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ABSTRACT 

 

Dietary Effects on the Performance and Body Composition  

of the Generalist Insect Herbivore, Heliothis virescens  

(Lepidoptera: Noctuidae). (August 2010) 

Karl Adam Roeder, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Spencer Behmer 

 

 All animals, including insect herbivores, eat to acquire nutrients that are essential 

for fueling physiological processes associated with growth, development, and 

reproduction.  Protein and digestible carbohydrates are two nutrients required in large 

quantities by insect herbivores, but the amounts in which they occur in plants can be 

highly variable.  In this thesis, I explore how the amounts and ratios of protein and 

digestible carbohydrate in an insect herbivore's food affect lifetime performance and 

body elemental composition. I do this by confining a generalist caterpillar, Heliothis 

virescens, to semi-synthetic foods with fixed protein-carbohydrate amounts and ratios.  

 I show that foods with protein-carbohydrate ratios that match the self-selected 

protein-carbohydrate intake of final instar caterpillars correlate strongly with best 

performance, and that small deviations away from this optimal protein-carbohydrate ratio 

can result in large drop-offs in overall performance, particularly for males.  

 I also show the importance of protein-carbohydrate balance over total 

macronutrient content. Finally, my results demonstrate that H. virescens caterpillars do 

not practice strict elemental homeostasis. My result, when contrasted with earlier work on 
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caterpillars, suggests that hemimetabolous and holometabolous insect herbivores practice 

different degrees of elemental homeostasis. 
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CHAPTER I 

INTRODUCTION  

 

 Acquisition and consumption of food are fundamental steps that any animal must 

travel through in order to obtain nutrients for growth and reproduction. Animals have 

been shown to require about 30 nutrients, including amino acids, carbohydrates, sterols, 

phospholipids, fatty acids, vitamins, minerals, trace elements, and water (Chapman 

1998, Schoonhoven et al. 2005). Although many of these required elements are similar 

for different species (Sterner and Elser 2002), the blend of nutrients that they may need 

can be quite different (Behmer and Joern 2008). For animals that feed on plants, 

obtaining the correct blend can be challenging due to the variable nutrient profiles of the 

plants that they are consuming, and because plants often contain nutrients in less than 

optimal amounts and/or ratios (White 1978, 1984). For example, previous work has 

shown that the nitrogen, phosphorus, and sodium content is generally lower in plants 

than in animal tissue (Mattson 1980, Sterner and Elser 2002, Pennings and Simpson 

2008) and that plants are highly variable with respect to their protein and digestible 

carbohydrate content (Slansky 1993, Behmer 2009, Bernays and Chapman 1994, 

Schoonhoven, et al. 2005), which supply nitrogen and energy, respectively (McNeil and 

Southwood 1978, Mattson 1980, Scriber and Slansky 1981). 

 The most abundant and arguably successful animal herbivores are insect 

herbivores – it is estimated that they contain a quarter of all known living organisms 

  

This thesis follows the style of Ecology. 
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(Wilson 1992, Chapman 2006). Throughout time, herbivorous insects have been quite 

successful at exploiting various nutritional landscapes due to unique morphological and 

physiological adaptations. Additional divergences among insect herbivores have also 

been demonstrated through the use of various feeding strategies – some are specialist, 

feeding on a very narrow range of plants, while others are generalists, and fed on a broad 

range of plants, often representing many different plant families. What is interesting 

about these two categories is that both groups of herbivores, specialists and generalists, 

have been shown to experience varying degrees of nutritional quality in nature 

(Raubenheimer and Simpson 1999).  Plant nutritional variation is not uncommon, and 

differences can occur between species, populations, and even individuals, (Mattson 

1980, McNeill and Southwood 1978, Scriber and Slansky 1981). However, because 

variation in nutritional quality is likely to be much greater between different plants 

species than within plants species, specialist insect herbivores are likely to occupy a 

narrow nutritional niche, while generalists, which feed on a broad range of different 

plants, will experience a much broader nutritional niche.  The consequences associated 

with having evolved under different nutritional environments may be important in terms 

of how food nutrient content, especially food macronutrient content (proteins and 

carbohydrates), influences performance (including development time, survival, and even 

reproductive output). 

 The exploration of nutrient regulation in insect herbivores has been slowly 

pushed towards the measuring of nutrients in controlled choice or no choice artificial 

environments with fixed amounts or ratios of proteins, carbohydrates, and/or sterols on 
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various herbivorous insects like grasshoppers and caterpillars (reviewed by Behmer 

2009). Models, like the Geometric Framework (GF), that explore these relationships in 

more detail have been developed to understand how nutrients interact and the 

mechanisms animals use to regulate different classes of nutrients (Behmer 2009). 

Specifically the GF is a state-space model that examines how organisms with changing 

nutritional needs are able to solve the ever-changing problem of a varied nutritional 

environment by simultaneously regulating the intake of multiple nutrients (usually 

limited to two types shown on 2 –axes) (Simpson and Raubenheimer 1993, 1995). The 

GF is particularly good at showing the priority that an insect places on particular 

nutrients and how these decisions affect an individual’s performance by placing greater 

emphasis on the physiology and behavior of individuals (Behmer 2009). This is an 

important distinction to make since the GF can be used to explore how animals, e.g. 

herbivorous insects, change their behavior by feeding across a range of diets with 

varying protein: carbohydrate ratios (p:c) with possible lifetime implications that may 

have been inadvertently passed over.  

 The GF, in addition to being used to measure nutrient regulation, is also well 

suited to compare the effects of a food’s nutrient content on performance. This has been 

primarily observed in grasshoppers (Simpson and Abisgold 1985, Raubenheimer and 

Simpson 2003, Behmer et al. 2001) and caterpillars (Despland and Noseworthy 2006, 

Telang et al. 2001, Lee et al. 2006) but in all current published instances, the studies 

have focused on the last or just a few of the late larval instars (reviewed in Behmer 

2009). While these short duration studies provide insight on the physiological processes 
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occurring within those time periods, they fail to address a few key issues associated with 

lifetime consequences. Single stadium studies, for example Lee et al’s (2006) work on 

H. virescens, fail to take in account early instar dietary affects. In most cases (reviewed 

in Behmer 2009) a culture diet is fed to the earliest instars and then they are transitioned 

to the experimental food only in the last stage. These procedures produce statistically 

similar survival rates for vary different diets. Additionally, at least in the terms of fixed 

p:c macronutrient foods, reproduction and adult performance have yet to be measured. 

And although various pupal performance measurements, e.g. mass, lipid, elemental 

composition, have been measured, the affects of consuming a particular food for an 

entire lifetime has not yet been associated with a true fitness number in part due to the 

inability of hemimetabolous insects to produce viable young. 

 A related question, in both lifetime and single stadium regards, is how does the 

macronutrient content of a food influence how an organism builds itself (specifically its 

elemental composition). Since foods are composed of various elemental combinations, 

reactions can occur that rearrange or modify existing compounds (Sterner and Elser 

2002) and measuring this elemental flow is important not only for nutrient regulation 

within an organism, but also for overall elemental movement and flow in an ecosystem.  

Ecological Stoichiometry (ES) and its accompanying model were created to measure 

these movements (Sterner and Elser 2002). Specifically, ES is the balance of multiple 

chemical substances in ecological interactions and processes, or the study of this 

balance, which also sometimes refers to the balance of energy and materials (Sterner and 

Elser 2002). ES is quite useful in that regard as it helps explain the flow of elements, and 
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in turn how an organism uses certain elements and not others from the food it consumes. 

According to Sterner and Elser (2002), elements were chosen because they not only 

provide the framework for easy movement between biological levels but also because 

they are unchanging. They provide the structure for elemental body compositions across 

all living organisms. The focus of ES thus is elemental in nature, but broken down to 

exploring the relationship between three key macro elements: Carbon, Nitrogen, and 

Phosphorous. These three were primarily chosen due to their relevance in the building of 

an organism. Carbon, which makes up approximately 40-50% of the dry biomass of 

most living organisms (Sterner and Elser 2002), and nitrogen, which is an essential 

nutrient within proteins, nucleic acids, and amino acids, are of great importance since 

they make up a large percentage of the macronutrients that insects actively regulate 

(Joern and Behmer 1997, Simpson et al. 2004). Additionally phosphorous is a 

component of many of the building blocks found in DNA, RNA, ATP, and cell 

membranes. These three elements have currently been of great importance within 

aquatic invertebrate systems (Karimi and Folt 2006, Frost et al. 2004) as well as 

phosphorous levels within terrestrial food (Bertram et al. 2006), but measuring the 

physiological importance of the flow of carbon and nitrogen, within a terrestrial system 

has been slightly left behind.  

