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ABSTRACT 

 

Ultimate Limit State Response of Reinforced Concrete Columns for Use in 

Performance-Based Analysis and Design. (August 2010) 

Christopher Richard Urmson, B.E. (Hons), University of Canterbury, 

Christchurch, New Zealand 

Co-Chairs of Advisory Committee: Dr. John B. Mander 
               Dr. Rashid K. Abu Al-Rub 

 

The design of reinforced concrete structures for extreme events requires accurate 

predictions of the ultimate rotational capacity of critical sections, which is dictated by 

the failure mechanisms of shear, hoop fracture, low-cycle fatigue and longitudinal bar 

buckling. The purpose of this research is to develop a model for the full compressive 

behavior of longitudinal steel including the effects of bar buckling. A computational 

algorithm is developed whereby experimental data can be rigorously modeled. An 

analytical model is developed from rational mechanics for modeling the complete 

compressive stress-strain behavior of steel including local buckling effects. The global 

buckling phenomenon is then investigated in which trends are established using a 

rigorous computational analysis, and a limit analysis is used to derive simplified design 

and analysis equations. The derived buckling models are incorporated into well-

established sectional analysis routines to predict full member behavior, and the 

application of these routines is demonstrated via an incremental dynamic analysis of a 

ten-storey reinforced concrete building. The buckling models and the sectional analysis 

routine compare favorably with experimental data. Design recommendations and topics 

for further research are presented.  
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NOMENCLATURE 

 

ACI American Concrete Institute 

ASTM American Society for Testing and Materials 

CCANZ Cement and Concrete Association of New Zealand 

DBE design basis earthquake 

FEM finite element method 

IDA incremental dynamic analysis 

IM intensity measure 

LVDT linear variable differential transducer 

MCE maximum considered event 

PEER Pacific Earthquake Engineering Research 

PGA peak ground acceleration 

PHZ plastic hinge zone 

RC reinforced concrete 

RHS right-hand side 

SCWB strong-column weak-beam 

SDL superimposed dead load 

SNZ Standards New Zealand 

UDL uniformly distributed load 

Ag gross cross-sectional area 

As area of steel 
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Asp cross-sectional area of spiral steel 

Atrib tributary area 

a height of equivalent concrete stress block 

ai normalized area of ith fiber in Gaussian quadrature formulation 

b exponent in axial-lateral strain relationship 

bi width of ith fiber in Gaussian quadrature formulation 

Ch nodal concrete force 

c depth of neutral axis 

D’ diameter of core concrete 

d diameter 

db diameter of longitudinal reinforcing bars 

dbh diameter of transverse reinforcing bars 

Eeff effective modulus of steel 

Es elastic modulus of steel 

Esh initial modulus of strain-hardening portion of steel stress-strain curve 

ET tangent modulus 

EIeff effective flexural rigidity 

EIg gross flexural rigidity 

e instantaneous eccentricity of buckled bar 

eo initial eccentricity of reinforcing bar prior to application of axial strain 

eSF eccentricity imposed by shape function 

Fh force in layer of transverse reinforcement 
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Fi applied lateral load at ith storey 

Fyh yield force of transverse steel 

fc' compressive strength of plain concrete 

fcc' compressive strength of confined concrete 

fcb  critical buckling stress at intersection of “strength controlled” and  
  “stability controlled” curves 

fcr critical buckling stress 

fcs compressive steel stress 

fgb crippling stress from global buckling 

fh stress in layer of transverse reinforcement 

fo
- compressive steel stress at onset of strain reversal 

fs steel stress 

fsu ultimate steel stress in tension 

fsu
- inferred ultimate steel stress in compression 

fuh ultimate hoop stress 

fy yield stress of steel 

fyh hoop yield stress 

g acceleration due to gravity 

hi height of ith storey 

I second moment of area 

i,j,k general indices 

ko initial stiffness 

ku unloading stiffness 
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L length 

Le effective buckling length 

Lh length of transverse reinforcement 

Lph length of plastic hinge zone 

M bending moment 

Mcb  bending moment at intersection of “strength controlled” and  
  “stability controlled” curves 

Mh  moment resisted by transverse steel 

Mpp peak plastic bending moment 

Mpu plastic bending moment at ultimate axial load of steel 

Mpy plastic bending moment at yield point of steel 

My yield moment 

MSF moment imposed by the shape function 

Nb number of longitudinal bars in circular section 

Nh number of layers of transverse reinforcement in buckled length 

Ns number of spaces of transverse reinforcement in buckled length 

P axial force 

Pcb axial load at intersection of “strength controlled” and “stability 
 controlled” curves 

Pcr critical buckling force 

Pe experimental axial load 

Pi inelastic lateral load 

PSF axial load imposed by the shape function 



x 
 

Psu axial load when entire section is under a stress of fsu 

Py yield force of longitudinal steel 

p steel strain hardening exponent 

q steel reversal branch exponent 

qi normalized first moment of area of ith fiber in Gaussian quadrature 
 formulation 

R steel reversal branch exponent 

R* closest distance to fault rupture 

r radius of gyration of cross-section 

SA spectral acceleration 

s spacing of adjacent layers of transverse reinforcement 

(s / db)cb  reinforcing bar slenderness ratio at intersection of  
  “strength controlled” and “stability controlled” curves 

T period of structure 

Us strain energy 

V shear force 

Wi seismic weight of ith storey 

wi weighting factor for ith fiber in Gaussian quadrature formulation 

x,y,z general coordinates  

β exponent in critical moment-curvature relationship 

Δx incremental change in x 

δx infinitesimal change in x 

x  partial differentiation with respect to x 
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 strain 

b secondary geometric nonlinear buckling strain 

cr crippling strain at buckling 

cs compressive steel strain 

cu axial strain at hoop fracture 

f fracture strain 

fh hoop fracture strain 

gb crippling strain from global buckling 

h hoop strain 

max maximum section strain 

o strain at reference axis of bar cross-section 

o
-  compressive steel strain at onset of strain reversal 

oc control point reference strain for axial-lateral strain relationship 

s steel strain 

sh steel strain at the onset of strain-hardening 

su steel strain at ultimate stress 

t transverse strain 

tc control point transverse strain for axial-lateral strain relationship 

ult governing strain from hoop fracture and global buckling 

y yield strain of steel 

yh hoop yield strain 
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* component of earthquake record 

 curvature 

pp peak plastic curvature 

pu ultimate curvature 

 geometric hoop efficiency factor 

 lateral displacement of globally buckled reinforcing bar 

SF lateral displacement imposed by the shape function 

 ductility 

 rotation ductility 

γ descending branch shape factor 

 rotation 

m rotation at initial unloading 

p plastic rotation 

y yield rotation 

s volumetric ratio of confining reinforcing steel 

σ stress 

ξi distance multiplier for ith fiber in Gaussian quadrature formulation 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

It has long been recognized in the design of reinforced concrete (RC) structures that the 

demands imposed during a major seismic event cannot be efficiently resisted within the 

elastic range of the structure’s components. Instead, certain levels of damage are 

acceptable, depending on the magnitude of the earthquake, whereby the energy imposed 

on the structure is dissipated. For example, under more frequent, smaller magnitude 

earthquakes, only small amounts of “patch and repair” damage may be acceptable. 

Under a moderate “Design Basis Event” (DBE), some amount of permanent damage 

may be acceptable. Under a “Maximum Considered Event” (MCE) with a return period 

greater than about 2500 years, considerable energy dissipation requirements necessitate 

high levels of damage. Whatever the case, the ultimate goal is the prevention of structur-

al collapse. 

 

Because of the increased risk associated with incorporating damage as a means of energy 

dissipation, it is of utmost importance that undesirable modes of failure be prevented. 

Instead, a ductile collapse mechanism should be engineered, by design. This is normally 

achieved by the formation of plastic hinges at strategic locations in the structure. This 

concept is the basis of the capacity design philosophy, championed by Park and Paulay 

(1975). Under this design philosophy, ductile flexural plastic hinges form in the beams at 

each level, and in the base of the columns, to produce a “Strong Column Weak Beam” 

(SCWB) side-sway mechanism. These plastic hinges are then detailed in order to protect 

against undesirable modes of failure. Dutta and Mander (1998) identified these to be: 

 

 

This thesis follows the style of Journal of Structural Engineering. 
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(i) Premature compressive failure of the concrete due to lack of confinement; 

(ii) Compressive buckling of longitudinal reinforcement, in turn causing (i); 

(iii) Fracture of transverse reinforcement, causing (i) and (ii); 

(iv) Low cycle fatigue failure of longitudinal reinforcement. 

 

By providing sufficient levels of transverse confining reinforcement, all of the above 

failure modes can be deferred until the unavoidable fourth case (fatigue) governs. 

Although fundamental theories are well-known and established for the prevention of (i), 

compressive buckling (ii) has not been given the attention it deserves. Consequently 

many “bird-cage” buckling failures have been observed. This research seeks to demysti-

fy this phenomenon. 

 

1.2 Motivation and Research Objectives 

As part of the current state-of-the-practice in seismic design of RC structures, a perfor-

mance-based analysis of a designed structure is carried out to ascertain the damage 

expected under a DBE and an MCE. Since damage can usually be considered to be 

proportional to displacement limit states, it is necessary to conduct either a pushover 

analysis or an incremental dynamic analysis (IDA) to determine what the seismic 

demands on plastic hinge zones are. Due to the highly nonlinear behavior expected in 

structural components, the demand (pushover / IDA) analysis should be compared with 

capacity (moment-curvature or plastic hinge rotation) analyses of critical plastic sections 

in the structure. 

 

Structural capacity analyses of the critical sections can be done with relative ease using 

current knowledge. The elastic, plastic, peak and post-peak behavior of RC sections can 

be described with sufficient accuracy for use in a pushover analysis / IDA. However, 

identification of the critical case, at which failure is caused by one of the four failure 

mechanisms described above, is an area that is largely undeveloped.  
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It is the aim of this thesis to incorporate the four modes of failure, outlined above, into a 

seismic capacity analysis procedure. A particular emphasis will be directed at modeling 

the effects of inadequate transverse reinforcement details. This will give a more realistic 

prediction of ultimate rotation capacities of RC members. When blended with seismic 

demand analyses (e.g. IDA), a better indicator of likely failure at a particular seismic 

intensity can be obtained. To achieve this objective, it is desirable to have a simple yet 

accurate capacity model, for each failure mode, that lends itself to be used in a fiber 

element based member model. This is the case for concrete confinement failure (Mander 

et al., 1988a,b), shear failure (Kim and Mander, 2006) and low-cycle fatigue (Dutta and 

Mander, 2001). However, no satisfactory model has been found for buckling of longitu-

dinal reinforcement. As such, it is a further aim of this thesis to develop such a model. 

 

1.3 Outline of Thesis 

This thesis is arranged into six chapters that aim to address the objectives outlined 

above, as follows: 

 

Chapter II provides a comprehensive investigation of previous studies into global and 

local buckling. The chapter starts with a description of classical elastic and plastic 

buckling theories, and follows the progression of buckling models to the present day. 

Both experimental and theoretical investigations are described, and aspects of each study 

are critically reviewed.  

 

Chapter III presents a computational algorithm developed for buckling analysis of 

longitudinal reinforcement. The underlying computational theory is explained and the 

steps of the algorithm are outlined. Illustrative numerical examples that simulate 

physical tests are presented as validation of the algorithm. 

 

Chapter IV investigates the local buckling behavior of longitudinal reinforcing steel. A 

rational mechanics approach is used to examine the full plastic behavior of the steel and 
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the effects of true stress and strain. A computational fiber element analysis is used to 

compute the coupled effect of axial compression and lateral buckling. The results of the 

computational analysis are then used to develop a simple model for the compressive 

behavior of longitudinal reinforcing steel in engineering stress-strain coordinates. 

 

Chapter V develops a global buckling model that is an extension of the model developed 

in Chapter IV. This allows for the possibility of a longitudinal bar buckling over several 

layers of transverse steel. As with the model for local buckling, the aim is to have a 

model that predicts the compressive stress-strain parameters of longitudinal reinforcing 

steel. In addition, a design criterion for transverse steel is developed based on global 

buckling requirements. The model is again verified with available experimental evidence 

although this will be considerably more difficult than for the local buckling case. 

 

Chapter VI examines the derived buckling models which are incorporated into a 

moment-curvature analysis routine for a RC section. The analysis also includes the 

confined concrete model from Mander et al. (1988), the low-cycle fatigue model from 

Dutta and Mander (2001), and a shear model from Kim and Mander (2006). This routine 

is then validated against experimental data from RC column tests, and a demonstration is 

given of how the moment-curvature analysis is coordinated with a pushover analysis / 

IDA of a ten-storey RC building.  

 

Finally, Chapter VII presents a summary of the work presented in each chapter, the main 

conclusions of the thesis, recommendations for design and future work. 

 

1.4 Significance of Current Research 

The proposed local and global buckling models presented in Chapters IV and V are 

shown to work well in predicting the overall compressive behavior of longitudinal 

reinforcing steel. The models are derived from rational mechanics and validated against 

experimental observations for a wide range of steel types. They can be applied with 
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minimal effort in design and analysis contexts. Existing models that are accurate involve 

too much specialized computational (FEM) effort for practical use. Other models that are 

simpler to use often rely on high degrees of empiricism and as such are only strictly 

valid over the range of steels for which they were calibrated. 

 

The member capacity analysis presented in Chapter VI is able to give an accurate 

representation of elastic, plastic, peak, post-peak and ultimate behavior of RC members. 

This is necessary when comparing seismic demands versus capacities in a probabilistic 

framework. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Theoretical Buckling Models 

2.1.1 Classical Buckling Theories 

Elastic buckling was first studied in the classical papers by Euler (1744; 1759), who 

formulated the following solution for the critical buckling load Pcr: 

 

  
2

2

e

s
cr L

IE
P


  (2.1) 

 
where Es = Young’s modulus; I = the second moment of area of the member’s section; 

and Le = the effective length of the member about the axis of buckling. Recognizing that, 

for the case of a reinforcing bar with fixed ends with transverse steel spaced at s, the 

spacing is expressed as s = 2Le. Hence one can determine the critical buckling stress, fcr: 

 

  
2

224

s

rE

A

P
f s

g

cr
cr


  (2.2) 

 
where r = the radius of gyration of the circular bar. For a circular section, r = db / 4. 

However, for a reinforcing bar with rolled deformations, Mander (1983) showed that r = 

0.955 (db / 4). Hence the critical elastic buckling length of a reinforcing bar can be 

expressed as 

 

  
cr

s

b f

E

d

s
5.1  (2.3) 

 
According to elastic buckling theory, the Euler buckling curve is capped by the theoreti-

cal yield stress, fy. Other early researchers investigated buckling that occurs at stresses 

above fy, at which point buckling becomes an inelastic problem. It is well accepted that 

(2.3) still holds for inelastic buckling; however the Young’s modulus Es is replaced with 
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Eeff, the effective gradient of the stress-strain curve. For elastic buckling (where fcr < fy), 

Eeff = Es. For cases where fcr ≥ fy, Eeff takes some other value. Various theories have 

emerged for inelastic buckling, the first of which was the tangent modulus theory 

formulated by Engesser (1889). He essentially extended Euler’s model to the inelastic 

range by using the tangent modulus ET in (2.3), usually taken as Esh, the modulus at the 

onset of strain-hardening. It was assumed that the entire cross-section would be sub-

jected to this constant value of ET.  

 

However, experimental evidence consistently showed that real columns were stronger 

than Engesser predicted. It was pointed out that the reason for this is that, while some 

fibers of the section increase in compressive stress with a modulus of Esh, other fibers 

will unload, initially with an elastic modulus Es. Considère (1891) and Engesser (1891) 

both independently proposed solutions to this problem, using what eventually became 

known as the double modulus theory. This theory allows for the fact that some fibers of 

the section will unload during buckling, however experimental evidence consistently 

showed that the double modulus theory overestimated the true buckling strength of 

columns.  

 

Shanley (1947) discussed the column paradox. He explained that the double modulus 

theory assumes that at the instant of buckling, the section of the member will be 

subjected to the assumed distribution of moduli, which is true for a column that is 

perfectly straight before buckling. However, since no column is perfectly straight, lateral 

deflections occur before the peak load is reached, and the distribution of moduli assumed 

by the double modulus theory becomes an upper bound solution. As such, the true 

effective modulus lies between the tangent modulus and the double modulus. 

 

2.1.2 Local Buckling of Longitudinal Steel 

Bresler and Gilbert (1961) first identified the need to investigate buckling of longitudinal 

steel in reinforced concrete members. Since then, studies on inelastic buckling of 
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reinforcing bars have produced various theoretical models. These models occur in two 

groups – linearized solutions, and more recently, computational solutions. The models 

that are discussed below were derived for local buckling only, using a rational mechan-

ics approach. Models simply calibrated from experiments and models for global 

buckling are discussed in following sections. 

 

Mander (1983), in a study of reinforcing steel behavior in compression, compared 

buckling predictions using the elastic modulus, the tangent modulus and the double 

modulus. This comparison confirmed that the tangent modulus theory and double 

modulus theory are lower and upper bound approaches, respectively. An alternative 

solution based on the double modulus theory was proposed, where the secant modulus is 

used in the calculation of the “double modulus”, instead of the tangent modulus. This 

approach allowed for the fact that, at the point where buckling commences, the fibers 

that increase in compressive stress do not immediately load with the tangent modulus. 

As such, this approach lies between the upper and lower bound approaches.  

 

Mau and El-Mabsout (1989) carried out a computational study on local buckling of 

reinforcing bars. They performed a finite element analysis on a quarter-length of buckled 

reinforcing bar, using Gauss Quadrature to integrate stresses across the section, and 

Simpson’s rule to integrate along the length of the bar. In most cases, it was found that 

the results from the finite element analysis agreed with experiments very well for a wide 

range of steels. For very low spacings of transverse steel, a “straightening” phenomenon 

was observed, where after an initial lateral deflection the bar straightened again until a 

much higher buckling load was reached. This phenomenon has not been observed in 

experiments, and this suggests that other physical effects are occurring at these low 

spacings of transverse steel which were not captured in the finite element analysis.  

 

Mau (1990) used the results of the previous study to draw a generalized buckling curve 

for critical load as a function of slenderness ratio. He found that for low slenderness 
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ratios (s / db ≤ 7), the tangent modulus theory can be used to accurately estimate the 

critical buckling load.  

 

Dhakal and Maekawa (2002a) performed a similar finite element approach to the local 

buckling problem. They examined the effects of longitudinal bar slenderness ratio, yield 

strength and post-yield behavior on the stress-strain curve of a buckled bar. They 

proposed that the average stress-strain relationship under monotonic compression could 

be characterized for any grade of steel in terms of a parameter (L / db) √fy. This proposed 

relationship was incorporated into a cyclic stress-strain relationship (Dhakal and 

Maekawa, 2002b).  

 

Gil-Martín et al. (2006, 2008) also carried out a finite element study on locally buckling 

reinforcing bars. The results of this analysis were then used to develop simple mathemat-

ical expressions for approximating the stress-strain curve in compression using 

statistically derived parameters. This model was incorporated into a sectional analysis of 

reinforced concrete members. While the general approach is good in that it starts with a 

rigorous analysis and develops simple, practical expressions, the analyses were not 

compared with experiments in any cases, and hence the model was not adequately 

validated. This led to erroneous conclusions about the effects of initial eccentricity on 

the capacity of the bar. 

 

Monti and Nuti (1992) considered the effects of inelastic buckling on the cyclic behavior 

of a reinforcing bar. They developed a hardening rule-based plasticity model, using 

kinematic, isotropic, memory and saturation hardening rules that were modified for 

buckling. An empirical relationship was derived for monotonic compression which was 

used in the modification of the cyclic hardening rules. Experimental results were 

predicted well for cyclic tests.  
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Rodriguez et al. (1999) proposed a simpler cyclic model. This model used the cyclic 

stress-strain model for reinforcing steel from Mander (1993), modified by a parameter 

that predicts the onset of buckling. This parameter is based on the strain at which 

buckling occurs in monotonic tests, and this strain is simply applied at the point of 

reloading in a cyclic test.  

 

Kunnath et al. (2009) developed a comprehensive model for reinforcing bars under 

cyclic axial load. The model incorporates the effects of true stress, and it uses the 

buckling model proposed by Dhakal and Maekawa (2002a), the low-cycle fatigue 

models from Coffin (1954, 1971), Manson (1965) and Mander et al. (1994) and the 

cyclic stress-strain model from Chang and Mander (1994) but with more memory points. 

The model was validated by favorable comparison with experimental results. 

 

Gomes and Appleton (1997) considered the buckling problem using an energy minimi-

zation approach. The cyclic stress-strain model for steel developed by Menegotto and 

Pinto (1973) was used as the basis for cyclic behavior. A hyperbolic stress-strain 

relationship was then found for the buckled stress-strain curve using energy minimiza-

tion, both with and without considering the interaction between bending moment and 

axial load in the bar. This approach showed reasonable agreement with experiments on 

full concrete columns however there is a need to verify the model with experiments on 

bare steel bars. The model is very simple in that it considers only a bilinear material with 

modification for the Bauschinger effect on strain reversals. A model that includes strain-

hardening would be more rigorous in emulating actual stress-strain behavior of buckled 

steel bars. 

 

Dutta and Mander (1998) also adopted an energy minimization approach to solve the 

local buckling problem, but this was done in a far more rigorous manner than in the 

study by Gomes and Appleton (1997). Firstly, a full moment-curvature analysis of a 

reinforcing bar section was carried out, where for a given axial load, the curvature was 
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incrementally increased. The strain and stress profiles of the section were found from 

constitutive relations and section equilibrium, and the complete stress-strain curve 

(including strain-hardening) was used. This moment-curvature data was used together 

with moment-axial load interaction relationships and the virtual work mechanism of a 

buckled bar to obtain a simplified relationship between s / db and fcr / fy. While the 

approach is sensible and the resulting relationship is easy to apply for both analysis and 

design situations, the study itself contained several errors. The moment-curvature 

analysis neglected the possibility of load reversal on any of the cross-sectional fibers. 

The moment-curvature analyses also assumed the same material behavior in tension and 

compression. In a continuum sense this is a valid assumption, however Poisson’s effect 

causes the cross-sectional area of the bar to increase in compression and decrease in 

tension. From this arises the distinction between engineering stress and true stress.  

 

Dodd and Restrepo-Posada (1995) characterized the relationship between engineering 

stress and true stress. Whereas the former neglects the change in bar cross-sectional area, 

the latter incorporates it such that in true stress co-ordinates, the material behavior is 

identical in tension and compression.  

 

Massone and Moroder (2009) used a fiber-hinge approach to model the response of the 

reinforcing bar’s section to compressive loads where an initial imperfection exists. The 

purpose of this was to model the experiments by Bayrak and Sheikh (2001) of monoton-

ic tests on reinforcing bars with initial imperfections. The model incorporates true stress 

effects and allows for load reversals. Unlike other studies, their model did not assume a 

deflected shape for the buckled reinforcing bar. Rather, plasticity was lumped at four 

plastic hinges along the member length and elastic and plastic components of rotation 

are evaluated using sectional analysis and global equilibrium. When the model was 

compared to the experiments, good agreement was found for higher bar slenderness 

ratios (s / db ≥ 8), but not for lower slenderness ratios.  
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Bae et al. (2005) formulated a model to characterize the stress-strain curves from Bayrak 

and Sheikh (2001) using a parametric approach with better results. 

 

It can be seen that many theoretical models exist for local buckling of steel reinforcing 

bars. Many of these models involve a highly rigorous approach. However, good 

agreement with experimental evidence comes at a heavy computational cost. Clearly 

there is a need to develop an easy-to-use analytic model that is practical enough to use in 

design situations, yet sufficiently accurate to use in nonlinear sectional analyses of 

reinforced concrete members.  

 

2.2 Local Buckling Experiments 

2.2.1 Overview of Experimental Studies 

Several researchers have carried out experimental investigations into local bar buckling 

by considering a bar under compression with the ends fixed against rotation. Mander 

(1983) carried out monotonic compression tests on Grade 275 and Grade 380 steels 

manufactured in New Zealand. The bar diameters of the specimens were 16mm, 20mm, 

24mm and 28mm; s / db ratios were 5.5, 6.0, 6.5, 10 and 15; and rates of applied strain 

ranged from 0.00001 /s to 0.013 /s. In a study by Monti and Nuti (1992) a series of 

monotonic and cyclic tests were performed on FeB44 steel manufactured in Italy. Bar 

diameters of 16mm, 20mm and 24mm were used, and s / db ratios were 5, 8 and 11. As 

part of a study on low-cycle fatigue behavior in reinforcing steel, Mander et al. (1994) 

carried out monotonic compressive tests on ASTM A615 Grade 40 deformed reinforcing 

bars at s / db = 6, and on ASTM A722 type II hot-rolled proof-tested alloy-steel pre-

stressing thread bar with s / db ratios of 6, 8 and 9.  

 

Rodriguez et al. (1999) performed an experimental study consisting of monotonic and 

cyclic tests specimens machined from ASTM A706 reinforcing steel commercially 

available in Mexico. Ratios of s / db used were 2.5, 4, 6 and 8.  
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Bayrak and Sheikh (2001) conducted an extensive experimental study on Grade 400 

reinforcing bars loaded in monotonic compression. The bars were all 20mm in diameter. 

Seven s / db ratios were used, ranging from 4 to 10. Initial imperfections at mid-height, 

ranging from 0 to 0.3db, were applied to the specimens. Further tests on No. 8 and No. 

10 Grade 60 reinforcing bars from the U.S. were conducted by Bae et al. (2005). The 

specimens had s / db ratios ranging from 4 to 12, and initial eccentricities ranging from 0 

to 0.5db. 

 

2.2.2 Criteria for Selection of Experimental Results for Model Verification 

When considering the results of experimental studies, several important aspects must be 

examined. Firstly, machining of specimens from reinforcing bars alters the behavior of 

the specimen. Most reinforcing bars develop a case-hardened shell as part of the 

manufacturing process (González et al., 2006). By removing this layer, average stresses 

in the section will change significantly, and hence it is better experimental practice to 

use un-machined specimens as is the case with all studies mentioned except Rodriguez et 

al (1999).  

 

Secondly, the method by which strain is measured is important. In general, LVDTs are 

preferred over strain gauges for measuring axial strain. Strain gauges attached to the 

surface of a specimen do not provide meaningful results for two reasons. On one hand, 

this method requires the removal of some of the bar deformations, which will alter the 

specimen behavior. On the other hand, a strain gauge will measure the local strain over a 

gauge length of 5mm or so, which becomes meaningless at the onset of buckling. For 

sectional analysis, it can be assumed that Bernoulli’s hypothesis (that plane sections 

remain plane) holds at levels of transverse steel during buckling, but not between these 

levels. Since a gauge length must account for buckling yet still be valid for use in a 

sectional analysis, strain must be measured over a multiple of the full effective length of 

the buckled bar. Again, this is the case for all studies measured above with the exception 

of Mander (1983), Rodriguez et al. (1999) and Bae et al. (2005), which used arbitrary 
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gauge lengths. Note that all experiments have used LVDTs, however those that have 

used arbitrary gauge lengths may not capture full buckling effects. 

 

Thirdly, one needs to consider the experimental parameters that are of interest. In 

considering a reinforcing bar that is buckling, it is important to realize that for low 

effective lengths the load carrying capacity may increase even after buckling has caused 

the bar to undergo lateral deflections. For design and analysis purposes, of interest is the 

maximum load that the bar can carry. As such, experimental studies that report values 

other than this must be approached with caution. This is the case for all experimental 

studies mentioned apart from Rodriguez et al. (1999), who arbitrarily define the onset of 

buckling to occur when the strains on either side of the bar section differed by more than 

20 percent. Since the load at this “onset of buckling” is the value of the load that is 

reported, it is of no use for validation of analytical predictions. 

