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ABSTRACT 

 

Foraging Ecology of Green Turtles (Chelonia mydas) on the Texas Coast, as Determined 

by Stable Isotope Analysis.  (August 2010) 

Catherine Concetta Theresa Gorga, B.S., Texas A&M University at Galveston 

Chair of Advisory Committee: Dr. Andre M. Landry, Jr. 

 

The green turtle, Chelonia mydas, is a circumglobal species that exhibits several 

important developmental or ontogenetic shifts throughout its life history.  The first major 

shift occurs when juvenile turtles migrate from pelagic habitat, where they forage as 

omnivores, to coastal neritic habitat, where they become primarily herbivores, foraging 

on algae and seagrass.  Anecdotal evidence and gut-content analyses suggest that 

juvenile green turtles in south Texas bays, such as the lower Laguna Madre and Aransas 

Bay, undergo an additional ontogenetic shift during this important life history stage. 

Evidence from stable isotope analysis (SIA) of scute tissues of green turtles from 

Texas’ lower Laguna Madre and Aransas Bay supports an intermediate stage between 

this species’ shift from pelagic waters to seagrass beds in neritic waters; this additional 

shift comprises an initial recruitment of post-pelagic juveniles to jetty habitat located on 

the channel passes Gulf-ward of adjacent bays before subsequently recruiting to seagrass 

beds in these bays.  Examination of stable carbon (δ
13

C) and nitrogen (δ
15

N) isotopes in 

microlayers of scute tissue from several size classes of green turtles from the lower 
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Laguna Madre and Aransas Bay was used to confirm the occurrence of two ontogenetic 

shifts. 

Smaller green turtles (< 35 cm SCL) exhibited more depleted δ
13

C signatures and 

more enriched δ
15

N signatures, consistent with jetty habitat, compared to those of larger 

counterparts (> 45 cm SCL) that displayed enriched δ
13

C signatures and depleted 
15

N 

signatures, consistent with seagrass habitat.  Changes in the isotopic composition 

between these size classes indicate distinct shifts in diet.  Post-pelagic juveniles first 

recruit to jetty habitat and forage primarily on algae, before subsequently shifting to 

seagrass beds and foraging primarily on seagrass.  These findings indicate the use of a 

characteristic sequence of distinct habitats by multiple life history stages of green turtles 

in Texas bays, a conclusion with broad management implications for this endangered 

species.   
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CHAPTER I 

INTRODUCTION 

 

All sea turtles that inhabit U.S. waters are listed as either threatened or 

endangered under the U.S. Endangered Species Act (NMFS and USFWS 1991, 1992a, 

1992b 1993, 1998a, 1998b).  Efforts to rebuild these populations to historic levels have 

been ongoing for decades and include armed protection of nesting beaches, prevention of 

illegal egg harvest, and translocation of nests to more protected environments (Alvarado-

Diaz et al. 2001, Eckert and Eckert 1990).  Hatchling turtles have also been reared in 

captivity and released as larger juveniles, a process called “headstarting” (Eckert et al. 

1992, Pritchard 1980).  Implementation of turtle excluder devices (TEDs) in shrimp 

trawls has reduced the number of turtles killed in fisheries interactions (Crowder et al. 

1995).  These efforts, focused on nesting beaches and in-water assemblages, have had 

positive effects on sea turtle populations, some of which are beginning to increase.  

However, all sea turtle species remain endangered or threatened despite these 

conservation efforts.  As a result, all state and federal sea turtle recovery plans mandate 

more information be generated about the ecology of constituent species.  Detailed 

information on habitat use, reproductive capability, foraging ecology, and a host of other 

physiological and ecological factors is essential for government agencies and 

conservationists to devise effective recovery plans for sea turtles.  

 

This thesis follows the style of Marine Ecological Progress Series. 
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The green turtle, Chelonia mydas, is considered a threatened species in the U.S, 

with breeding populations in Florida listed as endangered (NMFS and USFWS 1991).  

The green turtle population in Texas was once large enough to support a commercial 

harvest exceeding 230,000 kg/yr during the mid-1800s (Hildebrand 1982, Doughty 

1984), although overexploitation by this fishery nearly eliminated green turtles from 

Texas waters (Hildebrand 1982).  Gradual population gains (Rabalais and Rabalais 

1980) have occurred; however, these have rendered constituent stocks only a fraction of 

historic levels.  Nonetheless, studies indicate that the lower Laguna Madre is home to 

one of the largest assemblages of green turtles in the northwestern Gulf of Mexico 

(Shaver 1990, Landry et al. 1992, 1993, Coyne 1994, Shaver 1994). 

Green turtles are a circumglobal species in tropical and subtropical waters, with 

important nesting beaches in Costa Rica, Surinam, and Ascension Island in the mid-

Atlantic (Musick and Limpus 1996).  Once emerged from their nests, hatchling green 

turtles migrate to the open ocean, where they spend approximately 3-5 years (Reich et al. 

2007), during which time they reach ~25 – 35 cm straight carapace length (SCL).  These 

are the so-called “lost years” because so much is unknown about this stage in the life 

cycle.  Green turtles are omnivorous during this stage of their life (Musick and Limpus 

1996, Reich et al. 2007) and take advantage of ocean currents, flotsam, and Sargassum 

mats for transport, protection and food (Carr and Meylan 1980). 

Juvenile green turtles make the first of several ontogenetic shifts in habitat at a 

size of ~25 – 35 cm SCL (Carr and Ogren 1960), when they migrate to a nearshore 

neritic environment and begin to feed on benthic macrophytes (Bjorndal 1997), 
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including seagrass (Bjorndal 1985) and algae (Pritchard 1971).  These juveniles remain 

in nearshore habitat as they grow toward sexual maturity (~30-35 years), and sometimes 

display strong foraging ground fidelity (Musick and Limpus 1996).  As adults, green 

turtles migrate between nearshore foraging grounds and nesting beaches, which may be 

thousands of kilometers apart (Carr and Ogren 1960). 

It has been suggested that green turtles forage on algae in the absence of seagrass 

(Hughes 1974), although there are locations where colonies of conspecifics foraging on 

seagrass exist within kilometers of counterparts foraging on algae (Hirth 1971, Garnett 

and Murray 1981).  Anecdotal evidence suggests that this may be the case in the lower 

Laguna Madre, where spatial distribution of green turtles seems to be life-stage 

dependent.  Post-pelagic juveniles have been observed at jetties in South Texas, where 

stomach content analyses revealed their diet consisted primarily of available algae 

(Renaud et al. 1995).  By the time Texas green turtles attain 40 cm SCL (Metz and 

Landry, unpublished data) they have transitioned to foraging in seagrass beds (Coyne 

1994). 

