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ABSTRACT 

 

Synthesis, Characterization and Anion Complexation of  

Cationic Main Group Lewis Acids. (August 2010)  

Youngmin Kim, B.S., Sogang University; 

M.S., Sogang University 

Chair of Advisory Committee: Dr. François P. Gabbaï 

 

 Due to favorable Coulombic effects, cationic main group Lewis acids should be 

more Lewis acidic than their neutral counterparts. To investigate this idea, this 

dissertation has been dedicated to the synthesis, characterization and anion binding 

properties of new cationic Lewis acids for selective anion complexation. The cationic 

borane [p-(Mes2B)C6H4(PPh3)]
+ displays an enhanced anion affinity towards fluoride 

due to a combination of Coulombic and hydrophobic effects, and can be used to detect 

fluoride at levels below 4 ppm in water. A related phosphonium borane featuring a 

chromophoric dansyl amide moiety has been synthesized and used for the fluorescence 

turn on sensing of CN−. This borane is very sensitive and can be used to measure 

cyanide concentration in the 20-30 ppb range in water. 

 The bidentate borane [o-(Mes2B)C6H4(PPh2Me)]+ is selective for N3
− over F− in 

water/chloroform biphasic mixtures because of the lipophilic character of the azide 

anion, as well as its ability to interact with both the boron and phosphorus Lewis acidic 

sites of the receptor via chelation (lp(N)→σ*(P-C)). Sulfonium borane [o-



 iv 

(Mes2B)C6H4(SMe2)]
+ can detect up to 50 ppb of cyanide in water at pH 7 due to 

favorable Coulombic effects.  The sulfonium moiety interacts with the cyanide anion 

through both bonding and back-bonding interactions, thus enhancing the unusual affinity 

of [o-(Mes2B)C6H4(SMe2)]
+ towards cyanide. 

 This approach can be extended to Lewis acids containing fluorosilanes such as 

[1-Ant2FSi-2-Me2S-(C6H4)]
+ whose fluoride affinity exceeds that of neutral fluorosilanes 

by several orders of magnitude. 
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1 

CHAPTER I 

INTRODUCTION TO LEWIS ACIDS AS FLUORIDE AND/OR CYANIDE 

SENSORS 

 

1.1 Introduction 

 Water fluoridation or addition of fluoride to toothpaste has become a widespread 

practice because of the beneficial effects of this anion in dental health. However, high 

doses of this anion are dangerous and can lead to dental or skeletal fluorosis.1  In order 

to minimize the potential health risks caused by excessive intake of this anion, the 

maximum contaminant level for drinking water has been set at 4 ppm (210 µmol) by the 

Environmental Protection Agency (EPA).  The same agency however recommends that a 

concentration of 2 ppm (referred to a secondary standard) not be exceeded in drinking 

water. Designing water compatible fluoride anion receptors that are selective in this 

concentration range is challenging work due to the high hydration enthalpy (∆H° = −504 

kJ/mol) of the fluoride ion.  

 Cyanide is a toxic anion which binds to and deactivates the cytochrome c oxidase 

enzyme with sometimes fatal consequences.2 Because cyanide is widely available in 

both research and industrial settings, its use for harmful purposes or its release into the 

environment are sources of concern.3 The maximum contaminant level of cyanide anions 

in drinking water is set at 50 ppb by the European Union and 0.2 ppm by the EPA. 

____________ 
This dissertation follows the style of Journal of American Chemical Society. 
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For these reasons, the development of methods that can detect this anion in water is of 

interest. Designing water compatible cyanide anion receptors that are effective in this 

concentration range is complicated due to the competitive protonation (pKa (HCN) = 

9.3) of cyanide ions in water. 

 

1.2. Anion sensors with boron-based Lewis acids 

1.2.1. Fluoride complexation by neutral triarylboranes 

 Because of the vacant pπ-orbital of a boron center, triarylboranes act as anion 

acceptors. The anion affinity of triarylboranes largely depends on the aryl substituents 

attached to the boron center. Anion complexation increases the steric repulsion between 

the aryl groups due to the pyramidal structure formed upon complexation. As a result, 

increasing the steric bulk of the aryl substituents reduces the anion affinity of 

triarylboranes. For example, the fluoride ion affinity of Ph3B is 70 kJ/mol higher that 

that of Mes2BPh (Figure 1). 4, 5 

 

Ph B
Ar

Ar
F-

∆H F

B
Ph Ar

Ar

Ar = Ph or Mes  

Figure 1. Fluoride complexation by triarylboranes. 
 

Experimentally, Mes3B and Mes2PhB bind fluoride anions with an association constant 

of K = 3.3 × 105 M-1 and 5.0 × 106 M-1, respectively.6 Substitution a mesityl group by a 

phenyl group increases the fluoride affinity by one order of magnitude. Even though a 
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mesityl group lowers the anion affinity of triarylboranes, Mes2B fragments have been 

extensively used in anion sensors because of their water stability and their selectivity for 

small anions.7, 8   

 The neutral borane 1 featuring three 9-anthryl groups serves as a colorimetric 

sensor for fluoride.9 1 binds fluoride with an association constant K of 2.8 × 105 M-1 in 

THF, which is close to the fluoride binding constant of Mes3B. Therefore, the steric 

effects of the 9-anthryl groups are comparable with those of the mesityl groups. Because 

of the bulk of the anthryl groups, 1 is selective for F− over other anions such as Cl−, Br−, 

I−, ClO4
−, and BF4

− in THF. Despite the large fluoride binding constant of  1 in THF, 

addition of water abstracts fluoride from 1-F suggesting that the neutral borane 1 cannot 

overcome the high hydration energy of fluoride (∆H° = −504 kJ/mol). 

 

 

1

B
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 Owing to extended π-conjugation, the neutral borane 2 captures fluoride anions 

in THF/H2O (9/1, v/v) with a binding constant K of 5.0 × 103 M-1 which is larger than 

the fluoride affinity of 3 (K = 3.3 × 10 M-1).6 DFT calculations reveal that the boron 

based LUMO of 2 is delocalized on the o-carborane fragment through the π-conjugation. 

The LUMO energy (−2.10 eV) of 2 was also lower than the LUMO energy (−1.63 eV) 

of 3. These provide a rational for the observed difference in fluoride affinity.    

 

C

C B

Mes

Mes

B

Mes

Mes

F

2 3

Ph

 

 

 Therefore, in order to achieve higher anion affinities, a variety of bidentate Lewis 

acids which can support anion chelation have been investigated. For example, due to the 

rigidity and short distance between the C1 and C8 positions of the naphthalene scaffold, 

functionalizing the substituents on these carbons with Lewis acidic groups is a useful 

method in generating bidentate Lewis acids. Particularly, the ring opening reaction 

between the borate [4]− and electrophiles can afford various bidentate Lewis acids 

featuring the Mes2B fragment.10-12 For example, the fluoride affinity of 5 was measured 

to be K > 5 × 109 M-1 in THF which is much larger than the fluoride affinity of Mes2PhB 

(K = 5.0 × 106 M-1).12 The single crystal analysis of [5-F]− as a [S(NMe2)3]
+ salt also 

demonstrates that the fluoride anion is bound to both boron centers via B-F bonds of 

1.63 Å and 1.58 Å (Figure 2). 
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B BMes
Mes

5

S

B

MesMes

[4]-  

 

 

Figure 2. Crystal structure of [5-F]−. 

 

 The ring opening reaction of the borate [4]− with C6F5HgCl affords the B/Hg 

heteronuclear bidentate Lewis acid 6.13 Compound 6 captures fluoride in THF/H2O (9/1, 

v/v) with an association constant K of 2.3 × 104 M-1, which is larger than the fluoride 

affinity (K = 5.0 × 103 M-1) of the monodentate borane 2. The crystal structure of [6-F]− 

shows that fluoride is bound to both Lewis acidic atoms. The F-Hg distance of 2.589(2) 

Å is less than the sum of van der Waals radii of the two atoms. The diagnostic 199Hg 

NMR resonance is coupled with the fluorine nucleus (1
JHg-F = 135.2 Hz) and is shifted 

upfield by −69.9 ppm indicating the presence of a Hg-F interaction. The cationic borane 

[7]+ captures fluoride with an association constant K of 6.2 × 104 M-1 in THF/H2O (9/1, 
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v/v) because of favorable Coulombic effects involving the [4-(Me3N)-2,6-Me2-C6H2]
+ 

group.14 
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 To generalize the use of adjacent electrophilic groups to enhance the fluoride 

affinity of triarylboranes, the boron/hydrogen-donor group hybrid 8 was prepared.15 The 

fluoride affinity of 8 was measured to be K ≈ 108 M-1 in THF, which is larger than the 

anion affinity (K = 5 × 106 M-1) of Mes2PhB by at least one order of magnitude. This 

result reflects chelation of the fluoride anion by both the boron center and the amide 

proton of 8-F. In the 1H-NMR spectrum, the amide proton appears as a doublet (1
JH-F = 

36 Hz) at 11.43 ppm which confirms the presence of a B-F…H-N interaction. 
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1.2.2. Anion complexation by cationic triarylboranes 

 Another approach to enhance the anion affinity of triarylboranes relies on the use 

of peripheral cationic groups. The ammonium borane [9]+ captures fluoride in THF with 

a binding constant K > 108 M-1 which is also larger than the fluoride affinity of the 

neutral borane Mes2BPh by at least one order of magnitude.16 Structural and 

computational results reveal that the larger fluoride affinity of [9]
+ is due to both 

hydrogen bonding and Coulombic effects. Unlike neutral boranes, [9]
+ binds fluoride in 

water/chloroform biphasic mixtures. The favorable Coulombic effects can overcome the 

high hydration energy of the fluoride anion. 
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 The ammonium ferrocenyl boranes [10]+ and [11]+ have also been synthesized.7 

Despite the similar FeII/III redox potentials of these two derivatives (E1/2 = 367 eV for 

[10]+ and E1/2 = 314 eV for [11]+), the fluoride  affinity of [10]+ exceeds that of [11]+ by 

about 3 orders of magnitude. This difference is assigned to the formation of the B-F…H-

C interaction in 10-F. 
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 The anion binding properties of the ammonium borane [12]+ and [13]+ have also 

been investigated.17 Interestingly, while the o-isomer [12]+ only binds fluoride anions 

with an association constant K of 910(±50) M−1, the p-isomer [13]+ only captures 

cyanide anions with a binding constant K of 3.9(±0.1) × 108 M−1 in H2O/DMSO (6/4, 

v/v) solution at pH 7.  This interesting behavior has been attributed to a delicate 

interplay of steric and electrostatic effects. 
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 To further use cationic groups as a means for increasing the anion affinity of 

boranes, the fluoride binding properties of various phosphonium boranes have been 

examined.18 The phosphonium borane [14]+ captures fluoride anions in chloroform with 

an association constant K of 6.5(±0.5) × 106 M-1 which is larger than the fluoride affinity 

(K = 2.1(±0.2) × 104 M-1) of the neutral diborane 5. Due to Coulombic effects, [14]+ 

binds fluoride anions in H2O/MeOH (9/1, v/v) solution with an association constant K of 
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1000 (±100) M-1. Despite its increased Lewis acidity, this phosphonium borane 

containing two bulky mesityl groups does not bind other common anions such as Cl−, 

Br−, I−, NO3
−, and H2PO4

− in this solution. 
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Mes

Mes

[14]+  

 

 Inspired by the increased Lewis acidity of the o-isomer [12]+ compared to the p-

isomer [13]+, the o-phosphonium borane [15]+was synthesized and investigated.19 In 

order to compare the Lewis acidity of the o-isomer [15]+ with that of the p-isomer [14]+, 

an equal molar amount of [15]+ and 14-F were mixed. This competition reaction resulted 

in complete fluoride transfer from 14-F to [15]+ producing [14]+ and 15-F.  The enthalpy 

change of this reaction is −7.6 Kcal/mol suggesting that the Lewis acidity of the o-

isomer [15]+ is much stronger than that of p-isomer [14]+. From UV-vis titration data, 

the fluoride binding constant of o-isomer [15]+ (K > 106 M-1) was found to be much 

larger than that of p-isomer [14]+ (K = 400 M-1) in MeOH. To elucidate the origin of this 

strong Lewis acidity of [15]+, structural and computational analyses of 15-F were carried 

out. The fluoride anion interacts with the phosphorus atom via a F-P bond of 2.666 Å. 

This distance is less than the sum of van der Waal radii of the two atoms (ca. 3.45 Å) 

(Figure 3).  Another significant feature is the F(1)-P(1)-C(31) angle of 176.36(9)° which 

indicates that the fluorine atom occupies an axial coordination site directly opposite to a 
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phenyl ring. The NBO analysis identifies a donor-acceptor interaction (B-F→P) of 5 

Kcal/mol involving the fluorine lone-pair as the donor and the phosphorus-carbon σ*-

orbital as the acceptor. The 31P NMR resonance of 15-F at 28.3 ppm is coupled to the 

fluorine nucleus (JP-F = 24.3 Hz) confirming the presence of a P-F interaction. 

 

B PPh2MeMes
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Figure 3. Crystal structure of 15-F. 

 

 In order to study the ability of cationic groups to enhance the Lewis acidity of 

main group compounds, triarylborane derivatives such as [16]+, [17]2+ and [18]3+ have 

been investigated.20 The cyclovoltammogram showed that substitution of a Mes group 

by a [4-(Me3N)-2,6-Me2-C6H2]
+ group leads to an increase of the reduction potential by 

0.36 V in THF suggesting that [18]3+ is the most Lewis acidic of the series. However, 

none of these cationic boranes bind fluoride in water suggesting that the steric repulsion 
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of three mesityl groups hinders the formation of fluoroborates. Because of this increased 

Lewis acidity, only [18]3+ captures cyanide anions in water at pH 7. 

 

BMe

Me

Me

Me

NMe3

Me

Me

Me

Me

BMe

Me

Me

Me

NMe3

Me

Me

Me

NMe3

BMe3N

Me

Me

Me

NMe3

Me

Me

Me

NMe3

[16]+ [17]2+ [18]3+  

 

 The anion binding properties of the phosphoniumborin [ 19 ]+ and the 

diphosphonium azaborines [20]2+ have also been investigated.21, 22 Due to favorable 

Coulombic effects, [19]+ binds fluoride in water/chloroform mixtures. Interestingly, 

phoshoniumborin [19]+ can be used as a solid-phase scavenger for fluoride in water. 

Dicationic [20]2+ can be used in aqueous solutions where it displays a moderate affinity 

for fluoride and cyanide anions (K(F−) = 1.9(3)×102 M-1 in H2O/DMSO (1/3, v/v) 

solution and K(CN−) = 5.2(5)×104 M-1 in water). 
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1.2.3. Cyanide complexation by arylboronic acids 

 Utilizing the liability of B-O bonds, boronic acids can be applied as anion 

detectors (Figure 4).23-25 By displacing the hydroxide molecules with anions, the borate 

compound can be formed. This changes the properties of the boron center from electron-

deficient to electron-rich, which affects the intramolecular charge transfer (ICT) process. 
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Ar B

X

X
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Figure 4. The anion substitution reactions of boronic acids. 

 

 In the absence of cyanide, the fluorescence of [21]+ was efficiently quenched by 

ICT involving the aniline moiety as the donor and the ammonium group as the 

acceptor.26 However, the conversion of [21]+ to the borate in the presence of cyanide 

reduces the accepting ability of the ammonium center, leading to the revival of 

fluorescence based on the aniline moiety. The cyanide dissociation constants were 

measured to be KD = 4.03 µM3 for [21a]+, 25.50 µM3 for [21b]+, and 4.16 µM3 for 

[21c]+ in H2O. Due to the electrostatic effect between ammonium and the borate 

moieties, the o-isomer [21a]+ displays the highest cyanide affinity in H2O. 
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[21c]+ : p-isomer  

 

 The fluorescence of the boronic acid 22 at 460 nm was also enhanced upon 

cyanide addition in H2O/DMSO (1/1, v/v) at pH 7.4.27 Presumably, the dipole moment 

change induced by formation of the borate causes a large change in spectral properties. 

