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ABSTRACT

Space Weather Effects on Imaging Detectors in Low Earth Orbit. (August 2010)

Adam Alan Johnson, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Adonios N. Karpetis

The objective of this research is the statistical study of space weather effects on im-

age detectors in Low Earth Orbit. The Hubble Space Telescope is used as a resource

for acquiring proton affected images for statistical analysis. For the purpose of the

present work, the space weather environment will consist of cosmic as well as solar

proton particles. The proton occurrences evident in images from the Hubble Charge

Coupled Device (CCD) have been used to calculate the probability of proton events,

which is related to the local space weather particle flux. The proton particles transfer

energy to the CCD silicon, which ultimately results in measured signal that is not

originating from photon illumination. The signal due to the proton interactions is

first separated from the noise contribution and subsequently used in the determi-

nation of a pulse height probability distribution. Separation of the noise from the

proton events also leads to the measurement of proton streak lengths and orientations

along with the associated probability distributions. The directionality of the space

weather environment in Low Earth Orbit is examined using the distribution of proton

streak angles. Statistics found from the Hubble are also used as a starting point for

simulations that create synthetic proton signal images. The distributions resulting

from the Hubble CCD analysis give the probability of the: number of proton events,

which is related to the flux of the space weather protons; energy of proton events,

which allows estimates of damaging proton interactions; length of proton streaks on

the CCD, which shows the relative probability of a long traversing proton event; angle

of proton event, which indicates the directionality of the space weather environment.
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I. INTRODUCTION

A. Space weather

Our atmosphere can cause tornadoes, hurricanes, and tropical storms that can create

havoc for people and their properties. Similarly, in space there is hazardous weather

coming from the cosmos and our solar system that can damage space-borne instru-

ments as well as earth-bound electronic instruments. Lundstedt [1] referred to space

weather as “conditions on the Sun and in the solar wind, magnetosphere, ionosphere,

and thermosphere that can influence the performance and reliability of space-borne

and ground-based technological systems and can endanger human life or health.” On

April 21, 2002 the communication system on the Nozomi Mars Probe was disabled

temporarily due to a high-energy space weather event1. Space weather can also cause

malfunctions on earth. For example, in March 1989 a space weather storm caused

the magnetic field of the earth to fluctuate rapidly which resulted in the failure of the

Hydro Quebec power system2 [2]. The failure caused a blackout in the province for

nine hours.

Two of the common space weather elements that may cause malfunctions are

solar protons and cosmic protons. Solar protons are particles that are ejected from

the sun, which stream towards the earth with high velocities and energies. Most of

the particles are deflected away from our planet by the magnetic field of the earth.

The journal model is IEEE Transactions on Nuclear Science.

1Keith Cowing, “Solar Flare Shuts Down Nozomi Mars Probe’s Communication
System” available online at http://www.spaceref.com.

2“In March 1989, Quebec experienced a blackout caused by a solar storm.” avail-
able online at http://www.hydroquebec.com.
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However some are entrained by the magnetic field to create the Van Allen radiation

belts [3]. The particles that are entrained can penetrate into a satellite and interact

with an electronic circuit that could potentially shut down the entire satellite. Cosmic

protons carry even higher amounts of energy, moving at a fraction of the speed of

light, and have similar damaging effects as solar proton particles [4].

The goal of this research is to analyze space weather effects on imaging detec-

tors in Low Earth Orbit (LEO). One method for analyzing space weather effects on

detectors is by exposing an imaging sensor, like a Charge-Coupled Device (CCD), to

a proton or radiation source as shown in reference [5]. Difficulties with this approach

include the cost of imaging sensors, the availability and access to proton and radia-

tion sources, and the need to perform modeling and extrapolate the results from the

experiments conducted on earth to the space weather environment. Another means

of analysis is statistical modeling of actual space weather events as they take place in

orbit, as shown in references [6, 7]. For this method the difficulties include the need

for experimental data to validate models, the often complicated algorithms, and the

associated extensive computational time.

The main innovation of the present work is the use of images from the Hubble

Space Telescope (HST) Advanced Camera for Survey (ACS) to analyze the space

weather environment in LEO. The Advanced Camera for Survey uses three charge-

coupled devices to image the universe, and these are affected by space weather as

will be shown in the next section. The advantages of using this approach are many:

dark images, without any processing or illumination, are available; the images ac-

quired have long exposure times, which allow for many proton events; NASA provided

records, which give valuable information like position of spacecraft, date and time of

picture, and pointing information; finally, the data can be freely downloaded from

available archives, allowing us to perform our ‘experiments’ without cost.
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B. Charge coupled devices

Charge-coupled devices are imaging detectors that are used in many space instru-

ments, as well as many earth instruments. These focal plane arrays convert photons

to binary counts in three steps: converting photons into electron hole-pairs; separat-

ing the electrons from the holes; collecting and reading the electrons [8]. The first

step is completed by utilizing a semiconductor material, silicon, which will create an

electron hole-pair when a photon with high enough energy interacts with it. The

range of photon energy needed to create an electron hole-pair in silicon is 3.6eV ,

corresponding to a wavelength of 344 nm, to 1.11eV , or a wavelength of 1116 nm.

