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ABSTRACT 

 

Impact of Two Water Management Systems on Arsenic Speciation and Microbial Populations in 

Rice Rhizosphere. (December 2010) 

Anil Kumar C. Somenahally, B.S., University of Agricultural Sciences, Bangalore, India; 

 M.S., Tarleton State University 

Co-Chairs of Advisory Committee: Dr. Terry Gentry  
    Dr. Richard Loeppert 

 

 Arsenic (As) is a problem with rice production systems throughout the world as high As 

concentrations are reported in rice grains originating from several parts of the world. This 

characteristic is mainly due to the flooded conditions utilized in rice culture. We hypothesized 

that the soluble As concentrations in the rice rhizosphere can be decreased by growing rice more 

aerobically through intermittent flooding. Intermittent water management practices might also 

change microbial populations in the rice rhizosphere that might potentially impact As chemistry 

and bioavailability. Two field-scale experiments were conducted over two years to study the 

impact of intermittent and continuous flooding on As speciation and microbial populations in the 

rice rhizosphere. As levels and speciation in the rhizosphere soil, root-plaque and pore-water 

were determined using a high performance liquid chromatography-inductively coupled plasma-

mass spectroscopy (HPLC-ICP-MS). The microbial populations were assessed from the 

rhizosphere soil and root-plaque samples using quantitative polymerase chain reaction (qPCR) 

and 16S rRNA sequencing. Pore-water and root-plaque total-As concentrations significantly 

decreased in the intermittent compared to the continuous flood plots.  Inorganic arsenite (iAsIII) 

was predominant in pore-water and inorganic arsenate (iAsV) in root-plaque and soil. Root-
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plaque sequestered significantly higher levels of As (almost tenfold higher) than the adjacent 

rhizosphere soil. Grain As concentrations also decreased by 35 to 45% in the intermittent 

compared to the continuously flooded plots. Organic As species, monomethyl and dimethyl 

arsenate were detected in the rhizosphere with relative increases and decreases among the 

treatments. Bacteria were the predominant group (91 to 94% and 48 to 78% of total community 

in root-plaque and rhizosphere soils, respectively). Archaea were also a major component of 

rhizosphere soil with their populations being higher under continuous flooding.   The relative 

abundance of iron-reducing bacteria was around 3 to 6 % of the total community in root-plaque 

and around 6 to 6% in soil, with significantly lower abundance in the intermittent compared to 

the continuously flooded plots. Results of these studies demonstrated that intermittent flooding 

could be a potential management option to reduce grain As in rice cultivated on fields with 

moderate to high As concentrations.  
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CHAPTER I 

GENERAL INTRODUCTION 

1.1 Problem Statement  

Arsenic (As) is a naturally occurring toxic metalloid, found in many geological minerals 

such as arsenopyrite (FeAsS), orpiment (As2S3), realgar (α-As4S4) and others. Natural As 

contamination is reported throughout the world with more than 50 million people exposed to a 

higher level of As than the World Health Organization limit of 20 µg day-1 in drinking water for 

the average adult, either through drinking water or diet (BGS and DPHE, 2001; Duxbury et al., 

2003). In the South-Central USA, arsenic in the form of sodium hydroxymethylarsinate 

(commonly known as monosodium methane-arsonate (MSMA)) and disodium methyl-dioxido-

oxoarsorane (commonly known as disodium methane-arsonate (DSMA)), which were popular 

defoliants and pesticides, were extensively used in cotton production for several decades. This 

practice has resulted in widespread As-contamination of these soils (Woolson, 1977). Currently, 

rice is grown on these soils, many with moderate to high residual soil-As concentrations, and rice 

is also extensively cultivated on As-contaminated fields in South and Central Asia. Growing rice 

on As- contaminated soils has recently garnered much attention, as several studies reported high 

As concentrations in rice grain originating from different parts of the world including rice grown 

in the South-Central USA (Meharg et al., 2009; Zavala et al., 2008). As a result, the consumption 

of As-impacted rice, apart from drinking water, can be an additional exposure route for millions 

of people worldwide (Mondal and Polya, 2008; Ohno et al., 2007; Williams et al., 2007a).  
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1.2 Motivation 

Rice generally accumulates higher As concentrations compared to that by other cereals 

(Williams et al., 2007b), which is mostly due to the flooded conditions utilized for rice 

production. Moreover, growing rice in soils with high As concentrations may result in the 

development of straighthead (SH), a physiological disorder characterized by sterility of the 

florets and significant yield decreases (Gilmour and Wells, 1980; Yan et al., 2005).  Hence, there 

has been a greater need to switch to alternative water-management practices to decrease As 

concentrations in rice grain as a means of reducing total As exposure. Several recent studies have 

shown that As concentrations in rice grain can be decreased by growing rice more aerobically, 

since bioavailable As concentrations have been found to decrease in the root zone (Li et al., 

2009a; Xu et al., 2008). This trend is attributable to the higher solubility of As under reduced 

conditions. The accurate determination of soil-As species in a field-scale study is essential to 

understand these trends.  

Soil microorganisms are capable of transforming As in the environment, thus impacting 

its solubility, mobility and bioavailability. Arsenic is toxic to most forms of life, including 

microbes. AsV is chemically similar to phosphate and can inhibit oxidative phosphorylation 

when present within a microbial cell (Oremland and Stolz, 2003). AsIII binds to sulfhydral groups 

of amino acids and can interfere with the function of sulfur-containing proteins (Abernathy et al., 

1999). AsV enters microbial cells through phosphate transporters and AsIII through aqua-

glyceroporins (Rosen, 2002).  Many microbes have evolved As detoxification and resistance 

through an AsIII efflux mechanism that involves the arsenate reductase enzyme (arsC) that 

reduces AsV to AsIII (Oremland and Stolz, 2003). Some microbes can methylate inorganic forms 

of As to MMAs/DMAs/TMAs as a detoxification process, since organic-As compounds are less 
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toxic than the inorganic-As species (Hall et al., 1997). A separate group of microbes known as 

dissimilatory arsenate-reducing prokaryotes (DARP), which are mostly prevalent in anoxic 

environments, are capable of utilizing AsV as an energy source (Oremland and Stolz, 2003). 

Thus, microbes play a significant role in controlling As speciation and As cycling in the 

environment.  

The adverse effects of heavy metals on the soil microbial community have been 

demonstrated in several studies (Khan and Scullion, 2000; Roane and Kellogg, 1996), showing 

that toxic metals can result in decreased microbial biomass (Fliessbach et al., 1994). Previous 

studies have also shown that total microbial biomass and fungal community populations declined 

proportionally with increasing As contamination (Bardgett et al., 1994; Edvantoro et al., 2003).  

Arsenic contamination could also lead to a proliferation of As-resistant microbes, thus shifting 

microbial community composition (Turpeinen et al., 2004).  

Microorganisms are an important component in the rhizosphere and strongly impact the 

cycling and bioavailability of metals. Microbial communities may also be affected by different 

water-management practices due to changes in soil-redox conditions (Zhou et al., 2002). 

Continuous flooding might select for facultative or obligate anaerobes, whereas, resilient aerobes 

and facultative anaerobic microorganisms might dominate in intermittently flooded soils due to 

the alternating wet/dry cycles (Xiang et al., 2008).  Anoxic conditions over time can also lead to 

a proliferation of iron/sulfate reducers and methanogens (Himmelheber et al., 2009), which could 

be expected to dominate in continuously flooded rice. Very few studies have been conducted to 

investigate the response of microbial communities to long-term As contamination under different 

water-management systems. Thus, it is also important to understand the rhizosphere microbial 

population response to changes in water management.  
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The research objectives were: 

• To standardize a method for As speciation in rice soils by extraction and HPLC-ICP-MS. 

• To study the impact of continuous- vs. intermittent-flood irrigation on As speciation in 

the rice rhizosphere at low and high soil-As concentrations.  

• To study microbial communities and selected populations in continuous flooding vs. 

intermittent flooding at low and high soil-As concentrations.  

In Chapter II, several chemical reagents were evaluated for total As recovery from the 

rice paddy soil in order to select a suitable method for As-species quantification using a HPLC-

ICP-MS system. The soil As was extracted from different soil textures using 5 different ligand-

based extraction procedures. The selected method based on the As recovery results was 

evaluated for recovery of individual species through a spiking study.  

In Chapter III field experiment results for As speciation in different compartments of the 

rice rhizosphere in response to two water management systems under two levels of soil As are 

discussed. Rhizosphere and grain As speciation relationships are explained, in order to evaluate 

the impact of water treatments on As solubility and uptake.  

In Chapters IV and V microbial population dynamics in rhizosphere and root surface in 

response to water management practices are presented. Relationships between specific microbial 

populations and rhizosphere As concentrations are discussed.   
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CHAPTER II 

METHOD FOR ARSENIC SPECIES EXTRACTION FROM RICE RHIZOPSHERE 

SOIL 

2.1 Synopsis 

Arsenic (As) occurs naturally in the environment, with contamination reported 

throughout the world. Arsenic can undergo several chemical and microbial transformations in 

soil, including oxidation/reduction, methylation/demethylation, and volatilization. As a result, 

several As species exist in the environment and accurate determination of these species is 

essential to understand its bioavailability to plants. This study was conducted to evaluate several 

chemical reagents for recover of As from rice paddy soils in order to standardize a method for 

quantification of As species using a high performance liquid chromatography-inductively 

coupled plasma-mass spectroscopy (HPLC-ICP-MS) system. Five different chemical reagents 

were used to extract As from two different soils. A chemical extraction method was selected 

based on the recovery of As, which was then evaluated for recovery of As species in a 

fortification study. Rice rhizosphere soil samples from a field experiment were obtained to 

evaluate the recovery of As using the selected method. Among all of the chemical reagents and 

sequential combinations of reagents tested, sequential extraction with 0.4 M H3PO4 + 0.4 M 

NaOH recovered the highest total As (around 84% of total As) and hence was selected for further 

evaluation. Results of the fortification study demonstrated that the extraction efficiency ranged 

from 73 to 93% in the order of DMAV > MMAV > iAsV. The total recovery of As from the field 

experiment soils averaged approximately 77% with no statistically significant difference among 

the treatments. Appropriate quantification of iAsIII, iAsV, MMAV and DMAV using HPLC-ICP-
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MS system after extracting with 0.4 M H3PO4 + 0.4 M NaOH was possible, hence this method 

was adopted for quantifying As in the rice rhizosphere in later studies. 

2.2 Introduction 

Arsenic (As) is a naturally occurring toxic metalloid, with natural As contamination 

reported throughout the world. The common inorganic species are arsenite (iAsIII) and arsenate 

(iAsV), organic forms are monomethyl arsenite (MMAsIII), monomethyl arsenate (MMAsV), 

dimethyl arsenite (DMAsIII) and dimethyl arsenate (DMAsV). The inorganic species are usually 

more prevalent in the environment than their organic counterparts that are mostly a product of 

microbial methylation (Cullen and Reimer, 1989) or in some cases attributed to the use of 

organic arsenicals as agricultural pesticides or defoliants (Woolson, 1977).  

Inorganic arsenate, which is generally more prevalent under oxidized conditions, occurs 

under environmental conditions as a charged species (pKa = 2.2) and forms strong bonds with 

iron oxides as both bidentate and monodentate inner-sphere complexes (Dixit and Hering, 2003). 

Thus, under oxidized conditions iAsV is largely immobile in the environment. Arsenite (pKa = 

9.2) is more stable under anoxic conditions, is relatively less strongly adsorbed under reduced 

conditions, and as a result is more soluble and mobile in the environment under reduced 

conditions (Masscheleyn et al., 1991). Although transformations between iAsV and iAsIII can 

occur chemically due to changes in redox conditions (Masscheleyn et al., 1991) and 

physicochemical surface processes (Bissen and Frimmel, 2003), the transformations are largely 

controlled by microbial processes (Campbell et al., 2006; Oremland and Stolz, 2003). Similar to 

iAsV, MMAsV and DMAsV are relatively stable under oxidized conditions, and MMAsV (pKa = 

4.2) is strongly adsorbed to iron oxides from pH 3 to 10, whereas DMAsV (pKa = 6.1) forms 

strong bonds with iron oxides at only lower pH values (pH <7) (Lafferty and Loeppert, 2005).  
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Rice is extensively cultivated on As-contaminated soils in several parts of the world 

resulting in high grain-As concentrations (Meharg and Rahman, 2003). Precise As speciation in 

the rice rhizosphere in a field-scale study is critical for understanding As bioavailability in rice 

paddies. As speciation in paddy soils is a technically challenging task due to the high spatial and 

temporal variability and the analytical issues associated with As speciation.  

In soil, both organic and inorganic species are strongly adsorbed to various soil minerals, 

thus quantitative extraction of As species from soils is very difficult (Jackson and Miller, 2000). 

Moreover, the desorption efficiencies of the various As species follow different trends with 

respect to pH (Lafferty and Loeppert, 2005). Thus, the use of multiple reagents with different pH 

values might be useful to improve the simultaneous extraction efficiencies of samples with both 

organic- and inorganic-As species; however, a strong reagent with very high or low pH values 

could lead to transformations between iAsV and iAsIII species (PantsarKallio and Manninen, 

1997). Several extraction methods have been tried using high and low pH reagents with a 

recovery percentage ranging from 40 to 99% (Jackson and Miller, 2000; Montperrus et al., 2002; 

Pizarro et al., 2003). The commonly used reagents for As-species extraction include phosphate 

and OH-, phosphoric acid, acetic acid, and ammonium phosphate (Jackson and Miller, 2000; 

Kahakachchi et al., 2004; Martens and Suarez, 1997); however, there is not a published method 

for As speciation that could be readily implemented in our study as none of the published 

methods were able to produce consistently high rates of recovery.  Thus, developing an efficient 

method for As speciation has become an essential prerequisite for our studies. The objective of 

this study was to standardize a method for As speciation in rice rhizosphere soils by extraction 

and analyzing by HPLC-ICP-MS analysis. 
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2.3 Material and Methods 

2.3.1 Chemical Reagents  

We evaluated five different reagents for total recovery of As from two soil texture; a 

sandy loam soil (montmorillonitic, thermic typic albaqualf) and a sandy clay loam soil (vertic 

hapludalf). The extracting reagents were: (1) 0.4 M H3PO4 (pH = 1.6); (2) 0.4 M NaOH (pH = 

12.4); (3) ammonium oxalate at pH 3, in the dark; (4) 0.5 M sodium phosphate + 0.1 M ascorbic 

acid at pH 1.6; and (5)  0.5 M sodium phosphate + 0.1 M  ascorbic acid at pH 1.6. In method (4) 

and (5) the pH was adjusted with 1 M HNO3. Approximately 1g of soil was weighed into 50-mL 

polypropylene centrifuge tubes. Ten mL of the respective extracting solutions were added to the 

tubes, which were then agitated for 6 hr at 200 rpm on a reciprocating platform shaker. The 

samples were then centrifuged, and the supernate was decanted, filtered and diluted with 

deionized water (DIW) for subsequent As analysis. All samples were filtered with 0.2-µm 

membrane syringe filters before analysis.  

Additionally, total As concentrations of the soil samples were determined, which enabled 

the determination of extraction efficiencies of extraction methods (1) to (5). The total As 

concentrations were determined following a open digestion method with HNO3/H2O2 digestion 

(US-EPA, 2007). Approximately 1g of soil was weighed into 250-mL digestion vessels. Ten mL 

of 1:1 HNO3 was added to the samples and were digested at  95oC for 15 minutes with refluxing 

on a temperature-programmable 48-well, graphite-block digestion system (Digi Prep MS, SCP 

Science, Montreqal, Canada). The samples were cooled and then 5-mL of concentrated HNO3 

was added and digested for 30 minutes at 95oC with refluxing. This step was repeated for 2 to 3 

times till the brown fumes disappeared. The samples were maintained at this temperature till the 

sample volume was reduced to approximately 5 mL, which were then cooled. Samples were then 
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digested with 2 mL of water and 3 mL of 30 % H2O2 at 95oC. Addition of 30 % H2O2 was 

continued at 1 mL till the effervescence was minimal. The samples were then cooled, diluted and 

filtered with 0.2 µ membrane using a syringe filter.  

2.3.2 Fortification Study for As Species Recovery by Extraction Method 

Based on extraction efficiency of methods (1) to (5) (see table on page 14), sequential 

extraction with 0.4 M H3PO4 + 0.4 M NaOH was selected for As species extraction from the 

experimental soils.  We evaluated the efficiency of the 0.4 M H3PO4 + 0.4 M NaOH method for 

the recovery As species from sandy loam and sandy clay-loam soils. Solutions containing iAsIII, 

iAsV, DMAsV and MMAsV at two concentrations (10 mg L-1 and 250 µg L-1) were prepared.  

Five mL of each As solution was added to 1g of soil separately in triplicates and then the soil 

suspensions were incubated for 24 hr with mild agitation on a rotary shaker. Five mL of 

deionized water was added to the control samples. The soil solutions were then centrifuged, and 

the supernatent was decanted and analyzed for As concentration. The soil residue was then air-

dried and the As species were extracted with 0.4 M H3PO4 and 0.4 M NaOH. Ten mL of 0.4 M 

H3PO4 (pH 1.6) were added, and the suspensions were agitated for 6 hr on a reciprocating 

platform shaker. The samples were then centrifuged at approximately 7500g-force for 5 minutes, 

and the supernatant was decanted. Ten milliliters of 0.4 M NaOH (pH~12.2) were added to the 

soil residue, and the suspensions were agitated for 6 hr on a reciprocating platform shaker. Equal 

amounts from the two supernatant solutions were diluted 100-fold using a solution of 2 mM 

HNO3 + 0.5 mM EDTA. The final sample matrix of 4 mM H3PO4 + 4 mM NaOH + 2 mM HNO3 

+ 0.5 mM EDTA at a pH ~3.0 was then analyzed for concentrations of As-species. The recovery 

of added As species by the phosphate + NaOH method was calculated after subtracting for native 

soil As.  
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2.3.3 As Recovery by Phosphate and Hydroxide Reagents 

Rice-rhizosphere soil-samples were obtained from a field experiment conducted in 

research plots at US Department of Agriculture, Dale Bumpers National Rice Research Center, 

Agriculture Research Service, Stuttgart, AR for two years, in 2007 and 2008.  The objective of 

the field experiment was to evaluate the impact of different water management practices on As 

speciation in the rice rhizosphere at two soil As concentrations. One of the experimental plots 

has been continuously amended with monosodium methane-arsonate (MSMA) in alternate years 

for more than twenty years. MSMA was applied to the surface soil before planting, at the rate of 

6.7 kg ha-1yr-1. The adjacent native soils had not received any As-containing products for at least 

the last 20 years. The water treatments, which were superimposed on the native and MSMA soil 

treatments, included both intermittent and continuous flooding. Under intermittent flooding, the 

plots were flooded and allowed to dry until surface cracking initiated and then were re-flooded. 

The treatment combinations used in this study were (1) MSMA-flood (MF) (2) MSMA-

intermittent (MI) (3) No-MSMA flood (NF) and (4) No-MSMA intermittent (NI).  The soil in the 

experimental plots was a fine, montmorillonitic, thermic typic albaqualf (Crowley silt loam). 