Utilizing the CTAB micellar system, the probe 22 can be used to detect cyanide at 50 

µM in aqueous solutions. 
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22a: m-isomer
22b : p-isomer  

 

1.2.4. Fluorescence response induced by anion binding 

 Triarylboranes such as [13]+ emit solvent-dependent fluorescence.17 This is due 

to ligand to element charge transfer involving the mesityl fragment as the donor and the 

vacant p-orbital of boron as the acceptor. Anion binding to the boron center of [13]+ 

quenched the observed fluorescence, indicating that this transfer process was blocked. 
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 From an analytical standpoint, this “turn-off” rather than “turn-on” response is 

not ideal.  Realizing this limitation, Wang recently reported a series of bifunctional 

molecules 23 and 24 containing both a triarylborane and triarylamine moiety.8, 28, 29 In 

such systems, the π-π* emission of the excited triarylamine moiety is quenched by an 

intramolecular charge transfer involving the chromophore potion as the donor and the 

boron moiety as the acceptor. However, the emission of the triarylamine moiety can be 

revived upon addition of fluoride to the boron center, so 23 and 24 behave as turn-on 

fluoride sensors.  
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 Triarylborane 25  displays reverse intra-molecular charge transfer involving 

borane as the donor and the BODIPY group as the acceptor.30 Compound 25 features 

two UV-vis absorption bands at 330 nm (borane moiety) and 501 nm (BODIPY 

fragment). When compound 25 is excited at 330 nm, it emits fluorescence at 510 nm 

which corresponds to the BODIPY emission. The charge transfer efficiency of 25 was 

measured to be 57 % effective relative to the BODIPY emission. Cyanide binding on the 

boron center of 25 quenches both the UV-vis absorption band and the intense emission 

band. From UV-vis titration data, the cyanide binding constant of 25 was measured to be 

K = 5 × 107 M-1 in THF. 
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1.3. Fluoride sensors with silicon-based Lewis acids 

 Like boranes, fluorosilanes can also act as anion receptors to form hypervalent 

silicates.31-37 For example, the simple reaction of triphenylfluorosilane with KF in the 

presence of [2,2,2]cryptand affords triphenyldifluorosilicate with K+/[2,2,2]cryptand salt 

(Figure 5).38 The [Ph3SiF2]
− complex is arranged as a trigonal bipyramidal in which 

three phenyl groups occupy the equatorial positions and two fluorine atoms occupy the 

axial positions.  
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Figure 5. Crystal structure of [Ph3SiF2]
−. 

 

 In a similar manner, the fluoride affinity of fluorosilane 26 containing three 9-

anthryl groups was investigated.39, 40 The addition of fluoride to 26 in THF causes a blue 

shift in the UV-vis spectrum indicating the formation of [26-F]−. This response can be 

assigned to a decrease in intramolecular anthryl-anthryl π-stacking interactions induced 

by the change in coordination geometry at the silicon center upon fluoride binding. 

Based on these spectral changes, the fluoride binding affinity of 26 was calculated to be 

K = 2.8(±0.2) × 104 M-1 in THF. Substituting 9-anthryl group with a phenyl group (27) 

causes little change in the fluoride binding affinity. The addition of water to a THF 

solution of [26-F]− results in fluoride abstraction indicating that the neutral fluorosilane 

26 is not sufficiently fluorophilic to overcome the high hydration energy of fluoride. 
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SiF Ar

26 : Ar = 9-anthryl
27 : Ar = phenyl  

 

 In order to enhance the anion binding affinity of fluorosilanes, bidentate 

fluorosilane systems have been investigated. The bidentate silane 28 captures fluoride 

with an association constant K > 5.9 × 107 M-1 which is larger than the fluoride affinity 

of Ph2SiF2 (K = 1.5 × 104 M-1).41 The crystal structure of [28-F]− shows that F(1) atom is 

chelated by two silicon atoms (Figure 6).42 The two silicon centers are nearly trigonal 

pyramidal with the F(1) atom at the apical positions. The resulting Si-F bonds of 1.898 Å 

and 2.065 Å indicate a symmetrical chelate structure. 

 

F2PhSi SiPhF2

28  

  

 

Figure 6. Crystal structure of [28-F]−. 
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 Because of these attractive properties, silanes have been incorporated in 

heteronuclear polydentate Lewis acids.43, 44 Treatment of 29   containing the 1,8-

naphthalene scaffold with tris(dimethylamino)sulfonium difluorotrimethylsilicate 

(TASF) afforded [29-F]−.43 In the 29Si NMR spectrum, the silicon resonance of [29-F]− 

(doublet, JSi-F = 13.2 Hz) was shifted upfield by 6.38 ppm indicating the presence of B-

F→Si interaction. The structure of [29-F]− shows that the geometry of the silicon center 

is a distorted trigonal pyramid with an Si-F distance of 2.714 Å, which is less than the 

sum of the van der Waals radii of Si and F atoms (ca. 3.4 Å). Compound [29-F]− 

releases the F− much slower than [30-F]− because of the B-F→Si interaction.   
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 In 2008, Kawachi and Yamamoto reported other neutral B/Si bidentate Lewis 

acids featuring an o-phenylene backbone.44  When equimolar amounts of 31 and 32 were 

mixed with [Mes2PhBF]− in THF, the corresponding [31-F]− (95%) and [32-F]− (78%) 

were produced, both containing a B-F bond. Like 29, the fluoride affinities of 31 and 32 

were enhanced because the fluoride was chelated by both the boron and the silicon 

atoms. Both fluoride adducts [31-F]− and [32-F]− have F-Si non-bonded distances of  av. 

2.4847 Å and av. 2.2568 Å, respectively which are less than the sum of the van der 
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Waals radii of silicon and fluorine (ca. 3.4 Å). DFT calculations reveal that 32 is less 

fluorophilic than 31 because of the two bulky phenyl groups of 32.  

 

Mes2B SiR2F

31 : R = Me
32 : R = Ph  

 

1.4. Organic-based cyanide sensors  

 The trifluoroacetyl group is widely used for covalent carbon-carbon bond 

formation by nucleophilic addition of cyanide to a carbonyl group.45 A careful study 

shows that the intramolecular hydrogen bond of N-H…O in the product (cyanohydrin 

derivative) drives the C-C bond formation (Figure 7).46  
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Figure 7. Nucleophilic addition of CN− to the carbonyl group. 

 

 The trifluoroacetyl group of 33 does not react with a large excess of cyanide in 

CH3CN/H2O (95/5, v/v) because the amide proton is engaged in hydrogen bonding with 

the neighboring C=O unit. On the contrary, the free amide proton of 34 facilitates the 

formation of [34-CN]− due to the resulting hydrogen bonding interaction. From UV-vis 

titration data, the cyanide binding constant of 34 was measured to be K = 7.7 × 104 M-1. 
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The detection limit of 34 for cyanide is as low as 0.51 µM in CH3CN/H2O (95/5, v/v) 

solution. Unlike cyanide, the addition of common anions such as F−, AcO−, H2PO4
−, Cl−, 

Br−, I−, HSO4
−, NO3

−, ClO4
−, SCN−, and N3

− does not cause any notable change in the 

UV-vis spectrum.  
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 Addition of cyanide to a solution of 35  causes a distinct color change from 

colorless to orange because of the azo dye fragment.47 The probe 35 is selective for 

cyanide with an association constant K of 2.8 × 103 M-1 in CH3CN/H2O (9/1, v/v) 

solution. The detection limit of 35 for cyanide anions was below 5µM in the presence of 

ca. 5% of water. 
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 As another example, the ensemble of cationic silol [36]I and 37 serves as a turn-

on cyanide sensor.48 The nucleophilic attack of cyanide on the carbonyl group of 37 

produces [37-CN]−. Because of the intermolecular electrostatic and hydrophobic 

interactions between [36]+ and [37-CN]−, coaggregation of the two compounds occurs. 

This aggregation increases the fluorescence of the cationic silol [36]+ because silol 

demostrates aggregation-induced-emission. Experimentally, the fluorescent emission of 

the ensemble at λmax = 476 nm was enhanced upon cyanide addition with a detection 

limit of 7.74 µM in H2O/DMSO (75/1, v/v) solution.  
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 The probe 38  and 39  featuring dipyrrole carboxamide moieties bind cyanide 

anions in a 1:2 stoichiometry.49, 50 Due to the strong electron-withdrawing power of the 

nitro groups, the cyanide binding constant of 39 (K = 1.1 × 109 M-2) is larger than that of 

38 (K = 7.9 × 105 M-2) by three orders of magnitude in CH3CN/H2O (9/1, v/v) solution. 

The addition of cyanide to 39 displays an increase in the absorbance at 465 nm, which 

can be also observed by the naked eye in 50% water solution. 
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 Furthermore, due to the non-radiative nπ* excited state, the fluorescence of the 

chromophores is easily quenched by the lone-pair electrons of the carbonyl groups 

(Figure 8).51, 52 However, the C-C bond formation by nucleophilic addition of cyanide to 

the carbonyl group blocks this quenching process allowing for the π-π* emission of the 

chromophor to occur.53-55  
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Figure 8. The emission diagram from nπ* and ππ* states. 

  

 For example, the addition of cyanide to a solution of [40]+ regenerated the 

fluorescence at λmax = 375 nm, thereby blocking the non-radiative nπ* excited state.53 

Since the aldehyde group is activated by a combination of hydrogen bonding with the 

amide proton and electrostatic effects, the detection limit of [40]+ was lowered to 2.5 µM 

in water at pH 7. 
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 The aldehyde group of salicylaldehyde is activated and reacts with cyanide to 

produce cyanohydrin derivatives due to the formation of a six-membered ring driven by 
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intramolecular hydrogen bonding (Figure 9).45, 54, 55 Since the cyanohydrin formation 

results in fluorescence, salicylaldehyde derivatives tethered to a chromophor is expected 

to act as a turn-on receptor for cyanide. 
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Figure 9. Nucleophilic attack of CN− on the carbonyl group of salicylaldehyde. 

 

 For example, the fluorescence of 41 in CH3CN/H2O (9/1, v/v) and 42 in H2O 

increased upon addition of cyanide, and was saturated at 50 and 1500 equiv. of cyanide, 

respectively.54, 55 In the 1H NMR spectra of 41 and 42, the aldehyde proton resonances 

were shifted upfield by ca. 5 ppm upon cyanide addition confirming the formation of the 

corresponding cyanohydrins. In addition, these compounds were used for cell-imaging to 

detect cyanide. Both probes allow for highly selective detection of cyanide in aqueous 

solution. 
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 The imine group of the salicylaldehyde hydrazone is also activated by hydrogen 

bonding and reacts with cyanide.56 The addion of cyanide regenerated fluorescence of 43 

at ca. λmax = 460 in H2O/DMSO (1/1, v/v) solution. This is due to the intramolecular 

hydrogen bond of [43-CN]− which blocks the non-radiative nπ* excitation state (Figure 

8).52 The addition of cyanide to 44 containing an azo dye moiety results in a distinct 

color change, which can be observed by the naked eye. The detection limit of 43 and 44 

for cyanide was measured to be as low as 0.056 µM and 1.5 µM, respectively.  
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 Nucleophilic attack of CN− on the α,β-unsaturated carbonyl group of 45 has been 

investigated.57 This reaction occurs slowly with a rate constant of 1.32 × 10-3 s-1 in 

acetonitrile. This reaction rate was increased upon coordination of a cationic Ir(III) 

center. The quenched phosphorescence of [46]PF6 at 520 nm was revived upon cyanide 

addition in H2O/CH3CN (1/1, v/v) solution, and was saturated at 10 equiv. of cyanide 

despite its slow reaction with cyanide. In addition, the pink color of complex [46]PF6 is 



 26 

quickly quenched upon cyanide addition with a detection limit of 40 µM in a 

water/chloroform biphasic system.  
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 Likewise, the nucleophilic attack of cyanide on the carbonyl carbons of benzil 

derivatives results in bond cleavage in protic solvents; this is known as the benzil-

cyanide reaction (Figure 10).58-60 Since this reaction breaks the extended π-conjugation 

of the benzil derivaties, it can be applied to design of chromogenic cyanide sensors.   
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Figure 10. The benzil-cyanide reaction. 
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 Owing to the π-extended substituents on the benzil moiety, 47 features a UV-vis 

absorption band at λmax = 410 nm in MeOH/H2O (8/2, v/v).61 The addition of cyanide to 

this solution bleaches the yellow color because the π-conjugation of the benzil group is 

broken. This reaction is facilitated in the presence of OH−. Compound 47 is selective for 

cyanide over other common anions in MeOH/H2O (8/2, v/v). The detection limit of 47 

for cyanide is 1.7 µM in MeOH/H2O (7/3, v/v) in the presence of ca. 5 mM of NaOH. 

Bleaching of the yellow color can be observed by the naked eye. 
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 Cyanide also activates latent chromophores by the deacylation reaction.  The 

addition of cyanide to 48 in MeOH/H2O (10/1, v/v) solution changes the color from pale 

yellow to red-pink.62 This red-pink colored product was identified as the anionic triazene 

[49]−. The putative deacylation reaction of 48 in the presence of cyanide to produce 

[49]− was confirmed by 1H-NMR spectroscopy in CD3CN. 48 is selective for cyanide 
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over other common anions in MeOH/H2O (10/1, v/v) solution as well as in 

water/chloroform biphasic conditions. 
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 Like boranes, as mentioned previously, carbocations are intrinsically electron 

deficient and undergo nucleophilic attack.45, 63, 64 For example, the acridinium [50]+ 

displays a color change from orange to pale blue in the presence of cyanide in 

H2O/DMSO (95/5, v/v) solution due to the nucleophilic addition of cyanide at the C9 

position.65 The corresponding product 50-CN is readily converted to the acridone 51 in 

the presence of O2, which is confirmed by 1H-NMR spectroscopy. [50]+ can bind 

cyanide in the 1−20 µM range in H2O/DMSO (1/1, v/v) solution despite the filtration 

process and the higher temperature of 50 °C required for this reaction. 
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 Positively charged ions of pyrylium and thiopyrylium can also react with cyanide 

displaying distinct color changes.66, 67 Nucleophilic attack of cyanide on the pyrylium 

group of [52]+ produces cyano-enone 52-CN via a ring opening process, accompanied by 

a color change from yellow to red.66 52-CN was characterized by 1H-NMR spectroscopy 

and mass analysis. Additionally, a hydrophilic polymer containing [52]+ was prepared. 

The detection limit of this polymer for cyanide was as low as 4 mM in water. 

Interestingly, acidifying the 52-CN moiety of the polymer recovered the corresponding 

[52]+ moiety with concomitant color change from red to yellow. 
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 In the case of [53]+, the nucleophilic addition of cyanide on the thiopyrylium ring 

bleaches the blue color.67 This reaction occurs at C2 and C4 of the thiopyrylium ring in a 

ratio of 25:75, which is confirmed by 1H-NMR spectroscopy. To improve the usefulness 

of such sensros, [54]+ was synthesized and it was incorporated into the micllear system 

using a surfactant. This system is selective for cyanide over other common anions with a 

detection limit as low as ca. 1 ppm in water. 
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 Electron-deficient indolium groups also undergo nucleophilic attack by cyanide. 

In solution, benzooxazine 55a is converted to the intermediate indolium 55b, which can 

then be trapped by cyanide addition.68, 69 The formation of [55c]− causes a color change 

from yellow to red, which is easily observed by the naked eye. Compound 55a is 

selective for CN− in H2O/CH3CN (1/1, v/v) solution at pH 7.6 with a detection limit of 

0.1 mM. The detection limit was lowered to 1 µM in H2O/CH2Cl2 biphasic mixtures 

monitored by UV-vis spectrospcopy. 
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 Similiarly, upon UV irradiation, spirocyclic 56a is converted to merocyanine 56b 

containing an indolnium group, which is which can be trapped by cyanide addition.70 

The kinetic absorption analysis showed that the formation of [56c]− via merocyanine 56b 

rather than spirocyclic 56a was preferred. Interestingly, [56c]− was converted to 56a 

upon visible light irradiation demonstrating that the whole process is reversible. Upon 

UV irradiation, 56a reacts with cyanide in a 1:1 stoichiometry with an association 

constant K of 9.8 × 103 M-1 in H2O/MeCN (1/1, v/v) at pH 9.3. Under these conditions, 

56a results in the selective and very sensitive detection of cyanide with a detection limit 

of 1.7 µM. 
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 Despite the intense (ε up to 100000) charge transfer band as well as the electron 

deficient four-membered ring, squadarine dye has not been investigated as a 

chromogenic anion sensor because of its poor solubility in both organic solvents and 
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water. By utilizing hydrophilic ether chains, squadarine dye 57 is soluble in acetonitrile 

as well as H2O/CH3CN (8/2, v/v).71 In acetonitrile, the nucleophilic attack of cyanide on 

the four-membered ring of 57 bleaches the green color because the charge transfer from 

the aniline moiety to the electron deficient ring is quenched. The detection limit of 57 for 

cyanide is as low as 0.1 ppm in H2O/CH3CN (8/2, v/v) despite its slow reaction with 

cyanide. 
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 Zhang et al. utilized the croconine dye 58 as chromogenic sensors for cyanide.72  

The addition of cyanide to 58 induces a decrease in the absorbance in the near-infrared 

region (823 nm) with a detection limit of 1.5 µM in EtOH/H2O (7/3, v/v) at pH 9. 
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 Similiarly, boron subphthalocyanine (SubPc) dye also behaves as a chromogenic 

sensor for cyanide because the nucleophilic addition of cyanide on the macrocyclic ring 

breaks the 14 π-electron aromatic system.73, 74 For instance, 59 is pink colored and upon 

cyanide addition, this color is bleached with an association constant K of 1.2(±0.1) × 104 

M-1 in MeCN/H2O (95/5, v/v). The detection limit of dye 59 for cyanide is as low as 0.1 

ppm at pH 9.4 and 10 ppm at pH 7 in H2O/CH3CN (1/1, v/v) mixtures.  

