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ABSTRACT 

 
 

Urine Protein Analysis and Correlation of Urinary Biomarkers with Renal Disease 

Progression in Dogs with X-Linked Hereditary Nephropathy. (December 2010) 

Mary B. Nabity, B.S., University of Nebraska-Lincoln; D.V.M., Cornell University 

Co-Chairs of Advisory Committee: Dr. Fred J. Clubb 
  Dr. George E. Lees 

 
 

Chronic kidney disease (CKD) is a major cause of illness in dogs, and it is 

commonly caused by glomerular diseases that result in proteinuria and a progressive 

decline in renal function. Despite the importance of glomerular lesions, tubulointerstitial 

fibrosis identified by histologic evaluation of renal biopsies correlates best with renal 

function. However, performing a renal biopsy is invasive. Most current non-invasive 

tests for renal function lack adequate sensitivity and specificity for renal disease. 

Proteinuria can be both a sensitive and specific marker for renal damage. However, its 

evaluation in veterinary medicine beyond determination of the magnitude of proteinuria 

(e.g., urine protein:creatinine ratio (UPC)) is limited. Therefore, in this report, further 

evaluation of the UPC was performed to aid in the monitoring of renal disease 

progression and response to treatment. In addition, qualitative evaluation of proteinuria 

was performed in dogs with progressive CKD in order to identify better non-invasive 

markers for tubulointerstitial injury. 

The day-to-day variability of the UPC was determined utilizing data obtained 

from female dogs that are carriers for X-linked hereditary nephropathy (XLHN). Despite 
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an unchanging magnitude of proteinuria in these dogs, substantial variation in their UPC 

was observed. Using these results, guidelines were suggested to help assess whether 

disease progression or treatment leads to a significant change in UPC.  

Qualitative characterization of proteinuria in dogs with CKD was performed 

using urine from male dogs affected with XLHN, and results were correlated with 

clinical and histologic findings concerning renal function and damage. The two 

discovery proteomic techniques utilized (chromatographic chip array and two-

dimensional gel electrophoresis) revealed several proteins that have not previously been 

implicated as markers for canine CKD, providing a basis for future studies. Specific 

assays for urinary biomarkers of renal injury were used to serially evaluate renal 

function in these dogs. All proteins evaluated proved to be sensitive markers for renal 

damage. However, only retinol binding protein provided clear evidence for renal disease 

progression. These results will provide the foundation for future studies aimed at 

monitoring urinary biomarkers in dogs with CKD, which will ultimately help 

veterinarians better diagnose and monitor proteinuric renal disease. 
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CHAPTER I 

INTRODUCTION 

 

         Overview of canine chronic kidney disease  

Chronic kidney disease (CKD) is a major cause of morbidity and mortality in 

dogs, and it can be due to primary renal diseases or secondary to a variety of systemic 

diseases.1 Structural and functional evidence of kidney damage is prevalent, even in 

apparently clinically healthy dogs, and prevalence of disease increases with age, 

approaching 50-90% in some studies.1-3 While evidence of kidney damage is common, 

progressive CKD is less commonly recognized. It is generally accepted that CKD is 

present in approximately 15% of dogs older than 10 years of age, and that it is 

responsible for 3-5% of all deaths in dogs. 

CKD may be initiated by glomerular damage, tubulointerstitial damage, or both. 

Historically, canine CKD was thought to arise primarily due to tubulointerstitial damage, 

but as more data about renal disease becomes available and as veterinarians have 

become more astute in detecting CKD earlier during the disease process, it has become 

clear that glomerular disease is a significant, if not predominant cause of CKD.3,4 

Regardless of the cause, renal function correlates best with renal tubulointerstitial 

changes such as interstitial fibrosis, tubular degeneration and atrophy, peritubular 

capillary loss, and ultimately, destruction of functional nephrons.5  

 

___________________ 
This dissertation follows the style of Journal of Veterinary Internal Medicine. 
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Progression of renal lesions to CKD ultimately depends on whether continued 

nephron loss occurs either as a result of or after the initiating injury. Disease progression 

involves a complex interplay of numerous pathophysiologic mechanisms that involve all 

components of the kidney. For instance, when enough nephron loss has occurred to 

impair renal function, hyperfiltration of remaining nephrons occurs due to glomerular 

capillary hypertension and hypertrophy, which can have a number of harmful 

downstream effects on the affected glomeruli and tubules, including proteinuria, 

hypoxia, and stimulation of inflammatory pathways.6,7 This self-perpetuation of nephron 

damage results in renal disease progression even after the initiating cause has been 

removed. In addition, proteinuria due to glomerular damage leads to production of 

inflammatory, vasoactive, and fibrogenic mediators by the renal tubules.8  

 

Current non-invasive methods for detecting renal disease 

While tubulointerstitial lesions observed in renal tissue correlate best with the 

degree of renal function, renal biopsy is a relatively invasive technique that is not 

commonly performed in veterinary medicine. Therefore, non-invasive tests of renal 

function are more often utilized. The gold standard for global renal function is 

estimation of the glomerular filtration rate (GFR) using clearance methods to determine 

the volume of plasma cleared of its marker substance by the kidney in a unit of time. In 

this way, the estimated GFR provides a measure of the ability of the kidneys to clear the 

blood of waste metabolites. Several endogenous substances are typically used to provide 

a rough indication of GFR, as described below.  
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Renal function and GFR can be altered by either glomerular disease or 

tubulointerstitial disease. It would be clinically useful for the clinician to be able to 

distinguish between damage to these two components. Clinical tests for monitoring both 

glomerular and tubulointerstitial damage are available, but they have significant 

limitations. Tubulointerstitial damage is routinely detected clinically by increases in 

serum creatinine concentration (sCr) in combination with a decreased urine specific 

gravity (USG). Serum creatinine is currently used to stage the severity of CKD in dogs 

using the IRIS (International Renal Interest Society) staging system with sCr > 1.4 mg/dl 

being considered azotemic in most dogs. Urine specific gravity in renal failure is 

typically 1.008-1.012, which is referred to as isosthenuria, and this indicates impaired 

concentrating ability by the tubules. However, changes in both sCr and USG are 

insensitive, occurring only after a substantial (65-75%) loss of nephrons.9 They also are 

both affected by certain non-renal factors that can decrease their specificity. For 

example, creatinine production is primarily determined by the muscle mass of the 

patient. Therefore, measurement of serum creatinine concentration may overestimate 

renal function in cachectic, geriatric, and very young patients, and in dogs, breed and 

weight must also be considered.10 Because of this, basing a normal versus abnormal 

value on a global reference interval for sCr will be inaccurate in many patients. 

However, while inter-individual variation can be quite large, intra-individual variation in 

a healthy adult animal is small over weeks to months, and even years.11 Therefore, serial 

monitoring in a patient may allow detection of mild elevations in serum creatinine 

concentration that might be associated with significant renal disease. For USG, values 
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are influenced by hydration status, medications, and a variety of diseases and 

endogenous substances. This poor specificity is illustrated clinically, where dogs without 

evidence of renal disease can have a USG ranging from 1.001-1.045. By combining an 

increased sCr with an isosthenuric USG, specificity for renal failure rises, but even this 

combination is not specific for primary renal disease, exemplified by some cases of 

hypoadrenocorticism. Therefore, more sensitive and specific non-invasive tests of 

tubulointerstitial injury and function are needed.  

Glomerular damage can be first detected clinically by renal proteinuria, and an 

increased urine protein:creatinine ratio (UPC) ! 2.0 is currently one of the best non-

invasive indicators to detect the presence of glomerular disease.12 However, patients 

with a mildly increased UPC of between 0.5-2.0 may either have glomerular or tubular 

disease. The UPC provides an indication of the magnitude of proteinuria, and in general, 

the higher the value the more severe or extensive the glomerular lesion. However, this is 

not always the case, and UPC may actually decrease with end-stage renal failure due to a 

decrease in the number of functioning nephrons.12 The urine protein concentration 

measured for determination of UPC represents the total protein present in the urine, 

which is generally mostly composed of albumin, globulins, and Tamm-Horsfall protein. 

Urine creatinine concentration is used in the calculation of the UPC to account for the 

marked variation of the urine concentration that occurs in a given patient due to changes 

in hydration status. Monitoring the UPC can be useful to detect progression or 

improvement of glomerular disease, but many factors may contribute to variation of the 

UPC without any change in the prevailing magnitude of proteinuria. Therefore, it can be 
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difficult to determine whether a true increase or decrease in the magnitude of proteinuria 

has occurred using serial UPC measurements. It is important to note that the presence of 

microalbuminuria can serve as an indicator of glomerular damage that is more sensitive 

than an increased UPC.13 However, its overall lack of specificity limits its use as a 

reliable indicator of clinically significant or progressive glomerular or tubular injury.14,15 

 

Proteinuria in kidney disease 

Normal urine contains only a small amount of protein, which is due to the 

combined efforts of both the glomeruli and the proximal renal tubules. In dogs, normal 

24-hour urinary protein loss has been reported to range from 50-300 mg/day, although 

this estimate depends on the study population and assay used for protein measurement, 

since widely varying results may be obtained using different assays.16-18 This amount of 

urinary protein loss typically corresponds with a UPC < 0.2.17,18 The causes of 

proteinuria may be divided into pre-renal, renal, and post-renal abnormalities. Examples 

of pre-renal causes of proteinuria include dysproteinemias (e.g., multiple myeloma), 

whereas post-renal causes of proteinuria are a result of excretory pathway inflammation 

and/or hemorrhage (e.g., urinary tract infection). These causes of proteinuria are 

important to recognize and treat, but quantification of proteinuria in these situations is 

not helpful in assessing disease severity or prognosis. On the other hand, kidney disease 

in people and dogs is commonly characterized by protein loss, and quantification of 

proteinuria that is secondary to renal disease is clinically useful. Several studies have 

shown that a greater magnitude of proteinuria correlates with the severity and 
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progression of renal disease in dogs.19,20 In addition, institution of therapies that reduce 

the magnitude of proteinuria help to slow the progression of renal disease.21-25  

The concept behind proteinuria as an indicator of renal damage is that the 

glomerular filtration barrier normally excludes most proteins that are the size of albumin 

or larger (> 60 kDa) based on size-exclusion studies.26 Proteins smaller than this, which 

are referred to as low molecular weight proteins (LMW), typically pass through the 

barrier, and their ease of passage depends on their size, charge, and shape. However, the 

proximal tubules efficiently reabsorb these LMW proteins.27 Since larger proteins, 

particularly albumin, comprise the bulk of the proteins in plasma, glomerular damage 

can lead to massive renal protein loss, whereas tubular damage generally results in only 

mild proteinuria. While it is generally accepted that the glomeruli provide the main 

barrier to albumin filtration, debate continues as to the relative contribution of the 

glomerulus versus the tubules in development of albuminuria.28  

 

The glomerular capillary filtration barrier  

The glomerular capillary wall is composed of three major structural components: 

the fenestrated capillary endothelium, the glomerular basement membrane (GBM) and 

visceral epithelial cells called podocytes (Figure 1). These components all closely 

interact with one another to form a highly specialized filtration barrier that serves to 

retain the cellular components and the majority of plasma proteins in the blood. Normal 

function of this barrier depends on normal structure and function of each component as 

well as a normal hemodynamic steady state.29 Alterations in any one component can lead 
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to altered function of the glomerular capillary barrier as a whole.30 In addition, 

mesangial cells, while not in the direct line of plasma filtration, influence glomerular 

filtration and help to maintain both the structural and functional integrity of the 

glomerular capillary loop.26,31 The downstream effects of an altered filtration barrier 

include clinical manifestations of proteinuria and hematuria, and in many cases, 

progression to end-stage renal disease. However, there are still many controversial 

aspects regarding the filtration barrier and its role in proteinuria, including which 

structural component provides the main filtration barrier for proteins and the importance 

of charge versus size of a protein in preventing its passage.30 Depending on the study, 

anywhere from 0.06% to 3% of plasma albumin is estimated to pass through the 

filtration barrier.30 

 
 
 

 

Figure 1. Transmission electron micrograph of the glomerular capillary wall of a normal 
dog. Endothelial cells line the capillary lumen (CL), while podocyte foot processes line 
the urinary space (US) aspect of the glomerular capillary wall. The basement membrane 
(arrows) is located between these two cells types. 



                        8  

Capillary endothelium 

The “internal” component of the glomerular filtration barrier is the capillary 

endothelium. Importantly, this endothelium contains fenestrations of approximately 60-

80 nm that allow for filtration of plasma through the endothelium, and these fenestrae 

appear to be induced and maintained by VEGF.32 Endothelial cells are internally lined 

by a negatively-charged glycocalyx composed predominantly of proteoglycans, namely 

heparan sulfate proteoglycans.33 This glycocalyx covers both fenestrated and non-

fenestrated portions of the endothelial cell,34 and some investigators propose that this 

layer should be considered as a separate and thus fourth component of the glomerular 

filtration barrier.35 Certainly, studies have shown that administration of enzymes to break 

down the glycocalyx result in increased permeability of the glomerulus.36  

In examples of glomerular endothelial damage, the most studied of which is 

preeclampsia, proteinuria and a decrease in glomerular filtration rate are seen, and in 

some cases the proteinuria is present in the absence of evident basement membrane and 

podocyte damage.32 This highlights the importance of the endothelium in either 

preventing passage of albumin or in functionally altering the other barrier components 

through signaling mechanisms.32 

Glomerular basement membrane 

The glomerular basement membrane (GBM) is produced by both podocytes and 

endothelial cells.37 The main components of the GBM are laminin, type IV collagen, 

nidogen/enactin, and proteoglycans, including the heparan sulfate proteoglycans agrin 

and perlecan.38 In addition to being thicker than most basement membranes, a 
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distinguishing characteristic of the GBM is the presence of laminin-521 (#5$2!1) and 

type IV collagen composed of #3, #4, and #5 chains.38 Ultrastructurally, the GBM is 

characterized by three layers: the middle lamina rara densa, the sub-endothelial lamina 

rara interna, and sub-epithelial lamina rara externa.39 Although some controversy exists, 

it is widely accepted that the GBM provides both a charge- and size-selective barrier to 

the passage of proteins.40 

Diseases that are characterized by mutations of genes that encode GBM proteins 

illustrate the importance of the GBM in maintaining permselectivity of the glomerular 

filtration barrier and in renal function. For instance, people and mice with mutations of 

the gene encoding the $2 chain of laminin develop marked proteinuria and progressive 

renal disease, and in mice, the proteinuria occurs before there are any evident changes of 

the podocytes.41 Similarly, dogs with mutations of genes that encode the !4 or !5 chain 

of type IV collagen (analogous to Alport syndrome in humans) develop early and 

marked proteinuria as well as progressive renal disease.42-46 Interestingly, in people with 

Alport syndrome, the earliest and most striking clinical feature is hematuria rather than 

proteinuria. While proteinuria may be present in these patients, it is initially mild, 

although nephrotic syndrome is common in those patients with advanced nephropathy.47 

Because of this, type IV collagen is generally not thought to play an important role in 

macromolecular filtration.48 

The molecular basis for the development of renal disease and proteinuria with 

disruption of GBM components is unknown. However, in patients with Alport syndrome 

the glomerular basement membrane is composed of !1-!2(IV) chains rather than 
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predominantly of !3-!4-!5(IV) chains.49 The !1-!2(IV) chains are more susceptible to 

proteolysis, possibly due to fewer disulfide bonds, and this may explain disease onset 

and progression.50 In addition, it is well-known that there are extensive connections that 

allow for signaling between the GBM components and the adjacent podocytes and 

endothelium.51 An alteration of the composition of type IV collagen may alter signaling 

to these cells, thereby contributing to the observed proteinuria and progressive renal 

disease.  

Podocytes 

Podocytes are present along the urinary space aspect of the glomerular capillary 

wall. Podocytes were historically thought to have little to no capacity for regeneration or 

renewal; however, recent studies have identified podocyte progenitor cells within 

Bowman’s capsule.52 Podocytes extend cytoplasmic processes called foot processes that 

essentially form a covering around glomerular capillary loops. Foot processes are 

attached to the GBM mainly through integrins, although tetraspanins and dystroglycans 

appear to play a role as well.53 Interestingly, deficiency of the tetraspanin CD151 in mice 

results in similar GBM ultrastructural findings as Alport syndrome.54 The foot processes 

from two adjacent cells interdigitate along the capillary wall, and these processes are 

connected together by a unique structure called a slit diaphragm. This diaphragm forms a 

zipper-like shape, with pores smaller than albumin.53 Unique proteins such as nephrin 

and Neph1-3 help to form the “zipper” that spans the two foot processes, but a number 

of other components are necessary for proper functioning of this structure, including 

podocin, Cd2ap, and Nck, among others.53,55 Along the apical side of the foot processes 



                        11  

are podocalyxin and Glepp1, which are both proteins necessary for normal podocyte 

architecture and filtration.53,56 Maintenance of the actin cytoskeleton is also crucial for 

proper podocyte functioning, and this is mediated in large part by #-actinin-4 and 

synaptopodin.53 Mutations in many of these proteins have been shown to result in 

massive proteinuria in people and mice and in many cases, rapid renal disease 

progression is seen.55  

With the recent discovery of the various components of the slit diaphragm and 

their relation to genetic proteinuric disease, primary emphasis has recently been given to 

the podocytes in the development of proteinuria. In addition, in most proteinuric 

nephropathies podocyte foot process effacement, which is the primary means for 

detecting podocyte damage, has been observed. However, whether effacement is a cause 

or consequence of proteinuria in various diseases remains debated. For example, 

proteinuria occurs prior to podocyte foot process effacement in experimental animal 

models with certain defects in each of the 3 components of the glomerular capillary 

wall.51 These findings suggest that the interplay among the various components, rather 

than any single component, is most important in preventing proteinuria.51   

 

Proximal renal tubules 

Proximal renal tubular cells perform a variety of crucial physiologic functions.  

However, this discussion will focus primarily on their role in protein reabsorption. The 

glomerulus is considered critical in limiting the passage of proteins into the urine filtrate, 

but the renal tubules are important in reabsorbing proteins that pass through the 
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glomerular filtration barrier. Most of the normally filtered proteins are reabsorbed by the 

cells of the proximal convoluted tubules, predominantly in the S1 and S2 segments, via 

receptor mediated endocytosis.29 Currently, the identified receptors include megalin, 

cubilin, and the recently identified accessory protein, amnionless.57 Megalin is in the 

LDL family of receptors. It contains an N-terminal domain that is involved in ligand 

binding, a transmembrane domain, and a cytoplasmic tail that mediates clustering in 

coated pits (initiating endocytosis) as well as cell signaling.58 Cubilin lacks a 

transmembrane domain, and its endocytosis is thought to be mediated by both megalin 

and amnionless.57 Megalin and cubilin are abundantly expressed along the proximal 

tubule. Interestingly, glomerular expression of these receptors has been identified in rats, 

although to a lesser degree than in the proximal tubules, and the expression in the 

glomerular cells increased with age, whereas megalin expression decreased with age in 

the proximal tubules.59 The authors speculate that glomeruli may take on a larger role of 

albumin reabsorption in older rats.59 

Ligands of both megalin and cubilin continue to be discovered, but at this point 

in time, over 50 ligands have been identified for megalin as compared to 14 ligands for 

cubulin.57 Each receptor has specific ligands, but they also share many ligands. For 

instance, retinol binding protein, transcobalamin, neutrophil gelatinase-associated 

lipocalin, and #1-microglobulin are bound specifically by megalin, whereas transferrin, 

apolipoprotein A1, and Clara cell secretory protein are bound specifically by cubilin. 

Albumin, vitamin D-binding protein, and hemoglobin are bound by both receptors.57 

Affinity of the receptors for each ligand varies depending on protein charge and charge 
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distribution, size, and conformation, and ligands compete for binding sites on the 

receptors in situations of protein-overload.27,60  

As reviewed by Marshansky, et al., after proteins bind to megalin and cubilin, the 

receptors cluster into clathrin-coated pits at the base of the microvilli.60 These membrane 

pits are then pinched off to become endosomes, which are acidified by proton pumps and 

chloride channels.60 Acidification results in dissociation of the ligands from the 

receptors, whereby the protein receptors are recycled back to the luminal surface of the 

cell, and the ligands are either degraded by lysosomal enzymes or modified and released 

into the blood via the basolateral surface (e.g. vitamins).58,60 The end result of this 

receptor-mediated endocytosis is both protein removal from the tubular filtrate and 

recycling of vital proteins for re-use. As mentioned, the majority of proteins are 

degraded, and only minimal transport of intact protein is thought to occur, as supported 

by some of the first perfusion studies.61,62 Similar to vitamins, these protein fragments 

and amino acids are also released into the blood on the basolateral surface.62 Recent 

studies have found that the majority of the protein present in normal urine is composed 

of protein fragments (predominantly albumin) rather than intact protein, which is 

thought to be due to tubular processing as well.63 

 

Proteinuria-induced renal damage 

 Proteinuria has been implicated in the progression of renal disease as a result of 

several pathogenic mechanisms. These mechanisms include: 1) misdirected filtration of 

the urinary filtrate secondary to podocyte loss and subsequent adhesion of the 
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glomerulus to Bowman’s capsule, 2) obstruction of the tubular lumen due to protein 

casts, and 3) stimulation of inflammatory pathways due to uptake of excessive and 

abnormally filtered proteins by the proximal tubular cells.64 Of these mechanisms, most 

emphasis has been placed on the latter pathway, with megalin and cubilin implicated as 

key factors. Albumin, albumin-bound molecules, and other proteins abnormally filtered 

in patients with glomerular disease have been shown to alter signaling mediators and 

transcription factors within the proximal tubular cells, which lead to release of a variety 

of chemokines, cytokines, and fibrogenic mediators, including endothelin-1, MCP-1, 

RANTES, interleukin-8, and transforming growth factor-$.65 Signaling through 

megalin’s cytoplasmic domain is thought to be the major trigger for many of these 

signaling pathways. This is supported by a study using megalin knockout mosaic mice 

with induced glomerular proteinuria, where cells expressing megalin showed both 

protein uptake and staining for several inflammatory markers while staining was absent 

in the cells lacking megalin.66 In addition to altered signaling, abnormally filtered 

proteins may have direct toxic effects on the cell when internalized.64 Also, reabsorption 

of lysosomal enzymes by the proximal tubules normally helps renew the contents of the 

lysosomes within these cells. Therefore, during overload proteinuria, competition for 

reabsorption can result in lysosomal enzyme deficiency, leading to additional protein 

accumulation within the cell.67 Finally, proximal tubular cells that develop an 

inflammatory and fibrogenic phenotype due to the above processes are thought to 

undergo epithelial to mesenchymal transition, thereby contributing to interstitial 

fibrosis.68  
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 Although it is well-accepted that proteinuria influences renal disease progression, 

there is substantial controversy regarding its relative contribution to interstitial fibrosis 

as compared with glomerular injury causing encroachment of the glomerulotubular 

junction (secondary to misdirected ultrafiltration).67 For instance, one study that 

evaluated a transgenic megalin-deficient mouse model found that inflammatory 

mediators were increased in megalin-positive cells as compared with megalin-deficient 

cells. However, tubular degeneration and interstitial inflammation was only associated 

with nephrons that had a blocked or partially blocked glomerulotubular junction.69 This 

finding emphasizes the importance of an intact glomerulotubular junction on the 

remaining nephron.  

 

Qualitative assessment of proteinuria in human and veterinary medicine 

The magnitude of proteinuria generally reflects the severity and extent of 

glomerular lesions, and while proteinuria is associated with a more rapid course to 

uremic crises or death, it does not provide a good indicator regarding the degree of 

tubulointerstitial damage. In addition, as mentioned previously, serum tests for renal 

function, such as serum creatinine, require substantial loss of normally functioning 

nephrons before increases will become clinically evident. Therefore, the evaluation of 

urinary protein patterns and specific urinary proteins (qualitative assessment of 

proteinuria) has attracted substantial interest in recent years as a promising tool that can 

provide a non-invasive assessment of tubular function and that may predict progression 

of CKD better than total proteinuria.29 
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Patterns of proteinuria 

The pattern of proteins as visualized by urine electrophoresis can be used to help 

determine whether glomerular and/or tubular damage is contributing to the proteinuria. 