 ES, although relatively new, is a powerful tool that can be used to help answer 

critical questions concerning the flow of nutrients across a single stadium, multiple 

stadiums, and entire lifetimes. By incorporating both models, the GF and ES, proper 

mapping of elemental flow and the effects it has on the behavior and physiological 
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performance measurements of a holometabolous insect can finally be shown. 

Additionally, no completely controlled experiments have been performed on 

holometabolous insects (one study was done on a Hemimetabolous grasshopper –

Boswell et al. 2008), nor have any been performed across an entire developmental stage.  

Thus it is our goal, and the first study to our knowledge, that aims to explore multi 

stadium performance measurements in the geometric framework by comparing the 

stoichiometric flow of elements through an individual holometabolous insect. This study 

will also follow a number of other potential important elements (S, Na, K, Ca, Mg, Fe, 

Cu, Mn, and B), and specifically ask how do bottlenecks in food macronutrient content 

influence the flow of non-related macronutrient elements into an organism. 

 Animals, including insect herbivores, all require nutrients in order to survive and 

grow. By manipulating the p:c ratios and/or amounts of macronutrient in an animal's 

food, questions about performance, both within developmental stages and across entire 

lifetimes, can be addressed. In the first part of my thesis, I will examine the lifetime 

consequences associated with eating different fixed amounts of proteins and 

carbohydrates. It will be the first study to measure the lifetime performance of an 

herbivorous holometabolous insect on artificially manipulated diets, which vary in their 

macronutrient ratios of protein to carbohydrate. In the second part of my thesis, I will 

measure and compare the flow of elements across the larval developmental stage in 

order to test whether the absolute amount of macronutrients or the ratio that they are 

present within a food is more important to not only improving performance but also for 

the better understanding of how an insect builds itself from the food it eats. Within both 
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of my thesis chapters, the same holometabolous lepidopteran species, Heliothis virescens 

or the tobacco budworm, will be used. This species is a generalist caterpillar, which 

feeds on a broad range of food plants (Neunzig 1969, Schneider et al. 1986), and thus 

potentially experiences a broad range of food macronutrient content. 

 

 

7



CHAPTER II 

LIFETIME CONSEQUENCES ASSOCIATED WITH FOOD 

MACRONUTRIENT CONTENT IN A GENERALIST INSECT HERBIVORE  

 

Overview 

 Lifetime performance studies based on varied nutritional foods that mimic 

naturally occurring plants are vital to the overall understanding of the physiology of both 

hemi- and holometabolous insects. In this study seven unique artificial diets ranging 

from high protein: low carbohydrate (p31.5:c10.5) to low protein: high carbohydrate 

(p10.5:c31.5) were tested on Heliothis virescens Fabricus (Lepidoptera: Noctuidae) 

throughout an entire generation using a range of performance (survival, development, 

pupal mass, and lipid body percentage) and reproductive measurements (egg production 

and viability). Larval performance was highest on balanced (p21:c21) to slightly 

carbohydrate-biased diets (p17.5:c24.5). Pupal performance on the other hand was 

higher on balanced (p21:c21) to slightly protein rich diets (p24.5:c17.5), which has been 

shown previously to be the intake target of H. virescens. Males were more affected than 

females in regards to survival when any imbalance in macronutrients occurred. Highest 

eclosion and egg production rates were seen on the three middle range diets 

(p17.5:c24.5, (p21:c21, and p24.5:c17.5). Estimated population sizes for each diet 

treatment showed decreases in total size with each step down of diet variability away 

from p21:c21. Our findings suggest that single stadium studies are good indicators of 
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lifetime performance measurements, but fail to show the true effect that imbalanced 

foods have on individuals over an entire generation.  

 

Introduction 

 The fundamental reason all animals eat is to acquire nutrients that are necessary 

for growth and reproduction. Animals generally require a collection of about 30 

nutrients, consisting of amino acids, carbohydrates, sterols, phospholipids, fatty acids, 

vitamins, minerals, trace elements, and water (Chapman 1998, Schoonhoven et al. 2005), 

although the blend of nutrients that results in optimal performance is often species-

specific. A key challenge, though, is that the foods an animal eats often contain nutrients 

in less than optimal amounts and or ratios (Bernays and Chapman 1994). This is 

particularly the case for herbivores (Slansky 1993, Behmer 2009, Schoonhoven, et al. 

2005). For instance, the nitrogen, phosphorus, and sodium content of the plants is 

generally lower in plants than in animal tissue. It is also often the case that plants are 

highly variable with respect to their protein and digestible carbohydrate content, which 

supply nitrogen and energy, respectively (Mattson 1980, McNeil and Southwood 1978, 

Scriber and Slansky 1981). 

Herbivores can overcome some of the variation in the nutritional content of their 

food by practicing selective feeding, either by eating from a range of different plants, or 

feeding on different vegetative tissues within a plant. Insect herbivores are particularly 

adept at regulating their nutrient intake, especially their macronutrient intake (Zanotto et 

al. 1993). A key question, though, is what are the consequences to an herbivore when it 
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cannot practice self-selection, and is instead restricted to foods with sub-optimal nutrient 

content. For example, in some situations food may be limiting, and insect herbivores will 

have no option but to eat food that may be nutritionally suboptimal (e.g. as a result of 

drought). Alternatively, where high quality food is available, it may not be eaten because 

of the threat of predation (Schmitz and Suttle 2001). 

The effects of food macronutrient content on insect performance has received a 

great deal of attention, mostly in grasshoppers and caterpillars (reviewed by Behmer 

2009), but the large majority of these studies have restricted their investigations to the 

final immature developmental stage. A serious limitation to this approach is that the 

foods given to the test insects prior to the start of the experiment were likely of high 

quality, and thus macronutrient related differences in performance (e.g., survival, growth 

rate) might be dampened because test insects likely would have had nutrient reserves to 

draw upon during the experimental phase. It is also the case that many of these 

experiments, particularly ones using caterpillars, did not measure eclosion success. 

Finally, to the best of our knowledge, none of these experiments explored the 

reproductive consequences associated with being restricted to foods with fixed 

macronutrient content. 

Therefore, the aim of the current study was to explore, for the first time in an 

insect herbivore, the lifetime consequences (including reproductive output) associated 

with feeding on foods with a fixed macronutrient content. I explore this question using a 

generalist holometabolous caterpillar, Heliothis virescens. This caterpillar has a very 

broad diet, at both the individual and population level, so different individuals are likely 
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to experience a broad range of macronutrient ratios. I rear newly hatched neonate 

caterpillars, over their entire larval lifetime, on foods with different protein-carbohydrate 

(p:c) ratios, and measure the consequences of food p:c ratio on their larval, pupal and 

adult performance. Our results demonstrate that Heliothis virescens, despite being a 

generalist herbivore, performs best on a narrow range of p:c ratios, and that food p:c 

ratio affects males much more dramatically than females. We discuss our findings in 

relation to previous studies that have explored the short-term effects of food 

macronutrient content on insect herbivores, and their potential ecological implications. 

 

Materials and Methods 

Experimental Insects   

 Caterpillar eggs were obtained from a Heliothis virescens culture at North 

Carolina State University. These eggs came from adult female moths, which had been 

previously reared on a corn-soy-milk base diet (CSM) that had been modified from 

Burton (1970). All experimental neonates hatched at approximately the same time and 

within a few hours of hatching they were transferred, using a fine tipped paint brush, to 2 

oz. Solo cups that contained a block of experimental food (see below). A lid was placed 

on each individual cup, and all cups containing caterpillars were transferred to an insect 

growth chamber (Percival Scientific Biological Incubator, Model I-66VL) set at 29ºC +/- 

1ºC with a 12h: 12h L: D photoregime. 
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Experimental Diets 

 A total of seven CSM-based diets were used for this experiment. They all had 

similar combined total protein (p) and digestible carbohydrate (c) amounts (42% by dry 

mass) but differed in their p:c ratio:  (1) p10.5:c31.5 (10.5% protein and 31.5% 

carbohydrate), (2) p14.0:c28.0, (3) p17.5:c24.5, (4) p21.0:c21.0, (5) p24.5:c17.5, (6) 

p28.0:c14.0, and (7) p 31.5:c10.5.  The inclusion of a basal amount of CSM to the diet 

(20% of the total dry mass of the experimental food, which contributed 3.68% protein 

and 10.0% carbohydrate to each treatment) was necessary because initial pilot studies 

demonstrated that a pure synthetic diet (as used for grasshoppers (see Behmer et al. 