 In order to carry out a dip-and-read test to detect anions in water, the carboxylate 

functionalized 60 was anchored in a mesoporous TiO2 film. These systems allow for 

selective and sensitive detection of cyanide in water despite their slow absorbance decay. 
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 Likewise, the organic-based sensor 61  can be used to detect anions in water 

utilizing mesoporous films.75 The addition of cyanide to 61 displays an increase in the 

absorbance at 414 nm in DMSO, which can be observed by the naked eye. This organic 

dye was incorporated into Al2O3 films and used to detect cyanide with a detection limit 
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of 2.6 ppm in water. Since the Al2O3 is positively charged below pH 9, carboxylate-

functionalized 61 is stable towards desorption from the film in a practical pH range.  
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1.5. Cyanide sensors based on metal-cyanide complexation 

 Owing to its high affinity for transition metals, cyanide binds to the metals by 

displacing weakly-bound ligands on the metal center. For example, addition of cyanide 

to 62 displaces the Co(III)-bound water with cyanide, accompanied by a color change 

from orange to pink in water.76, 77 The cyanide binding constant of 62 equals 0.12(±0.19) 

× 106 M-1 at pH 7.5 and 0.55(±0.27) × 106 M-1 at pH 9.5. Due to the negative charges of 

the peripheral carboxylate groups, 62 is selective for cyanide over other common anions 

including thiocyanate, which is the most competitive anion in comparison to cyanide for 

this system. The detection limit of 62 for cyanide is as low as 10 µM as detected by the 

naked eye and 1.5 µM as detected by UV-vis spectroscopy. Additionally, complex 62 

was used for measuring the rate of enzymatic release of cyanide on the surface of the 

cassava plant by diffuse reflectance UV-vis spectroscopy.77  
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 In a similar manner, since copper ions display high cyanide affinity with 

association constants K of 1 × 1024 for [Cu(CN)2]
− and 2 × 1030 for [Cu(CN)4]

3−, ligand 

displacement of copper complexes with cyanide is a promising strategy for detecting 

cyanide anions.45, 64, 78 The rhodamine hydrazone 63 forms stable complexs with Cu2+ 

ions in H2O/CH3CN (1/1, v/v) solution.78, 79 The resulting copper complex 64 is magenta 

colored (λmax = 555 nm) and the addition of cyanide bleaches this color with a detection 

limit of 0.013 ppm because cyanide displaces the Cu2+ ions from complex 64.  
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 Like the rhodamine hydrazone 63, zincon can be used to detect cyanide with a 

detection limit of 0.13 ppm in water in the presence of Cu2+ ions.80 The complex formed 

by zincon and a Cu2+ ion displays a decrease in the absobance at 463 nm and an increase 

in the absorbance at 600 nm. The addition of cyanide to complex 65  results in an 

increase in the absorbance at 463 nm, which is observable by the naked eye.  
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 The strong green fluorescence of 66 was quenched in the presence of Cu2+ ions in 

water at pH 7.4.81 While cyanide induces the revival of fluorescence of complex 67, 

other common anions do not cause any change in fluorescence under these conditions. 

As a practical application, a mixture of 66 and Cu2+ ions was used for in vivo cell-

imaging of cyanide.  
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 Quantum dots (QDs) are also used in sensor chemistry due to their intense 

photoluminescence. The emission of the tri-n-octylphosphine oxide-coated CdSe QDs 

was quenched by the [(bipy)CuCl2] complex in chloroform.82 The incorporation of the 

[(bipy)CuCl2] complex on the QDs was facilitated by the hydrophobic interactions 

between bipy and the tri-n-octylphosphine chains. In water/chloroform biphasic 

mixtures, the addition of cyanide removes Cu2+ from [(bipy)CuCl2], recovering the blue-

shifted fluorescence of the CdSe QDs. 
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 Likewise, the absorption of Cu2+ ions on the surface of the CdTe QDs also 

quenches the fluorescence of the QDs, accompanied by reduction of Cu2+ to Cu+.83 The 
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addition of cyanide induces the revival of the fluorescence of copper ion-modified QDs 

with a detection limit of 0.15 µM in water at pH 7. 
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 Additionally, the metalloprotein hemoglobin (Hb) can be absorbed on the surface 

of TiO2 films stabilizing iron in the Fe3+ state which is the necessary oxidation state for 

capturing cyanide.84 The cyanide addition to the ferricHb/TiO2 film exhibited a decrease 

in the absorbance at 405 nm with a detection limit of 0.2 ppm in water. Other common 

anions, including potentially competitive thiols did not cause any significant change in 

the UV spectrum.  
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CHAPTER II 

CATIONIC BORANES FOR THE COMPLEXATION OF FLUORIDE IONS IN 

WATER BELOW THE 4 PPM MAXIMUM CONTAMINANT LEVEL* 

 

2.1. Introduction 

 Water fluoridation or addition of fluoride to toothpaste has become a widespread 

practice because of the beneficial effects of this anion in dental health.  High doses of 

this anion are however dangerous and can lead to dental or skeletal fluorosis.1  In order 

to minimize the potential health risks caused by excessive intake of this anion, the 

maximum contaminant level for drinking water has been set at 4 ppm (210 µmol) by the 

Environmental Protection Agency (EPA).  The same agency however recommends that a 

concentration of 2 ppm (referred to a secondary standard) not be exceeded in drinking 

water.85 

 Designing water compatible receptors that are competent in this concentration 

range is challenging work due to the high hydration enthalpy (∆Ho = −504 KJ/mol) of 

the fluoride ion.  Original efforts focused on receptors that interact with the anionic guest 

via hydrogen bonds.86-97  Unfortunately, such receptors only function in organic solvents 

and are usually not compatible with water.98, 99  Faced with these limitations, several 

groups have considered Lewis acidic receptors which covalently interact with the  

____________ 
∗ Reprinted in part with permission from, “Cationic Boranes for the Complexation of 
Fluoride Ions in Water below the 4 ppm Maximum Contaminant Level”; Kim, Y.; 
Gabbaï, F. P.; J. Am. Chem. Soc., 2009, 131, 3363-3369, Copyright 2009 by the 
American Chemical Society. 
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fluoride anion.9, 12-14, 28, 29, 44, 100-138 Triarylboranes, for example, complex fluoride anions  

in organic solvent with binding constants typically in the 105-106 M-1 range (Figure 11).9, 

28, 29, 131-138 Unfortunately, the resulting anionic complexes dissociate in the presence of 

water, a process driven by the high hydration energy of the small fluoride anion. 
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Figure 11. Ar = aryl group. 

 
In order to overcome these limitations, several groups have investigated cationic 

boron compounds whose anion affinity is increased by Coulombic effects.107, 114, 129, 139-

141 As part of our contribution to this effort, we introduced the cationic boranes [12]+, 

[14]+ and showed that these derivatives complex fluoride in aqueous media with binding 

constant in the 500-900 M-1 range.16-18, 21, 142  Although these results demonstrate that 

cationic boranes can overcome the hydration enthalpy of fluoride, the binding constants 

remain too low for measurements of fluoride concentrations near the permissible level.  

Motivated by this challenge, we are now searching for strategies to enhance the anion 

affinity of cationic boranes.19  
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 Considering the fact that [14]+ captures fluoride in water18 while the more hydrophilic 

borane [13]+ does not,17 we postulated that the increased hydrophobicity of [14]+ may 

actually be at the origin of this dichotomy.We further hypothesized that an increase in 

the hydrophobic character of such cationic boranes may serve to increase their anion 

affinity. These effects are not unprescedented and have been previously studied. The 

neutral UO2 complex 68 binds fluoride in water with an association constant K = 10800 

± 800 M-1 in the presence of cetyltrimethylammonium (CTABr).143 In comparison, the 

fluoride affinity of 68 in water is much larger than in methanol (K = 360 ± 20 M-1). The 

paramagnetic relaxation enhancement (PRE) and NOESY NMR studies show that the 

UO2 center is protected by the micellar system of CTABr, which enhances the fluoride 

affinity of 68 in water. Hoping to validate this new paradigm, we have now synthesized 

a series of phosphonium boranes of varying hydrophobicity and investigated their 

fluoride ion affinity. 
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2.2. Synthesis and characterization of cationic boranes 

 Using a similar synthetic strategy to that employed in the case of [14]+,18 we 

found that the phosphorus atom of the 1-dimesitylboryl-4-diphenylphosphino-benzene 

69 could be readily alkylated with ethyliodide in acetonitrile and propyliodide in toluene 

to afford the corresponding salts [70]I and [71]I, respectively (Figure 12).  The bromide 

salt [72]Br was synthesized by reaction of (4-bromophenyl)dimesitylborane with PPh3 in 

refluxing benzonitrile with NiBr2 as a catalyst.  The new salts have been characterized 

by multinuclear NMR.  In all cases, the 11B NMR resonance measured in CDCl3 is 

detected in the 70-80 ppm range which indicates that the boron remains trigonal planar.  

The presence of a phosphonium center could be easily confirmed by the 31P NMR 

chemical shift of 26.3, 23.8 and 22.7 ppm for [70]+, [71]+ and [72]+, respectively.  Like 

[14]+, these new cationic boranes feature a low energy absorption band detected at 325 

for [70]+, 322 for [71]+ and 325 for [72]+ in H2O/MeOH (9/1, v/v).  This low absorption 

band arises from the boron-centered chromophore9 and serves to confirm that the boron 

atom is in a trigonal planar geometry.  The crystal structure of [72]Br has been 

determined (Figure 13 and Table 1).  As indicated by the sum of the Caryl-B-Caryl angles 
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(Σ(C-B-C) = 360°), the boron center adopts a trigonal planar coordination geometry and 

does not interact with the bromide counteranion. 
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Figure 12. Synthesis of phsophnium boranes. 

 

 

 

 

Figure 13. Crystal structure of [72]+ with thermal ellipsoids set at 50% probability level. 
The bromide anion and hydrogen atoms are omitted for clarity. Pertinent metrical 
parameters can be found in the text. 
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Table 1. Crystal data, data collections, and structure refinements for [72]Br. 
 

Crystal data [72]Br·Et2O 
Formula C46H51BBrOP 

Mr 741.56 
crystal size (mm3) 0.37 x 0.25 x 0.09 

crystal system Triclinic 
space group P-1 

a (Å) 8.1920(16) 
b (Å) 10.305(2) 
c (Å) 24.315(5) 
α (°) 78.84(3) 
β (°) 85.45(3) 
γ (°) 86.33(3) 

V (Å3) 2005.0(7) 
Z 2 

ρcalc (g cm-3) 1.228 
µ (mm-1) 1.098 
F(000) 780 

  
Data collection  

T (K) 110(2) 
scan mode ω 

hkl range 
-8 → +10, 

-12 → +12, 
-30 → +30 

measd reflns 11256 
unique reflns [Rint] 7989 [0.0290] 

Reflns used for refinement 7989 
  

Refinement  
refined parameters 451 

GooF 1.009 
R1,

a wR2
b all data 0.0830, 0.1354 

ρfin (max/min) (e Å-3) 1.156, -0.759 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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2.3. Reaction with hydroxide and pH stability range 

 In order to better understand the properties of these new boranes and their 

compatibility with aqueous environments, we have investigated their reaction with 

hydroxide anions.  Interestingly, addition of NaOH to a solution of [14]+, [70]+, [71]+ or 

[72]+ in D2O/d4-MeOH (9/1, v/v) results in the formation of the corresponding hydroxide 

adducts as confirmed by multinuclear NMR.  For each of the four cationic boranes, 

hydroxide binding to the boron center leads to inequivalence of the four hydrogen nuclei 

of the p-phenylene ring.  This observation indicates that rotation about the B-C bond 

connecting the boron atom to the p-phenylene moiety is restricted because of steric 

effects.  The 11B NMR signal of these species is detected in the 0-1 ppm range thus 

confirming the presence of a coordinatively saturated boron center.  In order to further 

establish the formation of these compounds, 14-OH and 72-OH have been isolated as 

solids and analyzed by single crystal X-ray analysis (Figure 14).   
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Figure 14. Synthesis of hydroxide adducts of phosphonium boranes. 
 

Examination of the structure shows coordination of the hydroxide anion to the boron 

center via a B-O bond of 1.519(7) Å for 14-OH and 1.511(4) Å for 72-OH (Figures 15 

and 16, Table 2).  These bond distances are comparable to those observed in other 

triarylborane hydroxide adducts such as 1-((C6F5)2BOH)-2-(Ph2NH)-C6H4 (B-O = 
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1.521(2) Å).144  The sum of the Caryl-B-Caryl angles (Σ(C-B-C) = 336.7° for 14-OH, 335.8° 

for 72-OH) indicates that hydroxide binding induces a substantial pyramidalization of 

the boron atom which is similar to that observed in 14-F (Σ(C-B-C) = 339.4). 

 

 
Figure 15. Crystal tructure of 14-OH with thermal ellipsoids set at 50% probability level. 
Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be found in 
the text.  
 

 
Figure 16. Crystal structure of 72-OH with thermal ellipsoids set at 50% probability 
level. Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be 
found in the text.  
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Table 2. Crystal data, data collections, and structure refinement for 14-OH and 72-OH. 
  

Crystal data 14-OH·CHCl3 72-OH·(H2O·CH2Cl2)0.5 
formula C38 H41BCl3OP 

 
C42.5H44BClO1.5 P 

 Mr 661.84 656.01 
crystal size (mm3) 0.23 x 0.16 x 0.06 0.35 x 0.12 x 0.06 

crystal system Triclinic Monoclinic 
space group P-1 C2/c 

a (Å) 12.262(3) 22.702(4)  
b (Å) 12.756(3) 14.908(4)  
c (Å) 12.976(3) 22.802(5)  
α (°) 73.40(3) 90 
β (°) 77.77(3) 112.368(4) 
γ (°) 62.25(3) 

 
90 

V (Å3) 1713.8(6) 7137(3) 
Z 2 8 

ρcalc (g cm-3) 1.283 1.221 
µ (mm-1) 0.344 0.186 
F(000) 696 2784 

   
Data collection   

T (K) 110(2) 110(2) 
scan mode ω ω 

hkl range 
-14 → +14, 
-15 → +7, 
-15 → +15 

-25 → +25, 
-17 → +17, 
-26 → +26 

measd reflns 8681 30837 
unique reflns [Rint] 5926 [0.0490] 

 
5606 [0.0680] 

reflns used for refinement 5926 5606 
   

Refinement   
refined parameters 397 434 

GooF 1.008 1.007 
R1,

a wR2
b all data 0.1303, 0.1739 0.0686, 0.1608 

ρfin (max/min) (e Å-3) 0.607, -0.547 0.604, -0.499 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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 Having established that these cationic boranes form stable hydroxide adducts, we 

decided investigate the pH range within which the boron center remain uncoordinated.  

Since hydroxide binding to the boron center can be expected to interrupt the π-

conjugation mediated by the boron vacant p-orbital,9 we monitored the absorbance of the 

boron centered chromophore as a function of pH.  In all cases, the absorption of the 

boron centered chromophore is quenched as the pH becomes more basic in agreement 

with the formation of the hydroxide adducts.  Remarkably, acidification of the solution 

results in a revival of the absorbance indicating that hydroxide binding is reversible.  

Fitting of the titration data to the equilibrium described in equation 1145 affords pKR+ = 

7.3(±0.07) for [14]+, 6.92(±0.1) for [70]+, 6.59(±0.08) for [71]+, 6.08(±0.09) for [72]+ 

(Figures 17, 18, 19 and 20).   

 

 

 

In turn, these measurements indicate that the Lewis acidity of the boranes increases in 

the following order: [14]+<[70]+<[71]+<[72]+.  This data firmly demonstrates that 

increasing the hydrophobicity of the boranes results in an increase of their Lewis acidity.  

