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ABSTRACT 

 

Numerical Simulation of Flow Field Inside a Squeeze Film Damper and the Study of the 

Effect of Cavitation on the Pressure Distribution. (December 2010) 

Milind Nandkumar Khandare, B.E., University of Pune, India 

Chair of Advisory Committee: Dr. Gerald L. Morrison 

 

Squeeze Film Dampers (SFDs) are employed in high-speed Turbomachinery, 

particularly aircraft jet engines, to provide external damping. Despite numerous 

successful applications, it is widely acknowledged that the theoretical models used for 

SFD design are either overly simplified or incapable of taking into account all the 

features such as cavitation, air entrainment etc., affecting the performance of a SFD. On 

the other hand, experimental investigation of flow field and dynamic performance of 

SFDs can be expensive and time consuming. The current work simulates the flow field 

inside the dynamically deforming annular gap of a SFD using the commercial 

computational fluid dynamics (CFD) code Fluent and compares the results to the 

experimental data of San Andrés and Delgado. The dynamic mesh capability of Fluent 

and a User Defined Function (UDF) was used to replicate the deforming gap and motion 

of the rotor respectively. 

Two dimensional simulations were first performed with different combinations 

of rotor whirl speed, operating pressures and with and without incorporating the 

cavitation model. The fluid used in the simulations was ISO VG 2 Mobil Velocite no. 3. 
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After the successful use of the cavitation model in the 2D case, a 3D model with the 

same dimensions as the experimental setup was built and meshed. The simulations were 

run for a whirl speed of 50 Hz and an orbit amplitude of 74 μm with no through flow and 

an inlet pressure of 31kPa (gauge). The resulting pressures at the mid-span of the SFD 

land were obtained. They closely agreed with those obtained experimentally by San 

Andrés and Delgado.  
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NOMENCLATURE  

 

C  Radial Clearance, m  

Cxx, Cxy  Direct and Cross Coupled Damping Coefficients 

H  Dynamic Film Thickness  

Kxx, Kxy  Direct and Cross Coupled Stiffness Coefficients 

Mxx, Mxy  Direct and Cross Coupled Inertia Coefficients  

P  Dynamic Pressure 

Pmin  Minimum Static Pressure in the Clearance 

Pmax  Maximum Static Pressure in the Clearance 

R  Polar Coordinate in the Radial Direction 

T  Time 

Ux, Uy, Uθ  Velocity Components in the X, Y and Azimuthal Directions 

Respectively 

Fmag  Magnitude of Force on Rotor 

Vof  Volume Fraction 

ε  Dissipation of Turbulent Kinetic Energy 

κ  Turbulent Kinetic Energy  

μ  Dynamic Viscosity, Pa/s  

ρ  Fluid Density at Tooth Inlet, kg/m3  

θ  Polar Coordinate in Azimuthal Direction 
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1. INTRODUCTION  

Squeeze Film Dampers are extensively used in various high-speed 

Turbomachinery applications, particularly in the aerospace industry, to provide external 

damping, dissipation of vibration energy, isolation of structural components and 

improvement of the dynamic stability characteristics of rotor-bearing systems [1]. A 

Squeeze Film Damper consists of a non-rotating journal, a fixed outer bearing and a 

lubricant film which is created by supplying lubricant at a specified pressure to the 

clearance between the two. The whirling motion of the journal, due to the unbalanced 

forces, gives rise to a dynamic pressure by squeezing the squeeze film of oil which in 

turn causes damping of rotor motions. By analyzing the flow field in the clearance one 

can predict the damping characteristics of the SFD. 

Cavitation affects the performance of SFDs greatly. Zeidan et.al [2] found that 

cavitation, especially gaseous cavitation, had a drastic effect on the dynamic pressure 

profile resulting in reduction in the positive pressure and its circumferential extent. 

Zeidan and Vance [3] characterize cavitation into several regimes- 1.Uncavitated film, 

typically in low speed and sealed end SFDs. 2. Cavitation bubble formed from entrained 

air, following the journal. This type of cavitation regime is observed in relatively low 

speed ventilated SFDs with low supply pressures. 3. Oil air mixture regime for high 

speed cases compared to the previous regime. 4. Vapor cavitation. This occurs only if 
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tight end seals are present and the supply pressure is high. In other words, the 

entrainment of atmospheric air into the SFD is prevented and the cavitation occurs solely 

because the negative pressure in the film falls below the vapor pressure of the oil. 5. A 

combination of gaseous and vapor cavitation. Another sub category is the expansion of 

previously dissolved gases in the oil due to drop in pressure. The experimental analysis 

of cavitation on the squeeze film supported rotor by Zeidan et al [4], yielded non-linear 

response characteristics. Reliable models for predicting performance of SFD taking into 

account this effect of cavitation and air-entrainment are not available. 

Experimentally investigating SFD characteristics for design purposes can be very 

expensive. With the constantly evolving commercial CFD software and availability of 

faster computers it has becoming possible to investigate flows involving complex 

geometries and phenomenon such as cavitation. The current study examines the 

possibility of establishing CFD as a feasible methodology to study SFD characteristics, 

especially from the design perspective, by using appropriate numerical models. The 

computer simulation will be compared and to the experimental results of Delgado and 

San Andres [5] to determine the applicability of the CFD technique. 

Researchers have studied the suitability of applying CFD to the study of Squeeze 

Film Dampers but they have used either simplified 2D geometry with laminar flow 

models [6], validated their results against the solution to the simplified Reynolds 

equation [6] or compared to various lubrication theory numerical calculation programs 

[7]. The current work uses a 3D flow domain with experimental data for validation. 
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2. A BRIEF DESCRIPTION OF SFD CONFIGURATION AND
 

                                        TERMINOLOGY 

A typical Squeeze Film Damper configuration consists of a non-rotating journal 

and a stationary outer housing as shown in Figure 1. The spinning of the journal about its 

axis is constrained by an anti-rotation pin or a squirrel cage. The journal is mounted on a 

ball bearing assembly. The small gap between the housing and the journal is filled with a 

lubricant film. The lubricant may be supplied at high pressure. As the journal whirls due 

to the dynamic forces generated by the rotor, the lubricant is displaced giving rise to 

hydrodynamic reaction forces. These forces damp the motion of the journal thereby 

reducing the vibration amplitude. 

 
Figure 1. Simplified Configuration of a Typical Squeeze Film Damper  [1] (the Lubr icant Film is 

Exaggerated in Size) 

Reynolds’s equation based governing equation of the dynamic pressure distribution is 

[1]: 
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(2.1) 

where, P is the dynamic pressure, h is the dynamic film thickness, μ is the dynamic 

viscosity of the lubricant, R, θ and z are the polar coordinates with z along the SFD axis 

and t is time. Although numerical solutions to the above governing equation are 

available they do not take into account air-ingestion and entrapment, possible turbulent 

flow or fluid inertia. 

The general force balance equation is 

 (2.2) 

where M, C and K are Inertia, Damping and Stiffness Coefficients respectively.  

In an SFD, since there are no reaction forces due to static journal 

displacements, the stiffness coefficient will be absent. Therefore the equation is reduced 

to:  0Mx Cx F+ + =   

This can be represented component-wise as follows: 

 
(2.3) 

The various coefficients are- 

Cxx , Cyy - Direct viscous Damping Coefficients 

Cxy , Cyx - Cross-coupled viscous Damping Coefficients 

 Mxx , Myy – Direct Fluid Inertia Coefficients 

Mxy , Myx - Cross-coupled Fluid Inertial Coefficients 

2
3 3 2

212P P h hh h h
R R z z t t

µ ρ
θ θ

 ∂ ∂ ∂ ∂ ∂ ∂   + = +     ∂ ∂ ∂ ∂ ∂ ∂     

0Mx Cx Kx F+ + + = 

x x xxx xy xx xy

yx yy yx yyy y y

F v aC C M M
C C M MF v a

        
= − −        

        
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The cross-coupled coefficients arise due to the motion perpendicular to the 

direction of force. SFD performance depends on several factors such as dimensions 

(diameter, land length, clearance), operating RPM, physical properties of lubricant, oil 

supply pressure, type of end seal, category of cavitation (vapor or gaseous or air 

ingestion) etc. Cavitation reduces the damping capability of the SFD. Hence it is 

necessary to include the complex effects of cavitation, in the pressure distribution 

prediction models. 
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3. LITERATURE REVIEW 

3.1 Numerical Studies of Squeeze Film Damper Flow Field 

PYP Chen and E J Hahn [6] investigated the suitability of applying CFD to 

Squeeze Film Dampers. They employed a 2D steady state laminar flow model based 

upon the Reynolds equation to validate the CFD results. They investigated the 

applicability of the Reynolds equation, which neglects the inertia and certain viscous 

terms, to short and long SFDs. A grid of 360X8 was used for the 2D geometry. It was 

found that the inertia effects predicted by CFD agreed well with results in the literature. 

Their results confirmed the assumption of constant pressure across the film. Guo et al 

[7], in their paper very briefly discussed the application of CFD analysis to SFDs, 

however no quantitative comparison was provided. They performed their simulations on 

a 1.18 in (30 mm) long damper with a radial clearance of 1.18 mil (0.03 mm), 0.79 mil 

(0.02 mm) eccentricity, whirl speed of 200 rad/s (1910 RPM) with the general purpose 

code CFX-TASCflow. 

Changhu Xing et.al, [8] also used a commercial finite volume based algorithm 

CFD-ACE+ to study the effect of sealing on SFD performance and to develop the direct 

and cross-coupled coefficients for homogenous two-phase mixture films in a SFD. They 

also studied the effect of inertia forces and calculated these by using the actual value of 

the lubricant density and subsequently a density value of close to zero. The inertia 

coefficients from their study were compared with those reported by other researchers 

using the modified Reynolds’s equation. The differences found between the two were 
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attributed to the three dimensional effects introduced by the additional terms in the full 

Navier-Stokes equations. A 288x18x27 3D grid was used in their studies.  

3.2 Experimental Studies of Squeeze Film Damper Flow Field 

L. Della Pietra and G. Adiletta [9, 10] in their paper “The Squeeze Film Damper 

over Four Decades of Investigations,” summarize the main research findings pertaining 

to SFDs and their applications in the recent past. Thomsen and Andersen [11] were 

amongst the first to experimentally investigate a simple squeeze film damper to evaluate 

the effect of radial clearance and viscosity of the lubricant on the damping. They 

obtained the damping coefficients through measurement of radial support deflections. 

They found that for circular centered orbits (CCO) of small magnitudes, the damping 

coefficients were independent of rotor speed and vibration amplitude. Vance and Kirton 

[12] carried out an experimental investigation of the dynamic force response of a 

squeeze film bearing damper. They measured the dynamic pressure field for a journal 

performing Circular Centered Orbits to calculate the force components. Their findings 

showed good agreement with the long-bearing theory predictions. Feder et al [13] 

investigated the Squeeze Film Damper forces produced by Circular Centered Orbits. 