More recently, proteomic techniques, including the use of electrophoretic, 

chromatographic, and mass spectrometric based methods, have been used to discover 

novel biomarkers for glomerular and/or tubular damage in urine.70 Sodium-dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is one of the most commonly 

used gel-based methods to assess glomerular versus tubular patterns of proteinuria. With 

this technique, tubular damage in the face of normal glomerular function will reveal a 

pattern of proteinuria consisting of predominantly low molecular weight (LMW) 

proteins (<40 kDa). Glomerular damage occurring without concurrent tubular damage or 

dysfunction will reveal a pattern consisting of intermediate (IMW) and high molecular 

weight (HMW) proteins (>60-70 kDa). This glomerular pattern can be either selective, 

with passage of only IMW proteins (predominantly albumin) or non-selective, with 

passage of HMW proteins. More typically, there is damage to both the glomerular and 

tubular components resulting in a mixed pattern of proteinuria.71 In both dogs and 

people, electrophoretic patterns have been associated with prognosis and/or the degree of 

tubulointerstitial damage as assessed by renal biopsy.71-74 However, while sensitivity of 

the urine protein pattern for detecting glomerular and tubular damage was good, 

specificity was found to be relatively low in dogs.72  
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Specific urinary proteins in human medicine 

In addition to protein patterns, great progress has been made in the evaluation of 

specific proteins to determine the localization and severity of renal damage. Certain 

proteins have also been used to detect decreased renal function and tubulointerstitial 

damage earlier than when using more conventional methods. For instance, a number of 

studies in people have used the selectivity index to assess the degree of glomerular 

damage.29 This index uses a ratio of a HMW proteins, such as immunoglobulin G (IgG), 

and an IMW protein, such as albumin or transferrin. A higher ratio indicates that large 

proteins are able to pass through the glomerular filtration barrier, and it is associated 

with lack of remission in certain glomerular diseases as well as a worse prognosis, even 

when the magnitude of proteinuria provides no predictive information.29 This index may 

also correlate with the severity of tubulointerstitial damage.29 

While HMW proteins are thought to provide a sense of the degree of glomerular 

injury, LMW proteins have been used to assess the degree of tubular function and 

therefore tubulointerstitial damage. These proteins freely pass through the glomerulus 

but appear in the urine due to decreased tubular reabsorption. Some of the most studied 

LMW proteins in the human literature include "2-microglobulin (B2M), !1-

microglobulin (#1M), and retinol binding protein (RBP). A variety of studies have 

shown these urinary proteins to predict the clinical course of disease better than the 

magnitude of proteinuria. However, B2M is only stable when urine pH > 5.5.75 

Therefore, RBP and #1M have been used as more stable alternatives.76 
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B2M is a 12 kDa protein that is a component of MHC class I molecules, whereas 

#1M is a 27-31 kDa protein with anti-inflammatory properties.77 Both proteins have 

been studied most extensively in cases of idiopathic membranous nephropathy, where 

they serve as independent predictors of progression to renal insufficiency and may 

therefore help determine which patients should be treated with immunosuppressive 

therapy.78-80 However, although urinary excretion decreased with treatment, urinary 

B2M and #1M post-treatment did not have any prognostic value.81 In another study of 

patients with early glomerular disease due to a variety of causes, B2M was the best 

predictor of impaired GFR as compared with other tubular indices including urinary 

lysozyme, the brush border enzyme dipeptydyl aminopeptidase, and fractional sodium 

excretion.82 

RBP is a 21 kDa protein that transports retinol to peripheral tissues. It circulates 

in the blood both free and bound to transthyretin, a 55 kDa protein. In people, it is 

estimated that approximately 10-15% of circulating RBP is in the free form, and 

therefore easily filterable, although this percentage is higher in dogs.83 Similar to B2M 

and #1M, urinary RBP (uRBP) has shown prognostic significance when evaluated in 

patients with CKD. In patients with a variety of glomerulonephropathies who were 

serially evaluated over months to years, uRBP and serum creatinine were the only 

baseline findings that served as independent predictors of renal function loss.84 In this 

study, uRBP was better than serum creatinine at predicting progression when a 6-month 

follow-up evaluation was performed. Furthermore, uRBP was also useful in cases where 

serum creatinine was initially normal.84 However, it is interesting to note that normal 



                        19  

uRBP concentrations were found in the majority of patients with minimal change disease 

and mesangial proliferative glomerulonephritis.84 This suggests that the appearance of 

uRBP may not be greatly influenced by competition for reabsorption or increased 

glomerular filtration of RBP bound to transthyretin in glomerular disease. Another study 

found uRBP to closely correlate with serum creatinine and to predict progression to renal 

failure.85 In addition, the percentage of renal tubular atrophy and fibrosis was higher in 

those patients with increased uRBP. However, unlike for uRBP, a statistical correlation 

between tubulointerstitial injury and creatinine clearance as well as disease progression 

could not be identified.85 This supports the idea that urinary proteins provide a more 

global assessment of renal injury than renal biopsies and therefore may be more 

appropriate for estimating renal function.  

It should be pointed out that many of the low molecular weight proteins have 

also been evaluated in the serum of patients with CKD, and similar to creatinine, their 

serum levels increase with declining renal function. Some studies have assessed the use 

of B2M, for instance, as a surrogate marker for GFR in children,86 and patients with 

renal failure have an increase in unbound RBP with no change in the bound fraction.87 It 

is possible that some of these proteins, such as RBP, contribute to the uremic metabolic 

syndrome that occurs with end-stage renal disease.88 However, factors other than 

decreased urinary filtration may increase the serum concentration of these proteins. For 

example, serum B2M may be increased due to non-renal neoplastic and inflammatory 

diseases, whereas RBP may be increased with obesity.87,89  
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Other “tubular” proteins that have been shown to be useful in the evaluation of 

renal disease are those that are produced and released by the tubular cells in response to 

injury. These proteins include brush border, lysosomal, and cytosolic enzymes that are 

released secondary to tubular damage (e.g., N-acetyl-"-D-glucosaminidase (NAG), #-

glutamyltransferase (GGT), alkaline phosphatase (ALP), and glutathione-S-transferase 

(GST)), in addition to proteins that are upregulated with tubular injury (e.g., kidney 

injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL)). 

Tubular enzymes have been studied extensively over the years, and urinary NAG in 

particular has been found to be more sensitive for renal dysfunction than serum 

creatinine, total protein excretion, or several other urinary enzymes in patients with 

chronic glomerulonephritis and pyelonephritis.90 Urinary NAG was also found to predict 

renal disease progression and response to therapy in patients with several different 

glomerular diseases.91   

While renal tubular enzymes have shown promise in the evaluation of tubular 

damage, there is debate as to whether enzymes that also circulate in the blood should be 

evaluated in patients with glomerular disease. Large urinary enzymes are considered to 

be solely of renal origin when the glomerular filtration barrier is intact. However, in 

cases of non-selective proteinuria, plasma contribution to the urinary enzyme activity is 

possible. This dilemma has been evaluated in several studies for NAG (150 kDa), where 

isoenzyme analysis can help determine renal versus plasma origin of the enzyme activity 

in urine, since isoenzyme A2 predominates in kidney tissue whereas isoenzymes A1 and 

A2 are present in approximately equal proportions in the plasma.92 Uniformly, in 
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patients with proteinuric renal disease, urine isoenzyme analysis was more similar to that 

found in renal tissue than in the plasma, with the isoenzyme A2 predominating.92-94 

These studies support the use of urinary NAG for evaluating tubular function and 

damage in patients with proteinuric disease. However, it is important to note that the 

increase in NAG may be due to increased lysosomal activity secondary to increased 

protein uptake instead of, or in addition to, tubular damage.95 

Kim-1 and NGAL represent two recently identified markers of tubular injury, 

and both of these proteins have been more extensively evaluated in patients with acute 

kidney injury, with relatively few studies in patients with chronic kidney disease. KIM-1 

is a recently described membrane protein whose expression is upregulated with tubular 

damage,96 and it has shown promise as a marker of tubular injury in proteinuric renal 

disease.97,98 NGAL is a 25 kDa protein that most notably binds siderophores and is 

upregulated within several types of damaged epithelial cells, including proximal renal 

tubular cells.99 However, it also circulates in the plasma, and while urinary NGAL has 

shown promise in the evaluation of patients with CKD, it is highly influenced by 

proteinuria alone.99 Therefore, its increase in proteinuric disease is likely due to a 

combination of both decreased tubular absorption as well as increased tissue expression.  

Since progression of renal disease assumes continual nephron damage and loss, 

these markers of direct tubular injury may provide information regarding the degree of 

injury that is occurring at any one time. This information is different than the functional 

information provided by the low molecular weight proteins. It follows, however, that the 

direct tubular injury markers might markedly fluctuate depending on the conditions at 
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the time of measurement. In addition, as fewer nephrons are present to produce the 

various enzymes and proteins, their urinary excretion may also decrease.100 Therefore, 

while their measurement provides useful and unique information, it would not be 

surprising for these proteins to show a lack of correlation with disease progression.  

Specific urinary proteins in veterinary medicine 

While numerous studies have evaluated specific urinary proteins in people, far 

fewer studies have been performed about such proteins in dogs. In these studies, an 

increase in a number of urinary proteins has been demonstrated in dogs with CKD, 

including NAG, GGT, RBP, B2M, #1M, lysozyme, vitamin D-binding protein, 

transthyretin, IgG, transferrin, and glycyl-prolyl dipeptidyl aminopeptidase.101-107 

Additionally, the amount of Tamm-Horsfall protein, which is normally produced by the 

distal tubule, has been shown to be decreased in the urine of dogs with CKD.107  

Of the above proteins, the most studied in veterinary medicine is NAG. NAG is a 

lysosomal enzyme present in proximal renal tubular cells that is released from the cells 

secondary to tubular damage. An increased urinary NAG:creatinine ratio has been 

reported in dogs with CKD as well as in dogs with pyometra and acute tubular damage 

due to renotoxic agents.103,105,108,109 Increases have also been found in cats with CKD and 

hyperthyroidism.110-113 However, NAG was not a unique significant factor in predicting 

the development of azotemia in geriatric cats, supporting a lack of prognostic value in 

this population.113 

RBP has also been evaluated in several studies in both dogs and cats. Thus far, 

all of the studies that have evaluated RBP in dogs have found the urinary RBP:creatinine 
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ratio to be increased in dogs with CKD as compared with healthy dogs.103,107,114 In one 

of these studies, RBP strongly correlated with azotemia.103 Increases in urinary RBP 

were also found in cats with CKD and hyperthyroidism, and similar to dogs, there was 

good correlation with the degree of azotemia present in these patients.115-117  

While measurement of urinary proteins in veterinary medicine appears 

promising, the number of studies in dogs with renal disease is limited, and most of these 

studies thus far have been limited to case reports and cross-sectional studies. Currently, 

the only serial evaluation of specific urinary proteins in dogs involved the semi-

quantitative analysis of RBP, B2M, vitamin D-binding protein, !1-microglobulin, 

albumin, transferrin, apolipoprotein A1, and IgG in dogs with X-linked hereditary 

nephropathy.104 This study reported a progressive increase in all proteins except albumin 

and IgG.104 However, serial quantitative analysis of urinary proteins and correlation of 

these proteins with standard measures of renal function have not been performed. 

Therefore, further evaluation is needed to better establish the role of urinary proteins in 

the early diagnosis and monitoring of renal disease.  

 

Canine X-linked hereditary nephropathy  

For this dissertation, a canine model of proteinuric renal disease caused by X-

linked hereditary nephropathy (XLHN) was used. XLHN was identified in a family of 

mixed-breed dogs from Navasota, TX.44 The disease in this family is caused by a ten 

base pair deletion within the coding region of the COL4A5 gene located on the X 

chromosome.45 This gene encodes the !5 chain of type IV collagen, and the deletion 
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results in a premature stop codon and subsequently altered transcription of this gene.45 

Affected dogs therefore lack the normal !3-!4-!5 type IV collagen chain network 

within the glomerular basement membrane, and instead have an abundance of the !1-

!1-!2 network of type IV collagen.44  

Electron microscopy imaging of the glomerulus in affected dogs reveals diffuse 

thickening and splitting of the basement membrane, which is characteristic of this 

particular disease, as well as podocyte foot-process fusion.44 These changes result in 

altered glomerular permselectivity, which is characterized by the development of early 

and marked proteinuria.44 Hemizygous (affected) males exhibit rapidly progressive 

disease that causes them to develop end-stage renal disease (ESRD) at approximately 1 

year of age. Affected males develop persistent glomerular proteinuria between 3 and 5 

months of age, and the magnitude of proteinuria progressively increases until relatively 

late in the disease process. This proteinuria initially demonstrates a glomerular pattern; 

however, progressive tubular damage contributes to the mixed glomerular/tubular 

pattern observed later in the disease process. Their progression to ESRD is observed 

histologically by progressive tubulointerstitial inflammation and fibrosis in addition to 

glomerular sclerosis and tubular degeneration, atrophy, and necrosis.44 In contrast, most 

heterozygous (carrier) females live a normal lifespan, but some may progress to ESRD. 

As young adults, the carrier females typically remain healthy with good renal function as 

indicated by a normal serum creatinine concentration (0.9-1.1 mg/dl) and urine specific 

gravity > 1.035. However, they do develop proteinuria early in life, and the magnitude of 

proteinuria remains stable during early adulthood (1-5 years of age). 
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This family of dogs provides an opportune model for studies involving naturally 

occurring glomerular disease. The affected males, for example, can be used to study 

progressive CKD due to glomerular disease. Although their structural defect is a specific 

lesion within the GBM, the glomerular and tubulointerstitial lesions that develop are 

comparable to lesions occurring in dogs with progressive renal disease regardless of the 

cause. The carrier females, on the other hand, are useful for studying non-progressive 

proteinuric nephropathy. Evaluation of the day-to-day variability of urine proteins, for 

example, is possible given their stable magnitude of proteinuria over long periods of 

time. In addition, those females that do not demonstrate clinical evidence of disease 

progression may be useful for evaluating the influence of glomerular proteinuria on the 

presence of tubular proteins. Therefore, this canine model was instrumental in carrying 

out the objectives outlined below. 

 

Specific objectives 

The overall theme of this project was to identify methods that could aid 

veterinarians in the clinical diagnosis and monitoring of proteinuric CKD. Three specific 

objectives were carried out in order to accomplish this goal: 1) to determine the basal 

fluctuation of the UPC in dogs with an unchanging magnitude of proteinuria, 2) to 

search for novel urine biomarkers for early renal injury, and 3) to serially assay selected 

promising urine biomarkers of renal injury to evaluate their use during the early 

detection of and/or monitoring progression of CKD in dogs.  
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To determine variability of the UPC, a unique statistical model was applied to 

results from serial urine samples collected from carrier XLHN female dogs. Day-to-day 

variability in their UPC was calculated, and the number of urine samples necessary to 

provide a true estimate of the UPC was determined.  

Novel biomarkers were identified in the urine of XLHN males by using 

proteomic techniques. Urine protein profiles were compared between two time points 

that spanned the development of early tubulointerstitial injury. Using two-dimensional 

gel electrophoresis and surface-enhanced laser desorption ionization, several proteins 

and peaks were identified that have not previously been associated with renal disease in 

dogs.  

To accomplish the third objective, a number of proteins were selected that have 

shown promise in the human and veterinary literature as biomarkers of CKD. 

Commercially available assays were utilized when possible, and these assays were all 

analytically validated for use in canine urine. The proteins were then evaluated serially 

in the urine of male dogs affected with XLHN and their normal siblings. In the affected 

males, analysis spanned the pre-clinical stage until end-stage renal failure was reached. 

Correlations were made with standard measures of renal function, including serum 

creatinine, glomerular filtration rate, histologic analysis, and UPC. Based on these 

results, the usefulness of the selected urinary biomarkers for detection and monitoring 

CKD progression in dogs was evaluated. 
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CHAPTER II 

DAY-TO-DAY VARIATION OF THE URINE PROTEIN:CREATININE RATIO 

IN FEMALE DOGS WITH STABLE GLOMERULAR PROTEINURIA CAUSED 

BY X-LINKED HEREDITARY NEPHROPATHY* 

 

Overview 

 Proteinuria has been shown to be a predictor of morbidity and mortality in 

people, dogs, and cats with CKD. An increased magnitude of proteinuria likely serves as 

both an indicator of more severe renal lesions in addition to contributing to renal disease 

progression. Therefore, treatment of proteinuric CKD in dogs is largely aimed at 

reducing the magnitude of proteinuria, as estimated by the urine protein-to-creatinine 

ratio (UPC). However, in order to know whether a UPC measurement indicates an 

improvement or worsening of proteinuria as compared to a previous UPC measurement, 

one must have a sense of the variability of the UPC in the absence of disease progression 

or modifying therapies. In order to address this issue, this study describes the day-to-day 

variability of the UPC in heterozygous female dogs with X-linked hereditary 

nephropathy. These dogs have proteinuria and renal function that remains stable for 

prolonged periods of time, such that their day-to-day variability is not influenced by  

 
 
___________________ 
*Reprinted with permission from Day-to-Day Variation of the Urine Protein:Creatinine 
Ratio in Female Dogs with Stable Glomerular Proteinuria Caused by X-Linked 
Hereditary Nephropathy by M. Nabity, M. Boggess, C. Kashtan, and G. Lees, 2007. 
Journal of Veterinary Internal Medicine, 21, 425-430, Copyright 2007 by John Wiley 
and Sons. 
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renal disease progression. The reference change value was calculated for these dogs to 

represent the amount of change that could be explained by biological variation, with 

95% confidence. In these dogs, in order to exceed expected day-to-day variation in the 

UPC, the subsequent UPC value must increase or decrease by 35-50% when the UPC > 

3 (range 3-12), and 50-80% when the UPC < 3 (range 0.5-3), with a higher percent 

change required the lower the UPC. In addition, measurement of the UPC on a single 

urine sample is adequate to estimate the UPC when values are " 4. However, in order to 

adequately estimate the true UPC value, the average UPC determined from 2-3 urine 

samples is necessary when the UPC is 4-8, and from 4-5 urine samples when the UPC is 

> 8. These data currently provide the only calculated guidelines available to practitioners 

when monitoring patients with proteinuria.  

 

Introduction 

The UPC has become widely used in veterinary medicine as an index of 

magnitude of proteinuria in dogs in the 2 decades since studies first validated its use for 

this purpose.17,18,118 A UPC persistently ! 0.5 is indicative of an abnormal degree of 

proteinuria, whereas a UPC < 0.5 is consistent with absence of significant proteinuria.12 

Greater magnitudes of proteinuria correlate with severity and progression of renal 

disease in humans and animals, including dogs.19 Additionally, recent studies have 

shown that various therapeutic interventions, such as administration of angiotensin 

converting-enzyme inhibitors or dietary modifications, can reduce magnitude of 
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proteinuria and slow progression of renal disease.21-24 Because of such findings, 

veterinarians have begun to recognize potential benefits of reducing proteinuria in dogs 

with a variety of renal diseases, and treatment of dogs to reduce the magnitude of their 

proteinuria has been recommended.12 Serial UPC monitoring is used to assess treatment 

efficacy, disease progression, and prognosis in proteinuric dogs. Many important clinical 

decisions for dogs with proteinuria hinge on an ability to detect clinically important 

changes in serial UPC values.  

Determining whether a UPC value has changed on serial measurements requires 

knowledge of the variability of the UPC when the magnitude of proteinuria is 

unchanging. To the authors’ knowledge, there are no published reports of day-to-day 

biological variability of the UPC in proteinuric dogs (UPC ! 0.5). One reason for this is 

because a wide range of diseases can cause proteinuria in dogs, and the majority of these 

diseases have a variable effect on the progression of proteinuria. Thus, random 

biological variation cannot be easily distinguished from other sources of variation. In 

this study, we used dogs with a rare but well-defined renal disease causing a stable 

magnitude of glomerular proteinuria for extended periods of time in order to assess the 

random day-to-day fluctuation in the UPC ratio. 

The goals of this study were to establish guidelines for the expected variability in 

the UPC of dogs with unchanging proteinuria and the number of measurements needed 

to obtain a reliable estimate of the actual UPC value.  
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Materials and methods 

Dogs 

 Retrospective analysis was performed using data collected between January, 

1999, and October, 2002, from 48 young-adult (12-32 months old) heterozygous 

(carrier) female dogs with X-linked hereditary nephropathy (XLHN). The dogs were 

members of a single family maintained in a colony at Texas A&M University since 

1997. XLHN in this kindred is caused by a nonsense mutation in the COL4A5 gene that 

encodes the !5 chain of type IV collagen, which is a crucial component of normal 

glomerular basement membranes (GBM).45 The salient clinical and pathologic features 

of the nephropathy that occurs in dogs with this gene defect have been described.44 In 

carrier females, these features include mosaic expression of type IV collagen peptides 

that are normally found in the GBM and onset of persistent glomerular proteinuria 

between 3 and 6 months of age. 

  All puppies produced in the colony were raised using a standardized protocol for 

feeding, husbandry, routine health care and socialization. Additionally, renal function of 

all carrier females was monitored by measuring serum creatinine concentration every 3 

months. A few (< 10%) carrier females had intermittent or persistent increases in serum 

creatinine concentration before 3 years of age, but the great majority (> 90%) of the 

carrier females raised within the colony remained clinically healthy and maintained good 

renal function as adolescents and young-adults. Despite their proteinuria, these dogs had 

urine specific gravity values indicative of adequate urine concentrating ability (! 1.035) 

and stable serum creatinine concentrations in the middle of the reference range. Forty-
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eight of the young adult XLHN carrier females having these attributes were selected for 

the studies of proteinuria that generated the data retrospectively analyzed for this report.  

 During studies, dogs were housed in runs in a temperature-controlled room with 

a 12-hour light-dark cycle, and they were fed once daily in the afternoon. Dogs were 

leash walked outside or were permitted short periods of unrestricted access to an 

exercise area daily. 

Data collection 

 Several studies were conducted in a similar fashion to examine the influence of 

various factors on magnitude of proteinuria in dogs with glomerular disease. The study 

protocols were reviewed and approved by the Texas A&M University Laboratory 

Animal Care Committee, and results of the studies have been published119 or reported at 

scientific meetings.120-122 Magnitude of proteinuria was assessed in each dog by 

measuring the UPC once daily on each of the last 3 days of various periods during which 

the dog was maintained or treated in a specified manner. All dogs were evaluated after 1, 

2, or 4 weeks without treatment. Additionally, some studies included treatments that 

were given for periods of 4 or 6 weeks during which the dogs were evaluated on the last 

3 days of each successive 2-week interval. After treatment (being fed a specified diet or 

given prednisone), dogs were either crossed-over to a second diet or observed after 

cessation of prednisone administration for additional 4- or 6-week periods during which 

evaluation at 2-week intervals continued. Changes in the UPC typically occurred 

sufficiently quickly after changes in treatments so that mean values had stabilized by 2 

weeks after initiation or cessation of treatment. An aliquot of urine obtained by 
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cystocentesis was submitted for quantitative aerobic bacterial culture to verify absence 

of urinary tract infection in each dog at the outset of her study protocol and again at the 

end of her protocol if she was studied for > 1 week. 

 The combined data available from the 48 dogs used in these studies included a 

total of 183 3-day evaluation periods and 549 UPC determinations. All 48 dogs were 

evaluated 1-2 times before treatment, resulting in 75 3-day evaluation periods (225 UPC 

determinations) without treatment.119-122 Twelve dogs were treated with a high or low 

protein diet, resulting in 84 3-day evaluation periods (252 UPC determinations) during 

the 14-week treatment period.119 Six dogs were treated with prednisone (2.2 mg/kg PO 

q24h), resulting in 24 3-day evaluation periods (72 UPC determinations) during the 8-

week treatment and post–treatment periods.122        

Sample collection and assay  

All urine samples were collected by cystocentesis during the morning; i.e., before 

the dogs were fed each day. Samples were refrigerated immediately after collection and 

assayed within 6 hours. Urine was centrifuged (300 x g for 5 min), and urine protein and 

creatinine concentrations in the supernatant were measured using a dry-film chemistry 

auto-analyzer (Vitros 250, Johnson & Johnson Co., Rochester, NY). Urine protein 

(mg/dL) was determined by a colorimetric method using a pyrocatechol violet-

molybdate complex. Urine creatinine (mg/dL) was determined by a colorimetric 

enzymatic method using creatinine amidohydrolase. Samples were diluted by the 

instrument according to manufacturer’s specifications when necessary.  
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Analytical variability 

 Analytical variability of UPC was determined using a fresh urine sample 

obtained from three XLHN carrier female dogs, one each having a low (0.5), moderate 

(2.7), or high (7.9) UPC. Each of these samples was measured six times over 72 hours 

(once in the morning and once in the afternoon of each day) to assess inter-assay 

variability. Each sample was also measured 10 consecutive times during a single 

instrument run to determine intra-assay variability. Samples were stored at 4oC between 

analyses. Assays were performed for only 3 days because urine protein determinations 

may be unreliable after more than 3 days of sample storage at 4oC according to the 

instrument guidelines, and freezing may precipitate proteins.123 Analytical variability 

was also assessed using control standards that were measured each day as UPC 

measurements were performed on clinical patients over the course of one month. The 

creatinine concentrations of the control standards were comparable to those of the urine 

samples; however, the protein concentrations of the control standards were much lower 

than those of the moderate- and high-UPC urine samples, resulting in much lower 

overall UPC values for the control standards than for the canine urine samples used to 

assess analytical variability.  

The variance components for analytical variability were estimated using one-way 

random effects ANOVA. Using the representative low, moderate and high UPC urine 

samples, the estimated intra-assay standard deviation (sw) = 0.07 and intraclass 

correlation coefficient (ICC) = 0.99965 (0.99895, 1.00036), and inter-assay sw = 0.06 

and ICC = 0.99973 (0.99915, 1.0003). Using the control standards, the estimated inter-
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assay sw = 0.03, and the ICC = 0.99374 (0.97611, 1.01136).  Compared to biological 

variability, analytical variability is optimally low,124 and we assume that its contribution 

to total variation is minimal. Thus the analytical variability was not incorporated 

separately into the model but was incorporated into the between and within evaluation 

variance components described below.  

Statistical methods 

The two major sources of variation are biological variation and analytical 

variation. Biological variation includes that due to intra-individual and inter-individual 

variation (within and between evaluation variance, respectively). The within evaluation 

variance component ($w
2) reflects the variability due to repeated measurements on the 

same dog within a given evaluation period (3 consecutive daily measurements). $w was 

modeled as a function of mean UPC using $w = $ x UPC%, also known as a power of the 

mean model.125 This model was chosen because the standard deviation ($w) of the UPC 

measured over 3 days increases with higher UPC values in all dogs, whether untreated or 

treated, and is therefore not constant with respect to the UPC level (Figure 2). If the 

variability of the UPC had been constant over the full range of values, then it could have 

been readily estimated with a straightforward technique (e.g., random effects ANOVA).  

However, variation that increases in proportion to the mean is a common phenomenon 

with values whose lower limit is bounded by zero, which is the case with serum and 

urine chemistry analytes. This requires the use of other methods to estimate variance.125-

127 
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Figure 2. Scatter diagram of the standard deviations of urine protein:creatinine ratio 
(UPC) values within 3-day evaluation periods, plotted against the mean UPC value. 
Standard deviation increases significantly as the mean UPC increases. 

 
 

The between evaluation variance component ($b
2) reflects the variability due to 

measurements obtained from different evaluation periods, as a result of measurements 

obtained over a period of weeks to months, either from the same dog or from different 

dogs. This component was modeled with a random effect assuming a normal distribution 

for the 3-day evaluation period. Since the sample contained multiple evaluations 

performed on the same dog, bootstrapped standard errors were used to take into account 

the probable correlation.128 All estimations were performed with Stata 9& (Intercooled 

Stata 9.0, Stata Corporation, College Station, TX). The estimate of the standard 

deviation ($w) is denoted as sw; similarly, the estimate of $b is denoted as sb.  