 

Finally, it will be noted that some experimental studies have been done on the effects of 

buckling on cyclic behavior of reinforcing steel. Several researchers have then pro-

ceeded to develop models to simulate these cyclic experiments. It was noted that for the 

experiments carried out using a cyclic loading regime, the ultimate compressive capacity 

of the bars for a given effective length did not differ significantly from that for the 

monotonic case. However, it was found that the strain at which buckling occurs will be 

different, and is based on the final plastic strain at zero load prior to the load cycle at 

which buckling occurs. As such, a monotonic model will be sufficient to capture the 

required parameters of interest. 

 

Ahead of all of these points, the shortcomings of the local bar buckling approach need to 

be recognized. The fundamental assumption used in deriving all of the models described 

above is that transverse reinforcement is sufficiently stiff to limit buckling over more 

than one hoop spacing. However, many experimental studies and inspections of real 

buildings damaged by earthquakes have shown that buckling may occur in a global 
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manner. That is, the effective buckling length may be larger than one hoop spacing. As 

such, a suitable buckling model should include the effectiveness of transverse steel in 

resisting global buckling. Existing models and experiments to this end are described 

below. 

 

2.3 Theoretical and Experimental Studies on Global Buckling 

2.3.1 Theoretical Studies 

Brelser and Gilbert (1961) were first to investigate global buckling of longitudinal 

reinforcing steel over two hoop spacings. A deflected shape was assumed and the Ritz 

method was used to solve for an equivalent lateral tie stiffness in terms of its effective 

modulus. The distinction was made in this study between ties that behave in flexure and 

ties that behave in tension to resist buckling of longitudinal steel.  

 

Scribner (1986) also carried out an analytical investigation into global bar buckling 

using an energy minimization approach similar to Bresler and Gilbert, using elastic tie 

forces. It was proposed that ties should be at least half the diameter of the longitudinal 

bar being restrained. An analytical model by Russo (1988) considered the problem of 

global buckling as a beam-on-elastic-foundation with the tie stiffness depending on 

geometrical and material characteristics. Papia et al. (1988) made this model more 

systematic by creating a system matrix and incrementally increasing its size (incremen-

tally increasing the number of hoops in the system) until buckling was identified when 

the matrix determinant became zero. Essentially, this approach is used to determine Eeff 

in a computational manner. Papia and Russo (1989) used these results to derive a 

simplified parametric model that determines the stress and strain for a globally buckled 

bar.  

 

Dhakal and Maekawa (2002c) used an energy minimization approach to determine the 

required stiffness of lateral ties to prevent global buckling. They then combined this with 
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their local buckling model (Dhakal and Maekawa, 2002b) and determined the critical 

buckling load for global buckling, given the stiffness of the lateral reinforcement.  

 

Other analytical studies on global buckling were carried out by Pantazopoulou (1998) 

and Bayrak and Sheikh (2001). All of these studies assumed some form of elastic or 

pseudo-elastic tie forces in their formulations. However, it is well recognized that 

transverse steel invariably yields in situations where global buckling occurs (Sato and 

Ko, 2007; Dhakal and Maekawa, 2002c), and hence any approach based on stiffness is 

fundamentally flawed because it is inconsistent with physical reality.  

 

Dutta and Mander (1998) used a virtual work approach to model the global buckling 

problem. The simplified design equation derived in their study for local buckling was 

extended to become a function of the hoop geometrical and material parameters. 

Comparisons with experimental results by other researchers showed good agreement 

with the predictions of this model. Because this model allows for the fact that transverse 

steel will yield, it is a fundamentally correct approach to the global buckling problem. 

Caution is needed, however, to find the correct collapse mechanism since failure to do so 

will overestimate the buckling capacity of the longitudinal bars. 

 

Falk and Govindjee (2000) developed an analytical model for the global buckling 

problem. This was represented as an inverted beam-on-elastic foundation problem, 

where each spring had an associated mass whose inertias needed to be overcome before 

displacement of the spring (and hence buckling). This associated mass can then be 

represented as a multiple of the critical load needed to cause buckling in the bar. While 

the elastic approach is not strictly valid for the reasons outlined above, the model is 

likely to be a better representation of reality if a very low spring stiffness is used, and 

some combination of the mass and the spring represent the yield force of the ties. 
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Bayrak and Sheikh (2001) identified that while Bernoulli’s hypothesis is still valid at the 

stirrup level, it is not valid between stirrups after buckling has occurred, because strains 

at the section level of longitudinal steel do not match the strains in the concrete at the 

same level. In order to model the strains between stirrups, the expansive effect of the 

confined concrete was used to apply a lateral forcing function to the steel bar along its 

length between stirrups. Elastic and plastic expressions for the maximum deflection of 

the bar were derived, and this maximum deflection was used to determine which of the 

56 experimental stress-strain curves to use in a section analysis. There are several 

interesting points to note about this study. Firstly, the formulation used to obtain the 

plastic deflection of the longitudinal bar is based on the assumption of plastic moments 

at the ends of the bar. This approach may underestimate the actual deflection, since the 

bar will continue to deflect for a given plastic moment until the onset of strain harden-

ing. Secondly, the assumption used to get the initial imperfection in the bar is 

questionable. In order to obtain a concrete expansion of the magnitude necessary to 

deflect a longitudinal bar, significant axial load is required. Such axial load is likely to 

induce bar buckling. The approach assumes that there is no axial load in the bar at the 

application of this initial imperfection, which is a highly unlikely situation. As such, it 

does not seem justifiable for the bar buckling curve to be a function of a significant 

initial e / db (see also Gil-Martín et al., 2006 and 2008). In addition to this, the procedure 

is cumbersome as it relies on the selection of the appropriate stress-strain curve based on 

an initial deflection although attempts have been made to characterize these stress-strain 

relationships (Bae et al., 2005 and Massone and Moroder, 2009).  

 

2.3.2 Experimental Studies 

In order to validate global buckling models, experiments have been performed by 

various researchers. Most of these experiments involve full reinforced concrete mem-

bers, since it is very difficult to accurately simulate global buckling using bare steel 

specimens.  
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Bresler and Gilbert (1961) conducted an experimental study on four reinforced concrete 

columns. The columns were 8 x 8 x 60 in. reinforced with No.4 Grade 40 steel bars, and 

subjected to monotonic compression. Two of the columns had 6 longitudinal bars, and 

two of the columns had 8 bars. Since reinforced concrete columns are usually designed 

so that the ultimate compressive capacity is much higher than its compressive demand, 

the tests performed do not reflect current practice. Bar buckling effects are more 

prominent under combined bending moment and axial load.  

 

Scribner (1986) tested six beam specimens under cyclic lateral load. The beams had 

different configurations of longitudinal and transverse steel, which consisted of Grade 40 

and Grade 60 steel. Two of the specimens tested failed due to pull-out of inadequately 

anchored longitudinal steel, and two specimens failed in shear due to inadequate shear 

capacity. In the two specimens where buckling was the cause of failure, buckling 

occurred in a direction parallel to the face of the column due to the fact that ties were 

resisting buckling using flexure. This caused the author to prematurely reject his 

proposal for tie size, as he did not make the distinction between different modes of 

resistance of transverse steel as Bresler and Gilbert (1961) had done.  

 

Sato and Ko (2007) conducted an experimental investigation into global buckling. They 

tested four reinforced concrete columns reinforced with 10-19mm diameter bars of 

Grade 400 steel. Lateral reinforcing varied between specimens, with two of the speci-

mens being jacketed in fiber-reinforced polymer sheets. The columns were fixed at both 

ends and subjected to a constant axial force of 0.15f’cAg. A cyclic lateral force was then 

applied to the columns until failure occurred. During the tests, lateral deflections of 

buckled longitudinal bars were measured as well as stresses and strains in the restraining 

lateral steel. The ratio of yielded transverse reinforcement region length to buckled-

longitudinal bar length was then calculated for each specimen, and it was found that this 

ratio ranged between 0.45 and 0.76. This is an important finding, since it experimentally 
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invalidates any global buckling model in which transverse steel is assumed to remain 

partially elastic. 

 

Moyer and Kowalsky (2003) experimentally examined the effects of tension strain on 

buckling of longitudinal steel in cyclically loaded reinforced concrete columns. They 

tested four identical circular columns reinforced with 12-No.6 bars and transverse steel 

consisting of a No.3 bar at 3 in. pitch. The only variable between specimens was the 

applied lateral load history. One specimen was subjected to progressively increasing 

cycles in both directions up to displacement ductility 5. The second specimen was tested 

similarly up to a displacement ductility of 7 in one direction, but the displacement 

ductility in the reverse direction was kept at 1 for the whole test. The third and fourth 

specimens were loaded on one cycle in both directions up to displacement ductility 7 and 

9, respectively. By comparing the first two specimens’ results, they concluded that the 

displacement required to induce buckling in the bars subjected to increasing tension was 

much greater than for bars subjected to equally increasing tension and compression. 

While these strains can be indirectly related to ultimate curvatures using parametric 

models, no comment was made in the study about the loads at which buckling occurs. 

 

Other researchers have adopted an empirical approach to constructing models of global 

buckling in reinforced concrete members. As part of these studies, extensive databases 

of reinforced concrete member experiments have been built up for a range of loading 

regimes, geometrical and material parameters, steel configurations and other control 

parameters. The aim of most of these experiments was not primarily to investigate global 

buckling however they can still be used for this purpose, particularly where good 

photographic evidence exists. 

 

Pantazopoulou (1998), for example, constructed a database of over 300 specimens and 

used these to derive empirical design equations between concrete axial strain, displace-

ment ductility and the required size and spacing of transverse reinforcement. Dhakal and 
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Maekawa (2002c) collected results from 45 column specimens to validate their model 

for global buckling. Berry and Eberhard (2005) constructed a database of tests of 62 

rectangular-reinforced and 42 spiral-reinforced concrete columns to derive an empirical 

relationship for the drift ratio at the onset of bar buckling in reinforced concrete col-

umns. Syntzirma et al. (2010), in a similar study, proposed a relationship for the drift 

ratio at the onset of bar buckling. 

 

2.4 Design Code Requirements 

Most concrete codes recognize the need for transverse reinforcement in reinforced 

concrete columns for confinement of core concrete, resistance of shear forces, and 

resistance of lateral buckling of longitudinal steel. ACI-318 (2008), for example, 

stipulates the maximum spacing of transverse steel as the smaller of 16 longitudinal bar 

diameters, or 48 transverse bar diameters. The first of these limits the unsupported length 

of longitudinal steel bars, while the second aims to ensure sufficient lateral restraint 

against global buckling. Within potential plastic hinge regions, the spacing of transverse 

steel is limited to 6 longitudinal bar diameters. The size of transverse steel in these 

locations is based more on forces from the dilating core concrete than restricting global 

buckling (Wight and MacGregor, 2009). Other codes, such as the New Zealand Concrete 

Code (SNZ, 2006) stipulate that the capacity of transverse reinforcing bars should be at 

least one-sixteenth the combined capacity of the longitudinal bars being restrained. 

Although this attempts to size transverse steel to resist global buckling, it is somewhat 

arbitrary. Both codes also have limits on the configuration of transverse steel, stating that 

longitudinal bars should be restrained by a corner of a hoop set, and spacing between 

longitudinal bars being restrained by the same hoop-set should not exceed six inches.   
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CHAPTER III 

COMPUTATIONAL ALGORITHM FOR BUCKLING ANALYSIS 

 

3.1 Introduction 

The computational algorithm described in this chapter is designed to carry out a rigorous 

buckling analysis for a steel reinforcing bar using the routine outlined in Chapter IV. For 

expediency, the problem was separated into two parts that are solved at each increment 

of the analysis. The first part involves carrying out a moment-curvature analysis of the 

critical section of the bar, using a Gauss Quadrature numerical integration scheme. The 

second part involves satisfying global force equilibrium and displacement compatibility, 

imposed via an assumed (and later verified) shape function.  

  

The algorithm was coded using the numerical analysis package MATLAB, and consists 

of a main run function and several subroutines which can be easily modified by the user. 

The program uses real material and geometric parameters from user inputs, and produces 

normalized results which allow them to be compared with those from other analyses and 

experiments. 

 

3.2 Computational Theory 

3.2.1 Section Actions for a Given Strain Profile 

Invoking Bernoulli’s hypothesis for a given curvature  and reference strain εo, fiber 

strains can be found anywhere in the section assuming a linear strain profile: 

 
   (y) = o +  y (3.1) 
 
The corresponding stresses can be found from the steel material model, and Gauss 

Quadrature is used to numerically integrate the stresses across the section to find the 

axial load P and bending moment M: 
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  ( )P b y dy   (3.2) 

 
  ( )M yb y dy   (3.3) 

 
where σ = material stress and b(y) = section width as a function of y. Equations (3.2) and 

(3.3) can be solved numerically using Gaussian Quadrature as follows:  

 
     2 T

sP d a  (3.4) 

 
     3 T

sM d q  (3.5) 

 
in which {σs}

T = {σ1, σ2, ... σn} with σi being the stress in the ith fiber; {a}T = {a1, a2, ... 

an} with ai being the normalized fiber area; and {q}T = {q1, q 2, ... q n} with qi being the 

normalized first moment of area of each fiber. Using Gauss Quadrature, each fiber is 

defined by a location factor ξi and a weighting factor wi, obtained from any standard 

reference such as Hornbeck (1982). Thus for a unit diameter circular section: 
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2i i ia w    (3.6) 

 

  
1

2i i iq a  (3.7) 

 
The parameters for a circular section are given in Table 3.1. 

 

3.2.2 Moment-Curvature Analysis of Critical Section 

Obtaining P and M for a given section strain profile does not mean that equilibrium is 

satisfied at the section level. Instead, it is necessary to iterate on either or both of  and 

εo until both equilibrium and displacement compatibility are obtained. This can be done 

using the Newton-Raphson algorithm. Considering the first two terms in the Taylor’s 

series expansion of  and εo: 
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where the strain and curvature increments are determined from: 
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Table 3.1: Integration Points and Weighting Factors for 24-Point Gauss Quadrature 

i Integration 
Point, ξi 

Weighting 
Factor, wi 

Circular Shape Factors 
ai qi 

1, 24 ±0.9951872200 0.0123412298 0.000604670 0.000300880 
2, 23 ±0.9747285560 0.0285313886 0.003186850 0.001553157 
3, 22 ±0.9382745520 0.0442774388 0.007657593 0.003592462 
4, 21 ±0.8864155270 0.0592985849 0.013724373 0.006082748 
5, 20 ±0.8200019860 0.0733464814 0.020990321 0.008606052 
6, 19 ±0.7401241916 0.0861901615 0.028980158 0.010724458 
7, 18 ±0.6480936519 0.0976186521 0.037171262 0.012045229 
8, 17 ±0.5454214714 0.1074442701 0.045027848 0.012279578 
9, 16 ±0.4337935076 0.1155056681 0.052036015 0.011286443 
10, 15 ±0.3150426797 0.1216704729 0.057737354 0.009094865 
11, 14 ±0.1911188675 0.1258374563 0.061758941 0.005901649 
12, 13 ±0.0640568929 0.1279381953 0.063837721 0.002044623 
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For a given moment demand that arises from the buckling effect, the incremental 

reference strain may be found using the first row of (3.9) as follows:  

 

  oi i i
o

P P
P 

 
  

       
 (3.10) 

 
Alternatively, the incremental curvature may be bound using the second row of (3.9): 

 

  
i i oi

o

M M
M 

 
         

 (3.11) 

 
The partial derivatives are found from numerical backward differences. Equations (3.10) 

and (3.11) give rise to two different solution strategies for finding section equilibrium: 

 

 Using (3.10): March forward in constant increments of Δi, iterating on Δεoi to 

remove an out-of-balance ΔPi. 

 Using (3.11): March forward in constant increments of Δεoi, iterating on Δi to 

remove an out-of-balance ΔMi. 

 

Both strategies converge to the same solution.  

 

3.2.3 Imposing the Shape Function 

To determine what P or M is in each of the above solution strategies, an assumption is 

usually made. For instance, in a moment-curvature analysis of an RC column, P is 

usually held constant throughout the analysis. In the case of the buckling analysis, P or 

M can be determined from the shape function imposed on the bar. The deflected shape at 

critical load is widely accepted to resemble a sine curve. As such, the eccentricity e and 

the curvature  are related by the shape function parameters: 

 

  2
2

4
e

s
   (3.12) 
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Then, from global equilibrium, P and M are related by: 

 
  M = Pe (3.13) 
 
For this analysis, (3.12) is used to impose the shape function on the system and (3.13) is 

used to check convergence in terms of an out-of-balance e: 

 
  Δe = eSF – M / P (3.14) 
 
where eSF is the eccentricity imposed by the shape function. M or P can be adjusted, 

depending on the solution strategy used, to remove Δe as follows: 

 

  e
e

M
MM ii 




1  (3.15) 

 

  e
e

P
PP ii 




1  (3.16) 

 
The partial derivatives are found using first order numerical backward differences as 

follows: 

 

    1

1

i i

i i

y x y y

x x x




 


 
 (3.17) 

 
 
3.3 Computing Procedures 

3.3.1 Data Input and Output 

Input parameters are written in an input matrix at the start of the run file. This enables a 

wide range of various steel types at various spacings to be done in one run. The input 

parameters and their required units are shown in Table 3.2. It is important to note that 

the program uses the convention that tension is positive. Geometric and material 

parameters are described more thoroughly in Chapter IV. Material parameters can be 

determined graphically from a tensile stress-strain plot using a plotting function in 

Microsoft Excel.  
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Table 3.2: Input Parameters Used in the Bar Buckling Analysis Program 

Input Variable Description Units Range 
Material and Geometric Parameters: 
spacing Vector of normalized spacings of 

transverse reinforcement, s / db 

- > 0 

BarDiam Diameter of reinforcing bar, db mm > 0 
YieldStress Steel yield stress in tension, fy MPa > 0 
YoungsMod Elastic modulus of steel, Es MPa > 0 
ShStrain Steel strain at which tensile strain 

hardening commences, εsh 

- > 0 

ShMod Initial slope of tensile strain-hardening 
portion of steel stress-strain curve, Esh 

MPa > 0 

UltStress Ultimate tensile stress of steel, fsu MPa > 0 
UltStrain Ultimate tensile strain of steel, εsu - > 0 
InitEccent Initial eccentricity of quarter-length of 

steel bar, eo. User enters the multiplier 
for this formula, which is based on db 
and s 

mm > 0 

Precision and Control Parameters: 
alphaSteel Defines rate of convergence to yield 

plateau of steel stress-strain curve 
- > 1; 

even 
GradFactor Multiplier for curvature step in determin-

ing 
P





 

- > 0; < 1 

DeltaRefStrain Increment of reference strain for 
moment-curvature analysis, Δεo 

- < 0 

CurveIncStep Increment of reference strain in deter-

mining 
o

P


  

- > 0 

maxits Maximum number of increments / 
iterations 

- - 

Tolerance Tolerance for out-of-balance axial load N > 0 
TolEccent Tolerance for out-of-balance eccentrici-

ty. User enters multiplier for this, which 
is based on eo 

mm  > 0 
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As an output, the program writes a text file with tab delimited entries at six point 

precision, formatted for use in Microsoft Excel for post-processing purposes. The text 

file displays the following information: 

 

 Input parameters 

 Peak axial load, and the corresponding moment, curvature, eccentricity and ref-

erence strain 

 Stress and strain profiles at various points in the loading history 

 A complete history of the axial load, moment, curvature, eccentricity and refer-

ence strain 

 

3.3.2 Computational Method for Curvature-Driven Analysis 

The buckling analysis can be either strain-driven or curvature-driven. Providing no 

numerical instability or rounding errors accumulate, both approaches should give 

essentially the same result. Prior to either approach being used, a small initial eccentrici-

ty is applied to ensure that the trivial solution (for s / db = 0) is not found. In this 

procedure, the indices i, j and k correspond respectively to an iteration, a point in the 

section profile, and an increment. A full code listing is given in Appendix A. 

 

STEP 1: The curvature increment Δ is added to the curvature at the last success-

ful solution to give the new total curvature: 

 
  k = k – 1 + Δ (3.18) 
 
 from which the new eccentricity is found via the shape function: 

 

  2

2

, 4
k

kSF

s
e   (3.19) 
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STEP 2: From the out-of-balance force remaining from the last iteration, deter-

mine the required change in the centroidal strain Δεo to find force 

equilibrium at the new strain profile:  

 

 oi i i
o

P P
P 

 
  

       
 (3.20) 

 
where 

 

 
ioio

ii

o

PPP

,)(,

)(

 













  (3.21) 

 
  from which the total centroidal strain is found: 

 
   oi = o,i – 1 + oi (3.22) 
 
STEP 3: Determine the revised strain profile: 

 
   {j}i = {o}i + k {y} (3.23) 
 
STEP 4: Determine the section stresses { fj} i using the following rules: 

 

 If the strain at a depth y is tensile and has not undergone a strain re-

versal, then the corresponding tensile stress is found directly from the 

monotonic stress-strain curve 

 If the strain at a depth y is tensile, but has undergone a strain reversal 

from compression, then the corresponding stress is found from the re-

loading stress-strain curve 

 If the strain at a depth y is compressive and has not undergone a strain 

reversal (or has only done so before εy), then: 

o 1. The compressive strain is converted to an equivalent tensile 

strain; 
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o 2. The corresponding stress is found from the monotonic 

stress-strain curve in tension; 

o 3. The stress is converted back into engineering co-ordinates 

 If the strain at a depth y is compressive, but has undergone a strain re-

versal from a strain greater than εy, then: 

o 1. The compressive strain is converted to an equivalent tensile 

strain; 

o 2. The corresponding stress is found from the reloading stress-

strain curve; 

o 3. The stress is converted back into engineering co-ordinates 

o 4. If this is the first increment at which the strain reverses, 

then the reversal point is stored for future increments of the 

analysis. The reversal point is only stored at the successful ite-

ration for a given increment. 

 

  Integrate to obtain Pi and Mi for the section: 

 

      T

i j ji
P f a  (3.24) 

 

      T

i j ji
M f q  (3.25) 

 
  Hence calculate the out-of-balance force: 

 
   Pi = PSF – Pi  (3.26) 
 
  where PSF is the axial load calculated using the shape function. 

STEP 5: If |Pi| ≤ Tolerance, then proceed to STEP 6. Otherwise, set Δ = 0, and 

return to STEP 2. 

 

STEP 6: Calculate out-of-balance eccentricity: 
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   Δei = eSF,k – Mi / Pi (3.27) 
 
  If |ei| ≤ Tolerance, then proceed to STEP 7. Otherwise, modify the 

applied axial load: 

 

   iii e
e

P
PP 




1  (3.28) 

 
  where 

 

   
kek

iei

ee

PP

e

P













)(

)(



  (3.29) 

 
  Set Δ = 0, and return to STEP 2. 

 

STEP 7: Store strain reversal points (if applicable) for use in future iterations. 

Store results for the correct step. Calculate the slope of the strain diagram 

for use in the next iteration: 

 

   
kk

kk PPP

 















)(

)(  (3.30) 

 
3.3.3 Computational Method for Strain-Driven Analysis 

As with the curvature-driven approach, a small initial eccentricity is applied to ensure 

that the trivial solution (for s / db = 0) is not found.  

 

STEP 1: The curvature increment Δεo is added to the reference strain at the last 

successful solution to give the new total curvature: 

 
  εok = εok – 1 + Δεo (3.31) 
 
 and the new eccentricity is found via the shape function using the current 

estimate of the curvature: 
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2

, 24
i

SF i

s
e




  (3.32) 

 
STEP 2: From the out-of-balance force remaining from the last iteration, deter-

mine the required change in the curvature Δ to find force equilibrium at 

the new strain profile:  

 

 
i i oi

o

M M
M 

 
         

 (3.33) 

 
where 

 

 ( )

( )

i i

i i

M MM 

  







 
 (3.34) 

 
  from which the new estimate of the curvature is made: 

 

   1i i i     (3.35) 

 
STEP 3: Determine the revised strain profile: 

 
        j o iki

y     (3.36) 

 
STEP 4: Determine the section stresses { fj }i using the same rules as for the 

previous method. Integrate to obtain Pi and Mi for the section: 

 

      T

i j ji
P f a  (3.37) 

 

      T

i j ji
M f q  (3.38) 

 
  Hence calculate the out-of-balance moment: 

 
   Mi = MSF – Mi  (3.39) 
 
  where MSF is the axial load calculated using the shape function. 
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STEP 5: If |Mi| ≤ Tolerance, then proceed to STEP 6. Otherwise, set Δo = 0, and 

return to STEP 2. 

 

STEP 6: Calculate out-of-balance eccentricity: 

 
   Δei = eSF,i – Mi / Pi (3.40) 
 
  If |ei| ≤ Tolerance, then proceed to STEP 7. Otherwise, modify the 

applied axial load: 

 

   1i i i

M
M M e

e


  


 (3.41) 

 
  where 

 

   ( )

( )

i e i

k e k

M MM

e e e











 
 (3.42) 

 
  Set Δo = 0, and return to STEP 2. 

 

STEP 7: Store strain reversal points (if applicable) for use in future iterations. 

Store results for the correct step. Calculate the slope of the strain diagram 

for use in the next iteration: 

 

   ( )

, ( ) ,

k k

o o k o k

M MM 

  







 
 (3.43) 

 
3.4 Extension to Global Buckling Analysis 

The algorithm described above can be easily extended to the global buckling case by 

including an allowance for two key factors. Firstly, the contribution of hoops within the 

buckled length to the resisting moment must be accounted for, and this can be done with 

minor modifications to the main algorithm. Secondly, interaction with the concrete 
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becomes very important, as this is what leads to incipient buckling. This is dealt with by 

including an additional step prior to the main algorithm. It should be noted that under 

global buckling the deformed shape will extend over a number of hoops Nh or a number 

of spaces Ns where Ns = Nh + 1. The case for Nh (or Ns) as a minimum is critical. Note Ns 

= 1 or Nh = 0 is the local buckling solution.  

 

3.4.1 Contribution of Transverse Steel 

From equilibrium of a buckled reinforcing bar, the driving and resisting moments can be 

written as: 

 

    
1 1

0.5
8 2

h hN N
s

cr pp hj hj s hj hj
j j

N s s
P M F C N j F C

 

         (3.44) 

 
with  

 

 
2

4
bh

hj hj

d
F f


  (3.45) 

 
  hj j hf f y L  (3.46) 
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cos 1t h s s

j
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L N j s N sj
y

N L L

   
           

 (3.47) 

 
where Λ = deflection of the buckled bar at the quarter points; Ns = number of hoopsets or 

spiral spaces in the buckled length; Fhj = individual tie forces; fhj = individual tie 

stresses; and dbh = diameter of the ties. The final term on the RHS allows for displace-

ment due to bulging of the PHZ. The value oft used is the maximum in the loading 

history. For global buckling, the contribution from the hoops is considered when 

determining the out-of-balance eccentricity:  

 
  Δ = SF – (M + Mh)  / P (3.48) 
 
where Mh = the moment resisted by the ties. 
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3.4.2 Algorithm for Incipient Buckling 

Prior to starting the main buckling algorithm (described previously), the following 

algorithm is run to determine when incipient buckling occurs. No iteration is required, 

since a solution satisfying equilibrium and displacement compatibility can be found at 

each step. The theory behind this algorithm is presented in Chapter V, and a full code 

listing can be found in Appendix A. 