Ontogenetic shifts in habitat and diet coincide with changes in growth and other 

vital rates.  Because of this, and because ontogenetic shifts may impact the spatial 

distribution of green turtles, it is important that these shifts be fully understood.  A more 

comprehensive understanding of ontogenetic shifts, habitat use, and diet of green turtles 

will allow management decisions to be made that protect whole populations, regardless 

of habitat choice within the geographic area occupied.  To further elucidate the 

ontogenetic shifts of green turtles, they must be examined across a range of 
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developmental stages; the green turtle assemblage in Texas’ lower Laguna Madre 

presents just such an opportunity.  Here, a second ontogenetic shift may occur in which 

smaller post-pelagic juvenile turtles first recruit to jetty environments, before making a 

subsequent shift to seagrass communities in the bay system.  Although similar to a 

pattern seen in the Trident Submarine Basin, Cape Canaveral, FL, where juvenile 

conspecifics have been observed foraging primarily on algae (Redfoot 1997), a 

subsequent shift of the kind suspected for green turtles in Texas has not been 

documented. 

One tool in the study of animal foraging ecology is stable isotope analysis (SIA).  

Analyses of isotopes such as carbon (C) and nitrogen (N) in the tissues of a variety of 

animals, including, but not limited to, fish, birds, marine mammals, and their prey, have 

been used to assess trophic dynamics and reconstruct animal diets (Collier and Lyon 

1991, Fleming et al. 1993, Vander Zanden et al. 1996).  Diet reconstructions can be 

facilitated by SIA because: 1) natural gradients in stable isotopes can be found in the 

environment as well as in trophic relationships; and 2) over time, animal tissues come to 

reflect their diet.  Stable isotope values of prey are incorporated into the tissues of 

consumers in a predictable fashion.  However, the rate at which this isotopic 

incorporation occurs varies between species and between tissues of the same species.  

For example, the average residence time for δ13C in the Japanese quail (Coturnix 

japonica) varies from 3 days in the liver to 251 days in bone collagen (Hobson and Clark 

1992).  Thus, with proper baseline data, one can determine the foraging history of an 

animal by measuring the isotopic signatures in a given tissue.  Another facet that must be 
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considered is the discrimination factor.  As prey is consumed, the heavier isotopes are 

retained in greater number by the body and lighter isotopes are lost through excretory 

products, such as urine, bile, and respired CO2.  In this way, the organism becomes 

isotopically enriched in relation to its diet (Minagawa and Wada 1984, Peterson and Fry 

1987).  The values at which this enrichment occurs are referred to as discrimination 

factors and can vary greatly among species (Kelly 2000).  Discrimination is thought to 

be dependent on a number of attributes, including tissue type (Hobson and Clark 1992), 

age or size of animal (Carleton and Martinez del Rio 2005), growth rate, quality and 

quantity of proteins in the diet (MacAvoy et al. 2001, Reich et al. 2008), and nutritional 

stressors, such as pregnancy or lactation (Kurle and Worthy 2000).  Because isotopic 

incorporation rates and discrimination factors vary among tissues and taxa, any 

ecological study of a free ranging organism (or population) should utilize species- and 

tissue-specific values, whenever possible (Seminoff et al. 2006). 

Typically, the carbon isotopic signature is used to determine the basis of an 

animal’s food web (Hobson et al. 1996).  Facilitating this process is the fact that 

naturally occurring gradients in δ13C exist in the environment.  For instance, in the 

marine realm, oceanic environments (water > 200 m) are more depleted in δ13C than 

neritic environments (water < 200 m).  Benthic habitat is typically enriched in δ13C 

compared to pelagic, as are benthically based food-webs versus food-webs that are 

established on phytoplankton.  Because these gradients exist, δ13C can be used to 

elucidate the source of an animal’s carbon.  Knowing the source of the carbon provides 

indications of habitat use and can be helpful in identifying migratory pathways. 



 6

The discrimination factor for nitrogen occurs in a step-wise fashion that allows 

stable nitrogen isotopes to be used to determine trophic position of an organism within a 

food web (Minagawa and Wada 1984, Gannes et al. 1997).  With each step in the food 

web, δ15N of the consumer becomes enriched in a predictable fashion, relative to the 

isotopic signature of the prey it has assimilated.  A more enriched δ15N signature 

indicates a higher trophic level.  For example, Godley et al. (1998) determined that δ15N 

was approximately 20‰ for loggerhead turtles foraging in the Mediterranean, while 

δ
15N for green turtles in the same area was approximately 9‰.  Loggerheads are known 

to forage carnivorously on mollusks and arthropods, and their δ15N signature reflects 

their status as secondary and tertiary consumers.  The more depleted δ15N signature of 

the green turtle reflects the fact that green turtles are primary consumers that forage 

herbivorously.  In the same study, leatherback turtles from the western Atlantic had a 

δ
15N signature of 14‰; these turtles forage mainly on gelatinous organisms such as 

jellyfish, and their δ15N signature was indicative of their placement at an intermediate 

trophic level. 

Conventional methods of studying the diet of an organism, such as gut content 

analysis, provide ‘snapshots’ (Peterson and Fry 1987) of an animal’s diet; whereas, SIA 

can indicate long-term trends, as a result of varied assimilation and turnover rates of 

isotopes in bone, blood, muscle, hair and feathers (Schoeninger and DeNiro 1984, Rau et 

al. 1992, Bearhop et al. 2002, Kurle 2002).  By applying appropriate incorporation and 

discrimination values, stable isotopes provide a chemical “clock” (Phillips and Eldridge 

2006) that allows researchers to track changes in an animal’s diet.  These analyses can 
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be especially helpful for studying animals that spend the majority of their lives 

underwater or in unknown or inaccessible locations and, as such, whose foraging habits 

are difficult to observe.  Also, sample collections for SIA can be relatively non-invasive, 

an important factor when dealing with an endangered species such as the green turtle. 