 The estimate of the standard deviation, sw, was used to calculate the reference 

change value (RCV): RCV = 1.96 x (2)1/2 x (sw
2)1/2 = 2.77 x sw. The RCV represents the 

amount of change that is reasonably explained by biological variation. Therefore, if no 

change in the magnitude of proteinuria has occurred, serial measurements should fall 
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within the interval created by adding or subtracting the RCV from the original UPC, 

with 95% confidence.127,129 The reference change value percent (RCV%) was also 

determined: RCV% = RCV/UPC. This value is the percent change in the UPC necessary 

to determine an increase or decrease in UPC.  

The RCV and RCV% are meant for comparison of two single UPC 

measurements. However, the RCV can be extrapolated to include multiple averaged 

UPC measurements. If the UPC from several urine samples have been averaged in order 

to obtain a more accurate estimation of the UPC, then the RCV can be calculated by: 

2.77 x (sw /'n), where n is the number of averaged measurements and sw is their standard 

deviation.  

 The intraclass correlation coefficient (ICC) = $b
2/[$b

2 + $w
2]. This reflects the 

reliability of repeated measurements, so that a higher ICC is suggestive of a more 

reliable measurement.127 The Spearman-Brown prediction formula relates the ICC to the 

number of measurements (k) required to achieve a given reliability:130 ICC1 = k x ICC/[1 

+ ((k-1) x ICC)]. Acceptable reliability was set at ICC1 = 0.9. The standard error for the 

quantities described above were calculated by the delta method.131 

  Because UPC measurements were obtained from some dogs that were given 

treatments (prednisone and varying diets), the effect of treatment on variance of UPC 

was analyzed. Treatment effect on variance was determined by comparing the sw of the 

untreated evaluations to the sw of each treatment group. The 95% confidence intervals 

for the sw of each treated group largely overlapped with those for the untreated group 
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supporting the absence of treatment effect on the variability of the UPC (not shown). 

Therefore, all observations were pooled over treatments for the analysis.   

 

Results 

The standard deviation estimates for UPC day-to-day variability were sw: 0.24 x 

UPC0.74 and sb: 2.01 (1.78, 2.23). Normality of the residuals was verified by the use of a 

normal probability plot. 

Applying the sw results, RCV = 2.77 x (0.24 x UPC0.74) and RCV% = [2.77 x 

(0.24 x UPC0.74)]/UPC. The RCV and RCV% were then plotted against the UPC value to 

provide continuous plots that can be used to identify significant changes from an initial 

UPC value between 0.5 and 12 (Figures 3 & 4). For example, to be 95% confident that 

the magnitude of proteinuria has increased from a baseline UPC of 5, then using the 

graphs, a subsequent UPC value must increase by at least 48% or 2.4, resulting in a 

value of 7.4. By adding and subtracting the RCV from the initial UPC, one can 

determine the critical values that indicate the largest possible deviation from baseline 

that can be reasonably expected due to random biological variation. Subsequent 

measurements above and below these critical values are far enough from baseline to 

support a significant change in the UPC (Table 1). To summarize, at low UPC values 

(near 0.5), a minimum change in the UPC of up to 80% is required to demonstrate a 

significant difference (p < .05) in serial values whereas at high UPC values (near 12), a 

minimum change of 35% is necessary.  
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Figure 3. Graph of the absolute reference change value (RCV) for urine 
protein:creatinine ratio (UPC) plotted against the initial UPC value. The RCV represents 
the degree of change necessary to exceed day-to-day UPC variability, and it increases as 
the UPC increases. Solid line, RCV; dotted lines, 95% confidence interval. 

 
 
 
 

 

Figure 4. Graph of the reference change value expressed as a percentage of the UPC 
(RCV%). RCV% decreases as the UPC increases. Solid line, RCV%; dotted lines, 95% 
confidence interval. 
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Table 1. Subsequent UPC values required to demonstrate a significant (95% confidence) 
decrease or increase in UPC following an initial determination.  

Subsequent UPC 
 
 
 
 

Initial UPC 

Value required to 
demonstrate 

significant decrease 

Value required to 
demonstrate 

significant increase 
0.5 <0.1 >0.9 
1 <0.3 >1.7 
2 <0.9 >3.1 
3 <1.5 >4.5 
4 <2.1 >5.9 
5 <2.8 >7.2 
6 <3.5 >8.8 
7 <4.2 >9.8 
8 <4.9 >11.1 
9 <5.6 >12.4 
10 <6.3 >13.7 
11 <7.1 >14.9 
12 <7.8 >16.2 

 
 
 

 The ICC and the Spearman-Brown prediction formula were used to estimate the 

number of averaged UPC determinations needed to obtain a reliable estimate of the 

UPC. Results revealed that separate urine samples give very similar results at low UPC 

values; however, results from separate urine samples vary more widely at larger UPC 

values. Table 2 lists the number of UPC determinations needed to obtain an estimated 

ICC ! 0.9 for various UPC measurements. In general, one measurement is adequate to 

estimate the UPC when values are "4. An average of 2-3 UPC determinations is 

necessary when the UPC is 4-8, and 4-5 averaged measurements are necessary when the 

UPC is > 8 to adequately estimate the true UPC value.  
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Table 2. Estimated number of urine samples necessary to obtain a reliable estimate of the 
true UPC value (ICC ! 0.9). 
 

 
UPC Value 

Number of urine 
samples* 

 
Estimated ICC 

95% Confidence 
interval 

0.5 1 0.99 (0.99, 1.00) 
1 1 0.99 (0.98, 0.99) 
2 1 0.96 (0.94, 0.99 
3 1 0.93 (0.89, 0.98) 
4 1 0.90 (0.84, 0.96) 
5 2 0.93 (0.88, 0.98) 
6 2 0.91 (0.84, 0.97) 
7 3 0.92 (0.86, 0.98) 
8 3 0.91 (0.84, 0.98) 
9 4 0.92 (0.86, 0.98) 
10 4 0.91 (0.83, 0.98) 
11 4 0.90 (0.81, 0.98) 
12 5 0.90 (0.83, 0.98) 

ICC, intraclass correlation coefficient 
*When the number of samples is !2, the UPC values for all samples are to be averaged 
to obtain the best estimate of the true UPC value. 
 
 

Discussion 

Most of the carrier female dogs with XLHN raised within the colony remained 

clinically healthy and maintained good renal function as young adults (1-5 years of age). 

In addition, their prevailing magnitude of proteinuria as estimated by determining their 

UPC value averaged over a 3-day period (in order to minimize the confounding effects 

of random day-to-day variation) remained stable from week-to-week and month-to-

month. During such long periods of time with little or no evidence of any substantial 

change in renal disease severity, most or all of any short-term (day-to-day, week-to-

week, or month-to-month) change in UPC value could be attributed to random biological 

variation or to effects of treatments on the prevailing magnitude of proteinuria rather 
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than to a fundamental change in the severity of the underlying primary disease. The 

validity of this assumption was supported by the results of studies that used cross-over 

experimental designs to investigate the influence of various treatments on the magnitude 

of proteinuria in these dogs. When dogs in such experiments returned to treatments or 

conditions under which they initially had been evaluated weeks or months previously, 

their proteinuria consistently returned to the magnitude that had been observed before.119 

That rationale also underlies our use of data from those studies to assess biological 

variation of the UPC in this report. Because of the slowly progressive nature of the 

disease in these dogs and the lack of evident treatment effect on variance, most or all of 

the day-to-day variation in the UPC observed during 3-day evaluation periods was 

reasonably attributed to random biological variation rather than to fundamental changes 

in magnitude of proteinuria due to altered disease status or treatment effect. 

The development of the appropriate statistical model to use in this study was 

challenging. Coefficient of variation (CV) has historically been used in the medical field 

to express the variability of an analyte, and CV was used in most of the studies that 

address UPC variability in humans.132,133 However, this method does not allow for the 

separation of total variance into components. Separation into variance components is 

necessary because it allows a statistical model to be developed that predicts the expected 

variation of the UPC over a range of values. In addition, a model that could account for 

unequal variance was required. In the present study, maximum likelihood combined with 

the power-of-mean model allowed for calculation of the variance components while 

addressing the unequal variation that exists along the range of UPC values.    
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Dogs with chronic kidney disease that are azotemic and have a UPC > 0.5 or 

nonazotemic dogs with a UPC > 2 should be treated with diet, omega-3 fatty acids, and 

renoprotective agents, and dosing strategy may be partially determined by the response 

of the UPC to treatment.12 Therefore, it is important to determine whether changing 

serial UPC measurements are clinically important. The reference change value (RCV) in 

human medicine is becoming widely used to determining biological variance of 

biochemical analytes.134,135 RCV is defined as the statistically significant difference 

between two consecutive test results in an individual patient, and it is helpful to 

determine if increased or decreased serial values are likely to represent true changes or if 

they are compatible with biological variation.129 In this study, the RCV was used to 

determine critical values for which measurements above and below represent statistically 

significant changes from the baseline UPC (Table 1), and the results provide the first 

quantitative guideline for assessing serial UPC values in proteinuric dogs.  

Based on this study, the RCV graphs can be used to determine if a subsequent 

measurement is likely increased or decreased in XLHN dogs with a baseline UPC 

between 0.5 and 12. With the RCV graphs, an absolute change can be obtained from 

Figure 3 whereas a percent change can be obtained from Figure 4, depending on the 

preference of the clinician and perceived ease of use. Variability of the UPC in 

proteinuric dogs outside the range represented in the graphs still needs to be determined.  

When a serial UPC value is outside the calculated RCV based on the initial UPC 

measurement, it is highly likely that a true change in the UPC has occurred. However, if 

the UPC value is within the limits set by the RCV, serial monitoring becomes important 
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to distinguish random fluctuation from a true, but small increase or decrease in the 

magnitude of proteinuria. For example, if a clinician finds that the UPC value in a 

patient has increased from 5 to 6, there is no evidence based on our data to support that 

this increase is significant. However, if the UPC increases from 5 to 6, and then to 7, the 

increasing trend is worrisome despite each serial value falling within the acceptable 

range for random day-to-day variation as compared to the initial UPC value of 5. In this 

case, a change in treatment or further evaluation to determine the cause for the increase 

may be warranted. 

The dogs in this study were genetically related, and during the 3-day evaluation 

periods they were subjected to similar exogenous influences and preanalytical factors 

that can influence the UPC. It is this highly controlled environment that makes this study 

relatively accurate in its estimation of the day-to-day variability in dogs with XLHN. 

However, the UPCs of a random sample of dogs with a variety of naturally occurring 

disease processes and cared for by different owners may demonstrate more variability in 

their UPC due to these extra factors incorporated into the estimated day-to-day 

variability. In addition, dogs with other glomerulopathies may demonstrate different 

random biological day-to-day UPC variation than dogs with XLHN. Therefore, the 

variability of the UPC in dogs with other glomerular diseases still warrants investigation 

in order to determine to what extent these guidelines are applicable to other disease 

states. 

The second purpose of this study was to determine the number of urine samples 

that should be averaged to obtain an accurate estimate of the UPC. Gibb and colleagues 
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recommended averaging 5 urine samples to decrease UPC variation in humans, but they 

did not address whether a different number of samples is recommended for low and high 

UPC values.136 Based on the results of our study, when the UPC is < 4, reliability of that 

value is high, and therefore, the UPC needs to be measured only once to obtain a reliable 

value (Table 2). This finding suggests that a dog can generally be classified as normal or 

proteinuric at one point in time based on a single sample, with the caveat that additional 

measurements may be needed to confirm persistence of proteinuria. Also, serial 

monitoring is recommended to confirm mild proteinuria if the UPC value is near 0.5. At 

higher UPC values (>8), we find similar results to Gibb et al, where 4-5 measurements 

may need to be averaged to obtain a reliable UPC value. However, in many cases it may 

be impractical to take 5 separate urine samples to obtain a single UPC estimate due to 

cost, time, and/or a rapidly progressing disease process. Even averaging 2 measurements 

greatly increases the accuracy of the UPC estimate, and when possible, we recommend 

averaging measurements obtained from 2-3 separate urine collections or pooling 2-3 

urine samples (within a 3-day period) when the UPC is > 4.  

Guidelines are currently not available for timing of sample collection with 

repeated UPC measurements. Many studies have found good correlation of the UPC 

with the total 24-hr protein excretion in urine samples collected at random;18,137 however, 

UPC variability was not evaluated. One study in humans found that the UPC had the 

lowest day-to-day variation in early morning urine samples compared to bedtime 

samples.133 No such studies have been performed in animals. Therefore, when multiple 

samples are being collected, whether to assess the true UPC value or for long-term 
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monitoring, we recommend taking steps to minimize factors that can influence UPC 

variability. These steps include sampling at the same time of day and before eating or 

strenuous exercise, using fresh samples collected by the same technique each time, and 

analyzing the UPC using the same laboratory and the same instrument for all evaluations 

from a single patient.  

The results of this study may provide practical recommendations for practitioners 

to use when monitoring UPC values, although variability of the UPC in dogs with other 

glomerular diseases has yet to be determined. When values are not deemed significantly 

different based these recommendations, increasing or decreasing trends in the UPC 

remain important to determine disease progression and/or response to therapy. In 

addition, the UPC should be used in conjunction with patient assessment via physical 

examination and other clinical parameters in order to best determine treatment options.  
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CHAPTER III 

PROTEOMIC ANALYSIS OF URINE FROM MALE DOGS DURING EARLY 

STAGES OF TUBULOINTERSTITIAL INJURY IN A CANINE MODEL OF 

PROGRESSIVE GLOMERULAR DISEASE 

 

Overview 

The urine proteome is defined as the total composition of proteins and peptides 

within the urine, and it can be explored by using proteomic techniques. The use of 

proteomic techniques for the identification of tissue biomarkers is only a relatively 

recent area of research, spurred on by the advent of highly sensitive mass spectrometry. 

An important concept is that these techniques are excellent at providing numerous data 

about the protein content of a tissue without the need for prior assertions or cross-

reacting antibodies. However, this information should be verified using more specific 

assays. Therefore, these tools have been utilized to both identify patterns of disease as 

well as to identify specific proteins that can then be verified by separate assays. A 

variety of tools are available for proteomic analysis, and this study describes the analysis 

of urine proteins in male dogs with XLHN using 2-dimensional gel electrophoresis and 

surface enhanced laser desorption ionization (SELDI). The samples chosen for analysis 

were obtained from two early time points in their disease progression. The dogs were 

markedly proteinuric at both time points supporting extensive glomerular injury, but 

azotemia was evident only at the latter time point. Therefore, these samples provided an 

opportunity to target early biomarkers of tubulointerstitial injury. Both techniques 
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identified known biomarkers of renal disease, including retinol binding protein. 

However, the 2-dimensional analysis identified several proteins that have not previously 

been implicated in renal disease in dogs and that have only been minimally studied in 

renal disease in people, including hemopexin, fetuin A, and gelsolin. In addition, some 

of the proteins identified have not previously been implicated in renal disease at this 

point in time. SELDI identified a number of promising peaks that warrant further 

investigation. These findings may help direct future studies of renal disease in dogs. 

 

Introduction 

 Chronic kidney disease (CKD) is a major cause of morbidity and mortality in 

dogs, and it is thought that dogs with advanced disease represent only a fraction of all 

dogs with CKD.1,2 It is also recognized that the degree of histologically detectable 

tubulointerstitial damage most closely correlates with renal function.5 However, current 

non-invasive methods to detect and monitor early tubulointerstitial disease are limited. 

When monitoring renal disease, clinicians rely primarily on serum creatinine and urea 

nitrogen concentrations, urine specific gravity, and the urine protein:creatinine ratio 

(UPC). However, azotemia and impaired urine concentrating ability are generally 

thought to be present only after approximately 65-75% of the renal parenchyma has been 

damaged.9 An increased UPC can occur due to either glomerular or tubular injury, and it 

is most often secondary to glomerular injury, particularly when the UPC > 2.12 In recent 

years, several promising candidate renal biomarkers for tubulointerstitial injury have 

been evaluated in human medicine, and some, including retinol binding protein and N-
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acetyl-ß-D-glucosaminidase, have been studied recently in dogs with chronic renal 

disease.102,103,105,107,114 While results are encouraging, further investigation will be 

required to establish the clinical utility of these tests.  

Since there currently are no sensitive and specific markers for the detection and 

monitoring the progression of early tubulointerstitial injury, the search for novel renal 

biomarkers continues. Proteomic techniques have become widely used as a powerful 

approach for the discovery of novel biomarkers in a variety of diseases and tissues. 

Proteomic analysis allows for the simultaneous detection of a wide variety of proteins, 

and results are not restricted to known biomarkers. In addition, proteomic analysis does 

not require antibodies, which are often a limiting factor in the evaluation of proteins 

from veterinary patients. Thus, proteomic techniques are well suited for biomarker 

discovery.  

 In veterinary medicine, few studies have been reported that used proteomic 

techniques to identify biomarkers for renal disease.107,138 In these studies, the dogs 

evaluated were clinical patients with spontaneous renal diseases that were in different 

stages of disease. Also, these patients had renal diseases that were secondary to a variety 

of different causes. In contrast, the objective of this study was to explore the urine 

proteome in dogs with early progressive renal disease due to a single cause in order to 

identify promising biomarkers for early tubulointerstitial injury. The dogs used in this 

study all have a specific mutation in the gene encoding for the type IV collagen in their 

glomerular basement membrane. Due to this mutation, males with this defect develop 

renal disease that progresses to end-stage renal disease (ESRD) during adolescence, and 
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the clinical and histologic progression to ESRD in these dogs is similar to that in dogs 

with other progressive glomerular diseases. They therefore provide a unique opportunity 

to search for potential early markers of tubulointerstitial injury in progressive CKD 

without the confounding factors present in a diverse, client-owned population of dogs 

with a variety of diseases.  

The two proteomic techniques used in this study were two-dimensional 

differential in-gel electrophoresis (2-D DIGE) and surface-enhanced laser desorption 

ionization time-of-flight (SELDI-TOF) mass spectrometry. 2-D DIGE uses gels to 

separate fluorescently-labeled proteins based on charge and mass, and proteins of 

interest can be readily identified from spots separated on the gel using mass 

spectrometry. SELDI-TOF uses chromatography combined with mass spectrometry to 

detect proteins. It is particularly useful for detecting low molecular weight proteins and 

peptides, and it tends to be more sensitive than gel-based methods for detecting low-

abundance proteins. However, its utility in detecting high molecular weight proteins is 

more limited.  

The aim of the present study was to use these two proteomic techniques in the 

prospective evaluation of a well-defined canine model of CKD in order to identify novel 

urinary biomarkers of early tubulointerstitial injury in canine progressive renal disease. 
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Materials and methods 

Animals  

 Six male, mixed-breed dogs with X-linked hereditary nephropathy (XLHN) were 

used in this study. These dogs were members of a single family maintained in a colony 

at Texas A&M University since 1997. XLHN in this kindred is caused by a nonsense 

mutation in the COL4A5 gene located on the X chromosome that encodes the (5 chain 

of type IV collagen, which is a crucial component of the normal glomerular basement 

membrane (GBM).45 In affected males, the salient clinical and pathologic features of the 

nephropathy include absence of the normal collagen IV network in the GBM, 

development of marked proteinuria, and rapidly progressive renal disease that typically 

results in end-stage renal failure at about 1 year of age.44  

 All puppies produced in the colony were raised using a standardized protocol for 

feeding, husbandry, routine health care and socialization. During studies, dogs were 

housed in runs in a temperature-controlled room with a 12-hour light-dark cycle, and 

they were fed once daily in the morning after urine collection. Dogs were leash walked 

outside or were permitted short periods of unrestricted access to an exercise area daily. 

Three of the puppies were neutered at 14 wks of age, so that two dogs were neutered 

between the samples evaluated (as described below), and one dog was neutered before 

either sample collection. Three of the puppies remained intact for the duration of the 

study. No treatments were administered to the dogs whose samples were utilized in this 

study. The study protocol was reviewed and approved by the Texas A&M University 

Laboratory Animal Care Committee. 
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Urine collection 

 Blood and voided, mid-stream urine were collected in the morning on a weekly 

to biweekly basis from 6 male dogs with XLHN starting at 9 wks of age. For each time 

point, urine samples were collected over 3 consecutive days, and on the day of 

collection, each sample was centrifuged for 10 minutes at 500 x g and 4oC, the 

supernatant was removed, and protease inhibitors were added (Complete Protease 

Inhibitor Cocktail, Roche Diagnostics Corp., Indianapolis, IN). Urine was frozen at -

50oC within 6 hrs of collection. The frozen samples were later thawed, and the samples 

from each 3-day collection were combined resulting in a single sample, which was then 

centrifuged, aliquoted, and stored at -80oC. Urine protein and creatinine concentrations 

were measured in fresh, refrigerated pooled urine samples from the 3-day collections, 

and serum creatinine concentration was measured on the first day (Vitros 250, Ortho-

Clinical Diagnostics Inc., Rochester, NY). Urine specific gravity was measured using a 

refractometer. 

Urine preparation for proteomic analysis 

 Urine from two time points was selected for analysis based on the potential to 

result in detection of early biomarkers of tubulointerstitial injury: time point 1 (TP 1) 

was the time point after which dogs first became overtly proteinuric (UPC > 2; age range 

13-25 wks) and time point 2 (TP 2) at which dogs first demonstrated mild azotemia as 

compared with normal male littermates (serum creatinine ! 1.2 mg/dl; age range 21-35 

wks). 
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 Urine samples from each time point were thawed, centrifuged for 10 minutes at 

12,000 x g and 4oC, and passed through a 0.45 %m syringe filter. In order to enrich for 

low-abundance proteins, albumin was removed from the samples by affinity 

chromatography (Seppro IgY HSA LC2 Column, GenWay Biotech, Inc., San Diego, 

CA) using a liquid chromatography system (Äkta Explorer 10 Chromatography System, 

GE Healthcare, Piscataway, NJ). The albumin-free fractions were collected and 

complete albumin removal was verified using silver-stained SDS-PAGE gels. Fractions 

were pooled and concentrated by ultrafiltration (Centriprep Ultracel YM-10, Millipore 

Corp, Bedford, MA). Protein concentration was determined by the Bradford method 

(Coomassie Protein Assay Reagent, Pierce Chemical, Rockford, IL) and samples were 

frozen at -80oC until analysis. 

Two-dimensional differential in-gel electrophoresis (2-D DIGE) 

 Protein was precipitated with acetone and dissolved in DIGE labeling buffer (7 

M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, pH 8.5). Samples were divided into 

duplicate aliquots and fluorescently labeled by combining 50 %g of protein with 200 

pmol CyDye DIGE Fluors (GE Healthcare). One aliquot was labeled with Cy3 while the 

other was labeled with Cy5 in case preferential labeling with the dyes occurred. A 

pooled sample containing equal amounts of each sample was labeled with Cy2. The 

labeling reactions were quenched with 10 mM lysine. The samples were randomly 

mixed so that one Cy3 and one Cy5-labeled sample were loaded on a single gel, along 

with the Cy2-labeled pooled sample, which was used as an internal standard and allowed 

for each resolved protein to be semi-quantitatively assessed relative to the standard 
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within and between each gel, thereby minimizing gel-to-gel variation. Samples were 

adjusted to contain 1 mg/ml DTT, and the labeled proteins (350 %g) were loaded onto 

immobilized pH gradient (IPG) strips (13 cm, pH 4-7, ImmobilineTM DryStrip, GE 

Healthcare) by passive diffusion (GE Healthcare). Isoelectric focusing was performed on 

an IPGPhor (GE Healthcare) according to the manufacturer’s instructions (500 volts for 

one hour followed by 1000 volts for one hour followed by a linear gradient to 8000 volts 

until approximately 35,000 Vhr). The focused strips were equilibrated in two steps: 15 

minutes in SDS equilibration buffer I (6M urea, 2% SDS, 30% glycerol, 50 mM Tris, pH 

8.8, 0.01% bromophenol blue, and 10 mg/ml DTT) followed by 15 minutes with 

equilibration buffer II in which the DTT was replaced by 25 mg/ml iodoacetamide. The 

equilibrated IPG strips were placed directly on top of polymerized 12% SDS gels139 and 

covered with low-melt agarose. Gels were run in cooled tanks at 600V, 35 mA/gel for 

several hours until the dye front had run off the bottom of the gel. 

Gel image analysis 

Gel images were obtained using a TyphoonTM Trio, Variable Mode Imager (GE 

Healthcare). DeCyder software (version 6.5, GE Healthcare) was used to detect spots, 

subtract background, and to normalize spots against the pooled standard, match spots 

between gels and determine significant changes in abundance (p < 0.1). Spot detection 

and matching were verified visually. Gels to be used for spot picking were fixed in 10% 

methanol and 7.5% acetic acid overnight, stained with Deep PurpleTM Total Protein 

Stain (GE Healthcare) and imaged on the Typhoon. The post-stained spots were matched 
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to the CyDye gel images using DeCyder software. Picking and digestion were performed 

using Ettan robotic components (GE Healthcare). 

Protein identification 

Spots that showed significant differences in abundance between TP 1 and TP 2 

were robotically picked, washed, and digested with recombinant porcine trypsin 

(Promega) as described.140 Extracted tryptic peptides were concentrated by SpeedVac 

and analyzed by nano-electrospray ionization/ion trap mass spectrometry (LC/MS/MS 

with an LCQ Deca XP 3D ion trap and/or an LTQ linear ion trap (ThermoFinnigan, San 

Jose, CA)).  

Protein identification was performed using both TurboSequest and MASCOT 

search engines. The TurboSequest analysis software (Bioworks version 3.1, 

ThermoFinnigan) was used to identify the peptide sequences from a subset of sequences 

obtained from the NCBI protein database (Release July 2007) that was prepared using 

search terms “canine, canis, and dog”. DTA files were generated for each MS/MS 

spectrum with a minimum ion count of 8 from the raw data using default parameters for 

the peptide mass range of 0-3500. Peptide (parent ion) tolerance of 10 ppm, fragment ion 

tolerance of 1.5 Da, and 2 missed cleavages for trypsin were allowed. 