[9, 10]. If an electron hole-pair is created, the separation of the negatively charged

electrons and the positively charged holes is accomplished by applying an electric field

across the semiconductor. After an amount of time, the electrons collected by the

structure result in a charge that is transferred from pixel to pixel and finally through

the Analog to Digital (A/D) converter to storage. Shown in Figure (1) is a diagram

of a single pixel illustrating the silicon substrate, gate, and electron hole-pair.

The effect of space weather protons on CCD pixels is similar to the effect of

photons on pixels. A high energy proton traversing the device will create electron

hole-pairs by ionization or collisions [10, 11]. If the proton has a low incident angle

with respect to the CCD plane, then the proton can cross multiple pixels, creating

electron hole-pairs in each one, as illustrated in Figure (2). As with electrons created

by photons, the electrons created by protons will be collected if inside the active

region. The resulting image will have a long “streak” due to the proton passage,

and not due to any illumination by photons. A dark image from the Hubble Space

Telescope is shown in Figure (3), which includes proton streaks associated with the

interaction with the CCD.
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Fig. 1. Single pixel illustration from a back-illuminated CCD.
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Fig. 2. Proton crossing multiple pixels generating electron hole-pairs.

C. Hubble Space Telescope

Named after the famous astronomer, Edwin Hubble, the Hubble Space Telescope

(HST) is a low earth orbit telescope. Hubble is a NASA operating satellite, and as

a consequence the academic community can freely acquire data from it. Allowing

astronomers, scientists, and engineers to get data and pictures as requested. This

accessibility also means that all of the processing done on the HST images must be

described in detail, providing the acquiring party with infromation on what is filtered
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Fig. 3. Dark image from the Hubble showing proton streaks.

or changed from each raw image that is acquired. This section will give an overview

of the Hubble Space Telescope, a detailed look into the camera used for space weather

analysis, and describe how the dark images were acquired.

Since the start of operations, many generations of scientific instruments have been

onboard the Hubble. Currently six scientific instruments are present: the Wide Field

Camera 3 (WFC3); Near Infrared Camera and Multi-Object Spectrometer (NIC-
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MOS); Cosmic Origins Spectrograph (COS); Advanced Camera for Surveys (ACS);

Space Telescope Imaging Spectrograph (STIS); and the Fine Guidance Sensor (FGS)3

[12]. Figure (4) shows the HST4, while Figure (5) shows the currently installed sys-

tems.

Fig. 4. Hubble Space Telescope.

The images acquired from the Hubble archives are from the Advanced Camera for

Survey. This instrument was chosen because of the large number of dark images that

could be found in online NASA depositories. As will be shown subsequently, these

images were used to extract information about proton events. The ACS instrument

3The FGS is used as a scientific instrument, measuring brightness and position of
stars, when not guiding the telescope.

4NASA images homepage available online at http://www.nasaimages.org/
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Fig. 5. Hubble Space Telescope systems diagram [12].

has three different cameras, two of which employ CCD chips. One is the Wide Field

Camera (WFC), which has two 2048× 4096 CCD chips that are butted next to each

other, and the second is the High Resolution Camera (HRC). The HRC instrument

became inactive after a short-circuit event in 2007 and was the only instrument that

was not repaired during the STS-125 servicing mission. Even though this CCD was

only active during five years, from 2002 to 2007, numerous images exist that can be

used for space weather analysis.

The High Resolution Camera (HRC) uses a single 1024× 1024 pixel CCD array

with 21µm pixel size. The CCD is a back-illuminated unit that was produced by

Scientific Imaging Technologies (SITe) and was optimized for near-UV spectrum illu-

mination, as evidenced by its quantum efficiency, shown in Figure (6) [13, 14, 15, 16].
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Table I shows some of the parameters of the HRC charge-coupled device, which are

important to the generation of proton signal statistics.

Table I. High resolution cameras CCD properties [13, 14, 15, 16].

Imaging Array Format 1024× 1024

Pixel Size 21 µm x 21 µm

Operating Temperature −80◦C

Full Well Capacity 150, 000 e−

Depletion Depth 7 µm

Normal Dark Current 0.005 e−/s

Read Noise 4.7 e−

The dark images acquired from the Hubble Space Telescope archives, are found

on a web site called Multimission Archive at STScI (MAST5). The archives are a

component of the NASA distributed Space Science Data Services (SSDS). To search

through the archives and gain access to the MAST, a program called StarView6 was

used. StarView is a Java-written program that allows users to search the MAST

archives for data, calibration information, and proposal information. This program

was used to search for Hubble pictures that are dark images. StarView allows users

to mark data to be downloaded securely from a File Transfer Protocol (FTP) source.