A search of peer-reviewed literature revealed several studies that utilize stable 

isotopes to investigate the ecology of sea turtles (Godley et al. 1998, Hatase et al. 2002, 

Biasatti 2004, Hatase et al. 2006, Cart et al. 2008, Reich et al. 2007, 2008, 2010).  Reich 

et al. (2007) used stable isotopes of carbon and nitrogen in scute tissue to confirm that 

immature green turtles conform to Carr’s hypothesis (1952) of oceanic, omnivorous 

foraging during the “lost years” and to track the ontogenetic shift of green turtles to 

seagrass foraging in neritic habitat.  Scute tissue is particularly appropriate for isotopic 

clock studies because it is continuously laid down over the surface of the shell, and it is 

inert once produced.  Due to these properties, stable isotopes analyzed from these tissues 

provide a history of diet and foraging habitat. 

Arthur et al. (2008) used stable isotopes to document green turtle foraging 

ecology throughout constituent life stages, providing further evidence that sea turtles 

undergo ontogenetic shifts in habitat and feeding that coincide with developmental 

stages.  Stable isotope studies have been conducted on green turtle populations in 

northwest Africa (Cardona et al. 2009), the Caribbean (Reich et al. 2007), Mediterranean 

(Godley et al. 1998), and Pacific Ocean (Arthur et al. 2008), but similar studies are 

lacking for conspecifics in the Gulf of Mexico, particularly constituent assemblages of 

the lower Texas coast. 
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Texas bay systems provide a unique opportunity to study the green turtle over a 

range of life history stages.  Based on earlier studies of the green turtle population in 

Texas (Shaver 1990, Landry et al. 1992, 1993, Coyne 1994, Shaver 1994), I 

hypothesized that stable isotope signatures of smaller turtles would indicate primarily 

algae-foraging, while those of larger counterparts would indicate primarily seagrass-

foraging.  I also hypothesized that isotopic profiles based on successive microsampled 

scute layers would reveal the occurrence and timing of any shift from algae to seagrass-

based foraging, as well as indicate the size of turtle at which the shift may occur.  By 

providing a more complete understanding of green turtle foraging ecology and habitat 

use, the results of this study can be used to assess critical habitat for this endangered 

species. 
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CHAPTER II 

MATERIALS AND METHODS 

 

 
Turtle Capture and Examination.  This stable isotope study was part of a 

larger Texas Sea Grant College investigation to determine the extent that sea turtles 

utilize habitats in Texas bay systems, focusing primarily in Aransas Bay and the lower 

Laguna Madre (Fig. 1).  Turtles were captured by entanglement netting in the lower 

Laguna Madre at two locations adjacent to Port Isabel (Fig. 2a), the Mexiquita Flats area 

(26° 03.347' N, 97° 11.178' W) near the Brownsville Ship Channel and Laguna Atascosa 

Wildlife Refuge (26° 10.283' N, 97° 17.197' W).  Similar capture efforts in Aransas Bay 

occurred primarily in the East Flats section of the bay (27° 48.751' N, 97° 7.789' W; Fig. 

2b). 

Entanglement netting operations followed protocol developed by Landry et al. 

(1999) to successfully capture 981 turtles from Texas and Louisiana coastal waters 

(Andre Landry, personal communication).  Capture operations for green turtles sampled 

during the study reported herein took place during April through October of 2007–2009. 

All green turtles taken in entanglement nets and a subset consisting of live 

stranded conspecifics captured and rehabilitated by staff of the Animal Rehabilitation 

Keep (ARK), located at the University of Texas Marine Science Institute in Port 

Aransas, were subject to measurement, tagging, and biopsy operations.  The latter group 

consisted of green turtles either stranded in Sargassum mats or captured by recreational 

fishermen, and that spent only a short time in rehabilitation.  Morphometric data 
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including straight and curved carapace length and width were taken.  All sea turtles were 

tagged with an inconel tag on the trailing edge of each front flipper and a Passive 

Integrated Transponder (PIT) tag inserted subcutaneously into the dorsal musculature of 

one front flipper. 

Biopsy Sampling Protocol.  Tissue samples for SIA were taken from the 

carapace of each turtle.  The carapace, the hard keratinized tissue of the “shell”, was 

sampled at the 2nd lateral scute, with an anterior sample taken near the inner edge of the 

scute and a posterior sample taken near the outer edge of the scute (Fig. 3).  This 

protocol yielded a total of two samples per turtle.  All samples were collected with a 

sterile, 6 mm biopsy punch.  Samples were preserved in a 70% ethanol solution and held 

for subsequent analysis. 

Samples of seagrass and algae from each study area were opportunistically 

collected for SIA, in order to provide a carbon and nitrogen baseline for the diet of the 

sampled turtles.  Seagrass and algae samples were frozen for subsequent SIA. 

Sample Preparation and Analysis.  Scute, seagrass, and algae samples were 

cleaned with alcohol and rinsed with deionized water, before being dried in an oven at 

60°C for 24 hrs.  Seagrass and algae samples were diced prior to lipid extraction.  Scute 

samples were left intact as it was necessary that the samples remain whole for micro-

sampling, post-lipid extraction.  Lipid extraction took place in a Dionex Accelerated 

Solvent Extractor (ASE), using petroleum ether as solvent. 

Following lipid extraction, seagrass and algae were ground and homogenized 

using a ceramic mortar and pestle.  A carbide end mill was used to microsample scute 
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tissues.  To accomplish this, posterior scute samples were glued to microscope slides 

with dorsal sides up, representing the oldest retained tissue on the scute.  Conversely, 

anterior scute samples were glued to microscope slides with ventral sides up to allow 

sampling of the most recently synthesized tissues.  A carbide end mill was used to 

remove successive 50 micron layers of each scute (Fig. 3), beginning with either the 

oldest retained tissue from the posterior scute sample or the most recent tissue from the 

anterior scute sample; thus, each scute layer represents particular stages in the life 

history of each turtle.  The 50 micron microsampling size was the minimum size needed 

to generate enough sample for SIA and has no known biological significance at this 

time.  Approximately 600 micrograms of each scute layer were loaded into precleaned 

tin capsules for SIA; approximately 1000 micrograms of each seagrass and algae sample 

were loaded in a similar fashion. 

Stable isotope analysis was conducted by Jason Curtis at the University of 

Florida’s Stable Isotope Lab, Department of Geology, Gainesville, FL.  All tissue and 

forage samples were combusted in a COSTECH ECS 4010 elemental analyzer interfaced 

via a Finnigan-MAT Conflow III device (Finnigan MAT, Breman, Germany) to a 

Finnigan-MAT DeltaPlus XL (Breman, Germany) isotope ratio mass spectrometer.  

Stable isotope signatures were expressed in standard delta (δ) notation, where: 

δ = [(Rsample/Rstandard) – 1] [1000]. 