They concluded that inlet and cavitation pressures can have very important effects on 

damper forces. Analytical predictions, verified by the experimental results, showed that 

for damper pressures distributions between 180 and 360 degree an increase of inlet 

and/or cavitation pressure increased the circumferential pressure distribution, increased 

the damper force and decreased the stiffness force. For the same dynamic pressure, the 

damping force for the 360 degree pressure distribution is twice that of the 180 degree 
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pressure distribution. Also, inlet and cavitation pressures could be linearly added to the 

dynamic pressures. The stiffness force for the 360 degree pressure distribution is zero 

and there is no further increase in the damping force once the 360 degree pressure 

distribution is reached. Bansal and Hibner [14] carried out the experimental and 

analytical investigation of Squeeze Film Damper forces induced by offset Circular Whirl 

Orbits. They found that experimentally measured values differed from the analytical 

predictions made using the long bearing assumption due to the effect of bearing 

clearances and shaft flexibilities. 

San Andres and Vance [15] measured the effect of fluid inertia and film forces in 

a SFD with circular centered orbits. They recorded large pressures in the groove and 

showed that earlier assumptions of low pressure (1/25th of the pressure in the SFD land) 

and its uniformity in grooved regions were invalid. They also found that in the absence 

of leakage, the regions of largest pressure were close to the end walls of the SFD land 

and the pressure fell as one approached the groove. Variations in pressure field along the 

circumferential direction at a fixed axial location were found to be negligible due to the 

small size of the inlet orifice.  

The studies discussed, were conducted for Reynolds numbers less than 10. Later, 

Jung, San Andres, and Vance [16, 17] carried out similar investigations at Reynolds 

numbers up to 50 with fully open ended and partially sealed SFD configurations. They 

also investigated the effect of cavitation on the pressure profile. For the fully sealed 

configuration, it was found that the axial pressure profile predicted by the short bearing 

approximation solution was agreeable for the positive dynamic pressure region but was 
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unsatisfactory for the negative dynamic pressure region. It was inferred that cavitation 

observed in the submerged SFD was due to vapor cavitation. Also, the inertia 

coefficients became comparable in magnitude with increasing Reynolds number. For the 

partially sealed configuration, it was found that the pressure varied only slightly along 

the axial direction implying that this configuration would provide high damping owing 

to the uniform pressure levels in the axial direction. The results showed that vapor 

cavitation significantly slowed the development of the negative pressure region and 

reduce the damping and inertial coefficients. The amount of cavitation increased with 

increasing Reynolds number. The amount of cavitation was found to be much higher in 

the partially sealed configuration than in the open ended configuration.  

Lelio Della Pietra [18] also carried out an analytical (based on the Short Bearing 

theory) and experimental investigation of squeeze film dampers. An analytical 

expression was obtained for the pressure in the annular gap taking into consideration the 

effect of offset circular orbits. With the help of this expression, the effect of offset on the 

dynamic pressure was investigated. Good agreement between the theoretical prediction 

and experimental findings was observed for the positive part of the dynamic pressure. 

However, the predictions varied for the negative part due to cavitation.  Arauz and San 

Andres [19] studied the effect of whirl frequency and fluid viscosity on the dynamic 

force response of a SFD for both the open ended and partially sealed configurations. It 

was found that the open end seal configuration allowed flow of oil and prevented it from 

over-heating. The results showed that the partially sealed configuration SFD produced 

higher damping forces than the open configuration SFD. 
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Zeidan and Vance were amongst the first researchers to make a detailed study of 

the effects of cavitation on the SFD performance. Earlier Hahn and Feng [20] had 

proposed density and viscosity models for two phase homogenous hydrodynamic 

damper fluids and had done a preliminary investigation of the effect of cavitation on 

SFD performance [21]. Walter et al had also performed experimental observations of 

cavitating SFDs. Zeidan and Vance concluded that gaseous cavitation drastically 

reduced the load capacity of the damper. The assumption of a homogenous 

incompressible fluid for the analysis of an SFD was found to be grossly inadequate. It 

was noticed that at higher pressure, the splitting of gaseous cavities into smaller sized 

cavities led to the formation of a homogenous oil-air mixture. Large sized air cavities 

also continued to form separately and persisted in the high pressure region leading to a 

three phase mixture. They recommended incorporating the effects of a homogenous oil-

air mixture and the compressible pockets of air in a compressible model for better 

prediction of SFD performance. In their subsequent studies, they investigated various 

cavitation regimes in SFDs and their effect on the pressure distribution. Five distinct 

cavitation regimes were identified by employing high speed motion photography.  These 

were then characterized through pressure measurements. It was shown that air 

entrainment drastically reduced the pressure profile by reducing the negative pressure 

amplitude and preventing vapor cavitation from taking place. It increases the 

circumferential extent of the negative pressure. The presence of bubbles slows the 

development of positive pressure and reduces its amplitude. They suggested changes in 
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oil feed mechanisms, seals, outlet holes and supply pressure to reduce air entrainment 

into the damper and thus improve damper performance. 

In later studies, Zeidan and Vance studied the effect of cavitation on the force 

coefficients. They varied parameters such as speed, operating eccentricity, end seals and 

supply pressure to study their effect on the extent of cavitation. They observed that air 

entrainment into the SFD has a very large influence on the force coefficients and the 

damper performance. They concluded that the radial damping coefficient changes from 

negative to positive due to air ingestion at low to medium eccentricities, the radial force 

coefficient remained unaffected at high eccentricities. They suggested that an effective 

end seal and high supply pressure could limit be used to reduce air ingestion into the 

damper. 
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4. OBJECTIVES  

The following are the main objectives of this work: 

1. To establish if the commercial CFD code Fluent® can be used to simulate the flow 

field inside a Squeeze Film Damper (SFD). 

2. To use a 2D model to establish grid size and computer models required to obtain 

solutions. 

3. Simulate one experimental condition considered by Delgado et. al [5].  

Experimental study of the flow field inside a SFD can be expensive since it 

involves setting up a test rig and data acquisition system. Also, it can be cumbersome to 

study the effects of geometry change or journal eccentricity on the flow field. If CFD 

can be established as a valid, feasible alternative to experimentation, it would be 

immensely helpful for the study of SFDs from the design perspective. Cavitation in a 

squeeze film damper can be broadly divided into the following three categories: a) that 

due to expansion of dissolved gases (gaseous cavitation) b) that due to decrease in 

pressure below the vapor pressure of the lubricant (vapor cavitation) and c) that due to 

air entrainment into the SFD through recesses around probes and joints. This work will 

primarily address dissolved gases which will include the effect of quantity of dissolved 

air in the lubricating fluid. This could be the dominant category of cavitation at low 

speeds since typically; the vapor pressure of the lubricant is extremely low (of the order 

of a few Pascals). The present work uses the geometry of the test rig used in the 

experiments of San Andres & Delgado [5] and compares the CFD results with their 

experimental results. 
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5. METHODOLOGY 

The geometry of the flow domain based upon Delgado et al [5] is as shown in the 

Figure on page 73. A full 3D simulation of this was used in the final stage of the study. 

The diameter of the journal is 5 in (127 mm), the clearance is 5 mil (0.127 mm) and the 

eccentricity is 2.9 mil (0.074 mm). The length of the SFD land is 1 in (25.4 mm). The 

frequency of rotation of the journal is 50 Hz. The journal follows a circular orbit. The 

study used grid generation software Gambit 2.4.6 and commercial computational fluid 

dynamics code Fluent 6.3.26. 

Initially, 2D cases were simulated to determine the optimal mesh and time-step 

size. Grid-independence and time-step independence studies were carried out and a grid 

with 1440 nodes in the circumferential direction and 20 nodes across the clearance was 

selected. A time-step size such that the journal whirls by 1 degree per time-step was 

selected. Water was initially used as the working fluid and the operating pressures were 

varied to obtain varied degree of cavitation to demonstrate the use of the cavitation 

model. The working medium was then changed to oil (ISO VG 2 Mobil Velocite no.3 

with density=800 kg/m3 and a dynamic viscosity of 0.0016 kg/ms) and the effect of 

operating pressure, journal whirl speed, and dissolved air quantity in the oil was studied. 

The flow field was visualized using post-processing code Tecplot 360. The flow domain 

was exaggerated in size using a coordinate transformation. It has been established by 

several researchers that the flow field inside a SFD stabilizes after some time i.e. there is 

no variation in the pressure field along the circumferential direction at a fixed axial 

location. The simulations were run (unsteady solver) until there was no variation in the 
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pressure field to obtain the quasi-steady state pressure field. Although the dynamic mesh 

was ultimately used for the study, the possibility of applying a coordinate transformation 

technique to transform the problem to a steady state case was also examined. Under this 

technique, a relative circular motion was assigned to the fluid with respect to the journal 

while assuming the journal to be stationary. A steady state solver was used. However the 

pressure field obtained did not match with that obtained from the unsteady solver 

(dynamic, deforming mesh case). Therefore this technique as applied was found to be 

incapable of correctly predicting the flow field. 

The numerical simulations were then performed on the full 3D model. A 

structured mesh (hexahedral cells) was generated using the mesh generation tool 

Gambit. A structured mesh was chosen over an unstructured one because of the number 

of cells in the mesh would have become prohibitively large due to the maximum 

allowable aspect ratio restriction for the unstructured grid. The grid has 1440 nodes in 

the circumferential direction, 20 in the radial direction across the clearance and 80 nodes 

along the axis. A total of 2.592 million hexahedral cells were created. Due to the large 

size of the mesh, it was partitioned and the Fluent parallel solver was used. An 

optimization study for the number of partitions was performed and 4 partitions were 

found to be optimal for the 8 processor machine used in the study.  

This mesh was then imported into Fluent to simulate the flow field. The 

‘Dynamic mesh’ capability of Fluent® gives the user the ability to simulate a flow 

domain which is changing in shape or size with time. The deformation of the domain is 

simulated by making the cells to radially compress or expand as the case might be by 
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assigning them a spring constant. Thus the dynamically deforming gap in the SFD can 

be achieved with the help of the dynamic mesh capability. A user defined function 

(UDF) was used to assign the circular motion to the journal. The UDF determines the 

position of each node on a surface of the mesh at a subsequent time-step in terms of its 

position at the current time-step.  

