based on the results obtained from the first ply failure analysis 

where these results are used to attain a recommended voltage value which can be 

actuated through the active parts of the composite laminate to prevent failure from 

occurring. A practical control circuit is also proposed and implemented through the 

simulation software PROTEOUS where we use a microcontroller as the smart part that is 

activated when the stress value exceeds that of failure. 

Chapter VI presents discussion and future work. 
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CHAPTER II 

LINEAR RESPONSE OF SMART COMPOSITES WITH COUPLED 

MECHANICAL AND NON-MECHANICAL EFFECTS 

In this chapter, we start by introducing some basic concepts and terminologies 

that are used in linear analysis of smart composite materials. Thermodynamic relations 

for coupling thermal, electrical and mechanical properties are presented in section one. 

The macromechanical stress analysis of a single lamina and laminates that are generally 

used in composite materials based on the classical lamination theory including both 

hygrothemal and electric effects are presented in section three.  

2.1 Thermodynamic Relations for Coupling Thermal, Electrical and Mechanical 

Properties 

One of the important aspects when dealing with materials is the coupling effects 

induced by several different types of external stimuli that affect the overall behavior of 

the material, for example,  electric charge in a polar material may be induced by an 

external electric field, or by a stress through the piezoelectric effect, and by a 

temperature change through the pyroelectric effect, similarly, the mechanical strain in a 

piezoelectric material may be induced by an electric field through the converse 

piezoelectric effect or by an external stress and also  by a temperature change, due to the 

thermal expansion of the material. This coupling of different effects places important 

experimental constraints on property measurements. Assume, for example, that an 

electric field is applied on a piezoelectric material under constant temperature 

conditions. If the sample is mechanically free to change its dimensions, the resulting 



14 
 

strain is due to the pure piezoelectric effect, while if the sample is partially clamped for 

example a thin film deposited on a thick substrate, the resulting stress will be a 

contribution of the piezoelectric strain and the mechanical strain due to clamping 

conditions. The coupling between the thermal, elastic and electrical parameters of a 

material can be introduced using the thermodynamic approach which gives relations 

between materials parameters measured under different experimental conditions. These 

relations are essential for modeling and understanding the response of piezoelectric and 

pyroelectric devices.  

It is well known from the first law of thermodynamics that the reversible change 

dU in the internal energy U of an elastic dielectric that is subjected to a small change of 

the strain d𝛆, electric displacement  d𝐃, and entropy dη is given by 

 

ij ij i idU Td dDη σ ε ξ= + +     (2.1) 

where 𝑇 is the temperature of the material, Di is the scalar component of the dielectric 

displacement vector, η is the specific entropy and ξi is the scalar component of the 

electric field vector. A Legendre transformation of U is performed in order to express the 

thermodynamic function in terms of other independent variables. Experimental tests are 

often done under isothermal conditions, and electric field and stress are usually applied, 

therefore, it is useful to pick the following (T, σ, ξ) as independent variables.  This is 

done by adding the expression (−T η − σε – ξD) to U resulting in the following free 

energy function which is known as the Gibbs free energy  
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  ij ij i iG U T Dη σ ε ξ= − − −  (2.2) 

The differential of G gives together with Eq. (2.1) 

ij ij i idG dT d D dη ε σ ξ= − − −  (2.3) 

From Eq. (2.3) one obtains 

 

         ,   ,,
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where the subscripts indicate variables that are kept constant. The total differentials of η, 

σ and D can be written as 
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   ∂ ∂ ∂ = + +        ∂ ∂ ∂     

                       (2.5) 

Each of the partial derivatives in Eq. (2.5) identifies a physical effect which is 

defined as the heat capacity, piezoelectric effect, electrocaloric effect, thermal 

expansion, elastic compliance, converse piezoelectricity, pyroelectric effect, direct 

piezoelectricity, and dielectric permittivity respectively [32]. To simplify notation, the 

elastic compliance and piezoelectric coefficient tensors may be written in the matrix or 
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reduced notation form, following the Voigt convention where a pair of indices ii = 11; 

22; 33 is, for example, replaced with the single index m = 1; 2; 3, respectively, and the 

mixed pairs of indices (which represent shear components of strain and stress tensors) ij 

= 23 or 32, 13 or 31, 12 or 21 are written as m = 4; 5; 6, respectively. From here, the 

linear piezoelectric constitutive equations can be expressed as  

, ,

, ,

T T
m mn n im i m

T T
i im m ij j i

S d T

D d p T

ξ σ

ξ σ

ε σ ξ α

σ ω ξ

= + + ∆

= + + ∆
 (2.6) 

where α is the thermal expansion tensor, d is the piezoelectric strain coefficient tensor, S 

is the compliance tensor, p is the pyroelectric vector and ω is the permittivity tensor. 

This constitutive model only includes linear effects. In the case of strong fields or 

strongly nonlinear material response, these relations can be extended to include higher-

order terms [32]. 

2.2 Terminologies and Definitions  

2.2.1 Classification of General Composites  

Composites are distinguished by the spatial arrangement of the material phases. 

To be a composite at least two such phases need to occur where the matrix phase 

surrounds and connects one or more inclusion phases. Composites can be classified 

according to the diverse shapes of inclusions that may be used such as particulate, 

fibrous, and lamellar topologies as shown in Figure 2.1. Composites can also be 

represented through a combination of these inclusion types. In steel concrete, for 

example, mineral particles and metal fibers are joined by a binder material, in aerospace 

applications; the combination of glass fibers and aluminum laminae are used in several 
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components of the aircraft structure such as the wing and fuselage, one famous example 

on their use in aircraft industry is the Boeing 787 in which 50% of the whole structure is 

made out of composite materials. The listed types of inclusions may be further 

categorized with respect to their geometry and relative arrangement. In the case of 

fibrous inclusions, there are continuous or discontinuous fibers of straight or curled 

shape in a regular or irregular layout as shown in Figure 2.2. More complicated fiber 

structures arise when textile techniques like stitching, braiding, or knitting are involved. 

 

Figure 2.1: Classifications of Composites: a) Particulate b) Fibourus c) Lamellar 

2.2.2 Lamina and Laminate  

A lamina, or ply, is a plane (or curved) layer of unidirectional fibers or woven 

fabric in a matrix. In the case of unidirectional fibers, it is also referred to as 

unidirectional lamina (UD). The lamina is an orthotropic material with principal material 

axes in the direction of the fibers (longitudinal), normal to the fibers in the plane of the 

lamina (in-plane transverse), and normal to 
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Figure 2.2: Fiber orientation in fiber reinforced composites 

 

the plane of lamina. These principal axes are designated as 1, 2, and 3, respectively. In 

the case of woven fabric composites, the warp and the fill directions are in-plane 1 and 2 

principal directions, respectively. 

A laminate is made up of two or more unidirectional laminae or plies stacked 

together at various orientations. The laminae (or plies, or layers) can be of various 

thicknesses and consist of different materials. Since the orientation of the principal 

material axes varies from ply to ply, it is more convenient to analyze laminates using 

common fixed system or coordinates (x1, x2, x3). The orientation of a given ply is given 

by the angle between the reference x-axis and the major principal material axis (fiber 

orientation or warp direction) of the ply, measured in a counterclockwise direction on 

the x1-x2 plane. 
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2.2.3 Anisotropy-Orthotropy-Isotropy 

Many material properties, such as stiffness, strength, thermal expansion, thermal 

conductivity, and permeability are associated with a direction or axis (vectorial or 

tensorial quantities). A material is anisotropic when its properties at a point vary with 

direction or depend on the orientation of reference axes. If the properties of the material 

along any direction are the same as those along symmetric direction with respect to a 

plane, then that plane is defined as a plane of material symmetry. A material may have 

zero, one, two, three, or an infinite number of planes of material symmetry through a 

point. A material without any planes of symmetry is called general anisotropic (or 

aeolotropic). At the other extreme, an isotropic material has an infinite number of planes 

of symmetry where its properties are the same in all directions or are independent of the 

orientation of reference axes. Of special relevance to composite material are orthotropic 

materials, that is, materials having at least three mutually perpendicular planes of 

symmetry. The intersections of these planes define three mutually perpendicular axes, 

called principal axes of material symmetry or simply principal material axes. The 

concept of isotropy/anisotropy is also associated with a scale or characteristic volume. 

For example, the composite material is considered homogeneous and anisotropic on a 

macroscopic scale with regards to its mechanical and non-mechanical response. On a 

microscopic scale, the material is heterogeneous (when its properties vary from point to 

point, or depend on location). 
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2.3 Macromechanical Analysis of a Single Lamina  

As mentioned previously in Chapter II, the difference between a lamina and a 

laminate, where a lamina is a thin layer of a composite material that is generally of a 

thickness on the order of 0.005 in. (0.125 mm), and a laminate is constructed by stacking 

a number of such lamina in the direction of the lamina thickness. Mechanical structures 

made of these laminates are subjected to various loads, such as bending and twisting. 

The design and analysis of such laminated structures demands knowledge of the stresses 

and strains in the laminate. Understanding the mechanical analysis of a lamina precedes 

understanding that of a laminate. If the lamina is made of homogeneous fibers and an 

isotropic homogeneous matrix, the stiffness of the lamina varies from point to point 

depending on whether the point is in the fiber, the matrix, or the fiber–matrix interface. 

Accounting for these variations will make any kind of mechanical modeling of the 

lamina very complicated. For this reason, the macromechanical analysis of a lamina is 

based on average properties and considering the lamina to be homogeneous with regards 

to its thermo-electro-mechanical properties. 

2.3.1 Stress-Strain Relations  

The state of stress can be represented by nine stress components, σij (where i, j = 

1, 2, 3) acting on the sides of an element cube as shown in Figure 2.3  Similarly, the state 

of deformation is represented by nine strain components, εij. 
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Figure 2.3: Lamina under state of plane stress 

Imposing symmetry of the stress and strain tensors obtained from the 

conservation of angular momentum 

ij ji

ij ji

   ( , 1, 2,3)

 

i jσ σ

ε ε

= =

=
 (2.7) 

 

Thus the stress-strain relation for anisotropic body is given as follows for a three-

dimensional body in a 1–2–3 orthogonal Cartesian coordinate system 
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where the 6 х 6 [C] matrix is called the stiffness matrix and contains 36 constants. They 

also can be written in indicial notation as follows 

( )i ij j

i ij j

 C ,   where i,  j 1, 2,3, ,6

 S

σ ε

ε σ

= = …

=
 (2.9) 

- Orthotropic Material 

An Orthotropic material as defined previously is a material which has three 

mutually perpendicular planes of material symmetry. The stress-strain relation have the 

same form as anisotropic material, however, the number of independent elastic constants 

are reduced to nine, because the stiffness and the compliance terms are interrelated. 
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(2.10) 

 

- Transversely Isotropic Material 

An orthotropic material is called a transversely isotropic when one of its 

principal planes is a plane of isotropy, that is at every point there is a plane on which the 

mechanical properties are the same in all directions. The stress-train relations for a 

transversely isotropic material are simplified for a two-three planes of isotropy such that 
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Thus, the stress-strain relations for a transversely isotropic material are reduced to 

           

11 12 12
1 1

12 22 23
2 2

12 23 22
3 3

22 23

55

4 4

5 5

6 6
55

0 0 0
0 0 0
0 0 0

0 0 0 0 0
2

0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

C C

C
C

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

                 = −                        

                          (2.12) 

 

The relations above show that in orthotropic material with transversely isotropy are 

characterized by only five independent elastic constants. 

- Isotropic Material 

An isotropic material is characterized by an infinite number of planes of material 

symmetry through a point. For such a material, subscript 1, 2, and 3 in the material 

constants are interchangeable, thus the stress-train relations are reduced to 
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              (2.13) 

So, an isotropic material is fully characterized by only two independent 

constants, the stiffnesses C11 and C12. We summarize the number of independent elastic 

constants for various types of materials 
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• Anisotropic: 36 

• Orthotropic: 9 

• Transversely Isotropic: 5 

• Isotropic: 2 

2.3.2 Constitutive Relations for a Thin Lamina  

In so structural applications, composites materials are used in the form of thin 

laminates loaded in the plane of the laminate. Thus, composite laminae and laminates 

can be considered to be under a condition of plane stress with all stress components in 

the out–of-plane direction being zero that is 

3
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0

0

0 

σ

τ

τ

=

=

=

 (2.14) 

This results in the following hygrothermoelectroelastic (It is assumed that the 

moisture concentration has a similar effect as expansion/contraction due to temperature 

changes. In practice, moisture concentration can cause swelling in the constituents, 

affecting the thermo-electro-elastic properties of the composite and its effect is often 

unrecoverable. Likewise, temperature changes can alter the properties of materials) 

constitutive equation for the kth layer that is characterized as an orthotropic layer 

including piezoelectric effect 
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             = − ∆ − ∆ −             
                          

       (2.15) 
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                      (2.16) 

where Qij are the components of the plane stress-reduced stiffnesses, eij are the 

componenets of the piezoelectric constants, ωij are the dielectric constants of the kth 

lamina in its material coordinate system. σi, εi, ξi, Di are the  stress, strain, electric field 

and electric displacement scalar components, respectively, referred to the material 

coordinate system (x1, x2, x3). αij, βij are the scalar coefficients of thermal and moisture 

expansion, respectively, in the x1, x2 direction. ΔT and ΔC are the temperature and 

moisture changes from a reference state. The coefficients Q(k)ij are known in terms of the 

engineering constants of the kth layer as follows 
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 (2.17) 

Thus, a single orthotropic lamina can be fully characterized by four independent 

constants through any of the following combinations 

 𝑄11,  𝑄12, 𝑄22, 𝑄66, or 

𝑆11, 𝑆12, 𝑆22, 𝑆66, or 
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𝐸1, 𝐸2, 𝜈12, 𝐺12 

 
Poisson’s ratio ν21 is not independent due to imposing symmetry conditions for the 

stiffness and compliance matrices as it is related to ν12, E1 and E2 by  

12 21

1 2E E
ν ν

=  (2.18) 

 
The stress based piezoelectric constants are known in terms of the strain based 

piezoelectric constants and elastic stiffnesses as 
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                    (2.19) 

 

2.3.3 Transformation of the Constitutive Relation 

Generally, a laminate does not consist only of unidirectional laminae because of 

their low stiffness and strength properties in the transverse direction. Therefore, in most 

laminates, some laminae are placed at an angle. Thus it is necessary to develop the 

stress–strain relationship for an angle lamina. 
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Figure 2.4: Local and global axes of a single lamina 
 

Figure 2.4 shows us the coordinate system used for angle lamina. The stress and 

strain components referred to the principle material axes (x1, x2) can be expressed in 

terms of those refereed to the loading axes ( 1x , 2x )by the following transformation 

relations 
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 (2.20) 

 

where [T] is called the transformation matrix and is defined as 

 

𝑥̅2
 

x2 

x1 
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 (2.22) 

when the lamina is loaded only in the tension or compression along the principle 

material axes, there is no shear strain in the principle direction. Similarly, when the 

lamina is loaded under pure shear on the principle plane (1, 2), only a shear strain is 

produced on the 1, 2 plane. Thus, there is no coupling between normal stresses and shear 

deformation and between shear stress and normal strain. This is not the case when the 

lamina is loaded along arbitrary axes, then the stress-strain relation take the form 
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 (2.23) 
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where Q�ij are called the elements of the transformed reduced stiffness matrix Qij and are 

given by 
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The transformed thermal and moisture coefficients of expansion are defined as follows 

2 2
1 1 2

2 2
2 1 2

6 1 2

2 2
1 1 2

2 2
2 1 2

6 1 2

2( )

2( )

c s

s c

sc

c s

s c

sc

α α α

α α α

α α α

β β β

β β β

β β β

= +

= +

= −

= +

= +

= −

 (2.26) 

 

Also, the transformed piezoelectric moduli are defined as 
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And the transformed dielectric coefficient are defined as 
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2.4 Macromechanical Analysis of a Laminate  

It is apparent that the overall behavior of a multidirectional laminate is a function 

of the properties and stacking sequence of the individual layers. The so-called classical 

lamination theory predicts the behavior of the laminate within the framework of the 

following assumptions and restrictions: 

• Each layer (lamina) of the laminate is quasi –homogenous and orthotropic 

• The laminate is thin with its lateral dimensions much larger than its thickness 

and is loaded in its plane only, that is, the laminate and its layers (except for 

their edges) are in a state of plane stress (σ3 = τ4 = τ5 = 0) 
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• All displacements are small compared with the thickness of the laminate (u, 

v, w << h) 

• Displacements are continuous throughout the laminate 

• In-plane displacements vary linearly through the thickness of the laminate, 

that is, u and v displacements in the x1-x2 directions are linear functions of x3 

• Straight lines normal to the middle surface remain straight and normal to that 

surface after deformation. This implies that transverse shear strains γ4 and γ5 

are zero 

• Strain-displacement and stress-strain relations are linear. 