Each treatment plots were distributed using a split-split plot design and each treatment contained 

four replicate plots randomly distributed within each treatment plots. Each replicate plots 

contained 9 rows with 0.2-m spacing between each row and were 1.5m long. The seeds were 

sown in the middle of April, and the first flood was introduced at four weeks following sowing, 

when the plants were about 30 cm tall. All of the other management practices are outlined 

elsewhere (Yan et al., 2005).  
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2.3.4 Sampling 

In 2007, the rhizosphere soil samples were collected at planting (1 d after planting), one 

month after flooding (60 d after planting) and 3 weeks before harvest (120 d after planting). In 

2008, samples were collected at 3 weeks before harvest (120 d). Three plants from each replicate 

plots were removed along with the adhering bulk soil with the aid of a shovel and shaken to 

remove the loose soil. Remaining non-rhizosphere soil was removed manually, leaving only a 

few millimeters of soil around the roots, which was then manually collected. Soil samples were 

air-dried in the lab and ground to <0.2 mm size and stored at room temperature until further 

analysis. The concentrations of As species were determined following the sequential extraction 

0.4 M H3PO4 + 0.4 M NaOH method as explained in the previous section. The total As 

concentration in the soil samples was determined following digestion with HNO3/H2O2 (US-

EPA, 2007).  

2.3.5 Instrumentation and Chemicals 

The DMAV and MMAsV were obtained from Chem Service (West Chester, PA, USA) as 

dimethyl arsinic acid and monosodium acid methanearsonate, respectively. Arsenate was 

obtained as sodium arsonate (Na2HAsO4•7H2O) from Sigma (St. Louis, MO, USA) and iAsIII as 

arsenite oxide (As2O3) from Alfa Aesar (Ward Hill, MA, USA). A PerkinElmer 200 HPLC 

system (Waltham, MA, USA) with a Dionex IonPac AG7 guard column (Dionex, Sunnyvale, 

CA, USA) and a Dionex IonPac AS7 anion-exchange column (Dionex, Sunnyvale, CA, USA) 

was used for separation of As species, which were then quantified by using a ICP-MS model 

DRC-ELAN II (Perkin Elmer Waltham, MA, USA). The HPLC instrument parameters are 

presented in Table 2.1. The post column addition of 3% methanol was used to offset ionization 
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problems due to variable C concentrations. The total As concentration in the soil samples was 

determined by ICP-MS.  

 
Table 2.1. Instrument parameters used for speciation of arsenic in soil samples. 
 

Instrument HPLC-ICP-MS ( Perkin Elmer model Elan DRCII) 

HPLC column Ion exchange AS7 with AG7 guard column (Dionex, 
Sunnyvale, CA) 

Mobile phase Eluent A:1mM HNO3 (pH~3) 

Eluent B: 50mM HNO3 (pH~1.5) 

As species 

measured 

iAsV, iAsIII, DMAsV and MMAsV 

Gradient elution program  

Time (min) A    B Gradient 

5 (equilibration) 100% 0% 0 

2.5 100% 0% 0 

6.5 0% 100% 1  

 

2.4 Results                                                                                                                                                                                  

2.4.1 Comparison of Chemical Reagents for As Recovery  

The total As recovery by five extraction methods (1) to (5) averaged about 75% and there 

was no significant difference among the methods (Table 2.2). Phosphoric acid and ammonium 

oxalate methods extracted the highest quantity of total As from both of the samples. Since the 

extraction efficiency of individual reagents was not as high as we anticipated, several sequential 

extraction combinations of the methods were evaluated to get higher quantitative extraction. 

Sequential extraction with 0.4 M H3PO4 at pH 1.6 followed by 0.4 M NaOH at pH 12.0 yielded 

the highest recovery of total As compared to the other methods (85%) (Table 2.2). Thus we 

implemented this method for As species extraction from the experimental soils.  
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2.4.2 As Species Recovery by Phosphate and Hydroxide Method 

Using H3PO4 +  NaOH extraction it was also possible to accurately quantify all of the 

four As species (iAsV, iAsIII, DMAsV and MMAsV) from both soil types (Figure 2.1).  The 

recovery by the H3PO4 +  NaOH method varied significantly among the As species in the order; 

DMAsV > iAsIII > MMAsV > iAsV (Table 2.3). The average As recovery percent in the 

fortificqation study by H3PO4 + NaOH showed that both iAsV and MMAV were extracted 

approximately at 80%  compared to iAsIII and DMAV which extracted at approximately 90% 

(Table 2.3).  The recovery of iAsV species from the sandy loam soil was slightly higher than the 

sandy clay loam soil. Soil texture did not affect the recovery of other As species. MMAsV 

recovery was slightly higher in soils fortified with higher concentrations of MMAsV than the 

soils with lower MMAsV concentrations. All of the iAsIII was likely converted to iAsV by the 

time of analysis as the soils were air dried before extraction. The average total-As recovery by 

the H3PO4 + NaOH method from the field experiment soils was around 77% (Table 2.4) which is 

less than the average total As recovered in the fortification study of approximately 86%. The As 

recovery percentage did not statistically differ between the samples from various treatments and 

years.  
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Table 2.2. Arsenic recovery by different extraction methods. 
 
Method Sandy loam Sandy clay 

loam 
% recovered to total acid 

digested As 
0.4 M Phosphoric acid 81.7 

(±7.02) 
78.4 

(±4.67) 
0.4 M Sodium hydroxide 78.1 

(±6.19) 
75.4 

(±5.12) 
0.175 M Ammonium oxalate + 0.1 M oxalic acid in dark 80.8 

(±8.01) 
79.5 

(±7.87) 
0.5 M Dihydrogen phosphate + 0.1 M citric acid 75.3 

(±7.79) 
73.5 

(±3.39) 
0.5 M Dihydrogen phosphate + 0.1 M citric acid 76.8 

(±9.26) 
74.1 

(±8.12) 
0.4 M Phosphoric acid + 0.4 M Sodium hydroxide 85.7 

(±8.12) 
83.8 

(±8.12) 
Sandy loam soil collected from Stuttgart, AR (thermic typic albaqualf) and Sandy clay loam soil 
collected from Beaumont, TX (vertic hapludalf). Values in parenthesis are standard error of 
mean. 
 
 
 
 
Table 2.3. Recovery of fortified As species by H3PO4 + NaOH extraction method. 

 
Soil texture As added / g 

of soil 
As species added 

iAsV iAsIII MMAV DMAV 
% Extracted 

 Sandy loam None 81.5 
(±5.13) 

ND¥ ND¥ ND¥ 

1.25 µg 90.7 
(±3.97) ND* 

79.0 
(±3.04) 

97.8 
(±2.97) 

50 µg 83.0 
(±5.62) 

ND* 85.1 
(±4.71) 

95.5 
(±3.19) 

Sandy clay 
loam 

None 79.3 
(±8.23) 

ND¥ ND¥ ND¥ 

1.25 µg 72.3 
(±8.69) 

ND* 80.5 
(±3.63) 

95.7 
(±4.76) 

50 µg 81.0 
(±7.31) 

ND* 86.3 
(±6.06) 

96.0 
(±5.19) 

¥ Not detected in native soil. * Not detected as all of the fortified iAsIII converted to iAsV 

Values in parenthesis are standard error of mean. 
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Soil

Standard
AsIII

MMAsV

DMAsV

AsV

IS

Table 2.4. Recovery of total As from the experimental field soil by H3PO4 + NaOH extraction  
 method. 
 

Treatments 

Sampling Date 

1 d 60 d 120 d 120 d-2008 

% recovery 

MSMA flood 
75 

(±7.17) 
78.2 

(±7.91) 
78.5 

(±8.57) 
73.6 

(±5.87) 

MSMA intermittent 
82.9 

(±6.90) 

79 

(±9.08) 

73.3 

(±9.08) 

70.4 

(±8.11) 

No-MSMA flood 
87.1 

(±7.91) 
77.6 

(±9.91) 
74.1 

(±8.23) 
70.6 

(±6.09) 

No-MSMA intermittent 
76.4 

(±8.48) 
84 

(±7.03) 
66.2 

(±10.12) 
80.1 

(±6.56) 

 
Note: The percent recovery calculated by comparing to total As extracted by acid digestion. 
Values in parenthesis are standard error of mean. 

 

 

 

 

  
Figure 2.1. HPLC-ICP-MS chromatograms for As species from standard and soil samples. 
IS=Internal standard. 
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2.5 Discussion 

All five of the reagents tested for recovery of As extracted less (~75%) of the total soil 

As than we had anticipated. Both inorganic and organic As species are strongly adsorbed to soil 

minerals which tend to desorb at low efficiency with ligand exchange reagents (Lafferty and 

Loeppert, 2005).  The pKa values for iAsV, MMAV DMAV and iAsIII ranges from 2.2 to 9.2 with 

desorption efficiency also ranging from low to high pH (Lafferty and Loeppert, 2005), thus it is 

very difficult to get quantitative extraction of all of the species with a single extractant (Jackson 

and Miller, 2000). Thus we tried sequential extraction with several combinations of all of the 

five reagents in order to get quantitative extraction and appropriate quantification using the 

HPLC-ICP-MS system. Among all of the combinations evaluated for recovery of iAsV, iAsIII, 

MMAV and DMAV species, sequential extraction with 0.4M H3PO4 at pH 1.8 followed by 0.4M 

NaOH at pH 12.0 was the most efficient. This may be due to the lower pH of the H3PO4 

extractant which may facilitate weakening of Fe-O-As bonds allowing phosphate to more 

efficiently replace As from iron oxides (Lafferty and Loeppert, 2005). Similarly at high pH, Fe-

O-As bonds are weakened due to increased repulsive potential between negatively charged Fe 

oxide surface and the negatively charged iAsV species. Also, OH- competes with iAsV for 

adsorption sites at the mineral surface (Raven et al., 1998).  Moreover, the solubility of iron 

oxides is also greater at pH >9 (Lindsay, 1979) which increases quantitative extraction of As 

(Raven et al., 1998). Similarly, Jackson and Miller (2000) observed that PO4 at low pH extracted 

a higher proportion of iAsIII compared to that by OH-1 at high pH which extracted a higher 

proportion of the total iAsV, MMAV and DMAV. 

The sequential extraction method was also most compatible with the instrument 

conditions mentioned in Table 2.1 for quantification of individual species using a HPLC-ICP-
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MS system. The H3PO4 + NaOH method extracted lower iAsV and MMAV compared to iAsIII 

and DMAV.  This might be due to the tendency of iAsV to form inner sphere complexes with iron 

oxides and be strongly adsorbed (Fendorf et al., 1997). MMAV also forms inner sphere 

complexes with aluminum and iron oxides (Cox and Ghosh, 1994) and is strongly adsorbed to 

ferrihydrite and goethite between pH 4 – 7 (Lafferty and Loeppert, 2005).   

AsIII was the first species to elute followed by MMAV, DMA and iAsV (Figure 2.1). 

Arsenate was retained for a longer time in the column and eluted after 6.5 minutes when the 

gradient elution pH reached less than 2. It is common to see DMAV eluting before MMAV when 

a higher pH mobile phase is used (Pizarro et al., 2003). However, in our study MMAV was eluted 

earlier than DMAV due to lower pH eluent (pH ~ 3). An unidentified As species was consistently 

observed in most of the soil samples from MF treatment which eluted after iAsV (Figure 2.1). 

This could be one of the thio-arsenate compounds,  largely a mono-thioarsenate compound 

which is a charged species  (Wallschlager and London, 2008).  

2.6 Conclusions 

 Among all of the chemical reagents evaluated, the sequential extraction with 0.4M 

H3PO4 followed by 0.4M NaOH provided the highest recovery of As from the soils. The 

sequential extraction using the H3PO4 and NaOH reagents recovered appreciable quantities of As 

species from rice paddy soils. The extraction efficiency ranged from 73 to 93% in the order of 

DMAV > MMAV > iAsV. These results indicate that it is possible to accurately quantify iAsIII, 

iAsV, MMAV and DMAV from soil samples using HPLC-ICP-MS. 
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CHAPTER III 

IMPACT OF TWO WATER MANAGEMENT SYTEMS ON ARSENIC SPECIATION 

3.1 Synopsis 

Rice cultivation on arsenic (As) contaminated-soils is of potential concern since rice 

usually accumulates higher As concentrations in grains compared to other cereals. This 

characteristic is mainly due to the flooded conditions utilized in rice culture. We hypothesized 

that the soluble As concentrations in the rice rhizosphere can be decreased by growing rice more 

aerobically through intermittent flooding. A field-scale experiment was conducted to study the 

impact of intermittent and continuous flooding on As speciation in different compartments of the 

rice rhizosphere. Several As species were extracted from the rhizosphere soil, root-plaque and 

pore-water, and were quantified using a HPLC-ICP-MS. The soil As concentrations were 

naturally higher in MSMA plots than the No-MSMA, but there was no significant difference 

between the water treatments. Pore-water and root-plaque total-As concentrations significantly 

decreased with the intermittent (85 to 86% in pore-water and 50 to 56% in root-plaque) 

compared to the continuous flood. Arsenite was predominant in pore-water, whereas iAsV was 

predominant in root-plaque and soil. MMAsV was detected only in MSMA soils and DMAsV in 

pore-water and root-plaque samples from the continuously flooded plots. Total grain As 

concentrations also decreased by 35 to 45% in the intermittent compared to the continuously 

flooded plots and only DMAsV and iAsIII were detected in rice grains, and DMAsV 

concentrations also decreased in the intermittent plots. Results of this study demonstrated that 

intermittent flooding could be a potential management option to reduce soluble As 
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concentrations in the rice rhizosphere and grains in rice cultivated on fields with moderate to 

high As concentrations.  

3.2 Introduction 

Arsenic (As) is a toxic metalloid known to cause cancer in humans. Worldwide, more 

than 50 million people are exposed to higher levels of As than is recommended by World Health 

Organization (10 µg day-1 in drinking water), either through consumption of As-containing 

drinking water or food (BGS and DPHE, 2001; Duxbury et al., 2003). In Bangladesh alone, more 

than 30 million people are exposed to high levels of As. In South East Asia, the As 

contamination is mainly of geological origin. In other parts of the world the release of As from 

mining activities (Klumpp and Peterson, 1979), and the use of As-containing pesticides 

(Woolson, 1977) and wood preservatives (Townsend et al., 2003) has led to widespread 

contamination. Under natural conditions, soil-As concentrations are usually less than 5 mg kg-1, 

but concentrations as high as 40 mg kg-1 have been reported in contaminated soils such as those 

irrigated with As-rich groundwater in Bangladesh (Meharg and Rahman, 2003; Panaullah et al., 

2009). The most common inorganic species of As are arsenite (iAsIII) and arsenate (iAsV) while 

common organic forms include monomethylarsonous acid (MMAsIII), monomethylarsonic acid 

(MMAsV), dimethylarsinous acid (DMAsIII) and dimethylarsinic acid (DMAsV). The inorganic 

species are usually more prevalent in the environment than their organic counterparts which are 

mostly a product of microbial methylation or in some cases attributed to the use of organic 

arsenicals as agricultural pesticides or defoliants. 

Rice is extensively cultivated on As-impacted soils throughout the world, resulting in 

high grain-As concentrations (Meharg and Rahman, 2003). As a result, the consumption of As-

impacted rice, apart from drinking water, can be an additional exposure route for millions of 
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people worldwide (Mondal and Polya, 2008; Ohno et al., 2007; Williams et al., 2007a). Arsenic 

in the form of sodium hydroxymethyl-arsinate (commonly known as monosodium methane-

arsonate (MSMA)) and disodium methyl-dioxido-oxo-arsane (commonly known as disodium 

methane-arsonate (DSMA)), which are popular defoliants and pesticides, were extensively used 

in cotton production for several decades and are still used for turf production. This practice has 

resulted in  widespread As-contamination of many soils (Woolson, 1977). Currently, rice is 

grown on many of these soils, often containing moderate to high residual soil-As concentrations. 

High soil-As concentrations in these soils have also been linked to the incidence of straighthead 

in rice, a physiological disorder characterized by sterility of the florets and significant yield 

decreases (Gilmour and Wells, 1980; Yan et al., 2005). 

 High grain-As concentrations are exacerbated by the practice of continuous flooding, 

which is commonly used for the cultivation of rice (Xu et al., 2008; Yan et al., 2005). This 

phenomenon is mainly attributable to the flooded conditions in which As is more readily released 

to pore-water by reductive dissolution of iron oxides and also increased conversion of iAsV to the 

iAsIII form (Masscheleyn et al., 1991; Takahashi et al., 2004).  Arsenite, a neutral species under 

normal paddy conditions (pH 4 to 8), is considered to be more readily bioavailable than iAsV. In 

contrast, iAsV, which is strongly adsorbed to iron and aluminum oxides (Lafferty and Loeppert, 

2005; Raven et al., 1998), is more prevalent under oxidized conditions. Recent pot-scale studies 

have shown that both intermittent flooding with wet/dry cycles (Li et al., 2009a) and aerobic-rice 

cultivation (Xu et al., 2008) resulted in significantly reduced grain-As concentrations compared 

to that obtained with continuous flooding. Cultivation of rice with intermittent flooding appears 

to have significant potential as a management strategy to reduce grain-As accumulation; however 

there is very little data on the occurrence of the various As species in the rice rhizosphere of 
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intermittently flooded soil at the field scale. Rice can take up both iAsV and iAsIII species 

(Meharg and Hartley-Whitaker, 2002), as well as organic species such as MMAsV, MMAsIII, 

DMAsV and DMAsIII  (Li et al., 2009b). DMAs and MMAs have been detected in rice paddies 

(Takamatsu et al., 1982) and not much is known about the impact of intermittent cultivation on 

concentrations of organic-As species.  

The rice rhizosphere is somewhat oxidized even under continuously flooded conditions, 

since with rice as with most other aquatic plants, oxygen is released through the root epidermal 

layer as a result of radial oxygen diffusion from the aerenchyma structure (Colmer, 2003). As a 

result, iron oxides precipitate on the root surface to form root-plaques. The root-plaques adsorb 

significant amounts of As, mostly in the form of iAsV and iAsIII, and can impact the amount of 

As taken up by rice plants (Hossain et al., 2009; Liu et al., 2004a). Arsenic adsorption also 

depends on the amount of iron oxide plaque formed (Hossain et al., 2009; Zhang et al., 1998), 

which can vary with soil iron-oxide content and mineralogy and differences in soil-redox 

potential (Chen et al., 2008). Thus, As quantification and speciation in root-plaque samples is an 

important factor in understanding As availability to plants under different water-management 

practices. The objective of this study was to compare the impacts of continuous vs. intermittent 

flooding on the speciation of As in the rice rhizosphere and grains.   

3.3 Material and Methods 

3.3.1 Experimental Site and Treatments  

Field experiments were conducted in research plots at the US Department of Agriculture, 

Agriculture Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR, for 

two years, in 2007 and 2008.  One of the experimental plots was a straighthead testing plot of 

approximately 1 ha area, which has been continuously amended with MSMA in alternate years 
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for more than twenty years (Yan et al., 2005). This plot has been used for rating rice varieties for 

straighthead resistance. MSMA was applied to the surface soil immediately before planting, at 

the rate of 6.7 kg ha-1yr-1 (equivalent to 3.1 kg As ha-1yr-1). The adjacent No-MSMA soil had not 

received any As-containing products for at least the last 20 years. The water treatments, which 

were superimposed on the No-MSMA and MSMA soil treatments, included both intermittent 

and continuous flooding. Under intermittent flooding the plots were initially flooded, then 

allowed to dry until small, surface cracks were evident, at which point the plots were re-flooded. 