An unsteady solver needed to be chosen since the flow domain changes with 

time. The mixture-multiphase model in Fluent was chosen to incorporate the effects of 

cavitation. The Standard k-ε model was selected with the Standard Wall Functions for 

the near-wall treatment. An operating pressure of 1 atm (101325 Pascals) was 

prescribed. The oil inlet is the top surface of the domain. In their experiments, San 

Andres and Delgado used a supply pressure of 31 kPa. Hence the inlet surface was 

assigned to be a pressure inlet at 31 kPa. A completely sealed outlet was assumed for the 

simulations. For the mixture-multiphase model, the default value of pre-dissolved gases 

is about 1% (percent by volume of lubricant). To study the variation in pressure field 

with the amount of dissolved gases, the runs were repeated with 3, 5 and 7 % dissolved 

gases. In the experimental work, pressures probes were installed at the mid-section of the 

SFD land for recording pressures. Therefore pressures along the circumference, at the 

mid-section of the SFD land (in the axial direction) were analyzed. Although the 

numerical results showed a good agreement with the experimental results, the pressures 

in the cavitation regime could not be accurately predicted. The reasons behind this 

discrepancy were investigated. 
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The next step to extend the scope of this work would be to investigate the flow 

field at higher speeds by eliminating the numerical instabilities encountered at large orbit 

speeds, enable non-circular orbits, study the effect of grooves/plenums inside the damper 

and study the effect of sealing. 
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6. RESULTS AND DISCUSSION 

6.1 2D Geometry Studies 

A structured mesh was created in the mesh generation software Gambit. The 

mesh has 1440 nodes in the circumferential direction and 20 nodes in the clearance as 

shown in Figure 2. Since the clearance (5 mil or 0.127 mm) is extremely small compared 

to the diameter (2.5 in or 63.5 mm), the clearance had to be enlarged to visualize it. Post-

processing software Tecplot® was used. The following coordinate transformation was 

used for this purpose: 

2 2X X Y′ = +  (6.1) 

1tan YY
X

−  ′ =  
 

 
(6.2) 

temp_variable= X′ -0.0632 (6.3) 

( )Xmod  temp _ variable cos Y′= ×  (6.4) 

( )Ymod  temp _ variable sin Y′= ×  (6.5) 
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Figure 2. 2D Mesh 1440X20 (Nodes in Circumferential Direction Reduced to 360 for  Clear  

Representation) 
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Figure 3. Contours of Pressure, Gr id Size 360 (Circumferential Nodes) 

X 20 (Radial Nodes) 

 
Figure 4. Contours of Pressure, Gr id Size 720 (Circumferential 

Nodes) X 20 (Radial Nodes) 
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Figure 5. Contours of Pressure, Gr id Size 1440 (Circumferential Nodes) 

X 20 (Radial Nodes) 

 
Figure 6. Contours of Pressure, Gr id Size 1440 (Circumferential 

Nodes) X 5 (Radial Nodes) 
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Figure 7. Contours of Pressure, Gr id Size 1440 (Circumferential Nodes) 

X 15 (Radial Nodes) 

 
Figure 8. Contours of Pressure, Gr id Size 1440 (Circumferential 

Nodes) X 20 (Radial Nodes) 
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Figure 9. Contours of Pressure, Gr id Size 1440 (Circumferential Nodes) 

X 25 (Radial Nodes) 

 
Figure 10. Contours of Pressure, Gr id Size 1440 (Circumferential 

Nodes) X 30 (Radial Nodes) 
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6.2 Grid Independence Study (Pressure Contour Plots for Different Grid Sizes) 

Since the pressure distribution was the quantity of interest rather than a single 

valued quantity, the contour plots of pressure (Figure 3 through Figure 10) needed to be 

monitored to establish grid independence.  First the nodes in the circumferential 

direction were increased from 360 to 1440. Each consecutive value exceeded the 

preceding value by a multiple of 2. The number of nodes in the radial direction (in the 

annular gap) was maintained at a constant value of 20. Subsequently, the number of 

nodes in the circumferential direction was maintained at 1440 and the nodes in the 

annular gap were increased from 5 to 30 in steps of 5. As it can be seen from the contour 

plots, the pressure distribution does not vary to a large extent with grid sizes. Grid 

independence was thus established, it was decided to use the 1140X20 grid for the study. 

To test the dynamic mesh setup, a preliminary case with no cavitation was run. 

The rotation RPM was varied from 540 RPM to 50X540 RPM. The working fluid used 

was Mobil Velocite 3. The physical properties are- Density = 800 kg/m3, Viscosity = 

0.0016 kg/m-s (2 cSt), Vapor pressure = 1mmHg (0.1336 kPa). The direction of rotation 

was anti-clockwise. The rotor started from zero whirl rate to the specified RPM at time 

t=0. The simulation was run until the solution became the same for all subsequent time 

steps, only rotating in time. 

The following figures are the contours of pressure and velocity components 

(Figure 11 through Figure 25). Velocity vectors were also plotted for cases with 

increasing shaft speeds to take a close look at the flow field (Figure 26 through Figure 

35). The red and blue regions represent high and low pressure zones respectively: 
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Figure 11. Contours of Pressure, 1X540 RPM 

 

Figure 12. Contours of Pressure, 2X540 RPM 
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Figure 13. Contours of Pressure, 5X540 RPM 

 

 

 

Figure 14. Contours of Pressure, 10X540 RPM 
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Figure 15. Contours of Pressure, 50X540 RPM 

 



 

 

27 

 
 
 

 

Figure 16. Contours of X Velocity, 1X540 RPM 

 

Figure 17. Contours of Y Velocity, 1X540 RPM 
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Figure 18. Contours of X Velocity, 2X540 

 

Figure 19. Contours of Y Velocity, 2X540 RPM 
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Figure 20. Contours of X Velocity, 5X540 RPM 

 

Figure 21. Contours of Y Velocity, 5X540 RPM 
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Figure 22. Contours of X Velocity, 10X540 RPM 

 

Figure 23. Contours of Y Velocity, 10X540 RPM 
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Figure 24. Contours of X Velocity, 50X540 RPM 

 

Figure 25. Contours of Y Velocity, 50X540 RPM 
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Figure 26. Velocity Vectors, No-cavitation Case 1X540 Rotor Whirl  
RPM 

 

Figure 27. Contours of Turbulence Intensity, No-cavitation 
Case,1X540 Rotor Whirl RPM 
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Figure 28. Velocity Vectors, No-cavitation Case 2X540 Rotor Whirl 
RPM 

 

Figure 29. Contours of Turbulence Intensity, No-cavitation Case, 
2X540 Rotor Whirl RPM 
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Figure 30. Velocity Vectors, No-cavitation Case 5X540 Rotor Whirl 
RPM 

 

Figure 31. Contours of Turbulence Intensity, No-cavitation Case, 
5X540 Rotor Whirl RPM 
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Figure 32. Velocity Vectors, No-cavitation Case 10X540 Rotor Whirl 
RPM 

 

Figure 33. Contours of Turbulence Intensity, No-cavitation Case, 
10X540 Rotor Whirl RPM 
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Figure 34. Velocity Vectors, No-cavitation Case 50X540 Rotor Whirl 
RPM 

 

Figure 35. Contours of Turbulence Intensity, No-cavitation Case, 
50X540 Rotor Whirl RPM 
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As mentioned in [1], in fully developed turbulent flows, the velocity profiles do 

not have the typical parabolic profiles, being almost uniform across the film thickness 

and with steep gradients close to the wall boundaries, thus forming thin boundary layers. 

From the vector plots, it can be seen that the velocity profile is parabolic for the lowest 

shaft whirl speed of 1X540 RPM and begins to flatten at a whirl speed of 2X540. This 

transition of the velocity profile from the parabolic shape is more pronounced in the 

maximum clearance region. For higher shaft whirl speeds of 5X540, 10X540 and 

50X540 RPM, the velocity profiles are no longer parabolic.  

The increasing effect of turbulence can also be observed by studying the contours 

of Turbulence Intensity. The Turbulent Intensity is the ratio of the Root-Mean-Square 

(RMS) of the turbulent velocity fluctuations at a particular location over a specified 

period of time to the average of the velocity at the same location over same time period. 

The minimum Turbulence Intensity increases from 6% for the lowest whirl speed of 

1X540 RPM to 100% for the highest whirl speed of 50X540 RPM. It is also interesting 

to note that the region of highest Turbulence Intensity is close to the walls on the wake 

side of the rotor. The region of maximum turbulence intensity occurs at the same 

location for all rotor speeds but increases in value by almost two orders of magnitude 

indicating a transition to turbulence. 

From the pressure and velocity contours, it can be seen that the pressure 

distribution changes mainly in magnitude with increase in Rotor speed. The position of 

maximum and minimum pressure relative to the minimum clearance remains the same 

except at high Rotor whirl speed where the minimum pressure location rotates counter-
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clockwise about 50 degree. This could be attributed to effects of turbulence and inertia 

effects due to higher velocities. Similarly, the position of maximum and minimum X-

velocity and Y-velocity remains same relative to the minimum clearance, as well, except 

for the highest whirl RPM case. For this case, the location of the maximum X-velocity 

and Y-velocity shifts by about 20 degree in the counter-clockwise direction. 

 

Table 1. Change in P, Ux, Uy and Uθ with rotor whirl RPM (no cavitation case) 

RPM Pmax 
(Pa) 

Pmin 
(Pa) 

Uxmax 
(m/s) 

Uxmin 
(m/s) 

Uymax 
(m/s) 

Uymin 
(m/s) 

Uθmax 
(m/s) 

Uθmin 
(m/s) 

1X540 76070 -4924 0.066 -0.718 0.213 -0.557 0.669 -0.720 
2X540 179557 -14750 0.152 -1.598 0.467 -1.211 1.435 -1.604 
5X540 659869 -85454 0.542 -4.77 1.311 -3.554 4.103 -4.809 
10X540 2490830  -625165 2.745 -12.217 3.301 -10.247 11.182 -13.023 
50X540 29709400 -23440300 36.455 -79.897 23.480 -81.740 79.577 -102.45 

 

In Table 1 large negative values of pressure can be observed. The operating 

pressure is 1 atm. Pressures much below the vapor pressure of oil, are observed since the 

cavitation model has not been turned on and the flow is incompressible. For 

incompressible flows, Fluent does not recognize absolute vacuum but only pressures 

relative to the operating pressure.  
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Figure 36. Plot of Maximum Pressure v/s Rotor  Whir l RPM and a Corresponding 2nd Order  

Polynomial Curve Fit 

A fairly accurate 2nd Order Polynomial fit is obtained for the maximum positive 

pressure as it can be seen from Figure 36. Since the pressure distribution varies only in 

magnitude with the RPM and since the positions of maximum and minimum pressure 

remain the same with respect to the minimum clearance except at the highest rotor 

speed, a simple predictive model can be developed to predict the pressure distribution 

for different RPMs. 