Rsample/Rstandard refers to the ratio of heavy to light isotopes (13C/12C and 15N/14N) in the 

sample and standard, respectively.  The standard for 13C is the Vienna Pee Dee 
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Belemnite (VPDB) limestone formation.  The standard for 15N is atmospheric N2.  All 

isotopic signatures are expressed in parts per thousand. 

Statistical Analyses.  Mean values of δ13C were plotted against mean values of 

δ
15N for each size class (< 35, 35 – 45, and > 45 cm SCL), and a one-way analysis of 

variance (ANOVA) was used to determine if significant differences occurred between 

the newest tissues of the three size classes.  If significant differences did occur, Tukey’s 

Honestly Significant Difference (HSD) was used to compare those differences.  

Comparisons between the two study sites were also made using a one-way ANOVA.  

Individual δ13C and δ15N profiles were created for each turtle from oldest dorsal layer to 

newest ventral layer and for each size class.  Wilcoxon rank-sum tests were run to detect 

significant differences between signatures of older and newer tissues. All statistical 

analyses used an alpha value of 0.05. By applying appropriate discrimination factors to 

isotopic signatures of forage materials, carbon and nitrogen signatures of scute tissues 

were used to interpret turtle diets. 
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CHAPTER III 

RESULTS 

 

Capture Data.  In total, 44 green turtles, acquired as directed captures in Port 

Isabel (n = 33, Fig. 4a) and Port Aransas (n = 6, Fig. 4b) and incidental live strandings 

from ARK (n = 5) in Port Aransas, were analyzed for stable isotopes of C and N (Table 

1).  Turtles from the ARK were live stranded turtles found during cold-stunning events 

or exhibiting recent trauma at various locations along the Texas coast between Laguna 

Madre and Matagorda Bay (Fig. 5); no obviously diseased or ill turtles were biopsied. 

Size Composition.  Turtles captured in the Port Aransas study site ranged from 

24.9 to 57.5 cm SCL and averaged 40.8 cm SCL ± 9.0 SD.  Those netted near Port Isabel 

ranged between 27.4 and 61.5 cm SCL while averaging 39.0 cm SCL ± 6.8 SD.  The 

majority of turtles from the ARK were found stranded in and around the Corpus 

Christi/Aransas Bay system, thus they were included in the Port Aransas data set.  These 

conspecifics ranged from 22 to 48.8 cm SCL and averaged 31.6 cm SCL ± 7.8 SD. 

Based on in-water survey and capture data from previous studies in South Texas 

(Landry and Metz, unpublished data), turtles were separated into three size classes for 

analysis: < 35, 35 – 45, and > 45 cm SCL.  See Table 2 for mean straight carapace length 

of each size class.  Turtles 35 – 45 cm SCL were the most abundant at Port Isabel, 

accounting for 56% of the total catch (Fig. 6).  Turtles > 45 cm SCL, in comprising only 

11% of all captures, were the least abundant (Fig. 6).  Turtles < 35 cm SCL accounted 

for the remaining 33% of Port Isabel captures (Fig. 6).  In Port Aransas/ARK, turtles < 
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35cm SCL were the most abundant, accounting for 50% of the total (Fig. 6).  Turtles 35 

– 45 cm SCL comprised 30% of the catch (Fig. 6).  Turtles > 45 cm SCL were the least 

abundant, accounting for 20% of the turtles biopsied (Fig. 6). 

 

Stable Isotope Analyses.  Primary Producers.  Mean isotopic signatures for 

potential forage material from Port Isabel ranged from -9.79‰ ± 0.26 SD δ13C and 

5.39‰ ± 0.11 SD δ15N in Halodule wrightii to -5.25‰ ± 0.19 SD δ13C and 4.64‰ ± 

0.09 SD δ15N in Syringodium filiforme.  Thalassia testudinum had mid values of -9.34‰ 

± 0.03 SD δ13C and 5.26‰ ± 0.05 δ15N.  Two species of algae were sampled: Gelidium, 

which had a δ13C signature of -18.85‰ ± 0.10 SD and a δ15N signature of 7.84‰ ± 0.07 

SD, and Ulva, which had a δ13C signatures of -19.01‰ ± 0.10 SD and a δ15N signature 

of 7.22‰ ± 0.24 SD.  Sargassum values (-17‰ to -16‰ δ13C, 2.5‰ to 2.8‰ δ15N) 

representing potential prey items for pelagic stage turtles have been modified from 

Rooker et al. (2006) and included in Fig. 7a 

In Port Aransas, Ruppia maritima had the most depleted δ15N signature, 1.17‰ 

± 0.14 SD, and a δ13C signature of -11.03‰ ± 0.11 SD.  H. wrightii had the most 

enriched δ15N signature, 7.20‰ ± 0.18 SD, and the most depleted δ13C signature, -

5.20‰ ± 0.08 SD.  S. filliforme had a δ13C signature of -10.82‰ ± 0.14 SD and a δ15N 

signature of 6.32‰ ± 0.23 SD.  T. testudinum had a δ13C signature of -12.03‰ ± 0.16 

SD and a δ15N signature of 5.59‰ ± 0.11 SD.  Of the algae sampled, Ulva was enriched 

in δ13C and depleted in δ15N compared to Gelidium (-17.08‰ ± 0.03 SD δ13C and 
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8.52‰ ± 0.12 SD δ15N for Ulva versus -20.39‰ ± 0.17 SD δ13C and 10.07‰ ± 0.11 

SD δ15N for Gelidium).  See Fig. 7b for these values.    

Regional Differences.  No significant difference was detected between 

signatures of δ13C and δ15N in the newest scute tissues of turtles < 35 cm SCL from Port 

Aransas and Port Isabel ([p = 0.069 (δ13C), p = 0.733 (δ15N), n = 15, α = .05] Fig. 8).  A 

similar comparison between turtles 35 – 45 cm SCL from Port Aransas and Port Isabel 

yielded significant difference in signatures of both δ13C and δ15N ([p = 0.000 (δ13C), p = 

0.000 (δ15N), n = 23] Fig. 8).  The newest tissues of turtles > 45 cm SCL from Port 

Aransas and Port Isabel were significantly different in signatures of δ13C (p = 0.007, n = 

6), but this was not the case for δ15N signatures ([p = 0.786, n = 6] Fig. 8). 