Normal distances from the middle surface remain constant, that is, the transverse 

normal strain ε3 is zero. This implies that the transverse displacement w is independent 

of the thickness coordinate x3. Figure 2.5 shows two cross sections before and after 

loading, we can observe the deformation that has occurred after loading. Assume u0, v0, 

and w0 to be displacements in the x1, x2, and x3 directions, respectively, at the midplane 

and u, v, and w are the displacements at any point in the x1, x2, and x3 directions, 

respectively. At any point other than the midplane, the two displacements in the x1–x2 

plane will depend on the axial location of the point and the slope of the laminate 

midplane with the x1 and x2 directions. In formulating the theory, it is assumed that the 

layers are perfectly bonded together. Further, restrict the formulation to linear elastic 

material behavior, small strains and displacements, and to the case in which the 

temperature and electric fields are given. The Kirchhoff hypothesis leads to the 

displacement field  
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Figure 2.5: Kinematics of deformation of a plate edge for CLP 
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The nonzero strains associated with the displacement field in Eq. (2.30-2.32) are given 

by 
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where ε10, ε20, γ60 are the membrane strains and ε1, ε2, γ6 are the flexural (bending) 

strains. The transverse strains ε4 ε5 ε3 are zero in the classical plate theory (for thin 

structural materials). Note from Eq. (2.32) that all strain components vary linearly 

through the laminate thickness, and they are independent of the material variations 

through the laminate thickness while the stresses discontinuity from lamina to lamina as 

shown in Figure 2.6. 
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Figure 2.6: Illistration of linear strain and stress variation in a composite laminate 

 

Because of the discontinuous variation of stresses from layer to layer, it is more 

convenient to deal with the integrated effect of these stresses on the laminate. Thus, we 

seek expressions relating forces and moments to laminate deformation. The stresses 

acting on a layer k of a laminate given by Eq. (2.15) can be replaced by resultant forces 

and moments. Consider a laminate made of n plies as shown in Figure 2.7 where each 

ply has a thickness of tk. Then the thickness of the laminate h is given as  
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k
k

h t
=
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Figure 2.7: Coordinate locations of plies in a laminate 
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Integrating the global stresses in each lamina gives the resultant forces per unit length in 

the x1–x2 plane through the laminate thickness as
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where NHT and NP are the thermal and electric force resultants which are given as 
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where na is the number of actuating layers. Similarly, integrating the global stresses in 

each lamina gives the resulting moments per unit length in the x–y plane through the 

laminate thickness as 
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where MHT and MP are thermal and electric moment resultants given as 
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where N1, N2 are the normal force per unit length, N6 is the shear force per unit length, 

M1, M2 are the bending moments per unit length and M6 is the twisting moments per unit 

length. 

The A, B, and D matrices are called the extensional, coupling, and bending 

stiffness matrices, respectively. The extensional stiffness matrix A relates the resultant 

in-plane forces to the in-plane strains, and the bending stiffness matrix D relates the 

resultant bending moments to the plate curvatures. The coupling stiffness matrix B 

couples the force and moment terms to the midplane strains and midplane curvatures. 

Are given as, 
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The stress resultants are related to the displacement gradients and electric fields 

as follows 
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Assuming that the electric fields vary linearly within kth layer; the hygrothermal 

and piezoelectric stiffnesses are defined as [33] 
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The electric field E is defined as 

                                                           1 2
k k k

k

V
h

ξ ξ= =                                          (2.49) 

  

where Vk is the applied voltage across the kth layer and hk is the thickness of the layer. 

Here we want to note that the direction of application of the electric field varies with the 

direction of polarization of the piezoelectric material. 
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CHAPTER III 

SHAPE CONTROL OF COMPOSITE LAMINATES USING PIEZOELECTRIC 

MATERIALS 

In this chapter, we start by introducing various piezoelectric materials which are 

used as actuators for shape control of smart structures which include piezoelectric fiber 

composites such as AFC and MFC. A detailed analytical solution is then presented for 

analyzing deformation of a cantilever beam based on the theory of elasticity; the results 

were compared with the solutions obtained from mechanics of materials and a model 

implemented using the commercial finite element software Abaqus. The aim for 

presenting this solution is to gain strong confidence in the element type and mesh size 

used in the FE analysis while dealing with more complex structures.  The effect of using 

several different types of actuators on the behavior of a composite laminate is also 

studied and compared with each other in order to observe their capability in controlling 

deformation in composite beams due to external stimuli such as thermal or mechanical 

deformations. The actuators considered and their properties are summarized in Table 3.1 

on page 59. The composite laminate is made of Carbon/Epoxy AS4 (3501-6) with 

symmetric laminates [Actuator/90/45/-45/0]s where the FE software Abaqus is used to 

perform this study. 

3.1 Piezoelectric Materials  

The phenomenon of piezoelectricity was discovered in 1880 by the Jacques and 

Pierre Curie brothers. They found out that when a mechanical stress was applied on 

crystals such as tourmaline, tourmaline, topaz, quartz, Rochelle salt and cane sugar, 
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electrical charges appeared with opposite signs on opposite surfaces and there charges 

were proportional to the stress.  

      Significant impetus has been generated by the discovery of piezoelectricity in 

polycrystalline ceramic materials like barium-titanate (BT) in the 1940’s and lead-

zirconate-titanate (PZT) in the 1950’s; the latter still dominates transducer applications 

since it attains relatively high compliance and high piezoelectric properties, making 

them suitable as actuators. Semicrystalline piezoelectric polymers on the basis of 

polyvinylidenefluoride (PVDF) usually in the form of thin films have been available 

since the late 1960’s. Newer development tendencies are directed towards the 

improvement of PZT ceramics by doping them with additional components such as 

La2O3 or producing artificial piezoelectric monocrystals [34]. 

Piezoelectric materials exhibit electromechanical coupling, which is useful for 

the design of devices for sensing and actuation. The coupling is exhibited by the fact that 

piezoelectric materials produce an electrical displacement when a mechanical stress is 

applied which is termed the direct piezoelectric effect and can also produce mechanical 

strain under the application of an electric field which is known as the converse 

piezoelectric effect.  

Traditional piezoelectric ceramics are brittle and easy to break during handling 

and service. Piezoelectric Fiber Composite (PFC) was developed to improve the fault of 

piezoelectric ceramics. It is formed by combining piezoelectric ceramic fibers and epoxy 

matrix sandwiched between two electrode layers. They have high stiffness and large 

bandwidth, making them possible to use a wide range of signals in actuator applications. 
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They also have better strength and conformability than PZTs, creating more flexible and 

pliable structure and improving resistant to brittle damage and they can be integrated 

into laminated composite structures or other host structures and used for health 

monitoring, energy harvesting, and controlling shape changes.  

3.1.1 Active Fiber Composite  

        Active fiber composites AFCs have been proven as a commercial efficient 

method for large-scale actuation and sensing in active structures. Through a series of 

projects active fiber composites have matured from objects of laboratory study to a 

technology for meeting the demands of high performance defense applications, as well 

as those of emerging commercial markets for smart technology devices.  AFCs have 

been successfully implemented in a number of defense applications, including integral 

actuators for dynamic twist control in rotorcraft blades, systems to reduce radiated noise 

in torpedoes, and buffet load alleviation and vibration damping on twin tail military 

aircraft. Commercial applications for AFCs include active structural control in sporting 

goods products, as well as systems for condition-based maintenance and structural health 

monitoring in automotive and aerospace markets [35].  

AFC actuators consist of unidirectional, aligned piezoelectric fibers, a resin 

matrix system, and interdigital electrodes, as shown in Figure 3.1. The advantages over 

monolithic piezoceramic actuators include higher planar actuation strains, tailorable 

directional actuation, robustness to damage, conformability to curved surfaces, and 

potential for large area distributed actuation and sensing systems. Piezoceramic fibers of 
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small (~250 μm) characteristic crosssectional dimension provide increased specific 

strength over monolithic materials.  

Integral passive materials laminated into the composite, such as glass fibers, can 

further improve toughness, increasing robustness without compromising the ability to 

conform to curved shapes. Active fiber composites operate in the longitudinal mode and 

thus have significantly higher specific work output than planar monolithic 

piezoceramics. In addition, the directional nature of actuation permits design of modal 

actuators and sensors without reliance on the host structure to transmit the actuation 

through structural coupling mechanisms. Large area, multiple ply AFC actuators are 

easy to fabricate, simplifying leads and connections, and minimizing technology 

insertion costs. 

 

Figure 3.1: Active fiber composite concept [17] 

More demanding AFC applications require improved part-to-part consistency 

and greater mechanical displacement and force outputs. In the military these applications 

include distributed integral actuators for active aeroelastic control in sensorcraft and 

unmanned combat air vehicles (UCAVs). In these applications, improvements in 
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actuator strain and energy density are paramount. Other applications include structural-

acoustic control on launch vehicle shrouds to reduce noise transmission to the payload, 

which require conformable actuators of high authority. In many commercial 

applications, higher strain output at lower electric fields is needed to reduce costs 

associated with high voltage drive and control electronics. 

3.1.2 Microfiber Composite  

Microfiber Composites are similar to the AFCs in the sense that both consist of 

the same three primary components; active piezoceramic fibers aligned in a 

unidirectional manner, interdigitated electrodes, and an adhesive polymer matrix, 

however, the MFC has one difference that greatly affects the manufacturing process and 

the performance of the actuator, it has rectangular fibers embedded in the polymer 

matrix. In addition, MFC results in larger fiber volume contents than the AFC moreover; 

the maximum fiber volume content of AFC is less than 0.785 because of the restriction 

in the fiber geometry. The fiber volume content of MFC could reach up to 0.824 [18]. 

High fiber volume content enhances the performance of the composite and improves the 

stiffness and strength of the composites. The MFC is extremely flexible, durable and has 

the advantage of higher Electromechanical coupling coefficients granted through the 

interdigitated electrodes.  Allowing the MFC to be produced at a much lower cost than 

the AFC and therefore are causing the AFC to be overlooked when determining the ideal 

actuator for a specific application. Additionally, the rectangular fiber geometry of the 

MFC guarantees consistent contact between the IDEs and piezoceramic fibers, reducing 

attenuation on the IDE electric field due to the low dielectric constant of the epoxy 



44 
 

matrix. Because of the improved electrical contact, MFC strain performance exceeds 

AFC strain performance by up to 150% [36].  Since both AFC and MFC use polymer 

matrix constituents which are known for their viscoelastic behavior, this could result in 

the overall time-dependent behaviors of these actuators.  

Engineering properties of MFC are determined either estimated or 

experimentally found, a complete and experimentally validated set of orthotropic 

mechanical properties can be found in [37]. Measuring the maximum free-strain 

actuation capabilities of a typical reference MFC device, the maximum peak-to-peak 

actuation strain of approximately 2000 micro strain in the longitudinal direction is 

typical for all NASA-standard MFC devices. The free-strain output of the MFC, as with 

most piezoceramic devices, varies considerably with the driving electric field amplitude. 

This variability in effective piezoelectric constants (d33, d31) is nonlinear, but repeatable. 

3.2 Finite Element Verification  

A detailed analytical solution for a cantilever beam under the application of a tip 

load based on the theory of elasticity for one material and a composite material is 

presented in order to obtain the displacement field; the results were compared with the 

solutions from mechanics of materials and a model implemented using the commercial 

finite element software Abaqus. The aim of presenting this solution is to gain strong 

confidence in the element type and mesh size used while dealing with more complex 

structures. The geometry and the loading of the composite beam considered are shown in 

Figure 3.2. We first consider the case of having a material with piezoelectric properties 

and another without. 
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The BC’s at the top and bottom are given as   
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Figure 3.2: Cantilever composite beam made of a two different materials under a tip load 
 

where superscript (1) indicates the elastic material layer and (2) indicates the PZT layer, 

also, note that t is defined as the traction vector, n is the unit outward normal (i, j, k) 

vector. The BC’s at x = 0, 
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0 (1) (2)

0
0

b

xx xxb
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−
= − −∫ ∫  (3.4) 

In order to solve this problem, we are going to assume an Airy stress function of the 

form 

              
3 2

1 1 2 3
3 2

2 4 5 6

 c xy  c xy  c xy  for Elastic Material 

 c xy  c xy  c xy  for the Piezoelectric Material

Φ = + +

Φ = + +
               (3.5) 

where c1-c6 are unknowns to be determined and from boundary, equilibrium and 

compatibility conditions. Following the Theory of Elasticity for plane problems we have 

                            xx yy yy xx xy xy ,         ,        ,σ σ σ= Φ = Φ = −Φ                             (3.6) 

where “,” denotes differentiation with respect to the indicial variable. Substituting Eq. 

(3.5) into Eq. (3.6) we get 
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Substituting into Eq. (3.1) and Eq. (3.3) obtaining 
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At the interface (x, y = 0); the tractions are equal and opposite i.e t1 = -t2 

(1) (2) (1) (2)
xy xy yy yy   and    σ σ σ σ= =  (3.10) 

Giving 

2 5c  c=  (3.11) 

From Stress-Strain & Strain-Displacement relations we find that  
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Written in terms of displacements and in matrix format as follows 
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(3.14) 

where E1, v1 are the Young’s modulus and Poisson’s ratio for the first material 

respectively. A(y), B(x) are constants of integration. Substituting the stress values we get 
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Now, for the piezoelectric material we have the constitutive relations defined by 

Eq. (2.6) and assuming open circuit analysis for the piezoelectric (i.e D = 0) we have 
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where S11 and S12 are the first and second components in the compliance matrix 

respectively. It can be observed from Eq. (3.16) that the electric field used is ξ3 and this 

is due to the fact that most piezoelectric materials are poled through their thickness and 

the electric field is applied in that similar direction.  C(y) and D(x) are constants of 

integration. Substituting the stress values we get 
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Also, defining the shear strains for elastic material  as 
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where λ = ((1+v1)/E1). And for material 2 as 
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Rearranging the above equation such that separating between x, y and the constants as 

follows.  

For elastic material we get 
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                                                 2 12 c   Kλ =                                                     (3.22) 

                                         ( ) ( )1 1 1F y   G x   K+ =                                             (3.23) 

and for the PZT we get  
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11 4 23S c x –  D` x   G x− =                                           (3.25) 
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Such equation means that F(x) must be some constant d and G(x) some constant 

e. Otherwise F(x) and G(y) would vary with x and y, respectively and by varying x 

alone, or y alone, the equality would be violated.  Thus 
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Equating Eq. (3.28) with both Eq. (3.20) and Eq. (3.24) we get 
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The same is done to B(x), C(y) and D(x), we get 

                              ( ) 3
1 1 2

1

1B x    c x –  e x  p
E

 
=− + 

 
                                        (3.30) 

      ( ) ( )3 2 3 2
66 4 66 6 2 21 4 6 3C y   2S c y –  2S c y –  d y  S c y  c y   p= − − + +            (3.31) 

                                ( ) 3
11 4 2 4D x   c x –  e x  pS= − +                                        (3.32) 

Defining the BC’s at x = a, y = 0 as 

                     (1) (2) (1) (2) (1) (2)
x x y y y,x y,xu  u  u  u  0,  u  u  0= = = = = =                  (3.33) 
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From here, we get six equation and another two equations from Eq. (3.28), we 

can find p1, p2, p3, p4, e1, e2, d1, d2 as  

                                             

2
1 3

1

3
2 1 1

1

2
3 11 6 31 3

3
4 11 4 2

1p   c a

1p  c a  e a

p   c a  d a

p   S c a  e a

E

E

S ξ

 
= −  

 

 
= + 
 

= − −

= +

                                     (3.34) 

                                               

2
1 1

1

2
2 11 4

1 1 1

2 2 2

3e   c a

e   3S c a

d   K  –  e

d  K  –  e

E
 

= −  
 

= −

=

=

                                              (3.35) 

Returning to the last BC which is the continuity of the displacements at the 

interface (x, y=0) i.e ux1 = ux2, uy1 =uy2 we get 

                 ( ) ( )2 2
3 11 6 31 3

1

1  c x  A 0   S c x  d x  C 0
E

ξ
 

+ = + + 
 

                      (3.36) 

                                               ( ) ( ) B x   D x=                                                  (3.37) 

Finally, we obtain six equations with six unknown’s (c1-c6) and they can be 

solved by using any available mathematical software package such as Matlab. When 

considering the case of having two materials in which neither one exhibit piezoelectric 

properties, the solution is similar and the only difference will be in the constitutive 

model used for each material.  
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In addition, as a special case when both materials have the same properties 

resulting in the solution for a single material which is given as 

                          
2 2 31 1

1 2 12 3
4 6y
D Du c xy c x xy x qx bµ = − − + − + +

   
                 (3.38) 

                       

2 21
1 2 1 1 1 23

31
1 2

, 3 , 6 (1 ),
4 2

6

DFc c c b D c q c a
b

Db qa a c a

ν= = − = − = +

= − + +

                  

(3.39) 

From here we compare the results obtained from the previous derivation with 

that obtained from an FE model implemented using the commercial software Abaqus. 