(2001)) did not support development of caterpillars from hatch to eclosion.  The 

remaining 80% of the experimental diet was synthetic (originally based on a recipe for 

grasshoppers (Dadd 1961), modified later by Simpson and Abisgold (1985), and then 

modified further for caterpillars by Simpson et al. (1988)).  The protein portion of the 

synthetic diet was a 3:1:1 mixture of casein, peptone, and albumen, while digestible 

carbohydrate was sucrose. Other nutrients in the synthetic diet included Wesson’s salt 

(1.92%), cholesterol (0.4%), linoleic acid (0.4%), ascorbic acid (0.24%) and a vitamin 

mix (0.16%), with the remaining portion being non-nutritive cellulose. These dry 

ingredients were presented to the insects suspended in a 1:6 ratio in 1% agar solution.  

Mold inhibitors in the form of Aggie Microbial Inhibitor (Roeder et al. 2009) at 0.5ml 

per 200 ml, formaldehyde at 0.1ml per 200 ml, and methyl paraben at 0.4 grams per 200 

ml were added to the wet diet mixtures of each treatment after the combination of dry 

and agar components had been completed. 
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Larval Protocol 

 Newly hatched neonates were randomly allocated to one of the nine diet 

treatments at hatch. There were sixty replicates per treatment and all treatments were run 

concurrently. Blocks of diet, each weighing approximately 1000 mg, were placed in 

arenas and replaced with fresh diet blocks of equivalent size every three days. Upon 

entrance into the 4th instar, arena lids were perforated with small holes for ventilation to 

reduce high humidity (pilot studies revealed that high humidity levels negatively 

affected performance of late instar caterpillars (K.A.R. personal observation)). For each 

arena two measures of performance were recorded: (1) whether larvae pupated (survival 

success to the pupal stage) and (2) for those that pupated, the length of time it took to 

become a pupa (with this data I could also measure total development time, in days, 

from hatch to pupation). 

 

Pupal Protocol  

 Five days after the larvae pupated, their mass and sex were recorded. I then split 

the pupae from each treatment into two groups. The first group, which was set-aside for 

mating experiments, contained 65% of the pupating individuals.  The individuals for the 

mating experiment were randomly selected, but an equal number of males and females 

were selected (in order to maintain a 1:1 male-female sex ratio).  These individuals were 

transferred to new arenas that contained a small square of damp paper towels, which 

increased eclosion success (K.A.R. pers. observation). For the individuals selected for 

mating, eclosion success was recorded as well as the number of days between pupation 
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and eclosion. The remaining 35% of the pupae were frozen and set aside for lipid 

extractions. Frozen pupae were dried to constant mass at 70° C, weighed to the nearest 

0.1 mg and lipid extracted in three, 24-hour changes of chloroform before being re-dried 

and re-weighed (Loveridge 1973). 

 

Adult Protocol 

 Overall survival success was calculated by subtracting 35% of the pupating 

individuals for each diet from the starting 60 individuals, creating a revised starting 

population size. The number of eclosing adults was then divided by this revised 

population number in order to determine an average total survival percentage for each 

diet.  For individuals that successfully eclosed, development time was recorded in days.  

Upon successful eclosion, a single male and female from the same diet treatment were 

randomly paired and placed into breeding arenas for six days. These breeding arenas 

were composed of two key components. The first was a capped 50ml Corning plastic 

tube, standing upright, which held the mating pair.  The second component was a 1.5ml 

VWR centrifuge tube filled with a 10% sucrose solution, pushed through a hole drilled 

in the cap on the corning plastic tube.  A small hole had been drilled in the 1.5ml 

centrifuge tube, which allowed moths to access the sucrose solution. There was also a 

hole at the bottom of the Corning plastic tube that prevented leaked sucrose solution 

from building up in the bottom of the Corning plastic tube.  Inside each large tube was a 

small sheet of paper towel for females to place their eggs.  This sheet fit loosely inside 

the larger tube, and covered the entire tube in a single layer. The paper towel strip was 
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changed every two days. Adult moths were monitored daily, and when death occurred it 

was recorded and the dead adult was removed. Eggs were counted on each sheet and 

then placed into separate sealed deli cups in order to monitor offspring viability for each 

mating pair. Viability was also calculated, by dividing the total number of hatchlings by 

the number of eggs laid. 

 

Statistical Analysis 

 Analyses were run using JMP 7.0.2. (SAS Institute Inc). Logistic regressions 

were used for survival success to the pupal stage, from the pupal to the adult stage, and 

for the total overall survival with odds ratios to make comparisons between treatments. 

Survival analyses were used for developmental time to pupation, from pupation to 

eclosion, and for the total time from neonate to eclosion with post hoc contrast 

comparisons.  ANOVA was run to compare pupal wet and dry mass as well as the body 

lipid content (%) with Tukey post-hoc tests. Additionally, logistic regression was used to 

determine the significance of egg producing pairs across all treatments, and ANOVA 

was run to compare the average egg production and viability of egg producing pairs. 

 

Results 

 Our results are divided into three sections based on the developmental stage 

(larval, pupal, and adult) of the experimental insects. 
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Larval Performance 

 Larval survival success, recorded as the percent of individuals pupating, was 

significantly different between treatments (Logistic regression: df = 6, χ2 = 18.06, P = 

0.006). It was highest on the slightly carbohydrate rich p17.5:c24.5 diet, although 

survival success on the p14:c28 and p21:c21 diets did not differ statistically compared to 

the p17.5:c24.5 diet. Survivorship was lowest on the most protein-biased diet 

(p31.5:c10.5), but it did not differ statistically compared to the other protein-biased diets 

(p28:c14 and p24.5:c17.5), or the most carbohydrate-biased diet (p10.5:c31.5) (Figure 

2.1a). 

I also observed significant differences in development time (from hatch to 

pupation) between treatments (Survival analysis: df = 6, χ2 = 72.52, P < 0.001). 

Development was fastest on the p24.5:c17.5 diet, but there was no difference between 

treatments with at least 17.5% protein (Figure 2.1b). Development took the longest on 

the extremely carbohydrate-biased diet (p10.5:c31.5). 

 

Pupal Performance 

 Upon pupation I recorded the sex of the pupae and then measured pupal wet 

mass (5 days post pupation), survival success (scoring whether or not they eclosed), and 

development time (days from pupation to eclosion). Additionally, for a subset of pupae 

on each treatment, I also recorded whole-body lipid content. With respect to pupal wet 

mass I observed a significant treatment effect (ANOVA: F6,301 = 3.40, P = 0.003), but no 

sex or treatment-by-sex interaction (ANOVA: F1,301 = 3.48, P = 0.063, and F6,301 = 1.58,  
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Fig. 2.1. Larval performance measures. Panel (A) shows survival 
 success, measured as a percent. Panel (B) shows the mean 
 (±SE) development time for larvae that successfully 
 pupate. Panel (C) shows the mean (±SE) pupal wet mass.
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Fig. 2.1. continued
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P = 0.152, respectively). Pupal wet mass was highest on the p24.5:c17.5 diet and lowest 

on the p31.5:c10.5 diet, but there was no statistical difference in wet mass between the 

other diets, and these diets did not differ compared to the former diets (Figure 2.1c). 

 Survival from the pupal to adult stages differed significantly between treatments 

(Logistic regression: df= 6, χ2 = 68.17, P < 0.001). Pupal survival was best on the 

balanced (p21:c21) and slight imbalanced diets (p17.5:c24.5 and p24.5:c17.5), and then 

dropped off in a symmetric fashion as the diets became more nutritionally imbalanced in 

both directions (Figure 2.2a). However, food macronutrient content had a much greater 

effect on survival success of male pupae compared to female pupae. Female survival 

was high on all but the most carbohydrate-biased diet (Figure 2.3a), while male survival 

was best on the p24.5:c17.5 diet, intermediate on the balanced (p21:c21) and slight 

carbohydrate-biased (p17.5:c24.5) diets, and then dropped-off greatly on diets with more 

extreme p:c imbalances (Figure 2.2a). 

 Pupal development time also differed significantly between the diets (Survival 

analysis: df = 6, χ2  = 97.61, P < 0.001), although this was mostly the result of longer 

development on the most carbohydrate-biased diet (Figure 2.2b). Additionally, females 

tended to develop faster than males. The only exception was on the most carbohydrate-

biased diet, where male and female development time was similar (Figure 2.2b). 