The treatment combinations used in this study were (1) MSMA flood (2) MSMA intermittent (3) 

No-MSMA flood and (4) No-MSMA intermittent. In intermittently flooded plots, the wet/dry 

cycles were continued throughout the rice growing season until 3 weeks before harvest, at which 

time all plots were allowed to dry. The soil type in the experimental plots was a fine, 

montmorillonitic, thermic Typic Albaqualf (Crowley silt loam). The rice varieties were Wells (yr 

2007) and Cocodrie (yr 2008); both are popular high yielding varieties that are relatively 

susceptible to straighthead (Yan et al., 2005). The treatment plots were arranged in four 

completely randomized replicates.  The seeds were sown in the middle of April, and the first 

flood was introduced at four weeks following sowing, when the plants were about 30 cm tall. All 

the other management practices were conducted as outlined by Yan and associates (Yan et al., 

2005).  

3.3.2 Sampling 

The samples for As speciation included rhizosphere soil, rhizosphere pore-water, root-

plaque and grains. The plants were removed along with the adhering bulk soil with the aid of a 

shovel and shaken to remove the loose soil. The remaining non-rhizosphere soil was removed 

manually, leaving only a few millimeters of rhizosphere soil around the roots, which was then 
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manually collected. Roots were then thoroughly washed with deionized water (DIW) to remove 

and collect rhizosphere soil adhering to the roots. After removal of the rhizosphere soil, the iron-

oxide plaque remained firmly affixed to the roots, which taken together are hereafter referred to 

as root-plaque samples. In 2007, soil samples were collected at 1 d after sowing, 60 d after 

sowing (one month after first flooding) and 120 d after sowing (3 weeks before harvest). In 2008, 

samples were only collected at 120 d (3 weeks before harvest).  The plots with continuously 

flood treatment were submerged at the time of sampling both at 60 d and 120 d, whereas the 

plots with intermittently flood treatment were saturated without any standing water. At the time 

of sampling during 60 d time-point the flood treatment-plots had been continually flooded for 

approximately 5 weeks and the intermittent flooded plots had been flooded for approximately 1 

week. At the 120 d sampling time, the flood treatment-plots had been continually flooded for 

approximately 12 weeks and the intermittent flooded plots had been flooded for approximately 1 

week. All soil and root-plaque subsamples were stored at 4 O C during transportation from field 

to the lab. Soil samples were air-dried in the lab and ground to <0.2 mm size and stored at room 

temperature until further analysis. The root-plaque subsamples were immediately extracted for 

As species and the extracted solutions were stored at 4 O C until further analysis.  

In order to collect pore-water samples, bulk-soil samples from the 0 to 6-cm depth were 

collected from the non-rhizosphere area (between plants) using a 2.5-cm diameter corer with 

brass insert rings. The insert rings with soil sample were capped with polypropylene end caps, 

stored on ice during transport to the lab. The core samples were then vacuum filtered at a 

negative pressure of 138 kPa for 20 min to extract pore-water samples, which were subsequently 

acidified to pH 3 with 100 mM HNO3 and preserved at 4 O C until further analysis.  
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The redox potential was measured in the rice rhizosphere at each sampling time using a 

platinum electrode inserted into the soil and a Ag/AgCl reference electrode placed in the flood 

water, and with rest of the methodology followed as outlined by Fiedler et al. (2007). 

Grain samples were obtained during harvest from each treatment plot. Approximately 50 

g of grain was dehulled, milled, ground to flour and stored at 4 °C until further analysis. More 

information on grain analysis can be found in Pillai et al. (2010).  

3.3.3 As Extraction 

The total As concentrations were determined by inductively-coupled-plasma mass-

spectrometry (ICP-MS) after following a open digestion method with HNO3/H2O2 (US-EPA, 

2007).  

The concentrations of As species were determined by high performance liquid 

chromatography (HPLC)-ICP-MS following a sequential extraction with 0.4 M H3PO4 and 0.4 M 

NaOH. Approximately 1g of soil was accurately weighed into 50 mL polypropylene centrifuge 

tubes. Ten mL of 0.4 M H3PO4 (pH 1.6) was added, and the suspensions were agitated for 6 hr 

on a reciprocating platform shaker. The samples were then centrifuged at approximately 7500g-

force for 5 min, and the supernatant was decanted. Ten mL of 0.4 M NaOH (pH~12.2) were 

added to the soil residue, and the suspensions were agitated for 6 hr on a reciprocating platform 

shaker. Equal amounts from the two supernatant solutions were diluted 100-fold using a solution 

of 2 mM HNO3 + 0.5 mM EDTA. The final sample matrix of 4 mM H3PO4 + 4 mM NaOH + 2 

mM HNO3 + 0.5 mM EDTA at a pH ~3.0 was then analyzed for concentrations of various As-

species.  A similar extraction procedure was followed to extract As species from root-plaque 

samples with approximately 2.5 g of fresh roots.  
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The concentrations of As-species in rice grain were determined by HPLC-ICP-MS 

following triflouroacetic acid (TFA) extraction (Heitkemper et al., 2001). Two mL of TFA were 

added to approximately 0.5 g of rice flour in a Teflon digestion tube and incubated for 2 hr at 

room temperature. The mixture was then heated at 80oC for 4 hr or until the solvent had 

evaporated to dryness. The residue was then dissolved in 15 mL deionized water and filtered 

using a 0.2 µm nominal pore size cellulose nitrate membrane in a syringe filter.  The total grain-

As concentration was determined following HNO3/H2O2 digestion (Zavala and Duxbury, 2008).  

3.3.4 Instrumentation and Chemicals 

The DMAV and MMAsV were obtained from Chem Service (West Chester, PA, USA) as 

dimethyl arsinic acid and monosodium acid methanearsonate, respectively. Arsenate was 

obtained as sodium arsonate (Na2HAsO4•7H2O) from Sigma (St. Louis, MO, USA) and iAsIII as 

arsenite oxide (As2O3) from Alfa Aesar (Ward Hill, MA, USA). A Perkin Elmer 200 HPLC 

system (Waltham, MA, USA) with a guard column (Dionex IonPac AG7, Sunnyvale, CA, USA) 

and an anion-exchange column (Dionex IonPac AS7) was used for separation of As species, 

which were then quantified by in-line ICP-MS using a Perkin Elmer DRC-ELAN II. The HPLC 

instrument parameters are presented in Table 3.1. The post column addition of 3% methanol was 

used to offset ionization problems due to variable C concentrations. The total As was measured 

by ICP-MS.  

3.3.5 Statistical Analyses 

Statistical analysis such as standard error calculation and mean comparison analysis were 

performed using SigmaPlot version 11.0 (Systat Software, 2007). The graphs were constructed 

using both Windows Excel and SigmaPlot software. The statistical significance was measured at 

95% confidence interval (CI).  
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Table 3.1. Instrument parameters used for speciation of arsenic in soil samples. 
 
Instrument HPLC-ICP-MS ( Perkin Elmer model Elan DRCII) 

HPLC column Ion exchange AS7 with AG7 guard column (Dionex) 

Mobile phase Eluent A:1mM HNO3 (pH~3) 

Eluent B: 50mM HNO3 (pH~1.5) 

As species 

measured 

iAsV, iAsIII, DMAsV and MMAsV 

Gradient elution program  

Time (min) A    B Gradient 

5 (equilibration) 100% 0% 0 

2.5 100% 0% 0 

6.5 0% 100% 1  

 

3.4 Results and Discussion                                                                                                                                                                                                                                      

3.4.1 As Speciation in Rhizosphere Soil Samples 

The total concentrations of acid-digested soil-As were significantly higher in As-

amended plots compared to No-MSMA plots as a result of MSMA application for over 20 years. 

The total As concentrations averaged 21.9 and 6.9 mg kg-1 in MSMA and No-MSMA plots, 

respectively (Figure 3.1). The total-As concentrations did not demonstrate any apparent 

differences among the water treatments for the 1 d and 60 d samples (Figure 3.1); but were 

noticeably higher in the intermittent plots than the continuously-flooded plots for the 120 d 

samples both in MSMA and No-MSMA plots (Figure 3.2).  This trend indicates that more As 

was lost from the bulk soil under continuously flooded compared to the intermittently flooded 

conditions by the end of growing season, which could be due to plant uptake, leaching and/or 

volatilization.  



 

 

27

The total As extraction efficiency by sequential extraction with H3PO4 + NaOH extract 

was approximately around 85% in MSMA flood, 73% in MSMA intermittent and No-MSMA 

flood and 65% in No-MSMA intermittent samples when compared to the total acid-digested As 

(Figure 3.1). Inorganic As, in the form of iAsV was the predominant As species observed in the 

H3PO4 + NaOH extract from each of the air-dried soil samples. In comparison, iAsIII was only 

detected in trace quantities. The soil-sample pretreatment (air drying and grinding) likely 

resulted in the transformation of iAsIII to iAsV, thus in subsequent discussions, the iAsV and iAsIII 

concentrations of bulk-soil samples are summed and presented as inorganic As. The inorganic-

As concentrations were significantly higher in the MSMA soil, with concentrations ranging from 

14.7 to 17.3 mg kg-1 compared to 4.9 to 5.3 mg kg-1 in the No-MSMA soil (Figure 3.1). There 

were no consistent differences in inorganic-As concentration for the continuous-flood versus the 

intermittent-flood treatments. During the growing season, inorganic soil-As concentrations 

increased over time in the MSMA-plots, which is likely due to the conversion of organic As to 

inorganic As by microbial demethylation of MSMA. The inorganic-As concentrations did not 

vary appreciably during the growing season in the No-MSMA plots. Although As had been 

applied only in the form of MSMA to the MSMA plots, a low quantity of MMAsV, accounting 

for 3 to 8% of the total As, was detected. Neither MMAsV nor DMAsV was detected in the No-

MSMA plots (Figure 3.1). The MMAsV concentration gradually decreased over time in the 

MSMA plots during the 2007-season (Figure 3.1).  Most of the 2007-applied MSMA was lost 

within 3 to 4 months after application, but there was no apparent difference in the rates of loss 

between the two water treatments. The corresponding increases in inorganic-As concentration 

suggest that MMAs was demethylated by microbes. Microbial demethylation of As is prominent 

in the environment (Cullen and Reimer, 1989), with studies reporting up to 50% demethylation 
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of MMAsV during a 10 to 70 d incubation period (Dickens and Hiltbold, 1967; Gao and Burau, 

1997). Anaerobic demethylation of MMAsV and DMAsV to reduced As species such as iAsIII and 

MMAsIII has also been reported (Sierra-Alvarez et al., 2006).  
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Figure 3.1. Concentrations of total, inorganic, and organic As species in MSMA (a) and No-
MSMA (b) soil under continuous or intermittent flooding at 1 d after sowing (1 d), 4 weeks after 
flooding (60 d), and 3 weeks before harvest (120 d), in the 2007 experiment. Error bars indicate  
standard error of mean. 

(a) 

(b) 
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Figure 3.2. Concentrations of total acid digested As in rhizosphere soils at 120 d under different 
water management regimes and soil As concentrations. Error bars indicate  standard error of 
mean. 
 

3.4.2 As Speciation in Pore-water Samples 

The average total-As concentrations of the soil pore-water samples ranged from 25.3 µg 

L-1 for continuous flood to 3.6 µg L-1 for intermittent plots (Figure 3.3). For the continuous-flood 

treatment, the total pore-water As concentrations were approximately 7 times higher than with 

the intermittent-flood treatment for both the MSMA and No-MSMA soils.  

Arsenite was the predominant As species detected in pore-water with significantly higher  

concentrations detected in flood than the intermittent plots, with average concentrations of about 

23.2 (±2.1) µg L-1 in MSMA flood to 5.0 (±1.6) in MSMA-intermittent plots and 14.1 (±1.3) µg 

L-1  in No-MSMA flood compared to 2.1 (±0.2) in No-MSMA intermittent (Figure 3.3). Arsenite 

accounted for 76% of the total As detected in the As-flood plots and 97 to 99 % of the total As 

detected with the other treatments. The intermittent flooding resulted in significant decreases in 
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pore-water iAsIII concentrations compared to that of the continuously flooded plots, with up to 78 

and 85 % decrease in the MSMA and No-MSMA plots, respectively. Arsenite is a neutral and 

relatively more soluble As species at pH 7, especially under anaerobic conditions (Masscheleyn 

et al., 1991). It is interesting that the iAsIII concentration was higher in the No-MSMA-flood 

plots than the As-intermittent plots, indicating that water management had a greater impact than 

bulk-soil As concentration on the levels of dissolved iAsIII as well as total-dissolved As. The 

redox measurements taken at 60 d and 120 d sampling time-points indicated that the rice 

rhizosphere in the continuous-flood treatment was more highly reduced, with an average redox 

potential of -250 mv (±23) compared to -145 mv (±25) for the intermittent-flood treatment. At 

lower redox conditions, both increased iron-oxide dissolution and the reduction of iAsIII could 

result in higher soluble As concentrations in pore-water (Masscheleyn et al., 1991; Xu et al., 

2008). Though the bulk soil contained moderate to high concentrations of iAsV, the pore-water 

contained no detectable iAsV except in the As-flood plots, in which case < 4% of the total As 

was present as iAsV. 

 

 

 

 

 

 

 

 
Figure 3.3. Concentrations of various arsenic species in pore-water samples at 120 d samples 
from yr 2008 under different water management regimes and soil As concentrations. Error bars 
indicate  standard error of mean. 
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DMAsV was detected in the pore-water of As-flood plots at concentrations of 

approximately 5 µg L-1 in MSMA flood and around 1.2 µg L-1 in No-MSMA flood plots (Figure 

3.3). MMAsV was not detected in any of the pore-water samples. DMAsV is a considerably more 

soluble species compared to MMAsV and iAsV and is only negligibly adsorbed by iron oxides at 

pH > 7 (Lafferty and Loeppert, 2005). Similar concentrations of iAsIII and DMAsV have been 

observed in pore-water samples in other pot-scale studies (Li et al., 2009a; Xu et al., 2008). The 

presence of DMAsV in No-MSMA plots that did not receive any As-containing products indicate 

that microbial methylation processes were active in these systems, though there is no direct 

evidence from this study that methylation had proceeded to the volatile trimethyl-As species. 

Microbial methylation and volatilization of As is plausible under anoxic conditions (Bright et al., 

1994) with studies reporting As loss up to 8.3% of the total As by volatilization from a As 

contaminated cattle-dip soil over a 5-month incubation (Edvantoro et al., 2004). The higher iAsIII 

concentrations in pore-water samples of the continuously flooded plots might have possibly 

induced microbial methylation of iAsIII to DMAV, since microbial As-methylation is thought to 

be a detoxification process as DMAV and MMAV are less toxic compared to the iAsIII and iAsV 

(Mukhopadhyay et al., 2002).  

3.4.3 As Concentration and Speciation in Root-Plaque Samples 

Root-plaque accumulated a higher proportion of As (based on total dry mass of root), 

with up to 10-times higher concentrations compared to the adjacent bulk soil (Figure 3.4). The 

total root-plaque As concentrations were significantly higher  in the continuously flooded plots 

than in the intermittently flooded plots, for both the MSMA (287 ± 19 mg kg-1 for continuous-

flood and 124 ± 23 mg kg-1 for intermittent-flood treatments) and No-MSMA soils (142 ± 10 mg 

kg-1 for continuous-flood and 70 ± 7 mg kg-1 for intermittent-flood treatments). Interestingly, the 
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total As concentration of the root-plaque from the No-MSMA-flood treatment (142 ± 10 mg kg-

1) was higher than that with the As-intermittent treatment (124 ± 23 mg kg-1), though the bulk-

soil As concentration was significantly higher with the latter treatment. This result indicates the 

substantial impact of water management on As accumulation at the root surface.  

Arsenate was the predominant As species in each of the root-plaque samples and  

accounted for approximately 80% of the total As present on the root-plaques (Figure 3.4). 

Though iAsIII was the predominant As species detected in most pore-water samples (Figure 3.3), 

it seems that processes at the root surface might favor the oxidation of iAsIII to iAsV, since the 

root surface is relatively more highly oxidized compared to the bulk soil. Arsenate 

concentrations were significantly higher in the MSMA compared to the No-MSMA samples and 

in continuously flooded compared to the intermittently flooded samples.  
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Figure 3.4. Concentrations of various As species in root-plaque samples at 120 d samples from 
yr 2008 under different water management regimes and soil As concentrations. Error bars 
indicate standard error of mean. 
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The major form of iron oxide comprising rice-root-plaque is reportedly poorly crystalline 

ferrihydrate, but some lepidocrocite and goethite has also been detected in previous studies 

(Bacha and Hossner, 1977; Taylor et al., 1984). Arsenate strongly bonds with these iron coatings 

and is not immediately bioavailable (Otte et al., 1991), thus root-plaque can reduce As uptake by 

plants (Hossain et al., 2009; Liu et al., 2004a). 

Arsenite accounted for 9 to 23% of the total As in the root-plaque samples (Figure 3.4). 

This proportion contrasts with the As concentrations in the pore-water samples that contained 

mostly iAsIII.  The root-plaque iAsIII concentrations were impacted by water management, with 

significantly higher iAsIII concentrations in the continuously flooded plots compared to the 

saturated plots. This trend was similar to that of the pore-water iAsIII concentrations. The iAsIII: 

iAsV ratios were significantly higher in MSMA flood (0.223± 0.0135) compared to As 

intermittent (0.145 ±0.0141); whereas there was no significant difference between No-MSMA 

flood and No-MSMA intermittent plots. MMAsV was detected in low concentrations but only in 

the MSMA plots; concentrations did not vary appreciably with water treatment. DMAsV was 

detected in root-plaque from only the As-flood plots. MMAsV and iAsIII are each strongly 

adsorbed by iron oxides at the pH values normally observed under flooded-rice culture, i.e., pH 

6-8 (Lafferty and Loeppert, 2005), and cannot be considered as immediately bioavailable for 

plant uptake. On the contrary, DMAsV has been reported to not be strongly adsorbed by goethite 

at pH values above 7 and above pH 8 by ferrihydrite (Lafferty and Loeppert, 2005), thus root-

plaque might not impact the bioavailability of DMAs. Microorganisms in the rhizosphere could 

also impact the release and sequestration of As present on root-plaques, since many 

microorganisms have the potential for reducing or oxidizing As and Fe in the environment 
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(Kocar et al., 2006; Oremland and Stolz, 2003). Also localized methylation and demethylation 

processes are likely to impact As bioavailability.  

3.4.4 Grain As Species Concentration 

The total grain-As concentrations from the MSMA plots were significantly higher than 

the No-MSMA plots (Table 3.2). For all treatments, DMAsV and iAsIII were the only As species 

detected in rice grain. The total grain As, iAsIII and DMAsV concentrations from No-MSMA 

soils were similar to concentrations reported by Pillai et al. (2010) for rice grown in the same 

area with similar treatments.  As expected, the total grain-As and DMAsV concentrations of rice 

grown in MSMA plots in the current study were considerably higher than the concentrations 

from No-MSMA soils from our study and results reported in several market-basket surveys 

(Williams et al., 2007a; Zavala and Duxbury, 2008); but iAsIII concentrations were similar to the 

concentrations from No-MSMA plots and previously reported values for rice samples originating 

from the South Central USA (Zavala et al., 2008). The As concentrations from No-MSMA plots 

were in similar range to the previously reported concentrations in rice grains originating from the 

South Central USA. DMAsV was the predominant grain-As species from the MSMA plots and 

accounted for 70 to 80% of TFA-extracted As. In No-MSMA plots, DMAsV and iAsIII were 

present at similar concentrations in the rice grain. Thus inorganic:organic ratios were much lower 

in MSMA plots (ratios ranging from 0.2 to 0.3) compared to the No-MSMA plots (0.7 to 1.8). 