The beam is modeled using 20-node quadratic continuum elements with reduced 

integration (C3D20R) for the elastic part and an extra degree of freedom for the 

electrical potential (C3D20RE) were used to model the part which exhibits piezoelectric 

properties. First, we compare the analytical results obtained from the elasticity solution 

for only one material with those obtained from mechanics of materials and the FE 

model. The FE beam model is meshed with 4 elements through the thickness, 8 elements 

along the width and 100 elements along the length; the mesh is presented in Figure 3.3. 

Figure 3.4 shows the deflection of an aluminum cantilever beam along its length 

measured from the center line under the action of a tip load (1kN). We see that the 

solution obtained from theory of elasticity and the FE model are very close to each other 

with a max error of  2% while 6% error was obtained when comparing it with that 

calculated from strength of materials. In the case of a composite material, we first 

consider two different materials where none of them exhibit piezoelectric properties 
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(both have elastic properties only). The composite consisted of steel as the first part and 

aluminum as the second part. The mesh is similar to that used in the single material case 

except that 4 elements were used through the thickness of each part of the beam.  Figure 

3.5 shows the deflection of the cantilever composite beam along its length measured 

from the center line under the action of a tip load (1kN). We see that the solution 

obtained from the theory of elasticity and the FE model are very close to each other with 

a max error of (3%). 

 

Figure 3.3: Mesh of the FE beam model 
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Figure 3.4: Predicted deflection of a cantilever homogenous beam using elasticity solution, strength of 

materials and finite elements 

 

 

Figure 3.5: Predicted deflection of a composite beam using elasticity solution and finite elements 
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We also considered the case of a composite material but this time, one of the 

materials exhibits piezoelectric properties. The composite consisted of PZT-5H as the 

first part and aluminum as the second part. The mesh is similar to that used in the single 

material case except that  4 elements were used through the thickness of each part of the 

beam and an extra degree of freedom element for the electrical potential (C3D20RE) 

were used to model the part which exhibits piezoelectric properties. Figure 3.6 shows the 

deflection of the composite cantilever beam along its length measured from the center 

line under the action of a tip load of (1kN) and zero electric field along the piezoelectric 

material. We see that the solution obtained from the theory of elasticity and the FE 

model are very close to each other with a max error of (3%). 

 

 

Figure 3.6: Predicted deflection of a composite beam with one part exhibiting piezoelectric properties 

using elasticity solution and finite elements 
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Moreover, we want to observe the effect of applying a voltage difference through 

the thickness of the active part on the deflection of an isotropic beam such as aluminum 

and compare the results with those obtained from FE. We consider the case of using a 

single piezoelectric patch on one side and on both sides of an elastic beam as shown in 

Figure 3.7. The equations governing the deflection of the beam under the application of 

a voltage difference for both cases are given as [38] 

                                            

21 1
1( ) ( )

2

( 1,2,....... )k
k

k

K Vy x x x

K k n
V
κ

= −

= → =
                                  (3.40) 

For the double actuator case the curvature equation is given as 

 

                                     
31 1 2( )

2 2
p

p p b

ttd w t V V

EI

ξ
κ

 
+ + − 

 =                               (3.41) 

And for the single actuator is given as 

 

                                         2

( ) ( )
( )( ) ( )

M ES P EI M ES
EI EI EA EI ES

κ
 −

= −  − 
                           (3.42) 

 

 

 

 

 

 

Figure 3.7: Schematic of a beam with double bond and single bonded actuator 

Beam 

Actuator 
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              It can be observed from Eq. (3.41) that when applying a similar voltage value to 

both actuators, the resulting deflection becomes zero and a tension compression effect 

will take place rather than an out of plane deflection.   First, we consider using only one  

PZT actuator attached to an aluminum beam, the geometry of the beam is shown in 

Figure 3.8. The FE mesh is similar to those used in the mechanical load case except that 

4 elements were used through the thickness of the aluminum beam and 2 elements 

through the actuator with an extra degree of freedom for the electrical potential. 

 

 

 

 

 

 

 

Figure 3.8: Schematic of the aluminum beam with PZT actuator 

 

            Figure 3.9 shows the deflection of a cantilever beam along its length measured 

from the center line subjected to a through the thickness voltage difference of 40V and 

80V corresponding to a 20.5V/mm and 41V/mm electric field respectively. We see that 

the results obtained from the analytical solution and the FE model are very close to each 

other with a max error of (2%). Similarly, two actuators attached to an aluminum beam 

are also considered. Figure 3.9 shows the deflection of a cantilever beam along its length 

measured from the center line subjected to a voltage difference of 40V and 80V 

PZT Actuator Aluminum Beam 

60mm 

600mm 
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corresponding to a 20.5V/mm and 41V/mm electric field respectively. We see that the 

results obtained from the analytical solution and the FE model are close to each other 

with a max error of (8%). Moreover, it can be concluded that when using a double 

bonded actuators more deflection is obtained for the same voltage value than the single 

bonded case due to the amplification displacement where each layer (ideally) will 

displace the same amount leading to higher deflection. 

 

 

Figure 3.9: Predicted deflection of a composite beam using a single actuator under the application of 

through thickness electric potential 
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Figure 3.10: Predicted deflection of a composite beam for two actuators under the application of through 

thickness electric potential 

 

From the previous analysis, we were able to verify the solution obtained from 

the FE model with analytical solutions, hence, we can use similar FE models to construct 

more complex structures as we will see in the previous section where we use patch 

actuators distributed along a composite laminate beam in order to observe their effect on 

the shape control of the composite beam. 

3.3 The Analysis of Laminated Beams using CLPT 

             In dealing with symmetric laminates, the equations for bending deflection and 

stretching displacements are uncoupled; in the case when the in-plane forces are zero, 
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Substituting into Eq. (2.40) gives in the absence of temperature effects 
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In inverse form 
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                 (3.45)

   

By assuming that the laminated beam under consideration is long enough 

compared to its width and thickness to make the effects of the Poisson ratio and shear 

coupling on the deflection negligible. Then the transverse deflection can be treated only 

as a function of coordinate x (along the length of the beam); from here we get 

                                                

2
0

11 12
1

( )p
x

w D M B
x

∂
= − +

∂
                                  (3.46)

 

The “~” symbol indicates the components of the inverse matrix. For static bending 

without the axial force we have  

 

                                    
2 4

0 0
2 4

1 1

x
xx yy

xx yy

w M wE I q
x E I x

∂ ∂
= − → =

∂ ∂
                            (3.47) 
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where Exx = 12
h3D11�

, Iyy = 1
12

bh3, q is the distributed force, D11�  is the coefficient of 

inverse of bending stiffness matrix. Equation. (3.47) is identical to the form, of the 

Euler-Bernoulli beam theory of homogeneous, isotropic beams. Considering a simply 

supported and a cantilever beam, we have the following boundary conditions 

respectively, 

                                            

0
0

1

0
0

1

(0) 0; ( / 2) 0

(0) 0; (0) 0

dww l
dx

dww
dx

= =

= =

                                     (3.48) 

 

 

 
 

Figure 3.11: Schematic of a simply supported and a cantilever beam under application of point load 

 

 

Applying these boundary conditions to the governing equations to get the 

transverse deflection of laminated composite beam including electric effects subjected to 
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point load as shown in Figure 3.11. The transverse deflection for a simply supported 

beam and a cantilever beam are given as 

 

                          
3 22

0 1 0 11 1 1 1
0 1

1( )
12 2 16 2

p p

xx yy

F x F l xB x B lxw x
E I
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               (3.49) 
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12 2

p
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F x B xw x
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                          (3.50) 

 

The in-plane stresses in the kth layer can be computed from Eq. (2.24) and are 

given as 
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The stresses given above are approximate and are not valid especially in the free-

edge zone, where the stress state is three dimensional. The width of the edge zone is 

about the order of the thickness of the beam. 

3.4 Shape Control of Composite Laminates  

In the following section, we present the effect of using several different types of 

actuators on the shape control of composite laminates, the actuators considered and their 

properties are summarized in Table 3.1, note that subscript 1 indicates longitudinal fiber 

direction in the composite while 3 indicates the poling direction for piezoelectric 

materials. Active fiber composites can be classified into two types based on the method 

used in embedding the active fibers into the passive matrix. Figure 3.12 shows a 

schematic of the first type, where, the PZT rods are incorporated into the matrix along 

the actuator thickness; a similar behavior is observed to that when using pure PZT 

actuators where the voltage is applied through the actuator thickness. The second type is 

shown in Figure 3.13, in this type, the fibers are embedded along the longitudinal 

direction of the actuator which lead to longer fibers than those used in the first type, 

moreover, electrodes are attached to the upper and lower surface of the actuator which 

serve as the part where the electric potential is applied given the electrode spacing. Both 

types are investigated in the following study. 

 

 

 

 



64 
 

Table 3.1: Material properties of the actuators and composite beam 

Property Variable Units Carbon 
Epoxy(AS4-
3601) 

MFC 
(60%) 

AFC 
(60%) 

PZT-
5H 

PZT-
5A 

Young’s 
Modulus 
 
 
Poisson’s 
Raito 
 
 
Shear 
Modulus 
 
 
Piezoelectric 
Coefficients 
 
 
 
 
Thickness 
 
 

E1 
E2 
E3 
 
ν12 
ν13 
ν23 
 
G12 
G13 
G23 
 
d31 
d32 
d33 
d15 
d24 
 
t 
 
 

GPa 
GPa 
GPa 
 
- 
- 
- 
 
GPa 
GPa 
GPa 
 
pm/V 
pm/V 
pm/V 
pm/V 
pm/V 
 
m 
 

147 
10.3 
10.3 
 
0.27 
0.27 
0.54 
 
7 
7 
3.7 
 
- 
- 
- 
- 
- 
 
0.000127/ply 

30.0 
15.5 
15.5 
 
0.35 
0.4 
0.4 
 
5.7 
10.7 
10.7 
 
-198 
-198 
418 
- 
- 
 
0.0003 
 
 
 

35 
10.41 
10.41 
 
0.35 
0.38 
0.38 
 
4.4 
4.96 
4.96 
 
-260 
-260 
540 
- 
- 
 
0.0003 
 
 
 

61 
61 
48 
 
0.31 
0.31 
0.31 
 
23.3 
19.1 
19.1 
 
-274 
-274 
593 
741 
741 
 
0.0003 
 
 
 

61 
61 
53.2 
 
0.384 
0.4 
0.4 
 
22.5 
21 
21 
 
-171 
-171 
374 
584 
584 
 
0.0003 
 

 

 

 

Figure 3.12: Piezoelectric fiber composite with fibers embedded through the matrix thickness 
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Figure 3.13: Piezoelectric fiber composite with fibers embedded through the matrix length 

 

 

The composite laminate is made of Carbon /Epoxy AS4 (3501-6) with symmetric 

laminates [Actuator/90/45/-45/0]s. The finite element software Abaqus is used to 

develop a 3D model in order to predict the response of a simply supported composite 

beam and a cantilever beam subjected to a voltage difference across the actuators. A 

schematic of the composite beam and the dimensions used is shown in Figure 3.14 and 

Figure 3.15.  

 

 

Figure 3.14: Schematic of a simply supported composite beam with actuator attached 
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Figure 3.15: Schematic of a cantilever composite beam with actuator attached 

 

            Figure 3.16  shows the response of a simply supported composite beam subjected 

to a 1.25 MV/m electric field considering the first type of the piezoelectric fiber 

actuators and both PZT actuators mentioned previously. The maximum displacement 

(0.76mm at the mid length of the beam) corresponding to a 0.253% strain is obtained by 

using PZT-5H because of its high piezoelectric coefficient through the actuation 

direction while the MFC actuator gave the least displacement value since it has a low 

piezoelectric coefficient in the actuation direction compared to AFC. The response of the 

same composite beam subjected to a 2.5 MV/m electric field is shown in Figure 3.17. By 

applying a higher voltage difference through the actuators, a higher deflection is 

obtained, where; in this case the maximum displacement is 1.58mm corresponding to a 

0.527% strain by using a PZT-5H actuator and the minimum displacement is obtained by 

using the MFC actuator for the same reasons mentioned previously.  
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Figure 3.18 and Figure 3.19 show the response of a cantilever composite beam 

subjected to a 1.25MV/m, 2.5MV/m electric field considering the first type of the 

piezoelectric fiber actuators and both PZT actuators mentioned previously. The max 

displacement obtained is 2.2mm, 4.7mm (0.733%, 1.57% strain) by using PZT-5H in 

both cases respectively. It is evident that the composite laminates with cantilever beam 

boundary conditions have larger deflections than the simply supported boundary 

conditions for any applied voltage considered. Figure 3.20 shows the response of a 

simply supported composite beam subjected to a 1.25 MV/m electric field but this time, 

the second type piezoelectric fiber actuators are used in addition to both PZT actuators 

mentioned previously. 

 

 

Figure 3.16: Predicted steady-state deflection of a simply supported composite beam subjected to different 

actuators under 1.25MV/m electric field 
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Figure 3.17: Predicted steady-state deflection of a simply supported composite beam subjected to different 

actuators under 2.5MV/m electric field 

 

Figure 3.18: Predicted steady-state deflection of a cantilever composite beam subjected to different 

actuators under 1.25MV/m electric field 
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Figure 3.19: Predicted steady-state deflection of a cantilever composite beam subjected to different 

actuators under 2.5MV/m electric field 
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the AFC actuator and the minimum displacement is obtained by using the PZT-5A 

actuator for the same reasons mentioned previously. Figure 3.22 and Figure 3.23 show 

the response of a cantilever composite beam subjected to a 1.25 MV/m and 2.5MV/m 

electric field across the different actuators. The max displacement obtained is 4.3mm, 

8.2mm (1.4%, 2.73% strain) by using the AFC actuator in both cases respectively. AFC 

and MFC have the advantage of having a more flexible behavior caused by embedding 

piezoelectric materials in the form of fibers into a polymer matrix, unlike the brittle and 

inflexible nature of PZT. It can be concluded that by using either type of the actuators 

presented, the deflection produced can be used to counter react external stimuli’s that are 

applied to the composite beam, also, since all the actuators are suitable in overcoming 

the deflection of the beam; it is more convenient to use AFCs and MFCs due to their 

advantages of giving higher deflection, yet, more flexible and can sustain higher electric 

fields. 
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Figure 3.20: Predicted steady-state deflection of a simply supported composite beam subjected to different 

actuators under 1.25MV/m electric field 

 

Figure 3.21: Predicted steady-state deflection of a simply supported composite beam subjected to different 

actuators under 2.5MV/m electric field 
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Figure 3.22: Predicted steady-state deflection of a cantilever composite beam subjected to different 

actuators under 1.25MV/m electric field 

 

Figure 3.23: Predicted steady-state deflection of a cantilever composite beam subjected to different 

actuators under 2.5MV/m electric field 
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In order to further verify the results obtained from the previous study, we define 

an important property used in piezoelectric materials called the energy density which 

defines the maximum energy per unit volume that can be produced by the piezoelectric 

device.  