 

STEP 1: Apply an increment of reference strain to the last solution: 

   
  εok = εok – 1 + Δεo (3.49) 
 
 from which the transverse strain, eccentricity and curvature can be found 

directly:  

   

  
b

ok
tk f

u

 


  (3.50) 

 
 where b = ln (tc / f ) / ln (oc / u) with (tc, oc) being a control point for 

the relationship between axial and lateral strains; 

 

  
2 2

2

3

4
tk h s

k
ph

L N s

L


   (3.51) 

 

  
2

2 2

4
k

sN s

 
  (3.52) 

 
STEP 2: Determine the revised strain profile: 

 
        j o kkk

y     (3.53) 

 
STEP 3: Determine the section stresses { fj }k using the same rules as for the 

previous method. Integrate to obtain Pk and Mk for the section: 
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      T

k j jk
P f a  (3.54) 

 
      T

k j jk
M f q  (3.55) 

 
STEP 4: Determine the tie force at each level, and hence the contribution of the 

ties to the resisting moment: 

 

  
1 1

0.5
8 2

h hN N
s

hk hj s hj
j j

N s s
M F N j F

 

     (3.56) 

 
 where Fhj is defined in (3.45). 

 

STEP 5: Determine the average concrete nodal force, Chk: 

 

   
 2 2

16

2 sin 2
k hk k

hk

h h h

M M P
C

N N N s
  


   

 (3.57) 

 
 If Chk  ≥ 0, return to STEP 1; otherwise continue to the main buckling 

algorithm. 

 

3.5 Illustrative Numerical Examples 

3.5.1 Local Buckling Analysis 

As a numerical example, the ASTM A615 deformed reinforcing bar at s / db = 6 and  

ASTM A722 type II hot-rolled proof-tested alloy-steel prestressing thread bar with s / db 

= 6, 8 and 9, tested by Mander et al. (1994) were modeled using the computational 

algorithm described above. The details of the steels are shown in Table 3.3, and the 

results of this analysis are shown in Fig. 3.1 where they are compared with the tensile, 

fully restrained compressive, and experimental compressive stress-strain curves. The 

computational model compares favorably with experiments for the steels analyzed for 

this comparison, and the model was deemed satisfactory for use in further analyses. 
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Table 3.3: Steel Stress-Strain Parameters Used in Model Validation 

Result* Bar s / db fy  
(MPa) 

fsu  
(MPa) 

Es  
(GPa) 

Esh  
(MPa) 

εsh εsu 

T 
CE 

 

R 
 

- 
6 
 

331 
-338 

 

565 
-531 

 

215 
215 

 

8274 
8300 

 

0.0091 
-0.0080 

 

0.144 
-0.045 

 
T 

CE 
CE 
CE 

 

P 
 

- 
6 
8 
9 
 

869 
-917 
-915 
-908 

 

1130 
-1076 
-936 
-914 

 

221 
221 
219 
234 

 

11030 
12130 
4380 
1170 

 

0.0039 
-0.0041 
-0.0042 
-0.0039 

 

0.063 
-0.028 
-0.012 
-0.007 

 
* T = Tension; CE = Compression, Experimental 

 

 

 

 

(a) Mild Steel; s / db = 6 (b) High-Strength Steel; s / db = 6 

(c) High-Strength Steel; s / db = 8 (d) High-Strength Steel; s / db = 9 

Fig. 3.1: Validation of Computational Algorithm for Local Buckling Analysis 
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3.5.2 Global Buckling Analysis 

As part of a study on the confinement effects of transverse steel on the core concrete, 

Mander (1983) tested circular columns under monotonic axial compression. Two of 

these columns were selected to validate the global buckling model. Photographic 

evidence (Fig. 3.2) indicates the plausible region over which buckling is possible – that 

is, where the longitudinal steel is visible. The actual buckling length in terms of Nh can 

be observed in these photographs. The axial-transverse strain relationship was deter-

mined from strain gauges on the hoops. Allowances were made for the geometry of the 

column, as described in Chapter V. The parameters for each column are shown in Table 

3.4. Steel stress-strain parameters were inferred from steels with similar yield strengths. 

 

The predicted stress-strain curves for the steel bars are shown in Fig. 3.3, as are the 

experimental results from Mander (1983). Since it is virtually impossible to measure the 

stress-strain history of the compression bars in the column, a buckling stress-strain 

comparison between experimental and computational results is not feasible. Instead, an 

analysis was run for each number of hoops over the possible buckling length, and the Nh 

corresponding to the lowest axial stress was deemed critical case. In both cases, this 

corresponded to the number of hoops in the possible buckling length. In addition, the 

strains at incipient buckling for the critical cases are in good agreement with the strains 

at ultimate column load. As expected, global buckling brings about a rapid deterioration 

in the axial capacity of the column. Hoop fracture is also predicted to within an accepta-

ble error, given the difficulty in predicting steel fracture strain. These rudimentary 

checks may not be conclusive validation of the computational algorithm, but they should 

be enough to provide sufficient confidence that it can predict global buckling behavior 

with adequate accuracy. 
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Table 3.4: Column Specimen Details Used in Model Validation 

Column* b u f fy  
(MPa) 

fyh  
(MPa) 

Nh 
Expt 

Nh 

Comp 
Reinforcing 

Details 
4 
 

1.90 
 

0.035 
 

0.2 
 

310 
 

320 
 

2 
 

2 
 

12-D16; 
R10@119 

7 
 

1.69 
 

0.06 
 

0.2 
 

300 
 

340 10 
 

10 
 

8-D28; 
R12@52 

* As defined by Mander (1983) 
 

 

 

 

 

(a) Column Specimen 4 (b) Column Specimen 7 

Fig. 3.2: Column Specimens Used for Model Validation Showing Number of Hoops in 
Buckled Length 
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(a) Column Specimen 4 

Fig. 3.3: Steel Stress-Strain Curves Compared with Column Strains and Axial Loads 
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(b) Column Specimen 7

Fig. 3.3: Continued 
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CHAPTER IV 

LOCAL BUCKLING ANALYSIS OF LONGITUDINAL  

REINFORCING BARS 

 

The local buckling behavior of longitudinal reinforcing steel is examined using rational 

mechanics, taking into account the full plastic behavior of the steel and the effects of 

true stress and strain. A computational fiber element analysis is used to compute the 

coupled effect of axial compression and lateral buckling. The results of the computation-

al analysis are then used to develop a simple model for the compressive behavior of 

longitudinal reinforcing steel in engineering stress-strain coordinates. Although several 

models exist which are capable of predicting compressive behavior with a moderate 

degree of precision, these models are generally computationally intensive and therefore 

of little practical use to structural designers. Other existing simple models either have a 

high degree of built-in empiricism or are based on overly simplified assumptions about 

the plastic behavior of the steel. The model developed in this study is compared with 

available experimental results. A statistical study shows favorable correlation between 

the proposed analytical model and experimental results. 

 

4.1 Introduction 

Buckling of longitudinal reinforcing bars is a commonly reported mode of failure in 

reinforced concrete columns, particularly when exposed to a moderate to high seismic 

hazard. Insufficient closely spaced transverse (hoop) steel may mean that the longitudin-

al bars under high compressive strains are inadequately restrained against lateral 

inelastic buckling when the cover concrete spalls at compressive axial strains of 0.005 or 

greater. Once buckling commences, these reinforcing bars become less effective in 

resisting axial deformations; this in turn places a greater demand on the now inadequate-

ly confined core concrete. Consequently, lateral buckling of the longitudinal 
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reinforcement in concrete columns often marks the start of rapid deterioration in moment 

capacity, particularly under cyclic loading excursions. 

 

If the transverse steel restraining the longitudinal bars is sufficiently strong and the 

spacing between successive layers is also moderate, then the buckled length will be 

restricted to two adjacent layers of transverse steel. Such behavior is referred to herein as 

local buckling and is illustrated in Fig. 4.1. Current design practice to inhibit local 

buckling (e.g. ACI318-08 and NZS 3101:2006) requires the spacing of the transverse 

steel in plastic hinge regions not to exceed 6db, where db is the diameter of the longitu-

dinal reinforcing bars. This requirement has now existed for many years and is largely 

based on experimental verification, but has also been validated by analytical studies 

described below. Existing computational models of local buckling are generally 

complex, especially for use in design situations. Simplified analytical models that exist 

often have a high degree of empiricism.  

 

Ideally, it is desirable to have an analytical model that is sufficiently simple to be used 

for design purposes, yet is also sufficiently accurate for use in computational analyses of 

structural concrete sections. Such a model should be derived, where possible, from 

rational mechanics principles and validated against experimental evidence. In particular, 

the model should be of sufficient accuracy to be used in fiber element analyses of 

structural concrete members. Although many current models predict experimental data 

with adequate precision, this may come at a heavy computational cost. 

 

This chapter presents and discusses a selection of previous research on local buckling of 

reinforcing steel. Several experimental results are then modeled computationally in true 

stress and strain using a rigorous fiber element analysis with the aim of investigating 

characteristic aspects of mechanical behavior. Empirical observations of key results are 

made and these are parameterized to enable the critical inelastic buckling stress and 
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(a) Physical Problem (b) One-half Buckled Bar 

Fig. 4.1: Local Buckling in a Reinforced Concrete Member 
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strain to be predicted. These results are then applied in a single analytic equation to 

enable the entire monotonic compression behavior in engineering stress and strain to be 

predicted. Comparisons are then made between experimental observations, the computa-

tional simulation developed herein and the proposed analytic equation. A statistical 

assessment is then used to confirm the accuracy of the model. 

 

4.2 Previous Research 

4.2.1 Classical Buckling Theories 

The problem of elastic buckling of columns was first reported by Euler (1759). Several 

early theories were posed to explain inelastic buckling, the first of which was the tangent 

modulus theory formulated by Engesser (1889), where the whole cross-section was 

assumed to buckle with a modulus that is a tangent to the post-elastic stress-strain curve 

for steel. However, experimental evidence consistently showed that the tangent modulus 

under-predicts column strength, and so Engesser (1891) proposed the reduced modulus 

theory which allows for the fact while some fibers of the cross-section continue to load 

with a tangent modulus, other fibers unload with the elastic modulus.  

 

Although the reduced modulus theory may be more accurate, Shanley (1947) posed the 

column paradox. This explained that the reduced modulus theory is only valid for a 

column that is perfectly straight prior to the onset of buckling. However, since no 

column is initially perfectly straight, lateral deflections occur before the peak buckling 

(crippling) load is reached; the reduced modulus theory thus becomes an upper bound 

solution. As such, the true effective modulus lies between the tangent modulus and the 

reduced modulus. 

 

4.2.2 Theoretical Models for Local Buckling of Longitudinal Reinforcing Steel 

Research into the buckling of longitudinal reinforcing steel commenced with a study by 

Bresler and Gilbert (1961). Since then, the issue of local buckling in particular has 

received much attention from researchers. In addition to experimental investigations, 
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there have been many attempts at formulating suitable models to describe the behavior 

of reinforcing bars under compressive strains. Early models, for example the one 

formulated by Mander (1983), involved a linearized solution based on plastic buckling 

theories developed by Engesser (1891) and Shanley (1947). Other models have been 

derived using an energy minimization approach, for example by Gomes and Appleton 

(1997) and Dutta and Mander (1998). While these models are simple and easy to apply, 

they have invariably been derived using overly simplified assumptions about the plastic 

behavior of the steel. 

 

Many computational models have also been developed. Studies that utilized a full finite 

element analysis approach have been carried out by Mau and El-Mabsout (1989), Mau 

(1990), Dhakal and Maekawa (2002a and b) and Gil-Martín et al. (2006). Other studies, 

which used a slightly simpler fiber element approach, have been carried out by Dutta and 

Mander (1998) and Massone and Moroder (2009). Both finite element and fiber element 

analyses have advantages and disadvantages. The finite element approach can capture 

the deformed shape and distribution of plasticity quite accurately, but due to constitutive 

model simplifications may not always be precise at the section level. Conversely, the 

fiber element approach has the advantage of being quite precise at the critical section 

because “exact” cyclic constitutive relations can be implemented, however the assumed 

shape functions for deformations may be slightly imprecise. It is contended however, 

that both solution approaches are too complex for practical design use. Ideally an 

analytic function is needed that captures all inelastic behavioral attributes of a buckled 

reinforcing bar.  

 

Some researchers have examined longitudinal buckling in the context of cyclic loading. 

Monti and Nuti (1992), for example, developed a rule-based plasticity hardening model, 

modified for buckling. Rodriguez et al. (1999) developed a simpler model for buckling 

under cyclic loading conditions based on a modified version of the Euler buckling 

equation. Kunnath et al. (2009) recently developed a comprehensive cyclic model for 
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reinforcing steel that included the effects of buckling (using the model from Dhakal and 

Maekawa, 2002a) and low-cycle fatigue. Again, these models tend to be either computa-

tionally expensive or too difficult for direct implementation in design applications. 

 

4.2.3 Experimental Studies on Local Buckling of Longitudinal Reinforcing Bars 

Several researchers have carried out experimental investigations on local bar buckling by 

considering a bar under either concentric or eccentric compression with the ends fixed 

against rotation. These physical models, described below, are used as the basis for 

validating the computational model. When considering the results of experimental 

studies, several important aspects must be examined. Firstly, machining of specimens 

from reinforcing bars removes the case-hardened shell developed as part of the manufac-

turing process (González et al., 2006). Secondly, displacement transducers are preferred 

over strain gauges for measuring axial strain. Strain gauges require the removal of some 

of the bar deformations, altering the specimen behavior. In addition, strain gauges only 

measure local strain over a distance of 5mm or so, whereas to capture the full buckling 

behavior, strains should be measured over some multiple of the effective buckled length. 

The use of displacement transducers may overcome both of these problems. Thirdly, it is 

important to realize that plastic stresses and strains increase in reinforcing bars, even 

after the onset of lateral deflections. As such, experimental studies that report values 

other than the peak axial stresses and strains may not be useful for comparison with 

theoretical models. Due to these factors, the experiments by Mander (1983), Mander et 

al. (1994), Bayrak and Sheikh (2001) and Bae et al. (2005) have been selected for use in 

this study. Table 4.1 displays the geometric and material properties for these tests. Some 

details of these experimental investigations follow. 

 

Mander (1983) carried out monotonic compression tests on Grade 275 and Grade 380 

steels manufactured in New Zealand. The bar diameters of the specimens were 16mm, 

20mm, 24mm and 28mm; s / db ratios were 5.5, 6.0, 6.5, 10 and 15; and rates of applied 

strain ranged from 0.00001 /s to 0.013 /s.  
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Monti and Nuti (1992) describe a series of monotonic and cyclic tests were performed 

on FeB44 steel manufactured in Italy. Bar diameters of 16mm, 20mm and 24mm were 

used, and the s / db ratios were 5, 8 and 11.  

 

Mander et al. (1994), as part of a study on low-cycle fatigue behavior in reinforcing 

steel, carried out cyclic and monotonic compressive tests on ASTM A615 deformed 

reinforcing bars at s / db = 6, and on ASTM A722 type II hot-rolled proof-tested alloy-

steel prestressing thread bar with s / db ratios of 6, 8 and 9.  

 

Rodriguez et al. (1999) conducted an experimental study using monotonic and cyclic test 

specimens machined from ASTM A706 reinforcing steel commercially available in 

Mexico. Ratios of s / db used were 2.5, 4, 6 and 8. Although the steel from this study was 

investigated in the computational analyses presented in this paper, the experimental 

results were not used for verification. This is because machined specimens were used, 

the ends of the specimen were not adequately restrained against rotation, and compres-

sive stress-strain curves were not presented which could be used for comparison. 

 

Bayrak and Sheikh (2001) conducted an extensive experimental study was conducted by 

on Grade 400 reinforcing bars loaded in monotonic compression. The bars were all 

20mm in diameter. Seven s / db ratios were used, which ranged from 4 to 10. Initial 

“imperfections” (eccentricities) at mid-height, ranging from 0 to 0.3db, were applied to 

the specimens. Further to the study by Bayrak and Sheikh (2001), tests on No. 8 and No. 

10 Grade 60 reinforcing bars from the U.S. were conducted by Bae et al. (2005). The 

specimens had s / db ratios ranging from 4 to 12, and initial eccentricities ranging from 0 

to 0.5db. 
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4.3 Coupled Axial and Lateral Deformation Analysis 

As the reinforcing bar buckles under axial compression, lateral deformation and an 

eccentricity e of the axial load result at the locations of maximum curvature. Therefore, 

it is necessary to computationally analyze the coupled axial-bending behavior. Thus a 

computational algorithm is first developed to model the cantilever column shown in Fig. 

4.1(b). Section equilibrium is then checked using a force-deformation analysis for each 

level of e. For computational efficiency the force-deformation analysis was performed 

using a Gauss-Quadrature technique across the section. Because the buckling problem 

involves a singularity at the point of buckling, a very small initial eccentricity eo was 

applied to the section before application of axial load. This avoids the possibility of 

finding the trivial solution where s / db = 0. 

 

4.3.1 Material Characterization  

A schematic diagram of the tensile stress-strain curve for reinforcing steel is shown in 

Fig. 4.2(a). This can be modeled in the form of a single equation as follows:  
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 (4.1) 

 
in which there are seven control parameters that can be experimentally determined: fy = 

yield stress; Es = Young’s modulus; Esh = modulus at the onset of strain hardening; εsh = 

strain at the onset of strain hardening; fsu = ultimate tensile stress; εsu = strain at ultimate 

tensile stress; and εf = tensile fracture strain. Also, εy = fy / Es = yield strain; and the 

exponent p is calculated from the control parameters, where p = Esh (εsu – εsh) / (fsu – fy). 

Note that the first and second main parts of (4.1) represent the pre- and post-strain-

hardening portions of the stress-strain curve, while the |s / f | term in the denominator 

simulates tensile fracture. 
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(a) Tensile Stress-Strain Diagram 

 
(b) Stress-Strain Diagram with Strain Reversal 

Fig. 4.2: Material Characterization of Steel 
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The definition of engineering stress uses the initial cross-sectional area of the element. 

With this definition, experiments show different stress-strain results in tension and 

compression. However, Dodd and Restrepo (1995) have shown that in terms of natural 

stress and strain, the behavior in tension and compression is similar. Transformation 

from tensile engineering stress and strain (fs, εs) to natural stress and strain in compres-

sion (fcs, εcs) can be carried out through the relationships: 

 
  fcs = – fs (1 + εs)

2 (4.2) 
 
  εcs = – εs / (1 + εs) (4.3) 
 
In a buckling analysis it is also necessary to accommodate some cyclic loading effects as 

some fibers in the bar cross-section will continue to load monotonically, while other 

fibers may unload from a reversal strain and stress  ,o of   . Due to the influence of the 

strain history, the unloading and reloading branches of the stress-strain curve are softer 

than the monotonic curve. This Bauschinger effect, shown in Fig. 4.2(b), can be modeled 

by:  
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where R = 2 – 0.4 o
  ≤ 1; and q = a constant controlling the gradient of the curve. For 

reinforcing steel with a yield stress of 450 MPa, it was found that q = 0.935. This 

equation is a simplified version of a formulation by Chang and Mander (1994), which in 

turn is based on the Menegotto-Pinto Equation (1973). 

 

4.3.2 Lateral Deformation Analysis 

Consider the case of a reinforcing bar buckled between two successive layers of 

transverse reinforcing steel spaced at a distance s as shown in Fig. 4.1(a). Assuming the 

buckled shape function conforms to a cosine curve as in elastic buckling (Euler, 1759), 
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the deflection, slope and curvature of the bar segment shown in Fig. 4.1(b) may be found 

as follows: 

 

  2
cos

x
y e e

s

    
 

 (4.5) 

 
where e = the maximum eccentricity at the tip of the cantilever. Differentiating twice 

gives the curvature: 
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 (4.6) 

 
The maximum curvature can thus be written: 

 

  2
2

4
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s
   (4.7) 

 
from which an exact solution for the buckling curve can be presented in dimensionless 

form: 
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It should be noted that a slight difference is expected between the theoretical models and 

the experimental results. This is because the computational and analytical models were 

both derived for a circular section, whereas a reinforcing bar has deformations. This 

affects the results via the radius of gyration, r. By measuring the cross-sectional 

properties of the reinforcing bar and comparing them with those for a true circle, Mander 

(1983) found that r for the reinforcing bar is about 0.955 times that for a circle. Thus 

(4.8a) becomes: 
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Note that the assumed cosine curve shape function implied in the above formulation will 

need to be verified later for inelastic buckling.  

 

4.3.3 Axial-Lateral Deformation Coupling 

The total buckling strain of the bar is measured between the restrained ends of the 

buckled bar. At crippling, defined as the maximum buckling load, this strain is: 

 
  εcr = εo + εb  (4.9) 
 
in which εb = secondary (geometric) nonlinear buckling strain; and εo = central axial 

strain which from strain compatibility requirements can be defined in terms of the 

curvature (see also Fig. 4.3(b)): 

 
    0.5o b bd c d    (4.10) 

 
Secondary strains εb, resulting from the shortening effect of the buckled shape, are dealt 

with in a similar fashion to that proposed by Dhakal and Maekawa (2002c). Noting that 

the arc length of the buckled bar spaced between two adjacent stirrups is s, this can be 

formulated in terms of the deformed shape given by (4.5): 
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where s (1 – εb) is the net distance between adjacent layers of transverse steel under 

bending of the reinforced concrete member. Simplifying using a Taylor’s series expan-

sion and carrying out the integration leads to the following solution for the secondary 

strain: 
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(a) Cross-Section of Bar (b) Section Strain Profile (c) Section Stress Profile 

(d) Cross-Sectional Strain and Stress Profiles at Buckling Load  

(e) Stress-Strain Curves for s / d =6 to 10 (Highest to Lowest Curves) 

Fig. 4.3: Computational Bar Buckling Analysis – Method and Results 
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4.3.4 Moment-Curvature Analysis at the Critical Section 

A simplified analytical procedure was used to evaluate the behavior of a reinforcing bar 

during buckling. This involved using a monotonic nonlinear force-deformation analysis 

procedure to capture the full sectional behavior and relate it to the global behavior. Since 

there is no active lateral force applied to the reinforcing bar during the buckling process, 

it is implicitly assumed that shear stresses do not contribute significantly to the deforma-

tion behavior, thus uniaxial relationships are assumed for the entire section. Bernoulli’s 

hypothesis is also assumed to apply, thus plane sections remain plane during bending. 

Hence, if the curvature  and the strain at the centroidal (reference) axis εo are known, 

the strain at any depth ε(y) can be determined using: 

 
    oy y     (4.13) 

 
Consider the circular cross-section of a reinforcing bar of diameter db shown in Fig. 

4.3(a). The strain profile given by (4.13) is shown in Fig. 4.3(b), and Fig. 4.3(c) shows 

the resulting stress distribution, which can be obtained by applying (4.1) through (4.4). 

In order to obtain the total axial load P and bending moment M acting on the section, the 

stresses given by the constitutive relations must be integrated over the section. This can 

be done using a Gaussian Quadrature formulation, where the section is discretized into n 

Gauss-points with an associated width bi and located at a distance di / 2 from the 

reference axis, where the subscript i refers to the ith Gauss-point. Each point is assigned 

an area weighting factor, wi. The total axial load and bending moment are given in (4.14) 

and (4.15) respectively. 
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in which 215.0 iii wa  and qi = 0.5aii, where σi, wi and ξi are the respective stress, 

weighting and position factors for the ith Gauss-point. 

 

In the nonlinear buckling analysis, the known variables are the applied curvature, and via 

an assumed shape function, the eccentricity, e. The analysis proceeds in strain incre-

ments, and some iteration is required to ensure strain compatibility and force equilibrium 

for each step. The coupling of the section axial load P and moment M with respect to the 

axial strain and curvature at the critical section are found from the following incremental 

relationship. 
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 (4.16) 

 
For a given moment demand that arises from the buckling effect, the incremental 

curvature may be found using the first row of (4.16) as follows:  
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 (4.17) 

 
The partial derivatives are found from numerical backward differences. Once the 

reference strain is found to satisfy section equilibrium, the bending moment must be 

adjusted to satisfy global equilibrium, and the sectional analysis repeated. Once section 

and member equilibrium and displacement compatibility are satisfied for a given axial 

strain, the solution is found for the next increment of strain. 

 

Note that the incremental strain may just as easily be found using the second row of 

(4.16), with curvature as the known variable at each step. Both methods can be shown to 

converge to the same solution. Full details of the computational algorithm were ex-

plained in Chapter III. 
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4.4 Results of Computational Buckling Analysis 

Rigorous computational analyses of buckling reinforcing bars were carried out on 

various grades of steel at different hoop spacing to bar diameter ratios (s / db). Section 

stress and strain profiles at crippling were plotted for each type of steel analyzed, as 

shown in Fig. 4.3(d). Stress-strain curves in compression were also produced for each 

type of steel (Fig. 4.3(e)). From both sets of plots, it can be seen that the axial strain, 

average axial stress and section curvature at crippling all increase with decreasing s / db 

ratios. This trend is in agreement with all experimental studies mentioned above. A 

complete set of computational results is available in Appendix B. 

 

Upon further interrogation of the computational results, the moment-axial stress histories 

and peaks were plotted for each type of steel, as well as the moment-curvature histories 

and peaks. These are shown in Figs. 4.4(a) and 4.4(b) respectively. These plots are 

consistent with the section stress and strain profiles, in that the axial stress and section 

curvature at crippling increase with decreasing slenderness ratio.  

 

4.4.1 Empirical Observations from Computational Results 

From the results of the above analyses, several important observations may be made. 

First, the neutral axis ratio c / db is consistently observed to be about 0.15 for mild steels 

analyzed, as shown in Fig. 4.3(d). Second, when the peak moment Mpp is plotted against 

the peak buckling stress fcr for each grade of steel, as shown in Fig. 4.4(a), it may be 

observed that the moment-axial stress interaction diagram for the buckled bar is bounded 

by three lines as follows: 

 

Line 1: Separates elastic and inelastic performance:  

 

  ycr

su su

ff

f f   (4.18) 

 
Line 2: Describes the bending moment-axial load failure (strength) surface: 
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 (4.19) 

 

where 3 6pu su bM f d  and 2)1( sususu ff   . As the computational results in Fig. 4.4(a) 

show, for low spacing of lateral steel, the solution approaches Line 2. Although (4.19) 

represents the exact plastic strength interaction surface if the section is rectangular, Dutta 

and Mander (1998) showed that for a circular section, (4.19) also gives a sufficiently 

accurate representation of the failure surface, particularly for high axial loads. 

  

Line 3: At higher slenderness ratios (typically when s > 4db), the eccentricity of the load 

begins to affect the interaction between critical stress and peak moment: 
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If the stress-strain curve of the steel were elastic-perfectly plastic, then e would be 

constant for all slenderness ratios. However, due to the presence of strain hardening, e 

changes as more of the strain hardening curve is engaged during bending. Nevertheless, 

it may be observed in Fig. 4.4(a) that e is approximately constant for each type of steel. 

Qualitatively, it can be observed from Fig. 4.3(c) that e will increase as εy decreases, 

since e is most influenced by the post-yield slope. Results for the eccentricity e plotted 

against the material yield stress εy are presented in Fig. 4.4(c). A best fit empirical 

relationship may be taken as: 

 

  0.75

0.0011

b y

e

d 
  (4.21) 

 
Another important observation that may be made is that the post-elastic moment-

curvature response prior to buckling is essentially linear as is evident from Fig. 4.4(b).  
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(a) Moment-Axial Stress Interaction (b) Moment-Curvature Relationship 

(c) Empirical Relationship for e /db (d) Empirical Relationship for β  

Fig. 4.4: Empirical Observations from Computational Analysis 
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This justifies the shape function assumption implicitly in (4.8). Also, when the peak 

curvature ϕpp is plotted against the peak bending moment Mpp, as shown in Fig. 4.4(b), it 

may be observed that the moment-curvature relationship is bounded by three lines 

corresponding to Lines 1, 2 and 3 described above: 

 

Line 1: Separates elastic and inelastic performance.  