Carbamidomethylation on Cys (+57 Da) was set as a fixed modification and oxidation 

on Met (+16 Da) as a variable modification. The following criteria were used for 

filtering peptides with low confidence scores: cross-correlation values (Xcorr) greater 

than 1.5 for singly charged ions, 2.0 for doubly charged, and 3.0 for triply charged ions, 

respectively. Any protein with two unique peptides identified was considered a match. 
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The MASCOT program (v2.2, Matrix Science, Boston, MA) was used to search the 

canine genome (released 2005 from NCBI) with the following parameters: one missed 

cleavage by trypsin, monoisotopic peptide masses, peptide mass tolerance of 1.2 Da, and 

fragment mass tolerance of 0.8 Da. Oxidation of methionine and carbamidomethylation 

of cysteine were taken into consideration. Any protein identified with this program at a 

significance < 0.05 was considered a match. 

Western blot 

 Because retinol binding protein (RBP) was identified as a potential marker for 

renal disease progression using 2-D DIGE, we extended its evaluation to 25 dogs 

affected with XLHN and 19 normal age-matched littermates using Western blot. Urine 

samples were evaluated every 2-4 wks in the affected dogs (average 10 time points/dog) 

and every 1-2 months in the normal dogs (4 time points/dog). Urine samples were 

normalized to 20 mg/dl creatinine and loaded on duplicate 15% SDS-polyacrylamide 

gels (Ready Gel Tris-HCl Gel, BioRad, Hercules, CA). Purified human retinol binding 

protein (0.05 %g/lane, Sigma, St. Louis, MO) was loaded on each gel in order to serve as 

a positive control as well as to allow for semi-quantitation of RBP in each urine sample. 

Protein was transferred to a nitrocellulose membrane, and membranes were blocked for 

2 hrs with a 6% milk solution, incubated for 1 hr at room temperature with polyclonal 

rabbit anti-human retinol binding protein antibody (1:4,000, Dako, Carpinteria, CA), 

washed for 15 min, and incubated for 1 hr with a HRP-labeled secondary antibody (goat 

anti-rabbit, 1:10,000, Dako). Signal was detected using an enhanced chemiluminescent 
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substrate (Pierce ECL Western Blotting Substrate, Thermo Scientific, Rockford, IL). 

Films were scanned (Epson scanner) and band density was quantified with ImageJ.141 

Surface-enhanced laser desorption ionization time-of-flight (SELDI-TOF) 

 For SELDI-TOF analysis, there are 6 different chromatographic chip surfaces 

available, and 3 of these chip types were chosen for analysis in this study based on 

preliminary experiments: cationic exchange (CM10), immobilized metal affinity capture 

(IMAC30), and reverse phase (H50) chips (Bio-Rad). CM10 spot surfaces contain 

carboxylate groups, providing an anionic surface that can interact with positively 

charged amino acid groups. IMAC30 spot surfaces are covered with nitrilotriacetic acid 

groups that form stable complexes with polyvalent metal ions, and after binding to a 

metal, these complexes interact with specific amino acids, such as histidine, cysteine, 

and tryptophan. H50 spot surfaces contain methylene group chains that bind 

hydrophobic amino acids.142 Chip conditions were optimized for protein concentration, 

sample to buffer ratio, and matrix type and concentration. Instrument conditions were 

optimized for laser intensity. The matrices used were sinapinic acid (SPA) and !-cyano-

4-hydroxycinnamic acid (CHCA). Preliminary analysis was performed for CM10 using 

both SPA and CHCA, IMAC30 using SPA, and H50 using both SPA and CHCA. 

Results appeared promising for all combinations except H50 using the SPA matrix. 

Albumin-free samples described above were diluted to a protein concentration of 1.2 

%g/%l. Urea (9M urea, 2% CHAPS) was added to the samples in a 2.5:1 sample to urea 

buffer ratio, and the mixture was vortexed for 30 minutes.  
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Chip preparation 

IMAC30 and H50 chips required pretreatment before addition of binding buffer. 

IMAC30 spots were first incubated with 5 %l charging solution (0.1 M copper sulfate) 

for 10 minutes, followed by incubation with 5 %l neutralization buffer for 5 minutes (0.1 

M sodium acetate, pH 4). Both steps were followed by washing with 5 %l HPLC-grade 

water for 1 minute. H50 spots were incubated with 5 %l 50% acetonitrile for 5 minutes, 

and repeated once, after which the array was allowed to dry for at least 30 minutes. All 

chips were then incubated with 5 %l of their respective binding buffer (5 minutes for 

CM10 and IMAC30, 2 minutes for H50), repeated once. Binding buffers used were 0.1 

M sodium acetate, pH 4 for CM10 chips; 0.1 M sodium phosphate, 0.5 M NaCl, pH 7 

for IMAC 30 chips; and 10% acetonitrile, 0.1% trifluoroacetic acid for H50 chips. All 

buffers used were provided by the manufacturer (Bio-Rad). Urine samples were applied 

to duplicate spots and two quality control samples were run in quadruplicate. Samples 

were applied (5 %l) to spots in the following sample to binding buffer ratios: 1:4 for 

CM10-SPA and H50-CHCA; 2:1 for CM10-CHCA; and sample only (no binding buffer) 

for IMAC-SPA. The chips were incubated for 30 minutes in a humid chamber at room 

temperature. The sample was removed, and chips were washed three times in their 

respective binding buffer for 5 minutes using a 15 ml conical tube. Chips were then 

washed twice in HPLC-grade water for 1 minute and allowed to air-dry for 20 minutes. 

Matrix (either 1 %l 100% SPA or 0.5 %l 50% CHCA, both dissolved in 0.5% 

trifluoroacetic acid and 50% acetonitrile) was added twice to each spot, with air-drying 
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for 10 min between applications. Chips were allowed to dry for at least 1 hour before 

analysis.  

Chip analysis 

Chips were inserted into a ProteinChip SELDI reader (Personal edition, Bio-

Rad), and the spot surface was impacted by a focused laser. This resulted in desorption 

of the protein from the chip surface and the flight of positively charged ions to the 

detector surface, where time-of-flight mass spectra were collected. A laser intensity of 

1800 nJ and 3500 nJ was used for the 0-20 kDa and 20-200 kDa molecular mass ranges, 

respectively, using SPA matrix. A laser intensity of 1200nJ was used for the 0-15 kDa 

range using CHCA matrix. Two warming shots were performed at each position (not 

included in the data). Signal averages of 1070 laser shots (10 laser pulses at each 

position) were used to generate each spectrum, and alternate positions were shot for the 

low mass range (0-15 or 0-20 kDa) and high mass range (20-200 kDa) readings so that 

each position was used only once. For the low mass ranges, the matrix attenuation and 

focus mass were set at 1 kDa and 5 kDa, respectively. For the 0-200 kDa range, the 

matrix attenuation and focus mass were set at 5 kDa and 20 kDa, respectively. The 

remaining settings were left as default.  

ProteinChip Data Manager (Bio-Rad) was used to analyze peaks. The baseline 

was subtracted using a smoothing window of 25 points and fitting width of 15 points. 

The spectra from each chip were normalized for total ion current, and peaks were 

calibrated and aligned. For spectra obtained using the SPA matrix, protein standards 

were used as calibrators (ProteinChip All-in-One Protein Standard II, Bio-Rad), while 
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for spectra obtained using the CHCA matrix, peptide standards were used (ProteinChip 

Peptide Standard Array, Bio-Rad). 

Renal histopathology 

 Renal biopsies were obtained from three of the dogs when microalbuminuria was 

detected (11-12 weeks of age) and when serum creatinine was ! 1.2 mg/dl (21-23 weeks 

of age), which corresponded to within 1-3 weeks of time points 1 and 2, respectively, for 

each dog. The dogs were anesthetized (20 mg/kg thiopental) and maintained on 

isofluorane while ultrasound-guided needle biopsies were obtained using an 18-gauge 

Bard® Monopty® disposable core biopsy instrument (Bard Biopsy Systems, Tempe, AZ). 

Cores were immediately placed into 10% formalin and embedded in paraffin within 24 

hrs. Three %m sections were cut from two levels of each biopsy 100 %m apart in order to 

represent a different plane of the biopsy. Sections stained with H&E, Masson’s 

trichrome, and PAS were evaluated by a board-certified pathologist. The interstitium, 

tubules, and glomeruli were scored as follows. Twenty 400X fields of tubulointerstitium 

were evaluated in each trichrome stained section and the presence or absence of 

interstitial fibrosis was recorded. Twenty 400x fields of tubulointerstitium were 

evaluated in each H&E stained section and presence or absence of tubular epithelial cell 

degeneration was recorded. All glomeruli were evaluated in each PAS stained section 

and the presence of the following features were recorded: podocyte hypertrophy, atrophy 

of the glomerular tuft with dilation of Bowman’s capsule, synechiae, and small and large 

fibrinous crescents.  
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Statistical analyses 

Serum creatinine concentration, UPC, and urine specific gravity were analyzed 

with a paired sample t-test (SPSS 11, Version 11.0.4). Data appeared normally 

distributed for each time point. For 2-D DIGE analysis, spots were statistically analyzed 

using a paired sample Student’s t-test and one-way ANOVA performed by the DeCyder 

BVA module. For SELDI-TOF, each chip type was analyzed independently using the 

ProteinChip Data Manager. Spectra were subjected to Expression Difference Mapping 

(EDM) using a 20% threshold value and a first pass of S/N and valley depth > 5 and a 

second pass of S/N and valley depth > 2. The paired Wilcoxon signed rank test was used 

to calculate p-values, determining significance between the two time points. Statistically 

significant peaks were scrutinized for quality of peak as well as the number of estimated 

peaks versus detected peaks in each peak cluster. Receiver operating curves (ROC) were 

also calculated. Statistical significance was set at p < 0.05 for all tests except for 2-D 

DIGE (p < 0.1). 

 

Results 

Clinical data 

Mean age, serum creatinine concentration, and urine protein:creatinine ratio were 

significantly higher for TP 2 as compared to TP 1 (Table 3). However, no significant 

difference was observed for the mean specific gravity between the two time points. 
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Table 3. Comparison of clinical parameters (mean ± standard deviation) between time 
points 1 (early proteinuria) and 2 (early azotemia). 
 

 Time point 1 Time point 2 p-value 
Age (wks) 18.7 ± 5.7 27.2 ± 6.8 <0.001 
Serum creatinine (mg/dl) 0.6 ± 0.1 1.4 ± 0.3 <0.001 
Urine protein:creatinine 7.9 ± 5.0 15.1 ± 4.8 0.019 
Urine specific gravity 1.016 ± 0.008 1.014 ± 0.005 0.585 

 
 

Renal histopathology 

 Histopathological evaluation of the renal biopsies of 3 dogs was performed in 

order to assess the degree of tubulointerstitial and glomerular damage present at the two 

time points (Figure 5). In order to achieve a non-biased evaluation of the renal 

architecture, 20 randomly selected high magnification (400x) fields of tubulointerstitium 

were examined and scored for the presence or absence of interstitial fibrosis and tubular 

degeneration. At TP 1 both the tubules and the interstitium in all 3 dogs were normal; 

neither interstitial fibrosis nor tubular epithelial cell degeneration were present in any of 

the specimens. Evaluation of all available glomeruli at this time point revealed only 

podocyte hypertrophy in 20-35% of the glomeruli in each specimen. At TP 2, 60-70% of 

the evaluated 400x fields had mild interstitial fibrosis; 75-85% of the fields contained 

tubules with evidence of epithelial cell degeneration. Podocyte hypertrophy and dilation 

of Bowman’s capsule with atrophy of the glomerular tuft were consistent lesions of 

almost all glomeruli examined at this time point. In addition, fibrinous crescents and 

adhesions between the glomerular tuft and Bowman’s capsule (synechiae) were present 

in < 50% of the glomeruli. 
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Figure 5. Photomicrographs of renal biopsies from a single dog at time points 1 and 2. 
At TP 1 (A, early proteinuria), the tubulointerstitium is histologically normal and mild 
glomerular podocyte hypertrophy is evident. At TP 2 (B, early azotemia), mild 
interstitial fibrosis and tubular degeneration are present, along with more pronounced 
glomerular changes, such as synechiae(*). Masson’s trichrome, x20 objective. 
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2-D DIGE 

A fluorescent image of a representative 2-dimensional gel showing CyDye-

labeled proteins is shown in Figure 6. The numbers represent spots that were picked and 

identified, and correspond to those listed in Table 4. Approximately 900 protein spots 

were visualized on each gel, and protein spot patterns were essentially identical among 

the animals, as determined by spot matching and analysis using DeCyder software. A 

comparison of the albumin-depleted urine from the early and later time points revealed 

differential presence of many protein spots, of which 22 were selected for analysis. Of 

these, 16 spots yielded significant data by mass spectrometry and database interrogation 

(Table 4). Several of the identified proteins were found in multiple spots suggesting that 

they may represent related isoforms or protein modifications. In addition, some spots 

contained multiple proteins. Thus, collectively, the identified spots represented 18 

different proteins. Eleven spots showed a significantly greater volume at the earlier time 

point, whereas 5 spots had a significantly greater volume at the later time point (Table 

4). The proteins identified from the spots that were more abundant at TP 2 include 

retinol binding protein, hemopexin, apolipoprotein A1 (Apo A1), and perlecan. The 

proteins identified from the spots that were more abundant at TP 1 included gelsolin, 

Apo A1, complement C3, collagen type XXVII, !-2-HS-glycoprotein (Fetuin A), 

haptoglobin, junctional adhesion molecule A (platelet adhesion molecule 1), 

immunoglobulin, and AMBP protein. 
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Figure 6. Scan of a gel from analysis of urine proteins separated by 2-dimensional gel 
electrophoresis, stained with CyDye. The outlined spots were differentially present in the 
urine obtained from time point 1 (early proteinuria) as compared with time point 2 (early 
azotemia) and were therefore picked from the gel and subjected to analysis by mass 
spectrometry. The numbered spots correspond to Table 4.  
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Table 4. Identification of proteins from corresponding spots on the 2-D DIGE gel 
(Figure 6) that were differentially present between time point 1 (early proteinuria) and 
time point 2 (early azotemia). Bold and italicized spots were increased in TP 2. 

Spot 

Label
a 

Accession 

number
b 

Protein ID  Mascot  

(Score) 

SEQUEST 

(Delta Cn) 

p value 

1 gi|73988725 Hemopexin 62 20 0.001 

gi|73971658 Gelsolin NI 30 

gi|73955106 Apolipoprotein A-I NI 30 

gi|73965965 Keratin 25A (canine) 71  

2 

gi|61740600 Keratin 10 (canine) 71  

0.043 

3 gi|73955106 Apolipoprotein A-I NI 100 0.048 
  Collagen type XXVII NI 60  

gi|73987236 Complement C3 60 86 
gi|73972000 collagen type XXVII 59 50 
gi|74003450 !-2-HS-glycoprotein (Fetuin A)  58 40 

gi|50979272 Epithelial keratin (canine) 48 NI 
gi|74003125 Solute Carrier family 12 45 NI 
gi|73956752 Ubiquitination factor 42 NI 

4 

gi|73971743 Aquaporin-7 39 NI 

0.056 

5 gi|73957095 Haptoglobin NI 30 0.08 
6 gi|73957095 Haptoglobin 84 58 0.077 

gi|73955106 Apolipoprotein A-I 43 70 7 
gi|73957095 Haptoglobin NI 20 

0.074 

8 gi|73957095 Haptoglobin NI 70 0.087 

gi|74006287 Junctional adhesion molecule A  72 NI 9 

gi|73995629 Immunoglobulin NI 30 

<0.001 

10 gi|73980858 
gi|74012534 

Immunoglobulin 66 30 <0.001 

gi|73980864 Immunoglobulin 113 50 
gi|73971996 AMBP protein  41 20 

11 

gi|73959812 GPI-anchor transamidase 39 NI 

0.007 

12 gi|73980864 Immunoglobulin 78 40 0.008 
gi|73955106 Apolipoprotein A-I 64 370 13 

gi|73950646 Perlecan NI 20 
0.038 

14 gi|73955106 Apolipoprotein A-I 62 270 0.001 
15  gi|73998292 Retinol binding protein  48 NI <0.001 

gi|73998292 Retinol binding protein 84 NI 16 

gi|73959812 GPI-anchor transamidase 40 NI 

<0.001 

aSpot label number from annotated gel image 
bNCBI (gi) protein database accession numbers 
NI, Not identified 
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Western blot 

 Western blot confirmed the increase in RBP seen with 2-D DIGE analysis. On 

average, RBP first became detectable at 19 weeks of age in affected dogs (approximately 

2 months before creatinine > 1.2 mg/dl) and increased with progression of disease 

(Figure 7). RBP was not detected by Western blot in any of the normal dogs.  

 

 

 

Figure 7. Western blot for retinol binding protein (RBP) in urine samples from a male 
dog with XLHN from 10 wks of age (Lane 1) to 26 wks of age (Lane 8), revealing an 
increase in urinary RBP with renal disease progression. Purified human RBP (0.05 %g) 
was loaded in the lane labeled “C”. Polyclonal rabbit anti-human retinol binding protein 
was used as the primary antibody, and HRP-labeled goat anti-rabbit antibody was used 
as the secondary antibody. Signal was detected using an enhanced chemiluminescent 
substrate. 

 
 

SELDI-TOF 

The peaks obtained with the CM10 and IMAC30 chips using SPA matrix showed 

good peak reproducibility in the quality control samples based on coefficient of variation 

(CV) (peak intensity CV < 30%). Also, the peaks obtained with the H50 chip using 

CHCA matrix produced acceptable peak reproducibility (typically peak intensity CV < 

30%). However, peaks obtained with the CM10 chip using CHCA matrix showed poor 

reproducibility and were therefore excluded from analysis. Up to 172 peaks were 
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detected on a single chip type, and more peaks were identified in the low mass range (2-

20 kDa) than the high mass range (20-200 kDa), supporting the utility of SELDI-TOF to 

detect small proteins and protein fragments (Table 5).  

 
 

Table 5. Summary of the number of peaks obtained using SELDI-TOF for CM10, 
IMAC30, and H50 chips 
 
 CM10 IMAC30 H50 

Mass range (kDa)  0-20 20-200 0-20 20-200 0-15 
Total number of peaks detected 64 34 129 43 44 
Number of peaks significantly different 

between time points 

33 20 41 13 15 

Number of peaks higher at TP1 19 2 21 4 8 
Number of peaks higher at TP2 14 18 20 9 7 

 
 
 

Among all chips, there were 93 unique, well-defined peaks that demonstrated a 

statistically significant difference in peak intensity between the two time points. Several 

of these peaks were identified using more than 1 chip surface, with CM10 and IMAC30 

most commonly identifying the same peak. Those peaks that accurately identified a 

particular time point in each dog (ROC = 0 or 1) and that were either present on more 

than one chip type or that had a particularly high level of induction within a single chip 

are listed in Table 6. Representative spectra from each chip are shown in Figure 8. The 

increased or decreased intensity of the peaks is illustrated in Figure 9 for the CM10 chip, 

showing higher peak intensity at TP 1 for the majority of peaks in the 2-20 molecular 

mass range versus higher peak intensity at TP 2 for the majority of peaks in the 20-200 

molecular mass range. All peaks > 50 kDa were of greater abundance at TP 2.  
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Table 6. Listing of peaks identified using SELDI-TOF that are both well-defined and 
that accurately identify the time point in all dogs based on ROC analysis. Peak mass, the 
chip on which the peak was identified, and the time point in which the peak was 
observed to be higher are listed.  
 

Peak mass (Da) Chip present Time point 

2778 CM10 TP1 
3224 CM10 TP1 
4073 CM10, IMAC30 TP1 
4142 IMAC30 TP1 
4393 CM10, IMAC30, H50 TP2 
4539 IMAC30 TP2 
4726 CM10, IMAC30 TP2 
4795 IMAC30 TP1 
4930 CM10 TP1 
4966 CM10, IMAC30 TP2 
5021 CM10, IMAC30 TP1 
5045 IMAC30 TP2 
5401 CM10 TP1 
5543 CM10 TP1 
5758 CM10, IMAC30 TP2 
7424 IMAC30 TP1 
8549 CM10, IMAC30, H50 TP2 
9665 CM10, IMAC30, H50 TP1 
9828 CM10, IMAC30, H50 TP1 
9950 IMAC30 TP2 
10,379 CM10, IMAC30, H50 TP1 
10,909 IMAC30 TP1 
11,312 CM10, IMAC30 TP2 
11,505 CM10, IMAC30 TP2 
13,017 IMAC30 TP2 
13,731 CM10, IMAC30, H50 TP2 
15,214 CM10, IMAC30 TP1 
20,572 CM10, IMAC30 TP1 
20,957 CM10 TP2 
23,152 CM10 TP2 
39,063 CM10 TP2 
59,384 IMAC30 TP2 
77,729 CM10 TP2 
103,962 CM10, IMAC30 TP2 
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Figure 8. Representative spectra obtained from CM10, IMAC30, and H50 chips from a 
single dog at time point 1 as compared with time point 2. Spectra show differences in 
many peaks between the two time points and among chip types. The peaks range in 
molecular weight from 0-150 kDa (CM10 and IMAC30 chips) and 0-15 kDa (H50 chip). 
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Figure 9. Heat map plot of the peaks identified on the CM10 chip within the 2-20 kDa 
range and the 20-200 kDa range. The areas of green indicate decreased peak intensity 
whereas the areas of red indicate increased peak intensity. Increased peaks at the first 
time point (TP 1) are mostly in the 2-20 kDa range whereas increased peaks during the 
second time point (TP 2) are mostly in the range of 20-200 kDa. 

 
 

Discussion 

In an effort to discover novel renal biomarkers and to gain insight into the 

molecular mechanisms underlying the pathogenesis of canine tubulointerstitial injury, 

we performed a comparative analysis of the urine protein profiles in dogs during early 

stages of CKD caused by XLHN using 2-D DIGE and SELDI-TOF. These techniques 

were both successfully employed in this study to identify proteins in the urine that are 
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altered with renal disease progression. With 2-D DIGE, the spot volume was compared 

between two stages of renal disease progression, and proteins within significantly 

increased or decreased spots were identified. With SELDI-TOF, the peak intensity of 

proteins bound to different chromatographic surfaces was compared between time 

points.  

The differentially present proteins identified in this study may be altered with 

disease progression due to several mechanisms. In normal dogs, the majority of proteins 

< 40 kDa freely pass through the glomerular filtration barrier along with a small amount 

of albumin, and these low molecular weight (LMW) proteins are nearly completely 

reabsorbed by the renal tubules, mediated primarily by the receptors megalin and 

cubilin, so that very little protein is present in normal urine.57 In dogs with CKD due to 

glomerular disease, massive proteinuria often results, with subsequent passage of 

intermediate molecular weight (IMW) and high molecular weight (HMW) proteins from 

the plasma into the urine filtrate. LMW proteins that otherwise would normally be 

reabsorbed by the tubules appear in the urine secondary to decreased tubular 

reabsorption, which is likely due to a combination of increased competition for binding 

sites on megalin and cubilin (due to the presence of IMW and HMW proteins) and 

decreased numbers or function of these receptors (due to tubular damage).104 In addition, 

proteins can be released from damaged tubules. In the present study, mean UPC was 

significantly higher at TP 2 as compared to TP 1; however, marked proteinuria and 

subsequent increased competition for reabsorption was present at both time points (Table 

3). While glomerular damage worsened with disease progression, resulting in a higher 
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UPC and additional competition for reabsorption, it is likely that tubular damage and/or 

dysfunction is a major contributing factor for the observed increase in many of the LMW 

proteins. This is supported by the development of azotemia and the histopathologic 

findings of increased interstitial fibrosis and tubular degeneration in biopsies taken 

during the later time point (Figure 5). In addition, one study using male dogs with 

XLHN demonstrated decreased reabsorption by renal tubules with disease progression, 

which corresponded to increased urinary excretion of several LMW proteins and altered 

protein handling within the proximal tubular cells.104 These findings support the 

rationale for using the chosen time points in this canine model of CKD to discover novel 

biomarkers of early tubulointerstitial injury.  

The 2-D DIGE analysis revealed a number of proteins that were differentially 

present in the urine samples from the two time points, and the majority of proteins 

identified were present in spots that were more abundant during the first time point. 

Several of the identified proteins, including retinol binding protein, hemopexin, AMBP, 

Fetuin A, complement C3, gelsolin, and perlecan have all previously been implicated in 

renal disease or are involved in renal pathophysiology.27,143-150 For instance, AMBP is 

proteolytically processed into !1-microglobulin (!1m) and bikunin, and urinary !1m 

has been extensively studied as a biomarker of tubulointerstitial disease in people.27 In 

human patients with CKD, plasma gelsolin levels decreased with progression of disease, 

and low plasma gelsolin levels have been correlated with increased mortality in patients 

receiving hemodialysis.144 Inflammatory cytokines may induce hemopexin production in 

mesangial cells,145 and hemopexin infusion in rats results in proteinuria and podocyte 
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foot process effacement.146 The present study is the first report linking many of these 

proteins with renal disease in dogs, and further evaluation is needed to determine their 

significance. 

The most studied of the identified proteins is RBP, which was more abundant in 

the later time point. RBP has been evaluated as a marker for tubulointerstitial damage 

and an indicator of prognosis in humans with renal disease,85,143 and there are several 

reports in veterinary medicine that demonstrate its relative abundance in urine samples 

from dogs with renal disease as compared with normal dogs, although serial evaluation 

was not performed.102,103,107,114 In the present study, increased urinary RBP was verified 

by Western blot in 25 XLHN dogs, revealing a progressive increase during renal disease 

progression (Figure 7). In addition, RBP was detected in the urine of these dogs well 

before the development of azotemia, supporting its use in detecting early 

tubulointerstitial disease in addition to progression of disease. While the role and 

behavior of the other identified proteins in dogs with renal disease is unknown, the 

identification of a known urinary biomarker of renal disease in this study supports the 

use of 2-D DIGE for the discovery of novel renal biomarkers. 