The position of the Hubble above the earth, in Geocentric coordinates, was also

5MAST archive main homepage available online at http://archive.stsci.edu.
6StarView main homepage available online at http://starview.stsci.edu/html/
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Fig. 6. Measured quantum efficiency of the HCR [13].

determined. This was essential for the determination of the local space weather

conditions, and specifically the inhomogeneity and anisotropy of the proton flux.

The position of the Hubble was found from the Jet Propulsion Laboratory (JPL)

ephemeris, which utilizes a web-based program, named HORIZON7, created by the

Solar Systems Dynamics Group. This program allows high accuracy position data

to be transferred via e-mail request. The retrieved position data is the latitude and

longitude of the Hubble in a geocentric reference frame. The data was plotted, using

Google maps and LabView, in order to observe the position of the Hubble while taking

a single dark image. Figure (7) shows a screen shot from the LabView program along

with the Hubble trajectory during acquisition of one dark image.

The orbit of the Hubble puts the telescope into a high activity space weather

environment, the South Atlantic Anomaly (SAA), multiple times per day. This high

7The HORIZON main web portal program is available online at
http://ssd.jpl.nasa.gov/horizons.cgi
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Fig. 7. Hubble (H) trajectory (red) while taking one dark image, plotted onto Google

maps.

radiation area over the atmosphere of the earth is a result of the asymmetric magnetic

field of the earth [17]. The region can create problems for satellites because of the

large particle fluxes as well as the intense radiation environment that prevail. Because

of the risk for catastrophic instrument failure, caused by space weather, most satellites

will go into a safe mode while traversing the SAA, including the Advanced Camera

for Survey. The Hubble position was calculated in order to explore whether the highly

energetic region, SAA, affected the images acquired.
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II. RESULTS AND DISCUSSION

This section describes the methods of analysis and results performed on the dark

images from Hubble. Statistical methods are used to calculate: (a) probability of the

number of proton events; (b) probability of proton dark signal levels; (c) probability

of proton streak lengths; (d) probability of proton streak orientations. The most

fundamental of these probabilities is the number of proton events, which should follow

arrival statistics. The interaction of the protons with the silicon substrate generates

higher electron counts than noise from the CCD. This results in the total dark signal,

i.e. signal accumulated on the detector in the absence of any illumination, showing a

bimodal distribution from noise and proton streaks. The bimodality of the dark signal

allows for the separation of proton streaks and detector noise. Eliminating the noise

contributions allows for the measurement of proton streak lengths and orientations. In

addition, this section describes algorithms for simulations that create synthetic proton

streak images and their results. Monte Carlo techniques, utilizing the Metropolis

algorithm, are implemented to generate images with the same underlying proton

statistics as the Hubble images.

A. Probability of proton events

In many physical processes the rate of arrival events is equal to a flux8, which in

itself depends on the underlying physics of the problem. The protons penetrating

through the CCD have a flux associated with them, which is calculated by knowing

the number of proton events, CCD size, and exposure time for each image.

A Poisson distribution describes the physical process of arrival statistics when-

8The amount that flows through a unit area per unit time.
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Fig. 8. Distribution of the number of proton events, area 1024× 1024 pixels.

ever there is an average rate or flux λ [18, 19]. The Poisson is an example of a

univariate distribution, since the arrival statistics can completely be described by a

single variable, λ, which is equal to both the mean and the variance of the distribu-

tion. An example of a Poisson process is as follows: if a person stands by the side of

the road and counts cars as they go by for ten minutes, repeating the process twenty

times, the distribution of the number of cars per ten-minute period would follow a

Poisson distribution. In this example the rate of the cars would equal λ. Shown

in equation (0.1) is the Poisson function presenting dependence on one variable λ.

Similarly protons arriving at the CCD with a flux are expected to follow a Poisson

distribution.

P (x) =
λx

x!
e−λ (0.1)
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Fig. 9. Distribution of the number of proton events, area 32× 32 pixels.

Analyzing the images from Hubble confirms that proton interactions produce

higher signal levels than noise from the CCD9. The difference in signal distinguishes

protons from noise and therefore proton counting can be accomplished for each image.

As stated earlier, the number of proton events in each image should follow a Poisson

distribution. Counting each proton event of the 365 images produces Figure (8), which

does not show adequate convergence to any known distribution. Resemblances to a

Poisson are apparent, however to conclude with any confidence more data is required.