 Finally, the lipid content of pupae (calculated on a dry mass basis) differed 

significantly between treatments (ANOVA: F6,90 = 31.93, P < 0.001). It was highest on 

the two most carbohydrate-biased diets, intermediate on diets with equal or slightly 

imbalanced p:c ratios, and lowest on the two most protein-biased diets (Figure 2.3). I  

19



Fig. 2.2.  Pupal performance measures.  Panel (A) shows survival success, measured as a 
  percent. Panel (B) shows the mean (±SE) development time for pupae that 
  successfully eclose. Males (grey bars) and females (white bars) are shown 
  seperately for each treatment. Small white boxes between bars identify significant 
  differecnes between the sexes (ns= not significant and *= significant).
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also observed a significant sex effect (ANOVA: F6,90 = 6.86, P = 0.010), with females 

having a higher average lipid content, but did not observe a significant treatment-by-sex 

interaction (ANOVA: F6,90 = 0.31, P = 0.933), 

 

Cumulative Performance and Adult Reproduction 

 I analyzed total survival success (did individuals survive from hatch through to 

eclosion) and development time (days from hatch until eclosion). Survival from hatch to 

eclosion was significantly different across the seven treatments (Logistic regression: df = 

6, χ2   = 41.53, P < 0.001). It was highest on the diets with balanced (p21;c21), and 

slightly imbalanced p:c ratios (p17.5:c24.5 and p24.5:c17.5), but steadily declined as the 

p:c ratios of the diets became more imbalanced (Figure 2.4a). Development time from 

hatch to eclosion was also significantly different across the treatments (Survival 

analysis: df = 6, χ2  =37.69, P < 0.001). It was equally fast on diets with balanced or 

protein-biased p:c ratios (Figure 2.4b), and slowest on the extremely carbohydrate-

biased diet. 

I also recorded the total number of mating pairs generated on each treatment, the 

number of egg producing pairs, the number of eggs for successful mating pairs, plus egg 

viability (Table 2.1). The number of mating pairs and egg producing pairs was highly 

variable due to the different eclosion and survival rates displayed across the treatments. 

When comparing the number of pairs to a hypothetical population that had 100% 

survival and the same 35% of individuals removed for lipid analyses, both the number of 

mating pairs (Logistic regression: df= 6, χ2 = 31.38, P < 0.001) and the number of egg  
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Fig. 2.4.  Cumulative performance and adult reproduction. Panel (A) shows 
  survival success, from hatch to successful eclosion, measured as a
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producing pairs (Logistic regression: df= 6, χ2 = 22.14, P = 0.001) were 

statistically different across treatments. However, the average egg production per mating 

pair that could produce eggs was not significantly different between treatments 

(ANOVA: F5,30 = 1.70, P = 0.165). The highest average egg production per mating 

couple was found on high protein, low carbohydrate diets while the lowest egg 

producing couples were found on low protein, high carbohydrate treatments and the 

slightly imbalanced treatments were not found to be significant from one another (Table 

2.1). All treatments that produced mating pairs were capable of producing viable young, 

however the range of viability was significantly affected by the p:c ratio of a diet 

(ANOVA: F5,30 = 5.48, P = 0.001).  

 

Discussion 

 The general trend among generalist caterpillars with respect to protein and 

carbohydrate regulation is that they self-select foods in such a way as to ingest more 

protein than carbohydrate, or at the minimum maintain a balanced protein-carbohydrate 

intake (reviewed by Behmer 2009).  Often, though, caterpillars may be unable to 

regulate their macronutrient intake, but currently the full consequences of caterpillars 

eating a nutritionally suboptimal diet are poorly understood.  In large part this is because 

most nutritional studies have only explored performance in the final stadium (e.g., 

Despland and Noseworthy 2006, Telang et al. 2001, Lee et al. 2006).  In this current 

paper I build a comprehensive picture of how a food’s nutritional qualities, particularly 

its macronutrient content, can affect an herbivorous insect over its entire lifetime, 
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including its reproductive output.  My results demonstrate three key findings.  First, self-

selected protein-carbohydrate intake targets obtained during the final instar likely 

represent the optimal diet for the entire larval development period.  Second, males are 

much more sensitive to nutritional imbalances than are females, but this effect is only 

revealed at the time of eclosion.  Third, when larval and pupal performance are 

combined with reproductive output, it becomes clear that there is specific protein-

carbohydrate ratio that is optimal, and that small deviations away from this intake target 

has strong negative consequences at the population level. 

H. virescens and other lepidopteran species have been used in many previous 

studies that measured larval performance on fixed macronutrient foods (Lee 2007, 

Raubenheimer and Simpson 2003, Despland and Noseworthy 2006, Telang et al. 2001, 

Lee et al. 2002, 2003, 2004a, 2004b, 2006), but most of these studies only examined 

performance values for the final larval instar (with the single exception of Despland and 

Noseworthy 2006, who started their study with 2nd instar caterpillars) . Lee et al. (2006) 

studied last instar H. virescens, and identified a self-selected intake target between 

p21:c21 and p28:c14. In the current study survival values were highest (~90%) on a 

slightly carbohydrate enriched diet (p17.5:c24.5), and then dropped off gradually as the 

diets became both more carbohydrate-biased (e.g. survival on the most carbohydrate-

biased diet was ~60%), and more protein-biased (survival was also ~60% on the most 

protein-biased diet).  These results demonstrate the importance of exploring the effect of 

diet macronutrient profile on survival over the entire larval development period, as most 

other lepidopteran studies typically fail to show differences in survival when only a 
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single developmental stage is examined (e.g. Lee et al. 2006). In fact, in most of these 

studies survival across all diets is often 100%. 

The best protein-carbohydrate combination, in terms of rapid development (from 

hatch to pupation), size (wet pupal mass), and growth rate (a performance measure that 

combines the two former variables combined), was the p24.5:c17.5 diet.  This protein-

carbohydrate ratio closely matches the self-selected protein-carbohydrate intake target 

seen in final stadium H. virescens caterpillars (Lee et al. 2006).  Interestingly, though, 

protein-carbohydrate ratios do not seem to have large effects on development and final 

body size.  The lack of large differences in larval performance across the p:c ratios 

examined in the current study might be the result of compensatory feeding.  Although 

amounts of food eaten were not measured in the current study, Lee et al. (2006) using a 

similar range of diets, showed that H. virescens caterpillars on carbohydrate-biased diets 

ingested more food relative to caterpillars on high-protein diets.  The outcome of 

increased food consumption was that caterpillars across all diet treatments ingested 

similar total amounts of protein. Rapid development and high protein consumption are 

often considered evolved traits in generalist caterpillars since both are thought to reduce 

the risk of predation and parasitism under natural conditions (Lee et al. 2006). However, 

a consequence associated with protein-driven compensatory feeding is that 

carbohydrates were eaten in excess of their requirements, and as a result caterpillars on 

these diets showed greatly elevated lipid content (on the two most carbohydrate-biased 

diets fat body content was near 25%).  In contrast, caterpillars on the two most protein-

biased diets ate less carbohydrate, and as a result showed incredibly low body fat levels 
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(~5-6%).  For H. virescens, the ideal body fat content, based on the treatments that 

correlate with the best performance, seems to be about ~13%. 

The current study is the first, to my knowledge, to explore the effects of food 

protein-carbohydrate content on eclosion success in a holometabolous insect.  When 

eclosion success was measured, across both sexes, the best protein-carbohydrate 

combinations for eclosion success were the diets with equal or near-equal p:c ratios 

(p17.5:c24.5, p21:c21, and p24.5:c17.5).  However, when males and females eclosion 

success was compared within treatments, male eclosion success, as compared to female 

eclosion success, was shown to be much more sensitive to diet p:c ratio.  In particular, 

males on the two most carbohydrate-biased and two most protein-biased diets suffered 

significantly higher mortality than did females.  These results suggest that males are 

much less well equipped to deal with extreme nutrient imbalances than are females.  It is 

not clear why males would suffer more on high-carbohydrate diets compared to females.  

Males and females showed similar fat levels on the different diets, so perhaps females 

are better suited for handling high body lipid levels than are males. In contrast, fat levels 

were low for both males and females on the high-protein diets.  Here males might suffer 

from nitrogen toxicity, as they attempt to increase their carbohydrate intake.  This might 

occur because female caterpillars, but not males, have the ability, via storage proteins, to 

deal with excess nitrogen (Telang et al. 2001).  The collection and storage of nitrogen is 

important during larval development as female moths and butterflies rarely consume 

nitrogen in the adult stage. 
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A second measure of pupal performance was pupal development time.  Here, as 

was the case for larval development time, the time from pupation to eclosion was 

relatively similar across most treatments, except for the biased carbohydrate diet 

(p10.5:c31.5), although this difference was not large.  However, even small differences 

in development might be important in the field, as extended development can increase 

the risk of predation and parasitism (Moran and Hamilton 1980, Benrey and Denno 

1997, Lee et al. 2006). 