Port Isabel.  Mean signatures of δ13C in scute tissues ranged from -14.58‰ ± 

3.61 SD for turtles < 35 cm SCL to -8.50‰ ± 0.64 SD for turtles > 45 cm SCL.  The 

mean δ13C signature for turtles 35 – 45 cm SCL was -10.62‰ ± 2.21 SD.  The lowest 

mean δ15N signature, 8.02‰ ± 1.34 SD, was for turtles 35 – 45 cm SCL, while turtles < 

35 cm SCL had the highest mean, 9.71‰ ± 1.29 SD.  Turtles > 45 cm SCL had the mid 

value, with a mean δ15N signature of 8.55‰ ± 0.63 SD. 

Signatures of δ13C and δ15N in the newest scute tissues were significantly 

different ([p = 0.000 and p = 0.003 for δ13C and δ15N, respectively, n = 33, α = .05] Fig. 

9) across the three size classes.  Tukey’s HSD analysis revealed that significant 

differences existed between the δ13C signature of the newest tissues of turtles < 35 cm 

SCL and those turtles 35 – 45 cm SCL and > 45 cm SCL (p = 0.001, n = 30, and p = 

0.003, n = 13, respectively) and that significant differences existed between the δ15N 
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signatures of the newest tissues of turtles < 35 cm SCL and turtles 45 – 45 cm SCL (p = 

0.002, n = 30).  

Stable carbon and nitrogen isotopic profiles for turtles < 35 cm SCL, 35 – 45 cm 

SCL, and > 45 cm SCL, respectively, are shown in Figures 11–13.  Neither δ13C (p = 

0.178, n = 33) or δ15N (p = 0.383, n = 33) were significantly different between the oldest 

and newest tissues sampled for any size class  

Port Aransas.  Turtles < 35 cm SCL had the lowest mean δ13C signature, -

18.28‰ ± 0.98 SD, followed by turtles 35 – 45 cm SCL (-16.86‰ ± 2.91 SD).  Turtles 

35 – 45 cm SCL had the highest mean δ15N signature, 11.12‰ ± 2.76 SD, while the mid 

value, 10.36‰ ± 2.25 was for turtles < 35 cm SCL.  Turtles > 45 cm SCL had the 

highest mean δ13C signature, -13.23‰ ± 2.65 SD, and the lowest mean δ15N signature, 

9.66‰ ± 2.37 SD. 

Signatures of δ13C and δ15N in the newest scute tissues were significantly 

different ([p = 0.000 and p = 0.025 for δ13C and δ15N, respectively, n = 11, α = .05] Fig. 

10) across the three size classes.  Tukey’s HSD analysis revealed that significant 

differences existed between the δ13C signatures of the newest tissues of turtles < 35 cm 

SCL and turtles 35 – 45 cm SCL versus those of turtles > 45 cm SCL ([p = 0.000, n = 8 

for turtles < 35 cm SCL/35 – 45 cm SCL comparison], [p = 0.000, n = 6 for turtles 35 – 

45 cm SCL/> 45 cm SCL comparison]).  δ15N signatures of the newest tissues were 

significantly different between  turtles 35 – 45 cm SCL and turtles > 45 cm SCL (p = 

0.026, n = 6). 
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 Stable carbon and nitrogen isotopic profiles for turtles < 35 cm SCL, 35 – 45 cm 

SCL, and > 45 cm SCL, respectively, are shown in Figures 11–13.  Signatures of δ13C 

between older and newer tissues were not significantly different for any size class (p = 

0.606, n = 11).  A similar result was found for signatures of δ15N between older and 

newer tissues (p = 0.519, n = 11). 
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CHAPTER IV 

DISCUSSION 

 

 Signatures of δ13C and δ15N in newest scute tissues were significantly different 

among the three size classes of green turtles foraging in both Port Isabel and Port 

Aransas study sites.  In Port Isabel, isotopic signatures indicate that green turtles < 35 cm 

SCL forage primarily on algae, whereas the carbon and nitrogen signatures of turtles 35 

– 45 cm SCL and > 45 cm SCL indicate that these turtles forage primarily on seagrass 

(Fig. 9).  Tukey’s analyses validate these conclusions; when mean signatures of scute 

tissues were compared between the size classes, significant differences were found in the 

isotopic signatures between turtles < 35 cm SCL versus turtles 35 – 45 cm SCL and 

turtles > 45 cm SCL, but no significant differences were found between turtles 35 – 45 

cm SCL and turtles > 45 cm SCL.  Based on the conclusions derived from the mean 

isotopic signatures, differences were expected between turtles < 35 cm SCL versus 

turtles 35 – 45 cm SCL and turtles > 45 cm SCL, since turtles < 35 cm SCL had isotopic 

signatures indicating algae-foraging, while signatures from turtles 35 – 45 cm SCL and 

turtles > 45 cm SCL indicated seagrass-foraging. 

 Mean isotopic scute signatures indicate that turtles < 35 cm SCL in Port Aransas 

forage primarily on algae (Fig. 10) and turtles > 45 cm SCL forage primarily on seagrass 

(Fig. 10). These results are similar to those for Port Isabel.  In contrast to Port Isabel, 

however, mean isotopic scute values for turtles 35 – 45 cm SCL indicate that turtles of 

this size in Port Aransas are foraging primarily on algae (Fig. 10).  Tukey’s analyses 
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reinforce these conclusions; when means were compared between the size classes, no 

significant differences were found in the isotopic signatures between turtles < 35 cm 

SCL and turtles 35 – 45 cm SCL, but significant differences did occur between turtles < 

35 cm SCL and turtles 35 – 45 cm SCL versus turtles > 45 cm SCL.  Turtles < 35 cm 

SCL and turtles 35 – 45 cm SCL had signatures that indicated algae-foraging, versus 

turtles > 45 cm SCL, whose signatures implied seagrass-foraging. 

These conclusions regarding diet were realized by applying appropriate 

discrimination factors to scute tissue signatures and then comparing those values to 

signatures of potential forage material.  In this instance, discrimination factors of 

+0.17‰ and +2.92‰ for δ13C and δ15N, respectively, the high end of the range reported 

by Seminoff et al. (2006), were used.  Isotopic signatures from the turtles fall within the 

range dictated by application of these discrimination factors to seagrass and algae 

signatures reported herein. 

 Isotopic values of algae and seagrass from Port Isabel and Port Aransas are 

similar to those from previous studies that have examined isotopic signatures in marine 

algae (France 1995, Rogers 2003, Wang and Yeh 2003) and seagrass (Benedict et al. 