 

Line 2: Describes the ultimate curvature obtainable at the section level: 

 
  pudb = 1.4εsu (4.22) 
 
Line 3: Can be described by a power curve relationship between bending moment and 

curvature: 

 

  
pu cb

pp cb

M

P e




 
  
 

 (4.23) 

 
where Pcb = the axial load on the bar at the transition between Lines 2 and 3, and Mcb is 

the corresponding bending moment. The parameter β is an empirically determined 

constant. From Fig. 4.4(d), it may be observed that β increases linearly with εy. A line of 

best fit is found to be: 

 
  β = 1 + 1000εy (4.24) 
 
 
4.5 Prediction of Ultimate Stress at Crippling 

Using the buckling curve expression given by (4.8) and incorporating the empirical 

observations outlined above, the ultimate stress at crippling can be predicted for the case 

where Line 2 in Fig. 4.4(a) describes the interaction between bending moment and axial 

force. From equilibrium, the moment at the fixed end of the buckled shape shall be 

defined as Mpp = Pcre, where e = end eccentricity and   24cr cr bP f d = maximum axial 

force at buckling, therefore: 
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 (4.25) 

 
Substituting (4.22) and (4.25) into (4.8b) gives the required spacing for failure on Line 2 

as:  

 

  
2.34 su cr

b cr susu

f fs

d f f



   (4.26) 

 
Thus solving for the buckling stress with respect to the tension coordinates  ,su suf  and 

given hoop spacing: 

 

  
   4 2

2 2(1 ) 1
121 11

b b
cr su su su su

s d s d
f f   

 
    
 
 

 (4.27) 

 
It is noted that (4.27) is valid for the case where Line 2 in Fig. 4.4(a) describes the 

interaction between bending moment and axial stress (see Fig 4.4(d)).  

 

To find the coordinates of the transition from strength-based behavior to stability-based 

behavior, (4.19) and (4.20) are equated: 

 

  
3

2
su cb

b cb su

f fe

d f f

 

   (4.28) 

 
Substituting the empirical observation from (4.21) into (4.28) and solving the resulting 

quadratic results in fcb / fsu
-, the axial stress ratio at the intersection of Lines 2 and 3: 

 

  
2

6 1.5 0.75
1

1.47 10 1200
cb

su y y

f

f

 
    


 (4.29) 

 
and the corresponding s / db ratio can be obtained applying the result from (4.29) in 

(4.26): 
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b cb susucb
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d f f




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Hence the spacing of transverse steel for stability-based behavior may be formed as: 
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 (4.31a) 
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 (4.31b) 

 

For the case where    b b cb
s d s d the expression for suf  is found by rearranging 

(4.31b): 
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2(1 ) bcb cb
cr su su
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s df
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
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   
 (4.32) 

 
where cr yf f . 

 

4.5.1 Simplified Analysis of Ultimate Failure Stress 

Alternatively to (4.27) and (4.32), an approximate expression for fcr can be written using 

a linearized moment-axial load interaction surface. The simplified interaction surface is: 

 

  2 1pp cr

pu su

M f

M f 

 
  

 
 (4.33)

  
Substituting (4.22), (4.25) and (4.33) into (4.8b) gives the simplified hoop spacing at 

failure: 
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From (4.34), the simplified critical buckling stress is found to be: 

 

  
 

 

2

2

1

1 11
su su

cr

b su

f
f

s d
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

 



 (4.35) 

 
4.5.2 Application to Experimental Results 

The curves given by (4.27), (4.32) and (4.35) are displayed in Fig. 4.5, along with 

experimental and computationally predicted values for the six of the steel types ana-

lyzed. As this figure shows, the computational and experimental values are well-

predicted by the full analytical model. In addition, the approximate curve given by (4.35) 

compares favorably well for all values of fcr above yield. It can also be observed from 

Fig. 4.5 that the code-specified limit on the spacing of transverse steel to s / db = 6 is 

sufficient to ensure failure above fy. 

 

4.6 Prediction of Strain at Crippling 

Using (4.8b) again, but with different empirical observations, an expression for the strain 

at crippling can be derived. Combining (4.8b), (4.9), (4.10) and (4.12) leads to the 

solution for the buckled shape in terms of geometry and strain: 

 

  
 ( / ) 0.5 / 0.25( / )

1.5 b b b

b cr

e d c d e ds

d 
 

  (4.36) 

 
The total buckling strain at crippling εcr can be predicted using (4.36), incorporating the 

simplifying assumptions derived above. Substituting c / db = 0.15 and (4.21) into (4.36) 

and applying the shape correction factor, one obtains the results for the compressive 

buckling strain εcr as follows. For the case where the ultimate strength surface limits the 

buckling capacity (Line 2): 
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Fig. 4.5: Generalized Analytical Buckling Curves with Experimental Values 
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For the case where stability limits the buckled capacity (Line 3): 
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 (4.38) 

 
where cr y y sf E   . 

 

4.7 Implementation of Analytical Model 

First, prior to applying the results to an overall stress-strain analytical model it is 

necessary to check whether the predicted crippling stress and strain agree well with 

experimental observations. This is shown in Fig. 4.6. Although the agreement is 

evidently not perfect, it will be subsequently shown to be satisfactory. The results of 24 

monotonic compression tests on steel bars were selected for model validation and a 

computational study was carried out for each experimental result. The tensile steel 

parameters for each type of steel are given in Table 4.1. 

 

 

Table 4.1: Properties of Steel Bars Tested in Monotonic Compression 

Material 
fy  

(MPa) 
fsu 

(MPa) 
Es 

(GPa) 
Esh 

(MPa) 
εsh εsu (s / db)cb fcb  

(MPa) 

1 H16 360 567 200 6000 0.016 0.15 5.17 558 
 D16 295 433 200 3500 0.025 0.19 4.95 435 
 D20 286 446 200 4000 0.023 0.18 5.14 438 
 D24 260 429 195 4500 0.018 0.18 5.33 410 
 D28 296 484 203 4700 0.015 0.17 5.22 471 

2 H.S. 869 1130 221 11030 0.0039 0.063 5.73 1094 
 Mild 331 565 215 8274 0.0091 0.144 5.44 540 

3 449 730 200 9000 0.0089 0.12 5.32 712 

4 515 690 200 5500 0.012 0.16 4.37 739 

5 #8 437 728 199 9000 0.0092 0.147 4.85 741 
  #10 444 638 202 7000 0.0091 0.158 4.65 666 
1
Mander (1983); 

2
Mander et al. (1994); 

3
Rodriguez et al. (1999); 

4
Bayrak and Sheikh (2001); 

5
Bae et al. (2005) 
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Fig. 4.6: Comparison between Experimental and Analytically 
Predicted Stress and Strain Values 
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4.7.1 Summary of Analytical Modeling Parameters 

The model derived above for s / db may be used in design applications. However, it is 

desirable to characterize the full compressive stress-strain curve for use in predictive 

analysis. This can be done using a version of (4.1), modified for compression: 
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 (4.39) 

 
in which the control parameters are defined as for (4.1), with the addition that fcr = 

ultimate compressive (crippling) stress and correspondingly εcr = crippling strain. The 

exponent p is calculated from the control parameters, where p = Esh (εcr – εsh) / (fcr – fy). 

The parameter   = 4 for mild steel and   = 2 for high-strength steel. This parameter is 

used to model the shape of the descending branch of the post-peak curve. The strain at 

the onset of strain-hardening in compression sh
 is calculated as: 

 

   0.5sh sh y      (4.40) 

 
This expression is validated by experimental tests, and has physical significance. At the 

onset of strain hardening in compression, the curvature induced by buckling means that 

only the extreme compression fiber will experience strain hardening at this point. Most 

of the rest of the section will be at yield stress, with the extreme tension fiber dropping 

down to zero. As such, the average strain on the section at the onset of strain hardening 

will be the average of εsh and zero, and (4.40) holds true.  

 

The computational and analytical models were used to predict the full stress-strain 

curves for the steels described in Table 4.1. A selection of these is shown in Fig. 4.7. 

Since the computational analysis was carried out without consideration of the shape of 
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(a) Mander (1983)

Fig. 4.7: Compressive Stress-Strain Curves: Experimental,  
Computational and Analytical 
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(b) Mander et al. (1994)

Fig. 4.7: Continued 
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(c) Bayrak and Sheikh (2001)

Fig. 4.7: Continued 
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the bar, it is expected that this will overestimate the experimental results slightly. The 

analytical predictions have been corrected for the expected bias. Overall, there is good 

agreement between the three plots in terms of peak values and overall shape, especially 

considering the low computational effort used to obtain these plots. 

 

4.8 Chapter Closure 

This chapter has presented a direct computational model to predict the compressive axial 

force-deformation behavior of reinforcing bars including the effects of local buckling 

that occurs between hoop-sets. Empirical observations from this computational analysis 

were then used to derive expressions for the critical buckling stress and strain at 

crippling (fcr, εcr). In turn, this coordinate is used along with a single equation to give the 

complete stress-strain behavior in compression.  

 

The following conclusions can be drawn from this study: 

1. An analytical model is provided to define the compressive crippling strain and 

stress coordinate (εcr, fcr), a necessary ingredient to predict the overall stress-

strain behavior of reinforcing bars in compression restrained by closely spaced 

hoops such that s / db < 10. 

2. Plastic buckling behavior can be characterized by the s / db ratio. At s / db ratios 

above  b cb
s d , the transverse steel is spaced sufficiently close such that the com-

pressive capacity of longitudinal bars is governed by strength. For s / db ratios 

below  b cb
s d , compressive capacity is limited by buckling, but enhanced by 

strain hardening in the bar.  

3. The analytical model developed in this study for local buckling of longitudinal 

reinforcing bars compared favorably to experimental and computational results, 

after adjusting for the fact that the cross-section of the bar is not perfectly circu-

lar. 
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4. Although dependent on the grade of steel, current code requirements limiting the 

s / db ratio to 6 appears to be satisfactory in ensuring sufficient capacity from 

compressive steel under local buckling conditions. 
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CHAPTER V 

GLOBAL BUCKLING ANALYSIS OF LONGITUDINAL  

REINFORCING BARS 

 

In this chapter, the global buckling behavior of longitudinal reinforcing steel is examined 

using rational mechanics, taking into account the full plastic behavior of the steel and the 

effects of true stress and strain. In addition the inextricable coupling between global 

buckling and other aspects of column behavior, such as confinement and dilation of the 

core concrete, shear and low-cycle fatigue is explored. A computational fiber element 

analysis is used to compute the coupled effect of axial compression and lateral buckling. 

General trends are observed, and simplified design and analysis equations are derived. 

Although several computational and analytical models exist for global buckling, they 

often assume elastic or quasi-elastic tie forces. Also, no experiments are known to have 

been performed on the global buckling phenomenon in isolation from other column 

behavior, so models of this nature may be regarded as somewhat speculative. 

 

5.1 Introduction and Motivational Background 

Buckling of longitudinal steel in reinforced concrete (RC) columns often leads to a rapid 

deterioration in moment capacity, particularly under cyclic loads. In situations where 

substantially sized (strong) transverse reinforcement exists, the buckled length will be 

restricted to the spacing between two hoopsets or the spiral pitch. This is referred to as 

local buckling, and was the subject of Chapter IV. In many instances, the strength of the 

transverse steel is inadequate to restrict the buckled length of the bar to two hoopsets, 

and thus global buckling may occur as shown in Fig. 5.1(a). This chapter demonstrates 

that this mode is less desirable as the deterioration in moment capacity is more rapid. 

 

Currently, design codes such as ACI 318-08 impose transverse steel ratios based on 

confinement requirements with the aim of preserving axial load capacity, with the 
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(a) Physical Problem

(b) Half-Length of Buckled Bar 

Fig. 5.1: Global Buckling in a Reinforced Concrete Member 
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spacing of hoopsets restricted to s = 6db for local buckling requirements. This leads to a 

dilemma for structural designers about whether to specify large diameter bars in hoops 

or spirals at the maximum spacing (6db), or to use more closely spaced, smaller diameter 

bars for the hoopsets or spirals. In circular columns, the latter is common and will almost 

certainly lead to global buckling. Some codes (e.g. NZS 3101:2006) stipulate that the 

strength of the transverse steel must be at least one-sixteenth the combined strength of 

the longitudinal bars being restrained. While this requirement attempts to size the steel to 

inhibit global buckling, it appears somewhat arbitrary and has not been investigated in 

great detail.  

 

Clearly, there is a need to be able to predict the required strength of transverse steel to 

prevent global buckling, and conversely, to predict the capacity of a longitudinal bar for 

a given size and configuration of transverse steel. Where possible, these predictions 

should be based upon rational mechanics constructs and validated against available 

experimental observations. Unlike the case for local buckling, this is an area of research 

that is still largely unexplored, despite being the critical mode of failure in many RC 

columns. 

 

In developing a model for global buckling of longitudinal reinforcing steel, it is impor-

tant to pinpoint its cause as this will have a substantial impact on the compressive stress-

strain history of the steel. As such, a qualitative analysis of the behavior in the plastic 

hinge zone (PHZ) is warranted. 

 

Consider a RC column under general compressive axial load and bending moment. As 

the axial strain on the compressive side of the plastic hinge (Fig. 5.2(a)) increases, this 

region of the column will bulge outward. Initially this is due to Poisson’s effect, and then 

by core concrete dilation after spalling of the cover concrete. Eventually, a displacement 

incompatibility between the steel cage and the cover concrete will cause the cover to 

spall off, as shown in Fig. 5.2(b). Once this happens, the lateral confinement of the core
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(a) Initial Expansion (b) After Spalling 

(c) Buckling (d) Interaction with Shear and Confinement 

Fig. 5.2: Plastic Hinge Behavior in the Context of Global Buckling 
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concrete, as well as the lateral buckling restraint of longitudinal bars, must be provided 

by the transverse steel alone. Each layer of transverse steel will transmit this resistance 

by means of a nodal force on the longitudinal steel and on the concrete (Mander et al., 

1988a). As the axial strain increases, the transverse (radial / circumferential) strain 

increases dramatically, often at a greater rate than the axial strains, as demonstrated in 

the historic full scale confinement experiments of Mander et al. (1988b). The longitudin-

al bars will also begin to buckle outward, and the demand on the ties may become 

excessive to the point that a bifurcation occurs between the longitudinal steel and the 

core concrete. This point, characterized by there being no nodal force remaining to act 

on the core concrete, is defined as incipient buckling and results in plastic flow of the 

steel. 

 

Global buckling is likely to lead to a truly catastrophic failure of an RC column, since it 

also affects other modes of failure. When the transverse steel is in contact with the core 

concrete, as shown in Fig. 5.2(d), it is able to resist concrete nodal forces via the 

longitudinal steel, as described above. These nodal forces contribute to two mechanisms: 

the shear truss mechanism, as indicated by the straight dashed lines in Fig. 5.2(d), and 

the arching mechanism causing confinement of the core concrete, shown by the curved 

dashed lines in the same figure. As Fig. 5.2(d) shows, once incipient buckling has 

occurred and these nodal forces are no longer provided, the shear truss mechanism 

disappears, potentially causing shear failure. Also, the arching must take place over a 

much longer length meaning that the sectional area of confined concrete now constitutes 

a considerably smaller percentage of the total area, leading to rapid deterioration in 

concrete resistance. 

 

Coupled with the shear and confinement issues which are exacerbated by global 

buckling is the issue of low cycle fatigue. Buckling causes a very large plastic rotation to 

occur in the longitudinal bar. Upon load reversal after buckling, the compressive stress 

on the inner side of the bar will go into tension. The combined plastic strain amplitude 
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will often be sufficient to cause fatigue cracking in the steel. Because of the interplay of 

global buckling with other modes of failure, global buckling involving multiple hoopsets 

is far less desirable than local buckling, as there are no mechanisms to provide any form 

of residual strength or ductility. 

 

This chapter first summarizes previous research on global buckling of reinforcing steel. 

A computational model is then developed in true stress and strain using a rigorous fiber 

element analysis with the aim of investigating characteristic aspects of mechanical 

behavior. From these analyses, empirical observations of key results are made and these 

are parameterized to enable the critical inelastic buckling stress and strain to be pre-

dicted. A simplified limit state equation is derived for use in analysis and design. 

 

5.2 Previous Research 

5.2.1 Theoretical Models for Global Buckling of Longitudinal Reinforcing Steel 

Global buckling of longitudinal reinforcing steel was first investigated by Bresler and 

Gilbert (1961) for buckling over two hoop spacings. A deflected shape was assumed and 

the Ritz method was used to solve for an equivalent lateral tie stiffness in terms of its 

effective modulus. Scribner (1986) also carried out an analytical investigation into 

global bar buckling using an energy minimization approach similar to Bresler and 

Gilbert (1961), using elastic tie forces. It was proposed that ties should be at least half 

the diameter of the longitudinal bar being restrained.  

 

Russo (1988) considered the problem of global buckling as a beam-on-elastic-foundation 

with the tie stiffness depending on geometrical and material characteristics. Papia et al. 

(1988) made this model more systematic by creating a system matrix in which buckling 

was identified when the matrix determinant became zero. Papia and Russo (1989) used 

these results to derive a simplified parametric model that determines the stress and strain 

for a globally buckled bar.  
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Dhakal and Maekawa (2002c) used an energy minimization approach to determine the 

required stiffness of lateral ties to prevent global buckling. They then combined this with 

their local buckling model (Dhakal and Maekawa, 2002b) and determined the critical 

global buckling load for a given lateral reinforcement stiffness.  

 

Pantazopoulou (1998) developed a relationship between tie effectiveness, core deforma-

bility and bar buckling. A simplified stress-strain model was used for the longitudinal 

reinforcing bar, while the ties were modeled quasi-elastically.  

 

Falk and Govindjee (2000) used an energy minimization approach to determine how 

many layers of transverse reinforcement a bar would buckle over. Bayrak and Sheikh 

(2001) introduced the concept that the expansion of the core concrete leads to incipient 

buckling, although their model was only applied to local buckling.  

 

Each of these studies assumed some form of elastic or quasi-elastic tie forces in their 

formulations. However, it is well recognized that transverse steel invariably yields in 

situations where global buckling occurs (Mander et al., 1988b; Dhakal and Maekawa, 

2002c; Sato and Ko, 2007), and hence any approach based on stiffness is fundamentally 

flawed and inconsistent with physical reality.  

 

Dutta and Mander (1998) eschewed this elasticity approach in favor of a plasticity 

formulation to model the global buckling problem. The simplified design equation 

derived in their studies on local buckling was extended to become a function of the hoop 

geometry and material properties. Comparisons with experimental results by other 

researchers showed reasonable agreement with the predictions of this model. Because 

this model assumes that transverse steel yields at modest compressive axial strains 

(typically 0.005), it is considered to be a fundamentally correct approach to the global 

buckling problem. Caution is needed, however, to find the correct collapse mechanism 

from the outset since failure to do so will overestimate the buckling capacity of the 
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longitudinal bars. This is because it would rely on the erroneous premise that the buckled 

shape of the bar can change at any time, to incorporate more or less hoops, until the 

critical buckling load is reached.  

 

Buckling may conceivably occur over any number of hoopsets (Nh) or spiral turns of 

transverse reinforcement in the PHZ where the cover concrete has spalled off (Fig. 

5.2(c)). Several methods have been proposed to determine Nh. One method, used in 

studies such as those by Dhakal and Maekawa (2002c), and Papia et al. (1988) essential-

ly involves determining the required total tie stiffness to resist buckling for each mode, 

and comparing this with the provided tie stiffness. As stated previously, allowance needs 

to be made for the fact that ties will yield well prior to incipient buckling.  

 

Another method, used by Scribner (1986) and Pantazopoulou (1998) predicts that 

buckling will occur over the entire PHZ (assuming spalling occurs throughout this 

region). A third method, adopted in studies such as Falk and Govindjee (2000) and Dutta 

and Mander (1998) uses energy minimization to predict the mode of buckling, which 

corresponds to the mode with the lowest critical buckling force. In this study, a combina-

tion of the second and third methods is used, as explained in subsequent sections. 

 

5.2.2 Experimental Studies on Global Buckling 

Several experimental studies considering buckling of longitudinal steel have been 

carried out (e.g. Bresler and Gilbert, 1961; Scribner, 1986; Dhakal and Maekawa, 

2002c). The investigators aimed to validate global buckling models derived in those 

studies. Other experiments were also used as the basis for empirical relationships 

between buckling of longitudinal reinforcement and other aspects of column behavior.  

 

Pantazopoulou (1998), for example, constructed a database of over 300 specimens and 

used that data to derive empirical design equations between concrete axial strain, 

displacement ductility and the required size and spacing of transverse reinforcement. 
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Moyer and Kowalsky (2003) examined the effects of tension strain on buckling of 

longitudinal steel in cyclically loaded reinforced concrete columns. Berry and Eberhard 

(2005) constructed a database of tests of 62 rectangular-reinforced and 42 spiral-

reinforced concrete columns to derive an empirical relationship for the drift ratio at the 

onset of bar buckling in reinforced concrete columns. In a similar study, Syntzirma et al. 

(2010) proposed a relationship for the drift ratio at the onset of bar buckling. Sato and 

Ko (2007) conducted an experimental investigation into lateral shear reinforcement 

accompanied by global buckling.  

 

It is important to note that in none of these experimental studies have the compression 

stress-strain behavior of longitudinal steel been reported. It is extremely difficult to 

measure bar stresses, strains and lateral deflections in a column, and this problem is 

exacerbated by the fact that it cannot be accurately pre-determined which bar will 

buckle, or over how many hoopsets or spirals of transverse reinforcing global buckling 

will take place. Both of these are critical in making accurate measurements. Also, there 

have been many experiments done on local buckling of longitudinal steel (see Chapter 

IV) where this was considered in isolation from other aspects of column behavior. 

However, no studies have been reported for the analogous global buckling experiments. 

As such, all global buckling models that have been formulated from a mechanical basis 

may be regarded as somewhat speculative. Moreover, models derived from a database of 

experimental results tend to lack generality; strictly, they are only valid for the types of 

column in the database. 

 

5.3 Computational Modeling of Global Bar Buckling 

In order to gain a thorough understanding of the global buckling phenomenon, a rigorous 

computational analysis was carried out for a range of steel types and column geometry. 

This computational analysis involved two stages: (i) from yield through to the bifurca-

tion point; and (ii) after the bifurcation point.  

 



81 

 

5.3.1 Lateral Deformation Analysis 

From the above description of the behavior in the PHZ, it can be stated that deflections 

in the longitudinal steel bar are caused initially by Poisson’s expansion, followed by core 

concrete dilation until the point of bifurcation, and by the buckling phenomenon itself 

beyond bifurcation. Each of these is dealt with separately. 

 

Consider the case of a reinforcing bar buckled over Ns successive spaces of transverse 

reinforcing steel spaced at a distance s as shown in Fig. 5.1(a). This corresponds to (Nh + 

1) hoopsets. Assuming the buckled shape function conforms to a cosine curve as in 

elastic buckling (Euler, 1759), the deflection, slope and curvature of the bar segment 

shown in Fig. 5.1(b) may be found as follows: 
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N s
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where  = the maximum eccentricity at the quarter-point of the buckled length; and Ns = 

the number of hoop spaces s in the buckled length. Differentiating (5.1) twice gives the 

curvature: 
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Thus, the maximum curvature can be written as follows: 
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From equilibrium requirements in Fig. 5.1(b), the moments can be related as follows: 
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in which Fhi = hoop force applied by the hoop (which will normally be in a state of 

yield); and Ci = net nodal confinement force. Note that instability occurs when Ci  0. 

 
5.3.2 Resistance by Transverse Steel 

Cold working of the steel to form hoops in circular sections and hooks in rectangular 

sections will cause the steel to exhibit the same behavior as with the reloading branch in 

cyclic behavior, with clear evidence of the Bauschinger Effect (Priestley et al., 1981; 

Mander, 1983). As such, the following stress-strain relationship was adopted for the 

transverse steel: 
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 (5.5) 

 
where h = hoop strain; yh = hoop yield strain; fh = hoop fracture strain; fyh = hoop yield 

stress; and fuh = hoop ultimate stress. A diagram of the hoop stress-strain curve is given 

in Fig. 5.3(a). Mander et al. (1988a) found the hoop fracture strain from strain energy 

considerations by approximating the area under the curve given by (5.5) as follows: 
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Given fuh / fyh is typically in the range 1.5 to 1.6 (Mander, 1983), the strain can be 

simplified as fh  80 / fyh. 

 

5.3.3 Full Buckling Analysis   

Mander (1983) and Mander et al. (1988b) describe axial load experiments on full scale 

specimens where the hoop strains were measured. These are used here to model the
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(a) Hoop Stress-Strain Diagram 

 
(b) Axial-Lateral Strain Relationship 

Fig. 5.3: Characterization of Hoop Behavior 
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 dilation of the section under axial load. Axial strain is applied incrementally, from 

which the transverse strain is found using the following relationship, shown in Fig. 

5.3(b): 

 

  
b

t s

fh cu

 
 

  (5.7) 

 
where s = axial strain compression strain in the rebar; cu = axial compression strain at 

first hoop fracture, as defined in Mander et al. (1988a); sf = fracture strain of the hoops 

as defined above; and b = ln (tc / f ) / ln (oc / u) with (tc, oc) being a control point for 

the relationship between axial and lateral strains. Based on analyzing a selection of data 

from Mander (1983), b varies from 1.5 to 2.5. For typical levels of practical transverse 

steel details, and in lieu of a more precise analysis, b = 1.75 should suffice. The analysis 

proceeds using the equilibrium equation of the deformed (buckled) shape given by (5.4) 

until the nodal confinement forces Ci vanish and instability ensues. 

 

Once the point of instability has been identified, the behavior switches to a plastic flow 

problem as in the case for local buckling. As such, the same computational method used 

for analyzing local buckling described in Chapter IV is used, modified for the resistance 

given by the transverse steel using (5.4). Successive increments of reference strain o are 

applied to the section, with the axial load and curvature being adjusted until force 

equilibrium and displacement compatibility requirements had been satisfied. Secondary 

buckling strains are also considered in the same manner as for local buckling. A full 

description of the computational algorithm was given in Chapter III. 

 

5.4 Observations from Computational Analysis 

In order to gain a general understanding of global buckling behavior, several computa-

tional analyses were run that were considered representative of current practice and 

design code requirements. The type of steel was kept constant for the hoops and the 

longitudinal bars throughout all analyses, with the tensile properties for mild steel taken 
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from Mander et al. (1994). This steel is considered representative of steels used in 

construction, representing a “median-value” steel. For example, the yield strength of 

common mild steels typically varies from about 250MPa to 500MPa, and the yield 

strength of the steel used is 331MPa, close to the median value of 375MPa. The other 

value held constant throughout all analyses was the value of cu, which was set at 0.05. 

This is close to the most widely observed value of cu in experiments by Mander (1983), 

and given typical reinforcement and material parameters, is the value estimated from the 

model given in Mander et al. (1988a).  

 

Firstly, to establish the value of Ns considered to be critical, three analyses were run for 

Ns = 3, 5 and 7. The s / db ratio was kept constant at 6, the minimum value specified by 

most design codes. The hoop force ratio, Py / Fyh was kept constant at 4, a commonly 

used value in practice. The results of this analysis are shown in Fig. 5.4. Clearly Ns = 3 

gives the lowest global crippling stress. While this is not necessarily the pre-ordained 

buckling case, as would be suggested by energy minimization approaches, it is the most 

critical case that could conceivably occur. As a result, Ns = 3 was used for all subsequent 

analyses. Next, two sets of analyses were run – one set keeping s / db constant at the 

code-specified value of 6 and varying Py / Fyh; the other set keeping Py / Fyh constant at 

16, as specified by NZS3101:2006 while s / db was varied. These sets of results are 

shown in Figs. 5.5 and 5.6 respectively. As these figures show, for all cases plotted, the 

global buckling curve follows the local curve until the crippling point is reached, at 

which point a sharp decrease in capacity is observed. 