Previous studies have reported higher DMAsV concentrations than inorganic-As concentrations 

in grain samples originating from US rice fields (Zavala et al., 2008), compared to samples 

originating from Europe and Asia that generally contained higher proportions of inorganic As 

(Meharg et al., 2009; Williams et al., 2007a). For example Meharg et al., (2009) compared 

relationships between total grain As and DMA concentrations on a region-specific basis and 
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reported that slopes of DMA against total As were high for US (0.777) compared to all other 

countries (0.137 - 0.199). The reason for higher organic:inorganic As ratios in rice grown in the 

South-Central USA is still unknown, though it might be at least partially attributable to 

differences in soil methyl-arsenic concentrations attributable to the microbial methylation of soil 

As.  The organic As species are considered relatively less toxic compared to the inorganic As 

species. 

The intermittent-flood treatment compared to the continuous-flood treatment lowered 

total grain-As concentrations by 25 to 30 % in the MSMA plots and 30 to 45 % in the No-

MSMA plots. This decrease was attributable primarily to the lower grain-DMAsV concentrations 

with the intermittently flooded plots.  

 

Table 3.2. Total As and As species concentrations (µg kg-1) in rice grains grown under different  
water management regimes and soil As concentrations. 
 

 Wells-2007 Cocodrie-2008 

Total AsIII DMAsV Total AsIII DMAsV 

MSMA flood 
1065a 

(± 38.9) 

172a 

(± 11.9) 

724a 

(± 50.5) 

950a 

(± 29.4) 

161a 

(± 8.9) 

654a 

(± 29.1) 

MSMA 
intermittent 

801b 

(± 49.6) 

151ab 

(± 12.0) 

488b 

(± 28.9) 

660b 

(± 30.8) 

152ab 

(± 14.8) 

416b 

(± 17.2) 

No-MSMA 
flood 

304c 

(± 23.1) 

138b 

(± 18.4) 

154c 

(± 21.6) 

315c 

(± 16.8) 

131b 

(± 6.7) 

167c 

(± 15.4) 

No-MSMA  
intermittent 

207d  

(± 20.8) 

107b 

(± 20.6) 

118d 

(±12.3 ) 

173d 

(± 21.2) 

89d 

(± 9.9) 

97d 

(± 16.3) 

 
Note : Different letters (within a column) indicate means are significantly different. Values in 
parenthesis are standard error of mean. 
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The grain-DMAsV concentrations decreased by 30 to 50%, whereas grain iAsIII 

concentrations were decreased by only 5 to 30%. As a result, the inorganic:organic grain-As 

ratios were higher with the continuous-flood treatments compared to the intermittent-flood 

treatments. Pot-scale studies have indicated similar trends of decreased total grain-As 

concentration when rice was grown aerobically compared to continuously flooded conditions (Li 

et al., 2009a; Xu et al., 2008).  

3.4.5 Relationships between Rhizosphere As and Grain As Concentrations, and Implications  

for Management 

The results of the current study indicate that  iAsIII accounted approximately for 68 to 99 

% of the total dissolved As in the pore-water samples and DMAsV was only detected in MSMA-

flood at about 14 % of total As and 7% of total As in the No-MSMA flood plots.  While iAsIII 

accounted for only 14 to 56 % of the grain-As, DMAsV accumulated at higher concentrations in 

grain, accounting for approximately 78% of the grain-As in MSMA-amended plots and 52 % of 

the grain-As in No-MSMA plots. This phenomenon suggests that inorganic iAsIII was not as 

readily translocated to rice grains even if we assume that pore-water iAsIII was taken up; whereas 

it is possible that some of the grain DMAsV was either taken up from the rhizosphere soil and 

then translocated to the gains or produced as a result of within plant methylation of iAsIII.  Both 

iAsV and MMAsV were present at negligible quantities in pore-water samples.  This is likely the 

reason that the rice plants did not accumulate iAsV and MMAsV in the grains. A recent study has 

shown that rice plants can absorb both MMAsV and DMAsV through the aquaporin channel (Li et 

al., 2009b), and several studies have reported that DMAs was taken up by rice plants at 

considerably high concentrations (Huang et al., 2008; Marin et al., 1992). Both DMAsV and 

DMAIII species are more soluble and are not strongly adsorbed to iron oxides, whereas, iAsV, 
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iAsIII and MMAsV can strongly bind to iron oxides (Lafferty and Loeppert, 2005). Thus, even if 

we assume that root-plaque could reduce the immediate bioavailability of iAsV, iAsIII and 

MMAsV, it may not impact the bioavailability of DMAsV. Arsenic methylation within rice plants 

cannot be completely ruled out; however, there is no experimental data yet to prove it (Meharg 

and Hartley-Whitaker, 2002).  In any case, it is necessary to minimize soluble As concentrations 

in the rhizosphere in order to reduce grain As concentrations.  

3.5 Conclusions 

Intermittent flooding seems to be a viable management option to reduce grain As 

concentrations when rice is grown on soils with moderate to high As concentrations. The 

intermittent flooding treatment significantly reduced pore-water As-concentrations by 80 to 90% 

and grain As concentrations by 25 to 45% compared to the continuously flooded treatments. We 

did not detect DMAsV in either pore-water or in root-plaque samples from the intermittently 

flooded plots, in both MSMA and No-MSMA plots. DMAsV concentrations in grains were 

significantly reduced in intermittently flooded plots compared to the continuously flooded plots. 

As concentrations were significantly higher in root-plaque compared to the rhizosphere soil, and 

may be impacting the As availability to the plants.  
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CHAPTER IV 

RHIZOPSHERE MICROBIAL POPULATIONS AND ARSENIC CONCENTRATIONS 

4.1 Synopsis 

Rice cultivated on As-contaminated soils may accumulate high concentrations of As in 

grains, mostly as a result of the continuous flooding practices commonly used for rice 

cultivation. Studies have suggested that the use of intermittent flooding might reduce soluble As 

concentrations in the rice rhizosphere; however, these practices will also likely alter soil 

microbial populations that may impact As chemistry through oxidation/reduction and 

methylation/demethylation processes. A field-scale study was conducted to analyze As 

concentrations and microbial populations in the rice rhizosphere, in response to continuous and 

intermittent flooding practices under two levels of soil As. Rhizosphere soil and pore-water As-

concentrations were quantified using an ICP-MS, while microbial populations in the rice 

rhizosphere soil were determined using fatty acid methyl ester analysis (FAME), community 

qPCR and 16S rRNA gene pyrotag sequencing.  Average pore-water As-concentrations ranged 

from 17 µg L-1 in intermittently flooded plots to 44 µg L-1 in the continuously flooded plots, 

representing a decrease of  approximately 60 to 64%  with intermittent flooding. Multivariate 

FAME analysis indicated that microbial communities changed temporally among the treatments.  

Community qPCR results demonstrated that the relative abundance of Bacteria increased over 

the course of the growing season, while archaeal and fungal gene abundances decreased. 

Although qPCR results showed little variation in bacterial relative abundance among the 

treatments, the 16S rRNA sequence libraries demonstrated that bacterial community structure 

and membership were significantly different among the treatments. Both qPCR and 16S rRNA 
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sequencing indicated that relative abundance of iron-reducing bacteria and sulfate-reducing 

bacteria were significantly higher under the continuous flooding relative to the intermittent 

flooding treatment, implying active iron reduction and possibly As release from the iron oxides. 

These results indicate that rhizosphere microbial populations were different in intermittently 

flooded compared to the continuously flooded plots, which may have impacted decreased 

concentrations of pore-water arsenic in the intermittently flooded plots.   

4.2 Introduction 

Arsenic is a naturally occurring metalloid that is toxic to most forms of life. Natural As-

contamination occurs throughout the world, resulting in more than 50 million people being 

exposed to high As concentrations through drinking water (BGS and DPHE, 2001; Duxbury et 

al., 2003). Additionally, As exposure through the consumption of As-rich rice is reported to be 

an additional major exposure route for a sizeable population in South-East Asia (Mondal and 

Polya, 2008).  This has caused increasing concern regarding the cultivation of rice on As-

contaminated soils with several recent studies reporting high As concentrations in rice grain 

originating from different parts of the world, including the rice grown in the South-Central USA 

(Meharg et al., 2009; Zavala et al., 2008).  

In 2008, a total of 1.19 million ha of rice was grown in the USA with more than 80% of 

that total acreage being cultivated in South-Central states of Arkansas (45.5%), Louisiana 

(16.3%), Mississippi (7.8%), Missouri (6.8%) and Texas (5.4%) (USDA-ERS, 2009). Most of 

the rice fields in this region were historically used for cotton production and received repeated 

applications of arsenic-based defoliants and pesticides such as sodium hydroxy-methylarsinate, 

commonly known as monosodium methyl arsenate (MSMA) (Woolson, 1977). Although As-

based pesticides are no longer used in cotton or rice production, soils with a history of being 
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amended with arsenical-pesticides often contain considerable amounts of residual As (Gilmour 

and Wells, 1980).  

Arsenic can exist as a variety of different chemical species under typical environmental 

conditions, and transformations between these chemical species are largely mediated by 

microbial processes.  The most commonly encountered inorganic species are arsenate (iAsV) and 

arsenite (iAsIII), and the most commonly encountered organic species are monomethylarsonic 

acid (MMAsV) and dimethylarsinic acid (DMAsV), which are primarily the products of microbial 

methylation (Cullen and Reimer, 1989). The species iAsIII and DMAV are more soluble and 

bioavailable than other species (e.g., (iAsV), and  thus, are more commonly found in rice 

rhizosphere, pore-water and rice grain (Xu et al., 2008). Transformations between iAsV and 

iAsIII, and between organic and inorganic As predominantly occur due to microbially mediated 

As oxidation, reduction, methylation, and demethylation processes (Oremland and Stolz, 2003). 

These transformations can result from a detoxification mechanism  (Cullen and Reimer, 1989; 

Jackson et al., 2005), or they can be linked to cellular metabolism and growth (Oremland and 

Stolz, 2003). Other microorganisms including iron- and sulfate-reducing bacteria can also impact 

As solubility and adsorption through the reductive dissolution of minerals (e.g., iron oxides) that 

adsorb As (Horneman et al., 2004).  

Rice tends to accumulate higher amounts of As relative to other cereals (Williams et al., 

2007b), largely due to the continuous flooding practices commonly used in rice production.  

Recent studies have reported that growing rice under more aerobic (non-flooded or intermittently 

flooded) conditions decreases As concentrations in both the rice grain and rhizosphere (Li et al., 

2009a; Xu et al., 2008). In one of our other field experiments, a significant decrease in soluble-
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As concentrations in the rice rhizosphere and total grain-As concentrations was observed when 

rice was grown using intermittently flooded as compared to the continuously flooded conditions.  

 While intermittent flooding appears to have potential for reducing the accumulation of As 

in rice grain, there has been no research to date specifically investigating the impacts of 

intermittent flooding on rhizosphere microbial communities in soil with a long-term history of 

exposure to arsenic-based pesticides. Both As concentrations and redox conditions can impact 

microbial populations (Edvantoro et al., 2003; Zhou et al., 2002), and, as a result, microbial 

populations are likely to be very different in intermittently flooded than in continuously flooded 

soil. Studies are needed to understand the impacts of different water management practices on 

soil microbial communities in order to ultimately understand the roles of the microorganisms in 

controlling the As biogeochemistry and bioavailability.  In order to address these issues, we 

conducted a field experiment investigating changes in rice rhizosphere As concentrations and 

microbial communities, over a growing season, under continuous or intermittent flooding and 

either amended or not amended with MSMA.   

4.3 Material and Methods 

4.3.1 Field Experiment 

This field experiment was conducted in the year 2007 at Dale Bumpers National Rice 

Research Center, US Department of Agriculture, Agriculture Research Service, Stuttgart, AR, 

USA.  One of the research plots (approximately 1ha area) has had continuous application of 

monosodium methane-arsonate (MSMA), in alternate years for more than twenty years in order 

to screen for rice varieties resistant to straighthead disorder (linked to high soil-As 

concentrations) (Yan et al., 2005). The MSMA was surface applied to the soil before planting, at 

the rate of 6.7 kg ha-1yr-1 (equivalent to 3.1 kg As ha-1yr-1) and these plots will be referred as 
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‘MSMA’ hereafter.  The adjacent native soil (referred as ‘No MSMA’ hereafter) had not 

received any As-containing products for at least the last 20 years. The two water treatments 

included intermittent and continuous flooding, which were superimposed on MSMA and No-

MSMA treatments. Under intermittent flooding, the plots were flooded, allowed to dry until 

surface cracking initiated, and then were re-flooded. The treatment combinations used in this 

study were (1) MSMA flood (2) MSMA intermittent (3) No-MSMA flood and (4) No-MSMA 

intermittent. The treatment plots were distributed using a split-split plot design and four 

replicates within each treatment were arranged in completely randomized design.  The seeds 

were sown in the middle of April and the first flood was introduced four weeks after sowing, 

when the plants were about 30 cm tall. All of the other management practices were followed as 

outlined by Yan et al., (2005).  

4.3.2 Sampling 

The rhizosphere soil samples were collected at planting (1 d after sowing), 4 weeks after 

first flooding (60 d after sowing) and 3 months after first flooding (120 d after sowing) from 

three of the four replicates. At 1 d, six soil cores per plot, from a depth of 6 cm, were collected 

randomly from the experimental plots and composited into one sample per plot. At 60 d and 120 

d time-points three rice plants per plot were collected along with the adhering bulk soil.  Plants 

were shaken to remove loose soil and the remaining non rhizosphere soil was removed manually.  

This left only a few millimeters of soil around the roots, which was then collected and 

composited into one rhizosphere sample per plot. The rhizosphere samples were then split into 

two subsamples, one for chemical analysis and the other for microbial analysis. The samples for 

chemical analysis were transported from the field to the lab at 4OC, and the samples for microbial 

analysis were immediately frozen on dry ice and then stored at -80OC until further analysis. The 
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samples for chemical analysis were split into two more subsamples, one for As analysis and the 

other for fatty-acid-methyl ester (FAME) analysis. The subsample for As analysis was air-dried 

and ground to pass through a 0.2 mm sieve. The total soil As concentrations were determined by 

inductively-coupled-plasma mass-spectrometry (ICP-MS), model DRC-ELAN II (Perkin Elmer, 

Waltham, MA, USA) after following a open digestion method with HNO3/H2O2 (US-EPA, 

2007).  

 Rhizosphere pore-water samples were collected at 60 d and 120 d (the plots were not yet 

submerged at 1 d). Bulk soil samples from 0-6 cm depth were collected from the rhizosphere 

area (between two adjacent plants) using a 2.5 cm diameter corer with brass insert rings. The 

insert rings with soil samples were capped with polypropylene end caps and stored on ice during 

transport to the lab. The core samples were then vacuum filtered at a negative pressure of 138 

kPa for 20 min to extract pore-water samples, which were then acidified to pH 3 with 100 mM 

HNO3, preserved at 4oC, and subsequently used for total dissolved As analysis. The As 

concentrations in soil and pore-water samples were determined using an ICP-MS instrument 

model DRC-ELAN II (Perkin Elmer, Waltham, MA, USA).  

Redox potential was measured in the field at each sampling time using a platinum 

electrode inserted into the soil and a Ag/AgCl reference electrode placed in the flood water. The 

methodology for measuring redox potential was followed as outlined by Fiedler et al. (2007). 

4.3.3 Microbial FAME Analysis 

The subsamples for FAME analysis were air-dried for 3 to 6 hr to decrease water content 

and then extracted for FAMEs following the procedure outlined by Olexa et al. (2000). Briefly, 3 

g of soil from each of the 3 sampling points were extracted using a FAME procedure which 

involved cell lysis, initial saponifcation and methylation of fatty acids and subsequent extraction. 
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Extracted samples were sent to the University of Delaware Plant and Soil Sciences Department 

for analysis using an Agilent model 6890 gas chromatograph with flame ionization detector 

(Agilent, Wilmington, DE).  Two micro liters of each sample were injected into a Hewlett 

Packard (Agilent) Ultra 2 (Cross linked 5% Phenyl methyl silicone) column 25 m x 0.20 mm x 

0.33 µm with a 100:1 split ratio and flow rate of 0.6 ml/min using hydrogen as the carrier gas.  

The injection temperature was 250°C, and the detection temperature was 300°C.  The initial 

oven temperature was 170°C and ramped at 5°C/min to a final temperature of 300°C, for a total 

run time of 12.0 min.  Peaks were named using Sherlock Eukary program (MIDI, Inc., Newark, 

DE).   

The marker FAMEs included 18:1 ω9c, 18:2 ω6c and 18:3 ω6c for Fungi; 15:0 iso, 15:0 

anteiso, 17:0 iso, 17:0 anteiso for Gram-positive bacteria; 15:0 2OH, 15:0 3OH, 18:0 2OH and 

20:0 3OH for Gram-negative bacteria (Olexa et al., 2000).   

4.3.4  DNA Extraction 

Microbial community DNA from the rhizosphere soil was extracted using MO BIO 

PowerMax DNA extraction kits (MO BIO Laboratories Inc., Carlsbad, CA, USA). The 

manufacturer’s protocol was modified to include a lysozyme pre-incubation step in order to 

enhance Gram-positive bacterial DNA yields. Approximately 10 g of soil was weighed into each 

tube. A 10-µl aliquot of lysozyme solution (1 mg ml-1 final concentration) was then added and 

the tubes were incubated in a water bath for 1 hr at 37OC with occasional shaking. The 

manufacturer’s protocol was continued from this step onward. After the final elution step, the 

DNA samples were concentrated by ethanol precipitation. The DNA samples were then purified 

using illustra MicroSpin™ G-25 Columns (GE Healthcare Biosciences, Pittsburgh, PA, USA) 

and stored at -20OC for further analysis. 
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4.3.5 Gene Copy Number Quantification Using qPCR Targeting 

The quantitative PCR (qPCR) assays targeting total Bacteria, Archaea, Fungi, iron-

reducing bacteria (FeRB) and sulfate-reducing bacteria (SRB) were performed using the group 

specific primer sets and qPCR conditions outlined in Table 4.1. The FeRB were determined by 

targeting Geobacteracaea and Shewanella spp. and SRB by targeting the dsrA gene.  The assays 

were performed in a 10-µL reaction mix containing 4.5 µl SYBR green real master mix (5Prime, 

Inc., Gaithersburg, MD, USA), 0.5 µl of each primer (concentration of 10 µM for Bacteria, 

Fungi and Archaea, 200 nM for dsrA and mcrA and 300 nM for Geobacteracaea and Shewanella 

spp.), 1 µl template (2.5 ng), 1 µl bovine serum albumin (10 mg ml-1) and 2.5 µl molecular grade 

water. Each analysis run included a set of standards, controls, blank and samples (all including 

three analytical replicates) on a 96 well plate. The PCR reactions were conducted at the 

temperatures listed in Table 4.1 with 40 amplification cycles. Melting curve analysis of the PCR 

products was performed after each assay to confirm PCR amplification quality. The qPCR was 

performed using an Eppendorf Mastercycler® ep realplex thermal cycler (Eppendorf, Hamburg, 

Germany). Standards for qPCR were generated by PCR-amplifying each gene of interest from 

the genomic DNA of pure cultures using the primers and details listed in Table 4.1. The PCR 

products were confirmed on an agarose gel, and then cloned into a pGEM®-T Easy vector 

following the manufacturer’s instructions (Promega, Madison, WI, USA). Positive clones were 

isolated and extracted for plasmid DNA using a Wizard SV Miniprep kit (Promega, Madison, 

WI, USA). The plasmid DNA concentrations ranging from 5.0 x 10-3 to 5.0 x 10-7 ng µl-1 DNA 

were used to generate the qPCR standard curves.  Relative abundance was estimated by 

calculating ratios of gene copy numbers for each microbial population to the total community 

gene copy numbers (sum of gene copy numbers for Bacteria, Archaea and Fungi).