In the case where the PFC actuators had longitudinal fibers embedded in the 

matrix and actuated through the longitudinal direction. The desired extension in this case 

is parallel to the actuation direction. Therefore, the 33 mode of the piezoelectric material 

is utilized in these applications. The volumetric energy density in this case can be given 

as [43] 

                                              2 2
3 33 1

1
2vE E d ξ=                                                   (3.54) 

 

The energy density is an important figure of merit when comparing different 

types of piezoelectric materials and when comparing different materials with one 

another. It is also an intrinsic property of the material since it does not depend on the 

geometry. At equivalent electric fields, one can form a figure of merit, 2
3 33

1
2

E d  and 

assess the relative ability of different materials to do mechanical work.  A higher value 

of 2
3 33

1
2

E d  indicates that a material can perform more mechanical work at the same 

electric fields, but this does not mean that it is necessarily a better material in every 

aspect since a material may require much larger voltages or may not work over a large 

temperature range, and so on, but it does indicate that the material has better intrinsic 

properties as an electromechanical actuator. 
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In the case where both PZT and the PFC actuators which had embedded fibers 

through the matrix thickness encompass the operating mode along the axis of 

polarization defined as the 3 axis of the material. The poling direction of the 

piezoelectric material is parallel with the thickness direction of the piezoelectric layer 

and the desired extension is perpendicular to the poling direction. Therefore, the 31 

mode of the piezoelectric material is utilized in these applications. The energy density 

function in this case is defined as [39] 

                                                            2 2
1 13 3

1
2vE E d ξ=                                     (3.55) 

 

The reduction in volumetric energy density in this case is due to the fact that d13 

is usually a factor of 2 or 3 lower than d33. The reduction in strain coefficient in the 13 

direction is offset somewhat by the increase in elastic modulus in the 1 direction. Table 

3.2 shows the energy density function for the different actuators used in the shape 

control of the composite structure under an electric field 1.25MV/m. It can be observed 

that the energy density obtained from the 31 mode of the piezoelectric material had the 

largest value when using a PZT-5H actuator while an AFC actuator provides the largest 

in the 33 mode. 
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Table 3.2 Energy density of different types of piezoelectric materials for different actuation modes at an 
electric field of 1.25 MV/m 

Actuator d33 
(pm/V) 

d31 
(pm/V) 

E1 
(GPa) 

E3 
(GPa) 

Ev 
(kJ/m3) 

(33 mode) 

Ev 
(kJ/m3) 

(31 mode) 
PZT-5H 593 274 61 48 - 2012.5 
PZT-5A 374 171 61 53.2 - 783.84 

MFC 418 198 30 15.5 2115.8 516.8 
AFC 540 260 35 10.41 2371.5 1039.7 

 

The Effect of ply orientation on the transverse deflection of a cantilever beam for 

a 1MV/m and 2MV/m electric field is shown in Figure 3.24 and Figure 3.25 

respectively. It can be observed that the plies with orientation 45° have larger deflections 

than those for 20° for the same applied voltage. In addition, Figure 3.26 and Figure 3.27 

show a comparison between two beams one with cross laminates and another having a 

stacking sequence [0/45]s subjected to 1MV/m and 2MV/m electric field, respectively. It 

can be seen that the difference is almost negligible (error = 0.2%) between the 

deflections of both beams. It can also be concluded from the figures that the laminates 

that contain 0° plies have less deflection from those with only angle plies for the same 

applied voltage. 
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Figure 3.24: Predicted steady-state deflection for different ply orientation composite beams subjected to 

1MV/m electric field 

 

 

Figure 3.25: Predicted steady-state deflection for different ply orientation composite beams subjected to 

2MV/m electric field 
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Figure 3.26: Predicted steady-state deflection for different ply orientation composite beams subjected to 

1MV/m electric field 

 

 

 

Figure 3.27: Predicted steady-state deflection for different ply orientation composite beams subjected to 

2MV/m electric field 
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The stress distribution along the mid section of a simply supported composite 

beam with a stacking sequence [Actuator/0/45/-45]s for different types of actuators is 

calculated using Eq. (3.51-3.53) under the application of a 1kN applied at the mid-

section. The stress discontinuity between each layer in the composite layup can be 

shown in Figure 3.28. It can be observed that a higher stress discontinuity is caused by 

using MFC and AFC due to their lower young’s modulus compared to PZT. In addition, 

the effect of applying a voltage difference to the actuator along the ply thickness can be 

seen in Figure 3.29, Figure 3.30  and Figure 3.31 for AFC, MFC and PZT-5H actuators 

respectively.  It can be observed that by increasing the voltage difference along the 

actuator the axial stress in each ply will increase leading to higher stress concentration 

between the host structure and the actuator which may lead to delamination as show in 

Figure 3.32. This phenomenon has been known to be one of the major reasons for failure 

in smart structures. Delamination consists in the separation of the plies of a composite 

laminate which leads to a significant reduction in the compressive load-carrying capacity 

of a composite structure. The stress gradients that occur near geometric discontinuities 

such as ply drop-offs, stiffener terminations and flanges, bonded and bolted joints, and 

access holes promote delamination initiation, trigger intraply damage mechanisms, and 

may cause a significant loss of structural integrity [31]. This leads to alternative designs 

where this stress concentration can be decreased while attaining the same overall 

response. An alternative method used in such structures is studied which decreases such 

stress concentration leading to less failure probability.  
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Figure 3.28: Stress distribution along the thickness of a composite beam using different actuators 

 

Figure 3.29: Stress distribution along the thickness of an AFC actuator for different voltage values 
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Figure 3.30: Stress distribution along the thickness of an MFC actuator for different voltage values 

 
 

Figure 3.31: Stress distribution along the thickness of an PZT-5H actuator for different voltage values 
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Figure 3.32: Composite laminate with PZT actuator attached  

 

During the manufacturing process, an actuator can be incorporated into the layer 

by becoming part of one of the composite layers as shown in Figure 3.33, a. This could 

lead to enhanced behavior of the overall structure and exclude all the stress 

concentration that existed in the previous patched design as shown in Figure 3.34 and 

Figure 3.35. Figure 3.36 show the deflection of a composite beam using patched and 

embedded actuators both made of carbon epoxy AS4 with the same stacking sequence 

[0/45/45/0]. It can be observed that other than excluding the stress concentration in the 

embedded design, the deflection is larger than the patched case for both PZT-5H and 

MFC actuators. This is because the geometry discontinuity between the actuator and the 

composite laminate is absent and the in-plane stress is continuously distributed in the 
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laminate. Another possible design could be by using a modified design of the actuators 

as shown in Figure 3.33, b. This gives similar deflection values to the patched case while 

decreasing the stress concentration. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33: (a, b).  Schematic for different designs methods used to patch the actuators on the host 

structure 
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Figure 3.34: Composite laminate with PZT actuator embedded into the first composite layer 

 

Figure 3.35: Predicted steady-state deflection of a composite beam using embedded and patched PZT-5H 

actuator under 1MV/m 
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Figure 3.36: Predicted steady-state deflection of a composite beam using imbedded and patched MFC 

actuator under 1MV/m 
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CHAPTER IV 

FAILURE ANALYSIS OF SMART LAMINATED COMPOSITES 

The following chapter presents failure analysis of composite laminates including 

hygrothermal and electric effects using the first-ply failure (FPF) and ultimate laminate 

failure (ULF) criteria of composite laminates in order to predict the failure stress and 

mode of a composite laminate under a uniaxial and biaxial loading. We focus on 

analyzing response of thin laminated composites such that the effect of transversely 

shear deformation on the overall performance of composite is less significant. Thus, the 

in-plane components of stress and strain are the primary parameters in determining 

bending of laminated composites. We start by analyzing failure in smart laminated 

composites due to uniaxial and biaxial loading, in which the composites are under 

constant stain/deformation through their thickness, followed by failure analysis under 

bending, where non-uniform stress/strain occur in the composite body. Various 

commonly known macroscopic failure criteria including Tsai-Hill, Tsai Wu, maximum 

stress and maximum strain are used.  A detailed sample calculation based on the 

Classical Lamination Theory (CLT) for Carbon/Epoxy (AS4/3501-6) laminate with 

stacking sequence [90/45/-45/0]s under uniaxial and biaxial loading is introduced using 

both the FPF and ULF criteria’s. The results obtained from the uniaxial case were 

compared with experimental data available in literature; moreover, a finite element 

model is implemented and compared with the analytical results. 
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4.1 Review of Failure Theories   

When a component is subject to increasing loads it eventually fails. It is 

comparatively easy to determine the point of failure of a component subject to a single 

tensile force. The ultimate data on the material identifies this strength. However, when 

the material is subject to a number of loads in different directions some of which are 

tensile and some of which are shear, then the determination of the point of failure is 

more complicated.  When dealing with composite materials, several theories have been 

proposed by extending and adapting isotropic failure theories to account for the 

anisotropy in stiffness and strength of the composite. Lamina failure theories can be 

classified in the following three groups [40]: 

• Limit or non-interactive theories, in which specific failure modes are predicted 

by comparing individual lamina stress or strains with corresponding strengths or 

ultimate strains, for example maximum stress and maximum strain theories have 

no interaction among different stress components on failure is considered. 

• Interactive theories (the Tsai-Hill and the Tsai-Wu theories) in which all stress 

components are included in one expression (failure criterion). Overall failure is 

predicted without reference to particular failure modes. 

• Partially interactive or failure mode based theory (the Hashin-Rotem) where 

separate criteria are given for fiber and interfiber failures. 

4.1.1 Maximum Stress Theory 

The theory was adapted for maximum stress to composites under plane stress 

conditions and was used to predict the off-axis strength of a unidirectional lamina as a 
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function of fiber orientation by three different curves corresponding to three different 

failure modes. According to the maximum stress theory, failure occurs when at least one 

stress component along one of the principal material axes exceeds the corresponding 

strength in that direction. The strength values are obtained for each certain material from 

their own charts. It should be noted that in the case of shear stress and strength referred 

to the principle material axes, the sign of the shear stress indicates the shearing direction  

and only absolute values needed be used for failure criteria. There are three different 

modes of failure that can be classified as: 

1. Fiber failure (tensile and compressive). 

2. In-plane shear interfiber failure. 

3. Transverse normal stress interfiber failure (tensile and compressive).  

The maximum stress theory is more applicable for the brittle (For brittle materials, it is 

quite reasonable to assume linear elastic behavior for predicting the overall deformation 

of the material up to the ultimate strength) modes of failure of the material, closer to 

transverse and longitudinal tension, and does not take into account any stress interaction 

under a general biaxial state of stress. So the lamina is considered to be failed if the 

following is violated 

2

1 1 1

2 2

6 6 6

( ) ( )

( ) ( )

( ) ( )

C T
ult ult

C T
ult ult

C T
ult ult

σ σ σ

σ σ σ

τ τ τ

− < <

− < <

− < <

 (4.1) 

Where 21 6, ,σ σ τ are the stresses along the principal material axes. 
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4.1.2 Maximum Strain Theory 

According to the maximum strain theory failure occurs when at least one of the 

strain components along the principle material axes exceeds the corresponding ultimate 

strain in that direction. 

2

1 1 1

2 2

6 6 6

( ) ( )

( ) ( )

( ) ( )

C T
ult ult

C T
ult ult

C T
ult ult

ε ε ε

ε ε ε

γ γ γ

− < <

− < <

− < <

 (4.2) 

where 21 6, ,ε ε γ are the strains along the principal material axes. 
 

The theory allows some interaction of stress components due to Poisson's ratio 

effect. From here, we can observe some relationship between the previous two theories. 

The ultimate strains can be found from the ultimate strength parameters and the elastic 

moduli, assuming the stress-strain response is linear until failure and loading is under 

load/stress control. For the maximum strain failure theory, it is not always proper to 

assume linear elastic behavior in predicting stress-strain response of materials as 

nonlinear stress-strain relations and ineleastic behaviors could be pronounced.  

4.1.3 Energy Based Interaction Theory (TSAI-HILL) 

Is a modified theory based on the distortional energy theory for isotropic 

materials, modified for the case of ductile metals with anisotropy and proposed the 

following form 

2 2 2
1 2 1 2 6 1A B C Dσ σ σ σ τ+ + + =  (4.3) 

where A, B, C, D are material parameters characteristic of the current state of anisotropy 

and depend among the strength of the material instead of C that accounts for interaction 
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between normal stress σ1 and σ2 must be determined by means of a biaxial test. Based 

on the distortion energy theory they proposed that the lamina will fail if 

           
( ) ( ) ( )2 2 2

2 3 1 1 3 2 1 2

4 5

3 3 1 2 2 1 3

2 2 2
1 1 3 4 5 6 6

2 2

2 2 2 2 1

G G G G G G G G

G G G G

σ σ σ σ σ σ σ

σ σ τ τ τ

+ + + + +

+ +

−− −

+ <
            (4.4) 

 

The components G1 - G6 of the strength criteria depend on the failure strength. One 

disadvantage is that it does not distinguish directly between tensile and compressive 

strengths. For a two dimensional state of stress the equation becomes 

                                 
2 2 2

1 1 2 2
2

1 1 2

6

6

1
( ) ( ) ( ) ( )T T T

ult ult ult ult

τσ σ σ σ
σ σ σ τ

       
− + + <       

       
                 (4.5) 

Unlike the maximum strain and maximum stress failure theories, the Tsai-Hill failure 

theory considers the interaction among the three unidirectional lamina strength 

parameter. The Tsai-Hill failure theory does not distinguish between the compressive 

and tensile strengths in its equation. This can result in underestimation of the maximum 

loads that can be applied when compared to other failure theory. Tsai-Hill failure theory 

underestimates the failure stress because the transverse strength of a unidirectional 

lamina is generally much less than its transverse compressive strength. 

4.1.4 Interactive Tensor Polynomial Theory (TSAI-WU) 

This theory is capable of predicting strength under general states of stress for 

which no experimental data are available. It uses the concept of strength tensors which 

allows for transformation from one coordinate system to another. It also has the 

capability to account for the difference between tensile and compressive strengths. For a 
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two dimensional state of stress (σ1, σ2, τ6) the criterion is reduced to the most familiar 

form 

                         2 2
1 1 2 2 11 1 22 2 66 6 12 1 22 1f f f f f fσ σ σ σ τ σ σ+ + + + + =                   (4.6) 

f1, f2, etc are strength tensors of second, fourth and higher orders. f12 is a function of the 

basic strength parameters plus the equal biaxial strength. The Tsai-Wu failure criterion 

has several desirable features; it is operationally simple and readily amenable to 

computational procedures. Like the Tsai- Hill theory, it is expressed in terms of a single 

criterion, instead of six sub criteria required in the maximum stress and max strain 

theories. The stress interaction terms can be treated as independent material properties 

determined by appropriate experiments, unlike the Tsai-Hill theory where the interaction 

terms are fixed as functions of the other terms. The theory, through its linear terms 

accounts for the difference between tensile and compressive strengths. In the classical 

lamination theory, stress-strain or load-deformation relations were developed for 

multidirectional laminates. It was shown how the laminate deformation can be fully 

described in terms of the reference plane strains and the curvatures, from which the 

strains can be obtained at any through the thickness location of the laminate. It was 

pointed out that, whereas strains are continuous through the thickness, stresses can be 

discontinuous from layer to layer, depending on the material properties and orientation 

of the layers. Failure analysis of a laminate is much more complex than that of a single 

lamina. The stresses in the individual laminae are fundamental and control failure 

initiation and progression in the laminate. Failure of a lamina does not necessarily imply 

total failure of the laminate, but is only the beginning of an interactive failure process. 
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The purpose of the lamina failure criterion is to determine the stress and mode of 

failure of a unidirectional composite or lamina in a state of combined stress. The existing 

lamina failure criteria’s that are considered in this study are basically phenomenological 

in which detailed failure processes are not described (macromechanical). Further, they 

are all based on linear elastic analysis. The majority of the lamina failure criteria were 

developed for two-dimensional stress states in orthotropic materials. Some of the failure 

criteria’s, such as the Tsai-Wu criterion which is a completely general tensor polynomial 

failure equation, have reduced forms in order to utilize two strength properties for two-

dimensional stress states. In this study, only such 2-D criteria are included. The in-plane 

principal strengths in a composite system are denoted as follows; F1t, F1c are the tensile 

and compressive strengths, respectively, in fiber direction, F2t, F2c are the tensile and 

compressive strengths, respectively, in transverse direction and F6 is the shear strength. 

For a strain based analysis, the corresponding failure strains are denoted as Fe
1t, Fe

1c, Fe
2t, 

Fe
2c, Fe

6. In this study, the in-plane principal strengths of the composite laminate are 

considered not the strain based strengths. 