 

A further important observation from Figs. 5.5 and 5.6 is the increasing disparity 

between local and global buckling solutions as s / db decreases, regardless of how big the 

hoops are. While decreasing s / db may be good for confinement, clearly it is steering the 

system towards an unavoidable global buckling failure. In reality, the increased hoop 

sizes would marginally increase the crippling stress via cu, but this is too variable a 

parameter to be reliable. 
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(a) Stress-Strain Curves (b) Key 

(c) Moment-Axial Stress Interaction (d) Moment-Curvature Relationship 

Fig. 5.4: Computational Analysis to Find Critical Buckling Length 
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(a) Stress-Strain Curves (b) Key 

(c) Moment-Axial Stress Interaction (d) Moment-Curvature Relationship 

Fig. 5.5: Computational Analysis to Show Variation in Behavior with Hoop Force
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(a) Stress-Strain Curves (b) Key 

(c) Moment-Axial Stress Interaction (d) Moment-Curvature Relationship 

Fig. 5.6: Computational Analysis to Show Variation in Behavior with Hoop Spacing
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5.5 Simplified Limit Analysis 

Whereas the model described in the preceding sections is well suited for a full computa-

tional buckling analysis, it is somewhat cumbersome for use in analysis and design 

situations. Instead, a simplified limit analysis will suffice for relating the required hoop 

force to the axial capacity of the longitudinal steel. This limit analysis is based on the 

rigorous computational analysis, but incorporates several simplifying assumptions as 

outlined below. Because there is a lot of variability in steel material properties, column 

geometry and dilation of the core concrete, coupled with the reality of highly nonlinear 

and somewhat irregular behavior observed in column specimens, it would not be realistic 

to derive a truly comprehensive analytical model. Thus, the complexity of the problem 

necessitates the simplicity of the solution. 

 

5.5.1 Prediction of Crippling Stress due to Global Buckling 

Firstly, the curvature can be used to relate e and , the eccentricities due to local and 

global buckling respectively. From (5.3) and the analogous local buckling shape 

function, e can be written as: 

 
  2

se N   (5.8) 

 
In the limit, it may be assumed that Ci in (5.4) has vanished, thus the equilibrium 

equation becomes: 
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Normalizing (5.9) with respect to Py, the yield force of the longitudinal steel and 

combining with (5.3) and (5.8), the following simplified force ratio equation is obtained 

for limit analysis and design: 
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where fgb = crippling stress from global buckling. Now making the simplifying assump-

tions that the maximum hoop strain h occurs mid-way along the buckled length, the 

hoop deflection is: 

 
   1 cosh h h sL N       (5.11) 

 
Also, it can be reasonably assumed that Fh  1.4Fy near failure and h = fh = 80 / fyh as 

shown previously. This is consistent with computational and experimental observations 

of hoop fracture over part of the buckled length. Substituting these into (5.10) gives: 
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Using the simplifying assumption that Ns = 3, which gives a minimum fcr in (5.12), and 

is also validated in Fig. 5.4, this can be further simplified as: 
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Equation (5.13) can be used in an analysis context, where fgb / fy will naturally be limited 

to values below those given by the local buckling solution derived in Chapter IV. For 

design purposes, (5.13) can be rewritten to give the required hoop force, thus to inhibit 

global buckling, 
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where fcr is given by the local buckling solution.  

 

5.5.2 Prediction of Crippling Strain due to Global Buckling 

Using the computational observation that the global buckling curve roughly follows the 

local buckling curve until the crippling stress fgb is reached, the corresponding strain gb 
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can be estimated using an inverse form of the steel stress-strain curve for local buckling. 

Using the relationship for the strain-hardening portion of the stress-strain curve from 

Mander (1983): 
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where (cr, fcr) is the crippling point from local buckling; and p = Esh (cr – sh ) / (fcr – fy) 

is the strain-hardening parameter. Also, Esh = strain hardening modulus and sh = 

compressive strain at the onset of strain-hardening. Clearly, (5.15) is valid for the case 

where fgb ≤ fcr. For the case where fgb = fy, the corresponding strain could lie anywhere on 

the yield plateau, so a reasonable assumption of gb = sh is adopted. 

 

5.5.3 Tie Effectiveness and Circular Sections 

Allowance must be made for the fact that transverse steel may not necessarily be aligned 

orthogonal to the longitudinal steel. This will be the case for rectangular and square 

columns with the transverse steel layout shown in Fig. 5.7(a), and hence the full force in 

the tie resists lateral deflection of the longitudinal steel. Where tie sets resist more than 

one longitudinal bar, this may be taken into account in the manner described by Paulay 

and Priestley (1992). In the case of spiral reinforced or octagonally reinforced columns, 

a geometric factor  is applied to the hoop force, as shown in Fig. 5.7(b) and 5.7(c). 

 

5.5.4 Full Compressive Stress-Strain Model 

The crippling point (gb, fgb) given by (5.13) and (5.15) is applicable for the case when 

failure occurs by global buckling of the longitudinal steel. Allowance must also be made 

for cases when failure occurs due to local buckling of the longitudinal steel, or due to 

hoop fracture. The ultimate compressive strain at hoop fracture can be conservatively 

estimated using the following formulation given in Priestley and Calvi (1996): 
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(a) Orthogonal

(b) Octagonal

(c) Circular 

Fig. 5.7: Multipliers for Different Configurations of Transverse Steel 
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where su = steel strain at maximum tensile stress; f’cc = confined concrete strength, 

given by the well-known formulation by Mander et al. (1988a); and s = 4Asp / D’s is the 

volumetric ratio of confining reinforcing steel. Also, Asp = cross-sectional area of spiral 

steel, and D’ = diameter of the core concrete. The stress corresponding to (5.16) can be 

obtained from the compressive stress-strain curve derived in Chapter IV. 

 

Using the local buckling equations derived in Chapter IV, together with (5.13) and 

(5.16), the compressive stress-strain curve for steel presented in Chapter IV can be 

modified to include global buckling and hoop fracture effects: 
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  (5.17) 

 
where fy = yield stress; Es = Young’s modulus; Esh = modulus at the onset of strain 

hardening; εsh = strain at the onset of strain hardening; fcr = ultimate compressive 

(crippling) stress from Chapter IV; εcr = crippling strain. Also, εy = fy / Es = yield strain; 

and the exponent p is calculated from the control parameters, where p = Esh (εsu – εsh) / 

(fsu – fy). The parameter  = 4 for mild steel and  = 2 for high-strength steel. Finally, ult 

= min(gb, cu). 

 

5.6 Chapter Closure 

This chapter has presented a thorough qualitative analysis of the global buckling 

phenomenon, and described the interplay between global buckling and the confinement 
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and dilation of the core concrete. A rigorous computational analysis was carried out to 

establish trends with respect to spacing of hoopsets, size of hoopsets, number of 

hoopsets in the buckled length, and ultimate strain of concrete. Recognizing the wide 

variability inherent in the global buckling problem, a simplified equation was derived for 

analysis and design. 

 

The following conclusions can be drawn from this study: 

1. A simplified relationship between hoopset size and spacing, and critical buckling 

stress is provided for analysis and design applications. This is incorporated into a 

full compressive stress-strain model which includes the effects of hoop fracture 

and local and global buckling of longitudinal steel. 

2. A rigorous computational method is described for conducting case studies of 

global buckling scenarios. 

3. Due to the subsequent rapid decay in moment capacity involving other modes of 

failures, global buckling is highly undesirable and should be avoided in favor of 

local buckling. This can be achieved by using larger diameter hoopsets, spaced 

further apart. 

4. The global buckling behavior of the longitudinal steel is inextricably linked to the 

confinement and dilation of the core concrete, as it is this interaction which pre-

cipitates global buckling.  
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CHAPTER VI 

 APPLICATION TO PERFORMANCE-BASED ANALYSIS 

 AND DESIGN 

 

In this chapter, the buckling models derived in Chapters IV and V are incorporated into a 

full moment-curvature analysis regime for a RC member. The objective of this regime is 

to predict the full loading history of the member, including elastic, plastic, peak, post-

peak and ultimate behavior. The effects of concrete confinement, shear and low-cycle 

fatigue are also incorporated using well-established models. The analysis regime is 

validated against experimental tests of RC specimens. The column model is then used in 

an analysis of a ten storey RC structure to demonstrate how the drifts at the ultimate 

limit state are determined.  

 

6.1 Introduction 

Current state-of-the-practice in performance-based seismic design of reinforced concrete 

(RC) buildings consists of two phases – seismic design and performance analysis. The 

design phase involves selecting member sizes, determining design loads, choosing 

flexural reinforcement and detailing the structure in accordance with the selected design 

philosophy. In the second phase, a performance-based analysis of the design is carried 

out to ascertain the damage expected under a design basis event (DBE) and a maximum 

considered event (MCE). Since damage can usually be considered to be proportional to 

displacement limit states, it is necessary to conduct a pushover analysis of the designed 

structure to determine what these limit states are. However the structure’s behavior is 

expected to be highly nonlinear and dependent on various failure mechanisms. As such, 

the pushover analysis should be coordinated with moment-curvature analyses of critical 

sections in the structure. 
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The moment-curvature analyses of these sections can be done with relative ease using 

current knowledge. The elastic, plastic, peak and post-peak behavior of RC sections can 

usually be described with sufficient accuracy for use in a pushover analysis. However, 

identification of the critical member rotation (at which failure is said to occur) is an area 

that is still largely unrefined. Four critical failure mechanisms have been defined for RC 

members (Dutta and Mander, 1998): 

 

(i) Fracture of longitudinal reinforcing bars due to low-cycle fatigue 

(ii) Fracture of transverse steel 

(iii) Failure across a critical section in shear 

(iv) Local or global buckling of longitudinal steel 

 

While the first of these, in the limit, is unavoidable due to it being a metallurgical 

property of the rebar, the latter three modes are avoidable by proper placement of 

sufficient transverse reinforcement. However, while modes (ii) and (iii) can easily be 

negated with more hoops or spirals, it is the nature of how these are placed that will 

govern whether (iv) can be averted. 

 

It is the aim of this chapter to incorporate these four modes of failure into a moment-

curvature analysis, and validate this with experimental results. This will give a more 

realistic prediction of ultimate rotation capacities of RC members, and hence, a better 

indicator of when failure is likely to occur under seismic events. The four modes of 

failure occur at significant levels of plastic rotation (assuming a well-detailed section). 

Although concrete may split due to tensile stress, cover concrete may spall off and steel 

may undergo significant plastic behavior, none of these constitutes failure as it has been 

well-proven that the section can sustain high axial loads and bending moments. 

 

The development of a two dimensional model of a RC frame building, known as the 

“Red Book building,” (CCANZ, 1998) is then described. This model incorporates the 
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use of the moment-curvature sectional analysis in critical sections throughout the model. 

A modal analysis is used to carry out model validation (via comparisons with other 

studies using the Red Book building). Using the model of the Red Book building, the 

drift at ultimate capacity is determined using two methods. Firstly, a monotonic pushov-

er analysis of the Red Book building displays how the ultimate drift may be found using 

an equivalent static analysis according to NZS 1170.5:2004. Secondly, an Incremental 

Dynamic Analysis (IDA) is carried out. This is a far more rigorous method which 

incorporates full dynamic and non-linear effects. The IDA results are compared with 

those from the monotonic pushover analysis. 

 

6.2 Moment-Curvature and Force-Deformation Analysis of Critical Reinforced 

Concrete Members 

The material behavior used in the moment-curvature analysis can be characterized 

entirely from parameters obtained from experimental testing of steel in tension and the 

concrete in compression. For a column under relatively low axial load and monotonical-

ly increasing lateral load, significant strain reversals are not expected to occur in the 

steel. As such, monotonic stress-strain relationships can be used for tensile and compres-

sive behavior, using the appropriate models presented in Chapters IV and V. These 

models take into account the full plastic behavior of the steel including strain hardening, 

which will certainly be engaged under high levels of curvature. 

 

The behavior of the concrete under monotonically increasing loads can be modeled 

using the stress-strain model by Popovics (1973). Parameters for unconfined compres-

sion are taken directly from a compressive cylinder test. Parameters for confined 

compression are found using the well known model by Mander et al. (1988a). Tensile 

parameters can be found using the appropriate formulae in ACI318-08, for example. 

 

The technique used to analyze an RC member under constant axial load is essentially a 

simplified version of the algorithm described in Chapter III. First, the section is discre-
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tized into fibers over its depth, and the appropriate material models for steel, confined 

core concrete or unconfined cover concrete are applied. Over successive increments of 

curvature are applied to the section, the centroidal strain is found to give the correct axial 

load and the corresponding moments are calculated.  

 

From the full moment-curvature relationship of the section, the lateral force-deflection 

relationship is determined. Flexural deflections are found from the first moment of area 

of the curvature distribution. Shear deflections are found using a continuum truss model 

based on one proposed by Kim and Mander (2006). Other deflections such as those from 

P-delta effects and support rotations are also included. The critical curvature from low-

cycle fatigue is obtained using the model proposed by Dutta and Mander (2001). The 

moment-curvature and force-deflection procedures are described thoroughly in Mander 

(1983). 

 

In order to validate the complete column analysis procedure, experiments from a study 

by Park et al. (1982) were modeled. In their study, four RC specimens were constructed, 

as shown in Fig. 6.1. Each specimen consisted of two identical 1200mm cantilever 

columns with a 550mm square section, connected by a heavily-reinforced 600mm beam 

stub. Each column was reinforced with 12-24mm diameter longitudinal reinforcing bars, 

and different configurations of transverse hoopsets. Tables 6.1 and 6.2 show the 

properties of the materials used. The columns were subjected to constant axial loads, 

also shown in Table 6.1, and lateral loads consisting of full cycles to increasing levels of 

ductility.  

 

The results of the monotonic column analyses are compared with the backbone curves of 

the cyclic experiments in Fig. 6.2. Clearly, the comparison is favorable to the end of the 

experimental tests. To ascertain what would happen at failure, the analyses were 

continued until a significant change in the lateral load-carrying capacity was observed. 

For each result, the point considered to be the ultimate drift capacity of the column is
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(a) Elevation 

(b) Section A-A, Specimens 1 and 2 (c) Section A-A, Specimens 3 and 4  

Fig. 6.1: Geometry of Column Specimens Tested by Park et al. (1982)  
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(a) Specimen 1 (b) Specimen 2 

(c) Specimen 3 (d) Specimen 4 

 
(e) Full Column Analysis 

Fig. 6.2: Results of Computational Analyses of RC Columns Tested by Park et al. 
(1982) 
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Table 6.1: Details of RC Specimens Tested by Park et al. (1982) 

Specimen f’c (MPa) dbh (mm) s (mm) fyh (MPa) Pe (kN) Pi (kN) 
1 23.1 10 80 297 1815 1128 
2 41.4 12 75 316 2680 1473 
3 21.4 10 75 297 2719 1113 
4 23.5 12 72 294 4265 1017 

 

 

 

Table 6.2: Tensile Stress-Strain Parameters for Longitudinal Steel Used in Specimens 
 Tested by Park et al. (1982) 

fy (MPa) fsu (MPa) sh su Es (GPa) Esh (MPa) 
375 636 0.0086 0.12 200 8000 

 

 

 

 

marked. Although this does not appear to correspond with a significant drop in load, the 

global buckling failure identified here is likely to lead to catastrophic failure of the 

column for the reasons outlined in Chapter V. Since the s / db ratios are so small, the 

failure mechanism appears to be global buckling in each case. 

 

6.3 Structural Analysis Model of Red Book Building 

A three-bay ten storey reinforced concrete frame building, whose design is described in 

CCANZ (1998), popularly known as the “Red Book”, was selected for analysis. It was 

selected as an example of the current state-of-the-practice in New Zealand building 

design, as described in the New Zealand Loadings Standard (NZS 1170.5:2004) and the 

New Zealand Concrete Code (NZS 3101:2006). The seismic design approach adopted in 

these standards is known as capacity design, which ensures the formation of a ductile 

strong-column / weak-beam mechanism able to sustain as-large-as-practicable post-yield 

deformation. 
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The Red Book building is a square office building with a floor area of approximately 

900 m2.  Lateral loads are resisted by four perimeter moment-resisting frames. As these 

frames have no corner columns, they are designed to act in one direction only. The 

building includes internal gravity frames which are not part of the lateral load-resisting 

system but are detailed to undergo the deformation imposed by the perimeter frames. 

The floor system used is a unidirectional precast hollow-core system with in-situ 

topping. The concrete strength throughout the building is specified as 30 MPa, while the 

reinforcing has a yield strength of 430 MPa. A plan and elevation of the building are 

shown in Figs. 6.3 and 6.4, while details of critical sections are given in Table 6.3. 

 

The design given in CCANZ (1998) focuses on the beams at level two, which are 

considered to be the worst case. Beam reinforcements are considered to be the same 

throughout the structure. Likewise, the column details are assumed to be the same 

throughout the structure, and are based on the worst case below level two. The analysis 

of the structure is carried out using the widely available structural analysis software, 

SAP2000. Half of the Red Book building, consisting of one gravity frame and one 

 

 

 

 

Table 6.3: Details of Critical Sections in Red Book Building 

Element Size 
Longitudinal  

Reinforcement 
Transverse  

Reinforcement 
Perimeter Beams 
 

900 x 400 mm 4-H24 Top 
4-H24 Bottom 

4 legs HR10@140 c/c

Cantilever Beams 900 x 400 mm 3-H24 Top 
3-H24 Bottom 

4 legs HR10@140 c/c

Perimeter Columns 
At Ground Level 

900 x 460 mm 12-H20 5 legs HR12@ 90 c/c 
3 legs HR12@ 90 c/c 

Perimeter Columns 
above Level 1 

900 x 460 mm 12-H20 5 legs HR10@115 c/c
3 legs HR10@115 c/c

Main Interior Beams 750 x 530 mm Not specified Not specified 
Interior Columns 650 x 600 mm Not specified Not specified 
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Fig. 6.3: Red Book Building (adapted from CCANZ, 1998) – Typical Floor Plan 
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Fig. 6.4: Red Book Building (adapted from CCANZ, 1998) – Grid F Elevation 
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moment-resisting frame, was modeled. The frames were coupled together at each floor 

level using high-stiffness pinned struts. Beams and columns were modeled as elastic 

elements with stiffnesses modified for cracking. Beam-column joints and floor diaph-

ragms were assumed rigid as in the original design (CCANZ, 1998), allowing horizontal 

degrees of freedom to be slaved at each floor level. A plastic hinge region of half a 

member depth was placed at the beam- and column-faces for each member. These 

hinges were modeled using the Takeda hysteresis rule (Takeda et al., 1970) for time-

history analyses. Fig. 6.5 shows a schematic of the SAP2000 model. P-delta effects were 

included in the analyses, and initial stiffness Rayleigh damping of 5% of critical was 

specified in modes 1 and 9. 

 

Based on the geometry given in Fig. 6.3 for the plan of the Red Book building, floor 

weights and live loads were assigned to each frame according to tributary areas. The 

weight of the main structural components was accounted for by using the self-weight 

option in SAP2000. Additional weight from cladding, glazing, lining, hollow-core floor 

units, topping and super-imposed dead load (SDL) were applied as uniformly distributed 

loads (UDLs) on each beam. Gravity loads from adjacent walls were lumped as point 

loads at the ends of each frame. A basic live load of 2.5 kPa is specified for the Red 

Book building by NZS 1170.5:2004. This yields an ultimate seismic live load of 0.49 

kPa, which was applied to all beams below the roof level as a UDL. To calculate the 

axial force due to gravity loads in each column under seismic loading, the tributary area 

was assumed to be roughly the same for each column. Loads are summarized in Table 

6.4. 

 

A modal analysis was carried out for the model of the Red Book building. The stiff-

nesses of beams and columns were modified for cracking by using EIeff = 0.52EIg for the 

columns, and EIeff = 0.25EIg for the beams, where EIeff and EIg are the effective and 

gross flexural rigidities, respectively. The loads and damping described above were 

applied to the structure. The results are compared with those from an analysis presented 
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in the Red Book (CCANZ, 1998) and with those from a study done by Robertson (2005). 

The slight difference in results is due to the Red Book assuming a higher EIeff. Table 6.5 

shows the results from the first three modes, where available. 

 
 
 
 
 

Table 6.4: Beam Distributed Gravity Loads and Cumulative Tributary Column Axial 
 Loads for Red Book Building under Ultimate Earthquake Loads 

(a) Perimeter Frame 

Floor 
Level 

Beam UDL 
(kN/m) 

Beam Point 
Loads (kN)

Cumulative Tributary Column Axial Loads (kN) 
Interior (Atrib = 41.4 m2) Exterior (Atrib = 40.2 m2)

Roof 23.8 51.6 265 257 
9 26.4 51.6 550 534 
8 26.4 51.6 835 811 
7 26.4 51.6 1120 1088 
6 26.4 51.6 1406 1365 
5 26.4 51.6 1691 1642 
4 26.4 51.6 1976 1919 
3 26.4 51.6 2262 2196 
2 26.4 51.6 2547 2473 
1 26.4 51.6 2832 2750 

 

(b) Gravity Frame 

Floor 
Level 

Beam UDL 
(kN/m) 

Beam Point 
Loads (kN)

Cumulative Tributary Column Axial Loads (kN) 
Interior (Atrib = 91.8 m2) Exterior (Atrib = 41.5 m2)

Roof 36.9 85.1 587 266 
9 41.2 85.1 1219 551 
8 41.2 85.1 1852 837 
7 41.2 85.1 2485 1123 
6 41.2 85.1 3117 1409 
5 41.2 85.1 3750 1695 
4 41.2 85.1 4382 1981 
3 41.2 85.1 5015 2267 
2 41.2 85.1 5647 2553 
1 41.2 85.1 6280 2839 
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Fig. 6.5: Schematic Diagram of SAP2000 Model of Red Book Building 
 

 

 

 
Fig. 6.6: Schematic Diagram of Takeda Hysteretic Model  
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Table 6.5: Comparison of Modes of Vibration of Red Book Building 

Study 

Period (s) 
1st Mode 2nd Mode 3rd Mode 

CCANZ (1998)1 2.04 0.66 - 
Robertson (2005) 2.14 0.70 0.41 

Present Study 2.15 0.70 0.39 
1

Average of orthogonal directions 

 

 

 

Table 6.5 also shows the first three modes of vibration of the Red Book building. The 

first mode shape is dominated by shear, and all inter-storey drifts are approximately the 

same. As the mode number increases, inter-storey drifts can become significant, 

imposing high levels of damage on the structure. 

 

In order to accurately capture the realistic structural demands, it is necessary to include 

non-linear effects in analyses of the structure. In the model constructed, hinges were 

placed at beam- and column-faces in all frames with the Takeda model describing 

hysteretic behavior. The basic Takeda hysteresis is shown in Fig. 6.6. The model 

consists of three main features – a backbone curve, cycles with no previous yield, and 

cycles with previous yield. In SAP2000, the backbone curve is user-defined, given as a 

moment-rotation (M-θ) relationship. The unloading slopes ku of the cycles are defined in 

terms of the rotation ductility μθ = θm / θy, where θy is the yield rotation and θm is the 
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rotation at initiation of unloading. As μθ increases, ku decreases, indicating higher levels 

of softening. The points at which the cycles rejoin the backbone curve are defined in 

terms of the plastic rotation θp = θm – θy. Again, as θp increases, the slope of the cycle 

curve gets flatter. 

 

For cases where the reinforcing details were known, the backbone curve was defined 

from a rigorous moment-curvature analysis of each critical section, allowing for axial 

load. The analysis technique, presented above, uses stress-strain relationships of 

reinforcing steel, confined concrete and unconfined concrete to define a full moment-

curvature relationship for a reinforced concrete section. Probable strengths of 45MPa for 

concrete and 450MPa for steel were used. The curvature was multiplied by the plastic 

hinge length (equal to half the section depth) to obtain the rotation. A simplified check 

based on rational mechanics was done for each analysis.  

 

The Red Book does not specify the reinforcement details in the gravity frame. Column 

capacities in the gravity frame were inferred based on the level of axial loads in these 

columns. For a column under eccentric axial loading, the eccentricity e and compressive 

stress block height a are defined as 

 

 
bf

P
a

c '85.0
  (6.1) 

 
and 

 
 e = 0.5 (d – a) (6.2) 
 
Hence from equilibrium,  
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where Ag is the gross area of the cross-section and d is the section depth. Since the 

second term in the brackets is usually of the order of one third, (6.3) reduces to: 

 
 M = Pd / 3 (6.4) 
 
A similar method was used to obtain the residual moment capacities after failure, where 

the moment arm is taken as d – d’. The beam capacities in the gravity frame were based 

on the maximum gravity moments, redistributed by 30 percent (as permitted under the 

provisions of NZS 3101:2006). A post-yield bilinear factor of 0.03 was applied through-

out the gravity frame. The moment-rotation relationship was simplified from the original 

analyses, as shown in Fig. 6.7(a). All hinges used in the analysis are presented in Fig. 

6.7(b) to 6.7(e). 

 

6.4 Pushover Analysis 

One option available to determine the ultimate drift capacity of a structure is to conduct 

a monotonic pushover analysis. Using this method, gravity loads under earthquake 

conditions are initially applied to the structure. Lateral loads are then applied using, for 

example, the equivalent static method described in NZS 1170.5:2004. According to 

CCANZ (1998), for a ductile frame (μ = 6) on intermediate soil with a period of 

approximately 1.65 seconds, a lateral force coefficient of 0.03 should be used. Hence, 

the horizontal seismic shear force V = 1888 kN. Table 6.6 shows how this is distributed 

at each level.  

 

The values shown in Table 6.6 are for an entire storey. Also, these values are for a DBE 

which has a 10% probability of excedence in 50 years. To convert these values to those 

for an MCE with a 10% probability of excedence in 2500 years, the force at each level 

was multiplied by 1.8 in accordance with NZS 1170.5:2004. This yields a total base 

shear of V = 1700 kN. 
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(a) Simplification of Moment-Rotation Relationship (Roof Level, Perimeter Frame) 

(b) Perimeter Columns – Strong Axis (c) Perimeter Columns – Weak Axis 

(d) Gravity Columns (e) Beams 

Fig. 6.7: Backbone Curves of Hinges Used in SAP2000 Model 
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Table 6.6: Vertical Distribution of Lateral Forces 

Level Weight (kN) hi (m) Wihi (kNm) Fi (kN) 
Roof 6209 36.4 226008 460 

9 6296 32.8 206509 283 
8 6296 29.2 183843 252 
7 6296 25.6 161178 221 
6 6296 22 168512 190 
5 6296 18.4 115846 159 
4 6296 14.8 93181 128 
3 6296 11.2 70515 97 
2 6296 7.6 47850 65 
1 6372 4.0 25488 35 

 Σ = 62949 Σ = 1268929 Σ = 1888 
 

 

where  

 

  


ii

ii
i hW

hW
VF 92.0  (6.5) 

 
and an additional 0.08V is added to the roof level.  

 

The results of the pushover analysis are shown in Fig. 6.8. The solid line in Fig. 6.8(a) 

shows the pushover response of the entire frame. The instantaneous vertical drift profiles 

for each point indicated in Fig. 6.8(a) are shown in Fig. 6.8(b). It is evident from these 

results that the maximum inter-storey drift takes place in the lower levels of the struc-

ture. This highlights the need for appropriate detailing against undesirable modes of 

failure, since unexpected failure in this area can lead to collapse of the entire structure. 