Since additional images could not be acquired and the integration time could not

change, the solution to this problem is to divide the images into smaller sub-areas.

The original image size is 1024 × 1024 pixels which is divided into smaller areas of

32× 32 pixels. Decreasing the area decreases the total number of proton counts per

area but at the same time increases the number of images and consequently statistics.

9Gaussian noise, described in depth in the next section.



14

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Longitude from Greenwich

# 
of

 p
ro

to
ns

/e
xp

 ti
m

e

Fig. 10. Number of proton events versus longitude of earth. Results from all 365

images acquired from HST.

The result is shown in Figure (9), which shows a good correlation between the proton

events and a Poisson distribution, e.g. R2 = 0.99.

Different areas over the earth have inherently different proton fluxes, with the

notable example of the South Atlantic Anomaly (SAA). The images acquired from the

Hubble archives are from three different dark image sets, taken when the Hubble is in

occultation, i.e. with the earth between the Hubble and the Sun. For this reason the

position of the Hubble was found while taking the 365 images. To study the change

in flux with respect to Hubble position, the number of proton events are calculated

at the different earth longitudes. Each images has a total number of proton events

that is counted for streak lengths greater then ten pixels long, which is subsequently

normalized by the exposure time of the camera, i.e. 1000 seconds. The average

number of proton events, greater then ten pixels long, is approximately 25. Shown

in Figure (10) is the number of proton events normalized with the exposure time of the
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Fig. 11. Number of proton events versus longitude of the earth and hemisphere.

camera versus the longitude of the earth.

Figure (10) shows that the number of proton events does not depend strongly

on longitude. Also this figure does not show any clear effect from the South Atlantic

Anomaly, which resides in the approximate range from 270◦ to 70◦. Knowing that

the SAA should have an effect, the latitude was correlated with the number of proton

events as well. Shown in Figure (11) is number of proton events south and north



16

of the equator, versus longitude. These figures show that most of the higher proton

events were in the south hemisphere, and images close the SAA are mostly in the

north hemisphere.

Since the number of images is limited to the 365 found from the archives, the

statistics of the number of proton event cannot be conditioned for the longitude and

latitude of the Hubble. However, a binary condition can be made for images inside

and outside the SAA, which assumes a high space weather region inside the anomaly

and a uniform space weather region outside. Since the Hubble shuts down while

traversing the SAA, all the images acquired are outside this region. For this reason

the images from Hubble are considered to be captured in a low, uniform space weather

environment. These results mean that the statistics can be accomplished on all 365

images for the probability of energy, length, and orientation of proton events.

0 100 200 300 400 500 600 700 800 900 1000
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(a)

(b)

(c)

Fig. 12. PDF of dark signal count logarithmic ordinate.
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B. Probability of dark signal levels

Energy deposited onto the CCD by the proton events has its own distribution of dark

signal, i.e. dark electrons. These proton generated electrons are coupled with the

electron noise from the CCD. The resulting total dark signal, recorded in each of our

images, is a combination of CCD noise and proton generated electrons.

A histogram is made from the total signal counts from twenty dark images. The

histogram data was converted into a Probability Density Function (PDF10) giving the

relative frequency of signal counts. Figure (12) shows a PDF of dark signal counts

from Hubble using an ensemble of twenty images out of the 365.

100 101 102 103

10-5

10-4

10-3

10-2

10-1

Dark signal count (e-)

PD
F

(a)

(b)

(c)

Fig. 13. PDF of dark signal count in logarithmic coordinates.

10The definition for the probability density function is PDF (x) = f(x)/
∫∞

0
f(x) dx

The function f(x) is the histogram of signal counts, which is converted into a PDF
by forcing a unit area under the function curve over the total data interval.
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Figure (12) shows a large peak at an approximate value of 10 counts, signifying

that this is the most probable value of pixel ‘intensity’ in the dark images. To further

analyze the distribution of the dark signal, the PDF is plotted in a log-log graph shown

in Figure (13). Figure (13) shows three distinct features: (a) the large peak at small

values of signal ≈ 10; (b) a second peak at approximately 50 counts; (c) an apparent

exponential decay for high values of signal. Feature (b) is due to a distinct trait that

is present in all twenty images. This trait is due to a region of 7 × 1024 pixels on

the CCD that consistently exhibit relatively high pixel counts. The relatively higher

pixel counts could be due to a CCD amplifier or a thermally hot region of the CCD

chip. Therefore this feature is considered an artifact of the CCD and not important

to this study. Figure (14) shows the artifact of the CCD, located on the left side of

the inverse image, under high contrast conditions.