1980, Anderson and Fourqurean 2003, Berlinger and Butler 2006).  In general, seagrass 

is enriched in δ13C and depleted in δ15N in comparison to that of algae (Fig. 13). 

Similar trends in green turtle foraging strategies are seen between Port Isabel and 

Port Aransas (Fig. 8).  Isotopic signatures of scute tissues of turtles from Port Aransas 

are, on the whole, more depleted in δ13C and enriched in δ15N, but this may be an effect 

of sampling effort.  Most of the turtles from Port Aransas were found stranded live along 
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beaches and jetties of the Corpus Christ/Aransas bay system, where algae is abundant, or 

in sargassum mats; as such, they are, on average, smaller than their counterparts from 

Port Isabel that were captured in the seagrass beds.  Because of the differences in size, 

the variation in isotopic signatures was expected.  Also, isotopic signatures of potential 

forage in Port Aransas were more depleted in δ13C and enriched in δ15N than those from 

Port Isabel.  For example, δ13C for algae from the genus Gelidium from Port Isabel was -

18.85‰ ± 0.07 SD, while δ13C for the same species from Port Aransas was -20.39‰ ± 

0.17 SD.  Syringodium filiforme (manatee grass) had a δ15N signature of 4.64‰ ± 0.19 

SD in Port Isabel, but a δ15N signature of 6.32‰ ± 0.23 SD in Port Aransas.  Disparity 

in isotopic signatures of forage materials between sites establishes a different isotopic 

landscape for each site.  Turtles from Port Aransas were foraging on algae and seagrass 

with more depleted δ13C and more enriched δ15N signatures than their counterparts from 

Port Isabel; thus, isotopic signatures from the turtles follow the same pattern as their 

forage materials. 

When mean signatures of the newest scute tissues were compared between each 

size class in both sites, no significant differences occurred in either the carbon or 

nitrogen isotopic values of turtles < 35 cm SCL.  δ13C and δ15N indicated that turtles of 

this size in both Port Isabel and Port Aransas are foraging primarily on jetty algae and 

not in Sargassum mats common to both areas.  Although similar δ13C signatures are seen 

between Sargassum (-17‰ to -16‰, Rooker et al. 2006) and values of jetty algae 

herein (-20.39‰ to -17.08‰), δ15N signatures of Sargassum (2.5‰ to 2.8‰, Rooker et 

al. 2006) place this potential forage source outside the boundaries described by applying 
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appropriate discrimination factors to isotopic signatures reported herein for green turtles 

(8.02‰ to 11.12‰).  Observational evidence has identified the algae-laden jetties that 

protect the navigational channels in South Texas as habitat for small post-pelagic 

juveniles (Coyne 1994, Shaver 1994, Renaud et al. 1995).  The results of this study 

support not only the use of jetties as green turtle habitat, but also that constituents are 

definitively foraging on algae at the jetties for a minimum of 2 –3 years, as demonstrated 

by successive layers of scute possessing signatures indicative of algae and based on 

growth rates for immature green turtles (Bjorndal et al. 2000). 

Although the isotopic signatures among the smallest turtles were not significantly 

different between the two study sites, significant differences did occur between the mean 

δ
13C and δ15N signatures of turtles 35 – 45 cm SCL between the two sampling sites.  

δ
13C and δ15N signatures of turtles from Port Isabel indicated that turtles of 35 – 45 cm 

SCL are foraging primarily on seagrass, but δ13C and δ15N signatures of turtles from Port 

Aransas indicated that turtles of this size are foraging primarily on algae.  It is possible 

that the three turtles from Port Aransas recruited to the seagrass beds at a larger size 

within the 35 – 45 cm SCL range and have not yet had time to incorporate the seagrass 

isotopic signature, or that turtles of this size in Port Aransas may be incidentally 

ingesting epiphytic algae or invertebrates at a higher rate than did their counterparts from 

Port Isabel.  However, these results are more likely an effect of sampling limitation.  Of 

the three turtles sampled in this size class, two were captured from the seagrass beds and 

one was a live stranded animal retrieved by ARK from the South Jetty.  Microsampling 

of scutes from this size class was also restricted to only 2 or 3 layers per scute.  The 
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inadequacy of the sample size for Port Aransas advocates caution in accepting 

conclusions based on the data herein.  Turtles 35 – 45 cm SCL from Port Isabel, which 

had a much larger sample size (n = 20) captured from the seagrass beds, follows the 

more probable trend. 

As for turtles > 45 cm SCL, significant differences occurred between the δ13C 

signatures, but did not occur between the δ15N signatures.  Results for this size class 

indicated that larger turtles in both Port Isabel and Port Aransas are foraging primarily 

on seagrass.  This inference is supported by the fact that all turtles from both sites in this 

size class were captured from seagrass beds. 

The changes in isotopic composition between the size classes indicate distinct 

shifts in diet, similar to that found by Reich et al. (2007) and by Arthur et al. (2008) in 

green turtles in the Bahamas and Queensland, Australia, respectively.  Developmental 

migrations for juvenile sea turtles are not a new idea (Carr 1952).  In the Bahamas, 

Bjorndal and Bolten (1996) described juvenile green turtles recruiting to adjacent 

developmental habitat prior to recruitment in seagrass beds for continued growth, as has 

Redfoot (1997) in Trident Basin, FL.  Limpus et al. (2005) found that green turtles in 

Shoalwater Bay, Australia were segregated by size-class within the bay, with smaller 

turtles occupying shallower waters around mangroves and rocky intertidal zones, while 

the larger turtles utilized deeper waters over the seagrass beds.  The results from Limpus 

et al. (2005) were based on capture data and do not indicate differences in foraging 

strategy, unlike the conclusions from this study based on SIA.  Arthur et al. (2008) used 

SIA to conclude that turtles in Moreton Bay were separating via size class, when smaller 
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juvenile turtles had more depleted δ13C signatures than did larger adult turtles.  This is 

indicative of changes in foraging strategy from algal to seagrass-based diets.  Based on 

the isotopic data collected for this study, green turtles in Port Isabel and Port Aransas are 

segregating on a size class basis. 

 Although I hypothesized that isotopic signatures between older and more 

recently laid-down scute tissues would be different, no significant differences were 

detected in signatures of δ13C and δ15N from all size classes of green turtles captured at 

both study sites.  This may be due to the sampling protocol used in this study that 

required two biopsies of the 2nd lateral scute, with an anterior sample taken near the 

inner edge of the scute and a posterior sample taken near the outer edge of the scute.  