This is also the first study, to my knowledge, to quantify the effects of diet p:c 

ratio on reproductive output in an adult insect herbivore.  The reason for this lack of data 

relates to complications between the ingredients and the reproductive ability of 

individuals (Dadd 1960, Cavanagh 1963).  When the reproductive data was compared, 

the highest egg production was seen on the highest protein diet; however this treatment 

only produced two pairs capable of laying eggs from a potential four out of a starting 

sixty caterpillars, while other treatments had over ten couples laying eggs at various 

amounts. This increase in egg production for lepidopterans on higher protein diets may 

be similar to the way diet quality, and especially the N content, has been shown to not 

only affect the rate of egg production but also the size of the laid eggs in grasshoppers 

(Joern and Behmer 1997). Egg size was unfortunately not measured in this study so a 

complete comparison between hemi and holometabolous insects cannot be made, but our 

results do offer similar findings to those that indicate increasing protein levels are 

generally associated with a higher offspring production rate.  
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The effects of a diets p:c ratio are even more pronounced when they are projected 

at the population level. I did this by using our data for survival success, egg production, 

and offspring viability to create an estimate of how large a population of H. virescens 

could grow if it was maintained on foods with different p:c ratios (sensu Behmer and 

Grebenok 1998). Each treatment was designated a starting population of 100 individuals 

in a 1:1 sex ratio, with no assumed mortality from biotic or abiotic factors. These 

individuals were run through multiple generations using our previously determined 

performance values in order to create estimated populations. Interestingly the slightly 

protein-biased food (p24.5:c17.5) which had previously been shown here, and by others 

(Telang et al. 2001, Lee et al. 2006) to produce better performing late instar H. virescens 

larvae, did not produce the largest population.  Instead, the largest population growth 

was observed on the balanced diet (Figure 2.5). After only the third generation, the 

balanced diet (p21:c21) produced an estimated population size that was almost double 

that of two closest diets (p17.5:c24.5 and p24.5:c17.5), three times greater than the two 

most protein-biased diets, and 6x better than the p14:c28 diet. 

In conclusion, my results indicate that for H. virescens a balanced to slightly 

protein enriched diets are optimal in terms of lifetime performance. Key questions 

concerning study length importance were addressed through the use of multiple 

developmental stages, and this study shows that in general the protein-carbohydrate 

intake target selected by caterpillars in single stadium studies (usually the final instar) 

correlate well with the performance of multiple stadium studies. The combined results, 

including the effects at the population level, indicate that the diet macronutrient content 
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has important effects on insect herbivores, and that even small departures from an 

optimal p:c ratio can have dramatic effects.  Perhaps subtle changes in nutrient quality of 

available host plants has a much greater impact on population levels, and by extension 

community level patterns, than has been previously recognized. 
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Fig. 2.5.  Estimated population size at the end of the third generation of H. virescens caterpillars. 
  Population sizes were based on the survival success, egg production, and offspring 
  viability for each treatment.
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CHAPTER III 

THE EFFECT OF FOOD MACRONUTRIENT BALANCE AND AMOUNTS ON 

PERFORMANCE AND ELEMENTAL BODY COMPOSITION IN A 

GENERALIST INSECT HERBIVORE 

 

Overview 

 Ecological stoichiometry, or the study of the balance of energy and materials in 

living systems, has previously focused on aquatic invertebrate systems due to the relative 

amount of control needed to measure the flow of elements. Little attention has thus been 

given to terrestrial systems that concentrate on the elemental flow in herbivorous insects.  

In particular, the studies that have previously looked at stoichiometry in insects have 

done so in a limiting manner that primarily focused on three key elements: carbon, 

nitrogen, and phosphorous. Currently, there is only one study on hemimetabolous 

grasshoppers that has investigated how macronutrient content influences the elemental 

body composition of an insect. Here I manipulated both the protein to carbohydrate ratio 

(p:c)  and the total amount of macronutrient content in order to explore the performance 

and elemental consequences associated with each using Heliothis virescens Fabricus 

(Lepidoptera: Noctuidae) throughout their entire larval development. Many of the 

highest values for performance were seen on a slightly protein-biased ratio (p1.4:c1) 

when protein levels were highest (28%). Elemental results indicate that the amount and 

concentration of elements varied according to macronutrient ratio and/or amount that 

were being consumed. I discuss these results in the context of ecological stoichiometry 
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using a geometric framework to explain the relationships between macronutrient 

amounts and ratios in order to better understand how an insect performs and builds itself.  

 

Introduction 

 All animals eat to obtain key nutrients that are required to fuel the processes of 

growth and reproduction (Chapman 1998, Schoonhoven et al. 2005).  However, different 

foods can often vary with respect to the types and amounts of nutrients they contain.  

This is particularly true for animals that feed on plants, which are known to vary with 

respect to a broad range of important nutrients (Bernays and Chapman 1994).  Two key 

nutrients that can be highly variable in plants, and which are known to influence insect 

performance, are protein and digestible carbohydrates (hereafter “carbohydrates”).  The 

manner in which insect herbivores respond to variation in their food protein-

carbohydrate level can best be understood using the experimental approach of the 

geometric framework (reviewed in Raubenheimer and Simpson 1999, Behmer 2009).  

The geometric framework (hereafter “GF”) is a state-space modeling approach designed 

to study how an animal balances the intake of multiple nutrients in response to changing 

nutritional needs in multi-dimensional and variable nutritional environments. The GF 

was originally designed to study, in locusts and caterpillars, the multiple interactions 

among mechanisms regulating the intake of different classes of nutrients (Raubenheimer 

and Simpson 1993, 1997, 1999, Simpson and Raubenheimer 1993, 1995, 2001).  Over 

recent years, though, it has also been used to explore nutrient regulation and interactions 

in a broad range of organisms, including chickens (Raubenheimer and Simpson 1997), 
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rats (Simpson and Raubenheimer 1997), mice (Sorensem et al. 2008), fish (Ruohonen et 

al. 2007), and even humans (Simpson et al. 2003). 

The GF is also a useful tool for exploring nutrient utilization in insects, including 

the rate and efficiency of conversion of ingested carbohydrates and proteins into body 

lipids and body nitrogen (N), respectively.  Recently, though, a stoichiometric approach, 

where the emphasis is on the flow of important biological elements from resources (e.g. 

plants) to consumers (e.g. insect herbivores), has also been used.  This approach, called 

ecological stoichiometry (henceforth “ES”), is the study of the balance of energy and 

multiple chemical elements in ecological interactions (Sterner and Elser 2002), and it has 

become popular due to its recognition of species-specific regulatory physiology as the 

basic unit in ecological processes (Raubenheimer and Simpson 2004). Additionally, ES 

has broadened past emphasis on single variable studies (e.g. ones that focus solely on 

energy) to include several dimensions that examine multiple nutrients and energy 

(Reiners 1986, Sterner and Hessen 1994, Raubenheimer and Simpson 2004).  ES has 

been successfully used to measure the energy and elemental flow in snails (Stelzer and 

Lamberti 2002), zooplankten (Boersma and Kreutzer 2002), insects (Perkins et al. 2004), 

fish (Borlongan and Satoh 2001), and birds (Grone et al. 1995) across terrestrial, marine, 

and freshwater ecosystems. However, since most ES studies have focused primarily on 

aquatic invertebrate systems (Karimi and Folt 2006, Frost et al. 2004), due to the relative 

amount of control needed to measure the flow of elements, few terrestrial systems have 

truly explored ES beyond measuring the effect of phosphorous levels in food (Fagan et 

al. 2002, Schade et al. 2003, Bertram et al. 2006, 2008). This discrepancy has prevented 
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a number of different physiological questions that specifically compare elemental 

imbalances in nature and how these imbalances directly affect a consumer’s physiology 

and life history from being answered. 