While the exact thermodynamic origins of this effect have not yet been elucidated, we 

became eager to verify if a similar trend would be observed in the fluoride ion affinity of 

these new cationic boranes. 
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Figure 17. Spectrophotometric titration curve of [14]+ in H2O/MeOH.  The absorbance 
was measured at 320 nm.  The experimental data was fitted to eq. 1 using ε([14]+) =  
9700 M-1 cm-1, ε(14 -OH) = 2600 M-1 cm-1, and pKR+ = 7.3(±0.07). 
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Figure 18. Spectrophotometric titration curve of [70]+ in H2O/MeOH.  The absorbance 
was measured at 322 nm.  The experimental data was fitted to eq. 1 using ε([70]+) =  
9400 M-1 cm-1,  ε(70-OH) = 4700 M-1 cm-1, and pKR+ = 6.92(±0.1). 
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Figure 19. Spectrophotometric titration curve of [71]+ in H2O/MeOH.  The absorbance 
was measured at 322 nm.  The experimental data was fitted to eq. 1 using ε([71]+) =  
9200 M-1 cm-1,  ε(71-OH) = 4000 M-1 cm-1, and pKR+ = 6.59(±0.08). 
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Figure 20. Spectrophotometric titration curve of [72]+ in H2O/MeOH.  The absorbance 
was measured at 325 nm.  The experimental data was fitted to eq. 1 using ε([72]+) = 
8400 M-1 cm-1,  ε(72-OH) = 2300 M-1 cm-1, and pKR+ = 6.08(±0.09). 
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Table 3. Crystal data, data collections, and structure refinements for 72-F. 
 

Crystal data 72-F·(CH2Cl2)0.5 
Formula C170H168B4Cl4F4P4 

 Mr 2595.96 
 crystal size (mm3) 0.30 x 0.14 x 0.07 

crystal system Triclinic 
space group P-1 

a (Å) 18.988(4) 
b (Å) 19.806(4) 
c (Å) 19.918(4) 
α (°) 99.42(3) 
β (°) 104.07(3) 
γ (°) 99.53(3) 

V (Å3) 7001(2) 
Z   2 

ρcalc (g cm-3) 1.231 
µ (mm-1) 0.190 
F(000) 2744 

  
Data collection  

T (K) 110(2) 
scan mode ω 

hkl range 
-21 → +21, 
-22 → +22, 
-22 → +22 

measd reflns 62266 
unique reflns [Rint] 21974 [0.0398] 

Reflns used for refinement 21974 
  

Refinement  
refined parameters 1675 

GooF 1.003 
R1,

a wR2
b all data 0.1001, 0.1669 

ρfin (max/min) (e Å-3) 1.125, -0.770 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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2.4. Fluoride ion complexation 

 We first verified that the new cationic boranes [70]+, [71]+ and [72]+ indeed react 

with fluoride ions.  To this end, these cationic boranes were treated with KF in d4-MeOH 

solution to afford the corresponding fluoride complexes 70-F, 71-F, and 72-F (Figure 

21).  The presence of a boron-bound fluoride anion is confirmed by the detection of 11B 

NMR resonances in the 4.3-7.5 range and a 19F NMR resonance in the −174 – −171 ppm 

range.  These chemical shifts are close to those measured for 14-F (δ(11B) = 9.8; δ(19F) = 

−175.5).18  The formation of these fluoride adducts was further confirmed by isolation 

and structural characterization of 72-F which crystallizes with four molecules in the 

asymmetric unit (Figure 22 and Table 3).  All four molecules have similar structures 

which approach that of 72-OH.  The av. B(1)-F(1) bond length of 1.46 Å is comparable 

to those found in other triarylfluoroborate moieties (1.47 Å)9, 18 and the extent of 

pyramidalizition of the boron center (av. Σ(C-B-C) = 338.4°) is almost identical to that 

observed in 14-F (Σ(C-B-C) = 339.4°). 
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Figure 21. Synthesis of fluoride adducts of phosphonium boranes. 
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Figure 22. Crystal structure of 72-F with thermal ellipsoids set at 50% probability level. 
Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be found in 
the text.  
 
 
 

 Further information on the fluoride affinity of these molecules was gained from 

titration experiment monitored by UV-vis spectroscopy.  In order to maximize the 

photophysical response of the receptors, these titration were carried out under buffered 

conditions at slightly acidic pH’s (pH = 4.9 for [14]+, 4.9 for [70]+, 4.9 for [71]+ and 4.6 

for [72]+).  The resulting titration data were fitted to a 1:1 binding isotherm which 

afforded K = 840(±50) M-1 for [14]+, 2500(±200) M-1 for [70]+, 4000(±300) M-1 for 

[71]+ and 10500(±1000) M-1 for [72]+ as fluoride binding constants (Figures 23, 24, 25 

and 26).  These results show that the fluoride binding constant increases with the 

hydrophobicity of the borane (Tables 4, 5, 6 and 7).  These results are therefore in 

perfect agreement with the acidity scale established on the basis of the pKR+ 

measurements.  These results also show that the replacement of PMePh2 moiety of [14]+ 
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by a PPh3 moiety in [72]+ results in an increase of the fluoride binding constant by more 

than one order of magnitude. 
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Figure 23.  Left: Absorbance change of a solution of [14]+

 after successive additions of 
fluoride anions; right: The absorbance was measured at 322 nm. Experimental data and 
calculated 1:1 binding isotherm with K = 840(±50) M-1 using ε([14]+) = 9700 M-1 cm-1 
and ε(14-F) = 100 M-1 cm-1. 
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Figure 24.  Left: Absorbance change of a solution of [70]+ after successive additions of 
fluoride anions; right: The absorbance was measured at 325 nm. Experimental data and 
calculated 1:1 binding isotherm with K = 2500 (±200) M-1 using ε([70]+) = 9300 M-1 cm-

1 and ε(70-F) = 1200 M-1 cm-1. 
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Figure 25. Left: Absorbance change of a solution of [71]+ after successive additions of 
fluoride anions; right: The absorbance was measured at 322 nm. Experimental data and 
calculated 1:1 binding isotherm with K = 4000 (±300) M-1 using ε([71]+) = 9100 M-1 cm-

1, ε(71-F) = 2100 M-1 cm-1. 
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Figure 26. Left: Absorbance change of a solution of [72]+ after successive additions of 
fluoride anions; right: The absorbance was measured at 325 nm. Experimental data and 
calculated 1:1 binding isotherm with K = 10500 (±1000) M-1 using ε([72]+) = 8400 M-1 
cm-1, ε(72-F) = 2100 M-1 cm-1. 
 
 
 
Table 4. Absorbance of a solution of [14]+ after successive additions of fluoride anions 
in H2O/MeOH (9/1, v/v). 
 

Cfluoride Absexp Abscalc Cfluoride Absexp Abscalc 
0.000000 0.598000 0.598167 0.001493 0.275000 0.273814 
0.000499 0.429000 0.427980 0.001987 0.238000 0.233104 
0.000997 0.331000 0.333392    
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Table 5. Absorbance of a solution of [70]+ after successive additions of fluoride anions 
in H2O/MeOH (9/1, v/v). 
 

Cfluoride Absexp Abscalc Cfluoride Absexp Abscalc 
0.000000 0.506000 0.505300 0.001987 0.146000 0.142783 
0.000499 0.265000 0.267971 0.002479 0.138000 0.130461 
0.000997 0.193000 0.195819 0.002970 0.123000 0.122009 
0.001493 0.161000 0.162065 0.003460 0.120000 0.115928 

 
 
 
Table 6. Absorbance of a solution of [71]+ after successive additions of fluoride anions 
in H2O/MeOH (9/1, v/v). 
 

Cfluoride Absexp Abscalc Cfluoride Absexp Abscalc 
0.000000 0.538000 0.536900 0.000297 0.323000 0.325772 
0.000050 0.482000 0.478168 0.000346 0.309000 0.309774 
0.000100 0.436000 0.432662 0.000395 0.297000 0.296271 
0.000149 0.399000 0.396851 0.000443 0.284000 0.284757 
0.000199 0.369000 0.368208 0.000492 0.274000 0.274853 
0.000248 0.341000 0.344942    

 
 
 
Table 7. Absorbance of a solution of [72]+ after successive additions of fluoride anions 
in H2O/MeOH (9/1, v/v). 
 

Cfluoride Absexp Abscalc Cfluoride Absexp Abscalc 
0.000000 0.489000 0.490000 0.000395 0.204000 0.204998 
0.000050 0.411000 0.392545 0.000443 0.195000 0.197984 
0.000100 0.338000 0.329592 0.000492 0.188000 0.192302 
0.000149 0.292000 0.288241 0.000540 0.185000 0.187634 
0.000199 0.254000 0.260005 0.000588 0.181000 0.183755 
0.000248 0.236000 0.239914 0.000636 0.177000 0.180501 
0.000297 0.228000 0.225087 0.000684 0.178000 0.177750 
0.000346 0.215000 0.213803 0.000732 0.177000 0.175409 
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2.5. Complexation of fluoride below the EPA maximum contaminant level in water 

 Encouraged by these results, we decided to investigate whether [72]+ could be 

used for the detection of fluoride in pure water near or below the EPA maximum 

contaminant level.  With this in mind, we first set out to determine the pKR+ of [72]+ in 

pure water by monitoring the absorbance as a function of pH. Fitting of the resulting 

data to eq 1. afforded pKR+ = 5.3(±0.08) (Figure 27).  This value is substantially lower 

than the pKR+ value of 6.1 measured for [72]+ in H2O/MeOH (9/1, v/v).  This suggest 

that the acidity of [72]+ increases as the polarity of the solution increases.   
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Figure 27. Spectrophotometric titration curve of [72]+ in H2O.  The absorbance was 
measured at 322 nm.  The experimental data was fitted to eq. 1 using ε([72]+) =  7300 M-

1 cm-1, ε(72-OH) = 2500 M-1 cm-1, and pKR+ = 5.3(±0.08). 
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 Next, we turned our attention to the case of fluoride and measured the binding 

constant in pure water at pH 4.9.  Working at more acidic pH was not an option because 

of the competitive protonation of the fluoride anion.  However, at this pH, hydroxide 

binding to the boron center of [72]+ becomes competitive, a phenomenon that had to be 

accounted for the fitting the experimental binding isotherm (Figure 28).  The resulting 

fluoride binding constant in pure water is equal to 30000(±5000) M-1again indicating 

that [72]+ is more Lewis acidic in pure water (Figure 29, Table 8).  This observation 

further supports that maximizing hydrophobic effects by increasing the water content of 

the medium leads to an increase of the acidity of the receptor.  To finish these studies, 

we decided to focus on the response that the receptor [72]+ would give in pure water in 

the presence of fluoride ions near the secondary standard (2 ppm) set by the EPA.  To 

this end, we measured the extent of absorbance quenching experienced by [72]+ (3.67 × 

10-5 M) in the presence fluoride ions (100 µM or 1.9 ppm) in water.  At pH 4.9, a easily 

detectable 63% quenching of the absorbance is observed thereby demonstrating that 

[72]+ is competent for fluoride sensing at the permissible level in pure water (Figure 29).  

This test can also be carried out at pH 6 where hydroxide binding to [72]+ occurs (Figure 

30).  Despite this competitive process, an absorbance quenching of 50% is observed 

once again pointing to the performance of [72]+
 as a fluoride binder in pure water. 
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Figure 28. Derivation of the equation used to fit the fluoride titration data when 
hydroxide binding to the borane is competitive. 
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Figure 29.  Left: Absorbance change of a solution of [72]+
 after successive additions of 

fluoride anions in H2O (10mM pyridine buffer, pH 4.9); right: The absorbance was 
measured at 310 nm. Experimental data and calculated 1:1 binding isotherm with K = 
30000 (±5000) M-1 using ε([72]+) = 7300 M-1 cm-1, ε(72-F) = 4900 M-1 cm-1 and ε(72-
OH) = 2500 M-1 cm-1.  The second experimental point of the titration corresponds to a 
solution containing 100 µM or 1.9 ppm of fluoride ions; a 63% absorbance quenching is 
observed at this point. 
 

 

Table 8. Absorbance of a solution of [72]+ after successive additions of fluoride anions 
in water. 
 

Cfluoride Absexp Abscalc Cfluoride Absexp Abscalc 
0.000000 0.295000 0.294433 0.000199 0.207000 0.206590 
0.000050 0.245000 0.245297 0.000248 0.203000 0.202885 
0.000100 0.223000 0.223247 0.000297 0.198000 0.200404 
0.000149 0.213000 0.212555 0.000346 0.194000 0.198654 
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Figure 30. Absorbance change of a solution of [72]+ after addition of 1.9 ppm fluoride 
in pure water (3 mL, 2.97 x 10-5; MES buffer 10mM, pH 6); before (red line) and after 
(blue line). The absorbance was decreased by 50%. 
 

 

2.6. Conclusion 

 The results presented in this paper show that the 1-dimesitylboryl-4-phosphonio-

benzenes [14]+, [70]+, [71]+, and [72]+ are water stable and reversibly form the 

corresponding hydroxide complexes under basic conditions.  More importantly, we also 

show that the Lewis acidity of these cationic boranes depends on the nature of the 

phosphorus substituents and readily increases with the hydrophobic character of the 

phosphonium unit.  This trend can be observed both in the pKR+ value of the different 

cationic boranes as well as in their fluoride binding constants.  While the exact origin of 

this effect is still under study, we propose that the decreased solvation of the most 

hydrophobic cationic boranes facilitates the covalent ion pairing process that occurs 

upon reaction with fluoride.  In the series of compound studied, the resulting Lewis 

acidity increase is substantial and exceed one order of magnitude on going from [14]+ to 

[72]+.  In turn, [72]+ is sufficiently fluorophilic to bind fluoride ions below the EPA 

contaminant level.  These results indicate that phosphonium boranes related to [72]+ 
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could be used as molecular recognition units in chemosensors for drinking water 

analysis. 

 

2.7. Experimental Section 

 General Considerations. [14]I and (4-bromophenyl)dimesitylborane was 

prepared by following the known method. Iodoethane, 1-iodidopropane, dimesitylboron 

fluoride, potassium fluoride, nickel(II) bromide, triphenyl and potassium bromide were 

purchased from Aldrich, methyl iodide from Across. Solvents were dried by passing 

through an alumina column (toluene, acetonitrile), using activated 4 Å molecular sieves 

(benzonitrile) or reflux under N2 over Na/K (Et2O and THF). UV-vis spectra were 

recorded on an Ocean Optics USB4000 spectrometer with a Ocean Optics ISS light 

source. Elemental analyses were performed by Atlantic Microlab (Norcross, GA). pH 

Measurements were carried out with a Radiometer PHM290 pH meter equipped with a 

VWR SympHony electrode. NMR spectra were recorded on Varian Inova 300 FT NMR 

(299.96 MHz for 1H, 121.43 MHz for 31P) and Varian Unity Inova 400 FT NMR (399.59 

MHz for 1H, 375.99 MHz for 19F, 128.19 MHz for 11B, 161.75 MHz for 31P, 100.45 

MHz for 13C) spectrometers at ambient temperature. Chemical shifts δ are given in ppm, 

and are referenced against external BF3·Et2O (11B), CFCl3 (
19F), and 85% H3PO4 (

31P). 

 

 Crystallography. The crystallographic measurements were performed using a 

Bruker APEX-II CCD area detector diffractometer (Mo KR radiation, λ) 0.71069 Å) for 

72-F and 72-OH and a Siemens SMART-CCD area detector diffractometer (Mo-Kα 
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radiation, λ = 0.71069 Å) for 14-OH and [72]Br. In each case, a specimen of suitable 

size and quality was selected and mounted onto a nylon loop. The structure was solved 

by direct methods, which successfully located most of the non-hydrogen atoms. 

Subsequent refinement on F
2 using the SHELXTL/PC package (version 5.1) allowed 

location of the remaining non-hydrogen atoms. 