 

 

Table 4.1. Conditions and primer sets used for quantitative PCR assays for enumerating the relative abundance of selected microbial  
populations. 
 
Target group Primers Annealing temperature Standard (source) Reference 

Total Bacteria 

Eub338- -5’-ACT CCT ACG  
GGA GGC AGC AG -3’ 
Eub518 --5’-ATT ACC GCG 
GCT GCT GG-3’ 

53 oC 
Escherichia coli 

DH10B(pUC19) (Carlos 
Gonzales, Texas A&M Univ.) 

(Fierer et al., 
2005) 

Total Fungi 

ITS1f- 5’-CTT GGT CAT  
TTA GAG GAA GTA A-3’ 
5.8s—5’-CGC TGC GTT 
CTT CAT CG-3’ 

61 oC 
Neurospora crassa (Heather 
Wilkinson, Texas A&M Univ.) 

(Boyle et al., 
2008) 

Total Archaea 

Arc85f--5′-ACT GCT CAG 
TAA CAC GTG GA-3′ 
Arc313r--5′-ATG TCT CAG 
AAT CCA TCT CC-3′ 

53 oC 
Methanosarcina acetivorans 

C2A (William Metcalf, Univ. of 
Illinois) 

(Lima and Sleep, 
2007) 

Geobacteracea 

spp. 

Geo564F -5’-AAG CGT TGT 
TCG GAW TTA T-3’ 
Geo840R -5’-GGC ACT 
GCA GG GGT CAA T A-3’ 

57 oC 
Geobacter metallireducans 
(Jizhong Zhou, Univ. of 
Oklahoma) 

(Cummings et al., 
2003) 

Shewanellae 

spp. 

She 120F – 5’-GCC TAG 
GGA TCT GCC CAG TCG-
3’ 
She 220R – 5’-CTA GGT 
TCA TCC AAT CGC G-3’ 

60 oC 
Shewanella oneidensis MR-1 
(Jizhong Zhou, Univ. of 
Oklahoma) 

(Himmelheber et 
al., 2009) 

dsrA gene 

dsr-1F--5-ACS CAC TGG 
AAG CAC G-3 
dsr-500r--5-CGG TGM AGY 
TCR TCC TG-3 
       

58 oC 
Desulfovibrio vulgaris 

Hildenborough (Jizhong Zhou, 
Univ. of Oklahoma) 

(Wilms et al., 
2007) 
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4.3.6 16S rRNA Gene Sequencing 

Equal quantities of community DNA from all 3 field replicates for each treatment at 120 

d were composited into one sample per treatment. The composited DNA samples were then 

adjusted to a concentration of approximately 100 ng µl-1 and submitted to the Research and 

Testing Laboratory (Lubbock, TX, USA) for tag-pyrosequencing. Samples were amplified with 

modified versions of primers 530F and primer 1100R (Acosta-Martinez et al., 2008), and the 

amplicons were sequenced using Roche 454 Titanium chemistry.   

4.3.7 Statistical and Sequence Analyses 

Nonmetric-multidimensional scaling (NMDS) analysis of FAMEs was performed using 

the PC-ORD software version 5.0 (McCune and Mefford, 2006). SigmaPlot version 11.0 (Systat 

Software, 2007) was used for calculating Fisher mean difference and standard errors for the 

experimental data, and also for creating graphs.  

           The 16S rRNA gene sequence data was analyzed using the pyrosequencing pipeline tools 

available from the Ribosomal Database Project (RDP) (Cole et al., 2009) and MOTHUR version 

1.6.1 (Schloss et al., 2009). The 16S rRNA sequences were first trimmed for primers and 

chimeras, and then sequences with < 200 bases were removed from the data sets. The total 

number of sequences in each library ranged from 1200 to 1650 among the treatments. In order to 

minimize any bias as a result of this divergence in the total number of sequences, we randomly 

removed sequences from each sequence library to retain a total of 1200 sequences for each 

treatment. The individual sequence files were combined into one single file using the BioEdit 

v7.0.5 software (Hall, 1999) and then were submitted to the RDP aligner tool for multiple 

sequence alignment. Pairwise distances between the aligned sequences (distance matrix) were 
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calculated and used to assign sequences to operational taxonomic units (OTUs) (cluster 

analysis). Both distance matrix and cluster analyses were performed using the dist and cluster 

analyses tools in MOTHUR using default settings. The OTUs were defined at 97% similarity 

cutoff for all the analyses. Both α and β-diversity measures were estimated for the data sets using 

the summary.single and summary.shared tools in MOTHUR. The α-diversity measures included 

Chao1 richness, Shannon and Simpson measures and the β- diversity measures included the Yue 

and Clayton theta and Jaccard similarity indices. Jaccard similarity values demonstrate the 

similarity in community membership, while Yue and Clayton theta describes community 

similarity as a function both composition and relative abundance.   

  A dendogram was constructed using the MEGA 4 software (Tamura et al., 2007) after 

running the Bray-Curtis community structure analysis with MOTHUR. A phylip-formatted 

distance matrix file was constructed using the dist function in MOTHUR and used to create a 

neighbor-joining tree with neighbor tool available with the PHYLIP 3.68 package (Felsenstein, 

2005). The PHYLIP generated tree was then used as an input file to run the parsimony  p test 

(Martin, 2002) using MOTHUR. Parsimony analysis is commonly used to test whether two or 

more communities harbor greater differences in phylogenetic structure than would be expected 

by chance; and a p value of ≤ 0.001 is considered to be statistically significant (Martin, 2002). 

Relative abundance of taxonomic phyla and families among the treatment samples were 

determined with RDP Library Compare.  
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4.4 Results  

4.4.1 Rhizosphere Pore-water and Soil As Concentrations  

The total As-concentrations from the rhizosphere soil and pore-water samples from 

different treatments were analyzed at 3 different time-points during the rice growing season. The 

soil-As concentrations were significantly higher in MSMA plots with a growing season average 

(mean) of 21.1 mg kg-1 (±2.0) compared to 6.4 mg kg-1 (±0.9) in No-MSMA plots (Figure 4.1). 

There were no apparent differences in soil As-concentrations between two water management 

systems, nor were differences found among the sampling times. The pore-water As was 

measured only at 60 d and 120 d as the plots were not yet submerged at 1 d. At 60 d, the pore-

water As concentrations were significantly lower in No-MSMA plots with an average of 20.2 µg 

L-1 (±2.7) compared to 28.8 µg L-1 (±3.7) in MSMA plots.  Additionally, intermittently-flooded 

plots had lower pore-water As concentrations than continuously flooded plots with average 

values of 14.1 µg L-1 (±2.4) compared to 34.9 µg L-1 (±4.0), respectively. Similar trends were 

observed at 120 d with significantly lower pore-water As-concentrations observed in No-MSMA 

plots (28.5 ±2.7 µg L-1) than in  MSMA plots (44.3 ± 4.4 µg L-1); and also in intermittently 

flooded (19.2 ± 2.6 µg L-1)  plots than in continuously-flooded plots (53.6 ± 4.6 µg L-1). The 

pore-water As-concentrations also varied temporally with considerably higher concentrations 

observed at 120 d compared to 60 d in all the treatment plots. It is also interesting to note that 

pore-water As-concentrations were higher in No-MSMA flood than the MSMA intermittent, 

even though soil As-concentrations were 4 to 5 folds higher in the MSMA -intermittent plots 

(Figure 4.1). The rhizosphere of continuously flooded plots was more reduced with a growing 

season redox-potential average of -216 mv (±16.8), compared to -143 mv (±9.6) in the 
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intermittently flooded plots; and the plots were more reduced at 120 d compared to the 60 d 

sampling time.  
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Figure 4.1. Total soil-As and pore-water As concentrations, and redox measurements in 
rhizosphere soil under different water management and As concentration treatments at 1, 60, and 
120 d after sowing. The pore-water samples and redox measurements were taken only at 60 d 
and 120 d, as the plots were not yet flooded at 1 d. Error bars represent standard error of mean. 
 

 

4.4.2 Soil FAME Analysis  

A nonmetric multidimensional-scaling (NMDS) plot for FAMEs extracted from 

rhizosphere soil is presented in Figure 4.2. The microbial communities in the experimental plots 

varied temporally and also among the treatments. At 1 d, the samples grouped by MSMA and 

No-MSMA, but not by water treatments (water treatments were not yet imposed). At 60 d, the 
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samples separated both by As and water treatments; similarly at 120 d time-point, the samples 

separated by water treatments to a greater degree and also to some extent by the As treatments. 

Further separation of the samples occurred at 120 d among the treatments, compared to 1 d and 

60 d time-points.  

 

 
Figure 4.2. Nonmetric multidimensional-scaling of FAMEs from rice rhizosphere under different 
arsenic and flooding treatments at 1, 60, and 120 d after sowing. Error bars represent standard 
error of mean. 

 

The relative abundance of Fungi and Bacteria were calculated by comparing marker 

FAMEs specific to Fungi with those specific to Gram-positive bacteria. No marker FAMEs 

specific to Gram-negative bacteria were detected. The results indicated that the Fungi:Bacteria 

ratios at 1 d time-point did not vary among the treatments. At the 60 d time-point, however, the 

ratios were significantly greater in the intermittent plots than the flooded (Figure 4.3). Similarly 
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at 120 d time-point, the ratios were significantly higher in intermittent than the flooded plots, but 

they did not differ with As treatment.  
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Figure 4.3. Relative abundance of Fungi and Bacteria in the rhizosphere soil under different 
water management and As concentration treatments at three time points, as estimated by marker 
FAME ratios. The values on y-axis represents the marker FAME ratios for Fungi:Bacteria. Error 
bars represent ± standard error of mean. 

 

4.4.3 qPCR Assays for Relative Abundance of Microbial Populations  

The relative abundances of Bacteria, Archaea and Fungi to the total microbial-

community (sum of gene copy numbers for Bacteria, Archaea and Fungi) are presented in 

Figure 4.4. At 1 d, the relative abundance of bacterial populations was higher than Archaea and 

Fungi in all treatment plots. At 60 d the relative abundance of Bacteria decreased slightly 
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compared to 1 d which correlated with an increased relative abundance of Archaea in most 

treatments. Fungal populations also decreased in most treatments compared to the 1 d time-point. 

Relative abundance of Bacteria and Archaea were significantly higher than Fungi in most 

treatments except for the MSMA flood treatment.  Archaeal abundance seemed to be slightly 

higher in flood compared to intermittent with No-MSMA plots, but there was no apparent 

difference among the water treatments within the MSMA plots or between the MSMA 

treatments. Fungal abundance was significantly higher in intermittent than the flood with No-

MSMA plots and vice versa with MSMA plots. Bacterial abundance did not demonstrate any 

apparent difference among the treatments. At 120 d, Bacteria predominated in all treatments, 

with relative abundances ranging from 63% in the MSMA-flood plots to 75% in the MSMA-

intermittent plots. Archaeal relative abundance was significantly higher in flood compared to 

intermittent plots with MSMA treatment, but not with No-MSMA treatment; whereas the 

bacterial and fungal relative abundance demonstrated no significant difference among the 

treatments.  

The abundances of FeRB and SRB, as a proportion of the total microbial community 

(sum of gene copy number for Bacteria, Fungi and Archaea), are presented in Figure 4.5. At 1 d, 

both FeRB and SRB were present at relatively low levels with FeRB comprising less than 5% of 

the total community and SRB less than 2% in most treatments. Relative abundance of FeRB was 

slightly higher in the No-MSMA plots compared to the MSMA-amended plots, but there was no 

difference in SRB abundance among the treatments. At 60 d, the relative abundance of FeRB 

increased to 10 to 20% of the total community, with slight differences among the treatments. 
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Figure 4.4. Relative abundance of Archaea, Fungi and Bacteria, determined using qPCR assays, 
in rice rhizosphere under different arsenic and flooding treatments at 1, 60, and 120 d after 
sowing. The values on y-axis represent the abundance of Bacteria or Archaea or Fungi to total 
gene copy numbers of Bacteria + Archaea + Fungi. Error bars represent standard error of mean. 
 

Relative abundance of FeRB was slightly different among the treatments, but there was 

no consistent difference among the treatments. Relative abundance of SRB also increased 

slightly at 60 d, relative to the 1 d time-point, comprising approximately 3 to 7% of the total 

community; but there were no apparent differences among the treatments. At 120 d, the FeRB 

relative abundance increased to around 16 to 26% in the flooded plots and 5 to 10% in the 

intermittent plots.  The FeRB were found to be significantly higher in continuously flooded plots 

with an average relative abundance of 21 % compared to about 7 % with the intermittent plots. 

The relative abundance of FeRB was slightly higher in the MSMA-amended plots compared to 

the No-MSMA plots. Relative abundance of SRB was also significantly higher in continuously 

flooded plots compared to intermittent plots.  
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Figure 4.5. Relative abundance of iron-reducing bacteria (FeRB) and sulfate-reducing bacteria 
(SRB) in rice rhizosphere soil under different arsenic and flooding treatments at 1, 60, and 120 d 
after sowing. The values on y-axis represent the abundance of FeRB or SRB to total gene copy 
numbers of Bacteria + Archaea + Fungi. Error bars represent standard error of mean. 
 

4.4.4   16S rRNA Sequence Analyses 

The bacterial communities in the rhizosphere soil were evaluated by obtaining over 1200 

partial 16S rRNA gene sequences at the 120 d time-point (Table 4.2). There were no discernable 

differences among the treatments based upon the number of OTUs, Chao1 richness estimates, or 

Shannon or Simpson’s diversity indices. However, parsimony analysis and shared OTU (β–

diversity measures) analysis for the pairwise comparisons revealed treatment differences with 

respect to community structure and membership (Table 4.3). The parsimony analysis indicated 

that the communities were significantly different from each other with p values < 0.001 observed 

for each of the comparisons (Table 4.3). The shared OTUs observed for each pair indicated that 
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MSMA flood and MSMA-intermittent plots shared the greatest amount of OTUs, while MSMA 

flood and no-MSMA intermittent shared the least amount of OTUs (Table 4.3). A similar trend 

was also observed among the Jaccard and Yue and Clayton theta indices, with the highest values 

for MSMA flood and MSMA intermittent (7 to 8% of the total community membership similar 

among the two treatments) and lowest for the MSMA flood and No-MSMA intermittent pair 

(<1% of total community membership similar between the two treatments). These results 

indicate that both MSMA and water management treatments impacted the bacterial communities 

and that community memberships were significantly different among the treatments.  Similarly 

the dendogram (Figure 4.6a) based on Bray-Curtis values also implied that both redox and As 

concentrations impacted the bacterial communities. As concentration appeared to be the major 

determinant of bacterial community composition with the communities grouping primarily by As 

concentration instead of water treatment. Taxonomic relationships among the treatment 

communities were estimated by submitting the 16S sequence libraries to RDP lib compare and 

classifier tools. Proteobacteria was the predominant phylum detected in most treatments, 

ranging from 29% in the MSMA-flood treatment to 24 % in the No-MSMA-intermittent 

treatment (Figure 4.6b). Other dominant phyla included Chloroflexi (20 to 34 %), Acidobacteria 

(5 to 13 %), Bacteroidetes (5 to 9 %) and Firmicutes (3 to 5 %). With respect to treatment 

differences, Proteobacteria represented a significantly higher proportion of bacteria detected in 

the MSMA than the No-MSMA plots under both flooding treatments (Figure 4.7a) In contrast, 

the fraction of Proteobacteria was significantly lower in the intermittently flooded treatments 

than the continuously flooded treatments, both with and without added As. (Figure 4.7b). Other 

significantly different phyla among the treatments were Acidobacteria and Firmicutes, both 

representing lower proportions of sequences in the intermittently flooded than in the 
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continuously flooded plots. The Chloroflexi were higher in the MSMA intermittently flooded 

than the MSMA-flood plots but were lower in No-MSMA intermittently flooded than the No-

MSMA flood plots (Figure 4.7a). The fraction of sequences characterized as Acidobacteria was 

significantly higher in the MSMA amended than the No-MSMA, while Chloroflexi sequences 

were less abundant in MSMA than in the No-MSMA plots (Figure 4.7b). Differences in 

sequence numbers were analyzed for major taxonomic families among the flood and intermittent, 

and MSMA and No-MSMA, indicated that the Geobacteraceae and Cystobacteraceae families, 

which include many FeRB, were found to be lower in the intermittent than the flood plots, but 

the differences were only significant for Geobacteraceae in MSMA intermittent v. MSMA flood 

and for Cystobacteraceae in MSMA flood v. No-MSMA flood plots (Figures 4.8 and 4.9).  

 
Table 4.2. Diversity and richness estimates for bacterial communities in rice rhizosphere (120 
days after planting) under different arsenic and flooding treatments.    
 

  

Total No. of 

Sequences 

No. of 

OTUs* 

Chao1 

richness 

Shannon 

 

Simpson 

(1/D) 

MSMA flood 
1200 811 

1789 

(±257)† 

6.51 

(±0.05) 

811 

(±188) 

MSMA 
intermittent 

1200 862 

2316 

(±435) 

6.60 

(±0.05) 

1023 

(±302) 

No- MSMA 
flood 

1200 819 

2026 

(± 344) 

6.51 

(±0.05) 

741 

(±214) 

No- MSMA 
intermittent 

1200 760 

1995 

(±394) 

6.45 

(±0.05) 

927 

(±197) 

 
*Operational taxonomic units (OTUs) were defined at ≥ 97% sequence identity.  
†Values in parenthesis are 95% confidence intervals.  
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Table 4.3. Pairwise shared operational taxonomic unit (OTU)†, and Jaccard and Yue and Clayton 
theta community similarity indices for bacterial communities in rice rhizosphere (120 days after 
sowing) under different arsenic and flooding treatments.  
 

Treatments 
MSMA 
flood 

MSMA 
intermittent 

No-MSMA 
flood 

Shared OTUs† 

MSMA intermittent 108* 

No-MSMA flood 34* 83* 

No-MSMA intermittent 15* 66* 49* 

Jaccard 

MSMA intermittent 0.068 

No-MSMA flood 0.021 0.051 

No-MSMA intermittent 0.010 0.042 0.032 

Yue and Clayton 

MSMA intermittent 0.079 

No-MSMA flood 0.015 0.033 

No-MSMA intermittent 0.006 0.027 0.019 
 

†OTUs were defined at ≥ 97% sequence identity.   