Despite being developed independently of one another, the GF and ES have 

many similarities.  An important one is that both recognize that animals are often faced 

with potential imbalanced mixtures of energy, nutrients and important elements (Sterner 

and Elser 2002), and where this occurs it can place strong constraints on growth and 

reproduction (Brunning 1991, Sterner and Schulz 1998, Aerts and Chapin 2000).  But 

there are also key differences, most notable being that the GF places a greater emphasis 

on absolute amounts of biomolecules (e.g. protein and digestible carbohydrates) 

consumed, retained and excreted, while ES primarily focuses on the concentration of 

elements (namely C, N, and P) in food and consumers (Raubenheimer and Simpson 

2004).  These differences are significant for a number of reasons.  First, it is important to 

recognize that insects have evolved regulatory mechanisms for nutrient biomolecules, in 

particular protein (which contains amino acids, and thus N) and digestible carbohydrates 

(the key energy source), not for elements.  Second, regulation of protein and digestible 

carbohydrates often takes precedence over other classes of nutrients (reviewed in 

Behmer 2009).  Third, focusing on the elemental composition of foods can be 

problematic.  For example, much of the carbon found in an insect herbivore’s food is 

unavailable, because insects cannot digest cellulose (which often makes up more than 

50% of a plants biomass (Martin et al 1991)).  However, ES is a very useful approach 

because elements are a useful way to measure how an animal builds itself from the foods 
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it consumes, and linking important nutrient biomolecules, like protein and 

carbohydrates, with elemental body composition can provide novel insights into how 

tightly insect herbivores practice elemental homeostasis, and how food macronutrient 

content influences this physiological process (Frost et al. 2005).  Measuring elemental 

flow is also important understanding ecosystem processes and functioning (Sterner and 

Elser 2002). 

In the current paper I borrow experimental approaches both from the GF and ES 

to explore how food macronutrient content influences performance of an insect 

herbivore.  I do this by rearing the generalist caterpillar, Heliothis virescens, from 

hatchling to pupa on a range of synthetic diets that differ in their protein-carbohydrate 

ratios and/or absolute amounts.  This caterpillar has a very broad diet, at both the 

individual and population level (Neunzig 1969, Schneider et al. 1986), so different 

individuals are likely to encounter a broad range of macronutrient ratios in their food.  

For each insect I measure three key performance variables (survival rate from hatch to 

pupation, development time from hatch to pupation, and mass gain during the larval 

stadium), and then construct a composite variable that integrates these three different 

performance variables.  I also explore how the protein-carbohydrate profile of a 

caterpillar’s food affects its elemental composition (C, N, P, S, Na, K, Ca, Mg, Mn, Fe, 

Zn, Cu), as well as total lipid body levels.  A key aim of this paper is to understand 

whether food macronutrient ratio/balance, or total macronutrient content is more critical 

for insect herbivores.  I discuss these findings in relation to previous studies that have 
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explored the effects of food macronutrient content on insect herbivores, and their 

potential ecological implications. 

 

Materials and Methods 

Experimental Insects  

 Caterpillar eggs were obtained from a Heliothis virescens culture at North 

Carolina State University. These eggs came from adult female moths, which had been 

previously reared on a corn-soy-milk base diet (CSM) that had been modified from 

Burton (1970). All experimental neonates hatched at approximately the same time and 

within a few hours of hatching they were transferred, using a fine tipped paint brush, to 2 

oz. Solo cups that contained a block of experimental food (see below). A lid was placed 

on each individual cup, and all cups containing caterpillars were transferred to an insect 

growth chamber (Percival Scientific Biological Incubator, Model I-66VL) set at 29ºC +/- 

1ºC with a 12h: 12h L: D photoregime. 

 

Experimental Diets 

 A total of twelve CSM-based diets that differed in their protein (p) and 

carbohydrate (c) content were used for this experiment.  In total there were 3 protein 

concentrations (14, 20, and 28%) and 4 digestible carbohydrate concentrations (10, 14, 

20, and 28%), and the total macronutrient content of these twelve diets ranged from 24-

56%:  (1) p14:c10 (14% protein and 10% carbohydrate; combined macronutrient content 

= 24%), (2) p14:c14, (3) p14:c20, (4) p14:c28, (5) p20:c10, (6) p20:c14, (7) p 20:c20, 
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(8) p20:c28 ,(9) p28:c10, (10) p28:c14, (11) p28:c24, and (12) p28:c28. A two 

dimensional plot of the various treatments graphically depicts the various locations of 

each protein-carbohydrate combination within nutritional space (sensu Raubenheimer & 

Simpson 1999). 

The inclusion of a basal amount of CSM to each diet (20% of the total dry mass 

of the experimental food, which contributed 3.68% protein and 10.0% carbohydrate to 

each treatment) was necessary because initial pilot studies demonstrated that a pure 

synthetic diet (as used for grasshoppers (see Behmer et al. 2001)) did not support full 

development of caterpillars from hatch to pupation. The remaining 80% of the 

experimental diet was synthetic (originally based on a recipe for grasshoppers (Dadd 

1961), modified later by Simpson and Abisgold (1985), and then modified further for 

caterpillars by Simpson et al. (1988)).  The protein portion of the synthetic diet was a 

3:1:1 mixture of casein, peptone, and albumen, while digestible carbohydrate was 

sucrose. Other nutrients in the synthetic diet included Wesson’s salt (1.92%), cholesterol 

(0.4%), linoleic acid (0.4%), ascorbic acid (0.24%) and a vitamin mix (0.16%), with the 

remaining portion being non-nutritive cellulose. These dry ingredients were presented to 

the insects suspended in a 1:6 ratio in 1% agar solution.  Mold inhibitors in the form of 

Aggie Microbial Inhibitor (Roeder et al. 2009) at 0.5ml per 200 ml, formaldehyde at 

0.1ml per 200 ml, and methyl paraben at 0.4 grams per 200 ml were added to the wet 

diet mixtures of each treatment after the combination of dry and agar components had 

been completed This table also lists concentrations for 10 additional elements. 
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Experimental Protocol 

 Newly hatched neonates were randomly allocated to one of the twelve diet 

treatments at hatch.  There were sixty replicates per treatment and all treatments were 

run concurrently. Blocks of diet, each weighing approximately 1000 mg, were placed in 

arenas and replaced with fresh diet blocks of equivalent size every three days.  Upon 

entrance into the 4th instar, arena lids were perforated with small holes for ventilation to 

reduce high humidity (pilot studies reveled that high humidity levels negatively affected 

performance of late instar caterpillars (K.A.R. personal observation)).  For each arena 

two measures of performance were recorded:  (1) whether larvae pupated (survival 

success to the pupal stage), and (2) for those that pupated, the length of time it took to 

pupate (in days, from hatch to pupation). 

Five days after the larvae pupated, individuals were removed from their arenas, 

weighed for wet mass on an excellence plus XP analytical balance (Mettler Toledo), and 

then sexed. Pupae were then frozen till each individual had been weighed, after which 

they were dried to constant mass at 70° C and then reweighed to the nearest 0.1 mg for 

dry mass. Three sets of ten individuals (or evenly distributed groups depending on 

survival rates) with an equal male: female sex ratio were dried to constant mass at 70° C 

and set aside for lipid extractions, carbon and nitrogen analyses, and elemental body 

composition analyses.  

The first set of pupae used for lipid extractions were washed three times over 

three days in vials with chloroform, and redried to constant mass at 70° C (Loveridge 

1973). They were then reweighed in order to measure the change in body mass that 
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occurred during the extraction and an overall lipid percent was determined. The second 

group of ten insects was prepared for nitrogen (N) and carbon (C) analyses by vortexing 

individual dried pupae over a thirty second time period followed by a reweighing to the 

nearest 0.1mg (modification of a technique demonstrated in Boswell et al. 2008). The 

samples were then wrapped in small sheets of tin foil, placed in steel crucibles, and 

burned in an Elementar vario MAX CN high temperature carbon-nitrogen analyzer that 

was set at 950º C. Results were analyzed using methods demonstrated by McGeehan & 

Naylor (1988). The third set of pupae was vortexed into a fine powder, weighed to the 

nearest 0.1 mg, and then transferred to polypropylene digestion tubes. The samples were 

then digested using trace metal grade nitric acid on a 105º C graphite block and analyzed 

using a Spectro axial CIROS inductively coupled plasma – Atomic Emission 

Spectrometry (Havlin and Soltanpour 1980) in order to measure elemental body 

composition. Each diet treatment was also tested for C and N analyses as well as 

elemental composition so later comparisons between an insect's body and the 

composition of the food it ate could be made (Values listed in Table 3.1). Finally, an 

estimated overall performance measurement was calculated using the total wet mass of 

pupating individuals, their associated larval development time, and the average survival 

percentage for that each of the selected diets 

 

Statistical Analysis 

 Analyses were run using JMP 7.0.2. (SAS Institute Inc) to examine how the 

balance and ratio of proteins to carbohydrates affected an insect’s performance and body  
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composition throughout the larval stage. A response surface approach (Lande and 

Arnold 1983, Blows and Brooks 2003, and Chenoweth and Blows 2005) was utilized for 

all statistical analyses in order to estimate how certain amounts and ratios of proteins and 

carbohydrates affected larval performance in terms of survival, development, mass, and 

a composite estimate of these three variables. A response surface approach was also used 

to measure body composition for 12 elements (including C and N), plus total lipid 

content. These variables were analyzed in terms of absolute amounts and as a percent. 