The total force (as calculated by Fluent including pressure and viscous drag) 

acting on the Rotor (Figure 37 through Figure 41) and its line of action, were plotted 

against the whirl angle for the various whirl speeds. The whirl angle is the measure of 
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the time since the Rotor began its motion, so these plots illustrate the transient start up of 

a Squeeze Film Damper, starting from rest. The whirl angle also indicates the location of 

the minimum clearance. Considering that the SFD domain is divided into four quadrants, 

the angles are measured from the positive X-axis. The purpose of these plots is to 

present the transient start-up effects on the pressure filed and how a Quasi-steady 

solution is reached. 

 
Figure 37. Magnitude of Force on Rotor  v/s Whir l Angle (1X540 RPM, No-cavitation Case) 
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Figure 38. Magnitude of Force on Rotor  v/s Whir l Angle (2X540 RPM, No-cavitation Case) 

 
Figure 39. Magnitude of Force on Rotor  v/s Whir l Angle (5X540 RPM, No-cavitation Case) 
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Figure 40. Magnitude of Force on Rotor  v/s Whir l Angle (10X540 RPM, No-cavitation Case) 

 
Figure 41. Magnitude of Force on Rotor  v/s Whir l Angle (50X540 RPM, No-cavitation Case) 



 

 

43 

43 

Figure 42 presents the results where the force has been normalized by the steady 

state value to facilitate easy comparison between the different rotation rates. From the 

plots of magnitude of force on rotor v/s whirl angle, at different RPMs, the following 

observations are made: 

i. The magnitude of force asymptotically tends to a constant value. This is referred 

to as the quasi-steady state in SFD literature. Once this state is attained, the 

pressure distribution remains almost unchanged with respect to the minimum 

clearance. 

ii. Upon start up, the total force on the rotor gradually increases to a peak value and 

oscillates until it reaches almost a steady value at the end of 2 complete 

revolutions (i.e. whirl angle of 720 degree). 

iii. The rate of increase of force from 0 to the peak value (i.e. initial slope) decrease 

with increase in RPM. 

iv. At low RPMs the rotor is under damped and the force magnitude oscillates. As 

the RPM increases, damping increases, until at 50X540 RPM, there is very little 

over & undershoot. This becomes apparent from the following plot of the 

Normalized Force Magnitude (Fmag/ Fmag at quasi-steady state) v/s Whirl 

angle, for different RPMs. 
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Figure 42. Plot of Normalized Force Magnitude (Fmag/ Fmag at Quasi-steady State) v/s Whir l Angle 

for  Different Rotor  Whir l RPMs 

 
Figure 43. Plot of Force Magnitude at Quasi-steady State v/s Rotor  Whir l RPM and a 

Corresponding 2nd Order  Polynomial Curve Fit 
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It can be seen that the Maximum pressure and Magnitude of total force on rotor, 

follow a similar trend with increase in the rotor whirl RPM. To confirm this (Magnitude 

of force at quasi-steady state/Pmax) was plotted against the rotor whirl RPM. It was 

observed that the ratio varies between a narrow range of 0.1 to 0.16 m2 (Figure 43 and 

Figure 44). 

 
Figure 44. (Magnitude of Force on Rotor /Pmax) v/s Whir l RPM 
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Figure 45. Plot of Line of Action of Force (on Rotor ) v/s Rotor  Whir l Angle, for  Different Rotor  

Whir l RPMs 

Figure 45 shows the change in the line of action of total Force with the whirl of 

the rotor. The Following observations are made: 

i. Similar to the Force Magnitude on the rotor, the line of action of the force too 

settles to a constant value with respect to the minimum clearance, after the quasi-

steady state is reached. 

ii. The angle relative to the minimum clearance drops after startup. The rate of 

decrease of the angle (slope) decreases with increase is RPM. This trend is 

similar to that noticed for the Magnitude of Force plot. 

iii. It can also be seen that as the rotor whirl RPM increases, the aforementioned 

angle settles to a steady value faster. 
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iv. The angle of the line of action increases with increasing whirl speed. The largest 

whirl speed has the largest angle as is the case for force and pressure. This is 

reflected in the pressure contours. 

6.3 2D Case with Cavitation 

Subsequently, the mixture model was used to include the effect of cavitation. 

Cases were run for varying rotation speeds from 540 RPM to 10X540 RPM. The top 

speed was limited to 10X540 RPM due to numerical instabilities and convergence 

issues. As per the Fluent User’s Guide, for the cavitation model, large ratio of liquid to 

vapor density and near zero saturation pressures are unfavorable causes for convergence. 

Both these properties are possessed by the oil used. Initial investigations showed that 

presence of gas in the SFD is primarily due to dissolved gases coming out of the solution 

and not a phase change of the oil. The Following are the results for initial static 

concentrations of 3% and 7% dissolved gases by volume respectively (Figure 46 through 

Figure 57): 
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Figure 46. Contours of Pressure, 1X540 RPM, 3%  Dissolved 

Gas 

 
Figure 47. Contours of Volume Fraction of Vapor , 1X540 RPM, 3%  Dissolved 

Gas 
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Figure 48. Contours of Pressure, 1X540 RPM, 7%  Dissolved 

Gas 

 
Figure 49. Contours of Volume Fraction of Vapor , 1X540 RPM, 7%  Dissolved 

Gas 
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Figure 50. Contours of Pressure, 2X540 RPM, 3%  

Dissolved Gas 

 
Figure 51. Contours of Volume Fraction of Vapor , 

2X540 RPM, 3%  Dissolved Gas 
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Figure 52. Contours of Pressure, 2X540 RPM, 7%  

Dissolved Gas 

 
Figure 53. Contours of Volume Fraction of Vapor , 

2X540 RPM, 7%  Dissolved Gas 
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Figure 54. Contours of Pressure, 5X540 RPM, 3%  

Dissolved Gas 

 
Figure 55. Contours of Volume Fraction of Vapor , 

5X540 RPM, 3%  Dissolved Gas 
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Figure 56. Contours of Pressure, 5X540 RPM, 7%  

Dissolved Gas 

 
Figure 57. Contours of Volume Fraction of Vapor , 

5X540 RPM, 7%  Dissolved Gas 
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From the above plots, it can be seen that the pressure distribution in the 

clearance, for different RPMs, remains the same relative to the minimum clearance 

position. This is similar to the previous case without cavitation. Moreover, the position 

of minimum and maximum pressure with respect to the minimum clearance is the same 

as the ‘No cavitation’ case. 

 

Table 2. Change in P, VOF and Fmag with Rotor Whirl RPM (Oil Cavitation Case) 

RPM & dissolved gas 
(% by vol) 

 

Pmax(Pa) Pmin 
(Pa) 

VOFmax 
(% by vol) 

VOFmin 
(% by vol) 

Magnitude of Force 
(N, at Rotor whirl angle 

720 degree) 
1X540 
(3% dissolved gases) 

74090 -4849 3.2 1.8 7673 

1X540 
(7% dissolved gases) 

92147 -8007 7.5 3.8 9737 

2X540 
(3% dissolved gases) 

229218 -23729 4 0.9 24935 

2X540 
(7% dissolved gases) 

222556 -20126 8.6 2.3 23943 

5X540 
(3% dissolved gases) 

967973 -88900 20.8 0.3 105310 

5X540 
(7% dissolved gases) 

934533 -73528 21.6 0.7 100940 
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Figure 58. Compar ison of Maximum Pressure, Pmax in the Film for  Cavitation and No Cavitation 

Cases for  Different Rotor  Whir l RPMs 

Larger amounts of cavitation occur at larger RPMs (refer Table 2). This is due to 

the fact that at higher RPMs the values of Pmin are more negative (i.e. below the 1 atm 

operating pressure). The maximum pressure and consequentially the total force exerted 

on the Rotor, increase with the cavitation occurrence (Figure 58). The contour plots of 

pressure & volume fraction of vapor comparing the pressure filed for the No cavitation, 

3% dissolved air case and 7% dissolved air case illustrate this. The values of Pmax and 

Pmin are higher and the pressure zones are wider for the cavitation cases giving rise to a 

larger net force on the rotor. The increase in pressure can be attributed to the rise in local 

pressure due to the collapse of gas bubbles in high pressure zones. Pmin values are less 

negative for the cavitation cases since this represents an actual scenario in which Pmin 
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will not fall below the saturation vapor pressure of the oil until all the liquid has 

undergone a phase change and vaporized. 

Figure 58 compares the values of Pmax for cavitating and non-cavitating cases. 

The effect of the concentration of non-condensable gases on Pmax is negligible since the 

two curves for 3% and 7% dissolved non-condensable gases lie almost exactly on top of 

each other. The difference between Pmax for the no-cavitation and cavitation cases, 

increases with whirl RPM to a maximum of almost 50% larger Pmax for the cavitation 

case at the highest whirl RPM.  

When starting from a static condition, the pressure field in the SFD clearance is 

expected to stabilize and attain a quasi-steady state after a few initial rotations. This is 

verified with the following plots of the pressure and vapor fraction as a function of time 

and angle. The 1X540 rotor RPM case was chosen. As the time-step progresses, the high 

and low pressure zones linearly move along the circumferential direction with the 

minimum clearance. 
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Figure 59. Pressure Stabilization Plot 

 
Figure 60. Vapor  Fraction Stabilization Plot 
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From Figure 59, we can see that for the first 200 degree of whirl motion, the 

pressure variance around the rotor increases with a large high-pressure span. It then 

decays in amplitude slightly over the next 200 degree after which it recovers in 

amplitude around 600 degree of whirl angle. It stays relatively steady in amplitude from 

there on. This trend is similar to that of the total magnitude as observed in subsequent 

plots. 

In the void fraction plot (Figure 60), the high magnitude zones are replaced by 

low magnitude ones and vice versa, as expected. The void fraction variance around the 

rotor too, increases for the first 200 degree and then decays up to 400 degree after which 

it reaches relatively constant amplitude. 