The inter-storey drift between levels 1 and 2 at peak lateral load is about 4%. This 

represents the seismic drift capacity of the structure. 
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(a) Pushover Force-Displacement Curve 

 
(b) Instantaneous Drift Profiles at Points Indicated in (a) 

Fig. 6.8: Results of Pushover Analysis for Red Book Building 
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6.5 Incremental Dynamic Analysis 

An alternative approach in determining the drift capacity of a structure, particularly 

when dynamic effects are of interest, is to conduct an incremental dynamic analysis 

(IDA). Although the concept of subjecting a structure to a “dynamic pushover” analysis 

has been proposed and developed by several researchers, the IDA method developed 

primarily by Vamvatsikos and Cornell (2002, 2004) is perhaps now the most rigorous 

and widely used method for IDA. Under this method, a series of time-history analyses 

are performed on the structure with increasing intensity. The objective is to determine 

the intensity level leading to collapse, identified by a substantial increase in maximum 

drift for a relatively small increase in intensity. By carrying out the IDA for a suite of 

earthquakes, statistical techniques can be applied to the IDA results to determine the 

intensity leading to various stages of drift, and therefore damage. The IDA method has 

gained popularity among researchers, particularly in the emerging field of loss estima-

tion (Solberg et al., 2008; Sircar et al., 2009). 

 

The IDA is carried out for the model of the Red Book Building using SAP2000. The 

analysis consists of subjecting the model to a suite of 20 earthquake ground motion 

acceleration records. Each record is run repetitively, with incrementally increasing 

intensity measures (IM). For each run, the maximum absolute drift in the structure is 

recorded.  

 

Table 6.7 presents details of the 20 earthquake ground motion acceleration records from 

the PEER Strong Ground Motion Database, used in the Vamvatsikos and Cornell (2004) 

study. A plot of scaled acceleration response spectra for the suite is given in Fig. 6.9(a). 

All ground motion records given in the PEER Strong Ground Motion Database are in 

terms of gravitational acceleration, g. As such, the records should first be converted into 

the units of the model (in this case mm and N, requiring multiplication by 9180). The 

records are then normalized with respect to SA (T = 1); that is, the peak ground accelera-

tion for a building with a period of T = 1s will be g. Finally, the record is multiplied by 
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the intensity factor, starting with 0.1 and increasing incrementally in steps of 0.1 for each 

successive run for a given earthquake record. Each individual earthquake record was run 

as a nonlinear direct integration time history analysis in SAP2000. A step size of 0.005s 

was used and checked for convergence.  

 
 
 
 

Table 6.7: Details of 20 Ground Motion Records Used in IDA 

No. Event Station Φ* 1 M* 2 R* 3 
(km) 

PGA 
(g) 

1 Loma Prieta 1989 Agnews State Hospital 90 6.9 28.2 0.159 
2 Imperial Valley 1979 Plaster City 135 6.5 31.7 0.057 
3 Loma Prieta 1989 Hollister Diff. Array 255 6.9 25.8 0.279 
4 Loma Prieta 1989 Anderson Dam 270 6.9 21.4 0.244 
5 Loma Prieta 1989 Coyote Lake Dam 285 6.9 22.3 0.179 
6 Imperial Valley 1979 Cucapah 85 6.5 23.6 0.309 
7 Loma Prieta 1989 Sunnyvale Colton Ave. 270 6.9 28.8 0.207 
8 Imperial Valley 1979 El Centro Array #13 140 6.5 21.9 0.117 
9 Imperial Valley 1979 Westmoreland Fire 

Station 
90 6.5 15.1 0.074 

10 Loma Prieta 1989 Hollister South and Pine 0 6.9 28.8 0.371 
11 Loma Prieta 1989 Sunnyvale Colton Ave. 360 6.9 28.8 0.209 
12 Superstition 

Hills 
1987 Wildlife Liquefaction 

Array 
90 6.7 24.4 0.181 

13 Imperial Valley 1979 Chihuahua 282 6.5 28.7 0.254 
14 Imperial Valley 1979 El Centro Array #13 230 6.5 21.9 0.139 
15 Imperial Valley 1979 Westmoreland Fire 

Station 
180 6.5 15.1 0.110 

16 Loma Prieta 1989 WAHO 0 6.9 16.9 0.370 
17 Superstition 

Hills 
1987 Wildlife Liquefaction 

Array 
360 6.7 24.4 0.207 

18 Imperial Valley 1979 Plaster City 45 6.5 31.7 0.042 
19 Loma Prieta 1989 Hollister Diff. Array 165 6.9 25.8 0.269 
20 Loma Prieta 1989 WAHO 90 6.9 16.9 0.638 

1
Component 

2
Moment Magnitude 

3
Closest Distance to Fault Rupture 

Source: PEER Strong Motion Database, http://peer.berkeley.edu/smcat 
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6.6 IDA Results and Implications 

The results of the IDA of the Red Book building are presented in Fig. 6.9(b). These 

results represent a seismic drift demand for a given spectral acceleration, and to evaluate 

the performance of a given design, these are compared to the drift capacity for that 

design. The capacities for two cases are shown on Fig. 6.9(b). Firstly, from a rigorous 

column pushover analysis for the base columns in the Red Book building, the ultimate 

drift capacity (governed by global buckling) was determined to be 5.0%. This drift 

capacity indicates that there is a 90% probability that the building will survive an 

earthquake with SA = 0.52g (a moderate sized earthquake), and a 50% probability that it 

will survive an earthquake with SA = 1.27g without collapsing. Using the same proce-

dure for the drift capacity given by the pushover analysis of the Red Book building, the 

respective spectral accelerations are slightly lower, but comparable. For design applica-

tions, a similar procedure can be used to determine the required drift capacity for a given 

earthquake intensity and probability of excedence. 

 
6.7 Chapter Closure 

In preceding chapters, a model has been presented for the prediction of compressive 

axial force-deformation behavior of reinforcing bars including the effects of buckling. 

This chapter has completed the picture by demonstrating the use of this model, along 

with models for other aspects of column behavior, with reference to performance-based 

analysis and design. This has been done using a static pushover analysis and a more 

rigorous incremental dynamic analysis. 
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(a) 5% Damped Acceleration Response Spectra for the Selected Ground Motion Records, Normalized 

with respect to SA (T = 1)  

 
(b) Results of IDA, Showing Median, 10th and 90th Percentile Responses 

Fig. 6.9: Acceleration Response Spectra and IDA Results for Red Book Building 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

7.1 Summary 

The aim of the research presented in this thesis was to develop a robust technique for 

identifying the critical curvature in reinforced concrete columns based on the four modes 

of column failure identified by Dutta and Mander (1998). While models exist for 

identifying failure due to low-cycle fatigue, shear and concrete confinement, no accepta-

ble model was found for predicting the buckling behavior of longitudinal reinforcing 

steel. As such, a computational algorithm was developed in which the compressive 

behavior of longitudinal reinforcing steel could be accurately modeled, considering the 

effects of local and global buckling. 

 

Once the computational algorithm was validated against experimental data, a general set 

of local buckling data was generated for a range of real steels, and the results interro-

gated. From computational observations and rational mechanics, an analytical model 

was developed for the direct prediction of the compressive steel stress-strain behavior 

based on material and geometric inputs. This analytical model was also validated against 

experimental results. By incorporating the effects of core concrete expansion and hoop 

stresses, the computational model was extended for the global buckling case. Using 

computational observations in a limit analysis, a simplified analysis-and-design equation 

was developed for global buckling of the longitudinal steel. This, together with a 

formulation based on hoop fracture, was used to modify the compressive stress-strain 

relationship to incorporate local and global buckling, and hoop fracture. 

 

The derived buckling models were then incorporated into a moment-curvature analysis, 

along with models for concrete confinement, shear failure and low-cycle fatigue. Once 

the moment-curvature routine had been validated against experimental data, a full 
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pushover analysis was carried out for a ten-storey reinforced concrete frame building to 

determine the critical drift at collapse. The column moment-curvature routine was used 

to define the backbone curves for non-linear hinges in critical sections throughout the 

building. An incremental dynamic analysis of the RC frame building was carried out to 

demonstrate applications to performance-based analysis and design. 

 

7.2 Design Considerations 

In detailing RC columns against local buckling of longitudinal steel, the aim is two-fold. 

Firstly, a strength of at least fy should be achieved, since this is what is assumed in 

design. Secondly, this stress should be sustained over a substantial strain excursion to 

achieve the levels of ductility required in the section. Current practice is to limit the 

spacing of hoopsets in these sections to 6db. The computational study carried out in 

Chapter IV confirmed that this is sufficient to ensure satisfactory behavior from the steel 

in compression. For some grades of steel, a spacing as high as 10db is still sufficient to 

guard against local buckling.  

 

This becomes important when designing against global buckling. It was explained in 

Chapter V that global buckling is highly undesirable, since other modes of failure such 

as shear failure, concrete confinement failure and low-cycle fatigue become inevitable. 

As such, a local buckling failure should be favored over a global buckling failure in 

design. There exists, however, a dilemma for designers whereby the choice must be 

made between tightly-spaced, smaller diameter hoops, and larger hoops spaced further 

apart. While the former is better for confinement of the core concrete, in many cases it 

will lead to a global buckling failure. The sacrifice of some confinement efficiency is 

considered necessary, however, to ensure that a global buckling failure does not occur. 

As such, the designer should favor larger hoops at a higher spacing. 

 

When comparing section geometry, a circular column is a more efficient layout for 

confinement of the core, but the restraint provided against lateral buckling is much lower 
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than for a rectangular section. In fact, global buckling is an almost inevitable occurrence 

in circular columns. Various remedies have been proposed to deal with this, such as 

having an inner and outer ring of reinforcement, so that the longitudinal steel in the inner 

ring will not be affected by buckling. 

 

Finally, it was found that current provisions for global buckling (where they exist) that 

the hoop force at yield be at least one sixteenth of the bar force at yield appear to be 

woefully inadequate. Computational observations indicate that this will lead to a global 

buckling failure with a hoop spacing of 6db. In general, hoops that are half the diameter 

of the longitudinal bars being restrained should be adequate for higher spacing of 

transverse steel. This is only apparent when the effects of core concrete dilation are 

considered. 

 

7.3 Recommendations for Future Research 

While the work described in this thesis aims to espouse a better understanding of the 

behavior of RC columns at ultimate limit state, several topics are suggested for further 

investigation as part of the ongoing research in this field. 

 

7.3.1 Experimental Investigations 

The local buckling model derived in this thesis has been validated against a wide range 

of experimental data. Given the high variability of this data, and given the fact that the 

model is partly empirically based, it would be beneficial to expand the existing database 

by carrying out more local buckling experiments, where un-machined steel bars are 

tested in monotonic compression. The method used should comply with the description 

given in Chapter II. The current range of parameters in the experimental database is 

sufficient, but increasing the volume of results will increase the confidence. 

 

As has been pointed out in Chapter V, no studies are known to have been done where 

global buckling of longitudinal steel is examined in isolation from other aspects of 
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column behavior. As such, current global buckling models remain speculative until such 

an experimental investigation is carried out. Although it has been shown that global 

buckling and other modes of failure are interdependent, these experiments are required 

in order to better understand the global buckling phenomenon.  

 

An experimental set-up, shown in Fig. 7.1, is proposed whereby a wide range of hoop 

sizes, hoop spacings and longitudinal bar sizes can be tested. A concrete block is cast 

with an array of PVC ducts arranged as shown in the diagram. U-shaped hoops are fed 

through these ducts, and either welded or bolted to a backing plate. This connection to 

the backing plate should exceed the ultimate tensile strength of the hoops. A longitudinal 

bar is fed through the hoops, and subjected to a monotonically increasing axial force. 

The ends of the longitudinal bar are clamped into rigid end blocks to avoid rotation. 

Axial strains are measured with LVDTs. 

 

7.3.2 Theoretical Investigations 

One aspect of concrete material behavior that is in want of attention is the expansion and 

dilation of confined concrete. In the early stages of loading, Poisson’s effect causes a 

lateral expansion of the core concrete. Under higher axial loads and confining stresses, 

the volume of the core concrete increases due to dilation effects, as with a sandy soil. 

While the model derived by Mander et al. (1988a) has been shown to work well for 

predicting the increase in strength due to confinement, as well as the increase in peak 

strain, there has been no attempt by researchers to predict the lateral expansion of the 

core concrete. Currently, only experimental evidence exists for the relationship between 

axial strains and lateral strains in RC columns (Mander et al., 1983; Mander, 1988b; 

Sheikh, 1978). A good starting point for deriving such a theoretical model would be a 

review of existing models for soil dilation, and how these may be adapted to concrete. A 

better understanding of this phenomenon is invaluable, since it is heavily tied with 

buckling and hoop fracture. 
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Fig. 7.1: Proposed Experimental Set-up for Global Buckling Experimental Investigation 
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While an attempt has been made in this research to unify all aspects of column behavior, 

particularly at the ultimate limit state, there is a considerable amount of research that can 

be done in this area. Most aspects of column behavior, such as shear, buckling, low-

cycle fatigue and hoop fracture, can be well understood and modeled when considered in 

isolation. However, a unified model incorporating all modes of failure, including the 

interaction between these, remains an elusive goal. The key to developing such a model 

relies on accurate prediction of stresses in the transverse steel, since three of these modes 

of failure are controlled through the use of transverse steel. As a starting point, the 

instantaneous hoop stresses should be incorporated into the computational moment-

curvature analysis of critical column sections.  
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APPENDIX A 

 COMPUTER PROGRAM  

FOR BUCKLING ANALYSIS
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The MATLAB codes used for the program are presented below, as is a sample output 

file. 

 

A1 Main Run Function: SteelCircularBar.m 

% PROGRAMME: SteelCircularBar.m 
% Moment-curvature analysis of steel circular reinforcing bar 
% ========================================================================= 
% Created by: C. R. Urmson on 10/23/2008 
% Modified on 12/22/2008 for analysis of circular reinforcing bar 
% ------------------------------------------------------------------------- 
% 
% MATLAB script file that runs a moment-curvature analysis of a steel  
% reinforcing bar subjected to varying lateral and axial load assuming a  
% sine-curve deflected shape. This is carried out by completing the  
% following tasks: 
% 
%       1) Obtain input data which is typed in at the top of the file. This 
%               will be modified in future for use in a GUI or to be read 
%               from an input file. 
%       2) Basic discretisation and analysis 
%       3) Run moment-curvature analysis using MomentCurve08 
%           3.1) Calls MomentLoad08 to calculate axial load and bending 
%                moment 
%               3.1.1) Calls Concstress to calculate stresses in concrete 
%               3.1.2) Calls Steelstress to calculate stresses in steel 
%       4) Plot desired results 
%       5) Write main results to a .txt file, which is formatted for use in 
%               Microsoft Excel 
% 
% 
%-------------------------------------------------------------------------- 
  
% NOTE ON SIGN CONVENTION: 
% ------------------------ 
% 
% The origin is taken at the centre of the section, with positive y 
% pointing downwards: 
% 
% 
%                          |---------------| 
%                          |               | 
%                          |               | 
%                          |       +-------+-------->  X 
%                          |       |       | 
%                          |       |       | 
%                          |-------+-------| 
%                                  | 
%                                  | 
%                                  V 
% 
%                                  Y 
clc 
clear all 
  
% ------------------------------------------------------------------------- 
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%%% 1. Obtain Input Data: 
%%% ===================== 
 
%  AnalysisName, fy (MPa), Es (MPa), eps_sh, Esh (MPa), fsu (MPa), eps_su, s/d:            
%%%==========================================================================     
InputMatrix = {'Mander84.D16.5.5',295,200e3,0.025,3500,433,0.19,5.5; ...    %1 
               'Mander84.D16.6',295,200e3,0.025,3500,433,0.19,6; ...      %2 
               'Mander84.D16.6.5',295,200e3,0.025,3500,433,0.19,6.5; ...    %3 
               'Mander84.D20.6',286,200e3,0.023,4000,446,0.18,6; ...      %4 
               'Mander84.D24.6',260,195e3,0.018,4500,429,0.18,6; ...      %5 
               'Mander84.D28.6',296,203e3,0.015,4700,484,0.17,6; ...      %6 
               'Mander84.H16.6',360,200e3,0.016,6000,567,0.15,6; ...      %7 
               'Mander94.PT.6',869,221.3e3,0.0039,11030,1130,0.063,6; ...    %8 
               'Mander94.PT.8',869,221.3e3,0.0039,11030,1130,0.063,8; ...    %9 
               'Mander94.PT.9',869,221.3e3,0.0039,11030,1130,0.063,9; ...   %10 
               'Mander94.R.6',331,215.1e3,0.0091,8274,565,0.144,6; ...      %11 
               'Bayrak01.M20.4',515,200e3,0.0091,5500,690,0.16,4; ...      %12 
               'Bayrak01.M20.5',515,200e3,0.0091,5500,690,0.16,5; ...      %13 
               'Bayrak01.M20.6',515,200e3,0.0091,5500,690,0.16,6; ...      %14 
               'Bayrak01.M20.7',515,200e3,0.0091,5500,690,0.16,7; ...      %15 
               'Bae05.No8.5',437,198.6e3,0.0092,9000,728,0.147,5; ...      %16 
               'Bae05.No8.6',437,198.6e3,0.0092,9000,728,0.147,6; ...      %17 
               'Bae05.No8.7',437,198.6e3,0.0092,9000,728,0.147,7; ...      %18 
               'Bae05.No8.8',437,198.6e3,0.0092,9000,728,0.147,8; ...      %19 
               'Bae05.No8.9',437,198.6e3,0.0092,9000,728,0.147,9; ...      %20 
               'Bae05.No10.4',444,202e3,0.0091,7000,638,0.158,4; ...      %21 
               'Bae05.No10.5',444,202e3,0.0091,7000,638,0.158,5; ...      %22 
               'Bae05.No10.6',444,202e3,0.0091,7000,638,0.158,6; ...      %23 
               'Bae05.No10.7',444,202e3,0.0091,7000,638,0.158,7};         %24        
                
for MM = 1 : size (InputMatrix, 1);                
     
Member.BarDiam = 20; 
Section.BarDiam = 20; 
BarDiam = 20; 
  
% Steel material properties for current steel: 
AnalysisName                    = cell2mat (InputMatrix (MM, 1)) 
Section.SteelProps.YieldStress  = cell2mat (InputMatrix (MM, 2)); %MPa 
Section.SteelProps.YoungsMod    = cell2mat (InputMatrix (MM, 3)); %MPa 
Section.SteelProps.ShStrain     = cell2mat (InputMatrix (MM, 4));  
Section.SteelProps.ShMod        = cell2mat (InputMatrix (MM, 5)); %MPa 
Section.SteelProps.UltStress    = cell2mat (InputMatrix (MM, 6)); %MPa %%% f_su 
Section.SteelProps.UltStrain    = cell2mat (InputMatrix (MM, 7)); 
  
Section.SteelProps.NYieldStress = -331; %MPa 
Section.SteelProps.NShStrain    = -0.0091; 
Section.SteelProps.NShMod       = 8274; %MPa 
Section.SteelProps.NUltStress   = -565; %MPa 
Section.SteelProps.NUltStrain   = -0.144; 
  
Section.SteelProps.Spacing      = cell2mat (InputMatrix (MM, 8)) * BarDiam; 
%mm; NOT INPUT!!! 
Section.SteelProps.InitEccent   = 0.000001 * (Section.SteelProps.Spacing ^ ... 
                                     2) / BarDiam; %mm 
 
Precision.alphaSteel        = 20; 
Precision.GradFactor        = 0.1; % 0.1 is good for monotonic 
Precision.DeltaRefStrain    = -5e-4; % -5e-4 works for this analysis 
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Precision.CurveIncStep      = 0.0001; % 0.0001 is good for monotonic 
Precision.maxits            = 400000; % 
Precision.Tolerance         = 5; % 5 is good 
Precision.SectionElements   = 24; 
Precision.TolEccent         = 0.1 * Section.SteelProps.InitEccent; % 
AxialLoad = 0; % N 
  
 
% ------------------------------------------------------------------------- 
%%% 2. Basic Analysis: 
%%% ================== 
  
% USING GAUSS-QUADRATURE FOR CIRCULAR SECTION (24-Point Quadrature) 
% ---------------------------------------------------------------- 
  
xi_core = [-0.9951872200, ... 
    -0.9747285560, ... 
    -0.9382745520, ... 
    -0.8864155270, ... 
    -0.8200019860, ... 
    -0.7401241916, ... 
    -0.6480936519, ... 
    -0.5454214714, ... 
    -0.4337935076, ... 
    -0.3150426797, ... 
    -0.1911188675, ... 
    -0.0640568929, ... 
    0.0640568929, ... 
    0.1911188675, ... 
    0.3150426797, ... 
    0.4337935076, ... 
    0.5454214714, ... 
    0.6480936519, ... 
    0.7401241916, ... 
    0.8200019860, ... 
    0.8864155270, ... 
    0.9382745520, ... 
    0.9747285560, ... 
    0.9951872200]; 
  
w_core = [0.0123412298, ... 
    0.0285313886, ... 
    0.0442774388, ... 
    0.0592985849, ... 
    0.0733464814, ... 
    0.0861901615, ... 
    0.0976186521, ... 
    0.1074442701, ... 
    0.1155056681, ... 
    0.1216704729, ... 
    0.1258374563, ... 
    0.1279381953, ... 
    0.1279381953, ... 
    0.1258374563, ... 
    0.1216704729, ... 
    0.1155056681, ... 
    0.1074442701, ... 
    0.0976186521, ... 
    0.0861901615, ... 
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    0.0733464814, ... 
    0.0592985849, ... 
    0.0442774388, ... 
    0.0285313886, ... 
    0.0123412298]; 
     
Section.Depth.Steel = xi_core * BarDiam / 2; 
  
% Compute steel areas: 
Section.Area.Steel = ((BarDiam ^ 2) * w_core .* sqrt (1 - xi_core ... 
    .^ 2) / 2); 
  
Member.YieldStrain = Section.SteelProps.YieldStress / ... 
    Section.SteelProps.YoungsMod; 
PUMoment = (BarDiam ^ 3) * Section.SteelProps.YieldStress / 6; %%% M_pu 
  
% Transpose depth and area vectors: 
Section.Depth.Steel         = Section.Depth.Steel'; 
Section.Area.Steel          = Section.Area.Steel'; 
  
% ------------------------------------------------------------------------- 
%%% 3. Run Moment-Curvature Analysis: 
%%% ================================= 
  
Marker = 0; 
[MomentOut, CurveOut, EccentricityOut, RefStrainOut, ... 
    SteelStrainOut, SteelStressOut, YieldMoment, ForceOut] = ... 
    MomentCurve08Cyclic (Section, Precision, Marker); %%% M_u, Phi 
  
% Find step corresponding to peak force: 
for ww = 1 : length (ForceOut) 
    if ForceOut (ww) == min (ForceOut) 
        Marker = ww; 
    end 
end 
  
% Re-run analysis to find required stress and strain profiles: 
[MomentOut, CurveOut, EccentricityOut, RefStrainOut, ... 
    SteelStrainOut, SteelStressOut, YieldMoment, ForceOut] = ... 
    MomentCurve08Cyclic (Section, Precision, Marker); %%% M_u, Phi 
  
ForceMax = - min (ForceOut) / (((pi * Section.BarDiam ^ 2) / 4) * ... 
    Section.SteelProps.YieldStress); 
CurveMax = CurveOut (Marker) * BarDiam; 
MomentMax = MomentOut (Marker) / PUMoment; 
EccentricityMax = EccentricityOut (Marker) / BarDiam; 
RefStrainMax = RefStrainOut (Marker) - Member.YieldStrain; 
  
% ------------------------------------------------------------------------- 
%%% 4. Plot Results: 
%%% ================ 
CurveOut = CurveOut * BarDiam; % Radians to non-dimension 
 
% Moment-curvature plot: 
figure (1) 
MomentOut = MomentOut / PUMoment; % kNm 
plot (CurveOut, MomentOut, 'b-') 
xlabel ('Phi * db'); 
ylabel ('Mu / Mpu'); 
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title ('Moment-Curvature Relationship for Steel Reinforcing Bar'); 
 
v = axis; 
xx = linspace (v (1), v (2), 100); 
yy = zeros(size (xx)); hold on, plot (xx, yy, 'k') 
xx2 = linspace (v (3), v (4), 100); 
yy2 = zeros (size (xx)); hold on, plot (yy2, xx2, 'k') 
grid on 
% Axial load-curvature plot: 
figure (2) 
StressOut = ForceOut / (- (pi * Section.BarDiam ^ 2) / 4); % MPa 
StressOut = StressOut / Section.SteelProps.YieldStress; 
plot (CurveOut, StressOut, 'k-') 
xlabel ('Phi * db'); 
ylabel ('fcr / fy'); 
title ('Moment-Curvature Relationship for Steel Reinforcing Bar'); 
v = axis; 
xx = linspace (v (1), v (2), 100); 
yy = zeros(size (xx)); hold on, plot (xx, yy, 'k') 
xx2 = linspace (v (3), v (4), 100); 
yy2 = zeros (size (xx)); hold on, plot (yy2, xx2, 'k') 
grid on 
  
% Eccentricity-curvature plot: 
figure (3) 
plot (CurveOut, EccentricityOut, 'r-') 
xlabel ('Phi * db'); 
ylabel ('del P / del epsilon'); 
title ('Gradient of Axial Load - Strain Graph for Steel Reinforcing Bar'); 
v = axis; 
xx = linspace (v (1), v (2), 100); 
yy = zeros(size (xx)); hold on, plot (xx, yy, 'k') 
xx2 = linspace (v (3), v (4), 100); 
yy2 = zeros (size (xx)); hold on, plot (yy2, xx2, 'k') 
grid on 
 
% ------------------------------------------------------------------------- 
%%% 5. Write Main Results to an Output File: 
%%% ======================================== 
  
outfile = strcat ('BucklingAnalysisSDB', AnalysisName, '.txt'); 
  
dlmwrite (outfile, 'URMSON''s Buckling Analysis', 'delimiter', '', 'newline', 
'pc'); 
dlmwrite (outfile, '===========================', '-append', 'delimiter', '', 
'newline', 'pc'); 
dlmwrite (outfile, ' ', '-append', 'delimiter', '', 'newline', 'pc'); %blank 
line. 
  