*Indicates parsimony p test significantly different between the two treatment 

communities with p value < 0.001. 
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Figure 4.6.  Bacterial community composition in rice rhizosphere under different arsenic and 
flooding treatments at 120 days after sowing.  (a) Dendogram represents community structure 
dissimilarity (1-similarity) among the treatments based upon operational taxonomic unit (OTU) 
composition. OTUs were defined at ≥ 97% sequence identity.  (b) Relative abundance of major 
bacterial and archaeal phyla as determined using RDP classifier. 
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Figure 4.7. Impacts of arsenic and flooding treatments on relative abundance of bacterial phyla in 
the rice rhizosphere at 120 d. (a) Differences in the relative abundance of sequences in each 
phylum in the MSMA-amended plots relative to the No-MSMA plots. (b) Differences in the 
relative abundance of sequences in each phylum in the intermittently flooded plots relative to the 
continuously flooded plots.  
* Significant difference for the phylum between the treatments at 0.05 level using RDP Library 
Compare. 
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Figure 4.8. Number of sequences observed in intermittently flooded plots relative to the flooded 
treatment for some of the dominant bacterial families (a) in MSMA-amended and (b) no-
MSMA-amended treatments. Stars next to the title mean that the difference in number of 
sequences was significantly different at 0.05 level according to RDP’s library comparison tool.     
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Figure 4.9. Number of sequences observed for some of the dominant bacterial families in 
MSMA-amended plots sequences relative to the no-MSMA plots in (a) flood and (b) intermittent 
treatments. Stars next to the title indicate that the difference in number of sequences was 
statistically significant at 0.05 level, as estimated by RDP’s library comparison tool.   
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4.5 Discussion  

4.5.1 Impact of As and Water Treatments on Rhizosphere Soil As Concentrations 

The total soil-As concentrations did not significantly change over time indicating that 

little As was lost from the systems; however, pore-water As concentrations were significantly 

higher at 120 d compared to 60 d. It was also evident that water management treatments did not 

impact the total soil-As concentrations, but did significantly changed the pore-water As-

concentrations. The pore-water As-concentrations with the intermittent plots decreased by 

approximately 60% at 60 d and 64% at 120 d time-point relative to the continuous-flood plots. 

Higher pore-water As-concentrations with the No-MSMA-flood plots than the MSMA-

intermittent plots at both the time-points implies that water management had a greater impact 

than bulk-soil As concentration on the levels of total-dissolved As. The redox measurements 

taken at 60 d and 120 d sampling time-points indicated that the rice rhizosphere in the 

continuous-flood treatment was more highly reduced compared to the intermittent-flood 

treatment, thus indicating that reduced conditions favored As release to pore-water. At lower 

redox conditions, both increased iron-oxide dissolution and the reduction of iAsV could result in 

higher soluble As concentrations in pore-water (Masscheleyn et al., 1991; Xu et al., 2008). It has 

been demonstrated that As mobilization is mostly regulated by reduction and solubilization of 

iron oxides (Benner et al., 2002; Rowland et al., 2007) and the reduction and dissolution of iron 

oxides is linked to both biotic and abiotic processes in the rice rhizosphere (Wang et al., 2009); 

thus implying that either biotic or abiotic processes or both favored more Fe(III) reduction and 

As release under continuously flooded conditions in these systems.  
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4.5.2 Response of Rhizosphere Microbial Communities to As and Water Treatments 

The NMDS analysis of FAMEs from rice rhizosphere revealed a more distinct separation 

of treatments at 120 d compared to the 1 d and 60 d time-points (Figure 4.2), which indicates that 

the microbial communities shifted and diverged over the growing season. The FAME results also 

indicated that the fungal communities were present at a higher relative abundance in the 

intermittently-flooded plots but there appeared to be no effect of As treatment on relative 

abundance of Fungi or Gram-positive bacteria. Comparing the fungi:bacteria marker FAME 

ratios on a temporal scale, there was not much difference between the 1 d and 60 d time points; 

however the ratios slightly decreased at 120 d indicating that the fungal numbers went down 

towards the end of the growing season. 

 The qPCR data also indicated that relative abundance of Bacteria, FeRB and SRB 

proliferated towards the end of the growing season compared to the other groups of 

microorganisms we evaluated. Bacteria were more predominant than either Archaea or Fungi at 

120 d in both flooded and the intermittently flooded plots (Figure 4.3); which was mostly due to 

increased bacterial gene copy numbers and a decrease in fungal and archaeal gene copy numbers 

relative to the 60 d time-point. This trend might imply that the Bacteria more efficiently used the 

carbon substrates available towards the end of the growing season. It was reported in a previous 

study that a few groups of rhizosphere microorganisms can utilize more complex carbon sources 

like amines and polymers (Chen et al., 2008). As the rice plants matured, it is possible that the 

more easily degradable carbon sources, such as carbohydrates became limiting, thus favoring 

specific groups of Bacteria capable of metabolizing more recalcitrant carbon compounds.  

Higher relative abundances of FeRB and SRB with the continuous-flood compared to the 

intermittent–flood treatment at 120 d time-point imply that the reduced conditions favored FeRB.  
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High relative abundances of FeRB of up to 26% in MSMA-flood at 120 d time-point also 

suggest that iron-reduction reactions dominated these systems. Iron-reducing bacteria are 

commonly found in rice paddies (Hori et al., 2009; Neubauer et al., 2007b), although they 

usually only comprise around 10% of the bacterial community in most studies (Weiss et al., 

2003). Sulfate-reducing bacteria were also present at slightly higher abundances in the 

continuously flooded compared to intermittent plots at the 120 d time-point, suggesting active 

sulfate reduction also occurs in these systems.  

Although the qPCR data did not indicate large differences in the relative abundances of 

Bacteria at the 120 d time-point, bacterial community membership was different among the 

treatments as indicated by parsimony analysis. Jaccard and Yue and Clayton theta analysis of 

shared OTUs among the treatment pairs also indicated that both As and redox conditions 

impacted the bacterial communities with distinctly different community structure and 

membership among the treatments.  Interestingly, FAME and 16S rRNA gene analysis indicated 

that the As treatments had a greater effect than did the flooding treatments on the microbial 

communities at 120 d.  This is likely due to the long-term application of MSMA (>20 years to 

the MSMA-amended plots.  Even at 1 d, FAME indicated differences in the microbial 

communities in the MSMA and No-MSMA plots.  However, the No-MSMA plots also had 

detectable levels of soil As that were mobilized upon flooding.  This actually resulted in pore-

water As concentrations that were roughly equal in the continuously flooded MSMA-amended 

and No-MSMA plots.  This implies that there may have been some other factor besides total As, 

possibly differences in As speciation, that altered the microbial communities either directly 

and/or indirectly through plant impacts. 
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In addition to characterizing community diversity, our other objective of 16S rRNA gene 

sequencing was to identify the taxonomic relationships among the bacterial memberships within 

the treatments.  Proteobacteria being the most abundant phylum in MSMA-amended plots 

suggests that these phyla might comprise high numbers of As-resistant bacteria. Out of curiosity, 

we explored the NCBI database (accessed Nov, 2009) for different As resistance genes. Search 

results showed that 49% of all arsenate reductase genes (arsC), 76% of all dissimilatory arsenate 

respiration (arrA) and 38% of all arsenic methylation (arsM) gene-containing bacteria belonged 

to phylum Proteobacteria; however, it is also true that more proteobacterial sequences have been 

submitted to NCBI database compared to any other phyla. In a similar study on a metal 

contaminated site with very high As concentrations, it was observed that 78% of all the bacterial 

sequences belonged to β-Proteobacteria and rest to γ-Proteobacteria (Rastogi et al., 2009). Lu 

and associates also reported that Proteobacteria was found to be the dominant phylum in the rice 

rhizosphere with α, γ and β- Proteobacteria as the dominant classes (Lu et al., 2007). It is also 

true that Proteobacteria are the dominant phylum observed in most soils as indicated by several 

reconnaissance studies using different techniques such as DGGE, microarrays and metagenome 

analysis (Liles et al., 2003; Tringe et al., 2005). It must also be acknowledged that the bias 

introduced as a result of small length amplification by pyrosequencing techniques might lead to 

preference of some taxonomic groups such as Proteobacteria over others (Elshahed et al., 2008). 

Several bacterial families that might contain arrA and arsC genes were identified in most 

treatments (data not presented); however to make any further comparisons based solely upon the 

16S data would be an overstatement. 
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4.5.3 Relationships between Microbial Populations and As Concentrations 

Significantly higher pore-water As-concentrations in the rhizosphere were observed in 

the continuously flooded plots relative to the intermittent plots, and also at 120 d relative to the 

60 d time-point. These trends coincided with the high relative abundance of FeRB in the 

continuously flooded plots especially towards the end of growing season as indicated by both 

qPCR results and 16S rRNA gene sequencing. Presence of FeRB does not directly indicate 

active iron reduction, but increases in their relative abundances (up to 26% of the total microbial 

community) are suggestive of active iron reduction, and probably As reduction and release. 

FeRB gain energy by coupling the oxidation of organic compounds with the reduction of Fe(III) 

oxyhydroxides (Lovley et al., 2004). This could result in the dissolution of solid phase Fe which 

could subsequently result in solubilization of As sorbed on the surface of iron oxides (Cummings 

et al., 1999; Rowland et al., 2007), as well as also from the iron oxides precipitated on the rice 

roots which sequester significant amounts of As (Wang et al., 2009). However, it is still debated 

whether FeRB would actually result in the release of As, since some of the related studies 

reported that microbial Fe(III) reduction is also likely to form secondary iron oxide phases which 

could potentially adsorb to As (Kocar et al., 2006; Tufano et al., 2008). In any case, it is evident 

that FeRB could potentially impact Fe and As cycling in the rice rhizosphere, which needs to be 

further investigated in additional studies.  

Detection of SRB also suggests that sulfate reduction may be actively occurring in these 

soils. Sulfides produced as a result of sulfate reduction by SRB, might react with inorganic As 

compounds to form insoluble thioarsenate compounds (Oremland et al., 2004; Stauder et al., 

2005). We observed substantial sulfide-like black coatings in the rice rhizosphere mostly with 

the MSMA plots; however we do not have direct evidence that sulfides accumulated in the 
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experimental plots. The pore-water As-concentrations also increased in most treatments towards 

the end of the growing season, indicating that Bacteria, FeRB and SRB could survive the toxic 

As concentrations more than other group of microorganisms. Several FeRB are reported to be 

also capable of respiring iAsV (Islam et al., 2005; Kocar et al., 2006), and thus could proliferate 

under high As concentrations. It should also be noted that the microbial populations were 

perhaps resistant to the moderate As-concentrations in our experimental plots relative to high As-

concentrations used in other studies (Chopra et al., 2007; Edvantoro et al., 2003; Turpeinen et al., 

2004). 

4.6 Conclusions 

This field-scale study demonstrated that both different water management practices and 

long-term application of MSMA impacted pore-water As-concentrations and microbial 

populations in the rhizosphere of rice with the microbial communities for all treatments 

diverging over the growing season. Results of this study based on FAME, qPCR assays and 16S 

rRNA sequencing consistently demonstrated that microbial populations do sense and respond to 

changes in pore-water As-concentrations and redox conditions. Intermittent flooding impacted 

bacterial community membership and also decreased the relative abundance of FeRB and SRB 

compared to the flooded plots, which might have favorably contributed towards decreased pore-

water As concentrations in the rice rhizosphere. Results of this study demonstrated that 

intermittent flooding could be a viable management option to reduce soluble As concentrations 

in the rhizosphere when rice is cultivated on soils with moderate to high As concentrations. 
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CHAPTER V 

INTERMITTENT FLOODING ALTERED RICE ROOT-ASSOCIATED MICROBIAL 

COMMUNITIES 

5.1 Synopsis 

Different water management practices could affect microbial populations in the rice 

rhizosphere and thus potentially impact arsenic (As) chemistry and bioavailability. A field-scale 

study was conducted to analyze As concentrations and microbial populations in the root-plaque 

and rhizosphere of rice in response to continuous and intermittent flooding conditions in MSMA 

(monosodium methyl arsenate)-amended and No-MSMA plots. Rhizosphere, root-plaque, and 

pore-water As concentrations were quantified, and microbial populations in rhizosphere and 

root-plaque samples were characterized. Average rhizosphere-As concentrations ranged from 7 

mg/kg in No-MSMA to 22 mg/kg in MSMA plots, with no apparent differences due to water 

treatment. In contrast, average pore-water As concentrations ranged from 4.1 µg/L in 

intermittently flooded plots to 26.8 µg/L in continuously flooded plots with pore-water As levels 

being 81 to 86% lower under intermittent flooding.   Quantitative PCR indicated that Bacteria 

dominated all samples representing 91 to 94% and 48 to 78% of the total community in root-

plaque and rhizosphere, respectively, with smaller proportions of Archaea and Fungi being 

detected. The relative abundance of iron-reducing bacteria was lower in rhizosphere under 

intermittent than continuous flooding. The 16S rRNA gene sequencing indicated that bacterial 

community composition was significantly different among the treatments and arsenic levels had 

a greater impact on community composition than did water treatment. Proteobacteria was the 

predominant phylum in root-plaque (51 to 57%) and most rhizosphere samples (23 to 27%).  
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Chloroflexi (20 to 28%) were also dominant in rhizosphere samples, and their populations 

increased in response to intermittent flooding and higher As levels. These results indicate that 

intermittent flooding can alter root-plaque and rhizosphere microbial communities and decrease 

concentrations of water-soluble As in rice production systems.   

5.2 Introduction 

Rice is a staple food crop for more than 3 billion people and is cultivated in more than 

158 Mha throughout the world (FAO, 2009), mostly under continuous flooding (more than 75% 

of the total acreage) (Roger et al., 1993). Because of continuous submergence, rice grain tends to 

accumulate higher concentrations of arsenic (As) than other cereals (Williams et al., 2007b).  

This is of concern since As is a toxic metal known to cause cancer in humans.  Worldwide, more 

than 50 million people are exposed to higher As levels than is recommended by the World 

Health Organization (10 µg per day in drinking water) through consumption of As-containing 

drinking water or food (BGS and DPHE, 2001; Duxbury et al., 2003). Recent reports implicate 

consumption of As-contaminated rice as one of the major As exposure routes for millions of 

people in South East-Asia (Mondal and Polya, 2008; Ohno et al., 2007).  

Under continuously flooded, anoxic conditions, As is more readily released into soil 

pore-water by reductive dissolution of iron oxides and increased conversion of iAsV to iAsIII 

(Masscheleyn et al., 1991; Takahashi et al., 2004).  iAsIII, a neutral species under normal paddy 

conditions (pH 4 - 8), is more readily bioavailable than iAsV, while iAsV is strongly adsorbed to 

iron and aluminum oxides and relatively less bioavailable (Lafferty and Loeppert, 2005; Raven 

et al., 1998), is more prevalent under oxidized conditions. Alternative water management 

practices might be essential to reducing grain As concentrations, as several studies have reported 

that aerobic-rice cultivation (Xu et al., 2008) and intermittent flooding with wet/dry cycles (Li et 
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al., 2009a) result in lower As concentrations in grain than obtained under conditions of 

continuous flooding. Cultivation of rice with intermittent flooding appears to have significant 

potential as a management strategy to reduce As accumulation in grain ; however, it is unclear 

whether intermittent flooding can also affect root-plaque and rhizosphere microbial 

communities, which may also influence As biogeochemistry.  

Under continuous flooding, the rice rhizosphere and bulk soil become anoxic over the 

growing season; however, the root surface stays relatively oxic because of radial oxygen 

diffusion from the root aerenchyma structure (Colmer, 2003). An intermediate rhizosphere soil 

also exists between the anoxic bulk soil and oxic root surface; thus, the rice rhizosphere can be 

compartmentalized into 3 distinct zones based upon oxygen levels, each with unique biochemical 

processes. Micro-scale spatial variations of microbial populations exist within the rice 

rhizosphere (Liesack et al., 2000), suggesting that root-plaque and rhizosphere-soil communities 

could be distinct, potentially affecting Fe and As chemistry. Dissolved Fe(II) from the anoxic 

bulk is oxidized to Fe(III) oxyhydroxides that subsequently precipitates on the root surface  

forming iron-oxide root-plaques. The major form of iron oxide comprising these plaques is 

reportedly poorly-crystalline ferrihydrate (Bacha and Hossner, 1977; Taylor et al., 1984). These 

iron oxides provide strong binding sites for many nutrient elements and toxic metals and thus 

could act as a barrier, reducing bioavailability to the roots (Greipsson, 1994; Otte et al., 1989; 

Zhang et al., 1998). Several microbial populations can affect rice-root-plaque formation and 

dissolution, including iron-reducing and iron-oxidizing bacteria that can also impact As 

adsorption and dissolution (Neubauer et al., 2007a; Wang et al., 2009).   

Both As concentrations and redox conditions can affect microbial populations (Edvantoro 

et al., 2003; Zhou et al., 2002), and microbial populations are thus likely to be different in 
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intermittently versus continuously flooded soil. The impacts of different water management 

practices on root-plaque and rhizosphere microbial communities, including the roles of the 

microorganisms in controlling As biogeochemistry and bioavailability, are not known. 

Consequently, we conducted a field experiment investigating rice rhizosphere and root-plaque 

microbial communities and arsenic levels under continuous or intermittent flooding under two 

levels of soil As.  

5.3 Material and Methods 

5.3.1 Field Experiment 

 We conducted our field experiment in 2008 at Dale Bumpers National Rice Research 

Center (US Department of Agriculture, Agriculture Research Service, Stuttgart, AR). One of the 

research plots was previously applied with the arsenic-based pesticide monosodium methane-

arsonate or MSMA) in alternate years for more than 20 years. The MSMA was applied to the soil 

surface before rice planting, at the rate of 6.7 kg/ha per year (equivalent to 3.08 kg/ha per year of 

As). These plots will be referred as “MSMA plots”. The adjacent native soil (referred as “No-

MSMA plots”) had not been exposed to any As-containing products for at least the last 20 years. 

We imposed 2 water treatments: intermittent versus continuous flooding of both the MSMA and 

No-MSMA plots. Under intermittent flooding, the plots were flooded and allowed to dry until 

surface cracking initiated before re-flooding. The treatment groups used in this study were (1) 

MSMA flood (2) MSMA intermittent (3) No-MSMA flood and (4) No-MSMA intermittent. The 

treatment plots were distributed using a split-split plot design, and 4 replicate plots for each 

treatment group were arranged in a randomized design (only 3 of these replicates were sampled 

as part of this study). All other management practices were followed as previously described 

(Yan et al., 2005).  
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5.3.2 Sampling 

Approximately three months after the first flood and three weeks before the rice was 

harvested (120 d after planting), we collected rhizosphere, root-plaque, and pore-water samples.  

We collected 3 rice plants per plot, along with the adhering bulk soil. The plants were shaken to 

remove loose soil, and the remaining non-rhizosphere soil was removed manually. After we 

collected the few millimeters of rhizosphere soil left around the roots, we thoroughly washed the 

roots with deionized water to remove remaining soil. Iron-oxide plaque remained firmly affixed 

to the roots, and these root-plaque samples, along with the rhizosphere samples, were split into 

two subsamples (for chemical and microbial analysis). We transported the samples for chemical 

analysis from the field to the lab at 4°C, and we immediately froze the samples for microbial 

analysis on dry ice (later storing at -80°C). 

For rhizosphere pore-water samples, we collected bulk soil samples from the rhizosphere 

area (0–6 cm depth, between two adjacent plants) using a 2.5 cm diameter corer with brass insert 

rings. We capped insert rings containing soil samples with polypropylene end caps and stored 

them on ice during transport to the lab. We vacuum filtered the core samples at a negative 

pressure of 138 kPa for 20 min to extract pore-water samples and then acidified to pH 3 with 100 

mM HNO3, preserved at 4°C, and subsequently used for As analysis.  

5.3.3 Arsenic Analysis 

 The total soil As concentrations were determined by inductively-coupled-plasma mass-

spectrometry (ICP-MS) model DRC-ELAN II (Perkin Elmer, Waltham, MA, USA) after 

following a open digestion method with HNO3/H2O2 (US-EPA, 2007).  