Fig. 14. Inverse image from Hubble showing the CCD artifact.
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To discover the underlying distribution of the other two features, (a) and (c),

the different regions of the PDF were fitted with diverse distributions. For the small

signal values, the expected distribution is Poisson from dark current and Gaussian

from read noise. Dark current is noise generated from the silicon of the CCD, which is

caused from thermally activated electrons inside the depletion layer. This is expected

to follow a Poisson process because the rate at which the electrons are generated and

collected is constant, thus signifying arrival statistics. [8, 20]. Read noise is created

through the movement of charge between pixels, amplifier, and the Analog to Digital

converter (A/D). Figure (15) is a diagram showing the different sources of electrons

in CCD. As illustrated in the figure, the total signal acquired is a combination of

proton generated electrons (Pe−), dark current generated electrons (De−), and read

noise (Re−).

CCD

A/D

amplifier

Proton generated electrons Pe¯

Dark current De¯

Read noise Re¯

Pe¯+De¯+Re¯

Fig. 15. Diagram of electron sources collected form the CCD.

Initially the first feature (a) was fitted with a Gaussian, as shown in Figure (16).

The Gaussian fit follows the data of the PDF with a coefficient of determination
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Fig. 16. PDF of dark signal count with Gaussian fit.

R2 = 0.99. This is considered an excellent fit in most cases, however Figure (16)

shows that the Gaussian fit does not explain the other feature, namely the decay at

large signal values.

A Poisson distribution was also fitted to the small values of the PDF to determine

which is a more accurate approximation. The PDF of dark signal with the Poisson

fit is shown in Figure (17), which shows that a Poisson fit does not capture the signal

decay better then the Gaussian fit. In addition, the coefficient of determination is

lower for a Poisson than the Gaussian, e.g. R2 = 0.91, signifying that a Poisson

distribution is not a particularly good fit to the low signal levels.

The third distribution fitted to the PDF at small values was a Gamma distri-

bution, which is a two-parameter distribution related to the Poisson. These two-

parameters are λ, which is equal to the expected rate of arrivals, and α, which is

the number of arrivals in a certain waiting time. The PDF with the Gamma fit is
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Fig. 17. PDF of dark signal count with Poisson fit.

shown in Figure (18). The coefficient for the Gamma distributions is R2 = 0.95. The

Gamma fits the first feature better than the Poisson but still does not account for

the decay at large signal values. Furthermore, the Gamma distribution requires two

adjustable parameters, like the Gaussian. The latter offers a much better fit to the

low-level signal PDF.

The PDF at large values was fitted with an exponential function in the interval

200-1000, as shown in Figure (19). The coefficient of determination for the exponen-

tial fit within the interval 200 to 1000 is R2 = 0.97. This fit exhibits an excellent

correlation with the large signal values.

One single distribution was not found to explain both features (a) and (c), which

indicates the presence of different physical mechanisms for each feature. The first

feature (a) is best described by a Gaussian, which indicates that this feature is due to

the multiple noise factors, dark current, charge-transfer, amplifier(s), and Analog-to-
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Fig. 18. PDF of dark signal count with gamma fit.

Digital (A/D) converter. We can supplement the quantitative description with actual

numbers in what follows. The Gaussian feature has a mean equaling approximately

11e−, as shown in Figure (16). This mean value correlates well with the published

characteristics of the CCD, seen in Table I. For the exposure time of 1,000 seconds, we

expect the generated electrons from dark current to equal 0.005 e
−

sec
× 1, 000sec = 5e−.

This is the mean value of thermally generated dark current, and we expect a Poisson

distribution around this value to obtain. At the same time, each pixel charge is

‘suffering’ the read noise of approximately 4.7e−, on average. Hence, an average

value of 9.7e− is anticipated for the electron counts in the absence of any proton

events. This value is quite close to the measured one (11e−) and, in general, a higher

value is expected in the actual images, precisely due to the presence of the proton

events [20, 21]. The Gaussian feature has also shown up in reference [22], which

describes data from the Wide Field Camera 3 on the Hubble held at a temperature
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Fig. 19. PDF of dark signal count with exponential fit.

of −85◦C.

The large values show an excellent correlation with an exponential decay, which

is present in many literature references [5, 21, 23, 24] for different imaging arrays.

The decay is also present in recent work by Henley that uses Monte Carlo simulations

to generate dark signal from proton interactions on a CMOS chip [25]. Monte Carlo

simulations have also generated the exponential decay in references [26, 27]. The

hypothesized mechanism that creates the exponential decay is transient effects. These

effects are protons ionizing the active region of the CCD array creating electron hole-

pair, which is dependent on the Linear Energy Transfer (LET), or ionizing energy

loss (dE/dx), of the proton. The distribution from these transient effect have been

modeled in reference [7], which also resulted in an exponential distribution.