line1 = AnalysisName; 
line2 = strcat ('S/db = ', num2str (Section.SteelProps.Spacing / BarDiam)); 
line2a = [' Input: fy,'   ' Es,'   ' eps_sh,'    ' Esh,'  ' fsu,'     ' 
eps_su']; 
line2b = '---------------------------------------------------------------------
----------'; 
line2c = [Section.SteelProps.YieldStress  Section.SteelProps.YoungsMod  
Section.SteelProps.ShStrain ... 
    Section.SteelProps.ShMod  Section.SteelProps.UltStress  Sec-
tion.SteelProps.UltStrain]; 
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line3 = [' Peak: Force,'   ' Moment,'   ' Curvature,'   ' Eccentricity,'   ' 
Reference Strain']; 
line3a = '---------------------------------------------------------------------
----------'; 
line4 = [ForceMax  MomentMax  CurveMax  EccentricityMax  RefStrainMax]; 
line5 = 'Steel Strains at Curvature ='; 
line5a = '----------------------------'; 
line6 = 'Steel Stresses at Curvature ='; 
line7 = [' History: Force,'   ' Moment,'  ' Curvature,'  ' Eccentricity,'   
'Reference Strain']; 
line7a = '---------------------------------------------------------------------
----------'; 
  
dlmwrite (outfile, line1, '-append', 'delimiter', '', 'newline', 'pc'); 
dlmwrite (outfile, ' ', '-append', 'delimiter', '', 'newline', 'pc'); %blank 
line. 
dlmwrite (outfile, line2, '-append', 'delimiter', '', 'newline', 'pc'); 
dlmwrite (outfile, line2a, '-append', 'delimiter', '', 'newline', 'pc'); 
dlmwrite (outfile, line2b, '-append', 'delimiter', '', 'newline', 'pc'); 
dlmwrite (outfile, line2c, '-append', 'delimiter', '\t', 'newline', 'pc'); 
dlmwrite (outfile, ' ', '-append', 'delimiter', '', 'newline', 'pc'); %blank 
line. 
dlmwrite (outfile, line3,'-append','delimiter','','newline','pc'); 
dlmwrite (outfile, line3a, '-append','delimiter','','newline','pc'); 
dlmwrite (outfile, line4,'-append','delimiter','\t','newline','pc', 'preci-
sion', 6); 
dlmwrite (outfile, ' ', '-append', 'delimiter', '', 'newline', 'pc'); %blank 
line. 
dlmwrite (outfile, line5, '-append', 'delimiter', '', 'newline', 'pc'); 
dlmwrite (outfile, line5a, '-append', 'delimiter', '', 'newline', 'pc'); 
for ii = 1 : 6 
    TITLE = strcat ('Phi * db = ', num2str ((ii - 1) * CurveMax / 4)); 
    dlmwrite (outfile, TITLE, '-append', 'delimiter', '', 'newline', 'pc'); 
end 
dlmwrite (outfile, SteelStrainOut, '-append', 'delimiter', '\t', 'newline', 
'pc', 'precision', 6); 
dlmwrite (outfile, ' ', '-append', 'delimiter', '', 'newline', 'pc'); %blank 
line. 
dlmwrite (outfile, line6, '-append', 'delimiter', '', 'newline', 'pc'); 
dlmwrite (outfile, line5a, '-append', 'delimiter', '', 'newline', 'pc'); 
for ii = 1 : 6 
    TITLE = strcat ('Phi * db = ', num2str ((ii - 1) * CurveMax / 4)); 
    dlmwrite (outfile, TITLE, '-append', 'delimiter', '', 'newline', 'pc'); 
end 
dlmwrite (outfile, SteelStressOut, '-append', 'delimiter', '\t', 'newline', 
'pc', 'precision', 6); 
dlmwrite (outfile, ' ', '-append', 'delimiter', '', 'newline', 'pc'); %blank 
line. 
dlmwrite (outfile, line7, '-append', 'delimiter', '', 'newline', 'pc'); 
dlmwrite (outfile, line7a, '-append', 'delimiter', '', 'newline', 'pc'); 
for ii = 1 : length (ForceOut) 
    ForceOut (ii) = ForceOut (ii) / (((pi * Section.BarDiam ^ 2) / 4) * 
Section.SteelProps.YieldStress); 
    % Moment and Curvature already normalised 
    EccentricityOut (ii) = EccentricityOut (ii) / BarDiam; 
    RefStrainOut (ii) = RefStrainOut (ii) - Member.YieldStrain; 
    line8etc = [ForceOut(ii), MomentOut(ii), CurveOut(ii), EccentricityOut(ii), 
RefStrainOut(ii)]; 
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    dlmwrite (outfile, line8etc, '-append', 'delimiter','\t', 'newline', 'pc', 
'precision', 6); 
end 
end 
% ------------------------------------------------------------------------- 
% END OF FUNCTION 

 

 

A2 Moment-Curvature Analysis Subroutine: MomentCurve08Cyclic.m 

function [MomentOut, CurveOut, EccentricityOut, RefStrainOut, ... 
    SteelStrainOut, SteelStressOut, YieldMoment, ForceOut] = ... 
    MomentCurve08Cyclic (Section, Precision, Marker) 
  
% MOMENTCURVE08 runs a numerical algorithm for finding the moment-curvature 
% behaviour of a discretised steel reinforcing bar based on section 
% properties, applied axial load and specified precision. 
% ------------------------------------------------------------------------- 
% 
% TYPICAL CALL: 
%       [MomentOut, CurveOut, EccentricityOut, RefStrainOut, ... 
%   SteelStrainOut, SteelStressOut, YieldMoment, ForceOut] = ... 
%   MomentCurve08Cyclic (Section, Precision) 
% 
% DESCRIPTION: 
%       Function carries out numerical partial differentiation of the 
%       following equation to determine axial load and curvature: 
%                               _                    _ 
%                  (     )     |                      |  (       ) 
%                  (     )     |  del P        del P  |  (       ) 
%                  ( d P )     | -------      ------- |  ( d eps ) 
%                  (     )     | del eps      del phi |  (       ) 
%                  (     )  =  |                      |  (       ) 
%                  (     )     |  del M        del M  |  (       ) 
%                  ( d M )     | -------      ------- |  ( d phi ) 
%                  (     )     | del eps      del phi |  (       ) 
%                  (     )     |_                    _|  (       ) 
% 
% Successive increments of reference axis strain are applied, and for each  
% total strain the curvature is determined to match the required target 
% eccentricity as closely as practicable. Then, the bending moment is  
% changed to match the target eccentricity to satisfy global equilibrium. 
% 
% INPUTS: 
%      Section      =  Structured array of element depths, areas and 
%                      material properties 
%      AppliedLoad  =  Constant axial load applied to the member 
%      Precision    =  Structured array of various precision and stability 
%                      parameters 
% 
% OUTPUTS: 
%       MomentOut   =  Output vector of bending moments as curvature varies 
%       CurveOut    =  Output vector of curvatures 
%       LoadOut     =  Output vector of loads 
%       YieldMoment =  Moment at which steel yields 
% 
% PROGRAMME HISTORY: 
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%       DATE              PROGRAMMER              MODIFICATION 
%       ----              ----------              ------------ 
%       09/29/08          C.R. Urmson             Original Code 
%       10/20/08          C.R. Urmson             Added "-" to dP/de, so 
%                                                   code works properly 
%       10/28/08          C.R. Urmson             Yielding Check Enabled 
%       02/04/09          C.R. Urmson             Modified for cyclic 
%                                                  reloading from comp. 
%       28/05/09          C.R. Urmson             Modified for Variable M 
% ------------------------------------------------------------------------- 
  
% Initialise variables: 
% --------------------- 
MomentOut = zeros (Precision.maxits, 1); 
InitMoment = MomentOut; 
CurveOut = MomentOut; 
ForceOut = MomentOut; 
EccentricityOut = MomentOut; 
RefStrainOut = MomentOut; 
SteelStressOut = zeros (length (Section.Depth.Steel), 6); 
SteelStrainOut = SteelStressOut; 
LoadPrev = 0; MomentPrev = 0; 
DeltaCurve = 0; 
FirstIter = 0; 
AppliedLoad = 0; 
delLoaddelCurve = 0; delMomentdelStrain = 0; 
StressO = zeros (length (Section.Depth.Steel), 1); 
StrainO = StressO; 
SteelStrainCompPrev = zeros (length (Section.Depth.Steel), 1); 
SteelStressCompPrev = SteelStrainCompPrev; 
LoadFlag = StressO; 
kk = 1; 
Counter = 1; 
CurveIncStep = Precision.GradFactor * Precision.DeltaCurve; 
hh = 0; 
YieldMoment = 0; 
BarLength = Section.SteelProps.Spacing / 4; 
Curve = Section.SteelProps.InitEccent * (pi ^ 2) / (4 * BarLength ^ 2); 
h = waitbar (0, 'Running moment-curvature analysis. Please wait...'); 
flag.Correction=0; 
% First step with axial rigidity as delLoaddelStrain: 
% --------------------------------------------------- 
Stress = AppliedLoad  / ((pi * Section.BarDiam ^ 2) / 4); 
if Stress > Section.SteelProps.NYieldStress 
    EA = (pi * Section.BarDiam ^ 2) * Section.SteelProps.YoungsMod / 4; 
    RefStrain = AppliedLoad / EA; 
elseif Stress < Section.SteelProps.NYieldStress 
    PowerNum = log (abs ((Section.SteelProps.NUltStress - Stress) / ... 
        (Section.SteelProps.NUltStress - Section.SteelProps.NYieldStress))); 
    PowerDenom = Section.SteelProps.NShMod * ( ... 
        Section.SteelProps.NUltStrain - Section.SteelProps.NShStrain) / ... 
        (Section.SteelProps.NUltStress - Section.SteelProps.NYieldStress); 
    RefStrain = Section.SteelProps.NUltStrain - (( ... 
        Section.SteelProps.NUltStrain - Section.SteelProps.NShStrain) * ... 
        10 ^ (PowerNum / PowerDenom)); 
end 
  
[Load1] = MomentLoad08Cyclic (RefStrain, Curve, Section.Depth, Section.Area, 
... 
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    Section.SteelProps, Precision, StrainO, StressO, ... 
    SteelStrainCompPrev, SteelStressCompPrev, LoadFlag, FirstIter); 
DeltaLoad = Load1 - AppliedLoad; 
  
  
%%% STEP 0: Seed initial eccentricity and find initial Moment: 
%%% ========================================================== 
while InitMoment == 0 
    if kk > 1 
        RefStrainIncrement = RefStrain + Precision.RefStrainIncStep; 
        [LoadIncrement2] = MomentLoad08Cyclic (RefStrainIncrement, Curve, ... 
            Section.Depth, Section.Area, Section.SteelProps, Precision, ... 
            StrainO, StressO, SteelStrainCompPrev, SteelStressCompPrev, ... 
            LoadFlag, FirstIter); 
        delLoaddelStrain = - (LoadIncrement2 - LoadPrev) / ... 
            (RefStrainIncrement - RefStrain); 
         
        DeltaRefStrain = (DeltaLoad - (delLoaddelCurve * DeltaCurve)) / ... 
            delLoaddelStrain; 
        % Sensitivity to Reference strain increment can be controlled here: 
        RefStrain = RefStrain + (0.25 * DeltaRefStrain); 
    end 
     
    % STEP 3: Determine revised strain profile (in MomentLoad08) 
    % STEP 4: Determine section stresses and integrate to find section 
    % axial load and bending moment (in MomentLoad08 and functions called 
    % from it). 
    % ------------------------------------------------------------------- 
    [Load, Moment, flag, SteelStrain1, SteelStress1, StrainO, StressO, ... 
        SteelStrainCompPrev, SteelStressCompPrev, LoadFlag] = ... 
        MomentLoad08Cyclic (RefStrain, Curve, Section.Depth, Section.Area, ... 
        Section.SteelProps, Precision, StrainO, StressO, SteelStrainCompPrev, 
... 
        SteelStressCompPrev, LoadFlag, FirstIter); 
     
    % Hence, calculate the out-of-balance force: 
    DeltaLoad = Load - AppliedLoad; 
     
    % STEP 5: Check tolerance of out-of-balance laod: 
    % ----------------------------------------------- 
    if abs (DeltaLoad) < Precision.Tolerance 
         
        % STEP 6 - check stopping criteria and plot results: 
        % -------------------------------------------------- 
        FirstIter = 1; 
        [Load, Moment, flag, SteelStrain1, SteelStress1, StrainO, StressO, ... 
            SteelStrainCompPrev, SteelStressCompPrev, LoadFlag] = ... 
            MomentLoad08Cyclic (RefStrain, Curve, Section.Depth, Section.Area, 
... 
            Section.SteelProps, Precision, StrainO, StressO, SteelStrain-
CompPrev, ... 
            SteelStressCompPrev, LoadFlag, FirstIter); 
        FirstIter = 0; 
         
        MomentOut (Counter) = Moment; 
        CurveOut (Counter) = Curve; 
        EccentricityOut (Counter) = Section.SteelProps.InitEccent; 
        RefStrainOut (Counter) = RefStrain; 
        SteelStressOut (:, 1) = SteelStress1; 



142 
 

        SteelStrainOut (:, 1) = SteelStrain1; 
        ForceOut (Counter) = AppliedLoad; 
        DeltaCurve = Precision.DeltaCurve; 
        InitMoment = Moment; 
         
        % Store value of yielding moment: 
        if flag.yield == 1 
            hh = hh + 1; 
            if hh == 1 
                YieldMoment = Moment; 
            end 
        end 
         
        % Calculate gradient of plot for next iteration: 
        CurveIncrement = Curve + CurveIncStep; 
        [LoadIncrement1] = MomentLoad08Cyclic (RefStrain, CurveIncrement, ... 
            Section.Depth, Section.Area, Section.SteelProps, Precision, ... 
            StrainO, StressO, SteelStrainCompPrev, SteelStressCompPrev, ... 
            LoadFlag, FirstIter); 
        delLoaddelCurve = (LoadIncrement1 - Load) / ... 
            (CurveIncrement - Curve); 
         
        Counter = Counter + 1; 
    else 
        DeltaCurve = 0; % Go back to Step 1; 
    end 
    kk = kk + 1; 
    LoadPrev = Load; 
     
    % wait bar: 
    if rem (kk, 100) == 0 
        waitbar (kk / Precision.maxits) 
    end 
end 
  
Eccentricity = Curve * (4 / (pi ^ 2)) * (BarLength ^ 2); %Total eccentricity 
AppliedMoment = InitMoment; 
DeltaMoment = 0; 
  
  
%%% RUN MOMENT-CURVATURE ANALYSIS USING REFERENCE STRAIN: 
%%% ===================================================== 
% THIS CODE WORKS 
while (kk < Precision.maxits) 
     
    % STEP 1: Add strain increment to last strain: 
    % -------------------------------------------------- 
    RefStrainIncStep = Precision.GradFactor * Precision.DeltaRefStrain; 
    RefStrain = RefStrain + DeltaRefStrain; 
     
    % STEP 2: Determine required change in curvature to obtain 
    % force-equilibrium of new strain profile: 
    % ---------------------------------------------------------------- 
    if kk > 1 
        CurveIncrement = Curve + Precision.CurveIncStep; 
        FirstIter = 2; 
        [LoadIncrement2, MomentIncrement2] = MomentLoad08Cyclic ... 
            (RefStrain, CurveIncrement, Section.Depth, Section.Area, ... 
            Section.SteelProps, Precision, StrainO, StressO, ... 
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            SteelStrainCompPrev, SteelStressCompPrev, LoadFlag, FirstIter); 
        FirstIter = 0; 
        delMomentdelCurve = (MomentIncrement2 - MomentPrev) / ... 
            (CurveIncrement - Curve); 
         
        DeltaCurve = (DeltaMoment - (delMomentdelStrain * DeltaRefStrain)) / 
... 
            - delMomentdelCurve; 
        % Sensitivity to Reference Strain Increment can be controlled here: 
        Curve = Curve + (1 * DeltaCurve); 
    end 
    AddStrain = RefStrain - 0.678 * (Eccentricity / BarLength) ^ 2; 
    Eccentricity = Curve * (0.25 / (pi ^ 2)) * ... 
        (Section.SteelProps.Spacing ^ 2) * (1 + AddStrain) ^ 2; %Total eccen-
tricity 
      
    % STEP 3: Determine revised strain profile (in MomentLoad08) 
    % STEP 4: Determine section stresses and integrate to find section 
    % axial load and bending moment (in MomentLoad08 and functions called 
    % from it). 
    % ------------------------------------------------------------------- 
    [Load, Moment, flag, SteelStrain1, SteelStress1, StrainO, StressO, ... 
        SteelStrainCompPrev, SteelStressCompPrev, LoadFlag] = ... 
        MomentLoad08Cyclic (RefStrain, Curve, Section.Depth, Section.Area, ... 
        Section.SteelProps, Precision, StrainO, StressO, SteelStrainCompPrev, 
... 
        SteelStressCompPrev, LoadFlag, FirstIter); 
  
    % Hence, calculate the out-of-balance moment: 
    DeltaMoment = (Moment - AppliedMoment); 
  
    % STEP 5: Check tolerance of out-of-balance moment: 
    % ------------------------------------------------- 
    if abs (DeltaMoment) < Precision.Tolerance 
         
        % STEP 5a: Check out-of-balance eccentricity: 
        % -------------------------------------------         
        DeltaEccent = ((AppliedMoment - InitMoment) / Load) + ... 
            (Eccentricity); 
        if abs (DeltaEccent) < Precision.TolEccent 
                 
                % STEP 6 - check stopping criteria and plot results: 
                % -------------------------------------------------- 
                FirstIter = 1; 
                [Load, Moment, flag, SteelStrain1, SteelStress1, StrainO, 
StressO, ... 
                    SteelStrainCompPrev, SteelStressCompPrev, LoadFlag] = ... 
                    MomentLoad08Cyclic (RefStrain, Curve, Section.Depth, 
Section.Area, ... 
                    Section.SteelProps, Precision, StrainO, StressO, ... 
                    SteelStrainCompPrev, SteelStressCompPrev, LoadFlag, 
FirstIter); 
                FirstIter = 0; 
                 
                MomentOut (Counter) = Moment; 
                CurveOut (Counter) = Curve; 
                EccentricityOut (Counter) = Eccentricity; 
                RefStrainOut (Counter) = RefStrain; 
                if Counter == ceil (Marker / 4) 
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                    SteelStrainOut (:, 2) = SteelStrain1; 
                    SteelStressOut (:, 2) = SteelStress1; 
                elseif Counter == ceil (Marker / 2); 
                    SteelStrainOut (:, 3) = SteelStrain1; 
                    SteelStressOut (:, 3) = SteelStress1; 
                elseif Counter == ceil (3 * Marker / 4) 
                    SteelStrainOut (:, 4) = SteelStrain1; 
                    SteelStressOut (:, 4) = SteelStress1; 
                elseif Counter == Marker 
                    SteelStrainOut (:, 5) = SteelStrain1; 
                    SteelStressOut (:, 5) = SteelStress1; 
                elseif Counter == ceil (5 * Marker / 4) 
                    SteelStrainOut (:, 6) = SteelStrain1; 
                    SteelStressOut (:, 6) = SteelStress1; 
                end 
                ForceOut (Counter) = Load; 
                DeltaRefStrain = Precision.DeltaRefStrain; 
                 
                % Store value of yielding moment: 
                if flag.yield == 1 
                    hh = hh + 1; 
                    if hh == 1 
                        YieldMoment = Moment; 
                    end 
                end 
             
                % Calculate gradient of plot for next iteration: 
                RefStrainIncrement = RefStrain + RefStrainIncStep; 
                [LoadIncrement1, MomentIncrement1] = MomentLoad08Cyclic ... 
                    (RefStrainIncrement, Curve, Section.Depth, ... 
                    Section.Area, Section.SteelProps, Precision, StrainO, ... 
                    StressO, SteelStrainCompPrev, SteelStressCompPrev, ... 
                    LoadFlag, FirstIter); 
                delMomentdelStrain = (MomentIncrement1 - Moment) / ... 
                    (RefStrainIncrement - RefStrain); 
                Counter = Counter + 1; 
        else % Modify Applied Bending moment to obtain global equilibrium 
            AppliedMoment = AppliedMoment * (1 + 0.0001 * (DeltaEccent / ... 
                (Eccentricity))); 
            DeltaRefStrain = 0; 
        end 
         
    else 
        DeltaRefStrain = 0; % Go back to Step 1; 
    end 
    kk = kk + 1; 
    MomentPrev = Moment; 
     
    % wait bar: 
    if rem (kk, 100) == 0 
        waitbar (kk / Precision.maxits) 
    end 
end 
  
% Condense Output Matrices: 
% ------------------------ 
  
STOP = 0; 
for JJ = 1 : (Precision.maxits - 1) 
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    if (MomentOut (JJ) == 0) && (MomentOut (JJ + 1) == 0) && (STOP == 0); 
        OutputLength = JJ - 1; 
        STOP = 1; 
    end 
end 
  
MomentStore = zeros (OutputLength, 1); 
ForceStore = MomentStore; 
CurveStore = MomentStore; 
EccentricityStore = MomentStore; 
RefStrainStore = MomentStore; 
  
for LL = 1 : OutputLength 
    MomentStore (LL) = MomentOut (LL); 
    ForceStore (LL) = ForceOut (LL); 
    CurveStore (LL) = CurveOut (LL); 
    EccentricityStore (LL) = EccentricityOut (LL); 
    RefStrainStore (LL) = RefStrainOut (LL); 
end 
  
MomentOut = MomentStore; 
ForceOut = ForceStore; 
CurveOut = CurveStore; 
EccentricityOut = EccentricityStore; 
RefStrainOut = RefStrainStore; 
  
close (h); 
% END OF FUNCTION 

 

 

A2.1 Modification to MomentCurve08Cyclic.m for Global Buckling 

The following is an extract of the additional code used to determine incipient buckling 

for global buckling analysis. 

% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% PROCEDURE FOR FINDING INITIAL ECCENTRICITY 
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
PROCEED = 0; 
COUNTERinit = 0; 
while PROCEED == 0  
    NuPlastic = 2; 
    NuInit = 0.3; 
    SpallStrain = 0.005; 
    Lambda = 1; 
    PlastHingeLength = 6 * (Section.SteelProps.Spacing / (NumHoops + 1)); 
     
    if COUNTERinit == 100000 
        break 
    end 
     
    RefStrain = RefStrain + Precision.DeltaRefStrain; 
    TransStrain = (NuInit * -RefStrain) + (NuPlastic - NuInit) * max ... 

(0,(-RefStrain - Lambda * SpallStrain)); 
Section.SteelProps.InitEccent = 0.5 * (6 * TransStrain * Hoop.Length * ...  
    (0.5 * Section.SteelProps.Spacing / PlastHingeLength) ... 
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    * (1 - (0.5 * Section.SteelProps.Spacing / PlastHingeLength)) - 3 * ...  
    TransStrain * Hoop.Length * (Section.SteelProps.Spacing / ...  

PlastHingeLength) * (1 - (Section.SteelProps.Spacing / ... 
PlastHingeLength))); 

    Eccentricity = Section.SteelProps.InitEccent; 
    Bulge = 6 * TransStrain * Hoop.Length * (Section.SteelProps.Spacing / ...  
 PlastHingeLength) * (1 - (Section.SteelProps.Spacing / ...   Plas-
tHingeLength)); 
    Curve = 4 * pi ^ 2 * Eccentricity / (Section.SteelProps.Spacing ^ 2); 
     
    FirstIter = 1; 
    [Load, Moment, flag, SteelStrain1, SteelStress1, StrainO, StressO, ... 
        SteelStrainCompPrev, SteelStressCompPrev, LoadFlag] = ... 
        MomentLoad08Cyclic (RefStrain, Curve, Section.Depth, Section.Area, ... 
        Section.SteelProps, Precision, StrainO, StressO, SteelStrainCompPrev, 
... 
        SteelStressCompPrev, LoadFlag, FirstIter); 
    FirstIter = 0;     
     
    % Calculate updated hoopmoment: 
    [HoopMoment, HoopStress] = MomentHoop (Hoop.YieldStress, Hoop.YoungsMod, 
Hoop.ShStrain, ... 
        Hoop.ShMod, Hoop.UltStress, Hoop.UltStrain, Hoop.alpha, Hoop.Area, 
Hoop.Length, ... 
        NumHoops, (Section.SteelProps.Spacing / (NumHoops + 1)), ... 
        Eccentricity, Bulge); 
     
    ConcForce = (16 / ((NumHoops ^ 2) + 2 * NumHoops + (sin (NumHoops * pi / 
2)) ^ 2)) * ... 
        ((Moment * (NumHoops + 1) / Section.SteelProps.Spacing) + (HoopMoment * 
(NumHoops + 1) / Section.SteelProps.Spacing) ... 
        + (Load * Eccentricity * (NumHoops + 1) / Section.SteelProps.Spacing)); 
     
    Counter = Counter + 1; 
        MomentOut (Counter) = Moment; 
        CurveOut (Counter) = Curve; 
        EccentricityOut (Counter) = Section.SteelProps.InitEccent; 
        RefStrainOut (Counter) = RefStrain; 
        SteelStressOut (:, 1) = SteelStress1; 
        SteelStrainOut (:, 1) = SteelStrain1; 
        ForceOut (Counter) = Load; 
        HoopStressOut (Counter) = HoopMoment; 
        DeltaCurve = Precision.DeltaCurve; 
        InitMoment = Moment; 
    COUNTERinit = COUNTERinit + 1; 
    if ConcForce < 0 
        PROCEED = 1; 
    end 
end 
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A3 Section Analysis Subroutine: MomentLoad08Cyclic.m 

function [Load, Moment, flag, SteelStrain1, SteelStress1, StrainO, StressO, ... 
    SteelStrainCompPrev, SteelStressCompPrev, LoadFlag] = ... 
    MomentLoad08Cyclic (RefStrain, Curve, Depth, Area, SteelProps, ... 
    Precision, StrainO, StressO, SteelStrainCompPrev, SteelStressCompPrev, ... 
    LoadFlag, FirstIter) 
     
% MOMENTLOAD08a gives the axial load and moment in a discretised steel  
% reinforcing bar based on a reference strain and curvature. 
% ------------------------------------------------------------------------- 
% 
% TYPICAL CALL: 
%       [Load, Moment] = MomentLoad08a (RefStrain, Curve, Depth, Area, ... 
%       ... SteelProps, Precision) 
%  
% DESCRIPTION: 
%       Function uses the Guass Quadrature to integrate the stresses over a 
%       section to give the total section bending moment and section axial 
%       load.  
% 
% INPUTS:  
%       RefStrain  =  Section strain at half of the section depth, epsilon0  
%       Curve      =  Curvature of the section, Phi 
%       Depth      =  Structured array of element centroid depths: 
%                        Depth.Steel      = Vector of steel centroid depths 
%       Area       =  Structured array of element areas: 
%                        Area.Steel       = Vector of steel element areas 
%       SteelProps =  Structured array of steel material properties 
%       Precision  =  Precision / Stability parameters for Menegotto-Pinto 
%                     equation and Popovic's equation 
% 
% OUTPUTS: 
%       Load       =  Section axial load, P 
%       Moment     =  Section bending moment, M 
%       flag       =  1 if any element has reached its ultimate strain 
%                  =  0 if no elements have reached ultimate strain 
% 
% PROGRAMME HISTORY: 
%       DATE              PROGRAMMER              MODIFICATION 
%       ----              ----------              ------------ 
%       09/26/08          C.R. Urmson             Original Code 
%       09/29/08          C.R. Urmson             Matrix Algebra Enabled 
%       10/19/08          C.R. Urmson             Spalling Enabled 
%       10/25/08          C.R. Urmson             Yielding Check Enabled 
%       11/22/08          C.R. Urmson             Spalling Modified  
%       12/11/08          C.R. Urmson             True Strain Effects Added 
%                                                  for steel in compression 
%       12/22/08          C.R. Urmson             Programme simplified for  
%                                                  analysis of steel bar 
%       02/04/09          C.R. Urmson             Modified for cyclic  
%                                                  reloading from comp. 
% 
% ------------------------------------------------------------------------- 
  
  
% Calculate the strain profile to obtain the strain for each element: 
% ------------------------------------------------------------------- 
SteelStrain = (Curve * Depth.Steel) + RefStrain;              
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% Initialise stress vectors: 
% -------------------------- 
flag.ult = 0; 
flag.yield = 0; 
SteelStress = zeros (length (SteelStrain), 1); 
YieldStrain = SteelProps.YieldStress / SteelProps.YoungsMod; 
  