6.4 Forces Acting on the Rotor 

The total force acting on the Rotor & its line of action, were plotted against the 

whirl angle & (angle of line of action of force – whirl angle) respectively, for the various 

whirl speeds and dissolved gas quantities (Figure 61 through Figure 66). Considering 

that the SFD domain is divided into 4 quadrants, the angles are measured from the 

positive X-axis. The purpose is to present the transient start-up effects on the pressure 

filed and how a Quasi-steady solution is reached. 
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Figure 61. Compar ison of Force Magnitude for  1X540 RPM - Different Quantities of Dissolved 

Gases 

The total force exerted on the rotor increases for the cavitation case (consistent 

with Figure 58 indicating increase in Pmax). 
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Figure 62. Compar ison of (Angle of Line of Action of Force- Whir l Angle) for  1X540 RPM - 

Different Quantities of Dissolved Gases 

 
Figure 63. Compar ison of Force Magnitudes 2X540 RPM- Different Quantities of Dissolved Gases 
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Figure 64. Compar ison of (Angle of Line of Action of Force- Whir l Angle) for  2X540 RPM - 

Different Quantities of Dissolved Gases 

 
Figure 65. Compar ison of Force Magnitudes for  5X540 RPM- Different Quantities of Dissolved 

Gases 
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Figure 66. Compar ison of (Angle of Line of Action of Force- Whir l Angle) for  5X540 RPM - 

Different Quantities of Dissolved Gases 

 
Figure 67. Compar ison of Force Magnitudes for  Different Rotor  Speeds 
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The force on the rotor increases significantly with the RPM. The Volume fraction 

of vapor increases significantly with the rotor speed. The vapor bubbles collapse to 

liquid in the high pressure regions giving rise to large forces on the rotor. 

From the plots of magnitude of force on rotor v/s whirl angle (Figure 67), at 

different RPMs, the following observations are made: 

v. Similar to the no-cavitation case, the magnitude of force asymptotically tends to 

a constant value. This is referred to as the quasi-steady state in SFD literature. 

Once this state is attained, the pressure distribution remains almost unchanged 

with respect to the minimum clearance. 

vi. Upon start up, the total force on the rotor gradually increases to a peak value and 

oscillates until it reaches almost a steady value at the end of 2 complete 

revolutions (i.e. whirl angle of 720 degree). 

vii. As with the pressure, the force acting on the rotor is higher for the cavitation 

case. 

viii. The magnitude of force oscillates more (under damped) for the cavitation case 

than the no-cavitation case. Therefore, it would take longer for the quasi-steady 

state to be reached when cavitation is present. 
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Figure 68. Compar ison of (Angle of Line of Action of Force- Whir l Angle) for  Different Rotor  

Speeds 

The following observations are made about the line of action of force on rotor 

(Figure 68): 

ix. Similar to the Force Magnitude on the rotor, the line of action of the force also 

settles to a constant value with respect to the minimum clearance, after the quasi-

steady state is reached. 

x. The angle relative to the minimum clearance drops after startup. The rate of 

decrease of the angle (slope) decreases with increase is RPM. This trend is 

similar to that noticed for the magnitude of force plot. 

xi. It can also be seen that as the rotor whirl RPM increases, the aforementioned 

angle settles to a steady value faster. 
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6.5 Operating Pressure Variation Cases (Water as Working Fluid) 

It can be seem from the Oil Cavitation cases discussed in the previous section, 

that the maximum percentage Volume fraction of vapor was about 21% for the 5X540 

RPM case with 7% dissolved gases by volume. Typically larger amounts of vapor 

fractions are observed for comparable speeds. There are 3 different sources of the vapor. 

These are: 

xii. Non condensable dissolved gases in the liquid.  

xiii. True phase change cavitation occurring due to the local pressure dropping below 

the vapor pressure of the liquid. 

xiv. Gas ingestion into the SFD i.e. sub-atmospheric pressures causing the gases to 

leak into the SFD. 

Therefore it was decided to study the effect of variation of Operating pressure on 

the Volume fraction of vapor. As per the Fluent User’s Guide, the cavitation model 

accounts for all first-order effects i.e., phase change, bubble dynamics, turbulent 

pressure fluctuations, and non-condensable gases. Water was chosen as the working 

medium for this study since the properties like vapor pressure, surface tension, density, 

thermodynamic properties are established for both liquid and gaseous phase of water. 

Moreover, the vapor pressure of water (3168 Pa at 298K) is much larger than the vapor 

pressure of Mobile Velocite 3 oil (13.3 Pa). This allows more phase change cavitation to 

occur so that its effect can be observed (Figures 69 through Figure 76). 
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Figure 69. Contours of Pressure, Operating Pressure 90 kPa, Operating 

Speed 1X540 RPM 

 
Figure 70. Contours of Vapor  Fraction, Operating Pressure 90 kPa, 

Operating Speed 1X540 RPM 
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Figure 71. Contours of Pressure, Operating Pressure 20 kPa, Operating 

Speed 1X540 RPM 

 
Figure 72. Contours of Vapor  Fraction, Operating Pressure 20 kPa, 

Operating Speed 1X540 RPM 
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Figure 73. Contours of Pressure, Operating Pressure 5 kPa, Operating 

Speed 1X540 RPM 

 
Figure 74. Contours of Vapor  Fraction, Operating Pressure 5 kPa, 

Operating Speed 1X540 RPM 
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Figure 75. Contours of Pressure, Operating Pressure 3 kPa, Operating 

Speed 1X540 RPM 

 
Figure 76. Contours of Vapor  Fraction, Operating Pressure 3 kPa, 

Operating Speed 1X540 RPM 
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Starting from 1 atm, the operating pressure is steadily varied downward to 3 KPa 

(just below the vapor pressure of water at room temperature). The percentage of vapor 

by volume increases from 7.5% at operating pressure of 1 atm to about 50 % at 5 kPa 

operating pressure. When the operating pressure is further reduced below the vapor 

pressure of water (3168 Pa), almost all the fluid changes phase from liquid to vapor and 

there is no pressure variation throughout the SFD clearance. This also demonstrates the 

ability of the mixture-cavitation model to handle large quantities of vapor. 

 

Table 3. Variation of Force Magnitude and Angle with Operating Pressure 

Operating 
pressure (kPa) 

Fx (N) Fy (N) Fmag (N) (Fangle-Min 
clearance angle)  

90 -2140.83 -12696.56 12876 305.43 
20 -1870.31  -3338.56 5686  285.74 
5 945.38 5607.09 3826 215.42 
3 0.00275  -0.0069 0.0074 178.68 

 

It can be seen from Table 3 that the magnitude of force on the rotor reduces with 

decrease in operating pressure. The angle of line of action of force with respect to the 

minimum clearance too decreases. It can be seen that for the 3 kPa operating pressure 

case, the force is negligible. Since this operating pressure is lower than the vapor 

pressure of water, almost all the water in the domain undergoes phase change and the 

clearance is filled with vapor. 

6.6 Coordinate Transformation Technique 

The results discussed in the previous sections were obtained using a transient 

solver. The rotor is actually made to whirl using mesh deformation. This is very time and 
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computation intensive. To address this issue, the applicability of a Coordinate 

Transformation technique was explored. Under this technique, instead of using the 

dynamic deforming mesh, a coordinate transform was used to convert the problem to a 

steady state condition by using a Rotating Coordinate frame. A rotational velocity 

relative to the rotor and stator was assigned to the fluid in the clearance. Thus a steady 

state non time dependent solution is obtained reducing the required computational 

resources required. Details of this technique are included in Appendix B. 

A large number of iterations were required to obtain a converged solution. 

However, the solution obtained through this approach did not match that obtained 

through the previously used transient, deforming mesh approach. As it can be seen from 

Figure 77 and Figure 78, the pressure distribution from the Coordinate transformation 

technique is different. The magnitudes of pressure are higher and the position of the 

high/low pressure zones with respect to the minimum clearance is also different.  

As per this technique, the walls were rendered stationary and the fluid domain 

was assigned a rotational motion. It would be interesting to explore other 

transformations as well. Therefore, this technique requires more investigation to 

determine whether it can be used to obtain a steady state solution.
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Figure 77. Contours of Pressure, 1X540 RPM- 320,000 Iterations 
(Steady State Coordinate Transformation Approach) 

 

Figure 78. Contours of Pressure, 1X540 RPM- Transient Deforming 
Mesh Approach 
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6.7 3D Results 

Now that the CFD methodology along with the moving mesh approach, 

cavitation model, physical phenomenon of phase change cavitation and expansion of 

non-condensable gases, mesh and time-step requirements etc. had been established, a 

previously measured, full 3D case was simulated. The case from the studies of Delgado 

and San Andrés [5] was selected. The simplified geometry of the test rig used by 

Delgado and San Andrés is represented in Figure 79. 

The inner radius of the SFD is 2.5 in (63.5 mm) and the clearance is 5 mil (0.127 

mm). The length of the SFD land is 1 in (25.4 mm). The case simulated has 0.074 mm or 

60% eccentricity, 50 Hz rotor whirl frequency and a supply pressure of 31 kPa at the 

inlet section at the top. There is no leakage flow, i.e. ‘Section out’ at the bottom is sealed 

without any fluid flowing past it. The lubricant used is Mobil Velocite 3 which possesses 

a density of 800 kg/m3, Kinematic Viscosity of 0.0016 kg/m-s (2 cSt) and a low vapor 

pressure of 1mmHg (13.13 Pa). The operating pressure was maintained at 1 atm. Since 

the quantity of non-condensable dissolved gases is unknown, it was varied from 1 % to 

7% by volume in increments of 2%. 
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Figure 79. Simplified SFD Geometry 
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Figure 80. 3D Mesh, 25,92,000 Cells 

 

Figure 80 shows the 3D grid. Due to numerical instabilities, the 3D simulation 

could not be run beyond 150 degree whirl angle. As per the Fluent User’s Guide, for the 

cavitation model,  large ratio of liquid to vapor density and near zero saturation pressures 

are unfavorable causes for convergence. The oil has a very low vapor pressure of 13.3 

Pa. However, since it is known that the pressure field stabilizes and attains a quasi-

steady state, it was examined if this condition was indeed attained before a whirl angle 

of 150 degree was reached. Due to numerical instabilities, the 3D simulation could not 
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be run beyond 150 degree whirl angle. The original mesh has elements with large aspect 

ratios to begin with since the flow domain has very large length to width ratio (R/c) and 

the total number of cells in the grid needs to be maintained at a reasonably small value to 

minimize computational resources required. Since the dynamic mesh is used the 3D 

mesh is stretched and compressed, resulting in elements with high aspect ratios and cell 

squish as the rotor whirls and the flow domain is deformed. Squish is a measure used to 

quantify the non-orthogonality of a cell with respect to its faces. The cell squish index of 

the original mesh before dynamic mesh deformation is 9.92299e-001. Although a 

warning about a cell squish index higher than 0.99 is displayed by the solver, the 

simulation can be run successfully even for such a mesh if further deterioration in mesh 

quality can be avoided. However, the cell squish further deteriorates to a maximum of 

9.96288e-001, 9.96078e-001, 9.96274e-001, and 9.96111e-001 for the 1%, 3%, 5% and 

7% dissolved gases cases respectively. 