4.2 Types of Failure 

Failure in a laminate may be caused by failure of individual laminae or plies 

within the laminate (intralaminar failure). Failure of a laminate may be defined as the 

initial failure or the ultimate failure, depending on the degree of conservatism applied. In 

the first definition, called the first ply failure (FPF), a laminate is considered failed when 

the first layers (or group of layers) fail. This is determined by conducting a stress 

analysis of the laminate under the given loading condition, determining the state of stress 
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in each individual layer, and assessing the strength of each layer by applying a selected 

failure criterion. This assumes that a layer, or lamina, within the laminate has the same 

properties and behaves in the same manner as an isolated unidirectional lamina. This 

approach is conservative, but it can be used with low safety factors. The second 

definition which is known as the ultimate laminate failure (ULF), there is no generally 

accepted definition of what constitutes such failure. It is generally accepted that a 

laminate is considered failed when the maximum load level is reached. The 

determination of the ULF requires an iterative procedure taking into account the damage 

progression in the various plies. The general approach consists first of determining the 

first ply failure, then discounting the damaged ply; after that the stresses are recalculated 

and checked against failure criterion to verify that the undamaged laminae do not fail 

immediately under their increased share of stress following the FPF above. In this 

analysis the strengths of the previously failed lamina (with reduced or totally discounted 

stiffness’s) are assumed to be fictitiously very high to avoid repeated failure indication in 

the same plies. The load is then increased until the next ply or group of plies fail. This 

could be a failure in a previously undamaged ply or a new failure in a previously 

damaged one and all of the above calculations are repeated again. The process continues 

until the criterion for ultimate laminate failure (ULF) is met. Criteria’s such as maximum 

load, last ply failure have been proposed. Theoretical predictions of ULF vary widely  
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depending on the definition of ULF and failure occurs when the laminate, at any stage of 

the progressive ply failures, cannot sustain the stresses. The flow diagrams for the FPF 

and ULF failure criteria’s are shown in Figure 4.1 and Figure 4.2 respectively. The 

following section presents a sample calculation for a specific case study in order to 

clarify the calculation procedure. 

4.3 Sample Calculation 

4.3.1 Uniaxial Tensile Loading 

This section presents a sample calculation to predict the failure stress and mode 

of each ply of a [90/45/-45/0]s Carbon/Epoxy (AS4/3501-6) laminate under uniaxial 

tensile stress by using the following failure theories, Maximum Stress, Maximum Strain, 

Tsai-Hill, and Tsai-Wu. The tensile strength of the laminate was calculated based on 

First Ply Failure (FPF) and Ultimate Laminate Failure (ULF). All calculations are based 

on the Classical Laminate Theories (CLT). The properties of (AS4/3501-6) are shown in 

Table 4.1. 
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Table 4.1: Material properties of carbon/epoxy (AS4/3501-6) 

Longitudinal modulus E1 
 

21.3 (Msi) 

Transverse modulus E2 1.5 (Msi) 

In-plane shear modulus G12 1 (Msi) 

Poisson’s ratio ν12 
 

0.27 (Msi) 

Longitudinal tensile strength F1t 

 

330 (Msi) 

Transverse tensile strength F2t 
 

8.3 (Msi) 

In plane shear strength F6 
 

11 (Msi) 

Longitudinal compressive strength F1c 
 

250 (Msi) 

Transverse compressive strength F2c 
 

33 (Msi) 

 

 

We begin our calculation by finding the values of the reduced stiffness matrix for 

each of the eight plies first by neglecting hygrothermal and electrical effects, substituting 

into Eq. (2.26) we get 
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Figure 4.1: FPF flow chart 
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Figure 4.2: ULF flow chart 
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The other four plies are symmetric, so, they have the same values. The total thickness of 

the laminate is h = (0.005) × (8) = 0.04 inch. The midplane is 0.02 inch from the top and 

the bottom of the laminate and from Eq. (2.42), the extensional stiffness matrix [A] can 

be found as 

                                     [ ]
0.3683 0.1075 0
0.1075 0.3680 0

0 0 0.1303
A Msi

 
 =  
  

                       (4.8) 

From Eq. (2.42), the coupling stiffness matrix [B] can be found as 

                                         [ ]
0 0 0
0 0 0
0 0 0

B Msi
 
 =  
  

                                       (4.9) 

From Eq. (2.42), the bending stiffness matrix [D] can be found as 

                                          [ ]
0 0 0
0 0 0
0 0 0

D Msi
 
 =  
  

                                      (4.10) 

We now find the average reduced stiffness matrix, which is defined as xy( )
[A][ ]  aveQ

N h
=

×
 

where N is the number of plies and h is the ply thickness given as 

 

                              [ ] ( )

9.2075 2.6867 0
2.6867 9.1995 0

0 0 3.2584
xy ave

Q Msi
 
 =  
  

                       (4.11) 

Since we have Qxy(ave) and the state of stress is known( 1σ = 1σ , 2σ  = 0, 6τ  = 0 ), we can 

find the strain in the whole laminate, which is uniform through the thickness as 

discussed in Chapter II and given as  
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Q Q Q

Q Q Q

Q Q Q

σ ε
σ ε
τ γ

 
        =             
  

                                   (4.12) 

                                          
1

2 1

6

0.1187
0.0347

0

ε
ε σ
γ

   
   = −   
      

                                              (4.13) 

 

The average stress in each layer is now determined by obtaining the reduced stiffness 

matrix of each ply and multiplying it by the overall laminate strain to get 
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   
   =   
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   
   = −   
      

                                         (4.14) 

We will now find the transformation matrix of each ply in order to obtain the principle 

stress of each lamina. 
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Substituting into Eq. (2.24) we get 
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   =   
   −   

   
   =   
      

   
   = −   
      

                                 (4.16) 

By applying the failure theories previously discussed, we obtain the minimum failure 

stresses in each ply and then select the minimum stress of all the given plies in the 
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laminate which will correspond to our failure stress according to the first ply failure 

criteria. The results obtained using the maximum stress failure criteria are as follows 

Ply 90° 

Compressive failure stress    = 0.3614 Msi 

Tensile failure stress     = 0.0505 Msi 

Shear failure stress     = 39.5936 Msi 

 

Ply 0° 

Tensile failure stress     = 0.1306 Msi 

Compressive failure stress = 22.898 Msi 

Shear failure stress    = 178.8404 Msi 

 

Ply 45° 

Tensile failure stress     = 0.3588 Msi 

Tensile failure stress     = 0.1021 Msi 

Shear failure stress     = 0.0717 Msi 

 

Ply -45° 

Tensile failure stress     = 0.3588 Msi 

Tensile failure stress     = 0.1021 Msi 

Shear failure stress    = 0.0717 Msi 

 
 

The previous calculation can be repeated for all failure theories e.g. (Maximum 

Strain, Tsai-Hill and Tsai-Wu). The minimum load of each ply and its corresponding 

mode are shown in Table 4.2 - Table 4.5 for the different failure theories. 

 

Table 4.2: Maximum stress theory (ΔT = 0, ΔC= 0) 

Minimum Stress  ksi / Ply Mode 

90° 50 Transverse tensile stress 

45° 75 Shear stress 

-45° 75 Shear stress 

0° 130 Longitudinal tensile stress 
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Table 4.3: Maximum strain theory (ΔT = 0, ΔC= 0) 

Minimum Stress  ksi / Ply Mode 

90° 46 Transverse tensile stress 

45° 75 Shear stress 

-45° 75 Shear stress 

0° 130 Longitudinal tensile stress 

 

 

Table 4.4: Tsai-Hill theory (ΔT = 0, ΔC= 0) 

Minimum Stress   ksi / Ply Mode 

90° 49.6 Transverse tensile stress 

45° 59 Shear stress 

-45° 59 Shear stress 

0° 130 Longitudinal tensile stress 

 

Table 4.5: Tsai-Wu theory (ΔT = 0, ΔC= 0) 

Minimum Stress ksi / Ply Mode 

90° 46.2 Transverse tensile stress 

45° 90 Shear stress 

-45° 90 Shear stress 

0° 130 Longitudinal tensile stress 

              

 

We can observe from the results that the FPF occurs in the 90° ply with a value 

of 51 ksi in the  transverse tensile direction (based on maximum stress theory) and the 

failure stresses for the other failure theories vary slightly when comparing them with 

each other, yet, each one predicted the same mode and failure ply.  

In order to apply the second criteria which is the Ultimate Laminate Failure 

(ULF), an iterative solution has to take place; so according to our data of the FPF we 
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eliminate the 90° ply and multiply its Longitudinal modulus, Transverse modulus, In-

plane shear modulus and Poisson’s ratio with a so called stiffness reduction factors 

which basically depend on the experiment environment (empirical approach) and can be 

obtained from analysis or experiments. In the case where matrix or interfiber failures are 

identified, the matrix dominated stiffness’s are reduced as shown in Eq. (4.17). Typical 

values of for reduction factors are r1 = 1 and r2 = r12 = 0.25. These values were obtained 

for a carbon epoxy laminate having [0/902]s stacking sequence where it was observed 

that at the limiting crack density, the laminate modulus was reduced to approximately 

90% of its original value and the reduced effective modulus of the 90° layer was reduced 

to approximately 25% of its original value [40]. Having obtained the reduction factors, 

the properties of the failed ply will then be updated according to Eq. (4.17) 

 

'
1 1 1
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2 2 2
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12 12 12

'
12 1 12ν ν

r

r

r

E E

E E

G G

r

×

×

×

= ×

=

=

=
 (4.17) 

Repeating all of the above calculations based on the new stiffness values for the 90° ply 

(failed ply) and continuing on with this process until the last ply failure is reached, in 

this particular case we will find that the failed ply is for each failure theory is shown in 

Table 4.6. 
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Table 4.6: ULF stress (ΔT = 0, ΔC= 0) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

0° 115.1 115 114.8 116 Longitudinal 
tensile stress 

 

From here we obtain the failure load and mode according to the ULF criteria and 

as concluded for the FPF criteria, the failure stresses for the other failure theories varies 

slightly comparing them with each other, yet, each one predicted the same mode and 

failure ply. It could also be concluded from our analysis that the failure for the uniaxial 

loading case always occurs at the beginning in the fibers that are oriented in the 

transverse direction, which have the least resistance to overcome the load; then come the 

plies that are oriented towards the axis where the load is applied (0° plies) as shown in 

Figure 4.3. 
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Figure 4.3: Variation of failure stress with fiber orientation 
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The next step describes the same analysis previously done but this time, a 

temperature difference is taken into account (ΔT = -100 °F) while keeping the moisture 

content equal to zero. The following results shown in Table 4.7 - Table 4.10 are obtained 

 

Table 4.7: Maximum stress theory (ΔT = -100 °F, ΔC= 0) 

Minimum Stress   ksi / Ply Mode 

90° 36.6 Transverse tensile stress 

45° 70.7 Shear stress 

-45° 70.7 Shear stress 

0° 130.2 Longitudinal tensile stress 

 

Table 4.8: Maximum strain theory (ΔT = -100 °F, ΔC= 0) 

Minimum Stress   ksi / Ply Mode 

90° 33.7 Transverse tensile stress 

45° 75 Shear stress 

-45° 75 Shear stress 

0° 130.1 Longitudinal tensile stress 

 

Table 4.9: Tsai-Hill theory (ΔT = -100 °F, ΔC= 0) 

Minimum Stress   ksi / Ply Mode 

90° 36.2 Transverse tensile stress 

45° 48 Shear stress 

-45° 48 Shear stress 

0° 129 Longitudinal tensile stress 
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Table 4.10: Tsai-Wu theory (ΔT = -100 °F, ΔC= 0) 

Minimum Stress   ksi / Ply Mode 

90° 33.7 Transverse tensile stress 

45° 85 Shear stress 

-45° 85 Shear stress 

0° 127.6 Longitudinal tensile stress 

 

 

Table 4.11: ULF stress (ΔT = -100 °F, ΔC= 0) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

0° 115.1 115 113.7 114 Longitudinal 
tensile stress 

 

We can conclude from the results that by adding a temperature effect to the 

analysis, the failure load of the FPF was affected in a decreasing manner while the ULF 

failure value didn’t have much significant difference. It also can be observed that the 

failed ply and corresponding mode are also the same compared to the results of the pure 

mechanical part. In addition, a moisture content difference is taken into account (ΔC = 

0.5%) while keeping the temperature difference equal to zero. The following results 

shown in Table 4.12 - Table 4.16  are obtained. 

Table 4.12: Maximum stress theory (ΔT = 0, ΔC= 0.5%) 

Minimum Stress   ksi / Ply Mode 

90° 59.4 Transverse tensile stress 

45° 75 Shear stress 

-45° 75 Shear stress 

0° 130.6 Longitudinal tensile stress 
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Table 4.13: Maximum strain theory (ΔT = 0, ΔC= 0.5%) 

Minimum Stress   ksi / Ply Mode 

90° 54.7 Transverse tensile stress 

45° 75 Shear stress 

-45° 75 Shear stress 

0° 130.5 Longitudinal tensile stress 

 

Table 4.14: Tsai-Hill theory (ΔT = 0, ΔC= 0.5%) 

Minimum Stress   ksi / Ply Mode 

90° 53 Transverse tensile stress 

45° 51.4 Shear stress 

-45° 51.4 Shear stress 

0° 129.6 Longitudinal tensile stress 

 

Table 4.15: Tsai-Wu theory (ΔT = 0, ΔC= 0.5%) 

Minimum Stress   ksi / Ply Mode 

90° 54.4 Transverse tensile stress 

45° 61.9 Shear stress 

-45° 61.9 Shear stress 

0° 132 Longitudinal tensile stress 

 

 

Table 4.16: ULF stress (ΔT = 0, ΔC= 0.5%) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

0° 115.6 115.5 114.6 117 Longitudinal 
tensile stress 

 

We can conclude from the results that by adding a moisture content effect to the 

analysis, the failure load of the FPF was only affected in an increasing manner while the 
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ULF failure value didn’t have significant difference. It also can be observed that the 

failed ply and corresponding mode are also the same compared to the results of the pure 

mechanical part. Moreover, a moisture content in addition to a temperature difference 

simultaneously are taken into account (ΔC = 0.5% and ΔT = -100 °F). The following 

results shown in Table 4.17 - Table 4.21  are obtained 

 

Table 4.17: Maximum stress theory (ΔT = -100 °F, ΔC= 0.5%) 

Minimum Load   ksi / Ply Mode 

90° 45 Transverse tensile stress 

45° 75 Shear stress 

-45° 75 Shear stress 

0° 130.8 Longitudinal tensile stress 

 

Table 4.18: Maximum strain theory (ΔT = -100 °F, ΔC= 0.5%) 

Minimum Load   ksi / Ply Mode 

90° 42.2 Transverse tensile stress 

45° 75 Shear stress 

-45° 75 Shear stress 

0° 130.7 Longitudinal tensile stress 

 

Table 4.19: Tsai-Hill theory (ΔT = -100 °F, ΔC= 0.5%) 

Minimum Load   ksi / Ply Mode 

90° 45.3 Transverse tensile stress 

45° 55.6 Shear stress 

-45° 55.6 Shear stress 

0° 128.9 Longitudinal tensile stress 
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Table 4.20: Tsai-Wu theory (ΔT = -100 °F, ΔC= 0.5%) 

Minimum Load   ksi / Ply Mode 

90° 42 Transverse tensile stress 

45° 88.7 Shear stress 

-45° 88.7 Shear stress 

0° 130.6 Longitudinal tensile stress 

 

 

Table 4.21: ULF stress (ΔT = -100 °F, ΔC= 0.5%) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

0° 115.8 115.7 113.9 116.2 Longitudinal 
tensile stress 

 

We can conclude from the previous results that by incorporating both moisture 

content and temperature effect to the analysis, the failure load of the FPF was only 

affected in a decreasing manner in this case which means that the temperature change 

had a more dominant effect on the overall behavior, also, the ULF value didn’t have 

much significant difference as in the previous two cases. It also can be observed that the 

failed ply and corresponding mode are also the same compared to the results of the pure 

mechanical part.  