 

Results 

Performance  

 Survival success (recorded as the percent of pupating individuals), development 

time (recorded as the number of days from hatch to pupation), and pupal mass were used 

as measurements of H. virescens caterpillar performance. 

Survival success was affected in a linear fashion by protein and carbohydrate, 

and in a quadratic fashion by carbohydrate (Table 3.2).  It was best on the p20:c14, 

p28:c20, and p28:c28 diets, and then dropped off as protein concentrations decreased 

(Figure 3.1a).  With respect to carbohydrates, survival was optimal at intermediate 

carbohydrate concentrations, and then decreased as carbohydrate concentrations became 

both lower and higher (Figure 3.1a).  Our second measure of performance, development 

time (recorded as the number of days from hatch to pupation), was only affected by 

protein (Table 3.2).  Development was fastest on diets with the highest protein content, 

and decreased in a linear fashion as protein concentration dropped (Figure 3.1b).  Our 
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third measure of performance, pupal wet mass, was affected in a linear fashion 

by protein, and in a quadratic fashion by carbohydrate (Table 3.2).  Pupal mass was 

highest on the p28:c14 and p28:c20 diets, and then decreased in a linear fashion as the 

dietary protein concentrations decreased (Figure 3.1c).  With respect to carbohydrates, 

pupal mass was optimal at intermediate carbohydrate concentrations, and then decreased 

as carbohydrate concentrations became both lower and higher (Figure 3.1c). 

 A composite variable that that integrated the probability of survival on each diet, 

with the growth rate of individuals on each diet, was also generated (sensu Simpson et 

al. 2004).  This variable, henceforth called ‘larval performance’, was significantly 

affected in a linear fashion by protein, and in a linear and quadratic fashion by 

carbohydrate (Table 3.2).  There was also a significant protein-by-carbohydrate 

interaction (Table 3.2).  Larval performance was clearly best on the p28:c20 diet, and 

then tended to fall away from this optimal peak in a horseshoe-like pattern (Figure 3.1d).  

Most notable was that larval performance on the p14:c14 diet was comparable to that of 

caterpillars on the p28:c10 and p20:c28 diets. 

 

Body Elemental and Lipid Composition 

 Total amounts and concentrations of 12 biologically important elements (C, N, P, 

S, K, Na, Ca, Mg, Zn, Fe, Mn, and Cu), plus amounts and body fat composition (as a %), 

were measured for caterpillars on each diet, and analyzed using Response Surface 

methods. 
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The statistical results for total amounts of elements for caterpillars from the 

different diets are shown in Table 3.3a.  Body amounts of K, Fe, and Mn were only 

affected significantly by protein.  Both K and Fe increased linearly as the protein content 

of the food increased (Figure 3.2e and 3.2j, respectively), while Mn levels were highest 

at protein levels of about 14% (Figure 3.2k).  In contrast, the amount of Na and Ca in 

caterpillars was only affected significantly by food carbohydrate content.  With respect 

to Na levels, a significant quadratic trend was observed, with levels generally highest at 

intermediate carbohydrate levels (Figure 3.2f), while Ca levels followed a linear trend, 

increasing as carbohydrate levels in the diet decreased (Figure 3.2g).  Body levels of C 

and Zn were significantly affected by both protein and carbohydrate.  The total amount 

of C in the body of caterpillars increased in a linear fashion as the digestible 

carbohydrate content of the diet increased, but followed a quadratic trend with respect to 

food protein content (Figure 3.2a).  In contrast, Zn body content decreased in a linear as 

dietary carbohydrate levels increased, but increased in a linear fashion as dietary protein 

levels increased.  For the five remaining elements (N, P, S, Mg, and Cu) I observed 

significant protein-by-carbohydrate interactions with respect to the total amounts.  In the 

case of P and S two identifiable peaks were observed, and for both elements the two 

peaks were intersected by the rail corresponding to the optimal p:c ratio for H. virescens 

caterpillars (Lee et al. 2006).  The response surfaces generated for Mg and Cu also 

showed two peaks, but here the two peaks for these two elements were not, relatively 

speaking, much higher compared to amounts from caterpillars on the other diets.  

Finally, body N, in addition to showing a significant protein-by-carbohydrate interaction,  
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was significantly affected, in a quadratic fashion, by food carbohydrate content. Body 

N amounts peaked on diets with high protein, and moderate to high carbohydrate 

content, but were also relatively high on diets that had 1:1 protein-carbohydrate ratios 

(Figure 3.2b). 

The statistical results for the concentration of elements for caterpillars from the 

different diets are shown in Table 3.3b.  The concentration of Na, Fe, and Cu were only 

affected significantly by protein.  Both Na and Fe concentrations were significantly 

affected by protein in a quadratic fashion, and were generally highest on moderate 

protein levels (Figure 3.3f and 3.3j, respectively).  The C concentration of caterpillars 

was only affected by dietary carbohydrate – it increased in a linear fashion as digestible 

carbohydrate levels in the diet increased (Figure 3.3a).  The concentration of Ca, Mn, 

and Zn were each affected by food protein and digestible carbohydrate content, but each 

in a different manner.  Body Ca concentrations increased linearly as digestible 

carbohydrates decreased, but were affected in a quadratic fashion by protein, being 

highest on diets with 20% protein (Figure 3.3g). In contrast, Zn concentrations increased 

in a linear fashion as food protein content increased, and increased in a quadratic fashion 

as food carbohydrate content decreased (Figure 3.3i), while Mn concentrations increased 

linearly as food protein and carbohydrate content decreased (Figure 3.3k).  For the five 

remaining elements (N, P, S, K, and Mg) I observed significant protein-by-carbohydrate 

interactions with respect to body elemental concentrations, and generally speaking the 

highest concentration of these elements occurred at low to moderate protein levels and 
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low to moderate digestible carbohydrate levels (Figures 3.3b, 3.3c, 3.3d, 3.3e, 

and 3.3h, respectively). 

Lastly, the effect of food protein and carbohydrate content on body lipid levels 

was analyzed.  Total lipid amounts increased linearly as the carbohydrate percent in a 

diet increased (Table 3.4a), and were highest on diets containing 28% carbohydrate 

(Figure 3.4a).  Body lipid content, measured as a percent, was also affected by both food 

carbohydrate and protein content (Table 3.4b), increasing in a linear fashion as food 

carbohydrate content increases and as protein content decreases (Figure 3.4b). 

 

Discussion  

 Protein and digestible carbohydrates are two important macronutrients for insect 

herbivores, although traditionally protein is considered to be the more limiting of the two 

(Joern and Behmer 1997).  Protein certainly was the limiting factor with respect to 

development, but carbohydrates can also limit performance.  For example, survival and 

mass gain were consistently low on diets with only 10% carbohydrate, even though 

protein content was relatively high (greater than 20%).  The key message from the 

current study, though, is there is a particular blend of protein and carbohydrate that 

optimizes insect performance, as demonstrated by the response surface analysis for 

survival success, pupal wet mass, and larval performance. 

The combined effect of protein and carbohydrate on larval performance has been 

explored in a range of generalist caterpillar species (Lee 2007, Raubenheimer and 

Simpson 2003, Despland and Noseworthy 2006, Telang et al. 2001, Lee et al. 2002, 
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2003, 2004a, 2004b, 2006), but the great majority of these studies looked at only a single 

developmental stage and typically kept the total macronutrient density (protein +  

digestible carbohydrates) constant. In the current study I’ve simultaneously explored the 

effects of both food p:c ratio and nutrient density, across all of larval development, and 

my results strongly suggest that obtaining a balanced protein-carbohydrate intake (one 

that is optimal for that given species) is more important than maximizing total 

macronutrient intake. Previous work with H. virescens has shown that final instar 

caterpillars self-select a diet with a p:c ratio of 1.4:1 (Lee et al. 2006), and in the current 

study larval performance (a composite of survival, development time, and pupal wet 

mass; see Fig. 1d) was best on the food that had this p:c ratio at a high density (p28:c20).  