However, the oldest retained tissue on a turtle’s carapace occurs along the posterior 

margin of the inner edge of the second lateral scute—not along the outer edge that was 

sampled (Fig. 3).  Conversely, the most recently laid-down tissue on a turtle’s carapace 

occurs along the anterior margin of the outer edge of the second lateral scute—not the 

inner edge that was sampled (Fig. 3).  Failure of the sampling protocol used in the 

present study to capture oldest and most recent tissues may mean that these tissues aren’t 

representative of the same amount of life history that other studies have yielded.  Reich 

et al. (2007), by using a protocol that examines a longer period of green turtle life 

history, were able to determine that significant differences in carbon and nitrogen 

isotopes occurred between oldest and newest scute tissues of recent recruits to their 

study site in the Bahamas, indicating a shift from omnivory in the pelagic habitat to 

herbivory in neritic habitat . 
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 The shorter timescale of scute data presented herein explains the parity between 

isotopic signatures from oldest and newest tissues.  Data from scutes sampled by the 

present study suggest that smaller turtles (< 35 cm SCL in Port Isabel and < 45 cm SCL 

in Port Aransas) have already lost the oceanic signature documented by Reich et al 

(2007), but the algae signature from the jetty habitat remains in their tissues.  

Conversely, the more limited scale of time represented by scute tissues herein 

necessitates that the larger turtles (> 45 cm SCL in both sites) have lost the algae 

signature and retain only the signature representing seagrass. 

Individual isotopic profiles of turtles from Port Isabel and Port Aransas study 

areas (Figs. 11–13) support the conclusion that green turtles in Texas bays undergo an 

ontogenetic shift in diet and habitat use from algae-laden jetties to seagrass beds.  Turtles 

< 35 cm SCL have carbon and nitrogen signatures that indicate algal foraging, with 

depleted δ13C signatures (Fig. 11a) and enriched δ15N signatures (Fig. 11b).  Although 

the differences between older and younger scute tissues were not significant in this class, 

the overall trend for the profiles over time is toward enriched δ13C signatures (Fig. 11a) 

and depleted δ15N signatures (Fig. 11b), which indicates that an ontogenetic shift from 

algae foraging to seagrass foraging is occurring. 

A similar trend is seen in individual profiles for turtles 35 – 45 cm SCL from 

Port Isabel.  Overall, results for this size class indicate seagrass foraging.  However, two 

turtles, PI07-7-9w and PI08-8-17w, show depleted carbon (Fig. 12a) and enriched 

nitrogen (Fig. 12b) signatures in their older tissues, indicative of algae foraging, and 

enriched carbon (Fig. 12a) and depleted nitrogen (Fig. 12b) in their younger scute 
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tissues, indicative of seagrass foraging.  This shift from depleted to enriched carbon and 

enriched to depleted nitrogen signatures is similar to that reported by Reich et al. (2007) 

and Arthur et al. 2008 in green turtles in the Bahamas and Australia, respectively.  Both 

studies documented an upward shift in carbon signatures and a downward shift in 

nitrogen signatures that were indicative of ontogenetic shifts in individual turtle profiles 

(Reich et al. 2007) and among size classes (Arthur et al. 2008). 

Individual profiles of green turtles from Port Aransas sites (Fig. 12) support the 

conclusions that constituents are foraging primarily on algae.  Unlike the individual 

profiles from green turtles near Port Isabel, no shifts in diet were seen.  This result is 

likely due to failures in the sampling protocol in terms of limited sample size, 

diminished microsampling of scute layers, and shorter timescale due to choice of scute 

sampling locations. 

 Individual profiles for turtles > 45 cm SCL captured in Port Isabel and Port 

Aransas study sites (Fig. 13) indicate these turtles forage primarily on seagrass and do 

not exhibit dietary shifts.  Landry and Metz (unpublished data) have determined that 40 

cm SCL is the modal size at which green turtles recruit to seagrass beds from the jetty, a 

trend isotopic data from this study confirm.  Based on trajectories from satellite tag data 

(Landry and Metz, unpublished data), green turtles of the lower Laguna Madre possess 

strong fidelity to the Laguna Madre as a foraging site, only migrating to laguna systems 

in Mexico to escape colder waters during winter.  The lack of change in isotopic 

signatures suggests these turtles have been foraging in seagrass beds, in the lower 
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Laguna Madre or Mexico, for a minimum 3 – 4 years (Bjorndal et al. 2000) and have 

lost the algae signature seen in smaller counterparts. 

Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and 

Halodule wrightii (shoal grass) comprised the majority of seagrass randomly sampled 

from Port Isabel and Port Aransas study areas.  Some Ruppia maritima (widgeon grass) 

was also found, only in Port Aransas.  Although H. wrightii accounts for 46% of the 

seagrass cover in the lower Laguna Madre, it occurs mainly in fringes along the 

shorelines of Padre Island and adjacent mainland (Onuf 2002).  The two study sites near 

Port Isabel, Mexiquita Flats and Laguna Atascosa, are dominated by T. testudinum (Onuf 

2002).  T. testudinum and H. wrightii are also the dominant species in the Aransas Bay 

system (Kopecky and Dunton 2006).  Green turtles have not shown a species-wide 

preference for any seagrass species.  Instead, turtle preferences seem to be site specific 

and may be a function of seagrass abundance (Ferriera 1968) or selective choice by the 

turtles (Balzas 1980).  In southern Florida and the Caribbean, turtles forage mostly on T. 

testudinum (Bjorndal 1980, Ogden et al. 1983), while in Mosquito Lagoon in northern 

Florida, turtles foraged mostly on S. fileforme (Mendonca 1983).  Based on gut content 

analyses, Coyne (1994) concluded that green turtles in the lower Laguna Madre foraged 

primarily on H. wrightii, but the full diet composition of green turtles in Port Isabel and 

Port Aransas is unknown at this time.  Also unknown is whether the composition of the 

diet is based on selective choice or density of seagrass species.  Detailed percent 

composition studies of seagrass beds and isotopic mixed model analyses incorporating as 



 27

much potential prey sources and forage materials are required to further elucidate green 

turtle dietary components. 
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CHAPTER V 

CONCLUSION 

 

 In conclusion, stable carbon and nitrogen isotopic values from this study provide 

definitive evidence that the Texas green turtle population goes through a multistage 

ontogenetic shift.  Post-pelagic juveniles first recruit to jetty habitat appear to forage 

primarily on algae, before subsequently shifting to seagrass beds, once they have 

attained 35 – 45 cm SCL, a minimum of 2 – 3 years.  Once in the seagrass beds, green 

turtle diet is predominantly composed of seagrass.  This is the first multistage 

ontogenetic shift documented for green turtles in the northern hemisphere. 