The pressure on the rotor, at the mid span of the SFD land was plotted for 

solutions obtained at 120 degree through 150 degree, in Figure 81.  
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Figure 81. Convergence for  3D Case (0.127 mm Clearance, 25.4 mm SFD Land Length, 50 Hz Whir l 

Frequency, 0.074 mm or  60%  Eccentr icity, Supply Pressure 31 kPa, 1%  Dissolved Air ) 

 
Figure 82. Pressure Distr ibution for  Cases with Different Quantities of Dissolved Air  
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The pressure has been measured on the rotor wall at the mid span since the 

pressure probes also have been placed at the same location for the experimental 

measurements also by Delgado and San Andrés. Even a very small amount (e.g., 10 

ppm) of non condensable gases can have significant effects on the cavitating flow field 

due to expansion at low pressures (following the ideal gas law). Since the exact quantity 

of pre dissolved non condensable gases is unknown, the quantity was varied from 1% to 

7% by volume to evaluate which quantity best matches the experimental pressure 

profile. 

The pressure prediction in the cavitation zone predicted from CFD exceeded the 

experimental pressure values (Figure 81 and Figure 82 ). This can be attributed to 

several facts. The ingestion of surrounding air into the SFD has not been simulated in the 

CFD study. Cavitation bubble formation on the surfaces is not taken into account by the 

CFD solver Fluent. The flat portion in the pressure plot has so far been attributed to air 

ingestion into the SFD.  However this typical nature of the pressure plot has been 

obtained through CFD simulations as well despite air ingestion not being incorporated in 

the modeling. This provides evidence for the case that the flat portion of the pressure 

plot i.e slow increase in pressure, might be partly due to the gaseous cavitation 

phenomenon as well. 

Thus it is observed that both Pmax and Pmin have been predicted well by the CFD 

flow. The pressure profile is predicted well, in general, except in the cavitation portion 

of the profile. The details of flow predicted by CFD calculations will now be examined. 
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Contour plots of the Pressure distribution at various axial locations of the SFD 

are investigated to evaluate the change in pressure field in the axial direction. The inlet 

pressure is 31 kPa (gauge). The cross-sections are evenly spaced in the SFD land. The 

rotor has undergone a whirl of 110 degree from the positiveve X axis. The direction of 

whirl is anti-clockwise. The first cross-section is taken at the opening of the narrow 

section, 6.35 mm from the top surface as shown in SECTION A-A of Figure 89. This is 

the location where the radial clearance reduces to 0.0560 mm from 4.8762 mm. Sections 

2, 3,4 and 5 are taken at even intervals of 6.35 mm in the axial direction from Section 1. 

Section 6 is the outlet or the lower surface in SECTION A-A. The area of interest i.e. the 

radial clearance is exaggerated in size using a coordinate transformation. Similarly, 

pressure distributions across radial cross-sections are also studied. The radial cross-

sections 1 through 4 are taken at 0, 45, 90 and 135 degree locations. Following are the 

Pressure Contours at axial Sections 1 through 6 (Figure 83 through Figure 88).
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Figure 83. Contours of Pressure at Section 1 

 
Figure 84. Contours of Pressure at Section 2 



 

 

81 

 
Figure 85. Contours of Pressure at Section 3 

 
Figure 86. Contours of Pressure at Section 4 
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Figure 87. Contours of Pressure at Section 5 

 
Figure 88. Contours of Pressure at Section 6 
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Section 1, as it can be seen from Figure 79, is at the end of the feed plenum or the 

entrance of the SFD land. The top most surface i.e. the entrance of the feed plenum has a 

uniform supply pressure of 31 kPa. It can be seen from the above plots that the high 

pressure zone shifts from the maximum clearance region at the entrance of the SFD land 

to the minimum clearance region at the mid span of the SFD land. It shifts towards the 

maximum clearance region again as we move downwards to the end of the SFD land. 

The minimum pressure zone however stays almost unchanged in position with respect to 

the minimum clearance. The magnitude of Pmax increases from the top to the mid span of 

the SFD land and reduces again as we move down towards the exit. The pressure 

distribution stays the same throughout the recirculation annulus as it can be seen from 

the contour plots at Section 5 (end of SFD land or entrance of the recirculation annulus) 

and Section 6 (sealed exit of the SFD).  

We can see that the pressure distribution in the clearance of the SFD land is not 

symmetric about the mid section i.e. the pressure distributions at Sections 2 and 4 for 

example, are not similar although they are equidistant on either side of the mid-section. 

This is due to the fact that the opening of the SFD is maintained at constant supply 

pressure of 31 kPa while the exit is sealed. In future studies, it would be interesting to 

study the effect of degree of sealing at the exit, on the pressure distribution along the 

axial direction. Next, the pressure distributions at different angular locations were 

studied. Following are pressure contours (Figure 89 through Figure 96) at radial Sections 

1 through 4 (Angles measure in anti-clockwise sense from positive X axis).
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Figure 89. Axial Pressure Distr ibution at  0 Degree from +ve X Axis 

 
Figure 90. Axial Pressure Distr ibution at  45 degree from +ve X Axis 
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Figure 91. Axial Pressure Distr ibution at  90 Degree from +ve X Axis 

 
Figure 92. Axial Pressure Distr ibution at  135 Degree from +ve X 

Axis 
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Figure 93. Axial Pressure Distr ibution at  180 Degree from +ve X Axis 

 
Figure 94. Axial Pressure Distr ibution at  225 Degree from +ve X 

Axis 
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Figure 95. Axial Pressure Distr ibution at  270 Degree from +ve X Axis 

 
Figure 96. Axial Pressure Distr ibution at  315 Degree from +ve X 

Axis 
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The rotor whirls in an anticlockwise direction and the minimum clearance is 

located 110 degree from the positive X axis. The clearance decreases from a maximum 

at 110 degree to a minimum at 290 degree. It is noticed that at all angular positions the 

pressure is always higher in the feed plenum than the recirculation annulus. Also, at 0 

degree and 45 degree positions, as we approach the minimum clearance region, pressure 

is lower at the mid span of the SFD land compared to the feed plenum and the 

recirculation annulus. As we approach 110 degree, the high pressure zone appears at the 

mid span of the land. A high pressure zone (compared to the feed plenum and 

recirculation annulus) is maintained at the center of the SFD land up to 225 degree 

beyond which it shifts towards the feed plenum. A close look at the vectors of axial 

velocity at various angular locations and vectors of radial velocity at the 6 axial sections 

are presented (Figure 97 through Figure 110). The minimum clearance region is located 

at 110 degree. Close to his region, the fluid is squeezed outwards from the mid span of 

the SFD land towards the top and bottom, as the clearance increases from a minimum at 

110 degree, (sections 4 and 5 at 135 degree and 180 degree respectively) as it can be 

seen from the axial velocity vectors. On the other hand, the fluid appears to be moving 

towards the mid section of the SFD land close to the maximum clearance region located 

at 290 degree (section 4 and section 1 at 315 and 0 degree respectively), as the clearance 

decreases. The magnitude of axial velocity is very small in the feed plenum and the 

recirculation annulus compared to the SFD land.  
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Figure 97. Vectors of Axial Velocity at 0 Degree 

 
Figure 98. Vectors of Axial Velocity at 45 Degree 
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Figure 99. Vectors of Axial Velocity at 90 Degree 

 

 
Figure 100. Vectors of Axial Velocity at 135 Degree 



 

 

 
91 

 
Figure 101. Vectors of Axial Velocity at 180 Degree 

 

 
Figure 102. Vectors of Axial Velocity at 225 Degree 
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Figure 103. Vectors of Axial Velocity at 270 Degree 

 
Figure 104. Vectors of Axial Velocity at 315 Degree 
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Figure 105. Vectors of Tangential Velocity at Section 1 

 
Figure 106. Vectors of Tangential Velocity at Section 2 
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Figure 107. Vectors of Tangential Velocity at Section 3 

 

 
Figure 108. Vectors of Tangential Velocity at Section 4 
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Figure 109. Vectors of Tangential Velocity at Section 5 

 
Figure 110. Vectors of Tangential Velocity at Section ‘out’ 
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Since the exit of the SFD is sealed, the axial and tangential velocities are zero as 

expected. As mentioned earlier, the minimum clearance is at 110 degree from positive X 

axis and the Rotor is whirling in the anticlockwise direction. At section 1 (located at the 

opening of the SFD land or at the end of the feed plenum), the fluid flows in the 

direction of the rotor into the minimum clearance, in the opening clearance region (the 

region of increasing clearance). Fluid also flows opposite to the rotor’s direction of whirl 

in the other quarter of the opening clearance. The magnitude of the tangential velocity in 

the closing clearance region is much smaller in comparison to the opening clearance 

region and it moves in the same direction as the rotor. As we move down the SFD land 

through sections 2 through 5, the same nature of fluid flow is observed. The magnitude 

of tangential velocity of the fluid in the opening clearance which flows opposite to the 

rotor whirl direction however increases. 

 Next, the force acting on the Rotor and the line of action of force with respect to 

minimum clearance were studied. Since the simulations were terminated at 110 degree, 

it needs to be investigated if the force has stabilized and the quasi-steady state reached. 
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Figure 111. Magnitude of Force on Rotor  v/s Whir l Angle (0.127 mm Clearance, 25.4 mm SFD Land 
Length, 50 Hz Whir l Frequency, 0.074 mm or  60%  Eccentr icity, Supply Pressure 31 kPa, 1, 3, 5 & 

7%  by Vol. Non-condensable Dissolved Gases) 

As the amount of dissolved gases is increased, the maximum pressure and total 

force on rotor tends to decrease (Figure 111). The force magnitude appears to be 

approaching a steady value. The slope of the 5% dissolved gases and 7% dissolved gases 

curves in particular reach a near zero value. For low quantities of dissolved air, the rotor 

is under damped and the force magnitude oscillates. As the quantity of dissolved air is 

increased, damping increases and there is very little over & undershoot. The rate of 

increase of force on rotor from the static condition or the slope of the curve too, 

decreases with increase in quantity of dissolved gases. For the 2 dimensional cases a 
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steady value is attained at about 400 degree. However a steady value appears to have 

been reached fairly quickly for the 3 dimensional cases. 

 
Figure 112. Line of Action of Total Force on Rotor  with Respect to Min. Clearance v/s Whir l Angle 

(0.127 mm Clearance, 25.4 mm SFD Land Length, 50 Hz Whir l Frequency, 0.074 mm or  60%  
Eccentr icity, Supply Pressure 31 kPa, 3%  Dissolved Air) 

The line of action of force with respect to the minimum clearance also appears to 

be approaching a steady value (Figure 112). For the two dimensional cases it attains a 

steady value at about 400 degree. However, the nature of the curve is very different from 

the two dimensional case. For the two dimensional case, the angle of line of action of 

Force with respect to the minimum clearance decreases sharply initially, then increases 

and settles to a steady value. In the three dimensional case on the other hand, this angle 

slightly decreases initially, then sharply increases. The curve representing 1% dissolved 



 

 

99 

99 

gases oscillates and the variations appear to become smaller with time. The variation in 

the angle is between a 90 degree range. 