The current study also focused on the failure of composite laminates including 

piezoelectric material layers in the composite layup. In order to observe the behavior of 

such composite laminates, several different case studies are adopted.  Table 4.22 shows a 

summary of the different stacking sequences and materials considered. 
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Table 4.22: Summary of the different case studies considered 

Stacking Sequence 
 

Material of the (Actuator /Fiber 
Composite) 

1- [Actuator/0/90/45/-45]s AFC/Carbon Epoxy (AS4-3560) 

2- [Actuator/0/90/45/-45]s PZT-5A/Carbon Epoxy (AS4-3560) 

3- [0/Actuator/90/45/-45]s AFC/ Carbon Epoxy (AS4-3560) 

4- [0/Actuator/90/45/-45]s PZT-5A/ Carbon Epoxy (AS4-3560) 

 

The analysis starts by neglecting both hygrothermal and electric effects and 

considering only the uniaxial mechanical load. The strength properties of the active 

materials used in the analysis are shown in Table 4.23; the assumed values are based on 

comparing the strength ratios with other fiber reinforced composite materials which have 

known material strengths. By following the same procedure done previously for the FPF 

and ULF considering only the maximum stress theory, results shown in Table 4.24 - 

Table 4.31 are obtained. 

Table 4.23: Strength of different actuators 

 F1t/ksi F2t/ksi F1c/ksi F2c/ksi F6/ksi 

AFC 3.48† 1.74 3.91† 1.95 2.37 

MFC 4.35 2.17 3.91 1.95 2.61 

PZT-5A 5.8‡ 2.9 72.5* 36.2 3.19 

†Ref [41], ‡ Ref [42], *Ref [43], the rest are assumed 
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Table 4.24: FPF stress (AFC/0/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

AFC 5.42 Longitudinal tensile stress 

0° 119.7 Longitudinal tensile stress 

90° 46.12 Transverse tensile stress 

45° 67.5 Shear Stress 

-45° 67.5 Shear Stress 

 

 

Table 4.25: ULF stress (AFC/0/90/45/-45)s 

Failed Ply Maximum 
Stress (ksi)  

Mode 

0° 108.31 Longitudinal 
tensile stress 

 

 

Table 4.26: FPF stress (PZT/0/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

PZT5A 6.1 Longitudinal tensile stress 

0° 128.2 Longitudinal tensile stress 

90° 49.6 Transverse tensile stress 

45° 71.5 Shear Stress 

-45° 71.5 Shear Stress 

 

 

Table 4.27: ULF stress (PZT/0/90/45/-45)s 

Failed Ply Maximum 
Stress (ksi)  

Mode 

0° 120.1 Longitudinal 
tensile stress 
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Table 4.28: FPF stress (0/AFC/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

AFC 12.6 Longitudinal tensile stress 

0° 120.5 Longitudinal tensile stress 

90° 46.6 Transverse tensile stress 

45° 65.2 Shear Stress 

-45° 65.2 Shear Stress 

 

 

Table 4.29: ULF stress (0/AFC/90/45/-45)s 

Failed Ply Maximum 
Stress (ksi)  

Mode 

0° 108 Longitudinal 
tensile stress 

 

 

Table 4.30: FPF stress (0/PZT/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

PZT5A 2.33 Longitudinal tensile stress 

0° 133.4 Longitudinal tensile stress 

90° 51.3 Transverse tensile stress 

45° 73.2 Shear Stress 

-45° 73.2 Shear Stress 

 

 

Table 4.31: ULF stress (0/PZT/90/45/-45)s 

Failed Ply Maximum 
Stress (ksi)  

Mode 

0° 119 Longitudinal 
tensile stress 
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It can be observed form the previous results that the FPF always occurs in active 

layer due to its low strength properties compared to the remaining carbon epoxy layers 

while the ULF takes place in the 0° ply as expected due to its high resistance to the load. 

It can also be observed that the failure loads vary with stacking sequence since, in the 

case where the active layer is incorporated into the laminate as in the third and forth 

sequence, the AFC layer had higher FPF stress unlike the PZT layer where the value of 

the FPF stress decreased.  

The effect of applying a 1MV/m electric field to the active part of an 

[Actuator/90/60/-60]s composite layup is  shown in Table 4.32. In addition, the effect of 

including a ΔT = 100°F temperature difference to the composite is observed in Table 

4.33. 

Table 4.32: FPF stress including ξ = 1MV/m   

Actuator FPF (E = 0) FPF (E = 1MV/m) 

AFC/31mode 1.92 ksi 1.82 ksi 
AFC/33mode 1.92 ksi 2.12 ksi 

PZT 2.36 ksi 2.13 ksi 
 

Table 4.33: FPF stress including ξ = 1MV/m and ΔT = 100°F 

Actuator FPF (E = 0 ΔT = 0) FPF (E = 1MV/m, ΔT = 
100°F ) 

AFC/31mode 1.92 ksi 0.477 ksi 
AFC/33mode 1.92 ksi 0.76 ksi 

PZT 2.36 ksi 1.1 ksi 
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According to these results, it could be observed that the applied electric field 

reduced the failure stress when considering the AFC (31 mode) while it increased the 

failure stress it in the case of using the 33 mode. This is due to the positive piezoelectric 

strain coefficient in that direction unlike the 31 mode where it has a negative value. It 

could also be observed that the 33 mode had a more significant effect than the 31 mode 

due to the higher piezoelectric coefficient in the 33 mode case.  The temperature 

variation also decreased the value of the failure load but with a more significant effect 

compared to the electric field variation.  

4.3.2 Biaxial Loading 

Composite laminates under biaxial loading is also taken into consideration in this 

study, the same methodology used in the uniaxial loading is considered but in this case, 

the geometry and loading condition are as shown in Figure 4.4. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.4 Laminate under biaxial load 

 

n×σ1 

σ1 σ1 

n×σ1 
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  The factor n shown in the figure is the ratio of the stress applied in the transverse 

direction to that in the axial direction. A summary of each case is shown in Eq. (4.18); as 

can be seen from the equation, when the value of n = 0, a pure uniaxial load arises which 

is obviously a special case of the biaxial loading.   

                                            2

1

0
1
0 1

1

Uniaxial Load
Biaxial Load

n
n Biaxial Load

n Biaxial Load

σ
σ

→ 
 → = =  → 
 → 

 



                          (4.18) 

  

                In order generalize the analysis as much as possible; we take into account all 

possible load combinations whether the load is in tension or compression as shown in 

Figure 4.5. The state of stress can now be defined as ( 1σ = 1σ , 2σ = 1n σ× , 1τ = 0 ). 

 

 

 

 

 

 

Figure 4.5 Biaxial load combinations 
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In order to observe the effect of applying a biaxial load on the composite 

laminate, a detailed calculation for the same composite layup and material used in the 

uniaxial case is performed in order to get the failure stress by considering the same two 

types of failure criteria’s FPF and ULF mentioned previously, in addition to using the 

four failure theories that were previously mentioned. The results are summarized in the 

following tables. 

 

Table 4.34: FPF stress for several different failure theories; n=0 (Tension) 

 

Table 4.35: ULF stress for several different failure theories; n=0 (Tension) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

0° 115.1 115 113.7 114 Longitudinal 
tensile stress 

 
 

Table 4.34 and Table 4.36 show the results of applying a pure uniaxial load in 

tension and compression on the composite laminate respectively. As shown in the tables, 

the FPF occurred in the 90° ply for the tension case as expected while in the 

Failure Stress Based on FPF criteria (ksi) for [90/45/-45/0]s Sequence Mode 

Ply 
Orientation 

Maximum 
Stress  

Maximum 
Strain 

Tsai-Hill Tsai-Wu  

90° 50 46 49.6 46.6 Transverse 
Tensile Stress 

45° 75 75 59 55 
 

Shear Stress 

-45° 75 75 59 55 
 

Shear Stress 

0° 130 130 130 130.8 Longitudinal 
Tensile Stress 
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compression case, it occurred in the 45°/-45° plies. The ULF in both cases were 

dominated by the cross plies where it occurred in the 0 ply in the tension case and 90 ply 

in the compression case as shown in Table 4.35and Table 4.37 respectively. 

 

Table 4.36: FPF stress for several different failure theories; n=0 (Compression) 

 

Table 4.37: ULF stress for several different failure theories; n=0 (Compression) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

90° 161 161 158 155 Transverse 
Compressive 

Stress 

 
 
 
 
 
 
 

 

 
 
 
\ 

Failure Stress Based on FPF criteria (ksi) for [90/45/-45/0]s Sequence Mode 

Ply 
Orientation 

Maximum 
Stress  

Maximum 
Strain 

Tsai-Hill Tsai-Wu  

90° 201 201 182 167.4 Transverse 
Compressive 

Stress 
45° 71.7 71.7 68.5 85.3 

 
Shear Stress 

-45° 71.7 71.7 68.5 85.3 
 

Shear Stress 

0° 98.9 98.9 98.9 97.8 Longitudinal 
Compressive 

Stress 



117 
 

Table 4.38: FPF stress for several different failure theories; n=1 (Ten/Ten) 

 

 

Table 4.39: ULF stress for different failure theories; n=1 (Ten/Ten) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

0° 50.9 51 49.2 58 Transverse 
Tensile Stress 

 

 

Table 4.38 and  Table 4.40 show the results of applying a biaxial load in tension - 

tension case and compression – compression case on the composite laminate 

respectively. As shown in the tables; the stress is almost equally distributed throughout 

all the plies of the laminate which will lead all the plies to fail at once. The ULF in both 

cases is equal to the FPF since there is no variation between the plies as shown in Table 

4.39 and Table 4.41 respectively. 

 

 

 

Failure Stress Based on FPF criteria (ksi) for [90/45/-45/0]s Sequence Mode 

Ply 
Orientation 

Maximum 
Stress  

Maximum 
Strain 

Tsai-Hill Tsai-Wu  

90° 51 51 49.2 58 Transverse 
Tensile Stress 

45° 50.9 50.9 49.2 58 
 

Transverse 
Tensile Stress 

-45° 51 51 49.2 58 
 

Transverse 
Tensile Stress 

0° 50.9 50.9 49.2 58 Transverse 
Tensile Stress 
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Table 4.40: FPF stress for several different failure theories; n=1 (Comp/Comp) 

 

Table 4.41: ULF stress for several different failure theories; n=1 (Comp/Comp) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

90° 136 136 116 58 Transverse 
Compressive 

Stress 
 

 
 

Table 4.42: FPF stress for several different failure theories; n = -1 (Ten/Comp) 

 

 

Failure Stress Based on FPF criteria (ksi) for [90/45/-45/0]s Sequence Mode 

Ply 
Orientation 

Maximum 
Stress  

Maximum 
Strain 

Tsai-Hill Tsai-Wu  

90° 136 136 116 58 Transverse 
Compressive 

Stress 
45° 136 136 116 58 

 
Transverse 

Compressive 
Stress 

-45° 136 136 116 58 
 

Transverse 
Compressive 

Stress 
0° 136 136 116 58 Transverse 

Compressive 
Stress 

Failure Stress Based on FPF criteria (ksi) for [90/45/-45/0]s Sequence Mode 

Ply 
Orientation 

Maximum 
Stress  

Maximum 
Strain 

Tsai-Hill Tsai-Wu  

90° 50.1 50.1 41.8 37.9 Transverse 
Tensile Stress 

45° 35.8 35.8 35.8 35.9 
 

Shear Stress 

-45° 35.8 35.8 35.8 35.9 
 

Shear Stress 

0° 102.5 102.5 89.3 87.3 Longitudinal 
Tensile Stress 
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Table 4.43: ULF stress for several different failure theories; n = -1 (Ten/Comp) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

0° 81 81 78 75 Longitudinal 
Tensile Stress 

 

Table 4.44: FPF stress for several different failure theories; n = -1 (Comp/Ten) 

 

Table 4.45: ULF stress for several different failure theories; n = -1 (Comp/Ten) 

Failed Ply Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

Mode 

90° 81 81 78 75 Longitudinal 
Tensile Stress 

 

 

 Table 4.42 and Table 4.44 show the results of applying a pure biaxial loading, 

but this time, the load fraction n has a negative value giving the possibility of applying 

either tension - compression or compression - tension to the composite laminate 

respectively.  As shown in the tables, the minimum stress occurred in the 45°/-45° ply 

for the tension- compression case due to their low resistance regarding the given loading 

condition while the compression - tension case gives a reverse behavior keeping the 

Failure Load Based on FPF criteria (ksi) for [90/45/-45/0]s Sequence 
Mode 

Ply 
Orientation 

Maximum 
Stress  

Maximum 
Strain 

Tsai-Hill Tsai-Wu  

90° 102.4 102.4 89.3 87.3 Longitudinal 
Tensile Stress 

45° 35.8 35.8 35.8 35.8 
 

Shear Stress 

-45° 35.8 35.8 35.8 35.8 
 

Shear Stress 

0° 50.1 50.1 41.8 37.9 Transverse 
Tensile Stress 
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45°/-45 plies the least resistive hence the first to fail. The ULF in both cases were 

dominated by the cross plies where it occurred in the 0° ply in the tension- compression 

case and 90° ply in the compression -tension case as shown in Table 4.43and Table 4.45 

respectively. 

 

 

 

Figure 4.6: Variation of failure stress with load fraction for [90/45/-45/0]s sequence (Ten/Ten) case 
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Figure 4.7: Variation of failure stress with load fraction for [90/45/-45/0]s sequence (Comp/Comp) case 

 

 

Figure 4.8: Variation of failure stress with load fraction for [90/45/-45/0]s sequence (Ten/Comp) case 

 

 The variation of the FPF with respect to the load fraction n is considered for the 

composite layup. Figure 4.6 shows the variation for the tension –tension case, it can be 
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observed that the failure stress first increases followed by a decreasing scheme, this 

behavior is due to the failure occurrence in the 90° ply for n = 0 and continues in the 0° 

ply afterwards. Figure 4.7 shows the variation for the compression – compression case, it 

can also be observed that the failure stress first increases followed by a decreasing 

scheme, this behavior is due to the failure occurrence in the 45° ply continuously 

throughout the application of the load. In the last case as shown in Figure 4.8, 

considering compression /tension or tension /compression, there is no difference in the 

behavior hence; taking the tension /compression case, we have a deceasing trend 

occurring first in the 90° then continuing in the 45° ply.  

 Similar to the uniaxial case, the failure of composite laminates including 

piezoelectric material layers in the composite layup is also taken into account. The same 

case studies shown in Table 4.22 are considered with the same stacking sequences and 

materials. The analysis starts by neglecting both hygrothermal and electric effects and 

considering only the biaxial loading with different load fractions. By following the same 

procedure done previously for the FPF and ULF, results shown in Table 4.46 - Table 

4.49 are obtained for the case of using n = 1 (Ten/Ten) load. 

 

Table 4.46: FPF stress; n=1, Ten/Ten - (AFC/0/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

AFC 6.48 Longitudinal tensile stress 

0° 38.9 Transverse tensile stress 

90° 41.5 Transverse tensile stress 

45° 40.1 Transverse tensile stress 

-45° 40.1 Transverse tensile stress 
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Table 4.47: FPF stress; n=1, Ten/Ten – (PZT/0/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

PZT5A 2.5 Longitudinal tensile stress 

0° 71.3 Transverse tensile stress 

90° 71.3 Transverse tensile stress 

45° 71.3 Transverse tensile stress 

-45° 71.3 Transverse tensile stress 

 

Table 4.48: FPF stress; n=1, Ten/Ten – (0/AFC/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

AFC 1.79 Longitudinal tensile stress 

0° 42.5 Transverse tensile stress 

90° 45.6 Transverse tensile stress 

45° 44 Transverse tensile stress 

-45° 44 Transverse tensile stress 

 

Table 4.49: FPF stress; n=1, Ten/Ten – (0/PZT/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

PZT5A 3.14 Longitudinal tensile stress 

0° 50.77 Transverse tensile stress 

90° 50.77 Transverse tensile stress 

45° 50.77 Transverse tensile stress 

-45° 50.77 Transverse tensile stress 

 

In this case, the failure also occurs in the active layer due to its low strength 

properties in the longitudinal and transverse direction compared to the other carbon 

epoxy layers, in addition, the stacking sequence also had significant effect related to the 

stress distribution between the different plies. In all cases it can be observed that the 



124 
 

failure takes place in the active layer with the same mode of failure.  Table 4.50 - Table 

4.53 are the results obtained for the case of using n = -1 with a (Ten/Comp) load. 