% Calculate the stress in each element: 
% ------------------------------------- 
% Steel 
for ii = 1 : length (SteelStrain) 
    % Determine positive or negative stress: 
    if SteelStrain (ii) >= 0 %% TENSILE fibre strain 
        if LoadFlag (ii) == 0 %% Still on MONOTONIC branch 
            StrainO (ii) = 0; StressO (ii) = 0; 
            SteelStress (ii) = SteelstressCyclic (SteelProps.YieldStress, ... 
               SteelProps.YoungsMod, SteelProps.ShStrain, SteelProps.ShMod, ... 
               SteelProps.UltStress, SteelProps.UltStrain, SteelStrain (ii),...  
               Precision.alphaSteel, StrainO (ii), StressO (ii), LoadFlag 
(ii)); 
        else 
            %% On RELOADING branch, originally compressive 
            SteelStrainComp = - SteelStrain (ii) / (1 + SteelStrain (ii)); 
            SteelStressComp = SteelstressCyclic (SteelProps.YieldStress, ... 
                SteelProps.YoungsMod, SteelProps.ShStrain, SteelProps.ShMod, 
... 
                SteelProps.UltStress, SteelProps.UltStrain, SteelStrainComp, 
... 
                Precision.alphaSteel, StrainO (ii), StressO (ii), LoadFlag 
(ii)); 
            SteelStress (ii) = - SteelStressComp * (1 + SteelStrainComp) ^ 2; 
        end 
    else 
        % Convert compressive strain to equivalent tensile strain and 
        % calculate equivalent tensile stress. Then convert back: 
        SteelStrainComp = - SteelStrain (ii) / (1 + SteelStrain (ii)); 
        if (SteelStrainCompPrev (ii) > SteelStrainComp) && ... 
                (SteelStrainComp > YieldStrain) 
            Reload = 1; 
        else 
            Reload = 0; 
        end 
         
        if  (Reload == 1) || (LoadFlag (ii) == 1) 
            if FirstIter == 1 % Good solution 
                LoadFlag (ii) = 1; %% On RELOADING branch    
                if (StrainO (ii) == 0) && (StressO (ii) == 0) 
                    StrainO (ii) = SteelStrainCompPrev (ii); 
                    StressO (ii) = SteelStressCompPrev (ii); 
                end 
                SteelStressComp = SteelstressCyclic (SteelProps.YieldStress, 
... 
                    SteelProps.YoungsMod, SteelProps.ShStrain, ... 
                    SteelProps.ShMod, SteelProps.UltStress, ... 
                    SteelProps.UltStrain, SteelStrainComp, Preci-
sion.alphaSteel, ... 
                    StrainO (ii), StressO (ii), LoadFlag (ii)); 
            else 
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                LoadFlagTemp = 1; % Iteration 
                if (StrainO (ii) == 0) && (StressO (ii) == 0) 
                    StrainOTemp = SteelStrainCompPrev (ii); 
                    StressOTemp = SteelStressCompPrev (ii); 
                else 
                    StrainOTemp = StrainO (ii); 
                    StressOTemp = StressO (ii); 
                end 
                SteelStressComp = SteelstressCyclic (SteelProps.YieldStress, 
... 
                    SteelProps.YoungsMod, SteelProps.ShStrain, ... 
                    SteelProps.ShMod, SteelProps.UltStress, ... 
                    SteelProps.UltStrain, SteelStrainComp, Preci-
sion.alphaSteel, ... 
                    StrainOTemp, StressOTemp, LoadFlagTemp); 
            end 
        else 
            %% Still MONOTONIC or RELOADED PRE-YIELD 
            StrainO (ii) = 0;  %% and NOT PREVIOUSLY RELOADED 
            StressO (ii) = 0; 
            SteelStressComp = SteelstressCyclic (SteelProps.YieldStress, ... 
                SteelProps.YoungsMod, SteelProps.ShStrain, ... 
                SteelProps.ShMod, SteelProps.UltStress, ... 
                SteelProps.UltStrain, SteelStrainComp, Precision.alphaSteel, 
... 
                StrainO (ii), StressO (ii), LoadFlag (ii)); 
        end 
         
        SteelStress (ii) = - SteelStressComp * (1 + SteelStrainComp) ^ 2; 
        if FirstIter == 1 %%% NOT SURE ABOUT THIS YET... 
            SteelStrainCompPrev (ii) = SteelStrainComp; 
            SteelStressCompPrev (ii) = SteelStressComp; 
        end 
    end 
    % Determine whether ultimate strain has been reached: 
    if (SteelStrain (ii) >  100 * SteelProps.UltStrain) || ... 
            (SteelStrain (ii) < - 100 * SteelProps.UltStrain) 
        flag.ult = 1; 
    end  
    % Determine whether steel has yielded: 
    if (SteelStress (ii) > SteelProps.YieldStress) || ... 
            (SteelStress (ii) < - SteelProps.YieldStress) 
        flag.yield = 1; 
    end 
end 
  
SteelStress1 = SteelStress; 
SteelStrain1 = SteelStrain; 
  
% Calculate axial load: 
% --------------------- 
Load = (SteelStress' * Area.Steel); 
  
% Calculate bending moment: 
% ------------------------- 
Moment = (SteelStress' * (Area.Steel .* Depth.Steel)); 
  
% END OF FUNCTION 
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A4 Material Subroutine: SteelStressCyclic.m 

function [Stress] = SteelstressCyclic (YieldStress, YoungsMod, ShStrain, ... 
    ShMod, UltStress, UltStrain, Strain, alpha, StrainO, StressO, LoadFlag) 
  
% STEELSTRESS gives the stress in a piece of steel for a given strain. 
% ------------------------------------------------------------------------- 
% 
% TYPICAL CALL: 
%       Stress = Steelstress (YieldStress, YoungsMod, ShStrain, ShMod, ... 
%       ... UltStress, UltStrain, Strain, alpha) 
%  
% DESCRIPTION: 
%       Function determines the stress in a reinforcing steel bar for any  
%       given strain value. Uses the Menegotto-Pinto equation (1973) for  
%       the strain diagram up to the onset of strain-hardening, and a  
%       polynomial approximation of the form Y = X^P thereafter. 
% 
% INPUTS: 
%       YieldStress  =  Steel yield stress, f_y  
%       YoungsMod    =  Elastic modulus of steel, E_s 
%       ShStrain     =  Value of strain in the steel at which strain- 
%                       hardening commences, epsilon_sh 
%       ShMod        =  "Elastic" modulus of yielded steel in the strain-  
%                       hardening portion of the stress-strain curve, E_sh 
%       UltStress    =  Ultimate stress of the steel, f_u 
%       UltStrain    =  Ultimate strain of the steel, epsilon_u 
%       Strain       =  Strain value for which the stress is being  
%                       calculated 
%       alpha        =  Precision / stability parameter, an integer >= 20 
% 
% OUTPUTS: 
%      Stress        =  Calculated value of stress, f_s 
% 
% PROGRAMME HISTORY: 
%       DATE              PROGRAMMER              MODIFICATION 
%       ----              ----------              ------------ 
%       09/24/08          C.R. Urmson             Original Code 
%       02/04/09          C.R. Urmson             Modified for cyclic  
%                                                  reloading from comp. 
% 
% ------------------------------------------------------------------------- 
  
% Calculation of yield strain: 
YieldStrain = YieldStress / YoungsMod; 
  
% Calculation of the parameters P, q and R: 
P = ShMod * (UltStrain - ShStrain) / (UltStress - YieldStress); 
q = 0.935; 
R = max (2 - (0.4 * StrainO), 1); 
  
% Calculation of Menegotto-Pinto portion of equation: 
MP = YoungsMod * Strain / (1 +  (abs (Strain / YieldStrain)) ^ alpha) ^ ... 
    (1 / alpha); 
  
% Calculation of denominator in strain-hardening portion: 
Denom = (((abs (UltStrain - ShStrain)) ^ (alpha * P)) + ((abs ... 
    (UltStrain - Strain)) ^ (alpha * P))) ^ (1 / alpha); 
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% Calculation of Strain hardening portion: 
SHPor = (UltStress - YieldStress) * (1 - (((abs (UltStrain - Strain)) ... 
    ^ P) / Denom)); 
  
% Calculation of Stress: 
if LoadFlag == 0 
    Stress = MP + SHPor; 
elseif LoadFlag == 1 
    Stress = StressO + YoungsMod * (Strain - StrainO) / ((1 + abs ... 
        (YoungsMod * (Strain - StrainO) / (-YieldStress - StressO)) ^ ... 
        (q * R)) ^ (1 / R)); 
end 
  
% END OF FUNCTION 

 

 

A5 Hoop Moment Subroutine: MomentHoop.m 

This subroutine is used in the global buckling analysis only. 

function [TOTHoopMoment, HoopStress] = MomentHoop (HYieldStress, HYoungsMod, 
HShStrain, ... 
    HShMod, HUltStress, HUltStrain, Halpha, HoopArea, HoopLength, ... 
    NumHoops, HoopSpacing, Eccentricity, Bulge) 
  
% MOMENTHOOP finds restraining moment by hoops on a longitudinal bar. 
% ------------------------------------------------------------------------- 
% 
% TYPICAL CALL: 
%       [TOTHoopMoment] = MomentHoop (HYieldStress, HYoungsMod, HShStrain, ... 
%            HShMod, HUltStress, HUltStrain, Halpha, HoopArea, HoopLength, ... 
%            NumHoops, Eccentricity) 
% 
% DESCRIPTION: 
%       Function determines the contribution from each hoop to resisting 
%       moment on a globally buckling longitudinal bar. Based on statical 
%       derivation by Urmson (2010). 
% 
% INPUTS: 
%       HYieldStress  =  Hoop steel yield stress, f_y 
%       HYoungsMod    =  Elastic modulus of hoop steel, E_s 
%       HShStrain     =  Value of strain in the hoop steel at which strain- 
%                        hardening commences, epsilon_sh 
%       HShMod        =  "Elastic" modulus of yielded hoop steel in the strain- 
%                        hardening portion of the stress-strain curve, E_sh 
%       HUltStress    =  Ultimate stress of the hoop steel, f_u 
%       HUltStrain    =  Ultimate strain of the hoop steel, epsilon_u 
%       Halpha        =  Precision / stability parameter, an integer >= 20 
%       HoopArea      =  Cross-sectional area of the hoop 
%       HoopLength    =  Length of the hoop 
%       NumHoops      =  Number of hoops restraining the longitudinal bar 
%       HoopSpacing   =  Spacing of transverse reinforcement 
%       Eccentricity  =  Eccentricity of the longitudinal bar 
%       Bulge         =  Eccentricity due to Poisson's Effect 
% 
% OUTPUTS: 
%       TOTHoopMoment =  Calculated Moment provided by all hoops 
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% 
% PROGRAMME HISTORY: 
%       DATE              PROGRAMMER              MODIFICATION 
%       ----              ----------              ------------ 
%       05/16/10          C.R. Urmson             Original Code 
% 
% ------------------------------------------------------------------------- 
  
% Initialisation of vectors: 
HoopStrain = zeros (1, NumHoops); 
HoopStress = HoopStrain; 
HoopForce = HoopStrain; 
HoopMoment = HoopForce; 
  
% Contribution from each individual hoop: 
for ii = 1 : NumHoops 
    HoopStrain (ii) = (Eccentricity * (1 - cos (2 * pi * ii / ... 
        (NumHoops + 1)))/ HoopLength) + (Bulge * (NumHoops + 1 - ii) / ... 
        ((NumHoops + 1) * HoopLength)); 
    if HoopStrain (ii) < 0, 
        HoopStress (ii) = 0; 
    else 
        HoopStress (ii) = SteelstressCyclic (HYieldStress, HYoungsMod, ... 
            HShStrain, HShMod, HUltStress, HUltStrain, HoopStrain (ii), ... 
            Halpha, 0, 0, 0); 
    end 
    HoopForce (ii) = HoopStress (ii) * HoopArea; 
    HoopMoment (ii) = HoopForce (ii) * (0.5 * (NumHoops + 1) - ii); 
end 
  
SubtractMoment = 0; 
  
% Add moments to give total contribution from each hoop: 
for jj = 1 : ceil (NumHoops / 2) 
    SubtractMoment = SubtractMoment + HoopMoment (jj); 
end 
  
TOTHoopMoment = (0.25 * (NumHoops + 1) * HoopSpacing * sum (HoopForce) - ... 
    SubtractMoment * HoopSpacing) * 0.5; 
% END OF FUNCTION 
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A6 Sample Output File: BarBucklingAnalysisSDBMander84.D24.6.txt 

This output file was generated for a transverse steel spacing of 6 db for a Grade 260 

steel. 

URMSON's Buckling Analysis 
===========================  
Mander84.D24.6 
 S/db =6 
 Input: fy, Es, eps_sh, Esh, fsu, eps_su 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
260  1.95e+005  0.018  4500  429  0.18 
  
Peak: Force, Moment, Curvature, Eccentricity, Reference Strain 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
1.10969  0.733891  0.0751896  0.121893  ‐0.0276746 
 
Steel Strains at Curvature = 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Phi * db =0 
Phi * db =0.018797 
Phi * db =0.037595 
Phi * db =0.056392 
Phi * db =0.07519 
Phi * db =0.093987 
‐0.000392884  ‐0.0178744  ‐0.0338947  ‐0.0488093  ‐0.0628434  ‐0.0759303 
‐0.000384807  ‐0.0176761  ‐0.0335061  ‐0.0482304  ‐0.0620743  ‐0.0749699 
‐0.000370416  ‐0.0173227  ‐0.0328136  ‐0.0471989  ‐0.0607038  ‐0.0732585 
‐0.000349943  ‐0.0168199  ‐0.0318286  ‐0.0457316  ‐0.0587542  ‐0.070824 
‐0.000323724  ‐0.016176  ‐0.0305671  ‐0.0438524  ‐0.0562574  ‐0.0677062 
‐0.000292189  ‐0.0154016  ‐0.0290498  ‐0.0415923  ‐0.0532544  ‐0.0639564 
‐0.000255857  ‐0.0145094  ‐0.0273017  ‐0.0389883  ‐0.0497945  ‐0.059636 
‐0.000215324  ‐0.013514  ‐0.0253515  ‐0.0360832  ‐0.0459346  ‐0.0548161 
‐0.000171255  ‐0.0124318  ‐0.0232311  ‐0.0329247  ‐0.041738  ‐0.0495758 
‐0.000124374  ‐0.0112806  ‐0.0209755  ‐0.0295647  ‐0.0372735  ‐0.044001 
‐7.54507e‐005 ‐0.0100792  ‐0.0186216  ‐0.0260583  ‐0.0326147  ‐0.0381835 
‐2.52886e‐005 ‐0.00884732  ‐0.0162081  ‐0.0224631  ‐0.0278378  ‐0.0322186 
2.52886e‐005  ‐0.00760529  ‐0.0137746  ‐0.0188382  ‐0.0230214  ‐0.0262043 
7.54507e‐005  ‐0.00637345  ‐0.011361  ‐0.015243  ‐0.0182445  ‐0.0202394 
0.000124374  ‐0.00517203  ‐0.00900714  ‐0.0117366  ‐0.0135856  ‐0.0144218 
0.000171255  ‐0.00402077  ‐0.0067515  ‐0.00837655  ‐0.00912121  ‐0.00884709 
0.000215324  ‐0.00293856  ‐0.00463115  ‐0.00521806  ‐0.00492458  ‐0.00360674 



154 
 

0.000255857  ‐0.00194318  ‐0.00268091  ‐0.00231297  ‐0.00106464  0.00121318 
0.000292189  ‐0.00105096  ‐0.000932811 0.000291011  0.00239523  0.00553354 
0.000323724  ‐0.000276563 0.000584451  0.00255114  0.00539822  0.00928338 
0.000349943  0.000367302  0.00184596  0.00443029  0.00789502  0.0124012 
0.000370416  0.000870064  0.00283101  0.00589763  0.00984465  0.0148357 
0.000384807  0.00122348  0.00352345  0.00692909  0.0112151  0.016547 
0.000392884  0.00142182  0.00391206  0.00750796  0.0119843  0.0175074 
  
Steel Stresses at Curvature = 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Phi * db =0 
Phi * db =0.018797 
Phi * db =0.037595 
Phi * db =0.056392 
Phi * db =0.07519 
Phi * db =0.093987 
‐78.743  ‐543.393  ‐666.427  ‐750.732  ‐808.299  ‐847.777 
‐77.1236  ‐541.64  ‐663.862  ‐747.941  ‐805.601  ‐845.237 
‐74.2381  ‐538.503  ‐659.243  ‐742.877  ‐800.674  ‐840.59 
‐70.1338  ‐534.012  ‐652.562  ‐735.471  ‐793.392  ‐833.688 
‐64.8782  ‐528.213  ‐643.817  ‐725.632  ‐783.576  ‐824.303 
‐58.5584  ‐521.18  ‐633.012  ‐713.257  ‐770.999  ‐812.119 
‐51.2785  ‐513.017  ‐620.169  ‐698.243  ‐755.401  ‐796.727 
‐43.1587  ‐503.893  ‐605.336  ‐680.502  ‐736.51  ‐777.648 
‐34.333  ‐494.095  ‐588.595  ‐659.988  ‐714.073  ‐754.374 
‐24.9467  ‐484.115  ‐570.071  ‐636.714  ‐687.9    ‐726.425 
‐15.1544  ‐474.74  ‐549.948  ‐610.774  ‐657.904  ‐693.434 
‐5.1172  ‐466.912  ‐528.503  ‐582.371  ‐624.153  ‐655.223 
5.11681  ‐461.207  ‐506.278  ‐551.833  ‐586.904  ‐611.889 
15.151   ‐457.444  ‐484.788  ‐519.732  ‐546.65  ‐563.865 
24.9374  ‐454.993  ‐467.807  ‐487.985  ‐504.548  ‐512.213 
34.3154  ‐453.288  ‐458.435  ‐464.493  ‐468.469  ‐411.341 
43.1309  ‐451.893  ‐454.136  ‐453.651  ‐393.698  ‐147.014 
51.2392  ‐389.997  ‐451.102  ‐371.974  ‐142.354  139.461 
58.5071  ‐210.965  ‐187.187  58.2713  443.843  450.582 
64.8153  ‐55.4272  116.972  447.593  450.461  460.338 
70.0602  73.5327  369.002  449.823  454.883  480.48 
74.1557  174.11   449.099  450.956  463.271  499.1 
77.0346  244.816  449.475  452.513  471.902  512.046 
78.6503  284.498  449.603  453.808  477.39   519.129 
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 History: Force, Moment, Curvature, Eccentricity, Reference Strain 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
0    0.10379  0.000789568  0.0256   0 
‐119919  0.10495  0.000889568  0.0288423  ‐0.00191605 
‐123682  0.105654  0.000989568  0.0320846  ‐0.00199519 
‐125682  0.106369  0.00108957  0.0353268  ‐0.00204738 
‐126965  0.107077  0.00118957  0.0385691  ‐0.00208901 
‐127862  0.107796  0.00128957  0.0418114  ‐0.00212516 
‐128527  0.108508  0.00138957  0.0450537  ‐0.00215825 
‐140333  1.17862  0.14229  4.61342  ‐0.03705 
…    …    …    …    … 

 

A6 References 
MATLAB version R2008b. (2007). The MathWorks, Inc., Natick, MA. 
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APPENDIX B 

 COMPREHENSIVE RESULTS  

OF BUCKLING ANALYSES 
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B1 Introduction 

A range of steel types from various experimental studies was examined in the study 

described in Chapter IV. In addition to a generalized set of results for s / db ranging from 

4 to 10, computational analyses were run for each s / db corresponding to available 

experimental results. A full set of computational results is presented below, including 

tensile and compressive stress-strain parameters, computational results and comparisons 

between analytical, computational and experimental results (where available). 

 

B2 Mander (1983) 

 

  Table B1: Steel Stress-Strain Parameters for Steels from Mander (1983) 

Result* Bar s / db fy  
(MPa) 

fsu  
(MPa) 

Es  
(GPa) 

Esh  
(MPa) 

εsh εsu 

T 
CE 
CA 

 

H16 
 

- 
6 
6 
 

360 
-355 
-360 

567 
-475 
-470 

 

200 
215 
200 

6000 
8300 
6000 

0.016 
-0.011 
-0.009 

0.150 
-0.048 
-0.048 

T 
CE 
CA 
CE 
CA 
CE 
CA 

 

D16 
 

- 
5.5 
5.5 
6 
6 

6.5 
6.5 

 

295 
-290 
-295 
-290 
-295 
-290 
-295 

433 
-400 
-371 
-360 
-347 
-360 
-326 

 

200 
200 
200 
200 
200 
200 
200 

3500 
4200 
3500 
3700 
3500 
3500 
3500 

0.025 
-0.016 
-0.014 
-0.015 
-0.013 
-0.016 
-0.014 

0.19 
-0.080 
-0.067 
-0.050 
-0.056 
-0.055 
-0.048 

T 
CE 
CA 

 

D20 
 

- 
6 
6 
 

286 
-240 
-286 

 

446 
-366 
-358 

200 
210 
200 

4000 
6200 
4000 

0.023 
-0.011 
-0.012 

0.180 
-0.051 
-0.058 

T 
CE 
CA 

 

D24 
 

- 
6 
6 

260 
-234 
-260 

429 
-385 
-343 

195 
210 
195 

4500 
6100 
4500 

0.018 
-0.0084 
-0.0097 

0.180 
-0.051 
-0.061 

T 
CE 
CA 

D28 
 
 
 

- 
6 
6 

296 
-280 
-296 

 

484 
-450 
-391 

 

203 
215 
203 

4700 
7200 
4700 

0.015 
-0.010 
-0.008 

0.170 
-0.050 
-0.057 

* T = Tension; CE = Compression, Experimental; CA = Compression, Analytical 
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(a) Cross-Sectional Strain and Stress Profiles at Critical Buckling Load 

(b) Moment-Axial Stress Interaction (c) Moment-Curvature Relationship 

Fig. B1: Computational Results for Grade 300 D16 Steel Bars from Mander (1983) 
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Fig. B2: Comparison of Results from Steels Tested by Mander (1983) 
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B3 Mander et al. (1994) 

 

  Table B2: Steel Stress-Strain Parameters for Steels from Mander et al. (1994) 
Result* Bar s / db fy  

(MPa) 
fsu  

(MPa) 
Es  

(GPa) 
Esh  

(MPa) 
εsh εsu 

T 
CE 
CA 

R 
 

- 
6 
6 

331 
-338 
-331 

565 
-531 
-466 

215 
215 
215 

8274 
8300 
8274 

0.0091 
-0.0080 
-0.005 

0.144 
-0.045 
-0.055 

 
T 

CE 
CA 
CE 
CA 
CE 
CA 

P 
 

- 
6 
6 
8 
8 
9 
9 

869 
-917 
-869 
-915 
-869 
-908 
-869 

1130 
-1076 
-1037 
-936 
-928 
-914 
-886 

221 
221 
221 
219 
221 
234 
221 

11030 
12130 
11030 
4380 

11030 
1170 

11030 

0.0039 
-0.0041 
-0.0040 
-0.0042 
-0.0040 
-0.0039 
-0.0040 

0.063 
-0.028 
-0.026 
-0.012 
-0.015 
-0.007 
-0.011 

 
* T = Tension; CE = Compression, Experimental; CA = Compression, Analytical 

 

(a) Cross-Sectional Strain and Stress Profiles at Critical Buckling Load  

(b) Moment-Axial Stress Interaction  (c) Moment-Curvature Relationship 

Fig. B3: Computational Results for Mild Steel Bars from Mander et al. (1994) 
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(a) Cross-Sectional Strain and Stress Profiles at Critical Buckling Load  

(b) Moment-Axial Stress Interaction  (c) Moment-Curvature Relationship 

Fig. B4: Computational Results for High-Strength Steel Bars from Mander et al. (1994)
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Fig. B5: Comparison of Results from Steels Tested by Mander et al. (1994) 
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B4 Rodriguez et al. (1999) 

 

Table B3: Steel Stress-Strain Parameters for Steels from Rodriguez et al. (1999) 

Result* Bar s / db fy  
(MPa) 

fsu  
(MPa) 

Es  
(GPa) 

Esh  
(MPa) 

εsh εsu 

T 
 

# 10 
 

- 
 

449 
 

730 
 

200 
 

9000 
 

0.0089 
 

0.12 
 

* T = Tension; Compression results not used due to different testing method 
 

 

 

 

 

(a) Cross-Sectional Strain and Stress Profiles at Critical Buckling Load  

(b) Moment-Axial Stress Interaction  (c) Moment-Curvature Relationship 

Fig. B6: Computational Results for  #10 Steel Bars from Rodriguez et al. (1999) 
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B5 Bayrak and Sheikh (2001) 

 

Table B4: Steel Stress-Strain Parameters for Steels from Bayrak and Sheikh (2001) 
Result* Bar s / db fy  

(MPa) 
fsu  

(MPa) 
Es  

(GPa) 
Esh  

(MPa) 
εsh εsu 

T 
CE 
CA 
CE 
CA 
CE 
CA 
CE 
CA 

 

M20 
 

- 
4 
4 
5 
5 
6 
6 
7 
7 
 

515 
-515 
-515 
-515 
-515 
-515 
-515 
-515 
-515 

690 
-670 
-737 
-600 
-653 
-580 
-592 
-515 
-545 

200 
200 
200 
200 
200 
200 
200 
200 
200 

 

5500 
6000 
5500 
4000 
5500 
4000 
5500 
7200 
5500 

0.0091 
-0.010 
-0.006 
-0.010 
-0.006 
-0.008 
-0.006 
-0.007 
-0.006 

0.160 
-0.120 
-0.080 
-0.070 
-0.052 
-0.051 
-0.036 
-0.025 
-0.026 

* T = Tension; CE = Compression, Experimental; CA = Compression, Analytical 
 

(a) Cross-Sectional Strain and Stress Profiles at Critical Buckling Load  

(b) Moment-Axial Stress Interaction  (c) Moment-Curvature Relationship 

Fig. B7: Computational Results for M20 Steel Bars from Bayrak and Sheikh (2001) 
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Fig. B8: Comparison of Results from Steels Tested by Bayrak and Sheikh (2001) 
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B6 Bae et al. (2005) 

 

 Table B5: Steel Stress-Strain Parameters for Steels from Bae et al. (2005)  

Result* Bar s / db fy  
(MPa) 

fsu  
(MPa) 

Es  
(GPa) 

Esh  
(MPa) 

εsh εsu 

T 
CE 
CA 
CE 
CA 
CE 
CA 
CE 
CA 
CE 
CA 

 

#8 
 

- 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
 

437 
-437 
-437 
-437 
-437 
-437 
-437 
-437 
-437 
-437 
-437 

728 
-550 
-686 
-500 
-615 
-450 
-560 
-445 
-517 
-437 
-482 

 

198 
198 
198 
198 
198 
198 
198 
198 
198 
198 
198 

9000 
5000 
9000 
4000 
9000 
3000 
9000 
3000 
9000 
3000 
9000 

0.0092 
-0.005 
-0.006 
-0.005 
-0.006 
-0.005 
-0.006 
-0.004 
-0.006 
-0.003 
-0.006 

0.147 
-0.075 
-0.059 
-0.050 
-0.041 
-0.030 
-0.030 
-0.020 
-0.023 
-0.002 
-0.018 

T 
CE 
CA 
CE 
CA 
CE 
CA 
CE 
CA 

 

#10 - 
4 
4 
5 
5 
6 
6 
7 
7 
 

444 
-444 
-444 
-444 
-444 
-444 
-444 
-444 
-444 

638 
-640 
-681 
-550 
-599 
-510 
-537 
-467 
-490 

202 
202 
202 
202 
202 
202 
202 
202 
202 

7000 
7000 
7000 
5500 
7000 
6100 
7000 
7200 
7000 

0.0091 
-0.005 
-0.007 
-0.005 
-0.007 
-0.005 
-0.007 
-0.005 
-0.007 

0.158 
-0.160 
-0.082 
-0.065 
-0.059 
-0.040 
-0.041 
-0.030 
-0.030 

* T = Tension; CE = Compression, Experimental; CA = Compression, Analytical 
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(a) Cross-Sectional Strain and Stress Profiles at Critical Buckling Load  

(b) Moment-Axial Stress Interaction  (c) Moment-Curvature Relationship 

Fig. B9: Computational Results for #8 Steel Bars from Bae et al. (2005) 
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(a) Cross-Sectional Strain and Stress Profiles at Critical Buckling Load  

(b) Moment-Axial Stress Interaction  (c) Moment-Curvature Relationship 

Fig. B10: Computational Results for #10 Steel Bars from Bae et al. (2005) 
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Fig. B11: Comparison of Results from #8 Steel Bars Tested by Bae et al. (2005) 
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Fig. B12: Comparison of Results from #10 Steel Bars Tested by Bae et al. (2005) 
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