As might be expected with a global proteomic study, several unexplained 

observations were made. Apo A1 was present in some spots that had increased 

abundance and others with decreased abundance at the later time point. This could be 

consistent with the presence of different isoforms or modifications of the protein, and 

perhaps measurement of different forms of the protein in urine would be useful in renal 

disease; however further evaluation of Apo A1 in both the serum and urine of dogs with 
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CKD would be necessary to assess this possibility. In addition, immunoglobulin was 

identified only in spots with decreased abundance at the later time point. This is 

unexpected, as immunoglobulins should more easily pass through the glomerular 

filtration barrier due to more severe glomerular damage at the later time point. With 

SELDI-TOF analysis, there was a peak identified at 155 kDa on the CM10 chip, which 

may correspond to IgG, and this peak was higher at TP 2 in all dogs. In addition, 

measurement of urinary IgG by ELISA in these dogs demonstrated an increase in IgG in 

the early stages of disease progression as described in Chapter IV. The discrepancy of 

these findings with the 2-D DIGE results is likely a reflection of one of the weaknesses 

of 2-D electrophoresis, where components of a protein may be analyzed separately and 

may not reflect the behavior of the intact protein. 

Another challenging area with 2-D electrophoresis utilizing mass spectrometry-

based methods of protein identification is how to ensure confidence in the protein 

identity, particularly with differing database interrogations. For instance, in Spot 4, 

several proteins were identified using Mascot, but they had a relatively low Mascot score 

and were only identified with a single search engine. These proteins were included in 

Table 4 since they obtained a significant score. However, clusterin was identified with 3 

unique peptides in Spot 4 using TurboSequest, but it was not included in Table 4 since 

only one of the peptides met the necessary minimum Xcorr value. Clusterin expression 

is upregulated in renal injury due to a variety of causes in people151 and mRNA levels of 

clusterin were upregulated in end-stage kidney disease in XLHN dogs.152 Therefore, 

clusterin would be an interesting protein to evaluate further in dogs with CKD. These 
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results illustrate the differences seen with the use of different databases and different 

programs to search MS/MS spectra. For those spots where both searches revealed the 

same protein identification, high confidence can be placed in that identification. 

However, for those spots where some proteins were identified with only one program, 

results may be questionable, particularly when numerous proteins with a low score were 

identified within the same spot. These findings illustrate that 2-dimensional gel 

electrophoresis, while useful as a discovery tool, must be confirmed independently with 

more specific techniques. In the present study, one of the proteins identified (RBP) was 

confirmed with Western blot. Lack of cross-reactive antibodies prevented investigation 

of additional promising proteins. 

To complement the 2-D DIGE results, SELDI-TOF analysis of the samples was 

performed. Although SELDI-TOF does not allow for protein identification without 

substantial further analysis, it does provide a global view of the size of proteins present 

in the urine, and it is particularly useful for detecting proteins and protein fragments < 20 

kDa. In this study, spectra from TP 2 samples had a higher number of significantly 

increased peaks as compared to TP 1 for two of the chip types, but it is important to note 

that there was a mixture of peaks that were increased in either samples from TP 1 or TP 

2, similar to results from the 2-D DIGE analysis. All peaks > 50 kDa were more 

abundant at TP 2 than at TP 1, and most peaks > 20 kDa were more abundant in TP 2. 

The peaks < 50-60 kDa that were of higher abundance during TP 2 likely represent 

worsening tubular damage, whereas those peaks > 50-60 kDa that were of higher 

abundance during TP 2 likely represent worsening glomerular damage. Proteins < 20 
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kDa were more often decreased in TP 2 (Table 5, Figure 9), and this may reflect a 

decrease in relative abundance with respect to the total amount of protein present in TP 

2, as other proteins increase with disease progression. An alternative explanation for the 

decrease of these peaks during TP 2 as compared to TP 1 may be that these are proteins 

present in normal urine and excretion is decreased with tubular damage. Since the 

objective of this study was to evaluate markers of early tubulointerstitial disease that 

appear during renal disease progression, urine from normal dogs was not evaluated. 

However, urine from normal dogs does contain a small number of well-defined LMW 

peaks when analyzed with SELDI-TOF (unpublished observations), and in normal 

human urine, many LMW peaks are found.153  

The SELDI-TOF results identified many well-defined, differentially present 

peaks that might serve as useful biomarkers of renal disease, either alone or in 

combination (Table 6). Of particular interest are the statistically significant peaks present 

on multiple chips and those present on a single chip with a high level of induction, and 

these include peaks at: 3.2, 4.5, 4.8, 5.0, 5.4, 5.8, 8.5, 10.4, 10.9, 11.5, 13.0, 20.6, 21, 

27.5, 39.0, 59.4, 77.7, and 104 kDa. Some of the identified peaks illustrate that SELDI-

TOF can be useful in detecting protein modifications that are present at different stages 

of disease. For instance, the peak at 5,021.9 Da was increased at TP 1, whereas the peak 

at 5,045.4 Da was increased at TP 2 in each dog. This ~24 Da difference could represent 

a modification of the same protein rather than two different proteins.  

Only one other study has used SELDI-TOF in the analysis of urine from dogs 

with renal disease, and in this study, far fewer peaks were identified as being altered in 
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dogs with renal disease as compared with normal dogs.107 The larger number of peaks 

identified in the present study may be secondary to enrichment of low abundance 

proteins due to albumin removal or because paired samples were used from dogs with 

fewer confounding factors. The peaks identified by Forterre, et al were 11.6, 12.4, 12.6, 

14.6, 21, 27.9, and 65.7 kDa, all of which were significantly increased in dogs with renal 

disease except the 27.9 kDa peak, which was increased in normal dogs as compared with 

diseased dogs.107 This study also noted that in dogs with renal disease, the peak 

corresponding to 27.9 kDa was actually ~27.5 kDa, suggesting a modification of this 

protein.107 Of these peaks, the present study identified three (~11.5, 21, and 27.5 kDa), 

all of which were increased at TP 2. The peak at 27.5 kDa corresponds to the molecular 

mass of this peak in those dogs with renal disease in the previous study. The ~66 kDa 

protein likely represented albumin, which was removed from the present study. The 

identification of proteins of nearly identical molecular mass in two separate studies 

supports the use of SELDI-TOF for accurate peak detection in canine urine. 

It is important to note that while proteins cannot be reliably identified based 

solely on their molecular mass, there are several peaks that have a mass similar to known 

biomarkers of renal disease that were found to be differentially present with SELDI-TOF 

analysis. For example, the peak at 11.5 kDa might represent ß2-microglobulin and the 

peak at 21 kDa might represent RBP. As would be expected for these proteins, both of 

these peaks were elevated at TP 2. In addition, RBP was verified to increase with disease 

progression in the present study.  
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Although this study comprehensively evaluates the urine proteome in dogs with 

early stages of chronic renal disease, there are several limitations. First, albumin was 

removed from the samples analyzed. While this helped to enrich for less abundant 

proteins, important biomarkers that bind to albumin may also have been removed. In 

addition, other highly abundant proteins in the plasma were detected in multiple spots 

with 2-D DIGE (e.g., immunoglobulin, haptoglobin, and Apo A1) supporting their 

abundance in canine plasma and in the urine of dogs with glomerular disease. Additional 

studies comparing samples without albumin removal and with both albumin removal and 

removal of other abundant proteins would be helpful to assess the effects of these 

proteins on the detection of urinary biomarkers and to further enrich for low abundant 

renal biomarkers. Second, dogs were in the puppy to adolescent stage between the two 

time points, and without the inclusion of normal dogs, aging-related changes in the urine 

proteome cannot be separated from changes due to renal disease progression. However, 

this is thought to be a minor limitation, as any aging-related changes in the urine 

proteome are likely to be overwhelmed by the marked proteinuria present in these dogs. 

It is also important to keep in mind that this study was performed in dogs with a single 

disease process, and while its clinical and histologic progression is similar (although 

more rapid) to CKD caused by a variety of glomerular diseases, the findings need to be 

verified in a more diverse population of dogs with CKD due to multiple causes.  

Lastly, each technique has its own limitations. With the 2D-DIGE, there were a 

number of highly significant spots that could not be identified by mass spectrometry 

because of their low abundance. In addition, this technique is not ideal for detecting 
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proteins that are hydrophobic, highly acidic, highly alkaline, or poorly soluble. With 

SELDI-TOF, a large number of well-defined peaks were detected, but the identity of 

most of the peaks remains unknown without extensive follow-up.  

In summary, this study revealed a number of proteins that are differentially 

present in early stages of tubulointerstitial disease in male dogs with X-linked hereditary 

nephropathy. Several of these proteins are well-established as markers of renal disease in 

humans and are in the early stages of evaluation in dogs with renal disease. In addition, 

this study has implicated several additional proteins as markers of canine 

tubulointerstitial injury for the first time. 



                        80  

 

CHAPTER IV 

URINARY BIOMARKERS OF RENAL DISEASE IN DOGS WITH CHRONIC 

RENAL FAILURE DUE TO NATURALLY-OCCURRING PROGRESSIVE 

GLOMERULAR DISEASE 

 

Overview 

 Current non-invasive diagnostic tests for renal disease in veterinary patients lack 

adequate sensitivity and specificity. One promising area of study that may address this 

issue is the evaluation of urinary biomarkers. A variety of urinary proteins have shown 

promise in human medicine for providing information about disease severity and 

progression above and beyond that obtained from using standard measures of kidney 

function, including serum creatinine. In veterinary medicine, these proteins have only 

recently been explored, and currently no study concerning the serial evaluation of 

urinary biomarkers in dogs with progressive renal disease is available that would allow 

for the correlation of these proteins with conventional clinical and histologic measures of 

renal function. 

 This study evaluates four urinary biomarkers of tubular function and/or damage 

and one urinary biomarker of glomerular injury in dogs with X-linked hereditary 

nephropathy and normal age-matched littermates. Results are correlated with serum 

creatinine, glomerular filtration rate, urine protein:creatinine ratio, and histologic 

analysis of renal biopsies. All biomarkers were able to distinguish affected dogs from 

normal dogs early in their disease process. However, only retinol binding protein 
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correlated strongly with all measures of disease severity, including increasing serum 

creatinine, decreasing glomerular filtration rate, and presence of irreversible histologic 

tubulointerstitial lesions. Therefore, measurement of this protein in urine may be 

promising for the diagnosis and monitoring of kidney disease in dogs. 

 

Introduction 

Chronic progressive kidney disease (CKD) leading to renal failure is a common 

cause of morbidity and mortality in dogs, and it is commonly a result of primary 

glomerular disease.3,4 Regardless of the initiating cause of kidney disease, progressive 

renal injury is characterized by interstitial fibrosis, peritubular capillary loss, and 

destruction of functional nephrons, and renal function most closely correlates with the 

degree of tubulointerstitial damage.5 However, most currently available, non-invasive 

clinical methods for detecting tubulointerstitial disease are relatively insensitive. In 

addition, specificity of these tests, particularly specific gravity, can be quite poor. There 

is currently no clinically available, sensitive and specific non-invasive marker to detect 

ongoing tubular damage and decreased tubular function that will ultimately lead to end-

stage renal disease. Therefore, although tubulointerstitial lesions are frequent in dogs,1-3 

they are recognized clinically at an advanced stage, when lesions are both severe and 

irreversible, in which case options for successful therapy are limited. Detection of 

tubulointerstitial damage and altered function at an earlier stage would permit earlier 

interventions with renoprotective therapies that slow renal disease progression and 

therefore prolong survival. 



                        82  

In the human literature, evaluation of certain urinary proteins (i.e. qualitative 

assessment of proteinuria) has shown promise in determining the localization and 

severity of renal damage in patients with various forms of chronic renal disease. In 

addition, these proteins have detected tubular dysfunction and injury earlier than 

conventional methods. For example, low molecular weight proteins have been used to 

assess the degree of tubular function and therefore tubulointerstitial damage, whereby 

their increase in the urine is due to decreased reabsorption by the renal tubules. "2-

microglobulin (B2M), !1-microglobulin (#1M), and retinol binding protein (RBP) have 

all been shown to provide prognostic information and to predict the clinical course of 

disease better than the magnitude of proteinuria, serum creatinine concentration, and in 

some cases renal biopsy analysis.78-80,84,85 Other proteins evaluated include those 

released from injured tubular cells, such as N-acetyl-"-D-glucosaminidase (NAG), and 

many of these tubular proteins have also been found to be more sensitive for renal 

dysfunction than serum creatinine concentration or total urinary protein loss and to be 

superior in predicting renal disease progression and response to therapy in patients with 

several glomerular diseases.90,91   

In veterinary medicine, these proteins have undergone limited evaluation. In dogs 

with CKD, specific protein evaluation has revealed decreases in urinary excretion of 

Tamm-Horsfall protein (THP), as well as increases in a variety of proteins including 

NAG, #-glutamyltransferase, RBP, !1M, B2M, lysozyme, vitamin D-binding protein, 

transthyretin, transferrin, and immunoglobulin (IgG).101-107 However, the temporal 

behavior of these urinary biomarkers in naturally occurring progressive renal disease is 
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unknown, as no serial evaluation has been performed in dogs comparing them with 

standard measures of renal function. Thus, the utility of these markers for detecting CKD 

earlier than standard measures and whether these markers can help identify progression 

of renal disease is unknown.  

Therefore, the primary objectives of this study were: 1) to serially evaluate 

urinary biomarkers in dogs with a single chronic progressive kidney disease and 

compare their behavior with standard measures of renal function and damage; and 2) to 

assess the ability of each one of these urinary biomarkers to provide additional 

information beyond that obtained with other markers in order to suggest a panel of 

markers that may be most useful in monitoring renal disease progression. Secondary 

objectives were to assess assay performance of each quantitative assay and to investigate 

stability of NAG in canine urine.  

The urinary biomarkers selected for this study were chosen based on their 

established use as specific markers of tubulointerstitial damage or function in the human 

literature, their proposed handling by the renal tubules so that multiple mechanistic 

processes are represented, and the availability of a commercially available antibody 

and/or assay. Therefore, the urinary biomarkers evaluated include those that originate 

from damaged tubular cells (i.e., NAG and neutrophil gelatinase-associated lipocalin 

(NGAL)) and those that originate from filtered plasma and appear in the urine secondary 

to decreased reabsorption due to tubular injury (i.e., RBP and B2M). In addition, IgG 

concentration in the urine (uIgG) was measured in order to assess the degree of 

glomerular permselectivity, an indication of the severity of glomerular lesions. 
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These proteins were measured in dogs with X-linked hereditary nephropathy 

(XLHN), a naturally-occurring glomerular disease that results in progressive CKD. 

Although the genetic mutation causing this disease is rare, the pathogenic pathway for 

developing end-stage renal disease (ESRD) in these dogs is similar to that in other dogs 

with glomerular disease leading to ESRD. Because of the controlled environment and 

extensive monitoring throughout their disease, the dogs with this specific disease 

provide an attractive model for studying the behavior of these urinary biomarkers in 

dogs with CKD secondary to primary glomerular disease in order to determine their 

clinical usefulness for early detection and monitoring the progression of tubulointerstitial 

injury and declining renal function. 

 

Materials and methods 

Dogs 

 For the purpose of this study, we performed analyses on stored urine samples that 

were collected between August, 2002 and October, 2008 from 25 male dogs with XLHN 

(22 intact and 3 neutered at 14 wks of age) and 19 normal male littermates (16 intact and 

3 neutered at 14 wks of age). The dogs were members of a single family maintained in a 

colony of dogs at Texas A&M University since 1997. In this kindred, XLHN is caused 

by a nonsense mutation in the COL4A5 gene that encodes the !5 chain of type IV 

collagen, which is a crucial component of normal glomerular basement membranes 

(GBM).45 The salient clinical and pathologic features of the nephropathy that occurs in 
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male dogs with this gene defect have been described and include absence of the normal 

collagen IV network in the GBM, development of marked proteinuria, and progressive 

CKD that typically results in end-stage renal failure at about 1 year of age.44 

 All puppies produced in the colony were raised using a standardized protocol for 

feeding, husbandry, routine health care, and socialization. During studies, dogs were 

housed in runs in a temperature-controlled room with a 12-hour light-dark cycle, and 

they were fed once daily in the afternoon. Dogs were leash walked outside or were 

permitted short periods of unrestricted access to an exercise area daily. No treatments 

were administered to the dogs whose samples were utilized in this study. The study 

protocols were reviewed and approved by the Texas A&M University Laboratory 

Animal Care Committee. 

Sample collection 

Blood and voided, mid-stream urine were collected in the morning on a weekly 

to biweekly basis from the dogs starting at 8 weeks of age. Blood was centrifuged for 

plasma collection, and serum creatinine (sCr) and albumin were measured (Vitros 250, 

Johnson & Johnson Co., Rochester, NY). Urine specific gravity was measured with a 

refractometer and a routine dipstick analysis and semi-quantitative microalbuminuria 

dipstick were performed (Multistix, Bayer Corp, Elkhart, IN; ERD-HealthScreen, Heska 

Corp, Loveland, CO). Urine was centrifuged (500 x g for 5 min) and the supernatant was 

removed for urine protein and creatinine measurements (Vitros 250). The remaining 

supernatant was frozen within 4-6 hours of collection and stored at -80oC. Before 

analysis, samples were thawed and divided into multiple aliquots so that multiple freeze-
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thaw cycles could be avoided. Therefore, most samples underwent 2 freeze-thaw cycles 

before analysis.    

Biomarker assays  

Five proteins were measured in the urine from 20-25 dogs affected with XLHN 

and 10-19 normal age-matched littermates. In affected dogs, the proteins were measured 

every 2 weeks starting at the time point immediately preceding the development of 

proteinuria (UPC > 0.5) in each dog (generally 8-12 wks of age) until the onset of 

azotemia (sCr ! 1.2), after which they were measured monthly. This resulted in an 

average of 10 time points per dog (range 7-17). In the normal dogs, the proteins were 

measured at time points corresponding to their affected littermates for urinary NAG 

(uNAG) (average 10 time points per dog). However, for urinary RBP (uRBP), urinary 

B2M (uB2M), urinary NGAL (uNGAL), and uIgG they were measured at 4 time points, 

typically 2-3 months apart, due to the low levels of these proteins detected in their urine. 

Samples from each dog were run in duplicate fashion for each assay. 

RBP, NGAL and IgG ELISA 

uRBP, uNGAL, and uIgG were determined using either canine-specific 

(uNGAL: BioPorto Diagnostics A/S, Denmark; uIgG: Dog IgG ELISA Quantitation Kit, 

Bethyl Laboratories Inc., Montgomery, TX) or human-specific (uRBP: Immunology 

Consultants Laboratory Inc., Newberg, OR) sandwich ELISAs. All assays were 

commercially available and were used in accordance with the manufacturer’s 

instructions. A commercially available quantitative assay for B2M that cross-reacts with 
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the canine protein was not available. For each immunoassay, the absorbance was 

measured at 450 nm using a microplate reader (BioTek Synergy 2, Winooski, VT) and 

the concentration of the urinary biomarker was interpolated from provided standards 

using a four-parameter logistic curve (Gen5 1.05, BioTek). Concentrations of analyte 

within each sample were then normalized to urine creatinine concentration and 

expressed as ratios (e.g. urinary RBP-to-creatinine ratio (uRBP/c)). 

For the RBP assay, samples were diluted 1/5 to 1/4000 as necessary with 

provided diluent (phosphate buffered saline (PBS) containing bovine serum albumin, 

0.25% Tween, and 0.1% Proclin300). 100 %l of either human RBP standards (7.8-250 

ng/ml) or diluted sample was placed into duplicate wells that were pre-coated with 

affinity purified anti-Human RBP antibody (Ab). Samples were incubated for 1 hour, 

wells were washed four times with Wash solution (PBS containing 0.5% Tween), and 

100 %l HRP-conjugated anti-human RBP Ab was added and incubated for 10 min in the 

dark. Wells were then washed four times and 100 %l substrate solution (3,3’,5,5’-

tetramethybenzidine (TMB) with hydrogen peroxide in citric acid buffer, pH 3.3) was 

added. The plate was incubated for 10 min in the dark, and the reaction was stopped with 

100 %l stop solution (0.3 M sulfuric acid).  

For the IgG assay, plates were first coated with 100 %l capture Ab (Sheep anti-

Dog IgG-affinity purified Ab) diluted in coating buffer (0.05 M Carbonate-Bicarbonate, 

pH 9.6) and incubated for 1 hr. Three washes were performed (50 mM Tris, 0.14 M 

NaCl, 0.05% Tween 20, pH 8.0) followed by blocking for 30 min with 200 %l Postcoat 

Solution (50 mM Tris, 0.14 M NaCl, 1% BSA, pH 8.0). After three washes, 100 %l of 
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each standard (7.8-500 ng/ml) and sample diluted 1/10 to 1/4000 as necessary with 

Diluent (50 mM Tris, 0.14 M NaCl, 1% BSA, 0.05% Tween 20, pH 8.0) was added to 

duplicate wells and incubated for 1 hr. Wells were washed five times followed by 

addition of 100 %l HRP-labeled detection Ab (Sheep anti-Dog IgG-HRP conjugate, 

1:40,000 dilution) and incubated for 1 hr. Wells were again washed five times, and 100 

%l TMB substrate was added for 15 min. The reaction was stopped with 100 %l 2 M 

H2SO4 and the absorbance was determined after 5 min. All buffers used in this assay 

were reconstituted with mEq water, pH adjusted, and filtered (0.2 %m). 

For the NGAL assay, samples were diluted 1/100 to 1/4000 as necessary with the 

diluent provided. Wells precoated with mouse monoclonal anti-dog NGAL Ab were 

incubated for 1 hr on a shaking platform with 100 %l standard (0-400 pg/ml) or diluted 

sample in duplicate wells. After three 1-min washes, 100 %l biotinylated mouse 

monoclonal anti-dog NGAL Ab was added for 1 hr on a shaking platform followed by 

three 1-min washes. 100 %l HRP-conjugated streptavidin was added and plates were 

incubated for 1 hr on a shaking platform, followed by three 1-min washes. 100 %l TMB 

substrate was added and the plate was incubated for 10 min in the dark. The reaction was 

stopped with sulfuric acid, and the absorbance was measured after 5 min at 450 nm 

using 620 nm as a reference wavelength.  

NAG colorimetric assay 

uNAG was evaluated using an automated enzymatic colorimetric assay (Diazyme 

Laboratories, Poway, CA) on a Roche Hitachi 911 analyzer (GMI Inc, Anoka, MN). In 

this assay, NAG hydrolyzes 2-methoxy-4-(2’nitrovinyl)-phenyl 2-acetamido-2-deoxy-"-



                        89  

D-glucopyranoside (MNP-GlcNAc) to 2-methoxy-4-(2’-nitrovinyl)-phenol and the 

product formation is detected by measuring the absorbance at 505 nm after addition of 

an alkaline buffer. The assay was run in accordance with the manufacturer’s instructions, 

except that all sample volumes were doubled to 20 %l instead of the 10 %l recommended. 

Results were divided by 2 to obtain final values. Calibration was performed before each 

run, and both provided controls and internal quality control samples were assayed for 

each sample run.  

Analytical validation of IgG, NAG, RBP, and NGAL assays 

To analytically validate the selected IgG and NAG assays for canine urine, and to 

ensure adequate assay performance in our laboratory for the RBP and NGAL assays, 

intra- and inter-assay variability, linearity, and spiking recovery were determined for the 

RBP, IgG, and NAG assays, and all but intra-assay variability was determined for the 

NGAL assay. In addition, assay sensitivity was determined for uNAG. For intra- and 

inter-assay variability, samples with low, middle, and high concentrations of analyte 

were assayed with 6-10 repetitions within one assay run or in consecutive assay runs. 

For each sample the coefficient of variation (CV) was calculated. To investigate linearity 

using dilutional parallelism, 4-5 dilutions were made for each sample (typically low, 

middle, and high concentrations), and observed to expected ratios were calculated. 

Spiking recovery was performed by adding a known amount of provided protein 

standard to samples with known concentrations for the RBP, IgG, and NAG assays. In 

addition, three canine urine samples of low, middle, and high concentrations were 

combined in various combinations for RBP, NGAL, and NAG assays. Observed to 
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expected ratios were calculated for each spiking experiment. Assay sensitivity for uNAG 

was calculated using 10 blank determinations of water. The detection limit was 

calculated using mean blank value + 2.6 x standard deviation,154 and values below this 

were considered to be zero. 

Influence of the number of freeze-thaw cycles was evaluated for uNGAL and 

uNAG on samples with low, middle, and high concentrations or activities by evaluating 

the same sample stored at -80oC on different days. In addition, for uNAG, stability was 

evaluated for storage at room temperature (RT) for 2, 4, 8, 12, and 24 hrs and at 4oC, -

20oC, and -80oC for 2, 4, and 8 weeks for samples with low, middle and high activity. 

Stability was determined using linear regression. 

Measurement of B2M by semi-quantitative Western blot 

uB2M was evaluated by Western blot. Urine samples were normalized to 20 

mg/dl creatinine and loaded on duplicate 15% SDS-polyacrylamide gels (Ready Gel 

Tris-HCl Gel, BioRad, Hercules, CA). Purified human B2M (0.05 %g/lane, Sigma, St. 

Louis, MO) was loaded on each gel in order to serve as a positive control as well as to 

allow for semi-quantitative assessment of uB2M in each urine sample. Protein was 

transferred to a nitrocellulose membrane, and membranes were blocked for 2 hrs with a 

6% milk solution, incubated for 1 hr at room temperature with a polyclonal rabbit anti-

human B2M antibody (1:4,000, Dako, Carpinteria, CA), washed for 15 min, and 

incubated for 1 hr with HRP-labeled secondary antibody (goat anti-rabbit, 1:10,000, 

Dako). The signal was detected using an enhanced chemiluminescent substrate (Pierce 

ECL Western Blotting Substrate, Thermo Scientific, Rockford, IL). Films were scanned 
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(Epson scanner) and integrated density for each band was quantified using ImageJ 

software.141 The integrated density for each urine sample was divided by the integrated 

density from the standard control lane to obtain a semi-quantitative, unitless value for 

uB2M.   