 

 Synthesis of [70]I.  Iodoethane (0.1 mL, 1.25mmol) was added to a solution of 

1-dimesitylboryl-4-diphenylphosphinobenzene (50 mg, 0.098 mmol) in MeCN (4 mL) at 

room temperature. The mixture was refluxed overnight and cooled to room temperature 

(rt).  The solvent was removed in vacuo to yield a residue which was washed with Et2O 

(5 mL) and isolated as a pale yellow solid by filtration.  Additional washing with Et2O (5 

mL) afforded [70]I as a yellow solid (50 mg, 76% yield).  1H-NMR (400 MHz, CDCl3): 

δ 1.39 (d, t, 3H, 3
JH-P=20Hz, 3

JH-H=7.6Hz), 1.96 (s, 12H), 2.29 (s, 6H), 3.81 (d, q, 2H, 

2
JH-P=12.6Hz, 3

JH-H=7.2Hz), 6.82 (s, 4H), 7.67-7.74(m, 8H), 7.78-7.83 (m, 6H).  13C-

NMR (100 MHz, CDCl3): δ 6.93 (d, J=5.5 Hz), 17.72 (d, J=50.9 Hz), 21.22, 23.52, 

117.76 (d, J=85.4 Hz), 120.23 (d, J=83.6 Hz) 128.54, 130.50 (d, J=12.5 Hz), 132.83 (d, 

J=9.5 Hz), 133.69 (d, J=9.5 Hz), 135.09 (d, J=2.7 Hz), 136.43 (d, J=12.2 Hz), 139.83, 

140.49, 140.83, 153.37.  11B-NMR (128 MHz, CDCl3): δ +75.0.  31P-NMR (161 MHz, 

CDCl3): δ +26.26. Anal. Calcd for C38H43BIOP ([70]I+H2O): C, 66.68; H, 6.33. Found: 

C, 66.76; H, 6.19. 
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 Synthesis of [71]I. 1-Iodopropane (0.1 mL, 1.03mmol) was added to a solution 

of 1-dimesitylboryl-4-diphenylphosphinobenzene (50 mg, 0.098 mmol) in Toluene (4 

mL) at room temperature. The mixture was refluxed overnight and cooled to rt.  The 

solvent was removed in vacuo to yield a residue which was washed with Et2O (5 mL) 

and isolated as a pale yellow solid by filtration.  Additional washing with Et2O (5 mL) 

afforded [71]I as a yellow solid (50 mg, 75% yield).  1H-NMR (400 MHz, CDCl3): δ 

1.25 (t, 3H, 3
JH-H=7.6 Hz), 1.70 (m, 2H), 1.96 (s, 12H), 2.29 (s, 6H), 3.73 (d, t, 2H, 2

JH-

P=12.4 Hz, 3
JH-H=8 Hz), 6.81 (s, 4H), 7.68-7.84 (m, 14H).  13C-NMR (100 MHz, 

CDCl3): δ 15.37 (d, J=17.1 Hz), 16.60 (d, J=4.2 Hz), 21.21, 23.51, 24.77 (d, J=49.3 Hz), 

117.95 (d, J=85.4 Hz), 120.53 (d, J=83.5 Hz), 128.52, 130.48 (d, J=12.5 Hz), 132.80 (d, 

J=9.5 Hz), 133.67 (d, J=9.9 Hz), 135.05 (d, J=3 Hz), 136.40 (d, J=12.1 Hz), 139.89, 

140.68, 140.82, 153.28.  11B-NMR (128 MHz, CDCl3): δ +78.0.  31P-NMR (161 MHz, 

CDCl3): δ +23.85. Anal. Calcd C39H45BIOP ([71]I+H2O): C,67.06; H, 6.49. Found: C, 

67.05; H, 6.35. 

 

 Synthesis of [72]Br.  A mixture of NiBr2 (0.335 g, 1.53 mmol), PPh3 (0.67 g, 

2.55 mmol) and (4-bromophenyl)dimesitylborane (0.67 g, 1.65 mmol) in benzonitrile 

(30 mL) was heated at 200 °C for 3 h.  After cooling to rt, the solvent was removed in 

vacuo.  The residue was extracted using CH2Cl2 (20 mL) and water (10 mL) containing 

KBr (10 weight %).  The organic layer was separated, dried over MgSO4, filtered and 

concentrated in vacuo to a final volume of about 3 mL.  This concentrate was further 

purified by flash chromatography over silica gel using first ethyl acetate (50 mL) and 
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then methanol (50 mL).  The methanol fraction was then dried under in vacuo to afford 

[72]Br as a pale yellow solid.  Further purification was achieved by recrystallization 

induced by diffusion of Et2O into a concentrated solution of CH3CN (0.55 g, 50 % 

yield). 1H-NMR (300 MHz, CDCl3): δ 1.98 (s, 12H), 2.29 (s, 6H), 6.83 (s, 4H), 7.53-

7.68 (m, 8H), 7.75-7.85 (m, 8H), 7.90-7.95 (m, 3H).  13C-NMR (100 MHz, CDCl3): δ 

21.13, 23.45, 116.96 (d, J=88.8 Hz), 119.73 (d, J=86.9 Hz), 128.50, 130.79 (d, J=11.4 

Hz), 130.86 (d, J=12.6 Hz), 133.43 (d, J=9.9 Hz), 134.22 (d, J=10.3 Hz), 135.89, 136.34 

(d, J=12.6 Hz), 139.99, 140.60, 153.97 (bs).  11B-NMR (128 MHz, CDCl3): δ +75.0.  

31P-NMR (121 MHz, CDCl3): δ +22.71 (s). Anal. Calcd for C42H44BBrO1.5P 

([72]Br+1.5H2O): C, 72.64; H, 6.39. Found: C, 72.58; H, 6.31. 

 

 Synthesis of 14-OH. [1]I (50 mg, 0.077 mmol) was dissolved in H2O/MeOH 

(9/1, v/v, 3 mL) and treated with an aqueous solution of NaOH (2 mL, 2.5 M).  After 

stirring for 30 min, CH2Cl2 (10 mL) was added to the reaction mixture. The organic 

layer was separated, dried over MgSO4, filtered and concentrated in vacuo.  The residue 

was washed with Et2O (5 mL) to afford 14-OH as a white solid (30 mg, 72 % yield).  1H-

NMR (400 MHz, CDCl3): δ 2.00 (s, 12H), 2.19 (s, 6H), 2.54 (d, 3H, 2JH-P=12.8 Hz), 6.62 

(s, 4H), 6.81 (bs, 1H), 6.93 (bs, 1H), 7.48-7.53 (m, 4H), 7.65 (m, 5H), 7.77-7.79 (m, 

2H), 8.61 (bs, 1H).  13C-NMR (100 MHz, CDCl3): δ 10.15 (d, J=59.2 Hz), 20.72, 25.63, 

108.15 (d, J=91.9Hz), 120.78 (d, J=88.5Hz), 128.74, 129.73, 130.37 (d, J=12.6 Hz), 

131.51, 133.10 (d, J=10.2 Hz), 134.98 (d, J=3Hz), 136.45, 141.12, 156.95.  11B-NMR 
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(128 MHz, CDCl3): δ +0.29.  31P-NMR (121 MHz, CDCl3): δ +18.63. Anal. Calcd for 

C37.33H40.33BClOP (14-OH+0.33CHCl3): C, 77.01; H, 6.98. Found: C, 77.08; H, 7.11. 

 

 Synthesis of 72-OH.  [72]Br (50 mg, 0.075 mmol) was dissolved in H2O (3 mL) 

and treated an aqueous solution of NaOH (2 mL, 2.5 M).  After stirring for 30 min, 

CH2Cl2 (10 mL) was added to the reaction mixture. The organic layer was separated, 

dried over MgSO4, filtered and concentrated in vacuo.  The residue was washed with 

Et2O (5 mL) to afford 72-OH as a white solid (35 mg, 77 % yield).  1H-NMR (400 MHz, 

CDCl3): δ 2.03 (s, 12H), 2.20 (s, 6H), 6.63 (s, 4H), 6.99 (bs, 1H), 7.56-7.67 (m, 14H), 

7.80-7.83 (m, 3H), 8.62 (bs, 1H).  13C-NMR (100 MHz, CDCl3): δ 20.82, 25.56, 105.60 

(d, J=91.1 Hz), 119.74 (d, J=88.8 Hz), 128.43, 130.05 (d, J=12.5 Hz), 131.06, 131.86, 

134.24 (d, J=9.9 Hz), 134.78 (d, J=2.7 Hz), 136.84 (d, J=12.6Hz), 141.47, 156.58.  11B-

NMR (128 MHz, CDCl3): δ +0.16.  31P-NMR (121 MHz, CDCl3): δ +22.44.  Anal. 

Calcd for C42.5H44BCl1O1.5P (72-OH+0.5CH2Cl2+0.5H2O): C, 77.81; H, 6.76. Found: 

C, 75.97, H, 6.70. 

 

 Syntheses of 70-OH and 71-OH.  These two compounds, which have not been 

isolated, were prepared as follows and characterized in situ.  A D2O solution of NaOH 

(0.9 mL, 2.5 M) was mixed with a d4-MeOH solution of the cationic borane salt ([70]I or 

[71]I) (0.1 mL, 0.2 M) in an NMR tube.  The corresponding hydroxide adduct (70-OH or 

71-OH), which precipitated immediately upon mixing, was extracted with CDCl3.  The 

CDCl3 layer, which separated at the bottom of the NMR tube, was analyzed by 
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multinuclear NMR spectroscopy.  NMR data for 70-OH:  1H-NMR (400 MHz, CDCl3): 

δ 1.37 (d, t, 3H, 3
JH-P = 19.2 Hz, 3

JH-H = 7.6 Hz), 1.95 (s, 12H), 2.18 (s, 6H), 2.90 (m, 

2H), 6.61 (s, 4H), 7.00 (bs, 1H), 7.52-7.67 (m, 10H), 7.77-8.00 (m, 2H), 8.47 (bs, 1H). 

11B-NMR (128 MHz, CDCl3): δ +0.36. 31P-NMR (161 MHz, CDCl3): δ +23.64.  NMR 

data for 71-OH:  1H-NMR (400 MHz, CDCl3): δ 1.14 (t, 3H, 3
JH-H = 7.2Hz), 1.74 (m, 

2H), 1.96 (s, 12H), 2.18 (s, 6H), 2.81 (m, 2H), 6.61 (s, 4H), 7.00 (bs, 1H), 7.51-7.66 (m, 

10H), 7.76-7.79 (m, 2H), 8.47 (bs, 1H). 11B-NMR (128 MHz, CDCl3): δ +0.25. 31P-

NMR (161 MHz, CDCl3): δ +21.41. 

 

 Synthesis of 72-F.  [72]Br (200 mg, 0.3 mmol) was dissolved in MeOH (5 mL) 

and treated with excess of KF which resulted in the formation of a white solid.  After 30 

min, the solid was isolated by filtration, washed with MeOH, and dried in vacuo to 

afford 72-F as a white solid (100 mg, 55% yield).  1H-NMR (300 MHz, CDCl3): δ 2.01 

(s, 12H), 2.19 (s, 6H), 6.62 (s, 4H), 7.06 (bs, 1H), 7.54-7.70 (m, 14H), 7.78-7.85 (m, 

3H), 8.41 (br, 1H).  13C-NMR (100 MHz, CDCl3): δ 20.87, 25.03, 106.61 (d, J=91.9 Hz), 

119.50 (d, J=89.2 Hz), 128.25, 130.16, 131.39, 132.24, 134.25, 134.89, 136.16, 141.69, 

153.08.  11B-NMR (128 MHz, CDCl3): δ +5.22.  31P-NMR (121 MHz, CDCl3): δ +22.58.  

19F-NMR (376 MHz, CDCl3): δ −173.83. Anal. Calcd for C42.17H41.33BCl0.33FP (72-

F+0.17CH2Cl2): C, 81.61; H, 6.71. Found: C, 81.57; H, 6.65. 

 

 Syntheses of 70-F and 71-F.  These two compounds, which have not been 

isolated, were prepared by mixing a d4-MeOH solution of the cationic borane salt ([70]I 
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or [71]I) (15 mg) with excess of KF in an NMR tube.  The resulting clear solution was 

analyzed by multinuclear NMR spectroscopy. NMR data for 70-F:  1H-NMR (400 MHz, 

CD3OD): δ 1.37 (d, t, 3H, 3JH-P=19.6 Hz, 3JH-H=7.2 Hz), 1.90 (s, 12H), 2.16 (s, 6H), 3.30 

(m, 2H), 6.54 (s, 4H), 7.30 (bs, 1H), 7.43 (bs, 2H), 7.74-7.81 (m, 8H), 7.85-7.89 (m, 

2H), 8.15 (bs, 1H). 11B-NMR (128 MHz, CD3OD): δ +4.35. 31P-NMR (121 MHz, 

CD3OD): δ +25.31. 19F-NMR (376 MHz, CD3OD): δ −171.31. NMR data for 71-F:  1H-

NMR (400 MHz, CD3OD): δ 1.17 (t, 3H, J=7.2 Hz), 1.73 (m, 2H), 1.90 (s, 12H), 2.16 (s, 

6H), 3.27 (m, 2H), 6.54 (s, 4H), 7.30 (bs, 1H), 7.42 (bs, 2H), 7.72-7.80 (m, 8H), 7.84-

7.89 (m, 2H), 8.15 (bs, 1H). 11B-NMR (128 MHz, CD3OD): δ +7.47. 31P-NMR (121 

MHz, CD3OD): δ +22.98. 19F-NMR (376 MHz, CD3OD): δ −171.62. 

 

 Acid-base Titration of [14]
+
, [70]

+
, [71]

+
 and [72]

+
 in H2O/MeOH (9/1, v/v).  

A solution of [14]I (3.0 mL, 3.65 × 10-5 M; MES buffer 9mM), [70]I (3.0 mL, 6.0 × 10-5 

M; MES buffer 9mM) [71]I (3.0 mL, 6.3 × 10-5 M; MES buffer 9mM) [72]Br (3.0 mL, 

6.2 × 10-5 M; MES buffer 9mM) was titrated by incremental addition of a solution of 

NaOH in water.  The resulting data was fitted to the equilibrium shown in eq 1 which 

yielded the relevant KR
+.  The solutions were buffered in order to obtain a better control 

of the pH near the equivalence point. 

 

 Acid-base of [72]
+ 

in Pure Water.  A solution of [72]Br (3.0 mL, 5.1 × 10-5 M; 

pyridine buffer, 10mM) was titrated by incremental addition of a solution of NaOH in 

water.  The resulting data was fitted to the equilibrium shown in eq 1 which yielded the 
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relevant KR+.  The solution was buffered in order to obtain a better control of the pH near 

the equivalence point. 

 

 Titration of [14]
+
, [70]

+
, [71]

+
 and [72]

+
 with Fluoride in H2O/MeOH (9/1, 

v/v).  A solution of [14]I (3.0 mL, 6.17 × 10-5 M; pyridine buffer 9mM, pH 4.9), [70]I 

(3.0 mL, 5.43 × 10-5 M; pyridine buffer 9mM, pH 4.9) [71]I  (3.0 mL, 5.9 × 10-5 M; 

pyridine buffer 9mM, pH 4.9) [72]Br (3.0 mL, 5.83 × 10-5 M; pyridine buffer 9mM, pH 

4.6) was titrated by incremental addition of a solution of KF in water (0.3 M for [14]+, 

[70]+ and 0.03 M for  [71]+ and [72]+). 

 
 
 Titration of [72]

+
with fluoride in pure water. A solution of [72]Br (3.0 mL, 

3.67 × 10-5 M; pyridine buffer, 10mM, pH 4.9) was titrated by incremental addition of a 

solution of KF (0.03 M in water). 

 
 Calculation of % decrease when 2ppm amount of fluoride was added (pH 6). 
 
After adding 16 eq of KF into the solution, the absorbance was close to 0.18 at 320nm; 

The initial absorbance = 0.216 

The final absorbance = 0.18 

When 1.9 ppm amount of fluoride is added to the solution, the absorbance was 0.198 

% decrease = (0.216-0.198) / (0.216-0.18) 

                   =  50 % 
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CHAPTER III 

FLUORESCENT TURN-ON SENSING OF CYANIDE IONS IN WATER BY 

PHOSPHONIUM BORANES 

 

3.1. Introduction 

 Cyanide is a highly toxic anion which has become a key component of many 

industrial processes.  It is also produced naturally by a number of higher order plants 

which use it as a protection against predators.  Release of this anion into the environment 

as well as an increase in the farming and consumption of cyanogenic plants such as 

cassava have served to spark a renewed interest in methods that can be used to sense the 

presence of this anion in aqueous media. 