Summarizing the dark signal distribution based on the observations and the

literature: feature (a) is due to multiple noise mechanisms from the CCD that results

in a Gaussian distribution; feature (b) is a artifact of the CCD and deemed not
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important to this study; feature (c) is a exponential decay that has been explored

in other work and is due to multiple proton effects. Work attempting to construct a

two-parameter PDF, with one parameter being the dark signal counts and the other

being proton streaks lengths is ongoing. The resulting two-parameter PDF would

give further insight into the possible correlation between dark count levels and streak

lengths.

100 Dark Signal Count (e-)

PD
F

(a)

(b) (c)

103
10-5

10-1

Fig. 20. (a) Hubble image with cutoff filter and (b) the dark signal with cutoff value.
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C. Probability of proton streak lengths

The results from the dark signal analysis show that the exponential feature (c) is due

to proton interactions. An assumption that energies higher then some dark signal

value11 is employed to differentiate the proton events from noise, which is needed to

calculate streak lengths. This value, placed at transition from the artifact feature

to the exponential feature, creates objects that can be measured in the image. The

filter value was chosen because it eliminates features (a) and (b), while keeping the

proton feature (c). This differentiation binarizes the images by assigning a value of

one to proton events and a value of zero to other features, such as our CCD noise.

Figure (20) shows the dark signal with the red line indicating the approximate cutoff

value and the resulting binary image.

LabView Machine Vision software was employed to program algorithms for im-

age analysis. One of the resulting programs that was used extensively calculated

the proton streak lengths, by using the Pythagorean theorem (r2 = m2
y + n2

x), and

the number of pixels in the vertical (my) and horizontal direction (mx). The algo-

rithm calculates the length of all objects that have a numeric value of one, set after

binarization.

The length of each proton streak from the 365 images is used to create a proba-

bility density function (PDF) for streak lengths, which is shown in blue in Figure (21).

This PDF is analyzed to determine the analytical form of the distribution. A non-

linear least squares method is used to fit the Hubble data to a power law, with the

form PDF (L) = ξ1L
ξ2 , and solve for the constants, ξ1 = 8.01 and ξ2 = −3.56.

PDF (L) = ξ1L
ξ2 = 8.01× L−3.56 (0.2)

11This value is approximately 70 signal counts above the minimum count value.
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The power law fit is applied to streak lengths in the interval of ten to one hun-

dred pixels. This interval is chosen because the smaller lengths, below ten pixels,

have a higher susceptibility to the Gaussian noise. The interval stops at streaks of

one hundred pixels because the data becomes unreliable due to low number of sam-

ples. The fitted power law is also plotted in red on Figure (21). The coefficient of

determination within the interval is equal to R2 = 0.99. Figure (21) is plotted in

logarithmic coordinates, with confidence bounds at 95%.
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Fig. 21. Probability density function of streak lengths with power law fit.

The Gaussian noise from the CCD can not be completely rejected using a sim-

ple subtractive cutoff filter. Therefore, the possibility exists that noise affects the

fitted power law exponent. Different cutoff filters were implemented to examine the

sensitivity of the exponent to the cutoff filter. Shown in Figure (22) is the PDF of

proton streak lengths for different signal cutoffs. The slopes of each line and their
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95% confidence intervals are shown in Table (II). The table shows that a value of

−3.56 is inside all but one of the confidence intervals. As shown in Table (II), even a

substantial variation of the cutoff signal values does not lead to significant variation

of the power law fit exponent. In what follows, a value of −3.56, the median of all

the slope values, will be considered representative of the power law slope, and the

corresponding value of cutoff filter, 70, will be sufficient to separate proton streak

occurrences from noise on the CCD.
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Fig. 22. Proton streak lengths with different cutoff filters.
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Table II. Streak length power law slope for different cutoff filters.

Cutoff filter value Slope 95% Confidence intervals for slope

60 -3.77 (-3.52, -4.02)

70 -3.56 (-3.46, -3.66)

90 -3.42 (-3.36, -3.47)

100 -3.57 (-3.34, -3.80)

180 -3.49 (-3.32, -3.66)
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D. Probability of proton streak orientation

The orientations of the proton streaks are analyzed to determine if there is proton flux

anisotropy, i.e. if there is directional dependence in our data. Reference [28] shows

that flux anisotropy exists in the South Atlantic Anomaly (SAA) region of the Hubble

orbit. However the images acquired from the Hubble are captured throughout its orbit

and outside the SAA. The regions outside the SAA have an isotropic flux, which leads

to the expected orientation distribution to exhibit a directionally independent result.

m

n

y

x

θ

Fig. 23. Evaluation of proton streak orientation.

As shown in Figure (23), the orientation of each proton streak is measured from

the horizontal axis of the image plane. The resulting orientation angle is calculated

as arctan(my/nx) [29], where my and nx are the lengths of the proton streak in the

vertical and horizontal directions, respectively. The angle calculated is used to obtain
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the PDF of proton streak orientations, as shown in Figure (24). The results were

obtained by processing 365 images from Hubble, and considering all possible streak

lengths.
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Fig. 24. PDF of proton streak orientations from Hubble.