This study is only the first step in utilizing SIA to gain comprehensive 

knowledge of the ecology of green turtles in south Texas.  Subsequent studies should 

incorporate as much potential prey items and forage material as possible into mixed 

model analyses, including invertebrates found along jetties and in seagrass beds, as well 

as any epibionts found on seagrass blades.  While these mixed model analyses could 

reveal important components of green turtle diet, there is still some uncertainty in their 

application to the study of herbivorous animals.  Thus far, mixed models have been run 

primarily on carnivorous animals that lack the special adaptations herbivores possess to 

digest plant material, such as microflora in the hindgut.  A controlled feeding study of 

captive green turtles should first be implemented to evaluate the efficacy of isotopic 

mixed models to the study of green turtle diet.  Ensuing studies should focus on the 

smallest size class turtles, particularly those found along the jetties, and use scute tissues 
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with a longer history of dietary data, to track ontogenetic shifts from the pelagic to 

coastal neritic environments. 

The long-term goal of the research herein and all future endeavors is the recovery 

of Texas green turtles.  To that end, managers need as much detailed information as 

possible about foraging ecology and habitat use in order to focus conservation efforts 

where such effort will do the most good. 
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APPENDIX A 

TABLES 

 

Table 1: Number of green turtles biopsied from Port Isabel and Port Aransas, 

Texas study sites during 2007-2009. 

Port Isabel Number of turtles 

Mexiquita Flats  

2007 10 

2008 8 

2009 11 

Laguna Atascosa  

2008 2 

2009 2 

Port Aransas  

East Flats  

2007 5 

South Jetty  

2008 1 

ARK  

2007 4 

2008 1 

 

 
 

Table 2: Mean, range, and standard deviation of straight carapace length of each 

size class of green turtles biopsied from Port Isabel and Port Aransas, Texas study 

sites. 

Port 

Isabel Frequency 

Mean SCL 

(cm) 

Min. SCL 

(cm) 

Max. SCL 

(cm) 

Std 

Dev. 

Size 1 10 32.1  27.4 34.1 2.0 

Size 2 20 40.4 36.4 44.3 3.0 

Size 3 3 53.4 46.5 61.5 7.6 

Port 
Aransas           

Size 1 5 28.1 24.9 29.5 1.9 

Size 2 3 38.2 35.0 40.8 2.9 

Size 3 3 49.7 45.4 57.5 6.8 
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APPENDIX B 

FIGURES 

 

Figure 1: Entanglement netting locations used in the in-water capture of green 

turtles along the Texas coast during 2007-2009.  
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Figure 2a: Lower Laguna Madre, Texas netting locations used for in-water capture 
of green turtles during 2007-2009. 

 

 

 

 
Figure 2b: Aransas Bay, Texas netting location used in the in-water capture of 
green turtles during 2007-2009.
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Figure 3: Green turtle carapace biopsy sampling sites with scute microsampling.  
Two sites were sampled in order to collect successive layers of scute tissue representing 

oldest retained tissue (from the posterior sampling site) and newest laid down tissue 
(from the anterior sampling site). 
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Figure 4a: Location of in-water captures of green turtles from the lower Laguna Madre, 

Texas during 2007-2009. 
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Figure 4b: Locations of in-water captures of green turtles from Texas’ Aransas Bay System 
during 2007-2008. 
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Figure 5: Stranding locations of green turtles made available for biopsy sampling by the 
Animal Rehabilitation Keep, Port Aransas, Texas, during 2007-2008. 
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Figure 6: Carapace length frequency (cm) of green turtles captured near Port Isabel and 

Port Aransas, Texas during 2007-2009.  
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Fig. 7a: Mean isotopic signatures of seagrass and algae sampled from Port Isabel, Texas. 
Sargassum value modified from Rooker et al. (2006) 
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Fig. 7b: Mean isotopic signatures of seagrass and algae sampled from Port Aransas, Texas. 
Sargassum value modified from Rooker et al. (2006) 



 47

4.00

6.00

8.00

10.00

12.00

14.00

16.00

-22.00 -20.00 -18.00 -16.00 -14.00 -12.00 -10.00 -8.00 -6.00 -4.00

δ
13

C‰

δ
1
5
N

‰

Port Aransas <35 cm SCL

Port Aransas 35-45 cm SCL

Port Aransas >45 cm SCL

Port Isabel <35 cm SCL

Port Isabel 35-45 cm SCL

Port Isabel >45 cm SCL

 
Fig. 8: Mean δ

13
C and δ

15
N values for all size classes of green turtles from Port Aransas 

and Port Isabel, Texas.  
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Figure 9: Mean δ
13

C and δ
15

N (± sd) values for newest tissues of green turtles collected 
from Port Isabel, Texas sampling sites. ● indicates turtle size class ■ indicates algae species. 

 indicates seagrass species Sargassum value modified from Rooker et al. (2006) 
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Figure 10: Mean δ

13
C and δ

15
N (± sd) values for newest tissues of green turtles collected 

from Port Aransas, Texas sampling sites. ● indicates turtle size class ■ indicates algae species. 
 indicates seagrass species. Sargassum values modified from Rooker et al. (2006) 
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Fig. 11a 

-22.00

-21.00

-20.00

-19.00

-18.00

-17.00

-16.00

-15.00

-14.00

-13.00

-12.00

-11.00

-10.00

-9.00

-8.00

-7.00

-6.00

-5.00

-4.00

1 2 3 4 5 6 7 8

Scute layers from oldest to newest

δ
1
3
C

‰

 
Fig. 11b 
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Figure 11 a, b: Stable carbon and nitrogen isotopic profiles for green turtles < 35 cm SCL 
from Port Isabel and Port Aransas, Texas. 
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Fig. 12a 
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Fig. 12b 
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Figure 12 a, b: Stable carbon and nitrogen isotopic profiles for green turtles 35 – 45 cm 

SCL from Port Isabel and Port Aransas, Texas. 
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Fig. 13a 
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Fig. 13b 
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Figure 13 a, b: Stable carbon and nitrogen isotopic profiles for green turtles > 45 cm SCL 
from Port Isabel and Port Aransas, Texas. 
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