 One of the current strategies adopted for the design of cyanide sensors is based 

on the use of electrophilic organic derivatives which interact with the cyanide anion via 

formation of a new covalent bond.46, 49, 50, 61, 65, 68, 69   Examples of such compounds 

include benzil derivatives, dipyrrole carboxamides, oxazines,, acridinium salts, 

trifluoroacetamides and aldehydes.54  Although advantageous properties have been 

discovered, only a limited number of receptors function in water.54, 66, 68, 71, 73 Some of 

these receptors necessitate basic pH and high cyanide concentrations.  Moreover, the 

reversibility of their reaction with cyanide is not always well documented.  Because of 

these limitations, strategies that rely on the use of Lewis acidic derivatives have been 

considered.  Such derivatives include zinc-porphyrins,146, 147 iron-hemes,84 and transition 

metal complexes148 that interact with the cyanide anion via formation of a strong 
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coordination bond.  This approach, which is typically characterized by elevated binding 

constants, has been successfully applied to the detection of ppm level of cyanides.  Some 

of these receptors have also been shown to be compatible with biological matrices, 

making the detection of cyanide possible directly in plants.76, 77 

 As demonstrated in by a series of recent contributions, three coordinate boranes 

possessing an accessible boron center can also be used as sensors for cyanide anions.7, 17, 

20, 22, 30, 118, 149-151  While neutral boranes can only be used in mostly organic 

environments,30, 149 we have demonstrated that the incorporation of peripheral cationic 

groups in such compounds could be used to enhance their cyanide ion affinity.17, 20, 150  

Examples of such compounds include [13]+ which captures cyanide in water at neutral 

pH.17  Although the cyanide affinity displayed by some of these boranes is very high, 

their practical use remains limited by the nature of the photophysical response observed 

during the recognition event.  Indeed, cyanide coordination leads to population of the 

boron empty p-orbital thus quenching the absorbance and fluorescence of the 

triarylboron chromophore.  The turn-off rather than turn-on response observed in these 

complexes is not ideal from an analytical point of view and constitute one of the major 

limitations affecting the practical use of cationic boranes as cyanide sensors. 
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N
Me Me

Me
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 It has been shown by Wang,8, 28, 29, 152 and later by Fang,135 that bifunctional 

amino-boranes containing both a triarylamine and a triarylborane unit exhibit a CT 

transition involving the amine as a donor and the borane as the acceptor.  These 

researchers have also shown that anion coordination to the boron center leads to a 

quenching of this process, accompanied by a turn-on of the fluorescence of the 

triarylamine.  These anion sensors are neutral and have only been shown to operate in 

organic solvents.  In an effort to develop water compatible turn-on anion sensors, we 

have decided to emulate the elegant approach pioneered by Wang and see if it could be 

translated to the case of cationic boranes.  With this approach in mind, we have now 

decided to investigate the synthesis of cationic borane/fluorophore conjugates, their 

cyanide affinity, and their photophysical responses. 

 

3.2. Electron-accepting properties of phosphonium boranes 

 It occurred to us that phosphonium boranes derived from the neutral 

phosphinoborane 69 via alkylation of the phosphorus atom may constitute an ideal 

cyanide-sensing platform that could be easily conjugated with a pendant fluorophore 

(Figure 31). Prior to engaging into the synthesis of the said conjugates, we decided to 

survey the electron acceptor characteristic of the prototypical phosphonium borane [14]I 

whose synthesis has been previously reported.  The cyclic voltammogram of [14]+ in 

THF displays a single reversible reduction wave at E1/2
Red = –1.81 V vs Fc/Fc+ (Figure 

32).  The reduction potential of [14]+ is distinctively more positive than that of neutral 

boranes,153-162 such as Mes3B which is reduced at –2.73 V (vs Fc/Fc+).160 This reduction 
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potential difference may be assigned to the cationic character of [14]+ which increases its 

electrophilicty.150   
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Figure 31. Synthesis of phosphonium borane/fluorophore conjugates. 
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Figure 32. Left: Cyclic voltammograms of [14]+ in THF with a glassy-carbon working 
electrode (0.1MnBu4NPF6). Scan rates: v = 200 mV s-1 for [14]+. Right: changes in the 
differential pulsed voltammogram of [14]I (0.0016 M) observed upon the addition of 
Et4NCN (0.11 M in CH3CN) to a THF solution. 
 

  

 It also indicates that cationic boranes such as [14]+ should possess enhanced 

electron accepting properties in charge transfer processes. By arbitrarily setting the 

HOMO energy of ferrocene to –4.8 eV,163 these measurements place the LUMO level of 
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cationic boranes such as [14]+ in THF solution at near –3.0 eV. In turn, fluorophores 

whose HOMO and excited state lie respectively below and above –3.0 eV should be 

efficiently quenched by cationic boranes such as [14]+.  On the basis of these 

considerations we decided to focus on the anthracenyl and dansyl chromophores whose 

HOMO and excited state energy fit the energetic requirement (Figure 33). 
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Figure 33. HOMO of anthracenyl164 and N-ethyl dansylamide165 energy values were 
obtained from first oxidation potential values (Eox) measured in acetonitrile against 
ferrocene and calculated by taking the HOMO energy value of ferrocene to be –4.8 eV 
with respect to zero energy level. The first exited state energy was calculated from the 
intercept of the normalized plot of the absorption and fluorescence spectra. 
 

3.3. Cyanide ion complexation of [14]+ 

 Having confirmed the potential of phosphonium boranes to act as acceptors in 

charge transfer processes, we decided to investigate the reactivity of [14]I toward 

cyanide.  To this end, [14]I was allowed to react with NaCN in MeOH which resulted in 

the precipitation of 14-CN in 70% yield.  This zwitterion has been fully characterized.  

Some of its salient spectroscopic features include: 1) a 11B NMR resonance at δ = 

−13.28 ppm indicating the presence of a four-coordinate boron center; 2) an intense IR 
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band at 2165.5 cm−1 confirming the presence of the boron-bound cyano group. 

Examination of the structures shows coordination of the cyanide anion to the boron 

center via a B-C bond of 1.617(5) Å which are comparable to those typically found in 

triarylcyanoborate anions such as [Ph3BCN]− (1.65 Å) (Figure 34, Table 9). The sum of 

the Caryl-B-Caryl angles (Σ(C-B-C)=339.9°) indicates that cyanide binding induces a 

substantial pyramidalization of the boron atom that is similar to that observed in 14-F (Σ

(C-B-C)=339.4°).  This reaction can also be followed electrochemically by monitoring 

the progressive quenching of the reduction wave of the [14]+ induced by incremental 

addition of cyanide.  This quenching, which reflects the binding of the cyanide anion to 

the borane, also indicates that the electron accepting properties of phosphonium boranes 

are neutralized by coordination of an anion to the boron center. 
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Figure 34. Crystal structure of 14-CN with thermal ellipsoids set at 50% probability 
level. Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be 
found in the text.  
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Table 9. Crystal data, data collections, and structure refinement for 14-CN. 
 

Crystal data 14-CN·(H2O)·(CH3OH) 
Formula C39H45BNO2P 

 Mr 601.54 
 crystal size (mm3) 0.40 x 0.11 x 0.08 

crystal system Monoclinic 
space group C2/c 

a (Å) 23.119(3) 
b (Å) 12.2595(16) 
c (Å) 24.171(3) 
α (°) 90 
β (°) 105.593(2) 
γ (°) 90 

V (Å3) 6598.8(15) 
Z 8 

ρcalc (g cm-3) 1.211 
µ (mm-1) 0.119 
F(000) 2576 

  
Data collection  

T (K) 140(2) 
scan mode ω 

hkl range 
-30 → +30, 
-16 → +16, 
-32 → +32 

measd reflns 37715 
unique reflns [Rint] 8073 [0.0926] 

reflns used for refinement 8073 
  

Refinement  
refined parameters 397 

GooF 1.006 
R1,

a wR2
b all data 0.1539, 0.1937 

ρfin (max/min) (e Å-3) 0.722, -0.768 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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3.4. Synthesis and properties of the borane/fluorophore conjugates 

 To test this idea, 69 was treated with 9-bromomethyl anthracene in refluxing 

toluene to afford [73 ]Br in 82% yield. A similar reaction involving 69 and N-(3-

bromopropyl)-5-(dimehtylamino)-1-naphthalenesulfonamide in acetonitrile afforded 

[74]I in 40% yield (Figure 35).   
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Figure 35. Synthesis of [73]Br and [74]I. 

 

 

These phosphonium salts have been fully characterized. In all cases, for long periods of 

time, the 11B NMR resonance measured in CDCl3 is not detected. The presence of a 

phosphonium center gives rise to a characteristic 31P NMR resonance detected at 26.3 

and 23.8 for [73]Br and [74]I, respectively.  The absorbance spectra of these new 

phopshonium boranes are shown in Figure 36.  The low energy part of the absorption 

spectrum of [73]Br in MeOH is dominated by anthracenyl-based absorptions which can 

be identified based on the characteristic vibronic progression.  The broad absorption 

band centered at λmax = 340 nm is close to that observed for simple phosphonium 
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boranes such as [14]+ and can be assigned to the triarylboron chromophore.  In the case 

of [74]I, a single broad absorption band bearing contributions from both the triarylboron 

and dansyl chromophores is observed at λmax = 335 nm in MeOH.   
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Figure 36. UV-vis absorption spectrum of [73]+ (left) and [74]+ (right) in methanol 
solution. 
 

 

 These two compounds are weakly fluorescent with emission bands centered at 

λfluo = 470 nm for [73]+ (Φ = 0.7%) and λfluo = 475 nm for [74]+ (Φ = 1.7%) in 

chloroform.  Bearing in mind that the fluorescence quantum yields of the anthracene and 

dansyl chromophores are typically much higher, the weak fluorescence of [73]+ and 

[74]+ may be the result of an intramolecular charge transfer process involving the excited 

chromophore as the donor and the phosphonium borane as the acceptor.  To further test 

this hypothesis, we decided to monitor the fluorescence intensity of these compounds 

upon cyanide coordination.  As demonstrated electrochemically in the case of [14]+ 

(Figure 32), cyanide binding to [73]+ and [74]+ should result in a neutralization of the 
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electron accepting properties the phosphonium borane moiety thereby inhibiting electron 

transfer.  In line with these expectations, addition of cyanide to [73]+ and [74]+ in 

methanol results in a major increase of the fluorescence intensity of the conjugates 

assigned to the formation of 73-CN and 74-CN, respectively.  This increase can be 

quantified by a comparison of the quantum yields of the phosphonium borane conjugates 

(φ = 0.007 and 0.017 for [73]+ and [74]+) and that of their cyanide adducts (φ = 0.140 

and 0.490 for 73-CN and 74-CN, respectively).  To confirm their formation, 73-CN and 

74-CN have been isolated and characterized.  Both derivatives precipitate spontaneously 

upon addition of KCN to a methanol solution of the corresponding phosphonium 

boranes whose spectroscopic features (δ(11B) = −13.53 ppm for 73-CN and −12.45 ppm 

for 74-CN; ν(CN-) = 2163.2 cm-1 for 73-CN and 2166.8 cm-1 for 74-CN).  The crystal 

structures of 74-CN has also been determined (Figure 37 and Table 10).  This compound 

crystallizes in the P-1 space group.  Examination of the crystal structure confirms the 

presence a pendant dansyl chromophore as well as of a zwitterionic 

phosphonium/cyanoborate moiety.  The structure of the latter is close to that observed in 

14-CN as indicated by the sum of the Caryl-B-Caryl angles (∑(C-B-C) = 338.53°) and the 

B(2)-C(53) bond of 1.616 Å. 
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Table 10. Crystal data, data collections, and structure refinement for 74-CN. 
 

Crystal data 74-CN 
Formula C52H55BN3O2PS 

 Mr 827.83 
 crystal size (mm3) 0.40 x 0.32 x 0.28 

crystal system Triclinic 
space group P-1 

a (Å) 15.5546(11) 
b (Å) 16.4483(10) 
c (Å) 21.8088(14) 
α (°) 72.301(4) 
β (°) 73.109(4) 
γ (°) 66.247(4) 

V (Å3) 4774.1(5) 
Z 4 

ρcalc (g cm-3) 1.152 
µ (mm-1) 0.143 
F(000) 1760 

  
Data collection  

T (K) 110(2) 
scan mode ω 

hkl range 
-17 → +17, 
-18 → +18, 
-24 → +24 

measd reflns 86481 
unique reflns [Rint] 14858 [0.1137] 

reflns used for refinement 14858 
  

Refinement  
refined parameters 1081 

GooF 1.004 
R1,

a wR2
b all data 0.1866, 0.1614 

ρfin (max/min) (e Å-3) 0.329, -0.244 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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Figure 37. Crystal structure of 74-CN with thermal ellipsoids set at 50% probability 
level. Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be 
found in the text.  
 
 

3.5. Cyanide ion complexation of [73]+ and [74]+ 

 Having observed that both [73]+ and [74]+ can be readily converted into their 

corresponding cyanide adduct, we decided to determine their cyanide binding constants 

in a protic solvent such as MeOH.  To this end, UV-vis titrations experiments were 

carried out by addition of increasing amounts of cyanide to solution of the cationic 

boranes. Binding of the cyanide to the boron center of [73]+ and [74]+  resulted in a 

quenching of the absorption band of the triarylboron chromophore resulting a net 

decrease of the absorbance in the 300 − 370 nm range.  The resulting data was fitted to a 

1:1 binding isotherm affording binding constants of 1 (±0.1) × 106 M−1 for [73]+ and K = 

3 (±0.5) × 106 M−1for [74]+ (Figures 38 and 39, Tables 11 and 12) .  A complete 
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quenching of the band was not observed because both the anthryl and dansyl 

chromophore also absorb in the 300 − 400 nm range. 
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Figure 38.  Left: Absorbance change of a solution of [73]Br after successive additions of 
cyanide anions; right: The absorbance was measured at 340 nm. Experimental data and 
calculated 1:1 binding isotherm with K = 1(±0.2) × 106 M-1 using ε([73]+) =  10500 M-1 
cm-1 and ε(73-CN) = 2600 M-1 cm-1. 
 

 

Table 11. Absorbance of a solution of [73]Br after successive additions of cyanide 
anions in MeOH. 
 

Ccyanide Absexp Abscalc Ccyanide Absexp Abscalc 
0.0000E+00 0.651 0.651 5.8824E-05 0.233 0.224 
9.9668E-06 0.569 0.572 6.8404E-05 0.205 0.193 
1.9868E-05 0.493 0.493 7.7922E-05 0.185 0.179 
2.9703E-05 0.422 0.417 8.7379E-05 0.175 0.172 
3.9474E-05 0.350 0.343 9.6774E-05 0.170 0.168 
4.9180E-05 0.286 0.276    
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Figure 39.  Left: Absorbance change of a solution of [74]I after successive additions of 
cyanide anions; right: The absorbance was measured at 335 nm. Experimental data and 
calculated 1:1 binding isotherm with K = 3(±1) × 106 M-1 using ε([74]+) =  12300 M-1 
cm-1 and ε(74-CN) = 4300 M-1 cm-1. 
 

 

Table 12. Absorbance of a solution of [74]I after successive additions of cyanide anions 
in MeOH. 
 

Ccyanide Absexp Abscalc Ccyanide Absexp Abscalc 
0.00E+00 0.717 0.718 5.29E-05 0.284 0.307 
1.06E-05 0.619 0.632 6.34E-05 0.275 0.267 
2.13E-05 0.527 0.547 7.38E-05 0.273 0.257 
3.18E-05 0.432 0.462 8.42E-05 0.271 0.253 
4.24E-05 0.342 0.380    

 

 

 Encouraged by these elevated binding constants, we decided to test if these 

cationic boranes could be used in water.  While [73]+ was found to irreversibly 

decompose in H2O/MeOH (6/4, v/v), the fluorescence spectrum of a solution of [74]+  at 

pH 7 in H2O/MeOH (6/4, v/v) remained unchanged for 1 hour. Further information into 

the stability of [74]+  was obtained by monitoring its UV-vis spectrum as a function of 

pH.  At pH 5.6, the characteristic absorption band of [74]+ at 333 nm is readily observed 
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indicating that the boron center remains triganol planar (Figure 40).  At pH 6.8, an initial 

decrease of the band is observed signaling the onset of hydroxide binding.  This 

phenomenon is quickly followed by formation of a precipitate assigned to the hydroxide 

adduct.  Such adducts are not unprecedented and have been previously obtained with 

other phosphonium boranes such as [72]+.  In agreement with the formation and 

precipitation of the hydroxide adduct, we found that re-acidification of the solution leads 

to a 98% revival of the absorption band of [74]+ at 333 nm.  These observations indicate 

that the pKR+ of [74]+ cannot be accurately determined because of the precipitation of 74–

OH, and is in the range 7 − 8. 
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Figure 40. Reversibility of the conversion of [74]+ into 74-OH in H2O/MeOH 6/4 vol. (3 
mL; 5.14 × 10-5 M; MES buffer). 
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 Similar complications were encountered when attempting to determine the 

cyanide binding constant of [74]+ in aqueous solutions.  Indeed, a UV-vis titration 

carried out by addition of cyanide to a 51 µM solution of [74]+  resulted in the 

precipitation of the cyanide adduct after addition of only 0.1 equivalents of cyanide.  