 

Table 4.50: FPF stress; n= -1, Ten/Comp – (AFC/0/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

AFC 4.46 Longitudinal tensile stress 

0° 174.7 Transverse tensile stress 

90° 50.8 Transverse tensile  stress 

45° 49 Shear stress 

-45° 49 Shear stress 

 

Table 4.51: FPF stress; n= -1, Ten/Comp – (PZT/0/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

PZT5A 5.9 Longitudinal tensile stress 

0° 33.63 Transverse tensile stress 

90° 8.41 Transverse tensile  stress 

45° 10.9 Shear stress 

-45° 10.9 Shear stress 

 

Table 4.52: FPF stress; n= -1, Ten/Comp – (0/AFC/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

AFC 0.98 Longitudinal tensile stress 

0° 94.6 Longitudinal tensile stress 

90° 47.68 Transverse tensile stress 

45° 31.4 Shear stress 

-45° 31.4 Shear stress 
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Table 4.53: FPF stress; n= -1, Ten/Comp – (0/PZT/90/45/-45)s 

Minimum Load   ksi / Ply Mode 

PZT5A 1.85 Longitudinal tensile stress 

0° 106.1 Longitudinal tensile stress 

90° 51.9 Transverse tensile stress 

45° 36.5 Shear stress 

-45° 36.5 Shear stress 

 

 The results shown indicate that the failure occurs in the active layer as expected 

due to its low strength properties in the longitudinal and transverse direction compared 

to the other carbon epoxy layers as in the previous case, while this time, the modes of 

failure are different.  Moreover, the stacking sequence also had significant effect in the 

stress distribution between the different plies. In all cases it can be observed that the 

failure takes place in the active layer with the same mode of failure.  The effect of 

applying a 1MV/m electric field to the active part of an [Actuator/90/60/-60]s composite 

layup is  shown in Table 4.54. In addition, the effect of including a ΔT = 100°F 

temperature difference to the composite is observed in Table 4.55.  

 

Table 4.54: FPF stress including E = 1MV/m  

Actuator FPF (E = 0) FPF (E = 1MV/m) 
AFC/31mode 1.92 ksi 1.82 ksi 

AFC/33mode 1.92 ksi 2.12 ksi 

PZT 2.36 ksi 2.33 ksi 
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Table 4.55: FPF including E = 1MV/m and ΔT = 100°F 

Actuator FPF (E = 0 ΔT = 0) FPF (E = 1MV/m ΔT = 
100°F ) 

AFC/31mode 1.92 ksi 0.56 ksi 
AFC/33mode 1.92 ksi 0.76 ksi 

PZT 2.36 ksi 0.91 ksi 

 

Similar to the results found for the uniaxial case, it could be observed that the 

electric field minimized the failure load for both active layers while maximized it in the 

case of using the 33 mode for the AFC due to the positive piezoelectric strain coefficient 

in that direction  unlike the 31 mode where it has a negative value. The temperature 

variation also decreased the value of the failure load in all cases but with a more 

significant effect compared to the electric field variation.  

It can be observed from the previous analysis that at each stage of failure there is 

a corresponding strength at which we define the initial stage as the FPF and the last stage 

as the ULF. The ratio of these two strengths is a measure of the laminate efficiency and 

indicates the level of fiber strength utilization at FPF which is defined as 

                                                       FPF
ULF

φ =                                                    (4.19) 

The ratio obviously depends on both the material used and the laminate layup. 

Table 4.56 and    Table 4.57 show a comparison of the FPF and ULF of different 

multidirectional laminates under uniaxial tensile loading and there corresponding 

laminate efficiency. It can be observed that the laminate efficiency ratio for the [0/90]s 

crossply laminates are low for all materials ranging from 0.25 for E-Glass Epoxy to 0.37 
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for Carbon/Epoxy. In the case of [0/45/-45]s laminates the laminate efficiency ratio are 

higher and range from 0.39 to 0.89. It could be concluded that the laminates that consist 

of cross ply laminas have a higher range for factors of safety unlike the laminates that 

include other oriented laminas in their sequence, this could be associated with the nature 

of the failure criteria used, since, the FPF is more conservative than the ULF and higher 

factors of safety have to be taken into account when considering it in the design process. 

It could also be thought of both failure criteria’s as lower and upper bound for the failure 

stress for any general composite layups.  

 

Table 4.56: Comparison of FPF and ULF for different materials of [0/90]s laminate 

Material FPF (ksi) ULF (ksi) Laminate Efficiency 
Ratio Φ = FPF/ULF 

E-Glass/Epoxy 
 

14.5 57.4 0.25 

Carbon/Epoxy 
(AS4/3501-6) 

50 134.6 0.37 

S-Glass/Epoxy 
 

18.3 69.7 0.26 

Kevlar/Epoxy 
 

32.9 99 0.33 
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Table 4.57: Comparison of FPF and ULF for different materials of [0/45/-45]s laminate 

Material FPF (ksi) ULF (ksi) Laminate Efficiency 
Ratio Φ = FPF/ULF 

E-Glass/Epoxy 
 

37.2 69.7 0.53 

Carbon/Epoxy 
(AS4/3501-6) 

 

64.6 123.6 0.52 

S-Glass/Epoxy 
 

37.8 94.8 0.39 

Kevlar/Epoxy 
 

66 74 0.89 

 

In order to gain confidence in the results obtained we compare the ULF results 

predicted using the previous analysis with available experimental results in the literature. 

Table 4.58 shows a comparison between measured and predicted ULF values for a 

number of laminates using Carbon/Epoxy (AS4/3501-6). It can be concluded that the 

predictions of the failure theories used in the analysis are almost in agreement with the 

experimental values but with some variations regarding the failure theory used. In the 

case where the laminates include 0° plies, the failure is fiber dominated because the 0° 

plies carry a substantial portion of the total load where in the case of angle ply laminates 

the failure is matrix dominated. It can also be observed that in the case of using angle ply 

laminates, predictions by the limit or non interactive theories are not usually in 

agreement with each other and with experimental results.  
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Table 4.58: Comparison of ULF with available experimental data 

Laminate Experimental 
(ksi) 

Maximum 
Stress (ksi) 

Maximum 
Strain (ksi) 

Tsai-Hill 
(ksi) 

Tsai-Wu 
(ksi) 

[0/902]s
* 113 113 114 93 124 

[02/902]s
* 161 167 168 138 181 

[0/-+45]s
* 127 123 122 112 111 

[+-20]2s
* 117 116 116 105 125 

[+-45]s
* 22 22 22 21 23 

[-60/60/02]s
** 106 115 115 114 116 

* Ref. [40], ** Ref. [44] 
 
 

4.3.3 Finite Element Verification 

 In order to further verify the results obtained from the analysis, a finite element 

model is implemented through the commercial finite elements software ABAQUS to 

perform a certain case study. A composite laminate made of Carbon/Epoxy (AS4/3501-

6) which has properties defined previously in Table 4.1; the model consists of 8 plies 

with fiber orientation [90/45/-45/0]s. The composite plate is modeled using 20-node 

quadratic continuum elements with reduced integration (C3D20R), the total number of 

elements are 12000. The finite element mesh is shown in Figure 4.9. In order to simulate 

the failure, we apply the predicted failure load to the composite plate as was found from 

the previous study for both a pure uniaxial load in addition to a biaxial load 

(Tension/Compression with n = -1). In the uniaxial case, it is observed that the 

transverse stress (σ2 = 130 ksi) in the 90° ply exceeds the transverse tensile strength of 

the material which means that it failed according to macromechanical failure theories, 
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while all the other plane stresses in the rest of the plies have not exceeded the 

corresponding strength as it can be shown in Table 4.59 Similarly, for the biaxial case 

shown in Table 4.60, the shear stress (τ6 = 11.3 ksi) exceeded the corresponding strength 

as was predicted in the previous analysis.  

 

 

 

Figure 4.9: Finite element mesh 

 

 

 

 

 

 

 

 



131 
 

Table 4.59: Predicted finite element stresses in each ply (uniaxial case) 

Ply σ1 
(ksi) 

σ2 
(ksi) 

τ6 
(ksi) 

F1t 
(ksi) 

F2t 
(ksi) 

F6 
(ksi) 

0˚ 133 0.67 0.014 330 8.3 250 

90˚ 36 8.7 0.0054 330 8.3 250 

45˚ 47.3 4.13 8.1 330 8.3 250 

-45˚ 47.2 4.16 8.2 330 8.3 250 

 

 

Table 4.60: Predicted finite element stresses in each ply (biaxial case n = -1) Ten/Comp 

Ply σ1 
(ksi) 

σ2 
(ksi) 

τ6 
(ksi) 

F1t 
(ksi) 

F2t 
(ksi) 

F6 
(ksi) 

0˚ 118.8 7.07 0.001 330 8.3 250 

90˚ 118.6 6.22 .008 330 8.3 250 

45˚ 0.038 0.011 254 330 8.3 250 

-45˚ 0.021 0.006 254 330 8.3 250 

 

 In addition, a composite laminate consisting of 10 plies with the following 

sequence [AFC/Carbon-Epoxy4]s and fiber orientation [0 /0 /90 /45/ -45]s both for 

uniaxial and biaxial loading is also considered; by applying the failure load that was 

obtained from the previous uniaxial and biaxial analysis to the composite laminate 

respectively; it can be observed that the AFC ply is the one that exceeded the 
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corresponding ply strength for the same predicted failure mode, hence, the one to fail as 

shown in Table 4.61 and Table 4.62. According to the result obtained from the FE 

model, we can conclude that the results obtained from the failure analysis are reliable. 

 

Table 4.61: Predicted finite element stresses in each ply (uniaxial hybrid composite) 

Ply σ1 
(ksi) 

σ2 
(ksi) 

τ6 
(ksi) 

F1t 
(ksi) 

F2t 
(ksi) 

F6 
(ksi) 

AFC 4.14 0.36 0.0024 3.48 1.74 2.43 

0˚ 16.3 0.188 0.005 330 8.3 250 

90˚ 2.2 0.94 0.00003 330 8.3 250 

45˚ 9.89 0.62 0.855 330 8.3 250 

-45˚ 9.89 0.62 0.855 330 8.3 250 

 

Table 4.62: Predicted finite element stresses in each ply (biaxial hybrid composite n = -1) Ten/Comp 

Ply σ1 
(ksi) 

σ2 
(ksi) 

τ6 
(ksi) 

F1t 
(ksi) 

F2t 
(ksi) 

F6 
(ksi) 

AFC 3.66 0.98 0.0003 3.48 1.74 2.43 

0˚ 117.7 6.3 0.0005 330 8.3 250 

90˚ 119.8 6.2 0.0001 330 8.3 250 

45˚ 4.3 .59 1.62 330 8.3 250 

-45˚ 4.4 .56 1.62 330 8.3 250 
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The effect applying of an out of plane loading followed by a temperature 

difference on the failure of smart composite laminates is also considered in this study.  

The plate considered is cantilevered at one end and subjected to out of plane loading at 

the free end in the first part and a temperature difference in the second part. The finite 

element model is used on a [0/45/-45/90]s laminate with two MFC  actuators embedded 

into the composite structure. The material used and their properties are shown in Table 

4.63. The geometry of the composite plate with the MFC actuators is shown in Figure 

4.10. The structure is subjected to an increase in the external loading by applying a 100N 

followed by a 1kN external load to the free end of the plate respectively. Moreover, a 

temperature difference of 100°C is applied to the composite plate in order to measure the 

stresses accumulated from this temperature difference. Table 4.64 shows the calculated 

in-plane plate stresses in the composite laminate layers and the actuator; by comparing 

them with the corresponding strength properties of each material, it can be observed that 

the failure occurs in the MFC actuators before the composite layers at a lower load due 

to the low strength properties of the MFC actuators. The 90° layer is shown to have the 

highest capability to sustain the load since it shows the lowest stress compared to all 

other plies. In addition, by applying a 1kN load to the smart composite plate, several 

layers in the composite exceeded the corresponding strength hence failed as shown in 

Table 4.65. The only ply that sustained the applied load was the 90° ply which as 

indicated before has the highest resistance to overcome the out of plane load.   
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Table 4.63: Composite material and actuator properties 

Material Property Carbon Epoxy (AS4-

3601) 

MFC 

E1 (GPa) 147 30.3 
E2 (GPa) 10.3 15.9 
E3 (GPa) 10.3 11.47 

ν12 0.27 0.31 
ν13 0.27 0.289 
ν23 0.54 0.327 

G12(GPa) 7 5.5 
G13(GPa) 7 2.6 
G23(GPa) 3.7 2.14 
α1 (µ/°C) -0.09 5.9 
α2(µ/°C) 27 29.6 
α3(µ/°C) 27 19 
t (mm) 0.3 0.3 

 

 

 

 

 

 

 

Figure 4.10: Composite plate geometry 
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Table 4.64: Predicted finite element stresses of the composite plate under 100N out of plane loading 
 

Ply σ1 
(ksi) 

σ2 
(ksi) 

τ6 
(ksi) 

F1t 
(ksi) 

F2t 
(ksi) 

F6 
(ksi) 

0˚ 51.1 2.1 0.152 330/33 8.3/11 250 

45˚ 15.95 1.71 1.71 330/33 8.3/11 250 

-45˚ 12.8 1.44 1.021 330/33 8.3/11 250 

90˚ -0.029 0.6135 0.123 330/33 8.3/11 250 

90˚ -0.217 -0.536 0.101 330/33 8.3/11 250 

-45˚ 
 

-9.25 -1.39 0.903 330/33 8.3/11 250 

45˚ 
 

-13.8 -1.087 1.23 330/33 8.3/11 250 

0˚ 
 

-40.26 -0.71 0.025 330/33 8.3/11 250 

MFC 
 

-15.22 -2.36 0.223 3.58/4.2 1.9/2.3 2.5 

 
 
 

Table 4.65: Predicted finite element stresses of the composite plate under 1kN out of plane loading 
 

Ply σ1 
(ksi) 

σ2 
(ksi) 

τ6 
(ksi) 

F1t 
(ksi) 

F2t 
(ksi) 

F6 
(ksi) 

0 
 

551.14 23.19 0.816 330/33 8.3/11 250 

45 
 

183.4 17.4 19.13 330/33 8.3/11 250 

-45 
 

129.5 17.4 11.21 330/33 8.3/11 250 

90 
 

-6.99 7.672 0.614 330/33 8.3/11 250 

90 
 

-1.89 -4.67 0.436 330/33 8.3/11 250 

-45 
 

-102.62 -13.32 89.27 330/33 8.3/11 250 
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Ply σ1 
(ksi) 

σ2 
(ksi) 

τ6 
(ksi) 

F1t 
(ksi) 

F2t 
(ksi) 

F6 
(ksi) 

 

45 
 

-131.05 -11.8 120.68 330/33 8.3/11 250 

0 
 

-406.9 -7.57 0.0514 330/33 8.3/11 250 

MFC -136.8 -23.56 4.2 3.58/4.2 1.9/2.3 2.5 

 

 

Table 4.66: Predicted finite element stresses of the composite plate under 100°C temperature difference 

Ply σ1 
(ksi) 

σ2 
(ksi) 

τ6 
(ksi) 

F1t 
(ksi) 

F2t 
(ksi) 

F6 
(ksi) 

0 -6.41 8.499 0.022 330/33 8.3/11 250 

45 -0.265 3.945 0.0703 330/33 8.3/11 250 

-45 -4.322 7.73 0.729 330/33 8.3/11 250 

90 -1.35 4.49 0.141 330/33 8.3/11 250 

90 
 

2.16 7.179 0.133 330/33 8.3/11 250 

-45 
 

-3.45 7.788 0.677 330/33 8.3/11 250 

45 
 

-2.77 3.959 0.156 330/33 8.3/11 250 

0 
 

-3.945 3.988 0.0471 330/33 8.3/11 250 

MFC 
 

6.831 3.582 0.0789 3.58/4.2 1.9/2.3 2.5 

 

A temperature difference of 100°C is also applied to the composite plate and the 

corresponding stresses are found as shown in Table 4.66. It can be observed that the 

Table 4.65 Continued 
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longitudinal and transverse stresses in the MFC actuator exceeded the corresponding 

strength in that direction which causes failure. 

4.4 Carpet Plots 

 A carpet plot is one that illustrates the interacting behavior of two independent 

variables, which among other things facilitates interpolation in both variables at once, 

mainly used as a design tool. Carpet plots can be created for all laminates, where, they 

are beneficial for the designer to select the appropriate plot for the design application but 

with the restriction that the laminate must be balanced and symmetric. It is also possible 

to extend the analysis to include plot for other types of laminates. 