Glomerular filtration rate (GFR) 

For 22 affected dogs and 19 normal littermates, dynamic renal scintigraphy using 

clearance of 99mTc-diethylenetriaminepentaacetic acid (DTPA) was performed to 

estimate GFR at monthly intervals starting at 9 weeks of age as described 

previously.155,156 Briefly, 99mTc-DTPA was injected through a cephalic vein, and dogs 

were imaged using a large-field-of-view " camera over 12 minutes. Regions of interest 

were drawn around each kidney, and the background was subtracted. Global GFR was 

estimated. Because GFR was determined much less frequently than other clinical data, 

GFR values for time points in between measurements were calculated by interpolation 

using the two bounding measurements. This provided more GFR values for correlation 

with other measures of renal function. 

Histologic evaluation 

Serial renal biopsies obtained from 10 affected dogs and 10 normal littermates 

were analyzed to provide information about structural changes in the glomeruli and 

tubulointerstitium over the course of disease, and the timing of these biopsies was 

standardized to allow comparisons between dogs in addition to serial comparisons within 

each dog. Initially, dogs were biopsied at time points defined by the dog’s age (months 
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4, 6, 8, and 10). Later, dogs were biopsied when they reached specified “milestones” in 

the course of their disease (independent of age) that defined specific stages of disease 

progression: onset of persistent microalbuminuria, onset of a sCr ! 1.2 mg/dL 

(azotemia), onset of sCr ! 2.4 mg/dL, and onset of sCr ! 5 mg/dL (endpoint). Biopsies 

were obtained and processed as described previously.155 Briefly, cores were immediately 

placed into 10% formalin and embedded in paraffin within 24 hrs. Three %m sections 

were cut from two levels of each biopsy 100 %m apart in order to represent a different 

plane of the biopsy. Sections stained with H&E, Masson’s trichrome, and PAS were 

evaluated by a board-certified pathologist.  

For scoring of the glomeruli, three serial sections were aligned, and only intact 

glomeruli were evaluated (i.e., tufts that were at the edge of the biopsy whose Bowman’s 

capsules were disrupted were not scored). The percentage of glomeruli with the 

following features were assessed: normal (i.e., had none of the following lesions); 

segmental mesangial expansion; global mesangial expansion; synechia; fibrin, 

proteinaceous fluid and/or cells within Bowman’s space (fibrinous crescent); 

obsolescence; and dilation of Bowman’s capsule.  

To score the tubulointerstitium, twenty randomly chosen 200X fields of 

tubulointerstitium were evaluated in two PAS and two H&E biopsy sections (5 fields per 

biopsy). Only the renal cortex was scored (scoring method outlined in Table 7). The 

scores (0-3) were added together so that the total score for each biopsy time point within 

each category ranged from 0 to 60. Additionally, trichrome sections were used to 

estimate interstitial fibrosis using Imagescope (Aperio Technologies, Inc, Vista, CA) to 
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outline each specimen as well as the regions of fibrosis. The total area of fibrosis was 

divided by the total area encompassed by the biopsy. 

 
 
Table 7. Criteria for scoring lesions in the cortical tubulointerstitium based on evaluation 
of PAS and H&E biopsy sections. 

Lesion Scores for each group of lesions (each type of lesion 
in each group is scored separately) 

• Tubular dilation 
• Presence of intact tubular 

membrane brush border 
• Tubular atrophy 
• Tubular cell vacuolation 

0=lesion not present 
1=lesion present in <50% tubules 
2=lesion present in >50% tubules 
3=lesion present in all tubules within the field 

• Tubular single cell 
necrosis 
• Intratubular casts 
• Mineralization of tubular 

basement membranes 

0=not present 
1=present in 1 tubule in a 20x field 
2=present in >5 tubules in a 20x field 
3=present in >10 tubules in a 20x field 

• Interstitial fibrosis 0=not present 
1=mild focal fibrosis 
2=moderate focal fibrosis 
3=diffuse fibrosis 

• Acute inflammation 
• Chronic inflammation 

0=not present 
1=inflammatory cells scattered throughout specimen, 
not aggregated 
2=focal aggregate of inflammatory cells (>20 cells) 
3=multiple large aggregates of inflammatory cells 

 
 

Statistical methods 

  The effect of storage time on urinary biomarker determinations was evaluated 

with linear regression, whereby the mean values for each year and the overlap of their 

standard deviations were compared. Descriptive statistics for the clinical data for normal 

and affected dogs was calculated using medians and interquartile ranges. Comparison of 



                        94  

median values between normal and affected dogs at the time when sCr was " 0.7 mg/dl 

was performed using nonparametric equality of medians test. Correlations between the 

urinary biomarkers and clinical and histologic variables were determined using 

Pearson’s correlation coefficient with clustered robust standard errors. Significance was 

set at a p-value < 0.05. All statistical calculations were performed using Stata 11.0 (Stata 

Corp LP, College Station, TX). 

 

Results 

Analytical validation of IgG, NAG, RBP, and NGAL assays 

Analytical validation results for each urinary biomarker are presented in Table 8. 

Mean intra- and inter-assay variability was acceptable for all assays (<10% and 15%, 

respectively) based both on standard criteria as well as & CV of the normal dogs.129 

However, for the NAG assay, intra- and inter-assay variability for the low activity 

samples (< 5 U/L) was higher (14% and 16%, respectively) than for the middle and high 

activity samples. Intra-assay variability was not evaluated for the NGAL assay for 

several reasons, including the high cost of the assay, the manufacturer-reported intra-

assay variation of 1-2% for canine urine, and the low duplicate CV for samples in this 

study (typically 1-3%). Linearity for all assays was acceptable (Table 8), although it is 

important to note that this was true for the RBP assay only when the values obtained fell 

within the linear part of the standard curve (approximately 7.8-130 ng/ml); when above 

this value, concentrations were underestimated by 30-50%. Spiking recovery results 
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were acceptable for the IgG, RBP, and NGAL assays. For the NAG assay, spiking 

recovery was only acceptable when samples were spiked with NAG control or when 

samples with moderate to high activity were mixed together. However, when a sample 

with uNAG activity < 5 U/L was mixed with a sample with higher activity, the measured 

activity was much lower than expected (Table 8). 

  
 
Table 8. Analytical validation results for quantitative assays for urinary biomarkers 
using canine urine. 

 IgG RBP NAG NGAL 

Intra-assay CV (%)
a 

9.6 4.8 7.1 ND 
Low 11.7 4.3 13.9 … 

Middle 7.9 3.8 6.3 … 
High 9.3 6.2 1.2 … 

Inter-assay CV (%)
a 

4.5 10.3 7.6 7.3 

Low 5.6 9.8 15.6 10.8 
Middle 5.0 10.8 4.9 4.6 
High 3.0 10.2 2.4 6.5 

Linearity (%) 92-122 97-111 93-119 96-107 

Spiking recovery (%) 86-117 70-116 
96-111b 
29-62c 

90-101 

Detection limit ND ND 0.4 U/L ND 
aMean intra- and inter-assay CV’s for all samples evaluated. 
bObserved/expected % when using samples with moderate to high activity (>8 U/L)  
cObserved/expected % when using a sample with low activity (<5 U/L) and a sample 
with moderate to high activity 
CV, coefficient of variation; ND, Not determined. 
 
 
 
 Stability was evaluated for uNAG, and activity mildly but progressively 

increased at 8, 12 and 24 hrs at room temperature. Except for one sample that 

demonstrated a minimal but significant increase with storage at 4oC, there was otherwise 

no significant change observed during storage for 2 months at 4oC, -20oC, or -80oC, and 
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no significant difference was observed in each sample stored at different temperatures. 

The number of freeze-thaw cycles did not significantly alter measured uNAG activity for 

samples with moderate to high activity (up to 5 freeze-thaw cycles); however, a small 

but significant (p = 0.025) increase was observed for the sample with low uNAG activity 

(< 5 U/L). For uNGAL, the concentration was not significantly affected with up to 4 

freeze-thaw cycles (Appendix A). 

 Because urine samples were stored for variable lengths of time before analysis, 

the effect of storage time on assay results was evaluated. No apparent storage effect was 

observed for uNAG, uRBP, uB2M, and uIgG. However, for uNGAL, samples evaluated 

after only two years of storage had consistently higher concentrations than samples 

evaluated after storage for four years or longer. However, further decreases in 

concentration for samples stored > 4 years was not evident (Appendix B). 

Comparison of results for urinary biomarkers with clinical data 

uIgG/c, uRBP/c and uB2M were low to absent in the normal males (Table 9). 

However, uNGAL/c in normal puppies <4 months of age was frequently substantially 

higher than in older dogs (although still generally lower than most measurements in the 

affected males). uNAG/c was generally low in the normal males; however, variable 

increases were seen relatively frequently at a young age and occasionally at older ages as 

well. This resulted in some overlap of uNAG/c in normal males and affected males 

(Table 9). For both uNGAL/c and uNAG/c, these occasional high results in the normal 

dogs resulted in higher means as compared with median values. For uB2M, a faint band 



                        97  

was observed in at least one urine sample from 4 of the 18 normal male dogs evaluated 

by Western blot.  

**Note that for each of the following tables and graphs, abbreviations are defined as 

follows: uRBP/c, urine retinol binding protein:creatinine ratio; uIgG/c, urine 

immunoglobulin G:creatinine ratio; uNAG/c, urine N-acetyl-"-D-

glucosaminidase:creatinine ratio; uB2M, urinary "2-microglobulin; uNGAL/c, urine 

neutrophil gelatinase-associated lipocalin:creatinine ratio. 

 
 
Table 9. Group descriptive statistics (median, range) for clinical data from all normal 
dogs and for normal and XLHN dogs when sCr " 0.7 mg/dl. 

 
Normal dogs  

(all ages) 

Normal dogs when 

sCr ! 0.7 mg/dl 

XLHN dogs when 

sCr ! 0.7 mg/dl 

 N 
Median 

(IQR) 
N 

Median 

(IQR) 
N 

Median 

(IQR) 

sCr (mg/dl) 376 0.8 (0.3) 162 0.6 (0.2) 196      0.6 (0.1) 

GFR (ml/min/kg) 317    3.17 (0.58) 116    3.38 (0.68) 105    3.87 (0.96)a 

UPC 310    0.20 (0.24) 117    0.26 (0.28) 160  0.60 (3.0)a 

uRBP/c (mg/g) 32    0.08 (0.08) 11    0.15 (0.07) 86  0.38 (2.4)c 

uB2M 69      0.00 (0) 24      0.00 (0) 98   0.01 (0.29)b 

uNAG/c (U/g) 185 0.4 (3.8) 71      1.9 (8.4) 81 8.1 (15.6)a 

uNGAL/c (µg/g) 48 1.6 (5.2) 16  7.9 (14.6) 79    34.6 (99.6)d 

uIgG/c (mg/g) 57 2.2 (1.4) 19 3.0 (1.8) 98    48.0 (281)a 
aP < 0.001, bP = 0.001, cP = 0.002, and dP = 0.003 compared with normal dogs when sCr 
< 0.8 mg/dl; P value for sCr = 0.066 
sCr, serum creatinine; GFR, glomerular filtration rate; UPC, urine protein:creatinine 
ratio; N, number of observations; IQR, interquartile range (i.e., difference between the 
third and first quartiles). 
 
 
 

In the affected dogs, each urinary biomarker was significantly increased early in 

the disease process (i.e., when sCr was not yet elevated) as compared with normal dogs 
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(Table 9). uIgG/c, uNAG/c, uNGAL/c, and uB2M all demonstrated an increase during 

early stages of the disease, and all but uNAG/c appeared to continue to increase during 

mid- to late-stage renal disease progression (as defined by sCr concentration) based on 

median values. However, comparison of the ranges for these biomarkers at each interval 

showed substantial overlap, indicating that they remained relatively constant in later 

stages (Figure 10). In contrast, uRBP/c showed a progressive increase at all intervals, 

most pronounced in the mid- to late-stages of renal disease progression. Although not 

evident from the figure, median uRBP/c is significantly higher (3 mg/g; IQR=10 mg/g) 

when sCr is 0.6-1.2 mg/dl as compared to when sCr < 0.6 mg/dl (0.26 mg/g; IQR=0.9 

mg/g). 

Each urinary biomarker was also plotted against defined intervals of GFR and 

UPC (Figures 11 and 12). For GFR, results are similar to sCr with each biomarker 

increasing until a time point of moderate impairment of renal function (GFR 1.5-2.5 

ml/min/kg), although overlap of the interquartile range was substantial for all biomarkers 

except uRPB/c. However, at a time point of end-stage renal impairment (GFR <1.5 

ml/min/kg) median values for all biomarkers stayed at a similar level or decreased 

slightly, except for uRBP/c, which continued to show a marked increase. 
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Figure 10. Plot of the median values for five urinary biomarkers for 4 different disease 
stages as defined by serum creatinine (sCr) concentrations in dogs with XLHN. All 
biomarkers show a progressive increase until mid-azotemia (sCr 1.2-2.4 mg/dl). 
However, only uRBP/c continues to demonstrate a progressive increase until end-stage 
disease. Markers indicate median values and the bars indicate the interquartile range. 
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Figure 11. Plot of the median values for five urinary biomarkers for 4 different disease 
stages as defined by glomerular filtration rate (GFR) in dogs with XLHN. All 
biomarkers show a progressive increase until evidence for a moderate decline of renal 
function (GFR < 2.5). Only uRBP/c continues to increase with end-stage renal 
impairment. Markers indicate median values and the bars indicate the interquartile range. 

 
  

As compared with UPC (Figure 12), uNGAL/c, uNAG/c, and uIgG/c were all 

significantly higher than in the normal dogs when UPC < 0.5. Most of the urinary 

biomarkers demonstrate a substantial increase only when UPC > 2; however, median 

uIgG/c and uNGAL/c increased throughout all UPC intervals. uRBP/c, uB2M, and 

uNAG/c remained relatively stable until UPC > 2, although the increase in median 

uRBP/c was much less pronounced than for the other biomarkers. Particularly marked 

increases were observed in all biomarkers when UPC > 10. It should be noted that 
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median GFR and sCr concentration were 3.5 ml/min/kg and 0.8 mg/dl, respectively, for 

the UPC interval of 2-10 as compared with 2.2 ml/min/kg and 1.8 mg/dl, respectively, 

when the UPC was >10.  

 
 

 
Figure 12. Plot of the median values for five urinary biomarkers for 4 different disease 
stages as defined by urine protein:creatinine ratio (UPC) intervals in dogs with XLHN. 
Most urinary biomarkers demonstrate a substantial increase only after UPC > 2. Markers 
indicate median values and the bars indicate the interquartile range. 

 
 
Correlations of each urinary biomarker with sCr, GFR, and UPC are presented in 

Figure 13. Serum creatinine correlated most strongly with GFR and uRBP/c, with a 

moderate correlation observed with UPC. Similarly, GFR correlated most strongly with 

sCr and had a moderate correlation with uRBP/c and UPC. All biomarkers showed a 
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moderate to high correlation with the magnitude of proteinuria. UPC correlated most 

strongly with uIgG/c with the least correlation being observed with uRBP/c. Urine 

specific gravity showed poor correlation (< 0.4) with clinical data and urinary 

biomarkers (Appendix C).  

 
 

 
Figure 13. Correlation of standard clinical measures of renal function and urinary 
biomarkers in dogs with XLHN. Correlations with GFR are negative. Circles indicate 
the estimated correlation and bars indicate its confidence interval. N, number of paired 
observations; sCr, serum creatinine; GFR, glomerular filtration rate; UPC, urine 
protein:creatinine ratio. 
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Correlations of the urinary biomarkers with each other were also performed 

(Table 10). uB2M, uNGAL/c, and uIgG/c were all strongly correlated with one another 

and these also demonstrated moderate correlation with uNAG/c. Only uIgG/c was 

moderately correlated with uRBP/c. 

 
 

Table 10. Correlations (Corr) of urinary biomarkers in dogs with XLHN. For all 
correlations P < 0.001 

  uB2M  uNGAL/c uNAG/c uIgG/c 

uRBP/c  Corr (n) 0.453 (247) 0.317 (195) 0.392 (207) 0.605 (252) 
uB2M  Corr (n) ….. 0.768 (201) 0.600 (214) 0.696 (260) 

uNGAL/c  Corr (n) ….. ….. 0.606 (181) 0.721 (205) 
uNAG/c Corr (n) ….. ….. ….. 0.607 (219) 

n, number of paired observations.  
 
 

Histologic analysis 

Mean histology scores were compared between affected and normal dogs, and 

correlations of glomerular and tubulointerstitial lesions were performed with one another 

using combined data from both normal and affected dogs, affected dogs alone, and 

normal dogs alone (Appendix C). All glomerular and tubulointerstitial categories were 

significantly different in the affected dogs as compared with their normal littermates. In 

addition, significant correlations between most categories were present when data points 

from all dogs were evaluated together. These findings indicate that the presence of 

lesions distinguishes affected dogs from normal dogs. However, approximately 10-15% 

of the biopsies from normal dogs demonstrated the appearance of segmental mesangial 

expansion. In addition, in normal dogs, the tubules frequently contained 1-2 small 
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vacuoles and rare tubular dilation was observed. When only affected dogs were 

evaluated, the majority of tubular lesions were positively correlated with more severe 

glomerular damage (i.e., global mesangial expansion, obsolescence, and synechia). The 

majority of tubular lesions also correlated strongly with each other except for tubular cell 

vacuolation, tubular basement membrane mineralization, and tubulointerstitial acute 

inflammation. In particular, fibrosis scored using random fields on H&E and PAS 

stained slides correlated very strongly with the overall percentage of fibrosis estimated 

from the trichrome stained slide (r=0.928). Therefore, these two categories were 

combined for the remaining correlations. 

When comparing histologic findings with conventional tests of renal function in 

all dogs, the presence of histologic lesions correlated with a decreasing GFR and an 

increasing sCr and UPC. However, urine specific gravity showed poor correlation with 

biopsy findings. When correlations were performed in affected dogs only (Table 11), 

GFR and sCr demonstrated moderate to strong correlation with most tubular categories, 

and correlations were particularly strong for the degree of interstitial fibrosis. This was 

typically true for the UPC as well. Overall, correlations with clinical data were stronger 

for tubulointerstitial lesions than for glomerular lesions. However, a decreasing GFR and 

increasing sCr also strongly correlated with the presence of more severe glomerular 

lesions. In the normal dogs, no significant correlations were present with any histologic 

category in relation to clinical data or urinary biomarkers (Appendix C). Segmental 

mesangial expansion, fibrinous crescents, tubular cell vacuolation, tubular basement 



                        105  

membrane mineralization, and tubulointerstitial acute inflammation did not correlate 

with any clinical findings (Appendix C). 

 
 
Table 11. Correlation of histologic lesions with conventional measures of renal function 
in dogs with XLHN. 

Glomerular lesions GFR sCr UPC 

Normal & mild    0.748**  -0.622*   -0.717** 

Moderate & severe    -0.829** 0.744**     0.527 

Synechia   -0.571   0.518 0.526 

Fibrinous crescents   -0.165   0.120 0.491 

Bowman’s capsule dilation   -0.431   0.395 0.600 

    

Tubulointerstitial lesions    
Interstitial fibrosis -0.835**    0.810**   0.691* 

Chronic interstitial 

inflammation -0.798** 0.625    0.761** 

Tubular single cell necrosis -0.753**   0.670*   0.710* 

Tubular atrophy -0.746**   0.675* 0.523 

Tubular dilation -0.753**   0.705*   0.669* 

Tubular casts  -0.712*   0.706* 0.387 

Lack of brush border -0.782**   0.723*   0.699* 

*P < 0.05; **P < 0.001 
Normal & mild glomerular lesions: normal + segmental mesangial expansion; Moderate 
& severe glomerular lesions: global mesangial expansion + obsolescence. GFR, 
glomerular filtration rate; sCr, serum creatinine; UPC, urine protein:creatinine ratio. 
 
 
 

When comparing histologic findings with the urinary biomarkers in all dogs, 

significant correlations were observed for nearly every category for each biomarker 

except for uRBP/c, which was positively correlated only with more severe glomerular 

and tubular lesions as well as the presence of an intact brush border (Appendix C). When 

only data from affected dogs was used in the calculations (Table 12), a significant 

positive correlation was observed between uRBP/c with more advanced tubulointerstitial 
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lesions (i.e., interstitial fibrosis) as well as with global mesangial expansion (Appendix 

C). uB2M correlated with the majority of glomerular and tubulointerstitial categories. 

Interestingly, UPC and uIgG/c negatively correlated with the proportion of normal or 

mildly affected glomeruli, but they did not correlate with severity of the glomerular 

lesion. Both uIgG/c and uNGAL/c demonstrated strong positive correlation with the 

proportion of glomeruli with dilated Bowman’s capsule. uNAG/c did not significantly 

correlate with any glomerular lesions, and uNAG/c, uNGAL/c, and uIgG/c did not 

significantly correlate with any tubulointerstitial lesions.  

 
 
Table 12. Correlation of histologic lesions with urinary biomarkers in dogs with XLHN. 

Glomerular lesions uRBP/c uB2M uNGAL/c uNAG/c uIgG/c 

Normal & mild -0.494  -0.846** -0.660 -0.537 -0.618* 

Moderate & severe   0.610   0.630*  0.195  0.449 0.331 

Synechia  0.292   0.627*  0.172  0.525 0.303 

Fibrinous crescents  0.239 0.591  0.554  0.385 0.337 

Bowman’s capsule 

dilation  0.346   0.666* 

   

0.858**  0.534 

  

0.743** 

      

Tubulointerstitial 

lesions 

     

Interstitial fibrosis   0.692* 0.692*  0.425  0.540  0.621 

Chronic interstitial 

inflammation 0.456   0.790**  0.420  0.603  0.589 

Tubular single cell 

necrosis 0.416   0.838**  0.521  0.607  0.547 

Tubular atrophy 0.414 0.655*  0.287  0.490  0.460 

Tubular dilation    0.713* 0.656*  0.431  0.489  0.605 

Tubular casts  0.369   0.456  0.044  0.409  0.216 

Lack of brush 

border    0.522   0.708*  0.447  0.430  0.625 

*P < 0.05; **P < 0.001 
Normal & mild glomerular lesions: normal + segmental mesangial expansion; Moderate 
& severe glomerular lesions: global mesangial expansion + obsolescence. 
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Discussion 

The purpose of this study was to serially assay a panel of urinary biomarkers in a 

canine model of naturally occurring progressive glomerular disease and to correlate 

these biomarkers with standard measures of tubular and glomerular function and 

histopathologically assessed damage in order to assess their value for detecting the onset 

and gauging the progression of renal disease. In this study, dogs affected with XLHN 

demonstrated marked increases in all biomarkers, often very early in their disease 

process, whereas normal littermates had little to no urinary biomarkers detected. A 

progressive increase was observed for uRBP/c, whereas for all other biomarkers, an 

initial increase followed by a relatively constant protein excretion was detected. uRBP/c 

correlated best with sCr and GFR, and it also showed a significant positive correlation 

with interstitial fibrosis. Results of the present study also indicate acceptable assay 

performance in canine urine using ELISAs for RBP, NGAL, and IgG, and an enzymatic 

colorimetric assay for NAG. 

The results of this study provide new information regarding urinary biomarkers 

in dogs with CKD. uNAG and uNGAL have not previously been serially evaluated in 

dogs with CKD, and this is the first report measuring uNGAL in dogs. uRBP, uB2M, 

and uIgG have been serially evaluated in the urine from dogs with XLHN using semi-

quantitative methods.104 However, the present study provides a quantitative analysis for 

both uRBP/c and uIgG/c, and more dogs and time points were used for the analysis of 

the proteins in this study. While uB2M was not quantitatively measured, trends are likely 
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valid based on the results for uRBP, where a strong correlation between the Western blot 

(see Chapter III) and the ELISA results was observed (r = 0.871).  

Analytical assay validation procedures were performed on all quantitative assays 

used in order to demonstrate acceptable analytical assay performance using canine urine 

in our laboratory. Validation results for several of these assays have previously been 

reported.103,114 In the present study, similar precision and linearity results were obtained 

using the same assay for uRBP and different assays for uIgG and uNAG as compared 

with previous studies (Table 8).103,114 In addition, detection limits for uNAG activity 

were similar. However, additional accuracy evaluation was performed in the present 

study using spiking recovery. Poor recovery was demonstrated for uNAG activity when 

a sample with low activity was added to one with high activity. This finding may be 

explained by the presence of an inhibitor of NAG activity in urine samples.157 The 

present study also revealed that caution must be used when interpreting results for uRBP 

that fall outside the linear part of the standard curve. Analytical validation results for 

canine urine samples using the NGAL assay are available from the manufacturer, and 

results from the present study support the good performance of this assay. Overall, 

results from this study indicate that assays developed specifically for measurement of the 

canine protein performed well (i.e., NGAL, IgG), whereas those developed originally for 

other species (i.e., RBP, NAG) performed reasonably well but had a few caveats that 

need to be addressed when determining sample concentration. 

NAG activity appears to be relatively stable in canine urine, with no significant 

effect seen with storage at 4oC, -20oC, -80oC for up to 2 months, similar to previous 
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findings in dogs and people.157,158 However, uNAG activity increased with storage at 

room temperature, indicating the need to refrigerate urine samples as soon as possible 

after collection. Surprisingly, uNAG in the low-activity sample increased with freeze-

thaw cycles in the present study, whereas uNAG activity in cats significantly decreased, 

but only after the 5th freeze-thaw cycle.112 This difference may be due to methodology or 

species differences. uNAG activity in samples with moderate to high activity levels and 

uNGAL concentration appears to be stable over multiple freeze-thaw cycles.  