Figure (24) indicates that most proton angles are equal to 135◦, 116.7◦, and

153.4◦. The diagram in Figure (23) shows that the orientation of the streak is calcu-

lated by taking into account the corners of a pixel [29], which means that a single pixel

will result in a streak length of
√

2 pixel lengths. The corner location also means that

a single pixel will represent a streak angle of 135◦. Figure (25) shows the pixel event

combinations along with enumerations and all possible angles from the orientations

illustrated. The diagram exhibits that the pixel combinations of 1 × 1 and 2 × 2,

which are more probable, give rise to streak angles in the same values as the high

spikes in Figure (24). This result would indicate that the larger spikes are mostly due
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Fig. 25. Pixel combinations and corresponding orientation angle.

to smaller pixel combinations.

As already discussed in the previous sections, the dark current and read noise

contributions expected to dominate the electron counts of single pixel events. Con-

versely, single pixel events are unlikely to correspond to proton events, as this would

require proton strikes that are close to perfectly perpendicular to the CCD, and have

no energy diffusion between pixels. Therefore, we expect small pixel combinations

(e.g. 1× 1 and 2× 2) to correspond predominately to Gaussian noise and not proton

events. To differentiate between the two, the orientation PDF is calculated with three

different length cutoffs: (a) all the orientations without any length cutoff; (b) a cutoff

equal to 3 pixel lengths; (c) a cutoff equal to 5.7 pixel lengths. The filter (b) value

was chosen so that pixel combinations of 1× 1 and 2× 2 are eliminated. In addition,
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the value for filter (c) is set to eliminate all four-pixel combinations (4×4), along with

some five-pixel combinations (5× 5). Eliminating those pixel combinations allows for

analysis of orientations from proton streak events and suppresses the possibility of

Gaussian noise contributing to the orientation PDF.

Figure (26) presents the orientation PDF with the three length cutoffs: the

cutoff value of zero, Figure (26a); the cutoff value of 3, Figure (26b); and the cutoff

value of 5.7, Figure (26c). The figure shows that as the event streak length increases

the orientation distribution tends towards symmetry around 90◦. This is the case

regardless of the type of event taking place, i.e. proton strike or noise. Since CCD

noise contributes to the PDF in small pixel combinations, the longer streak events

are due to proton streaks. This reasoning leads to the conclusion that the apparent

symmetry around 90◦, shown in Figure (26c), is because the proton particles arrive

at the CCD without any directional preference. As already mentioned, such isotropy

in proton flux is expected outside of the SAA regions along the Hubble orbit.
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Fig. 26. PDF of Hubble orientations: (a) all pixel combination, (b) length cutoff filter

equal to 3, (c) length cutoff filter equal to 5.7.
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E. Proton streak simulations

This section describes Monte Carlo simulations that produced proton streak images

with the underlying probability from Hubble. The results can be used to generate

proton streak images that are not captured in space. This section also describes the

Monte Carlo method used, the Metropolis algorithm implemented, and the statistical

approach used to generate proton streak images.

The Monte Carlo method is a statistical approach that utilizes pseudorandom

sampling to generate mathematical solutions. For problems with many coupled de-

grees of freedom, it is computationally heavy to discretize and solve for the exact

solution. The Monte Carlo method can be used in those cases to map the solution by

using generated pseudorandom variables [30]. The Metropolis algorithm, developed

by Nicholas Metropolis in 1953, can be used to obtain variables from a known proba-

bility distribution [30, 31, 32]. This algorithm is used in this work to generate proton

streaks lengths following the power law distribution determined from Hubble.

One of the key tools when using the Metropolis method is drawing pseudorandom

variables from a uniform distribution. This distribution is one that is equally likely,

i.e. such as the results of an unbiassed dice. One of the distributions in Figure (27),

indicated by the diamond shape markers, is a uniform distribution for a variable λ

between one hounded and one thousand, which plainly shows that the probability of

a higher λ is equal to a smaller λ. The second distribution shown in Figure (27) is a

power law, indicated by the circle markers, which is the desired distribution obtained

from Hubble with a different exponent for purposes of visualization. The Metropolis

algorithm uses a uniform distribution and the PDF of proton lengths from Hubble to

draw a pseudorandom length from the power law distribution.
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Fig. 27. Uniform distribution between 100 and 1000, and a power law distribution

with exponent = -1.5, both are normalized to PDF.