A designation of a certain layup is [0m/90n/+-45p]s, where m, n, p denote the 

number of 0°,90°,+-45° plies, respectively. The in-plane engineering constants of a 

symmetric laminate depend only on the proportion of the various plies in the entire 

laminate and not on the exact stacking sequence. Thus, in-plane engineering constants 

are a function of the fractional values α, β, γ, where  

 

                                           2 2 4        m n p
N N N

α β γ= = =                                   (4.20) 

N is total number of plies. As we mentioned a carpet plot is a parametric family of 

curves with one of the fractions α, β, γ as a variable and the other two as parameters, 

keeping in mind that  α +β +γ = 1. Such plots for Young’s modulus, shear modulus, 

Poisson’s ratio, thermal expansion coefficient and moisture expansion coefficient are 

shown in Figure 4.11-Figure 4.15 respectively for Carbon/Epoxy material (AS4/3501-6).  
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Figure 4.11: Carpet plot for Young’s modulus of [90/45/-45/0]s carbon epoxy laminates (AS4/3501-6) 

 

 
 

Figure 4.12: Carpet plot for poisson’s ratio of [90/45/-45/0]s carbon epoxy laminates (AS4/3501-6) 
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Figure 4.13: Carpet plot for shear modulus of [90/45/-45/0]s carbon epoxy laminates (AS4/3501-6) 

 

 

 

 Figure 4.14: Carpet plot for coefficient of thermal expansion of [90/45/-45/0]s carbon epoxy (AS4/3501-6) 
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Figure 4.15: Carpet plot for coefficient of moisture expansion of [90/45/-45/0]s carbon epoxy (AS4/3501-

6) 
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CHAPTER V 

COMPUTER SOFTWARE AND CONTROL DESIGN 

The following chapter introduces the computer software “Hyper Composite” that 

enables the user to analyze composite laminates under uniaxial tensile loading including 

both hygrothermal and electrical effects. The results of the program are compared with 

those obtained in Chapter IV. A control algorithm is proposed that prevents the failure 

load of the composite laminate to be reached based on the results obtained from the FPF 

and ULF. The results are used to obtain a recommended voltage value which can be 

actuated through the active parts of the composite laminate to prevent failure from 

occurring. A practical control circuit is also proposed and implemented through the 

simulation software PROTEOUS. A programmable interfacing circuit (PIC) is used as 

part of the control circuit which is works as the feedback part that biases the actuators 

whenever the stress value exceeds that of failure. 

5.1 The Hyper Composite 

The Hyper Composite is an engineering program that analyzes laminated 

composite plates according to the classical laminated plate theory and includes the 

effects of both hygrothermal and electrical properties. Familiarity with such analysis is 

assumed. Input consists of hydro-thermo-electro-mechanical properties for each ply, ply 

fiber orientation and thickness, stacking sequence, temperature changes, moisture 

content and electric field.  The program calculates the laminate stiffness "ABD" 

matrices, lamina failure load and mode based on Maximum Stress, Maximum Strain, 

Tsai-Hill, and Tsai-Wu failure theories, failure load and mode for the entire laminate 
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based on first ply failure (FPF) and ultimate laminate failure (ULF) criteria’s. In 

addition, carpet plots for orthotropic laminates can be generated that gives the user the 

ability to generate different carpet plots for different materials, ply angles and types. 

Moreover, the user has the ability to assign different materials to different plies which in 

this case provides the capability to analyze hybrid composites. The main screen of the 

software interface is shown in Figure 5.1; it provides the user with several options to 

choose from. First, the user can select the desired unit to work with i.e. (English-SI). 

There are also built-in materials the user can choose from or input their own material 

properties using the window shown in Figure 5.2. The user also has the ability to enter 

the laminate stacking sequence, ply thickness and the desired failure theory for the 

analysis. 

Another unique part of the program is the option of defining a hybrid material 

only by clicking on the hybrid composite button at the bottom of the screen below as in 

Figure 5.3. This gives the user the ability to enter different types of material and 

different angles for each ply. After entering the input data, click on calculate, the 

software starts performing the analysis and the requested output data will be obtained. 

The laminate stiffness matrices are calculated, and the minimum failure stress for each 

ply and its corresponding failure mode are obtained, and the minimum failure stress of 

the whole laminate is calculated as well. The laminate failure stress can be calculated 

based on two different criteria, FPF, ULF. Also, the stiffness reduction factors due to ply 

failure that are used in the ULF criteria are inputs to the program, so by changing the 

values of these factors the user can observe the change in the laminate strength.  
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Figure 5.1: Main program screen 
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Figure 5.2: Material property window 

 

Figure 5.3: Hybrid composite window 
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5.2 Result Verification 

Failure stress analysis is now presented using the Hyper Composite. The results 

are compared with those obtained from the previous chapter and with available 

experimental results. Using the same model that was used in the sample calculation of 

the previous chapter which is a symmetric laminate having a stacking sequence of 

[90/45/-45/0]s and ply thickness of 0.005 inch. The material is Carbon/Epoxy 

(AS4/3501-6). By specifying the following inputs as shown in Figure 5.4 and identifying 

the maximum stress theory as our failure theory. By clicking on the calculate button 

shown in the figure we get the A, B, D matrices as in Figure 5.5. 

 

 

           Figure 5.4: Data input to the program  
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Figure 5.5: Laminate stiffness matrices 

 

          Figure 5.6: Failure stress of each lamina in the composite layup 
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As shown in Figure 5.6, the result of the FPF is identical to the value obtained 

from the analytical calculations, and also the values of the loads and modes for each 

lamina are also identical as shown in Figure 5.6. By changing the analysis type to the 

ULF criteria, we obtain the results shown in Figure 5.7. 

 

Figure 5.7: Failure stress base on the ULF criteria 

 

Figure 5.8 shows a comparison between the ULF stress obtained from the 

computer software and experimental values introduced in the previous chapter where; 1, 

2, 3, 4 that appear on the x axis indicate the following stacking sequences respectively; 

[0/902]s, [02/902]s, [0/+-45]s, [+-20]s, for Carbon Epoxy (AS4-3601). 
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Figure 5.8: Comparison between ULF values from experiment [40] and program  

 

5.3 Control Design 

The following section presents a control design that can be applied to systems 

that are affected by external stimuli which influence their overall behavior. Figure 5.9 

and Figure 5.10 present the methodology and the algorithm proposed for this design 

respectively; it can be observed that by using such technique, it provides the system with 

a warning that leads the controller to react against it by sending a bias to the actuator in 

order to activate and overcome the stress or any other desired outcome. 

In the present study, we take advantage of a certain type of microcontroller 

which is often used in practical applications due to its feasibility and low cost compared 

to other micro-controlling chips. 
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Figure 5.9: Control methodology 

 

This type is known as the Programmable Interfacing Chip (PIC). PIC is a single 

chip that can stand all functions of microprocessor system like storing data, compiling 

and downloading programs. This chip is coded using assembly or C language which then 

can be download as a hex code to the chip to make it the heart for the circuit in which it 

is inserted to. 

The operating voltage rating for driving the PIC is around 2V up to 6V but is 

recommended to use 5V for allowing simplicity in design and for using switching power 

supply for more filtration against noise. This type of chip can be used in several 

applications such as controlling, security purposes, communication medical instruments 

and power applications. 

 

 

 

 

Perform the FPF & ULF Analysis 

Obtain the FPF and/or ULF and Substitute into Eq. 
(2.23) to Measure the Electric Field 

Apply the Calculated Electric Field to the Actuator 
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Figure 5.10: Control Algorithm 

 

 

In order to design the circuit, the PIC chip is used as the smart part of the 

controlling circuit. The program is written in PIC C Compiler.  The main goal of its use  

is to bias the actuator the recommended voltage value whenever the failure stress or any 

other controlling parameter is reached depending on the values obtained from the FPF 

and ULF analysis or any other method. The controlling parameter could also be 

multiplied by a safety factor before reaching its critical (threshold) value. A simulation 

of the overall circuit is shown in Figure 5.11. This simulation is done using the 

simulation program PROTEOUS. A practical circuit is also conducted and the control is 

simulated by using a potentiometer as the condition at which the PIC gives bias to the 

actuator. Figure 5.12 shows the practical circuit constructed.  
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The PIC is programmed to simulate the control methodology as follows; when 

the potentiometer value is changed (increase or decrease resistance) as shown on the 

LCD monitor, the value of the FPF is alternating and when it exceeds a certain threshold 

the LED switches on indicating that the PIC biased the circuit with a voltage to 

overcome the disturbance. 

 

Figure 5.11: Circuit simulation 
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Figure 5.12: Practical circuit implementation 

 

From this analysis, it can be concluded that a feed back control algorithm can be 

possibly implemented for composite laminates through the use of microcontrollers as the 

part which gives the orders to bias the actuators in case the stress value exceeded that of 

failure. It is also possible to use other criteria for controlling the response to prevent 

failure. 

In order to apply the control scheme, the finite element software Abaqus is used 

to simulate a case study. The simulation considers a laminated composite plate with two 

MFC actuators embedded into the first ply of the laminate. The plate is cantilevered at 

one end and subjected to thermal loading. The main goal is to compensate for the 

distortion caused by the thermal gradient which is applied to the composite plate. The 

finite element model is used on a [0/903]s laminate with two MFC  actuators embedded 

into the composite structure. The material used and their properties are shown in Table 
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5.1. The geometry of the composite plate with the MFC actuators is shown in Figure 

5.13. By using the Hyper Composite, the FPF occurs in the 90 ply at a value 396 MPa. 

In order to prevent this load from being reached, a counter voltage equal to 1000V is 

applied to the actuators obtained from the hyper composite. The structure is subjected to 

a linear increase in a temperature difference from a reference temperature of 94°C. The 

temperature distribution with respect to the analysis step is shown in Figure 5.14. The 

evolution of voltage applied to the MFC actuators is represented in Figure 5.15. In the 

first three steps, the actuators are inactive and no voltage is applied.  From the third step 

to the tenth step, electric potential is applied to compensate for the thermal deformation 

that is induced by the temperature increase. Figure 5.16 shows the calculated plate end 

displacement in the x3-direction with and without actuation. The displacements can be 

compared to the reference position. Without control, the plate end undergoes a 

displacement of about 18 mm from the reference position while by using a controller; 

the plate end undergoes a displacement of 10 mm in the tenth step.  

 

 
 
 

 

 

 
 

Figure 5.13: Composite Plate with 2 MFC actuators embedded 
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Table 5.1: Material Properties [45] 

Material Property Panex 33/RS-1 MFC 

E1 (GPa) 101 30.3 
E2 (GPa) 7.91 15.9 
E3 (GPa) 7.91 11.47 

ν12 0.318 0.31 
ν13 0.318 0.289 
ν23 0.458 0.327 

G12(GPa) 3.01 5.5 
G13(GPa) 3.01 2.6 
G23(GPa) 2.71 2.14 
α1 (µ/°C) -0.0598 5.9 
α2(µ/°C) 41.7 29.6 
α3(µ/°C) 41.7 19 

d11 (pm/V) - 360 
d12 (pm/V) - -190 
d13 (pm/V) - -190 

t (mm) 0.3 0.3 
 

 
 
 

 
 

Figure 5.14: Temperature difference variation 
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Figure 5.15: Electric potential variation 
 

 

 

Figure 5.16: Composite Plate displacement 
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CHAPTER VI 

CONCLUSION AND SUMMARY 

6.1 Discussion 

The present study focused on the use of piezoelectric materials as actuators such 

as PZT and other piezoelectric fiber composites: Active fiber composites (AFC) and 

Microfiber composites (MFC) for shape control of composite laminates. Due to the 

debondining of the actuator from the host structure which will eventually lead to failure 

caused by the high stress concentration between the interface of the host structure and 

the active part, we used embedded actuators, such that, the active part is incorporated 

into one of the layers of the composite beam during the manufacturing process where the 

stress concentration due to discontinuity in geometry will reduce while obtaining similar 

or even higher actuation values. Failure analysis of composite laminates was also 

considered under coupled mechanical, hygrothermal and electrical effects. The first-ply 

failure and ultimate laminate failure criteria of composite laminates were used in order to 

predict the failure stress and mode for any general composite laminate by incorporating 

various commonly known macroscopic failure criteria including Tsai-Hill, Tsai Wu, 

Maximum stress and Maximum Strain. A detailed calculations based on the Classical 

Laminate Theory (CLT) was performed for Carbon/Epoxy (AS4/3501-6) laminate with 

stacking sequence [90/45/-45/0]s under uniaxial and biaxial loading. Failure analyses 

were also performed on smart composites having both PZT and AFC layers. The effect 

of temperature and moisture content on the failure values was also taken into account 

where they had significant effect on the FPF and less on the ULF values. User friendly 
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software called the Hyper Composite was also constructed using Action Script that 

enables the user to analyze any composite material layup under uniaxial loading 

including temperature, moisture and electrical effects. The program gives the ability to 

generate a set of carpet plots including Young’s modulus, Poisson’s ratio, shear 

modulus, coefficient of thermal expansion and coefficient of moisture expansion at 

different percentile laminate angles and materials. Moreover, a control algorithm was 

proposed that enables the composite laminate to overcome the failure load by using an 

active material such as AFC, MFC or PZT where, a counter electric voltage could be 

applied which prevents failure from occurring. The finite element software ABAQUS 

was used to simulate a case study. A control circuit was also proposed using a PIC 

microcontroller as the feedback part, simulated using PROTEOUS software in addition 

to a practical implementation of the circuit.  

6.2 Conclusion 

Failure analysis of smart composite laminates was studied in the previous work. 

The failure has been investigated from a macromechanical point of view. It was 

concluded that the failure mechanisms and processes vary widely with type of loading 

and are intimately related to the properties of the constituent phases, i.e., matrix, 

reinforcement, and interface-interphase. Numerous failure theories were used in the 

analysis. They can be classified into, limit or noninteractive theories (maximum stress, 

maximum strain) and interactive theories (Tsai-Hill, Tsai-Wu). The validity and 

applicability of a given theory depends on the convenience of application and agreement 

with experimental results. A wide variation has been observed in the prediction of 
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laminate failures by the various failure theories and the divergence in the predictions is 

greater for FPF than for ULF. In the uniaxial loading case, the failure always occurred in 

the layers that have fibers oriented perpendicular to the direction of the load application, 

while in the biaxial case, it was observed that the failure occurred in all the plies 

simultaneously when the fraction of both loads are equal. The effect of temperature and 

moisture content on the failure analysis of composite laminates had significant 

contribution in the FPF than the ULF. The control methodology proposed was 

practically implemented using a simple circuit to demonstrate the failure process. A PIC 

microcontroller was used as the controlling feedback part of the overall circuit.  

Piezoelectric materials are usually used as smart sensors and actuators with the 

ability to correct surface errors of antenna reflectors or other microwave devices used in 

orbital satellites which require high surface precision. Surface errors are introduced by 

manufacturing errors, thermal distortion in orbit, moisture, loose joints, material 

degradation and creep. These reflectors are made of graphite–epoxy structures because 

of requirements for low thermal distortion. Significant time and cost are spent during 

fabrication, analysis and ground tests to minimize and determine the surface errors. Even 

with this effort, several current spacecraft antennas have experienced degraded 

performance due to higher than predicted surface errors. Therefore, smart structure 

technology has the potential of not only improving the performance of these structures, 

but also reduction in cost for analyses and ground tests. The previous study focused on 

the use of piezoelectric and piezoelectric fiber composite actuators to control the shape 

of composite laminates. It was concluded that PZT-5H had the highest actuation value 
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when considering the 31 mode while AFC was the dominant in the 33 mode. It was also 

observed that when embedding the actuator into the composite laminate, the stress 

concentration effect reduces while obtaining higher actuation values.   

6.3 Future Work 

Several extensions on the current study could be performed; first, experimental 

study could be conducted related to the shape control of composite laminates using the 

actuators mentioned in the analysis which can be used for verification purposes and 

further enhancements of the methods used for shape control of such structures. Several 

other loading conditions other than uniaxial and biaxial loading could be considered 

such as out of plane loading and observe their effect on the failure of composite 

laminates. Piezoelectric fiber composites such as AFCs and MFCs are often utilized for 

applications at high mechanical loading and electric field. Under such conditions, 

significant amount of heat could be generated increasing temperatures. At elevated 

temperatures, materials could experience significant time-dependent behaviors. The 

effects of viscoelastic matrix on the overall properties of PFCs could be taken into 

account while studying there feasibility in the shape control or even dynamic control of 

such structures. Practical implementation of the control methodology could be 

performed on composite structures by incorporating several different external stimuli to 

the structure and observe the power of the active part to overcome these distortions. 
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