The significance of balance rather than total macronutrient content is further 

demonstrated by the finding that larval performance on the p20:c14 food was 

comparable to the p28:c28 and p28:c14 diets, even though these latter two diets had 

greater total macronutrient content (56% and 42%, compared to 34%).  An even stronger 

case for the importance of balance is seen when performance on the p20:c14 diet is 

compared with performance on two other diets – p:20:c20 and p20:c28.  These two diets 

have the same protein content, but greater carbohydrate content relative to the p20:c14 

diet, yet larval performance on these two diets was reduced compared to that on the 

p20:c14.  Performance was also reduced on three other diets with elevated total 

macronutrient content relative to the p20:c14 diet (e.g. p14:c28, p28:c14 and p28:c10).  

Reduced performance on imbalanced diets is likely due to physiological costs associated 
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with having to process nutrients ingested in excess of requirements (Simpson et al. 

2004).  

Identifying performance trends associated with varying amounts and ratios of 

dietary proteins and carbohydrates helps explain only a piece of an insect's physiology. 

Biomolecules such as proteins, carbohydrates, and lipids and the elements that comprise 

them (e.g., carbon, nitrogen, phosphorous, etc.) are not always the same between food 

and consumer (e.g., demonstrated by varying phosphorous level between plants and 

insects in Fagan et al. (2002)), so a key question is how insect herbivores redress this 

incongruence. One could postulate that larger animals might always have higher total 

amounts of elements due to their increased size, and my study has shown this to be the 

case for structural elements like carbon and nitrogen. However, this is not always the 

case, as many of the electrochemical and catalytic elements were recorded in amounts 

that did not correlate with body size. The true test of elemental regulation, and the 

degree of nutritional homeostasis being practiced, is to examine elemental profiles as a 

percentage of body mass. My data shows that caterpillars, when restricted to a broad 

range of foods that differ in their protein-carbohydrate ratios, and absolute amounts, do 

not practice strict homeostasis. This result is in strong contrast to studies conducted on a 

generalist grasshopper (Boswell et al. 2008). 

Protein and digestible carbohydrates are the dominant macronutrients in plants 

and our diets, and they provide a large pool of key elements, particularly N and C 

(Sterner and Elser 2002). Carbon is a particularly important element to measure as it 

makes up a large percent of the total elemental profile, and is the dominant element 
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found in digestible carbohydrates, including sugar and starch. Carbon is also found in 

cellulose, a structural carbohydrate, but only C from sugar and starch (digestible 

carbohydrates) is available to insect herbivores. Importantly, I found that the 

concentration of C within individual caterpillars was positively correlated to a diet’s 

digestible carbohydrate level. That body C concentrations increased on high 

carbohydrate diets is likely tied to the physiological fate of ingested digestible 

carbohydrates, which when ingested in excess of requirements can be either respired 

(e.g. Zanotto et al. 1993) or converted to fat (triglyceride (TAG)) and stored. Insects fed 

diets with high carbohydrate content (28%) would have been greatly overeating 

carbohydrates to meet their protein requirements (Lee et al. 2004a). In doing so, they 

would have only been able to respire a fraction of their ingested carbohydrates, with the 

remainder being converted to fat (mostly in the form of triglyceride (TAG). Lipid 

content on high carbohydrate diets was elevated (see Figure 3.4), and because TAG is 

mostly C (around 80% of its total molecular weight), an elevated body lipid content 

likely explains the inability to strictly regulate C. 

Nitrogen, on the other hand, is found mostly in amino acids, which are the 

building blocks of protein. For insect herbivores, N is often recognized as one of the 

most limiting elements and in terms of its contribution to an organism's biomass, it ranks 

second behind C (Sterner and Elser 2002). Interestingly there was a clear N peak, in 

terms of concentration, and this peak occurred on foods with low nutrient densities (e.g., 

p14:c10, p14:c14, and p20:c10). This observation was likely a combination of small 

bodies that were lower in fat, and compensatory feeding (shown by Lee et al. 2004a) as a 
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means to acquire the correct amount of macronutrients needed for growth and 

development. In contrast, N body concentrations were lowest on high carbohydrate diets, 

which was likely a result of a dilution effect as a result of high body lipid. 

The remaining two structural elements that were measured were phosphorous, 

which is an important element found in DNA, RNA, ATP, and cell membranes, and 

sulfur, which is an essential element found in the two amino acids cysteine and 

methionine. Although total amounts of these elements were affected by an insect’s size, 

the concentration for both appeared to be negatively linked to the amount of 

carbohydrate in a given food. One possible reason for this is that when foods contained 

at least 14% carbohydrate, carbon concentrations were shown to increase and in turn 

reduce the available room for other structural elements (as shown for nitrogen, 

phosphorous, and sulfur). However when performance measurements were linked to the 

structural element's concentrations, I found that having a higher concentration of certain 

elements does not always lead to an increase in performance. 

In order to understand how an insect truly builds itself I next looked at the 

elemental composition for electrochemical elements, which are important for message 

transmissions across nerves, cellular signaling, and energy metabolism (Sterner and 

Elser 2002), and catalytic elements, which are important for digestion, hydrolysis of 

urea, nitrogen fixation, and various reactions with O2 (Sterner and Elser 2002). When 

these eight elements were compared, I found most to have a unique concentration peak 

that was not necessarily associated with any one particular dietary treatment. Therefore I 

propose that most of the electrochemical and catalytic elements were not directly 
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regulated to a certain concentration and reaffirm our hypothesis that caterpillars regulate 

their elemental concentrations at a lower level than grasshoppers. 

In conclusion, my results show that for H. virescens a balanced to slightly 

protein-enriched diet was optimal in terms of performance and because of this I argue 

that the ratio of protein to carbohydrate was more important than the absolute amount as 

long nutrients are not too diluted. An insect's elemental balance was also found to be 

directly affected by the p:c ratio of a food indicating that subtle changes in nutrient 

quality of available host plants may have a much greater impact on how an insect builds 

itself.  
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CHAPTER IV 

CONCLUSION 

 

 These experiments have helped provide information towards the better 

understanding of insect physiology, specifically in terms of what affects the performance 

and body composition of a generalist caterpillar like Heliothis virescens. I used the 

geometric framework to show how different protein and carbohydrate ratios in artificial 

diets, which simulated a wide range of plants that an insect may encounter in the wild, 

affected an insect's performance through multiple developmental stages. This type of 

study has generally limited the time frame to the last larval instar. However by 

comparing multiple developmental stages, a comprehensive picture of what an insect is 

doing and how it is being affected was created.  While some of my results did not directly 

confirm all of my hypotheses due to varied performance across some variables in 

different developmental stages, caterpillars were generally shown to perform best around 

the diet ratio that they had previously self-selected in single instar studies. Additionally 

population sizes for different generations were built from multiple performance 

measurements and clearly indicate that imbalances in p:c ratio directly affect the 

potential future fitness of any number of individuals. Sex differences, which are generally 

quite hard to measure in the larval immature stages, were shown to have significant affect 

for males in terms of survival during the pupal stage. The combined results, including the 

effects at the population level, indicate that diet macronutrient content is very important 
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to insect herbivores, and that even small departures from an optimal p:c ratio can have 

dramatic physiological effects.  

 These experiments also allowed me to use both the geometric framework and 

ecological stoichiometry in order to fully explore what is happening to an insect 

throughout its larval development when placed on diets that were composed of different 

amounts and concentrations of protein and carbohydrate. Specifically this experiment 

focused on exploring performance (survival, development, mass, and "larval 

performance") and body composition (C, N, P, S, K, Na, Ca, Mg, Zn, Fe, Mn, Cu, and 

lipid) over twelve diets that were mapped to a rectangular area within nutrient space.  

Essentially the main questions revolved around what was more important to an insect in 

terms of nutrients, the absolute amount or the ratio that they were presented in, and how 

an insect built itself from these different foods. While performance clearly confirmed 

what had been shown in the first experiment, body composition was affected by a 

number of different variables ranging from a diets macronutrient content to its elemental 

balance. The key message from the this study, though, is that there is a particular blend 

of protein and carbohydrate that optimizes insect performance. Future research should 

focus more on explaining why the elements were found in different amounts and 

concentrations and why reduced regulation of elemental concentrations was occurring in 

our holometabolous insect compared to the tighter elemental regulation seen on some 

hemimetabolous insects.  
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