The force acting on the rotor in the axial direction is almost negligible. This is 

verified from the plot of magnitude of axial force on the rotor v/s whirl angle (Figure 

113). This force too appears to have reached a steady value. 

 
Figure 113. Magnitude of Axial Force v/s Whir l Angle 
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7. CONCLUSION  

The feasibility of applying CFD to the study of flow field in a Squeeze Film 

Damper (SFD) was examined. Initially, 2D cases were studied. Dynamic deforming 

mesh capability of Fluent® was used to simulate the whirling motion of the rotor in a 

SFD. An unsteady solver with the mixture model was used to include the effect of 

cavitation. The CFD results (pressure distributions in the squeeze film) were compared 

to experimental data for a 5 mil clearance, 50 Hz rotating frequency case. The quantity 

of dissolved air in the working fluid was varied. The CFD results showed good 

agreement with the experimental results. However, the pressure prediction in the 

cavitation zone predicted from CFD exceeded the experimental pressure values. This 

could be attributed to several facts. The ingestion of surrounding air into the SFD has not 

been simulated in the CFD study. Cavitation bubble formation on the surfaces is not 

taken into account by CFD solver Fluent. The flat portion in the pressure plot has so far 

been attributed to air ingestion into the SFD. However this typical nature of the pressure 

plot has been obtained through CFD simulations as well despite air ingestion not being 

incorporated in the modeling. This provides evidence for the case that the flat portion of 

the pressure plot i.e. slow increase in pressure, might be partially due to the gaseous 

cavitation phenomenon as well. 

It was found that a 3D geometry requires a significant number of cells in the grid 

and this dense grid combined with the dynamic mesh model in Fluent considerably 

increases the simulation time. The availability of faster computers in the near future, 
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improvements in the methodology and alleviating problems of numerical instability 

would make the use of CFD an attractive option for analyzing Squeeze Film Dampers. 
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8. FUTURE SCOPE  

1. Address the numerical instabilities so as to run the simulation for more time-steps 

and higher rotor speeds. 

2. Change the cavitation models used to achieve better prediction of pressure 

distribution in the cavitating region (plateau region of the pressure plot). Currently, 

the CFD predictions exceed the experimental values in this region. 

3. The accuracy of prediction could be further improved by incorporating the complex 

effects of air-ingestion in the model. In the present work, only the effects of gaseous 

and vapor cavitation have been included. 

4. The type of sealing present also affects the degree of air-ingestion and cavitation. 

The effect of type and degree of sealing could be included in future studies. 

5. The present study includes only circular whirl orbits. Non-circular orbits could be 

studied too, for future work, by merely modifying the User Defined Function. 

6. It would if interest to study the behavior of lubricants other than Mobil Velocite 3 in 

future simulations. 

7. Most practical SFDs have feed grooves or end grooves present. For future work, a 

groove could be introduced in the SFD land and its effect on the pressure distribution 

could be studied. Subsequently, the number of grooves could be increased. 
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APPENDIX A 

MIXTURE MODEL USED IN FLUENT® 

The mixture model in Fluent® can be used to model multiphase flows for both 

cases viz. phases moving at different velocities but possessing local equilibrium over 

short length scales and for phases moving at same velocities i.e. homogenous multiphase 

flows. For this study, a homogenous mixture assumption was made. The continuity, 

momentum and energy equations are solved for the mixture and the volume fraction 

equations are solved for the secondary phases. Algebraic relations are solved for relative 

velocities (slip velocities) in case of phases moving with different velocities.  

The following are the governing equations solved by the mixture model. A suffix 

‘m’ is used for the governing equations of the mixture and a suffix ‘p’ is used for those 

of the secondary phase. 

Continuity equation for the mixture 

 
(A.1) 

where, 

 mv  is the mass-averaged velocity given by 
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Momentum equation for the mixture 

The momentum equation for the mixture is obtained by simply summing the 

individual momentum equations for the individual phases. It is given by  

 (A.3) 

With n  being the number of phases, F


being the body force, mµ  being the 

viscosity of the mixture given by  

 
(A.4) 

and ,dr kv is the drift velocity for the phase k  given by 

 (A.5) 

 Energy Equation for the mixture 

 
(A.6) 

effk  is the effective conductivity given by  

 (A.7) 

 where tk is the turbulent conductivity which depends on the turbulence model being 

used. The divergence term on the RHS is the energy transfer due to conduction whereas 

ES represents volumetric heat sources. 

Also, 
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For, incompressible phases, k kE h=  

Here, kh  is the sensible enthalpy for the phase k  

Volume fraction equation for the secondary phases 

The volume fraction equation for a secondary phase p can be obtained from the 

continuity equation for the phase and is given by 

 
(A.9) 

TURBULENCE MODELING AND THE STANDARD k-ε TURBULENCE MODEL 

Various turbulence models are available for modeling turbulence. Before 

selecting a turbulence model, it should be determined which is best suited for the 

application under consideration. The standard k-ε model, which is one of the most 

popular turbulence models, was used for this study since encouraging results have been 

obtained by researchers in the past using this model for flow through annular seal, small 

clearance and geometries similar to that of the squeeze film damper. 

A turbulence model is used to model the Reynolds stress term in the Reynolds-

Averaged Navier-Stokes or RANS equations. To obtaining the RANS equations, the 

flow variables are decomposed into mean and fluctuating components. Therefore, the 

velocity would be represented by i i iu u u′= +  where iu  is the time-averaged component 

of the velocity and iu′ is the fluctuating component. These kinds of expressions are 

substituted into the continuity and momentum equations and a time-average of the 

resulting equation is taken to obtain the RANS equations 
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(A.10) 

 
(A.11) 

For the closure of the above equation, the Reynolds stress term, i ju uρ ′ ′  needs to 

be modeled. For several turbulence models like the Spalart-Allmaras, the k-ε model and 

the k-ω model this term using the Boussinesq hypothesis of relating the Reynolds 

stresses to the mean velocity gradients.  

 
(A.12) 

where tµ is the turbulent viscosity and ijδ is the Kronecker delta. The above 

mentioned models use different correlations for tµ  

The standard k-ε model is a 2 equation model which was first proposed by 

Launder and Spalding. For this model the transport equations for Turbulence Kinetic 

Energy (k) and the Turbulence Kinetic Energy Dissipation rate (ε) are derived using the 

energy equation and physical intuition respectively. They are then solved to obtain k and 

ε which are used to obtain tµ given by 
2
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=  where Cµ  is constant. The transport 

equations for k and ε are given by  
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where, 

kG is the generation of turbulence kinetic energy due to the mean velocity gradients 

given by 22 t Sµ  where 

 
(A.14) 

and 
 

(A.15)
 

bG is the generation of turbulence kinetic energy due to buoyancy given by 
 

 

(A.16)
 

MY  represents the effect of compressibility on turbulence given by 

 
(A.17) 

 kσ , εσ  are turbulent Prandtl numbers for k and ε respectively 

kS , Sε  are user-defined source terms. 

The following values of constants, which are the default values, were used for the study- 

1C ε =1.44, 2C ε =1.92, Cµ =0.09, kσ =1.0 and εσ =1.3 
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APPENDIX B 

A moving reference frame is used render a problem which is unsteady into a frame 

steady with respect to the moving frame. For a steadily rotating frame (i.e., the rotational 

speed is constant), it is possible to transform the equations of fluid motion to the rotating 

frame such that steady-state solutions are possible. The following is a description of the 

equations for a Rotating Reference Frame. 

 
Figure B1. Stationary and Rotating Reference Frames 

Consider a coordinate system which is rotating steadily with angular velocityω  

relative to a stationary (inertial) reference frame, as illustrated in Figure B1. The origin 

of the rotating system is located by a position vector 0r
 . 

The axis of rotation is denoted by a unit direction vector â such that 
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âω ω=
  (B.1) 

The computational domain for the CFD problem is defined with respect to the 

rotating frame such that an arbitrary point in the CFD domain is located by a position 

vector r  from the origin of the rotating frame. The fluid velocities can be transformed 

from the stationary frame to the rotating frame using the following relation: 

r rv v u= −
  

 (B.2) 

where ru rω= ×
   (B.3) 

In the above, v  is the relative velocity (the velocity viewed from the rotating frame), v  

is the absolute velocity (the velocity viewed from the stationary frame), and ru is the 

“whirl” velocity (the velocity due to the moving frame). 

When the equations of motion are solved in the rotating reference frame, the 

acceleration of the fluid is augmented by additional terms that appear in the momentum 

equations. Moreover, the equations can be formulated in two different ways: 

i. Expressing the momentum equations using the relative velocities as dependent 

variables (known as the relative velocity formulation). 

ii. Expressing the momentum equations using the absolute velocities as dependent 

variables in the momentum equations (known as the absolute velocity 

formulation). 

FLUENT's pressure-based solvers provide the option to use either of these two 

formulations, whereas the density-based solvers always use the absolute velocity 

formulation.  

The details of the Relative Velocity Formation are as follows- 
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For the relative velocity formulation, the governing equations of fluid flow for a steadily 

rotating frame can be written as follows: 

Conservation of mass: 

0r
p v
t

ρ∂
+∇⋅ =

∂
  

(B.4) 

Conservation of momentum: 

( ) ( ) (2 )r
rr r r

v v v v r p F
t
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+∇⋅ + × + × × = −∇ + +
∂

        
(B.5) 

The momentum equation contains two additional acceleration terms: the Coriolis 

acceleration 2 rvω×
  and the centripetal acceleration rω ω× ×

   .  

To set up the Coordinate Transformation case, a steady state pressure based solver is 

selected. In the ‘Cell Zone Conditions’ Menu, motion needs to assigned to the fluid. The 

center of the Stator which also happens to be the origin of the global coordinate system 

is assigned as the Rotation-axis origin. In the ‘Motion Type’ sub-menu, Moving 

Reference Frame is selected. In the velocity definition sub-menu, a rotational velocity 

equal to the rotor whirl speed is assigned to the fluid. 



 

 

114 

114 

APPENDIX C 

For this work, the dynamic mesh capability of FLUENT has been used to 

simulate the whirling motion of the rotor accommodates changes in the shape of the 

domain, at each time step. This section explains the theory behind the dynamic mesh 

approach and procedure required to set up the dynamic mesh in detail. The orbit paths 

were then simulated using User Defined Functions (UDFs) in FLUENT, which are 

basically programs written in C++ that specify the motion of the rotor. 