The created simulation images are 8 bit images12 with array size of 1024× 1024

pixels, i.e. the same dimensions as the Hubble CCD. The starting location of the

proton streak is found by choosing two pseudorandom numbers, yi and xi. These

pseudorandom numbers are drawn from a uniform distribution. The image is in

a rectangular coordinate system with a single integer number for each pixel. The

image starts at (0, 0) in the bottom left corner and is limited by the size of the image

(1023, 1023). Because of the limits of the image, the pseudorandom numbers yi and

xi are bounded (yi = 0...1023, xi = 0...1023).

The angle at which the proton streak is orientated on the image is found by

choosing another pseudorandom number θi, from a uniform distribution, between

zero and 2π. The orientation of the proton streak is measured from the horizontal

x-axis.

12Minimum value of zero with a maximum value of 28 − 1 = 255.
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The Metropolis algorithm used to find the streak length starts by drawing a

pseudorandom number for the length of the proton streak, L1, between 2 and 1023.

The streak length L1 is put into the probability density function obtained from Hubble

to get a relative likelihood of the length, PDFH(L1) = C × (L1)
−3.56. Subsequently,

another pseudorandom number (L2) is chosen between 0 and PDFH(2) ≈ 0.67 from

a uniform distribution. The test to accept a streak length is L2 ≤ PDFH(L1). If the

test is true, the algorithm accepts the streak length L1. If the test is false the streak

length L1 is rejected and the algorithm returns and chooses two new pseudorandom

numbers for L1 and L2.

The block diagram for the Metropolis algorithm for proton streak generation

is shown in Figure (28). This diagram illustrates that L1 is first chosen from a

pseudorandom number at block one, then passed to the relitive liklihood of that

length in block two. Block three draws another pseudorandom number for L2, which

is passed to block four to check L2 ≤ PDFH(L1) and accepts the streak length L1

if true and rejects if false. The illustration also shows the pseudorandom numbers

chosen for the starting location on the image yi and xi, and the orientation of proton

streak θi.

Figures (29) and (30) show a Hubble image and a simulation image, which

presents good visual correlation with the Hubble image. To quantify the correla-

tion, one hundred simulation image were created, and streak length measurements

were performed to acquire the PDF of proton lengths. The input power law coeffi-

cient −3.56 was put into the Metropolis algorithm with a resulting output coefficient

equaling −3.85.

The difference between the Hubble data exponent and the simulations exponent

could be due to the algorithm having to round values of lengths based on discreet

pixels in the image. Since the difference in the coefficients is 0.29, the simulation
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Fig. 28. Metropolis algorithm for streak length L1.

can be considered an estimator for the actual sensor data. The result shows that the

Metropolis algorithm is a good method for generating simulation images with proton

streaks. This can be used in conjunction with other noise generating methods to

create good synthetic images for space sensors to use for calibration and analysis.
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Fig. 29. Hubble image.
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Fig. 30. Simulation image.
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III. CONCLUSIONS

This thesis has presented an analysis of proton effects on an imaging CCD. Dark

images with the presence of proton interactions from the Hubble Space Telescope

were used. Statistical analysis of the images allowed us to examine the effect of space

weather on a CCD. The Hubble was found to be a excellent source for dark images

with proton events.

Protons arriving and transferring energy on the CCD are shown to follow a

Poisson distribution, related to the rate at which the protons interact. This result

quantifies the average amount of interacting proton events taking place on the CCD,

while orbiting Low Earth Orbit (LEO) outside the South Atlantic Anomaly (SAA).

By knowing the average flux of protons where the Hubble orbits, the predicted number

of proton interactions with any satellite in LEO, with a similar inclination angle, can

be calculated.

Protons deposit energy when they interact with the CCD structure. This inter-

action creates signal in the form of dark electrons. Different regions of the dark signal

distribution are shown to follow a Gaussian distribution due to noise from the CCD,

and an exponential distribution due to proton interactions.

Knowing that the exponential feature in the dark signal is due to proton in-

teractions, proton streak lengths and angles can be measured in each image. The

streak length distribution is shown to follow a power law, which is not dependent

on the relative energy cutoff employed. The power law has been correlated to work

by Henley [25] in order to create a model for streak lengths, which could be used to

create noise images for any CCD with known parameters. Orientations of the proton

events are also analyzed to find whether the space weather in LEO is directionally

independent. The conclusion from this analysis is that the proton angles are isotrop-
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ically distributed with higher probability of angles due to the power law and discrete

pixels.

The statistics acquired from Hubble led to the generation of synthetic images,

which follow the underlying probability statistics from Hubble. These simulated im-

ages can be used in conjunction with other noise simulations to create synthetic

images that include all types of noise, including proton interactions, that can be used

to calibrate space bound algorithms, e.g. star trackers, telescopes, ect. Images cre-

ated on earth with noise that follows space weather in LEO could be used to lower

the uncertainty for algorithms used in space-borne instruments.
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