Precipitation was not observed when a 5.1 µM solution was employed.  Under these 

conditions, however, the cyanide binding reaction proved to be slow such that an 

accurate determination of the binding constant could not be determined.  Despite these 

limitations, micromolar solutions of [74]+  give a reproducible and highly sensitive 

response to very low concentrations of cyanide.  For example, [74]+  gives a readily 

detectable response to cyanide concentrations as low as 26 ppb (Figure 41), which is 

below the drinking water maximum allowable concentrations recommended by the 

European Union (50 ppb) or EPA (200 ppb).   

 At these concentrations, [74]+  gives a response which can be easily observed by 

the naked eye as shown in Figure 41.  In addition to being highly sensitive for cyanide, 

[74]+  is also very selective.  It shows no response to the presence of other anions such as 

F−, Cl−, Br−, I−, NO3
−, H2PO4

−, SO4
2−, and CH3CO2

−. For example, the addition of 10 

equivalents of these anion to a 4.28 µM solution of [74]+ causes a negligible change in 

fluorescence spectrum. However, more than a 9-fold fluorescence enhancement was 

observed upon cyanide addition (Figure 42). 
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Figure 41. Top: Plots of (I-I0)/I0 in H2O/MeOH (6/4, v/v) at pH 7 (I and I0 refer the 
fluorescent intensity of [74]+ at 500 nm in the presence and absence of cyanide). Each 
data point was obtained after 1h once cyanide was added. Bottom: Visible fluorescence 
changes (under a hand-held UV-lamp) accompanying the formation of 74-CN. 
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Figure 42. Changes in the fluorescence spectrum of a solution of [74]+ (3 mL, 4.28 µM)  
in H2O/MeOH (6/4, v/v) after addition of 10 equiv. of F−, Cl−, Br−, I−, NO3

−, H2PO4
−, 

SO4
2−, and CH3CO2

− (pink) followed by the addition of 10 equiv. of CN− (red). 
 
 

3.6. Conclusion 

 In conclusion, we have demonstrated that cyanide binding to the boron center of 

phosphonium boranes [73]+ and [74]+ results in a turn-on response of the fluorescence of 

the anthracenyl and dansyl chromophores, respectively. This increase can be explained 

by assuming: 1) that the chromophore of [73]+ and [74]+ is quenched via intramolecular 

charge transfer from the excited chromophore to the electron deficient boron center; 2) 

that addition of cyanide to the boron center annuls its electron accepting properties 

leading to a revival of the fluorescence of the chromophore. While [73]+ decomposes in 

water, [74]+ allows for sensitive and selective detection of cyanide with a detection limit 
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of 26 ppb in H2O/MeOH (6/4, v/v). The high affinity of this borane arises from 

favourable Coulombic effects which serve to stabilize the cyanoborate complex against 

dissociation. 

 

3.7. Experimental Section 

 General Considerations.  [14]I was prepared by following the known method. 

Dimesitylboron fluoride and potassium cyanide were purchased from Aldrich, dansyl 

chloride from TCI. Solvents were dried by passing through an alumina column (toluene, 

acetonitrile), reflux under N2 over Na/K (Et2O and THF). UV-vis spectra were recorded 

on an Ocean Optics USB4000 spectrometer with a Ocean Optics ISS light source. 

Elemental analyses were performed by Atlantic Microlab (Norcross, GA). NMR spectra 

were recorded on Varian Inova 300 FT NMR (299.96 MHz for 1H, 121.43 MHz for 31P) 

and Varian Unity Inova 400 FT NMR (399.59 MHz for 1H, 375.99 MHz for 19F, 128.19 

MHz for 11B, 161.75 MHz for 31P, 100.45 MHz for 13C) spectrometers at ambient 

temperature unless otherwise stated. Chemical shifts δ are given in ppm, and are 

referenced against external BF3·Et2O (11B), and 85% H3PO4 (
31P).  

 

 Crystallography.  The crystallographic measurements of 74-CN were performed 

using a Bruker APEX-II CCD area detector diffractometer, with a graphite-

monochromated Mo-Kα radiation (λ= 0.71069 Å). A specimen of suitable size and 

quality was selected and mounted onto a nylon loop. The structure was solved by direct 

methods, which successfully located most of the non-hydrogen atoms. Subsequent 
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refinement on F2 using the SHELXTL/PC package (version 5.1) allowed location of the 

remaining non-hydrogen atoms. 

 The crystallographic measurements of 14-CN were performed using a Siemens 

SMART-CCD area detector diffractometer, with a graphite-monochromated Mo-

Kα radiation (λ= 0.71069 Å). A specimen of suitable size and quality were selected and 

mounted onto glass fiber with apiezon grease. The structure was solved by direct 

methods, which successfully located most of the non-hydrogen atoms. Subsequent 

refinement on F2 using the SHELXTL/PC package (version 5.1) allowed location of the 

remaining non-hydrogen atoms. 

 

 Synthesis of [73]Br. 9-(bromomethyl)anthracene (110 mg, 0.4 mmol) was added 

to a solution of 69 (200 mg, 0.39 mmol) in toluene (7 mL) at room temperature. The 

mixture was refluxed overnight and cooled to rt. The solvent was removed in vacuo to 

yield a powder which was recrystallized from dichloromethane and n-pentane. The solid 

was isolated by filtration, washed with n-pentane and dried in vacuo to afford [73]Br as 

a yellowish solid (250 mg, 82% yield). 1H-NMR (300 MHz, CDCl3) δ 1.87 (s, 12H), 

2.28 (s, 6H), 6.32 (d, 2H, JH-P=14.4Hz), 6.79 (s, 4H), 7.08 (t, 2H, J=7.6 Hz), 7.21-7.24 

(m, 2H), 7.39-7.48 (m, 8H), 7.52-7.58 (m, 4H), 7.64 (t, 2H, J=7.2 Hz), 7.82-7.90 (m, 

4H), 8.33 (d, 1H, J=3.3 Hz). 13C-NMR (100MHz, CDCl3) δ 21.38 (Mes-CH3), 23.69 

(Mes-CH3), 26.04 (d, JC-P=45.6 Hz), 118.01 (d, JC-P=83.5 Hz), 119.03 (d, JC-P=10.6 Hz), 

120.40 (d, JC-P=82.0 Hz), 124.34 (d, JC-P=3.0 Hz), 125.18, 126.71, 128.62, 129.03, 

129.98(d, JC-P=12.9 Hz), 131.16, 131.28(d, JC-P=6.1 Hz), 133.81 (d, JC-P=9.1 Hz), 134.54 
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(d, JC-P=9.1 Hz), 134.92 (d, JC-P=3.0 Hz), 135.73(d, JC-P=12.2 Hz), 139.98, 140.79, 

140.99, 152.89. 11B-NMR (128 MHz, CDCl3) δ no observance. 31P-NMR (121 MHz, 

CDCl3) δ +19.69. Anal. Calcd for C51H47BBrP-0.3H2O([73]Br-0.3H2O): C, 77.87; H, 

6.10. Found: C, 77.29; H, 5.95. 

 

 Synthesis of [74]I. A mixture of N-(3-bromopropyl)-5-(dimehtylamino)-1-

naphthalenesulfonamide (0.55 g, 1.48 mmol), sodium iodide (0.54 g, 3.6 mmol) and 69 

(0.61 g, 1.2 mmol) in acetonitrile (10 mL) was refluxed overnight. After cooling to rt, 

the solvent was removed in vacuo.  The residue was extracted using CH2Cl2 (20 mL) and 

concentrated in vacuo to a final volume of about 5 mL.  This concentrate was purified by 

flash chromatography over silica gel using first ethyl acetate (20 mL) and then methanol 

(20 mL). After methanol was removed in vacuo, the residue was extracted using CH2Cl2 

(20 mL) and water (10 mL).  The organic layer was separated, dried over MgSO4, 

filtered and concentrated in vacuo to afford [74]I a yellow solid. Further purification was 

achieved by washing the solid with Et2O (0.45 mg, 40% yield). 1H-NMR (300 MHz, 

CDCl3) δ 1.90 (bs, 2H), 1.97 (s, 12H), 2.30 (s, 6H), 2.84 (s, 6H), 3.31 (m, 2H), 3.82 (m, 

2H), 6.83 (s, 4H), 7.15 (d, 1H, J=7.5 Hz), 7.43 (t, 1H, J=8.0 Hz), 7.59-7.63 (m, 2H), 

7.64-7.83 (m, 13H),  8.14 (d, 1H, J=6.6 Hz), 8.44 (m, 2H). 13C-NMR (100 MHz, CDCl3) 

δ 20.68 (d, JC-P=52.4 Hz), 21.39, 23.70, 23.88, 42.12 (d, JC-P=17.5 Hz), 45.53 (N-CH3), 

115.52, 117.90 (d, JC-P=85.8 Hz), 119.68, 120.45 (d, JC-P=84.3 Hz), 123.10, 128.71, 

128.77, 128.96, 129.56, 129.94, 130.24, 130.72 (d, JC-P=12.1 Hz), 132.77 (d, JC-P=9.1 

Hz), 133.67 (d, JC-P=9.9 Hz), 135.18, 135.32, 136.62 (d, JC-P=12.1 Hz), 140.10, 140.87, 
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140.99, 151.71, 153.63. 11B-NMR (128 MHz, CDCl3) δ no observation. 31P-NMR (121 

MHz, CDCl3) δ +25.12. IR (film on KBr plate): ν = 2166.8 cm-1 (CN–). MS (ESI) m/z 

calcd C51H55BN2O2PS (M-I) : 801.38, found 801.3569. Anal. Calcd for 

C51.45H55.9BCl0.9IN2O2PS ([74]I-0.45CH2Cl2): C, 63.91; H, 5.83. Found: C, 63.88; H, 

5.80 (1H-NMR shows dichloromethane residue).  

 

 Synthesis of 14-CN. [14]I (20 mg, 0.03 mmol) was dissolved in MeOH (1 mL) 

and treated with a solution of NaCN (4.5 mg, 0.09 mmol) in MeOH (2 mL). The mixture 

was partially evaporated at room temperature to induce crystallization for 1 d. Colorless 

crystals of 14-CN formed was filtered and washed with MeOH. Drying in vacuo gave 

14-CN in a 70% yield. 1H-NMR (300 MHz, CDCl3) δ 1.94 (s, 12H), 2.13 (s, 6H), 2.35 

(d, 3H, JH-P=13.2 Hz), 6.59 (s, 4H), 6.84 (bs, 1H), 7.40-7.47 (m, 6H), 7.57-7.63 (m, 4H), 

7.71-7.77(m, 2H), 8.67 (bs, 1H). 13C-NMR (100MHz, CDCl3) δ 9.32 (d, JC-P=58.9 Hz, 

P-CH3), 20.77, 25.53, 109.03 (d, JC-P=109.0 Hz), 120.54 (d, JC-P=88.0 Hz), 128.57, 

128.81, 129.79, 130.17 (d, JC-P=12.6 Hz), 132.72 (d, JC-P=12.6 Hz), 134.74 (d, JC-P=2.7 

Hz), 137.33, 138.59, 142.03. 11B-NMR (128 MHz, CDCl3) δ −13.28. 31P-NMR (121 

MHz, CDCl3) δ +19.61. Anal. Calcd for C38H39BNP-CH3OH (14-CN-CH3OH): C, 

80.27; H, 7.43. Found: C, 79.98; H, 7.35. IR (film on KBr plate): ν = 2165.5 cm-1 (CN–). 

 

 Synthesis of 73-CN. [73]Br (50 mg, 0.064 mmol) was dissolved in MeOH (5 mL) 

and treated with a solution of KCN (33mg, 0.51 mmol) in MeOH (2 mL) which resulted 

in the formation of a solid. After 30 min, the solid was collected by filtration, washed 
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with MeOH, and dried in vacuo to afford 73-CN as a pale yellow solid (25 mg, 54% 

yield). 1H-NMR (300 MHz, CDCl3) δ 1.98 (s, 12H), 2.19 (s, 6H), 5.30 (2H, d, JH-P=13.5 

Hz), 6.65 (s, 4H), 7.08-7.21 (m, 7H), 7.34-7.39 (m, 7H), 7.45 (bs, 1H), 7.56-7.62 (m, 

4H), 7.98 (2H, d, J=8.1 Hz), 8.51 (bs, 1H), 8.66 (bs, 1H). 13C-NMR (100 MHz, 1,2-

dichloroethane-d4) δ 20.73 (Mes-CH3), 25.67 (Mes-CH3), 26.31 (d, JC-P=50.1Hz), 108.99 

(d, JC-P=86.6 Hz), 118.07 (d, JC-P=84.3 Hz), 118.66 (d, JC-P=10.3 Hz), 123.15, 125.52, 

127.29, 129.09, 129.74, 129.95 (d, JC-P=12.1 Hz), 131.14 (d, JC-P=5.7 Hz), 131.42, 

131.45, 312.74, 134.24 (d, JC-P=9.5 Hz), 135.08 (d, JC-P=3.0 Hz), 137.61, 141.85. 11B-

NMR (128 MHz, CDCl3) δ −13.53. 31P-NMR (121 MHz, CDCl3) δ +17.59. IR (film on 

KBr plate): ν = 2163.2 cm-1 (CN–). 

 

 Synthesis of 74-CN. [74]I (50 mg, 0.054 mmol) was dissolved in MeOH (5 mL) 

and treated with a solution of KCN (33mg, 0.51 mmol) in MeOH (2 mL) which resulted 

in the formation of a solid. After 30 min, the solid was isolated by filtration washed with 

MeOH, and dried in vacuo to afford 74-CN as a pale yellow solid (23 mg, 51% yield). 

1H-NMR (400 MHz, CDCl3) δ 1.56 (bs, 2H), 1.82 (s, 12H), 2.04 (s, 6H), 2.69 (m, 2H), 

2.77 (m, 2H), 2.83 (s, 6H), 6.48 (s, 4H), 6.72 (m, 1H), 7.11 (d, 1H, J=7.2 Hz), 7.39-7.60 

(m, 13H), 7.71-7.74 (m, 2H), 8.08 (d, 1H, J=7.6 Hz), 8.31 (d, 1H, J=8.4 Hz), 8.45 (d, 

1H, J=8.4 Hz), 8.50 (bs, 1H). 13C-NMR (100 MHz, CDCl3) δ 19.40 (d, JC-P=54.7 Hz), 

20.81, 23.92, 25.67, 42.10 (d, JC-P=16.7 Hz), 45.51, 109.89 (d, JC-P=88.9 Hz), 115.53, 

118.64, 119.07 (d, JC-P=85.5 Hz), 119.30, 123.07, 128.72 (d, JC-P=12.9 Hz), 128.92, 

129.57, 129.92, 130.20, 130.30 (d, JC-P=12.2 Hz), 131.12, 132.85, 133.54 (d, JC-P=9.8 
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Hz), 134.77, 135.31, 137.89 (m), 141.86, 145.98, 149.14, 151.76, 170.82. 11B-NMR 

(128 MHz, CDCl3) δ −12.45. 31P-NMR (161 MHz, CDCl3) δ 23.90. Anal. Calcd for 

C53.2H59.8BN3O3.2PS (74-CN-1.2CH3OH): C, 73.76; H, 6.96. Found: C, 73.28; H, 6.76 

(1H-NMR shows methanol residue). IR (film on KBr plate): ν = 2166.8 cm-1 (CN–). 

 

 UV-vis Titration Experiments. A solution of [73]Br (3.0 mL, 6.20 × 10-5 M), 

[74]I (3.0 mL, 5.83 × 10-5 M) was titrated by incremental addition of a solution of KCN 

in methanol. 

 

 Anion selectivity test. To a solution of [74]+ in H2O/MeOH 6/4 vol. (3 mL, 4.28 

× 10-6 M; pH 7; 6 mM HEPES buffer) was added 10 equiv. of X− (X = F, Cl, Br, I, NO3, 

H2PO4, CH3CO2) and SO4
2−. After 10 min, to a solution of [74]+ containing all anions 

was added 10 equiv. of CN−. 

 

 Fluorescence titration. Compound [74]I in H2O/MeOH 6/4 vol. (3.0 mL, 5.10 

× 10-6 M, pH 7, 6 mM MES buffer) was titrated by incremental addition of KCN in 

water (0.00015 M). Each data point was recorded after 1h once cyanide was added. 