USING DYNAMIC MESHES IN FLUENT 

In a SFD, the rotation motion of the journal or rotor about its center is prevented 

by an anti-rotation pin. However, the rotor is free to undergo whirl motion. To reproduce 

the circular whirl motion of the rotor about the center of the stator a User Defined 

Function (UDF) was used in conjunction with the dynamic mesh functionality. The 

changing shape of the fluid domain was thus accommodated using the dynamic meshing 

capability in FLUENT while the orbit path, i.e. the motion of the rotor was specified 

using User Defined Functions (UDFs). Dynamic meshing basically enables FLUENT to 

update the volume mesh for the domain at each time step, based on the new positions of 

the boundaries. It is, however, necessary to initially have a good quality volume mesh to 

ensure that all the flow properties are captured satisfactorily.  

When a dynamic mesh is used, FLUENT uses one of several available mesh 

motion methods in order to update the volume mesh that is subject to deformation. These 

methods are classified under smoothing methods, dynamic layering and local remeshing 

methods. The method that has been used for the simulations in this study is the spring- 
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based smoothing method. Here, the edges between any two nodes are taken as a network 

of springs and the spacing between the nodes in the initial mesh is taken as the 

equilibrium state. The force acting at each mesh node is then calculated (taking into 

account a user-defined spring constant) and the condition that at equilibrium the net 

force acting should be zero are used to obtain an iterative equation. As per Hook’s law, 

the force on the mesh node is given by 

( )in
i ij j ij

F k x x= ∆ −∆∑
    

where x∆  represents the displacement of the node, in the number of neighboring nodes 

and ijk  the spring constant between node i and its neighbor j. The spring constant for the 

edge connecting nodes i and j is defined as 

1
ij

i j

k
x x

=
−

 
 

 Using the condition that at equilibrium the net force at a node is zero, the iterative 

relation obtained is 

1
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ij ijm
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∆
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∑
∑


  

As the displacements are known at the boundaries (from the new boundary positions) a  

Jacobi sweep is performed to solve (1.2) on all interior nodes. At convergence 

1 ,n n m convergedx x x− + − −= + ∆  

where n+1 and n are the positions at the next and the current time step respectively. The 

FLUENT manual recommends the use of the spring-based smoothing method for non-
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tetrahedral meshes under the following cases: when the boundary of the zone moves 

predominantly in one direction or when the motion is predominantly normal to the 

boundary zone. Since these conditions are compliant with the geometry and motion of 

the simulations to be performed, this was the remeshing method of choice. The spring 

based smoothing method is enabled by default only for the tetrahedral meshing scheme. 

In order to use it for this work, where a hexahedral mesh was used, the smoothing 

method can be enabled for all cell types by using the following command 

(rpsetvar ‘dynamesh/spring/all-element-type? #t) 

Alternatively, the following chain of commands can be used 

define models dynamic-mesh-controls 

smoothing-parameter spring-on-all-shapes? 

 
DESCRIBING ROTOR MOTION USING UDFS 
 

In order to specify the motion of the rotor for each of the orbit paths to be 

simulated, the use of FLUENT’s ability to accommodate problem specific changes to the 

existing code, is made. Each different case run required the use of two UDFs (User 

Defined Functions) - one to specify the orbit path and another to specify the surface 

velocity for the whirling rotor. An UDF in FLUENT can be used for a variety of 

applications from problem definition to post processing as the need may arise. It is 

essentially a code written using a C programming language which can be dynamically 

linked to the solver. For the present application, the programs have been written in C++ 

using a Visual Studio editor. UDFs typically start with the udf.h file inclusion directive 

and are defined using the DEFINE macros that are provided by FLUENT. This program, 
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known as the source code, is saved with a .c extension and can then be interpreted or 

complied in FLUENT. The very first step in using a UDF is to define the problem 

mathematically, i.e., in the present application, for the motion of the rotor in a certain 

orbit path, it is necessary to have a set of equations that describe the motion. The next 

step is to incorporate these equations into C code. As mentioned in the previous 

paragraph, FLUENT provides a number of predefined functions or macros which can be 

used depending on the application. The general format of the DEFINE macro is as 

follows: 

DEFINE_macroname (udf_name, passed-in variables) 

The definitions for the macros used are all contained in the udf.h header file which must 

be included at the beginning of every UDF source code. This is done using the following 

complier directive 

#include “udf.h” 

While programming a UDF for FLUENT, it is useful to know that in addition to 

the standard data types from C, FLUENT has its own data types to represent the various 

computational units. Examples of these data types are - Node, face_t, cell_t and Thread. 

It is also important to know that in a UDF, zones (as in fluid and boundary zones defined 

in FLUENT) are referred to as threads. 

For the present application, in addition to the basic DEFINE macros, specifying 

the rotor motion required the use of vector and dimension macros. These macros are 

used to access and manipulate vector quantities and can be used for both two and three 

dimensional applications. The first DEFINE macro used in this application is the 
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DEFINE_CG_MOTION macro which specifies the motion of the dynamic zones by 

using the angular and linear velocities at each time step. These velocities are then used to 

update the node positions on the dynamic mesh zones based on the solid-body motion. 

The general syntax for the function is as follows 

DEFINE_CG_MOTION (name, dt, vel, omega, time, dtime) 

The arguments used are as follows: 

i. name ,which is the UDF name and is specified by the user 

ii.  dt, which is a pointer to the structure that stores the dynamic mesh attributes. 

This is passed from FLUENT directly to the UDF. 

iii. vel, a real variable which specifies the linear velocity. Its value is passed 

directly from FLUENT to UDF. 

iv. omega, a real variable which specifies the angular velocity. This is passed 

from FLUENT directly to the UDF. 

v. time , a real variable which specifies the current time. Its value is passed 

directly from FLUENT to UDF. 

vi. dtime, a real variable which specifies the time step .This is also passed from 

FLUENT directly to the UDF. 

In addition to the DEFINE macro, a few other macros were used to handle the 

vector manipulations in the program. These include the NV macros which operate on 

vectors, and can be used to perform operations right from the definition of the vector to 

compute dot and cross products. The program also uses a looping macro – 

begin…end_f_loop which is used to perform operations over all the faces of a given 
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thread. Another macro used is F_NODE which is used to call vector information such as 

the coordinate. For this application, this macro is used when the coordinate data for the 

current node is required within the begin…end_f_loop macro. The complete UDF for the 

circular orbit, is as follows: 

 
/********************************************************** 
 * 
 * Rotor's whirling motion UDF 
 * compiled UDF 
 * 
 **********************************************************/ 
#include "udf.h" 
#include "stdio.h" 
 
DEFINE_CG_MOTION(ROtor_Motion,dt,vel,omega,time,dtime) 
{ 
  Thread *tf = DT_THREAD (dt); 
  face_t f; 
  Node *v; 
  real NV_VEC (axis), NV_VEC (dx); 
  real NV_VEC (origin), NV_VEC (rvec), NV_VEC (center), NV_VEC (trans); 
  real rotation_radii, RPM; 
  real time1, time2, theta1, theta2; 
  int n; 
  /* set deforming flag on adjacent cell zone */ 
  SET_DEFORMING_THREAD_FLAG (THREAD_T0 (tf)); 
 
  rotation_radii = 0.001*0.0254;  //Whirling radius 
  RPM = 56.54866776; //  rad/sec- 540RPM: whirling speed 
 
  NV_D (axis, =, 0.0, 0.0, 0.001); 
  NV_D (origin, =, 0.0, 0.0, 0.0); 
  NV_D (center, =, rotation_radii, 0.0, 0.0); 
  NV_D (trans, =, 0.0, 0.0, 0.0); 
  time1 = time;    
  time2 = time+dtime; 
  theta1= time1 * RPM; 
  theta2= time2 * RPM; 
  Message ("\n whirl angle=%f     time=%f\n,”theta1*180/3.141592,time); 
    if (fabs(theta1) > 6.28318531) 
  theta1 -= 6.28318531; 
  if (fabs(theta2) > 6.28318531) 
  theta2 -= 6.28318531; 
  trans[0] = rotation_radii*(cos(theta2)-cos(theta1));  //unit in m 
  trans[18] = rotation_radii*(sin(theta2)-sin(theta1));  //unit in m 
  Message  ("%f   %f    %f  \n,” theta1*180/3.141592, trans[0], 
trans[18]); 
  begin_f_loop (f, tf) 
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    { 
      f_node_loop (f, tf, n) 
        { 
          v = F_NODE (f, tf, n); 
                if (NODE_POS_NEED_UPDATE (v)) 
    { 
    NODE_POS_UPDATED(v); 
        NV_V (NODE_COORD (v), +=, trans); 
 } 
        } 
    } 
  end_f_loop (f, tf); 
 
} 

The first two lines of the program deal with linking the header files required by 

the UDF udf.h as mentioned earlier and stdio.h which is the “standard input/output 

header” and provides functions for input and output operations. The next part involves 

the usage of the DEFINE macro which has been given the name Rotor_Motion. Within 

the macro, the first line returns a pointer to the face thread for which the dynamic mesh 

attributes are specified and this is stored in the pointer *tf. The next few lines deal 

with the declaration of the user defined variables used in the program – the vectors 

defined are axis, dx, origin, rvec, center and trans while the scalar 

variables defined are theta1, theta2, rotation_radii, RPM, time1 

and time2.The deforming flag is then set on the adjacent cell zone which is followed 

by the initialization of the variables. 

The variable rotation_radii indicates the whirling radius of the seal and 

this is given by half the value of the eccentricity of the rotor, about the center of the seal 

(the value is multiplied by 0.0254 to account for the conversion to SI units). The next 

variable initialized is RPM which indicates the whirling speed (in rad/sec) – this is the 

variable whose value is changed for different whirl speeds. Similarly the variables 
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axis, origin, center and trans are all initialized in the vector form while 

the values for the variables time1 and time 2 are passed to the function from 

FLUENT itself. Within FLUENT, the time step is computed as follows – for the rotor 

speed of 540 RPM, which is 9 Hz, which is 1/9th of a second for 1 revolution; therefore 

for a one degree increment, the time step would be 1/(360X9) seconds. The values for 

theta1 and theta2 are then calculated from the values of the time variables by 

multiplying it with the whirling speed. After the variables are initialized, an if 

condition is used to ensure that the values of the angles theta1 and theta2 do not 

exceed 3600. The next part is to specify the coordinates of the center of the rotor wall 

according to the orbit path and this is computed using the values of theta1, theta2 

and the whirling radius. Here, the first two elements of the trans vector indicate the 

x and y coordinates of the center respectively and each element is calculated 

individually. A loop is then set up using the begin…end_f_loop macro in order to loop 

over the entire thread and within this, the f_node_loop is used to loop over all the nodes 

of each face of the thread. An if condition is then used within the loop to ensure all the 

nodes are updated. 
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