In normal dogs, urinary biomarkers were minimal to absent (Table 9), consistent 

with previous studies,103,104,114,159 and the quantitative values obtained in the present 

study are similar to those reported for uNAG/c159 and uRBP/c.103 uNGAL/c was 

occasionally substantially higher in puppies <4 months of age than in older dogs. This 

finding could be due to contamination of the urine with preputial leukocytes due to 

difficulty in obtaining a clean mid-stream urine sample from puppies at this age. Indeed, 

on urine sediment analysis, it was common to see mild to moderate pyuria until 

approximately 4 months of age. For NAG, variable increases were seen not only at a 

young age, but occasionally at older ages as well. These transient increases resulted in 

uNAG/c similar to those observed during early stages of renal disease in the affected 

dogs, and they may be a result of semen or leukocyte contamination157,160,161 or possibly 

of transient tubular damage.  

All of the urinary biomarkers were higher in the dogs affected with XLHN than 

in their age-matched littermates very early in their disease process (Table 9). As 

compared with sCr and GFR, uRBP/c was the only urinary biomarker that showed a 
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clearly progressive increase with declining renal function (Figures 10 and 11). This 

urinary marker was also least influenced by proteinuria and showed a moderate to strong 

positive correlation with interstitial fibrosis (Table 12). uB2M also correlated strongly 

with interstitial fibrosis; however, it also correlated with many other tubular lesions, 

which may indicate a lack of specificity for irreversible tubulointerstitial damage. uB2M, 

uNAG/c, uNGAL/c, and uIgG/c all increased until a stage of moderate azotemia, but 

they remained relatively stable afterwards, and when GFR < 1.5 ml/min/kg, median 

uNGAL/c and uIgG/c actually decreased (Figure 11). This phenomenon has been seen 

with UPC in end-stage renal failure and indicates that one should not use a decrease in 

urinary protein excretion as a sign of improvement in renal disease if the disease is 

otherwise worsening.12  

Figure 12 demonstrates that proteinuria occurs well before a detectable decline in 

renal function in these dogs, and that proteinuria may be influencing the presence of 

many of the markers, particularly early during the disease process. For example, when 

compared with UPC, all proteins demonstrated the greatest increase when UPC > 2, and 

especially large increases were seen when UPC > 10. It is important to note that these 

dogs exhibited marked non-selective proteinuria at an early age, and this combined with 

the large magnitude of proteinuria typical for their disease illustrates one of the main 

limitations in evaluating urinary biomarkers in patients with proteinuric renal disease. 

Namely, increased filtration of intermediate and high molecular weight proteins can 

interfere with reabsorption of low molecular weight proteins (LMW) by the renal 

tubules. Therefore, the relative contribution of overt proteinuria as opposed to tubular 
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injury and declining tubular function on the increased presence of low molecular weight 

proteins is difficult to differentiate early on. However, the observation of normal uRBP 

in human patients with marked, but selective proteinuria suggests that competition for 

reabsorption may not be a major factor for the presence of RBP in urine.84 uNAG can 

increase due to increased lysosomal turnover, secondary to proteinuria, in the absence of 

detectable tubular damage.95 Later in the disease, there is substantial evidence in these 

dogs to support tubular damage and impaired tubular function based on histology, 

decreasing GFR, and increasing sCr. While the initial increases in the proteins evaluated 

may indicate early tubular disease, further studies are needed to determine the 

contribution of proteinuria alone from tubular damage and dysfunction. 

The urinary biomarkers in this study were correlated with standard measures of 

renal function and damage, and these correlations were used to help determine which 

biomarkers might be most useful to include in a panel for renal disease detection and 

monitoring. Of the urinary biomarkers, uRBP/c had the strongest correlation with sCr 

and was also highly correlated with a declining GFR and increasing degree of interstitial 

fibrosis (Figure 13, Table 12). This may indicate that uRBP/c might be especially useful 

for detecting early renal disease before an obvious increase in sCr is noted, particularly 

given the wide range of normal sCr that is possible in different dogs. The progressive 

increase in uRBP/c may also support its use in monitoring the progression of renal 

disease to help distinguish between pre-renal and renal influences contributing to an 

increased sCr, although this area warrants further investigation. Importantly, uRBP/c had 

the lowest correlation with UPC, which supports its use for detecting onset and 
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progression of renal disease in proteinuric patients since its increase may be more likely 

to be secondary to tubular dysfunction rather than simply competition from glomerular 

proteinuria.  

uB2M showed a relatively poor correlation with sCr and GFR (Figure 13) and 

therefore, monitoring of uB2M does not appear to be helpful in mid- to late-stage renal 

failure. In addition, because of its excellent correlation with UPC, its use for early 

detection of clinically significantly decreased tubular function is questionable in 

proteinuric CKD. The marked and early increase in uB2M may indicate a low threshold 

for reabsorption that is easily overwhelmed by competition from intermediate and high 

molecular weight proteins or very mild tubular dysfunction.  

In contrast to uB2M, the continual increase in uRBP/c suggests more effort by 

the tubules to conserve this protein when possible. This finding is in contrast to that 

found in a study in people, where RBP uptake by the tubules was saturated at the same 

stage of renal insufficiency as was that for B2M.87 The reason for this difference may be 

the types of patients evaluated in this study (primary tubular disease), where competition 

for reabsorption by abnormally filtered proteins was not a factor. The tubular receptor, 

megalin, has a high affinity for RBP and vitamin D-binding protein, which was also 

found to show an early and progressive increase in these dogs.104 It is interesting to 

speculate that megalin has a high affinity for these proteins because of their binding to 

important biological molecules, and that these types of proteins that are excreted in the 

urine would provide a more useful indication of tubular dysfunction in patients with 

protein-losing nephropathies than proteins without a particular need for conservation. 
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For those urinary biomarkers whose appearance in the urine was due to tubular 

damage (uNAG/c and uNGAL/c), poor correlation with GFR and sCr was seen; 

however, strong positive correlation with UPC was observed (Figure 13). These findings 

correspond with studies in cats showing that uNAG/c correlated with proteinuria but did 

not correlate with serum creatinine concentration,112 and it did not serve as an 

independent predictor of the development of azotemia if UPC was included in the 

statistical model.113 NAG is a ~150 kDa lysosomal enzyme within the proximal renal 

tubules that is released with tubular injury, while NGAL is a 25 kDa protein whose 

production is upregulated in injured renal tubular cells. However, NGAL also circulates 

in blood. Both of these proteins have been shown to increase with tubular damage,91,99 

and in this context, the lack of correlation with renal function is not surprising if these 

proteins are indicating a constant level of tubular damage in these dogs. However, it is 

surprising that neither of these proteins correlated with any of the tubulointerstitial 

lesions observed on histology, and the utility of both of these proteins for detecting 

ongoing tubular damage in the absence of other influences is questionable, as suggested 

by the strong correlation with UPC. uNAG/c may be increased due to proteinuria and 

subsequent increased lysosomal turnover without evidence of tubular injury,95 and in 

theory it might also increase secondary to glomerular damage. However, several studies 

have shown that the contribution of glomerular damage negligibly affects uNAG activity 

in people.92,93 In addition, uNAG/c showed only a moderate correlation with uIgG/c in 

the present study even though it is similar in size to IgG (Table 10). Isoenzyme 

evaluation would be necessary to further investigate glomerular versus tubular 
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contribution to uNAG activity in these dogs. Similarly, although NGAL expression is 

upregulated in the renal tubules of people with certain glomerular diseases, marked 

increases have also been observed in the urine of patients with marked proteinuria 

without evident tubular impairment based on GFR and sCr.99 Because NGAL is a 

circulating LMW protein, decreased tubular reabsorption due to competition and 

worsening tubular function may be more responsible for its urinary increase in 

proteinuric CKD as opposed to tubular injury. The excellent correlation between uB2M 

and uNGAL/c would support this assertion (Table 10). However, it is likely that a 

combination of decreased reabsorption of NGAL by the tubules in addition to increased 

production by damaged tubules is occurring in proteinuric CKD.99 Therefore, uNAG/c 

may be more strongly recommended as a marker of tubular injury than uNGAL/c. 

uIgG/c demonstrated an excellent correlation with UPC (Figure 13), which is not 

surprising given that both measurements can provide an indication of the severity of 

glomerular compromise. This strong correlation supports that, at least in XLHN dogs, 

determination of uIgG/c does not provide any information beyond that obtained from the 

UPC. However, this would not be expected in patients with diseases where selective 

proteinuria occurs. For instance, in people marked proteinuria can be present in certain 

diseases without a compromise in the ability of the glomerulus to exclude HMW 

proteins (i.e., selective proteinuria).29 Importantly, selective proteinuria corresponds with 

a favorable prognosis in these patients while a prognosis is worse in those cases of non-

selective proteinuria, where passage of HMW proteins (e.g., IgG) occurs.29,80 Therefore, 

despite the lack of unique value in this study, uIgG/c may provide useful information in 
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dogs with other causes of proteinuric renal disease, although selective proteinuria 

appears to be quite rare in dogs with proteinuric disease (personal observations).  

One particular point of interest regarding uIgG/c is that a significant (although 

relatively small) increase was found in the earliest stages of disease in the affected dogs 

as compared to the normal dogs, often even before an increase in UPC. This finding of 

an increase in uIgG so early in these dogs may seem surprising given that uIgG is 

typically thought to indicate severe glomerular damage. However, a study in another dog 

model of X-linked hereditary nephropathy demonstrated focal ultrastructural basement 

membrane changes by 1 month of age.162 Therefore, the increased uIgG/c in the current 

study is likely due to few and scattered basement membrane alterations that are enough 

to result in overall increased passage of HMW proteins without a concurrent increase in 

UPC. It is interesting to note, however, that both UPC and IgG negatively correlated 

with the proportion of normal or mildly affected glomeruli on histologic analysis, but 

they did not correlate with severity of the glomerular lesion (Tables 11 and 12). This 

implies that either these markers of glomerular damage are more influenced by the 

number of glomeruli affected rather than how severely an individual glomerulus is 

affected, or that severely affected glomeruli are nonfunctional and therefore do not 

contribute to proteinuria. 

Verification of the utility (or lack thereof) of all of the urinary biomarkers 

evaluated in this study needs to be performed in a more diverse population of dogs with 

CKD, ideally in a serial fashion. However, based on the results of this study, uRBP/c is 

the only specific urinary protein that can be strongly recommended for monitoring 
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disease progression in male dogs with XLHN, and further evaluation of this protein is 

warranted in patients with progressive CKD due to a variety of causes. It could also be 

worthwhile to study other urinary markers in dogs with other causes of renal failure. In 

particular, uNAG/c and uIgG/c may still be important to include in a urinary biomarker 

panel, since these proteins appear to provide unique and sensitive information as 

compared with standard measures of renal function. It should be pointed out that this 

study showed a strong negative correlation between sCr and GFR (Figure 13). This 

finding was expected; however, sCr is more easily and less expensively measured than 

GFR. Therefore, when frequent serial measurements can be made, these results support 

the use of sCr to monitor renal disease. 

One of the major limitations of this study was the variable storage time of the 

urine before analysis. While the results of this study support the short-term stability of 

uNAG and the relative resistance to freeze-thaw cycles for uNAG and uNGAL, the 

effects of long-term storage on all of these biomarkers is unknown. The length of time 

samples were frozen before analysis in this study ranged from 6 months to 8 years. 

However, no significant differences were observed when comparing values obtained in 

older samples to those obtained in newer samples, except for NGAL, where the more 

recent samples resulted in values anywhere from 10-100% higher than in older samples. 

Whether this represents dog-specific or storage-specific changes, however, is unknown. 

In addition, only 4-10 months separated the analysis time in samples from a single dog, 

which should minimize any adverse effect of variable length of sample storage on the 

trends observed. Lastly, the concentrations obtained for both normal and affected dogs 
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was similar to those reported by other studies in dogs with CKD where a comparison 

was possible. This supports that the proteins evaluated in this study are all relatively 

robust with regard to long-term storage at -80oC, and that interpretations made from the 

analysis of these samples is likely to be minimally affected by storage time.  

Another limitation of this study is that a single disease process was evaluated. 

While this allowed extensive serial evaluation of many variables, caution should be used 

before extrapolating results to dogs with glomerular disease in general. In addition, only 

male dogs were evaluated for this study. However, while this may result in slight 

differences in normal animals, there is no reason to suspect a difference in urinary 

proteomics between males and females during renal disease progression. 

In summary, urinary excretion of tubular proteins in progressive renal disease 

differs depending on the protein, even when a similar mechanism for appearance of the 

protein in the urine is postulated. All of the urinary biomarkers evaluated increase early 

in the disease process in dogs with XLHN; however, only uRBP/c appears to be strongly 

correlated with renal disease progression. Based on these results, we believe that 

measurement of uRBP/c might be clinically useful for the early detection and monitoring 

of CKD in dogs, and a canine specific assay for uRBP would be helpful for this purpose. 

In addition, uNAG/c and uIgG/c may provide unique information in dogs with 

proteinuric CKD, although future studies are needed to determine the utility of these 

proteins beyond current measures of renal function. In addition, while this study 

provides a baseline for evaluating these proteins in dogs with CKD due to glomerular 
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disease, future studies are needed to determine if similar trends are seen with CKD due 

to a variety of other causes.  

Ultimately, it might be reasonable to propose that a panel of urinary biomarkers 

will be able to more accurately predict the degree of renal function and chronic 

tubulointerstitial injury and fibrosis than is currently available with non-invasive 

methods, thereby helping clinicians to non-invasively determine appropriate treatment 

and prognosis in dogs with CKD. However, additional studies utilizing more renal 

biomarkers in both serum and urine are needed in order to identify a panel that can 

provide a more useful measure of renal injury and function during chronic renal disease 

in dogs.  
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CHAPTER V 

CONCLUDING REMARKS 

 

Characterization of proteinuria is currently one of the most promising areas for 

the early detection and monitoring of kidney disease in both human and veterinary 

patients. In this report, both quantitative and qualitative characteristics of proteinuria in 

dogs with kidney disease caused by X-linked hereditary nephropathy are presented. This 

family of dogs serves as a naturally occurring canine model of progressive proteinuric 

nephropathy, and the serial characterization of urinary proteins in this model will help 

provide the basis for future studies in dogs with chronic kidney disease due to other 

causes. 

In order to aid clinicians in the monitoring of proteinuric renal disease, Chapter II 

describes the variability of the UPC in female dogs that are carriers for XLHN. The 

carrier female dogs were utilized for this study since they have documented stable 

proteinuria over long periods of time so that the day-to-day variability in the magnitude 

of proteinuria is not expected to change as a result of their disease process. Results 

showed that while the magnitude of proteinuria was reasonably similar over time within 

a single dog, a substantial degree of variability was present in measurements from one 

day as compared to the previous day. This indicates that clinicians should exercise 

caution before attributing a change in the UPC to treatment or disease progression, 

unless the value changes by at least 35% when UPC values are high (i.e., when the UPC 

nears 12), and up to 50-100% at lower UPC values (UPC < 3). Prior to this study, 
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variability of the UPC had not been analyzed in dogs. Hence, this study currently 

provides the only estimate of the day-to-day variability of the UPC in proteinuric dogs, 

and veterinarians in practice have meanwhile started to actively use the results of this 

study when monitoring treatment and progression of dogs with proteinuric renal disease.  

It is clear that specific types of proteins can be as or more important than the 

magnitude of proteinuria in the diagnosis and monitoring of renal disease progression. In 

addition, some studies have found specific protein analysis to more accurately predict 

the outcome of renal disease than serum creatinine and histologic evaluation of renal 

biopsies in people. Therefore, the last two chapters qualitatively characterized 

proteinuria in male dogs affected with XLHN that serve as a model of progressive CKD 

due to glomerular disease.  

In Chapter III, discovery proteomic techniques (SELDI and 2-D DIGE) were 

used to evaluate the urine proteome in the affected males at two relatively early time 

points during their disease process in order to target the identification of urinary 

biomarkers of early tubulointerstitial injury. This evaluation revealed a number of 

proteins that were differentially present in the urine between the two time points. 

Identification of established biomarkers of renal disease using both of these techniques 

helped validate their use for the discovery of urinary biomarkers in dogs. In addition, a 

number of proteins were identified that have not been previously implicated in canine 

renal disease. Only one other study has previously utilized a global proteomic technique 

for the evaluation of urine from dogs with CKD. The present report provides abundant 
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additional information that can help to plan future studies of the urine proteome and 

specific urinary protein evaluation in dogs with proteinuric kidney disease.   

In Chapter IV, assays for specific proteins were used to either quantitatively or 

semi-quantitatively evaluate four urinary biomarkers associated with tubular injury or 

function and one marker associated with glomerular damage. These proteins were 

correlated with conventional tests of renal function and damage in order to characterize 

the timing of their appearance and their relative quantity during the progression of 

canine CKD. Results showed that all of the urinary biomarkers were increased in 

affected male dogs early during their disease process as compared with normal age-

matched littermates. However, of the proteins evaluated, only retinol binding protein 

also correlated with later stages of disease progression. In addition, retinol binding 

protein appeared to be least influenced by proteinuria and therefore the most appropriate 

of the four biomarkers evaluated for monitoring tubulointerstitial disease progression 

secondary to glomerular disease. This study also analytically validated the various 

assays as well as tested the stability for two of the proteins. This data is currently lacking 

in the veterinary literature and will help future investigators better utilize and evaluate 

these assays and proteins. 

This investigation is the first serial evaluation of urinary proteins in dogs with 

glomerular disease that correlates findings with clinical data, and results will provide a 

foundation for future evaluation of proteinuria-associated CKD in the dog. They will 

also provide a baseline to conduct studies that correlate proteinuria with protein and 

mRNA expression in renal tissue from XLHN dogs and eventually from clinical patients, 
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as histologic examination of renal biopsies becomes more commonplace in the clinical 

setting. 
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APPENDIX A 

 
Stability results for urinary N-acetyl-"-D-glucosaminidase (NAG) and neutrophil 

gelatinase-associated lipocalin (NGAL) using canine urine. 

 

Table A-1. Stability of urinary NAG (U/L) at room temperature. All samples 
demonstrated a significant increase in NAG activity over time. 
 

Hours 0 2 4 8 12 24 

Dog 1 21.4 22.6 21.3 25.1 27.6 33.8 

Dog 2 3 3.3 3.9 4 4.4 5.5 

Dog 3 8.8 9.2 10.2 11.2 13.4 15.4 

Dog 4 16.4 17.3 18.4 19.9 20.1 25.5 

 
 
 
Table A-2. Stability of urinary NAG (U/L) at 4oC. A small but significant increase in 
NAG activity was observed in one sample. 
 

Weeks 0 2 4 8 

Dog 1 21.4 24 22.3 25.8 

Dog 2 3 3.4 1.5 2.8 

Dog 3 16.4 14.7 14.8 15.7 

Dog 4* 2.3 2.4 2.5 2.7 

        *P < 0.001 
 
 
 
Table A-3. Stability of urinary NAG (U/L) at -20oC. No significant change in activity 
was observed over two months. 
 

Weeks 0 2 4 8 

Dog 1 21.4 22.9 19.2 17.9 

Dog 2 3 3 1.5 3.8 

Dog 3 16.4 15.1 14.4 14.4 

Dog 4 2.3 3.5 1.5 3.2 
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Table A-4. Stability of urinary NAG (U/L) at -80oC. No significant change in activity 
was observed over two months. 
 

Weeks 0 2 4 8 

Dog 1 21.4 21.2 19.3 20 

Dog 2 3 3.1 2 2.8 

Dog 3 16.4 … 14.3 15 

Dog 4 2.3 2.8 1.4 2.8 

 
 
 
Table A-5. Stability of urinary NAG and NGAL over multiple freeze-thaw cycles (-
80oC). A small but significant increase in NAG activity was observed in one sample. No 
significant change in concentration was observed for NGAL. 
 

Freeze-thaw cycle 0 1 2 3 4 5 

NAG (U/L)       

Dog 1 41 36.4 40.1 42.7 44.3 42.7 

Dog 2 16.6 16.5 15.9 17.4 18.1 18.4 

Dog 3* 3.7 3.6 4.5 4.9 4.9 5.0 

NGAL (pg/ml)       

Dog 1 1188 1102 1124 1245 1284 … 

Dog 2 12323 12489 11904 11002 12542 … 

Dog 3 140607 143661 146390 148685 139904 … 

   *P = 0.025 
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APPENDIX B 

 
Effect of storage time on the concentration/activity of each urinary biomarker. 

Data for the years 2002 and 2005 is limited and includes only a small portion of the 

disease process in 1-2 dogs. Therefore, data from these years were not considered in 

the final interpretation. 

 
 
 

      uRBP/c (mg/g) 

 
Figure A-1. Plot of mean and standard deviation for uRBP/c for affected XLHN male 
dogs according to the year of sample collection. A large overlap of the standard 
deviation is observed for samples collected in 2008 as compared with samples collected 
in years 2003 and 2004, supporting a lack of storage effect on uRBP determination. 
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uB2M 

 
Figure A-2. Plot of mean and standard deviation for uB2M for affected XLHN male 
dogs according to the year of sample collection. A relatively large degree of overlap in 
the standard deviation is observed for samples collected in 2008 as compared with 
samples collected in earlier years, supporting a lack of storage effect on uB2M. 
 
 
 

               uNGAL/c (%g/g) 

 
Figure A-3. Plot of mean and standard deviation for uNGAL/c for affected XLHN male 
dogs according to the year of sample collection. No overlap in the standard deviation is 
observed for samples collected in 2008 as compared with samples collected in years 
2003 and 2004. This supports degradation of uNGAL after 4 years of storage. However, 
there is no evidence for a substantial decrease from 2006 to years 2003 and 2004, 
supporting a lack of significant degradation of uNGAL after 2 years of storage.    
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    uNAG/c (U/g) 

 
Figure A-4. Plot of mean and standard deviation for uNAG/c for affected XLHN male 
dogs according to the year of sample collection. Substantial overlap in the standard 
deviation is observed for samples collected more recently as compared with samples 
collected in years 2003 and 2004, supporting a lack of storage effect on uNAG 
determination. 

 
 
 
         uIgG/c (mg/g) 

 
Figure A-5. Plot of mean and standard deviation for uIgG/c for affected XLHN male 
dogs according to the year of sample collection. A relatively large degree of overlap in 
the standard deviation is observed for samples collected more recently as compared with 
samples collected in years 2003 and 2004, supporting a lack of storage effect on uIgG 
determination. 
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APPENDIX C 

 
Mean urinary biomarker results for affected XLHN male dogs within defined 

intervals of serum creatinine, glomerular filtration rate, and urine 

protein:creatinine ratio, in addition to complete correlation results for histology 

lesions with clinical and urinary data from all dogs, affected XLHN dogs only, and 

normal dogs only. 

 

 
Table A-6. Mean values for urinary biomarkers in male dogs affected with XLHN within 
defined intervals of conventional clinical measures of renal function. 
 

Creatinine 

(mg/dL) 

 

sCr 

 

GFR  

 

UPC 

uRBP/c 

(mg/g) 

 

uB2M 

uNAG/c 

(U/g) 

uNGAL/c 

("g/g) 

uIgG/c 

(mg/g) 

<0.6 0.46 4.3 1.3 1.6 0.08 13.3 71.1 76.9 
0.6-1.2 0.77 3.5 7.5 10.3 0.26 17.2 138 526 
1.2-2.4 1.6 2.2 16.3 67.3 0.49 35.4 240 1359 

2.4-6 3.8 1.3 17.5 354 0.53 38.4 249 1620 
         

GFR 

(ml/min/kg) 

 

sCr 

 

GFR  

 

UPC 

uRBP/c 

(mg/g) 

 

uB2M 

uNAG/c 

(U/g) 

uNGAL/c 

("g/g) 

uIgG/c 

(mg/g) 

>3.5 0.65 4.2 6.85 8.74 0.27 20.1 163 449 
2.5-3.5 0.95 3.0 11.6 25.3 0.33 23.6 184 838 
1.5-2.5 2.26 2.0 17.7 143 0.49 41.2 248 1552 

<1.5 3.94 1.1 17.74 333 0.52 38.8 229 1398 
         
 

UPC 

 

sCr 

 

GFR  

 

UPC 

uRBP/c 

(mg/g) 

 

uB2M 

uNAG/c 

(U/g) 

uNGAL/c 

("g/g) 

uIgG/c 

(mg/g) 

<0.5 0.55 4.6 0.23 0.16 0.01 8.5 18.0 10.2 
0.5-2 0.57 4.1 0.97 0.44 0.03 8.2 44.6 50.6 
2-10 1.1 3.5 6.2 16.7 0.27 14.8 112.3 397 
>10 2.2 2.3 17.1 143.2 0.48 35.4 254 1310 

sCr = serum creatinine; GFR = glomerular filtration rate; UPC = urine protein:creatinine ratio; 
uRBP/c = urine retinol binding protein:creatinine ratio; uB2M = urinary "2-microglobulin; 
uNAG/c = urine N-acetyl-"-D-glucosaminidase:creatinine ratio; uNGAL/c = urine neutrophil 
gelatinase-associated lipocalin:creatinine ratio; uIgG/c = urine immunoglobulin G:creatinine 
ratio. 
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Histologic correlations: Glomerular lesions 

 
Table A-7. Correlation of glomerular lesions with one other in all dogs (normal and dogs 
affected with XLHN). 
 