Ammonium oxalate in the dark (Loeppert and Inskeep, 1996) was used to estimate the 

reactive root-plaque As concentrations. Approximately 2.5 g of fresh root in a polypropylene 
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centrifuge tube was covered with aluminum foil to prevent exposure to light, approximately 20 

mL of extracting solution was added (0.175 M ammonium oxalate + 0.1 M oxalic acid at pH 3), 

and the mixture was agitated for 2 hr on a reciprocating platform shaker. We then centrifuged the 

suspensions and decanted, diluted, and stored the supernatant solutions for As and Fe analysis. 

We determined the As concentrations in soil, root-plaque, and pore-water samples using an ICP-

MS, model DRC-ELAN II (Perkin Elmer, Waltham, MA, USA). The total iron in ammonium 

oxalate extraction from the root-plaque samples was analyzed using an AAnalyst 400 atomic 

absorption spectrophotometer (Perkin Elmer, Waltham, MA, USA).  

5.3.4 Gene Copy Number Quantification Using qPCR Targeting 

 Quantitative PCR (qPCR) assays targeting total Bacteria, Archaea, Fungi, iron-reducing 

bacteria (FeRB), sulfate-reducing bacteria (SRB), and methanogens were performed using the 

group specific primer sets and qPCR conditions outlined in Table 5.1.  The FeRB were 

determined by targeting Geobacteracaea and Shewanella spp.  The SRB were determined by 

targeting the dsrA gene.  Methanogens were determined by targeting the mcrA gene.  The assays 

were performed in a 10-µL reaction mix containing 4.5 µl SYBR green real master mix (5Prime, 

Inc., Gaithersburg, MD, USA), 0.5 µl of each primer (concentration of 10 µM for Bacteria, 

Fungi and Archaea, 200 nM for dsrA and mcrA and 300 nM for Geobacteracaea and Shewanella 

spp.), 1 µl template (2.5 ng), 1 µl bovine serum albumin (10 mg ml-1) and 2.5 µl molecular grade 

water (DNase free). Each analysis run included a set of standards, controls, blanks and samples 

(all including three analytical replicates) on a 96-well plate. The PCR reactions were conducted 

at the temperatures listed in Table 5.1 with 40 amplification cycles. Melting curve analysis of the 

qPCR products was performed after each assay to confirm qPCR amplification quality. The  



 

 

Table 5.1. Conditions and primer sets used for qPCR assays for enumerating the relative abundance of microbial populations in rice 
rhizosphere soil and root-plaque samples under different arsenic and flooding treatments. 

Target group Primer set 
Annealing 
Temp. 

Standard (source) Reference 

Total Bacteria 
Eub338- -5’-ACTCCTACGGGAGGCAGCAG-3’ 
Eub518 --5’-ATTACCGCGGCTGCTGG-3’ 

53oC 

Escherichia coli 

DH10B(pUC19) (obtained 
from Carlos Gonzales, 
Texas A&M University) 

(Fierer et al., 
2005) 

Total Fungi 
ITS1f- 5’-CTTGGTCATTTAGAGGAAGTAA-3’ 
5.8s—5’-CGC TGC GTT CTT CAT CG-3’ 

61 oC 

Neurospora crassa 

(obtained from Carlos 
Gonzales, Texas A&M 
University) 

(Boyle et al., 
2008) 

Total Archaea 
Arc85f--5′-ACTGCTCAGTAACACGTGGA-3′ 
Arc313r--5′-ATGTCTCAGAATCCATCTCC-3′ 

53 oC 

Methanosarcina 

acetivorans C2A (obtained 
from William Metcalf, 
University of Illinois). 

(Lima and Sleep, 
2007) 

Geobacteracea 

spp. 
Geo564F -5’-AAGCGTTGTTCGGAWTTA T-3’ 
Geo840R -5’-GGCACTGCAGGGGTCAAT A-3’ 

60 oC 

Geobacter metaloreducans 
(genomic DNA obtained 
from Jizhong Zhou, 
University of Oklahoma ) 

(Cummings et 
al., 2003) 

Shewanellae spp. 
She 120F – 5’-GCCTAGGGATCTGCCCAGTCG-
3’ 
She 220R – 5’-CTAGGTTCATCCAATCGCG-3’ 

60 oC 

Shewanella oneidensis 
MR-1 (genomic DNA 
obtained from Jizhong 
Zhou, University of 
Oklahoma) 

(Himmelheber et 
al., 2009) 

dsrA gene 
dsr-1F--5-ACSCACTGGAAGCACG-3 
dsr-500r--5-CGGTGMAGYTCRTCCTG-3 
       

58 oC 

Desulfovibrio vulgaris 

subsp. vulgaris 
Hildenborough (genomic 
DNA obtained from 
Jizhong Zhou, University 
of Oklahoma) 

(Wilms et al., 
2007) 

mcrA gene 
ME1f50-GCMATGCARATHGGWATGTC-30 
ME3r50-TGTGTGAASCCKACDCCACC-30 

54 oC 
Methanosarcina 

acetivorans C2A  
(Wilms et al., 
2007) 
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qPCR was performed using an Eppendorf Mastercycler® ep realplex thermal cycler (Eppendorf, 

Hamburg, Germany).  

Standards for qPCR were generated by PCR-amplifying each gene of interest from the 

genomic DNA of pure cultures using the primers and details listed in Table 5.1. The PCR 

products were confirmed on an agarose gel, and then cloned into a pGEM®-T Easy vector 

following the manufacturer’s instructions (Promega, Madison, WI, USA). Positive clones were 

isolated and extracted for plasmid DNA using a Wizard SV Miniprep kit (Promega). Plasmid 

DNA concentrations were quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA) and were used for preparing appropriate dilution 

standards for the qPCR assays. The plasmid DNA concentrations ranging from 5.0 x 10-3 to 5.0 x 

10-7 ng µl-1 DNA were used to generate the qPCR standard curves.  Relative abundances of 

specific populations were estimated by calculating ratios of gene copies from respective 

microbial populations to gene copies for the entire microbial community (sum of Bacteria, 

Archaea and Fungi). 

5.3.5 Microbial Community Analysis 

 We extracted microbial community DNA from the rhizosphere and root-plaque samples 

using MO BIO Power Max DNA extraction kits (MO BIO Laboratories Inc., Carlsbad, CA, 

USA). We modified the manufacturer’s protocol to include a lysozyme preincubation step in 

order to enhance Gram-positive bacterial DNA yield: Approximately 10 g of rhizosphere or 5 g 

root-plaque sample were treated with 10 µl of lysozyme solution (15 mg per sample final 

concentration) and incubated in a water bath for 1 hr at 37.5°C with occasional shaking, after 

which the manufacturer’s protocol was resumed. Resulting DNA samples were concentrated by 
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ethanol precipitation, purified using Illustra MicroSpin™ G-25 columns (GE Healthcare 

Biosciences, Pittsburgh, PA, USA), and stored at -20°C.  

The root-plaque community DNA samples from all 3-field replicates were sequenced 

individually; whereas with the rhizosphere soil equal quantities of community DNA from all 3-

field replicates for each treatment were composited into one sample per treatment. The DNA 

samples were submitted to the Research and Testing Laboratory (Lubbock, TX, USA) for tag-

pyrosequencing. Samples were amplified with modified versions of primers 530F and 1100R 

(Acosta-Martinez et al., 2008), and the amplicons were sequenced using Roche 454 Titanium 

chemistry.   

5.3.6 Analysis Pipeline for 16S rRNA Gene Sequences 

The 16S rRNA gene sequence data was analyzed using pyrosequencing pipeline tools 

from the Ribosomal Database Project (RDP) (Cole et al., 2009) and MOTHUR version 1.6.1 

(Schloss et al., 2009). The 16S rRNA sequences were first trimmed for primers and chimeras and 

then sequences with fewer than 350 bases were removed from the data sets. The individual 

sequence files were combined using the BioEdit v7.0.5 software (Hall, 1999) and submitted to 

the RDP aligner tool for multiple alignments. Pairwise distances between the aligned sequences 

(distance matrix) were calculated and then used to assign sequences to operational taxonomic 

units (OTUs) (cluster analysis). Both distance matrix and cluster analyses were performed using 

the dist and cluster analyses tools in MOTHUR (default settings). The OTUs were defined at 

97% similarity cutoff for all of the analyses.  

Both α- and β-diversity measures were estimated for the data sets using the 

summary.single and summary.shared tools in MOTHUR. The α-diversity measures consisted of 

Chao1 richness, Shannon, and Simpson, and the β- diversity measures consisted of Yue and 
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Clayton theta and Jaccard community structure. After running the Bray-Curtis community 

structure analysis with MOTHUR, we constructed a dendogram using MEGA 4 software 

(Tamura et al., 2007). A PHYLIP formatted distance matrix file was constructed using the dist 

function in MOTHUR and used to create a neighbor-joining tree with neighbor tool available 

with the PHYLIP 3.68 package (Felsenstein, 2005). The PHYLIP generated tree was then used 

as an input file to run the parsimony  p test (Martin, 2002) using MOTHUR. Parsimony analysis 

is commonly used to test whether two or more communities harbor greater differences in 

phylogenetic structure than would be expected by chance; and a p value of ≤ 0.001 is considered 

to be statistically significant (Martin, 2002). Relative abundance of taxonomic phyla and families 

among the treatment samples were determined with RDP Library Compare.  

 Analysis of similarity (ANOSIM) was performed on OTU data obtained from root-

plaque sequences using PAST software (default settings) (Hammer et al., 2001). A two-way 

ANOSIM evaluates statistically significant differences between two groups and generates R 

statics and p values (Clarke, 1993).   

5.3.7 Statistical Analyses 

 We used SigmaPlot version 11.0 (Systat Software, 2007) to calculate mean difference 

and standard error for the experimental data and to create graphs.  

5.4 Results 

5.4.1 As Concentrations in the Rhizosphere, Pore-Water, and Root-plaque Samples  

The total As-concentrations in the rhizosphere, pore-water, and root-plaque samples are 

presented in Figure 5.1a. The rhizosphere-As concentrations were significantly lower in No-

MSMA plots, with an average (mean) of 6.9 mg/kg, compared to 22.3 mg/kg in MSMA plots. In 
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contrast, As concentrations were not significantly different in flood plots (13.8 mg/kg) than in 

intermittent plots (15.4 mg/kg). However, pore-water As was significantly different among the 

treatments, with concentrations ranging from 3 to 37 µg/L. The pore-water As concentrations 

were again significantly lower in No-MSMA plots, with an average of 10.0 µg/L, compared with 

20.8 µg/L in MSMA plots. In contrast to the soil As results, pore-water As concentrations were 

also significantly lower in intermittent plots than flood plots, at 4.1 µg/L versus 26.8 µg/L, 

respectively. The redox potential was also significantly higher in intermittent plots, with an 

average of -156-mv, compared with -246-mv in flood plots, but there was no difference between 

the MSMA and No-MSMA plots.  

Root-plaque accumulated a large proportion of As (based on total dry mass of root), with 

concentrations up to 10-times higher than the adjacent rhizosphere soil (74 to 295 mg/kg). Figure 

5.1b shows that the root-plaque As concentrations were significantly lower in No-MSMA plots 

(12.6 mg/kg versus 214.4 mg/kg in MSMA plots) and also in intermittent plots (103.8 mg/kg  

versus 223.2 mg/kg in flood plots). The As:Fe molar ratios were not significantly different in the 

No-MSMA plots (0.0022) compared to the MSMA plots (0.0026). However, the As:Fe ratios 

were significantly lower in MSMA–intermittent plots (0.0018) than MSMA–flood plots 

(0.0031).  
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Figure 5.1. (a) Rice rhizosphere and pore-water As concentrations and redox potential, and (b) 
root-plaque As concentrations and arsenic to iron molar ratios under different arsenic and 
flooding treatments. Error bars represent standard error of mean. 
 

 

 

(a) 

(b) 



 

 

81

5.4.2 Relative Abundances of Microbial Populations in Root-plaque and Rhizosphere 

 The relative abundance of microbial populations to total rhizosphere microbial 

community (sum of gene copy numbers from Bacteria, Archaea and Fungi) in root-plaque and 

rhizosphere soil, as represented by the ratio of gene copy numbers for each group are presented 

in Figure 5.2. Bacteria were the most dominant group with relative abundances of approximately 

93% of the total community in the root-plaque samples and approximately 60% of the total 

community in the rhizosphere. There was no significant difference in the relative abundances of 

Bacteria among the treatments in the root-plaque samples, whereas the ratios significantly varied 

among the treatments with the rhizosphere soil. The relative abundance of Bacteria was 

significantly lower in the flood plots (50%) compared to the intermittent plots (71%).   

Archaea represented approximately 37% of the total community in the rhizosphere soil 

with significant differences among the treatments; whereas with the root-plaque samples the 

Archaea were present at less than 1% of the total community. In the rhizosphere, archaeal 

populations were significantly higher in the flood plots (47%) compared to the intermittent plots 

(28%).  Fungi were present at relatively lower abundance of around 6% of total community in 

the root-plaque-samples and around 3% in the rhizosphere, without any treatment differences 

among the treatments.  

The relative abundance of FeRB was low in the root-plaque samples representing 

approximately around 3% of total community with no significant differences between the 

treatments; whereas in the rhizosphere samples, the FeRB comprised about 20% of the total 

community. Additionally, the FeRB were significantly more dominant in the flood plots 

representing around 22% of the total community compared to 17% in the intermittent plots.  
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The relative abundance of SRB was also low representing approximately 2 to 3% of the 

total community in the root-plaque and about 2 to 5% in the rhizosphere without any significant 

differences among the treatments.  

Methanogens were almost undetectable in the root-plaque samples with relative 

abundances of < 0.1%. Their abundance was also low in the rhizosphere at approximately 6% of 

the total community with significantly higher proportions of around 8% in the flood plots 

compared to around 3% in the intermittent plots. The relative abundance of microbial 

populations slightly varied between MSMA and No-MSMA plots; however the qPCR results 

demonstrated no consistent effect of MSMA treatments on relative abundance of any of the 

microbial communities.  
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Figure 5.2. Relative abundance of microbial populations in rice root-plaque and rhizosphere 
under different arsenic and flooding treatments. The ratios were calculated by comparing gene 
copy numbers for each group, estimated by qPCR targeting with group specific primers. Error 
bars represent standard error of mean. FeRB = iron reducing bacteria and SRB=sulfate reducing 
bacteria.
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5.4.3 Bacterial Populations in the Root-plaque and Rhizosphere Soil 

 Approximately 3500 16S rRNA sequences were obtained from each root-plaque field 

replicate (Table 5.2), with total sequence numbers per treatment type ranging from 8974 to 

11724, and number of OTUs from 4313 to 5265 (Table 5.3). Approximately 1103 to 1264 16S 

rRNA sequences were obtained from the rhizosphere samples with number of OTUs ranging 

from 730–810 (Table 5.3). The Shannon and Simpson diversity indices varied slightly among the 

treatments, but were not significantly different both for root-plaque and rhizosphere samples. 

The parsimony analysis and shared OTUs analysis (β–diversity measures) for the pairwise 

comparisons revealed some differences in the bacterial community structure and membership 

(Table 5.4). The parsimony analysis indicated that the communities were significantly different 

from each other, with p < 0.001 for each of the comparisons both for root-plaque and rhizosphere 

(Table 5.4). With the root-plaque samples, No-MSMA–flood and No-MSMA–intermittent plots 

shared the most OTUs, while No-MSMA–flood and MSMA–intermittent plots shared the fewest 

OTUs (Table 5.4). The Jaccard indices were also highest for No-MSMA–flood and No-MSMA–

intermittent plots (20% similarity in total community membership) and lowest for the No-

MSMA–flood and MSMA–intermittent pair (15% similarity). A similar trend was also observed 

with Yue and Clayton theta indices. With the rhizosphere soil, MSMA–flood and MSMA–

intermittent plots shared the most OTUs, while MSMA–flood and No-MSMA–intermittent 

shared the fewest OTUs (Table 5.4). The Jaccard values were highest for MSMA–flood and 

MSMA–intermittent (12% similarity in total community membership) and lowest for the 

MSMA–flood and No-MSMA–intermittent pair (4% similarity). A similar trend was also 

observed with Yue and Clayton theta indices. A dendogram based on Bray-Curtis analysis 

(Figure 5.3a and b) shows root-plaque and rhizosphere samples grouping primarily by As 
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concentration. The ANOSIM R static values were higher than 0.5 for both MSMA and water 

treatments with significant p values confirming that root-plaque bacterial communities were 

significantly different between MSMA and water treatments (Table 5.5). 

Proteobacteria was the predominant phylum detected in root-plaque samples, ranging 

from 57% in the MSMA–flood plots to 51% in the No-MSMA–intermittent plots (Figure 5.4). 

Other dominant phyla in root-plaque samples included Acidobacteria (8 to 12%), Firmicutes (4 

to 12%), Actinobacteria (6 to7%), and Bacteroidetes (3 to 6%). Proteobacteria represented a 

higher proportion of detected rhizosphere bacteria in the intermittent than in the flood plots 

amended with MSMA (Figure 5.5a and b). The fraction of Proteobacteria was significantly 

higher in the No-MSMA–intermittent than the MSMA–intermittent plots but were lower in No-

MSMA–flood than in MSMA–flood plots (Figure 5.5a and b). Firmicutes represented 

significantly lower proportions of sequences in the intermittent than in the flood plots and 

significantly higher proportions in MSMA–intermittent versus No-MSMA–intermittent plots. 

Acidobacteria and Actinobacteria were higher in intermittent plots in MSMA plots and trended 

higher in No-MMSA plots. Acidobacteria proportions were significantly higher in No-MSMA–

intermittent versus MSMA–intermittent plots, and Actinobacteria proportions were significantly 

lower in No-MSMA versus MSMA plots in both intermittent and flood plots.   

Proteobacteria (23 to 27%) and Chloroflexi (20 to 28%) were the predominant phyla 

detected in most of the rhizosphere samples (Figure 5.4). Other dominant phyla included 

Firmicutes (7 to 22%), Acidobacteria (7 to 11%), Bacteroidetes (8 to 10%), and 

Verrucomicrobia (3 to 5%). In contrast to root-plaque samples, Proteobacteria in the rhizosphere 

trended toward lower proportions of detected Bacteria in intermittent than in flood plots in both 

MSMA and No-MSMA plots, but these differences were not significant (Figure 5.5a and b). The 
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fraction of Proteobacteria was higher in MSMA than in No-MSMA in both flood and 

intermittent plots, but was not statistically significant. Chloroflexi proportions were significantly 

higher in the intermittent than in flood plots and significantly lower in MSMA than No–MSMA 

plots. Firmicutes proportions were significantly lower in the MSMA-intermittent than in the 

MSMA-flood plots and significantly higher in No-MSMA than in MSMA plots. Acidobacteria 

proportions were slightly higher in the MSMA–intermittent than MSMA–flood plots and in No-

MSMA–intermittent versus MSMA–intermittent plots (Figure 5.5a and b). Several FeRB groups 

were also detected at considerable proportions, such as the genus Anaeromyxobacter (5 to 10% 

in root-plaque and 2 to 4% in rhizosphere soil) and family Geobacteraceae (around 1% in root-

plaque and 2 to 5% in rhizosphere soil (Figure 5.6).  

 
Table 5.2.  Root-plaque bacterial communities: number of sequences and OTUs for each 
replicate under different arsenic and flooding treatments. 
 
 

Replicates 
Number of 
Sequences 

Number of 
OTUs 

MSMA flood 1 3418 1911 

2 3576 2122 

3 3489 1826 

MSMA 

intermittent 

1 3133 1863 

2 3638 2048 

3 3075 1635 

No- MSMA 

flood 

1 2589 1533 

2 3246 1880 

3 3139 1926 

No-MSMA 

intermittent 

1 3062 1745 

2 4817 2862 

3 3845 2123 

 



 

 

Table 5.3. Rice root-plaque and rhizosphere bacterial communities: diversity and richness estimates under different arsenic and 
flooding treatments.  
 
 Root-plaque Rhizosphere 

No. of 

Sequences 

No. of 

OTUs 

Shannon Simpson 

(1/D) 

No. of 

Sequences 

No. of 

OTUs 

Shannon Simpson 

(1/D) 

MSMA 

flood 

10483 4530 7.69 

(± 0.132)† 

863 

(± 80) 

1264 796 6.45 

(±0.126) 

694  

(±217) 

MSMA 

intermittent 

9846 4330 7.78 

(± 0.091) 

1001 

(± 93) 

1231 730 6.31 

(±0.069) 

525  

(±107) 

No-MSMA 

flood 

8974 4313 7.82 

(± 0.108) 

896 

(± 103) 

1103 810 6.51  

(±0.057) 

772  

(±284) 

No-MSMA 

intermittent 

11724 5265 7.97 

(± 0.146) 

1080 

(± 98) 

1175 774 6.43 

(±0.055) 

675  

(±184) 

 
†Values in parenthesis are 95% confidence intervals. 
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Table 5.4. Rice root-plaque and rhizosphere soil bacterial communities: pairwise shared OTUs, Jaccard, and Yue and Clayton theta 
analysis under different arsenic and flooding treatments. 
 

Rhizosphere Rhizosphere 

MSMA 

flood 

MSMA 

intermittent 

 No-MSMA 

flood 

MSMA 

flood 

MSMA 

intermittent 

 No-MSMA 

flood 

Shared OTUs 

MSMA intermittent 1470* 
  

157*   

No-MSMA flood 1306* 1155* 
 

137* 117*  

No-MSMA 

intermittent 
1485* 1465* 1613* 67* 95* 138* 

                                 Jaccard 

MSMA intermittent 0.199 
  

0.124   

No-MSMA flood 0.173 0.154 
 

0.100 0.082  

No-MSMA 

intermittent 
0.179 0.180 0.203 0.044 0.067 0.104 

                                Yue and Clayton 

MSMA intermittent 0.510 
  

0.079   

No-MSMA flood 0.596 0.398 
 

0.015 0.033  

No-MSMA 

intermittent 
0.611 0.497 0.689 0.006 0.027 0.019 

*Parsimony p test significantly different between the two treatment communities (p<0.001).
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Table 5.5. ANOSIM statistics for OTUs from the root-plaque samples. 
 

Factor R value P value 

Flood v intermittent 0.630 0.0097 

MSMA v No-MSMA 0.963 0.0117 

 
 
 
 
 
 

 As-flood

 As-intermittent

 NoAs-flood

 NoAs-intermittent

0.4                0.2               0.1                0.0 0.0         0.1         0.2          0.3         0.4 
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(a) Root plaque (b) Rhizosphere 

Distance (1-similarity)
 

 
Figure 5.3. The dendogram represents bacterial community structure dissimilarity (1-similarity) 
among the treatments in rice (a) root-plaque and (b) rhizosphere under different arsenic and 
flooding treatments, based on Bray-Curtis analysis of 16S rRNA gene sequence data.    
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Figure 5.4. Relative abundance of bacterial phyla in rice rhizosphere and root-plaque under 
different As and flooding treatments, as determined using RDP classifier. 
  



 

 

91

*

*

*

*

-3 -2 -1 0 1 2 3

Rhizosphere

Root plaque

*

*

*

*

*

*

*

*

-15 -10 -5 0 5 10

Proteobacteria 

Firmicutes

Acidobacteria 

Actinobacteria 

Bacteroidetes 

Cyanobacteria 

Verrucomicrobia 

Chloroflexi

Intermittent v flood in MSMA plots Intermittent v flood in No-MSMA plots

Phylum

3             2             1           15           10            5
Difference in percent number of sequences

*

*

*

-4 -2 0 2 4 6

Proteobacteria 

Firmicutes

Acidobacteria 

Actinobacteria 

Bacteroidetes 

Cyanobacteria 

Verrucomicrobia 

ChloroflexiRhizosphere

Root plaque

*

*

*

*

*

*

-10 -5 0 5 10 15

MSMA v No-MSMA in flood plots MSMA v No-MSMA in intermittent plots
Phylum

4                 2 10                  5  

Difference in percent number of sequences

Figure 5.5. Impacts of water and As treatments on relative abundance of bacterial phyla in the 
rice rhizosphere. (a) Differences in the percentage of sequences in each phylum in the 
intermittently flooded plots relative to the continuously flooded plots with MSMA and No-
MSMA amendment. (b) Differences in the percentage of sequences in each phylum in the 
MSMA plots relative to the No-MSMA plots with flood and intermittent plots. 
* Significant difference at 0.05 level using RDP Library Compare.
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Figure 5.6. Relative abundance of bacterial groups that comprise iron reducing and oxidizing 
bacteria under different arsenic and flooding treatments, as determined using RDP classifier.  
 
 

5.5 Discussion 

5.5.1 Rhizosphere As Concentrations Varied with Water Management and MSMA Treatments  

Soil-As concentrations were higher in MSMA plots due to more than 20 years of MSMA 

amendment; however, slightly lower total As concentrations in continuously flooded plots might 

suggest that more As was lost, possibly due to leaching, volatilization, or plant uptake. 

Conversely, pore-water As concentrations in intermittent plots decreased by approximately 85% 

relative to flood plots. Coupled with the higher pore-water As concentrations in the No-MSMA–

flood plots versus the MSMA–intermittent plots, our results imply that water management had a 

greater impact than bulk-soil As concentration on the levels of total-dissolved As.  Our redox 

measurements indicated that the rice rhizosphere in the continuous-flood plots was more reduced 

than in the intermittent-flood plots, thus indicating that reduced conditions might have favored 
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As release to pore-water. Under anoxic conditions, increased iron-oxide dissolution and 

reduction of iAsV could result in higher soluble As concentrations in pore-water (Masscheleyn et 

al., 1991; Xu et al., 2008). Arsenic chemistry in flooded rice soils is primarily controlled by iron 

oxide minerals (Takahashi et al., 2004) because As mobilization is mostly regulated by reduction 

and solubilization of iron oxides (Benner et al., 2002; Rowland et al., 2007). The reduction and 

dissolution of iron oxides is linked to both biotic and abiotic processes in the rice rhizosphere 

(Wang et al., 2009), thus implying that biotic or abiotic processes (or both) might favor Fe(III) 

reduction and As release under continuously flooded conditions.  

Relative to rhizosphere soil, root-plaque accumulated significantly higher As 

concentrations, in agreement with previous findings that root-plaque sequesters As (Hossain et 

al., 2009; Liu et al., 2006). The higher root-plaque As concentrations and As:Fe ratios in flood 

plots relative to intermittent plots could be due to the combined effects of increased bulk-soil 

iron-oxide dissolution and resulting As desorption. Increased reduction of iAsV to the more 

soluble and mobile iAsIII species and the subsequent reprecipitation of iron oxide and 

readsorption of As at the more highly oxidized root surface may also influence As:Fe ratios. 

Similar ranges of As:Fe ratios have been observed for rice root-plaque under high soil As-

concentrations (Hossain et al., 2009). A previous study also reported that continuous 

submergence results in increased Fe plaque per unit dry weight of root compared to that in lower 

soil moisture (Chen et al., 2008). Availability of new adsorption sites for As on freshly 

precipitated iron oxides could decrease the immediate bioavailability of As species that strongly 

bond to iron oxide minerals, including iAsV and  iAsIII (Raven et al., 1998). Root-plaque might 

thus reduce the bioavailability of As to plants, as suggested by previous studies (Hossain et al., 
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2009; Liu et al., 2004b); however, whether root-plaque is a sink or a source of As for plants 

might depend on local conditions, for example localized microbial activity (Wang et al., 2009).  

5.5.2 Microbial Community Response to Water Management and Rhizosphere As Concentrations  

 Microbial populations noticeably varied between the rhizosphere and root surface with 

the predominance of only Bacteria in the root-plaque, but with substantial populations of both 

Bacteria and Archaea in the rhizosphere. The relative abundance of rhizosphere Bacteria was 

significantly lower in flood than the intermittent plots, which was mostly due to higher archaeal 

abundance in the flood plots. These trends agree previous studies by other researchers, which 

observed that rice rhizosphere could harbor significant numbers of Archaea (Conrad et al., 2006; 

Conrad et al., 2008).  Archaea and methanogens were likely present at lower abundance in the 

root-plaque since the surface of an actively metabolizing rice root is more highly oxidized (due 

to radial O2 loss from the root) compared to the bulk rhizosphere. 

The reduced conditions, especially in the rhizosphere favored FeRB, with relative 

abundances significantly higher in the continuously flooded plots (up to 26%) compared to 

intermittent plots.  It was somewhat surprising to find such a high relative abundance of FeRB in 

the soil, which suggests that iron-reducing reactions dominated these systems. Iron-reducing 

bacteria are commonly found in rice paddies (Hori et al., 2009; Neubauer et al., 2007b), though 

usually only up to around 10% of total Bacteria in most studies (Weiss et al., 2003). The lower 

relative abundance of SRB compared to FeRB was likely due to competition from the FeRB, 

which is often the case in rice paddies when soil iron concentrations are several orders higher 

than sulfate concentrations (Achtnich et al., 1995). 

The qPCR data indicated no significant difference in the relative abundance of root-

plaque Bacteria among the water and MSMA treatments; however the 16S rRNA sequence data 
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did imply that bacterial community structure was significantly different among the treatments. 

The ANOSIM R static values were higher than 0.5 for both MSMA and water treatments with 

significant p values, thus suggesting that there was no significant difference among the replicated 

sequence data from same treatment compared to the difference among the treatments. Higher R 

statistics value in ANOSIM indicated that samples within same group are more similar than the 

samples from different groups (Clarke, 1993). These trends with the ANOSIM results along with 

the qPCR results demonstrated a high degree of similarity (low variability) among the DNA 

samples extracted from the root-plaque field replicates. Although the rhizosphere samples were 

analyzed by 16S rRNA sequencing as composite samples, the qPCR analysis on the individual 

replicate samples indicates a high degree of similarity between the replicate rhizosphere samples 

from each treatment.   

The parsimony, Jaccard, and Yue and Clayton theta analysis of OTUs also indicated that 

bacterial community membership was significantly different among the treatment groups in both 

root-plaque and rhizosphere.  Relative abundance of Proteobacteria was higher in root-plaque 

(50–58%) than in rhizosphere (20–28%), suggesting that these phyla might have more efficiently 

utilized carbon substrates and better adapted to the high As concentrations in the root-plaque. In 

a similar study of a metal-contaminated site with very high As concentrations, 78% of all the 

bacterial sequences belonged to β-Proteobacteria and the rest to γ-Proteobacteria (Rastogi et al., 

2009). Rhizosphere Proteobacteria were higher in MSMA than the No-MSMA plots and in 

flood than the intermittent plots.  This included mostly β-, α-, and δ-Proteobacteria groups 

(Figure 5.6). Most FeRB classify with δ-Proteobacteria, such as genus Anaeromyxobacter and 

family Geobacteraceae and most iron-oxidizing Bacteria (FeOB) with β- and α-Proteobacteria 

(Weber et al., 2006). Several FeRB, including Anaeromyxobacter and Geobacter, have been 
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previously detected on the surface of rice roots (Hengstmann et al., 1999; Scheid et al., 2004), 

and a recent study also showed that α- and β-Proteobacteria were active in oxic zones of rice 

paddy soil and δ-Proteobacteria in anoxic zones (Shrestha et al., 2009). In our study, Chloroflexi 

were present at significantly higher abundance in rhizosphere soil (20 to 27%) than root-plaque 

(2 to 5%). Chloroflexi comprises both facultative anaerobes and facultative aerobes (Yamada and 

Sekiguchi, 2009) and has been detected in both oxic and anoxic zones of rice paddies (Shrestha 

et al., 2009), thus rhizosphere soil may be an ideal niche for Chloroflexi spp.  Given their high 

numbers in rhizosphere soil and the finding that their numbers were reduced at higher As levels, 

additional research should be conducted to determine the role(s) of Chloroflexi in these systems.  

5.5.3 Relationships between Rhizosphere As Concentrations and Microbial Populations 

 High concentrations of As in the pore-water of continuously flooded plots correlate with 

the greater relative abundance of FeRB in the rhizosphere from these treatments. Thus, release of 

As adsorbed on the iron oxides to pore-water as a result of Fe(III) reduction is a likely 

mechanism for causing the higher levels of As in pore-water. Presence of FeRB may not directly 

indicate active iron reduction, but increases in relative abundance of FeRB within the total 

microbial community (up to 26% in our study) are suggestive of active iron reduction and 

possibly As reduction and release. FeRB gain energy by coupling the oxidation of organic 

compounds with the reduction of Fe(III) oxyhydroxides (Lovley et al., 2004). This process could 

result in the dissolution of solid phase Fe and subsequent solubilization of As from the surface of 

iron oxides (Cummings et al., 1999; Rowland et al., 2007). Studies have reported that up to 24% 

of total Fe reduction in rice paddy soils are a result of dissimilatory Fe(III) reduction by 

Geobacteraceae spp., Anaeromyxobacter spp., and other related δ-Proteobacteria (Hori et al., 

2009; Ratering and Schnell, 2001).  
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Several FeRB and also Bacteria related to iron-oxidizing Bacteria (FeOB) were detected 

in root-plaque samples; thus both iron reduction and oxidation could be active on root-plaques, 

in agreement with previous studies (King and Garey, 1999; Neubauer et al., 2007a; Weiss et al., 

2003). The FeRB could proliferate during the reduction of Fe (III) in iron plaque (Neubauer et 

al., 2005; Scheid et al., 2004) and might result in the release of root-plaque associated As. Our 

ammonium oxalate iron extractions showed that ferrihydrate was the most predominant phase in 

the root-plaque (data not presented), which might suggest that the root-plaque area may be an 

ideal niche for dissimilatory iron reduction, given appropriate redox conditions.  The FeRB 

prefer low crystalline iron phases such as ferrihydrate over high crystalline phases such as 

goethite (Roden, 2003), and positive correlations between poorly crystalline Fe(III) phases and 

FeRB in the rhizosphere of wetland plants have been observed (Weiss et al., 2004). It is still 

debated whether FeRB results in As release, because some studies report that microbial Fe(III) 

reduction is likely to form secondary iron oxide phases that could adsorb to As (Kocar et al., 

2006; Tufano et al., 2008). In any case, these results suggest that FeRB may affect Fe and As 

cycling in the rice rhizosphere, necessitating further investigation.  

5.6 Conclusions 

 The results of this field-scale study provide additional insight into the impacts of arsenic 

levels and water management on microbial population dynamics and the levels of water-soluble 

arsenic.  Water management practices and long-term applications of MSMA impacted 

rhizosphere As concentrations as well as the microbial community composition of rice root-

plaque and rhizosphere. Our qPCR and 16S rRNA gene sequencing demonstrated that bacterial 

populations responded to changes in pore-water As concentrations and redox conditions. 

Moreover, flooding conditions affected bacterial membership in root-plaque and rhizosphere soil 
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which might favorably contribute toward decreased pore-water As concentrations in the rice 

rhizosphere. Additional research is needed to further elucidate the relative importance of biotic 

versus abiotic mechanisms on arsenic cycling in these systems.  
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CHAPTER VI 

SUMMARY 

This field scale study was conducted to evaluate the impact of intermittent and 

continuous flood practices on rhizosphere As speciation and microbial populations in plots that 

were either historically amended with MSMA or unamended with any As containing material. A 

method for As species extraction and analysis using HPLC-ICP-MS has to be standardized to 

study the As speciation in the treatment plots. Results presented in Chapter II indicated that 

sequential extraction with 0.4 M H3PO4 followed by 0.4 M NaOH provided the highest recovery 

of As from the soils compared to all of the chemical reagents evaluated. The sequential 

extraction using the H3PO4 and NaOH reagents recovered appreciable quantities of As species 

from rice paddy soils. The extraction efficiency ranged from 73 to 93% in the order of DMAV > 

MMAV > iAsV.  

The As speciation in different compartments of the rice rhizosphere discussed in Chapter 

III clearly indicated that intermittent flooding treatment significantly reduced pore-water As-

concentrations by 80 to 90 % and grain As concentrations by 25 to 45 % compared to the 

continuously flooded treatments. Arsenite was predominant in pore-water, whereas iAsV was 

predominant in root-plaque and soil. MMAsV was detected only in MSMA soils and DMAsV in 

pore-water and root-plaque samples from the continuously flooded plots. The DMAsV was not 

detected in either pore-water or in root-plaque samples from the intermittently flooded plots, in 

both MSMA and No-MSMA plots. DMAsV concentrations in grains were significantly reduced 

in intermittently flooded plots compared to the continuously flooded plots. As concentrations 

were significantly higher in root-plaque compared to the rhizosphere soil, and may be impacted 

the As availability to the plants.  
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The other goal of the field experiments was to study the microbial populations in the rice 

rhizosphere and root-plaque samples in response to continuous and intermittent flooding 

practices under two levels of soil. The results presented in Chapters IV and V demonstrated that 

both different water management practices and long-term application of MSMA impacted 

microbial populations in the rhizosphere and root-plaque of rice with the microbial communities 

for all treatments diverging over the growing season. Multivariate FAME analysis indicated that 

rhizosphere microbial communities changed temporally among the treatments.  Community 

qPCR results demonstrated that the relative abundance of Bacteria increased over the course of 

the growing season, while archaeal and fungal gene abundances decreased in the rhizosphere. 

Although qPCR results showed little variation in bacterial relative abundance among the 

treatments, the 16S rRNA sequence libraries demonstrated that bacterial community structure 

and membership were significantly different in rhizosphere among the treatments. Both qPCR 

and 16S rRNA sequencing indicated that relative abundance of iron-reducing bacteria and 

sulfate-reducing bacteria were significantly higher under the continuous flooding relative to the 

intermittent flooding treatment in rhizosphere samples, implying active iron reduction and 

possibly As release from the iron oxides.  

Quantitative PCR also indicated that Bacteria dominated in all samples representing 91 to 

94% and 48 to 78% of the total community in root-plaque and rhizosphere, respectively, with 

smaller proportions of Archaea and Fungi being detected. Proteobacteria was the predominant 

phylum in root-plaque (51 to 57%) and most rhizosphere samples (23 to 27%).  Chloroflexi (20 

to 28%) were also dominant in rhizosphere samples, and their populations increased in response 

to intermittent flooding and higher As levels. 
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The results of FAME, qPCR assays and 16S rRNA sequencing consistently demonstrated 

that microbial populations do sense and respond to changes in pore-water As-concentrations and 

redox conditions. Intermittent flooding impacted bacterial community membership and also 

decreased the relative abundance of FeRB and SRB compared to the flooded plots, which might 

have favorably contributed towards decreased porewater As concentrations in the rice 

rhizosphere. Results of this research demonstrated that intermittent flooding could be a potential 

management option to reduce soluble As concentrations in the rice rhizosphere and grains in rice 

cultivated on fields with moderate to high As concentrations. Additional research is needed to 

further elucidate the relative importance of biotic versus abiotic mechanisms on arsenic cycling 

in these systems. 
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