Glomerular 

lesions Normal 
Seg mes 

exp 
Global 

mes exp Obs Synechia 
Fib 

crescents 
BC 

dilation 
Normal 
& mild 

Normal 1.000 … … … … … … … 
Seg mes exp -0.756* 1.000 … … … … … … 

Glob mes 
exp -0.682* 0.239 1.000 

 
… 

 
… 

 
… 

 
… 

 
… 

Obs -0.545* 0.343 0.356 1.000 … … … … 
Synechia -0.864* 0.756* 0.525* 0.716* 1.000 … … … 

Fib crescents -0.767* 0.593* 0.435* 0.329 0.649* 1.000 … … 
BC dilation -0.792* 0.442* 0.670* 0.127 0.522* 0.555* 1.000 … 

Normal & 
mild 0.957* -0.534* -0.775* -0.552* -0.782* -0.729* -0.827* 1.000 

Moderate & 
severe -0.753* 0.342 0.878* 0.761* 0.732* 0.471* 0.530* -0.822* 

*P < 0.05; *P < 0.001 
Seg mes exp = segmental mesangial expansion; Glob mes exp = global mesangial expansion; 
Obs = obsolescence; Fib crescents = fibrinous crescents; BC dilation = Bowman’s capsule 
dilation; Normal & mild = normal + segmental mesangial expansion; Moderate & severe = 
global mesangial expansion + obsolescence.  
 
 
 
Table A-8. Correlation of glomerular lesions with one other in dogs affected with 
XLHN. 
 

Glomerular 

lesions Normal 
Seg mes 

exp 
Global 

mes exp Obs Synechia 
Fib 

crescents 
BC 

dilation 
Normal 
& mild 

Normal 1.000 … … … … … … … 
Seg mes exp -0.610* 1.000 … … … … … … 

Glob mes 
exp -0.510 -0.085 1.000 

 
… 

 
… 

 
… 

 
… 

 
… 

Obs -0.415 0.162 0.195 1.000 … … … … 
Synechia -0.757* 0.648* 0.287 0.658* 1.000 … … … 

Fib crescents -0.612* 0.405 0.179 0.125 0.424 1.000 … … 
BC dilation -0.651* 0.165 0.538 -0.155 0.210 0.307 1.000 … 

Normal & 
mild 0.916* -0.242 -0.668* -0.426 -0.599* -0.545 -0.713* 1.000 

Moderate & 
severe -0.603* 0.035 0.821* 0.720* 0.587* 0.200 0.290 -0.721* 

*P < 0.05; *P < 0.001 
Seg mes exp = segmental mesangial expansion; Glob mes exp = global mesangial expansion; 
Obs = obsolescence; Fib crescents = fibrinous crescents; BC dilation = Bowman’s capsule 
dilation; Normal & mild = normal + segmental mesangial expansion; Moderate & severe = 
global mesangial expansion + obsolescence.  
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Table A-9. Correlation of glomerular lesions with one other in normal dogs. 
 

Glomerular 

lesions Normal 
Seg mes 

exp 
Global 

mes exp Obs Synechia 
Fib 

crescents 
BC 

dilation 
Normal 
& mild 

Normal 1.000 … … … … … … … 
Seg mes exp -0.569* 1.000 … … … … … … 

Glob mes 
exp -0.524* -0.159 1.000 

 
… 

 
… 

 
… 

 
… 

 
… 

Obs NA NA NA … … … … … 
Synechia NA NA NA NA … … … … 

Fib crescents -0.233 -0.072 0.340 NA NA 1.000 … … 
BC dilation -0.403 -0.184 0.072 NA NA -0.084 1.000 … 

Normal & 
mild 0.683* 0.212 -0.764* 

NA NA 
-0.340 -0.642* 1.000 

Moderate & 
severe -0.524* -0.159 1.000* 

NA NA 
0.340 0.072 -0.764* 

*P < 0.05; *P < 0.001 
Seg mes exp = segmental mesangial expansion; Glob mes exp = global mesangial expansion; 
Obs = obsolescence; Fib crescents = fibrinous crescents; BC dilation = Bowman’s capsule 
dilation; Normal & mild = normal + segmental mesangial expansion; Moderate & severe = 
global mesangial expansion + obsolescenc; NA = lesion not found. 
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Histologic correlations: Tubulointerstitial lesions 

 
Table A-10. Correlation of tubulointerstitial lesions with one other in all dogs (normal 
and dogs affected with XLHN). 
 

TI 

lesions Dilation 
Lack 
BB Necr Casts Vac Atroph Fibrosis Min 

Chron 
inflam 

Acute 
inflam 

Dilation  1.000 … … … … … … … … … 
Lack 

BB  0.746* 1.000 
 

… 
 

… 
 

… 
 

… 
 

… 
 

… 
 

… 
 

… 
Necr 0.674* 0.914* 1.000 … … … … … … … 
Casts  0.537* 0.729* 0.785* 1.000 … … … … … … 

Vac 0.101 0.286 0.395 0.234 1.000 … … … … … 
Atroph 0.686* 0.869* 0.841* 0.836* 0.150 1.000 … … … … 

Fibrosis 0.775* 0.932* 0.897* 0.734* 0.185 0.915* 1.000 … … … 
Min 0.510* 0.637* 0.499* 0.288 0.014 0.450* 0.620* 1.000 … … 

Chronic 
inflam 0.623* 0.902* 0.955* 0.785* 0.352 0.831* 0.871* 0.501* 1.000 … 
Acute 
inflam 0.321 0.438* 0.401 0.234 0.060 0.373 0.401 0.202 0.431 1.000 

Overall 
Fib 0.792* 0.878* 0.796* 0.743* 0.033 0.909* 0.949* 0.589* 0.788* 0.356 

*P < 0.05; *P < 0.001 
Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular necrosis; Casts = 
tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = interstitial fibrosis 
determined by random fields; Min = tubular basement membrane mineralization; Chronic inflam = chronic 
interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall Fib = interstitial fibrosis 
determined from overall estimate of fibrosis using trichrome-stained slides. 
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Table A-11. Correlation of tubulointerstitial lesions with one other in dogs affected with 
XLHN. 
 

TI 

lesions Dilation 
Lack 
BB Necr Casts Vac Atroph Fibrosis Min 

Chron 
inflam 

Acute 
inflam 

Dilation  1.000 … … … … … … … … … 
Lack BB  0.827* 1.000 … … … … … … … … 

Necr 0.692* 0.840* 1.000 … … … … … … … 
Casts  0.496 0.612 0.719* 1.000 … … … … … … 

Vac -0.213 0.030 0.247 0.084 1.000 … … … … … 
Atroph 0.718* 0.798* 0.759* 0.772* -0.123 1.000 … … … … 

Fibrosis 0.888* 0.890* 0.828* 0.616 -0.114 0.865* 1.000 … … … 
Min 0.491 0.567 0.347 0.110 -0.183 0.301 0.535 1.000 … … 

Chronic 
inflam 0.637* 0.810* 0.923* 0.714* 0.151 0.727* 0.755* 0.355 1.000 … 
Acute 
inflam 0.252 0.341 0.275 0.101 -0.065 0.268 0.297 0.101 0.337 1.000 

Overall 
Fib 0.874* 0.825* 0.680* 0.639* -0.293 0.8629* 0.9278* 0.488 0.662 0.239 

*P < 0.05; *P < 0.001 
Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular necrosis; Casts = 
tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = interstitial fibrosis 
determined by random fields; Min = tubular basement membrane mineralization; Chronic inflam = chronic 
interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall Fib = interstitial fibrosis 
determined from overall estimate of fibrosis using trichrome-stained slides. 

 
 
 
Table A-12. Correlation of tubulointerstitial lesions with one other in normal dogs. 

TI 

lesions Dilation 
Lack 
BB Necr Casts Vac Atroph Fibrosis Min 

Chron 
inflam 

Acute 
inflam 

Dilation  1.000 … … … … … … … … … 
Lack BB  0.147 1.000 … … … … … … … … 

Necr 0.334 0.345 1.000 … … … … … … … 
Casts  -0.024 0.066 -0.035 1.000 … … … … … … 

Vac 0.283 0.228 0.068 -0.102 1.000 … … … … … 
Atroph -0.025 0.481 0.336 0.450 0.160 1.000 … … … … 

Fibrosis -0.098 0.476 0.337 0.238 0.152 0.913* 1.000 … … … 
Min NA NA NA NA NA NA NA … … … 

Chronic 
inflam -0.032 0.510 0.247 0.234 0.102 0.805* 0.883* 

 
NA 1.000 … 

Acute 
inflam 0.129 0.181 0.262 -0.098 -0.039 -0.065 0.004 

 
NA 0.102 1.000 

Overall 
Fib 0.223 0.110 0.321 0.190 -0.178 0.003 0.195 

 
NA 0.337 0.424 

*P < 0.001 
Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular necrosis; Casts = 
tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = interstitial fibrosis 
determined by random fields; Min = tubular basement membrane mineralization; Chronic inflam = chronic 
interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall Fib = interstitial fibrosis 
determined from overall estimate of fibrosis using trichrome-stained slides. 

 



                        146  

Histologic correlations: Glomerular and tubulointerstitial lesions 

 
Table A-13. Correlation of glomerular lesions with tubulointerstitial lesions in all dogs 
(normal and dogs affected with XLHN). 
 

 

Normal 
Seg mes 

exp 
Global 

mes exp Obs Synechia 
Fib 

crescents 
BC 

dilation 
Normal 
& mild 

Mod & 
severe 

Dilation -0.658* 0.278 0.754* 0.404 0.501* 0.385 0.605* -0.721* 0.732* 
Lack BB -0.898* 0.587* 0.751* 0.575* 0.799* 0.614* 0.755* -0.897* 0.818* 

Necr -0.955* 0.638* 0.704* 0.614* 0.843* 0.731* 0.786* -0.948* 0.806* 
Casts -0.710* 0.460* 0.517* 0.854* 0.798* 0.416 0.442* -0.712* 0.800* 

Vac -0.442* 0.522* 0.023 0.221 0.412 0.530* 0.256 -0.344 0.130 
Atroph -0.784* 0.419 0.712* 0.697* 0.789* 0.396 0.643* -0.822* 0.854* 

Fibrosis -0.860* 0.443* 0.831* 0.564* 0.754* 0.539* 0.793* -0.908* 0.868* 
Min -0.491* 0.335 0.627* 0.083 0.435* 0.328 0.616* -0.484 0.478* 

Chronic 
inflam -0.928* 0.676* 0.714* 0.618* 0.832* 0.692* 0.740* -0.897* 0.814* 
Acute 
inflam -0.377 0.185 0.436* 0.160 0.314 0.259 0.390 -0.403 0.385 

Overall 
Fib -0.775* 0.399 0.814* 0.570* 0.720* 0.419 0.679* -0.819* 0.859* 

*P < 0.05; *P < 0.001 
Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular necrosis; Casts = 
tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = interstitial fibrosis 
determined by random fields; Min = tubular basement membrane mineralization; Chronic inflam = chronic 
interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall Fib = interstitial fibrosis 
determined from overall estimate of fibrosis using trichrome-stained slides; Seg mes exp = segmental 
mesangial expansion; Glob mes exp = global mesangial expansion; Obs = obsolescence; Fib crescents = 
fibrinous crescents; BC dilation = Bowman’s capsule dilation; Normal & mild = normal + segmental 
mesangial expansion; Mod & severe = global mesangial expansion + obsolescence. 
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Table A-14. Correlation of glomerular lesions with tubulointerstitial lesions in dogs 
affected with XLHN. 
 

 

Normal 
Seg mes 

exp 
Global 

mes exp Obs Synechia 
Fib 

crescents 
BC 

dilation 
Normal 
& mild 

Mod & 
severe 

Dilation -0.679* 0.055 0.789* 0.331 0.394 0.209 0.584 -0.783* 0.758* 
Lack BB -0.804* 0.311 0.621 0.446 0.636* 0.316 0.590 -0.809* 0.708* 

Necr -0.913* 0.382 0.516 0.512 0.706* 0.509 0.643* -0.904* 0.673* 
Casts -0.589 0.247 0.330 0.831* 0.715* 0.132 0.182 -0.583 0.732* 

Vac -0.323 0.482 -0.323 0.105 0.311 0.526 0.062 -0.152 -0.167 
Atroph -0.656* 0.125 0.578 0.620 0.663* 0.038 0.443 -0.721* 0.782* 

Fibrosis -0.758* 0.107 0.757* 0.430 0.570 0.219 0.665* -0.853* 0.795* 
Min -0.334 0.152 0.555 -0.093 0.257 0.119 0.525 -0.325 0.338 

Chronic 
inflam -0.861* 0.488 0.543 0.523 0.689* 0.435 0.548 -0.791* 0.699* 
Acute 
inflam -0.237 0.021 0.337 0.039 0.163 0.087 0.287 -0.273 0.262 

Overall 
Fib -0.647* 0.096 0.7415* 0.445 0.551 0.090 0.508 -0.725* 0.793* 

*P < 0.05; *P < 0.001 
Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular necrosis; Casts = 
tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = interstitial fibrosis 
determined by random fields; Min = tubular basement membrane mineralization; Chronic inflam = chronic 
interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall Fib = interstitial fibrosis 
determined from overall estimate of fibrosis using trichrome-stained slides; Seg mes exp = segmental 
mesangial expansion; Glob mes exp = global mesangial expansion; Obs = obsolescence; Fib crescents = 
fibrinous crescents; BC dilation = Bowman’s capsule dilation; Normal & mild = normal + segmental 
mesangial expansion; Mod & severe = global mesangial expansion + obsolescence. 
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Table A-15. Correlation of glomerular lesions with tubulointerstitial lesions in normal 
dogs. 
 

 

Normal 
Seg mes 

exp 
Global 

mes exp Obs Synechia 
Fib 

crescents 
BC 

dilation 
Normal 
& mild 

Mod & 
severe 

Dilation -0.259 0.032 0.334 NA NA 0.117 -0.016 -0.280 0.334 
Lack BB -0.356 0.201 0.325 NA NA 0.217 0.126 -0.245 0.325 

Necr -0.342 0.152 0.502 NA NA 0.249 -0.078 -0.271 0.502 
Casts 0.202 -0.197 0.001 NA NA -0.068 -0.013 0.065 0.001 

Vac -0.199 0.241 0.097 NA NA -0.027 -0.009 -0.023 0.097 
Atroph -0.055 -0.225 0.409 NA NA -0.046 0.244 -0.266 0.409 

Fibrosis -0.124 -0.143 0.424 NA NA 0.003 0.242 -0.275 0.424 
Min NA NA NA NA NA NA NA NA NA 

Chronic 
inflam -0.064 -0.162 0.358 

NA NA 
0.071 0.185 -0.220 0.358 

Acute 
inflam -0.186 -0.127 0.321 

NA NA 
0.697* -0.024 -0.334 0.321 

Overall 
Fib -0.159 0.055 0.197 

NA NA 
0.645* -0.126 -0.148 0.197 

*P < 0.05; *P < 0.001 
Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular necrosis; Casts = 
tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = interstitial fibrosis 
determined by random fields; Min = tubular basement membrane mineralization; Chronic inflam = chronic 
interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall Fib = interstitial fibrosis 
determined from overall estimate of fibrosis using trichrome-stained slides; Seg mes exp = segmental 
mesangial expansion; Glob mes exp = global mesangial expansion; Obs = obsolescence; Fib crescents = 
fibrinous crescents; BC dilation = Bowman’s capsule dilation; Normal & mild = normal + segmental 
mesangial expansion; Mod & severe = global mesangial expansion + obsolescence. 
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Histologic correlations: Clinical data and urinary biomarkers 

 
Table A-16. Correlation of glomerular and tubulointerstitial lesions with clinical data 
and urinary biomarkers in all dogs (normal and dogs affected with XLHN). 
 

 sCr GFR UPC USG RBP B2M NGAL NAG IgG 
Normal -0.624* 0.667* -0.914* 0.394 -0.519 -0.922* -0.797* -0.725* -0.802* 

Seg mes 
exp 0.301 -0.345 0.720* -0.399 0.216 0.657* 0.529* 0.593* 0.584* 

Global 
mes exp 0.661* -0.674* 0.694* -0.138 0.680* 0.690* 0.579* 0.557* 0.616* 

Obs 0.613* -0.608* 0.429 -0.107 0.337 0.523* 0.198 0.385 0.237 
Synechia 0.619* -0.608* 0.750* -0.329 0.404 0.795* 0.484 0.681* 0.577* 

Fib 
crescents 0.329 -0.328 0.703* -0.166 0.349 0.752* 0.716* 0.570* 0.568* 

BC 
dilation 0.525* -0.518* 0.762* -0.439 0.440 0.783* 0.892* 0.651* 0.828* 
Normal 
& mild -0.673* 0.702* -0.860* 0.330 -0.560* -0.912* -0.794* -0.686* -0.774* 
Mod & 
severe 0.774* -0.781* 0.704* -0.151 0.653* 0.7458* 0.485 0.578* 0.547* 

Dilation 0.642* -0.631* 0.640* -0.055 0.671* 0.612* 0.475 0.499* 0.607* 
Lack BB 0.766* -0.750* 0.848* -0.365 0.607* 0.846* 0.675* 0.655* 0.781* 

Necr 0.723* -0.692* 0.869* -0.393 0.530 0.918* 0.735* 0.742* 0.748* 
Casts 0.765* -0.730* 0.607* -0.297 0.467 0.631* 0.341 0.560* 0.456 

Vac 0.134 -0.101 0.302 -0.124 -0.031 0.377 0.224 0.331 0.155 
Atroph 0.744* -0.748* 0.717* -0.320 0.513 0.773* 0.552* 0.642* 0.649* 

Fibrosis 0.834* -0.789* 0.830* -0.336 0.713* 0.850* 0.672* 0.698* 0.764* 
Min 0.541* -0.406 0.531* -0.285 0.498 0.449 0.463 0.430 0.532* 

Chronic 
inflam 0.696* -0.736* 0.889* -0.463* 0.559 0.894* 0.686* 0.744* 0.773* 
Acute 
inflam 0.278 -0.355 0.301 -0.065 0.098 0.342 0.232 0.247 0.428 

Overall 
Fib 0.819* -0.793* 0.789* -0.273 0.752* 0.757* 0.612* 0.648* 0.741* 

*P < 0.05; *P < 0.001 
Seg mes exp = segmental mesangial expansion; Glob mes exp = global mesangial expansion; Obs = 
obsolescence; Fib crescents = fibrinous crescents; BC dilation = Bowman’s capsule dilation; Normal & 
mild = normal + segmental mesangial expansion; Mod & severe = global mesangial expansion + 
obsolescence; Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular 
necrosis; Casts = tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = 
interstitial fibrosis determined by random fields; Min = tubular basement membrane mineralization; 
Chronic inflam = chronic interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall 
Fib = interstitial fibrosis determined from overall estimate of fibrosis using trichrome-stained slides; sCr = 
serum creatinine; GFR = glomerular filtration rate; UPC = urine protein:creatinine ratio; USG = urine 
specific gravity; RBP = urine retinol binding protein:creatinine ratio; B2M = urinary "2-microglobulin; 
NGAL = urine neutrophil gelatinase-associated lipocalin:creatinine ratio; NAG = urine N-acetyl-"-D-
glucosaminidase:creatinine ratio; IgG = urine immunoglobulin G:creatinine ratio. 
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Table A-17. Correlation of glomerular and tubulointerstitial lesions with clinical data 
and urinary biomarkers in dogs affected with XLHN. 
 

 sCr GFR UPC USG RBP B2M NGAL NAG IgG 
Normal -0.547 0.697* -0.821* 0.136 -0.440 -0.856* -0.656 -0.609 -0.660* 

Seg mes 
exp 0.093 -0.195 0.572 -0.287 0.086 0.447 0.329 0.469 0.382 

Global 
mes exp 0.604* -0.692* 0.558 0.154 0.649* 0.589 0.375 0.455 0.471 

Obs 0.546 -0.588 0.227 0.105 0.268 0.382 -0.085 0.238 0.005 
Synechia 0.518 -0.571 0.526 -0.085 0.292 0.627* 0.172 0.525 0.303 

Fib 
crescents 0.120 -0.165 0.491 0.181 0.239 0.591 0.554 0.385 0.337 

BC 
dilation 0.395 -0.431 0.600 -0.315 0.346 0.666* 0.858* 0.534 0.743* 
Normal 
& mild -0.622* 0.748* -0.717* 0.020 -0.494 -0.847* -0.660 -0.537 -0.618* 
Mod & 
severe 0.745* -0.830* 0.527 0.169 0.610 0.630* 0.195 0.449 0.331 

Dilation 0.705* -0.753* 0.669* 0.059 0.713* 0.656* 0.431 0.489 0.605 
Lack BB 0.723* -0.782* 0.699* -0.171 0.522 0.708* 0.447 0.430 0.625 

Necr 0.670* -0.753* 0.710  -0.275 0.416 0.838* 0.521 0.607 0.547 
Casts 0.706* -0.712* 0.387 -0.089 0.369 0.456 0.044 0.409 0.216 

Vac -0.025 0.074 0.089 -0.171 -0.129 0.225 0.092 0.110 -0.075 
Atroph 0.675* -0.746* 0.523 -0.139 0.414 0.655* 0.287 0.490 0.460 

Fibrosis 0.817* -0.830* 0.691* -0.120 0.659* 0.754* 0.451 0.559 0.609 
Min 0.450 -0.326 0.402 -0.221 0.440 0.296 0.333 0.313 0.423 

Chronic 
inflam 0.625 -0.798* 0.761* -0.317 0.456 0.790* 0.420 0.603 0.589 
Acute 
inflam 0.163 -0.282 0.129 -0.013 -0.005 0.227 0.099 0.118 0.325 

Overall 
Fib 0.775* -0.810* 0.667* -0.067 0.707* 0.630 0.390 0.516 0.613 

*P < 0.05; *P < 0.001 
Seg mes exp = segmental mesangial expansion; Glob mes exp = global mesangial expansion; Obs = 
obsolescence; Fib crescents = fibrinous crescents; BC dilation = Bowman’s capsule dilation; Normal & 
mild = normal + segmental mesangial expansion; Mod & severe = global mesangial expansion + 
obsolescence; Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular 
necrosis; Casts = tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = 
interstitial fibrosis determined by random fields; Min = tubular basement membrane mineralization; 
Chronic inflam = chronic interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall 
Fib = interstitial fibrosis determined from overall estimate of fibrosis using trichrome-stained slides; sCr = 
serum creatinine; GFR = glomerular filtration rate; UPC = urine protein:creatinine ratio; USG = urine 
specific gravity; RBP = urine retinol binding protein:creatinine ratio; B2M = urinary "2-microglobulin; 
NGAL = urine neutrophil gelatinase-associated lipocalin:creatinine ratio; NAG = urine N-acetyl-"-D-
glucosaminidase:creatinine ratio; IgG = urine immunoglobulin G:creatinine ratio. 
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Table A-18. Correlation of glomerular and tubulointerstitial lesions with clinical data 
and urinary biomarkers in normal dogs. 
 

 sCr GFR UPC USG RBP B2M NGAL NAG IgG 
Normal -0.031 0.113 0.301 0.066 0.420 0.167 0.484 0.178 0.186 

Seg mes 
exp 0.108 -0.135 -0.229 -0.025 -0.230 -0.050 -0.352 -0.125 -0.405 

Global 
mes exp -0.042 0.146 -0.182 0.057 -0.355 -0.144 -0.206 -0.219 -0.039 

Obs NA NA NA NA NA NA NA NA NA 
Synechia NA NA NA NA NA NA NA NA NA 

Fib 
crescents 0.276 NA -0.080 0.156 NA -0.054 -0.130 -0.104 -0.196 

BC 
dilation -0.064 -0.233 -0.037 -0.206 -0.071 -0.078 -0.186 0.120 0.245 
Normal 
& mild 0.060 0.003 0.155 0.056 0.329 0.154 0.285 0.106 -0.123 
Mod & 
severe -0.042 0.146 -0.182 0.057 -0.355 -0.144 -0.206 -0.219 -0.039 

Dilation -0.384 0.315 -0.134 0.226 0.357 0.347 0.014 0.082 0.037 
Lack BB 0.155 -0.240 0.030 0.004 0.409 -0.092 -0.178 0.074 -0.225 

Necr 0.091 0.272 -0.323 0.425 -0.582 -0.065 -0.088 -0.178 -0.213 
Casts 0.224 -0.317 -0.185 -0.331 -0.234 -0.108 -0.170 -0.041 -0.269 

Vac -0.172 0.010 -0.038 0.231 0.296 0.465 -0.138 0.234 -0.143 
Atroph 0.090 -0.216 -0.137 -0.108 -0.234 -0.082 -0.192 0.027 -0.388 

Fibrosis 0.069 -0.179 -0.083 -0.113 -0.102 -0.061 -0.166 0.009 -0.188 
Min NA NA NA NA NA NA NA NA NA 

Chronic 
inflam 0.091 -0.262 0.070 -0.208 0.024 -0.080 -0.069 -0.049 0.027 
Acute 
inflam 0.228 -0.066 -0.153 0.358 NA 0.068 -0.177 -0.149 -0.196 

Overall 
Fib 0.295 -0.148 -0.202 0.018 -0.371 -0.091 -0.203 -0.144 -0.266 

Seg mes exp = segmental mesangial expansion; Glob mes exp = global mesangial expansion; Obs = 
obsolescence; Fib crescents = fibrinous crescents; BC dilation = Bowman’s capsule dilation; Normal & 
mild = normal + segmental mesangial expansion; Mod & severe = global mesangial expansion + 
obsolescence; Dilation = tubular dilation; Lack BB = lack of brush border; Necr = single cell tubular 
necrosis; Casts = tubular casts; Vac = tubular cell vacuolation; Atroph = tubular cell atrophy; Fibrosis = 
interstitial fibrosis determined by random fields; Min = tubular basement membrane mineralization; 
Chronic inflam = chronic interstitial inflammation; Acute inflam = acute interstitial inflammation; Overall 
Fib = interstitial fibrosis determined from overall estimate of fibrosis using trichrome-stained slides; sCr = 
serum creatinine; GFR = glomerular filtration rate; UPC = urine protein:creatinine ratio; USG = urine 
specific gravity; RBP = urine retinol binding protein:creatinine ratio; B2M = urinary "2-microglobulin; 
NGAL = urine neutrophil gelatinase-associated lipocalin:creatinine ratio; NAG = urine N-acetyl-"-D-
glucosaminidase:creatinine ratio; IgG = urine immunoglobulin G:creatinine ratio. 
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