 

 Electrochemistry. Changes in the differential pulsed voltammogram of [14]
+ 

(0.0016 M) observed upon the addition of Et4NCN (0.11 M in CH3CN) to a THF 

solution. 
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CHAPTER IV 

AZIDE ION RECOGNITION IN WATER/CHCl3 USING A CHELATING 

PHOSPHONIUM BORANE AS A RECEPTOR* 

 

4.1.Introduction 

Like cyanide, azide (N3
−) is a toxic anion which binds to and deactivates 

cytochrome oxidase enzymes.  This anion is also found in explosives such as NaN3 

or Pb(N3)2 used in airbags and detonators, respectively. Because of its toxicity, as 

well as its use in explosive devices, the development of simple methods for the 

molecular recognition of N3
− are of interest.166, 167  Earlier contributions have shown 

that this anion can be selectively captured by organic168 or bimetallic169-171 hosts to 

form complexes in which each extremities of the N3
− anion forms hydrogen or 

coordination bonds with the binding sites of the host.  More recently, the chelation of 

this anion by group 13 bidentate Lewis acids has been reported172, 173 leading us to 

question whether water compatible polyfunctional boranes could be used for the 

molecular recognition of this anion in aqueous environments. 

 As part of our interest in the chemistry of cationic boranes,14, 16, 18-22, 107, 114, 

129, 139-142, 150, 174 we have recently reported the synthesis of [15]+ (as a I− salt) and 

investigated its affinity for halide anions.19 In the context of these studies, we found   

____________ 
∗ Reprinted in part with permission from, “Azide ion recognition in water−CHCl3 using a 
chelating phosphonium borane as a receptor”; Kim, Y.; Todd, W. H.; Bouhadir, G.; 
Bourissou D; Gabbaï, F. P.; Chem. Commun., 2009, 3729-3731, Copyright 2009 by the 
Royal Society of Chemistry. 
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that [15]
+
 complexes F− in MeOH to form the zwitterionic fluoroborate 15-F in 

which the F− anion is asymmetrically chelated by the B/P+ bidentate Lewis acid.  In 

parallel, we have also shown that PhN3 reacts with ortho-(Mes2B)C6H4(P(i-Pr)2) to 

afford the phosphazide 75 thus suggesting that the boron and phosphorus atom of 

such compounds are well positioned to interact with the terminal nitrogen atom of an 

organic azide.175  In this paper, we now show that [15]+ can be used for the 

complexation of N3
−.  We also report that this complexation is selective in biphasic 

organic solvent/water mixtures. 
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4.2. Hydroxide anion complexation 

 In the initial phase of this work, we decided to carefully investigate the 

behavior of [15]+ in aqueous solution.  Having previously noted that [15]+ is not 

stable at neutral pH,19 its behavior at acidic pH was investigated by UV-vis 

spectrocopy.  At pH 2.3, the characteristic absorption band of [15]+ at 330 nm can be 

readily observed indicating that the boron center retains sp2 hybridization.9  Upon 

elevation of the pH to 3.5, the intensity of this band decreases before precipitation of 

a new product occurs.  Acidification of the solution leads to the rapid disappearance 
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of this new product and triggers a resurection of the original absorption spectrum of 

[15]+ (Figure 43). 
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Figure 43. Reversibility of the conversion of [15]+ into 15-OH in H2O/MeOH 9/1 vol. (3 
mL; 6.7 × 10-5 M; 9 mM phosphate buffer). 
 

 

These observations suggest that the new product is the hydroxide adduct ortho-

(Mes2(HO)B)C6H4(PMePh2) (15-OH).  Its formation at such a low pH suggests that 

the pKR+ of [15]+ (eq. 1) which cannot be accurately determined because of the 

precipitation of 15-OH, is in the 3-4 range.  This value is much lower than that 

measured for [para-(Mes2B)C6H4(PMePh2)]+ (pKR+ = 7.3)174 thus confirming that 

[15]+ is a stronger Lewis acid which cannot be used in neutral water. 
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 In an effort to overcome this limitation while still being able to use [15]+ for 

the capture of aqueous anions, we decided to consider the use of a biphasic solvent 

mixture. To this end, we investigated the behavior of [15]+ (0.0125 M) in D2O/CDCl3 

(1/3, v/v) by monitoring the 31P and/or 1H NMR spectrum of the organic phase.  

After 2.5 hours, analysis of the organic phase indicated the presence of [15]+ as the 

major species (91%, δ( 31P) 23.9 ppm) and 15-OH as a minor species (9%, δ(31P) 20.8 

ppm) (Figure 44). In agreement with this view, acidification of the aqueous phase (by 

addition of HBr, 0.07 M) leads to complete disapperance of 15-OH leaving [15]+ as 

the only remaining species.  The 11B NMR resonance of 15-OH at 0.2 ppm is close to 

the value of 0.3 ppm observed for para-(Mes2(HO)B)C6H4(PMePh2).174 Formation of 

15-OH is quantitative when 1.2 eq of NaOH is added to the aqueous phase. 
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Figure 44. Synthesis of 15-OH and 15-N3.  

 

 

4.3. Azide ion complexation 

 Encouraged by these observations, we set out to investigate the ability of 

[15]+ to capture anions in D2O/CDCl3. When 2 eq. of the sodium salts of Cl−, Br−, I−, 



 98 

NO3
−, H2PO4

− were used, no new species (except for 15-OH) could be detected in the 

organic phase indicating the lack of affinity of [15]+ for these anions.  In the case of 

F− (2 eq.), analysis of the organic phase after 20 minutes indicated the formation of 

15-F δ( 31P) 28.3 ppm, JP-F =24.0 Hz ) in 7% yield (as well as 15-OH in 10% yield). 

The low yield observed for 15-F suggests that its formation is disfavored by the 

efficient solvation of F− in the aqueous phase. By contrast, a rapid reaction was 

observed with N3
− leading to the formation of 15-N3 in 66% yield (as well as 15-OH 

in 8% yield) after 20 min as indicated by the detection of a new 31P NMR resonance 

at 25.5 ppm (Figure 44).  The rapid formation of 15-N3 not only corroborates the 

lipophilic behavior of N3
−,176 but also suggests a strong interaction of the anion with 

the Lewis acidic borane.  In order to shed light on this point, 15-N3 was isolated by 

reaction of [15]I with NaN3 in methanol and fully characterized. The diagnostic 

antisymmetric stretching vibration of the azide group177 was observed at 2109 cm-1 in 

the IR spectrum. Examination of the 13C-NMR spectrum indicates that the 

phosphorus bound phenyl groups are either equivalent or in rapid exchange. To 

clarify this point, the crystal sturcture of  15-N3 was determined (Figure 45, Table 

13). 

 The DFT optimized structure of 15-N3 is in excellent agreement with that 

experimentally determined (Figure 46, Table 14). In particular, the P(1)-N(1) separation 

of 2.799 Å is almost identical to that observed in the crystal (2.790(2) Å). A Natural 

Bond Orbital analysis performed at the optimized geometry indicates that the P(1)-N(1) 

bond is best described as donor-acceptor interaction involving a nitrogen lone-pair as a 



 99 

donor and the phosphorus-carbon σ*-orbital as the acceptor (Figures 47). Moreover, 

zeroing the Kohn-Sham matrix elements corresponding to the lp(N)→σ*
(P-C) interaction 

leads to an increase of the total energy of the molecule by a deletion energy of 5.8 

kcal/mol. This deletion energy, which provides a measure of the strength of the 

lp(N)→σ*
(P-C) interaction, is comparable to that of a strong hydrogen-bond,183 and very 

similar to that computed for the lp(F)→σ*
(P-C) interaction present in 15-F (5.0 kcal/mol).19  

It is important to point out that 15-N3 is further stabilized by favourable electrostatic 

effects. 

 

 

 

 

 

Figure 45. Crystal structure of 15-N3 with thermal ellipsoids set at 50% probability level. 
Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be found in 
the text.  
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Table 13. Crystal data, data collections, and structure refinement for 15-N3. 
 

Crystal data 15-N3 
formula C37H39BN3P 

Mr 567.49 
crystal size (mm3) 0.55 x 0.15 x 0.09 

crystal system Monoclinic 
space group P2(1)/n 

a (Å) 17.702(2) 
b (Å) 8.9863(12) 
c (Å) 19.979(3) 
α (°) 90 
β (°) 95.172(9) 
γ (°) 90 

V (Å3) 3165.3(7) 
Z 4 

ρcalc (g cm-3) 1.191 
µ (mm-1) 0.117 
F(000) 1208 

  
Data collection  

T (K) 213(2) 
scan mode ω 

hkl range 
-20 → +20, 
-10 → +10, 
-22 → +22 

measd reflns 27389 
unique reflns [Rint] 4956 [0.0582] 

reflns used for refinement 4956 
  

Refinement  
refined parameters 379 

GooF 1.008 
R1,

a wR2
b all data 0.0777, 0.1496 

ρfin (max/min) (e Å-3) 0.253, -0.238 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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Figure 46. DFT optimized structure of 15-N3. 
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Figure 47. NBO contour plot showing the lp(N)→σ*
(P-C) interaction of 15-N3. 
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Table 14. Atom coordinates for the optimized structure of 15-N3. 
 

Center Coordinates (Angstroms) Center Coordinates (Angstroms) 

Number X Y Z Number X Y Z 

P1 2.087396 -0.09284 -0.13657 C42 1.204399 -0.81734 3.761332 
N2 -0.51783 -0.59198 -1.02889 H43 1.795228 -1.07379 4.634599 
N3 -0.87403 -1.32506 -1.91827 C44 4.860995 -0.58152 0.298452 
N4 -1.1146 -2.03057 -2.79724 H45 4.699341 -1.55626 -0.1469 
C5 6.145506 -0.22296 0.726817 C46 -6.72005 -2.58813 0.772745 
H6 6.964828 -0.92451 0.608859 H47 -7.44614 -1.99066 1.33583 
C7 4.024884 1.577374 1.027721 H48 -7.14746 -2.76275 -0.22467 
H8 3.210023 2.281549 1.163157 H49 -6.63214 -3.56492 1.262163 
C9 -2.39562 1.118725 -2.59471 C50 -5.38053 -1.89141 0.682748 

H10 -3.11489 1.642483 -3.23522 C51 5.307832 1.930671 1.452379 
H11 -1.67773 0.629553 -3.26434 H52 5.476465 2.904279 1.900557 
H12 -2.93651 0.334375 -2.06275 C53 -0.86322 2.865417 0.480185 
C13 2.048502 -2.87538 -0.42972 C54 2.238678 -4.07079 -1.12959 
H14 1.711607 -2.90046 0.600752 H55 2.058553 -5.01737 -0.63146 
C15 -0.18696 -0.6976 3.843193 C56 -0.56582 2.77267 1.971328 
H16 -0.69428 -0.86194 4.789391 H57 -0.48939 3.780019 2.395294 
C17 2.264843 -1.6412 -1.06994 H58 -1.35611 2.248186 2.515127 
C18 6.37134 1.030965 1.302062 H59 0.368922 2.249238 2.199241 
H19 7.36732 1.307155 1.632433 C60 -4.051 0.174071 0.56785 
C20 -0.34327 -0.15248 1.434172 C61 -4.13988 1.689819 0.669347 
C21 1.078807 -0.27522 1.37728 H62 -5.13028 1.976153 1.040593 
C22 -1.32641 1.772949 -0.31931 H63 -3.39728 2.107157 1.353718 
C23 1.763805 1.307915 -1.26273 H64 -3.99219 2.187585 -0.29367 
H24 2.662468 1.477446 -1.86358 C65 -0.92495 -0.37561 2.705209 
H25 0.899182 1.106002 -1.88974 H66 -2.00457 -0.30828 2.78061 
H26 1.54857 2.206408 -0.67907 C67 2.642401 -4.04635 -2.46975 
C27 -4.18784 -2.61021 0.592134 H68 2.780157 -4.97525 -3.01283 
H28 -4.22115 -3.69736 0.633901 C69 -1.03199 4.44884 -1.39708 
C29 -5.27971 -0.49847 0.696283 C70 -1.75069 -2.93666 0.436483 
H30 -6.18434 0.092815 0.822266 H71 -1.97483 -3.81463 1.054033 
C31 -1.73006 2.10942 -1.65203 H72 -1.54316 -3.3052 -0.57513 
C32 3.7874 0.314906 0.443814 H73 -0.83726 -2.48618 0.821766 
C33 2.664157 -1.62131 -2.41963 C74 -2.93791 -1.98068 0.461573 
H34 2.8211 -0.68122 -2.93722 C75 -0.71172 4.154302 -0.06982 
C35 1.831003 -0.60383 2.535822 H76 -0.35527 4.956234 0.574114 
H36 2.909311 -0.69461 2.484885 C77 -0.83519 5.833683 -1.97384 
C37 -1.57247 3.409187 -2.15993 H78 -1.69889 6.144995 -2.57361 
H38 -1.90072 3.61363 -3.17769 H79 -0.68958 6.577913 -1.18333 
C39 -2.82762 -0.55206 0.392012 H80 0.04393 5.877151 -2.63203 
C40 2.850573 -2.8215 -3.11337 N81 -1.34777 0.167291 0.155773 
H41 3.146824 -2.79665 -4.15654     
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4.4. Conclusion 

 In summary, the results reported here show that cationic boranes can be used 

for the capture of aqueous N3
− anions under biphasic conditions. The ability of [15]+ 

to transport this anion in organic phases originates from favourable Coulombic 

effects which stabilize the B-N3 linkage against dissociation. Last but not least, the 

high selectivity observed in these phase-transfer reactions most likely results from 

the lipophilic character of the azide anion as well as from its ability to interact with 

both the boron and phosphorus Lewis acidic sites of the receptor. 

 

4.5. Experimental Section 

 General Considerations.  [15]I was synthesized as described in J. Am. Chem. 

Soc., 2008, 130, 10890. Sodium fluoride was purchased from MCB manufacturing 

chemists Inc., sodium azide and sodium hydroxide from Fisher scientific company. 

Solvents were dried by passing through an alumina column (Hexanes, dichloromethane), 

refluxing under N2 over Na/K (diethyl ether). Methanol and chloroform (ACS reagent 

grade) were used as provided. UV-vis and emission spectra were recorded on an Ocean 

Optics USB4000 spectrometer with a Ocean Optics ISS light source. pH Measurements 

were carried out with a Radiometer PHM290 pH meter equipped with a VWR 

SympHony electrode. IR spectra were obtained using a ATI Mattson Genesis Series FT 

infrared spectrophotometer. Elemental analyses were performed by Atlantic Microlab 

(Norcross, GA). NMR spectra were recorded on Varian Unity Inova 400 FT NMR 

(399.59 MHz for 1H, 128.19 MHz for 11B, 100.45 MHz for 13C, 161.75 MHz for 31P) and 
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Varian Inova 500 FT NMR (499.88 MHz for 1H) spectrometers at ambient temperature. 

Chemical shifts are given in ppm, and are referenced against external BF3·Et2O (11B) and 

H3PO4 (
31P).   

 

 Crystallography.  The crystallographic measurements were performed using a 

Bruker APEX-II CCD area detector diffractometer (Mo-Kα radiation, λ= 0.71073 Å) for 

15-N3.  A specimen of suitable size and quality was selected and mounted onto a nylon 

loop.  The structures were solved by direct methods, which successfully located most of 

the non-hydrogen atoms. Subsequent refinement on F2 using the SHELXTL/PC package 

(version 5.1) allowed location of the remaining non-hydrogen atoms. 

 

 Synthesis of 15-N3. [15]I (0.030 g, 0.046 mmol) was dissolved in MeOH (10 

mL) and treated with NaN3 (6 mg, 0.092 mmol) in MeOH. After 30 min, the solid was 

isolated by filtration, washed with MeOH (15.1 mg, 53% yield). 1H NMR (499.88 MHz, 

CDCl3): 1.76 (bs, 12H, Mes-CH3), 2.11 (d, JH-P=13 Hz, 3H, P-CH3), 2.19 (s, 6H, Mes-

CH3), 6.57-6.79 (bm, 4H, Mes-CH), 6.92 (m, 1H, Ar-CH), 7.05 (bm, 1H, Ar-CH), 7.27 

(bm, 5H, Ar-CH), 7.45 (bm, 1H, Ar-CH), 7.59 (bm, 3H, Ar-CH), 7.59-7.62 (bm, 2H, Ar-

CH), 7.69 (bt, 1H, ArCH). 13C NMR (100.5 MHz, CDCl3): δ 14.60 (d, JC-P=65.3 Hz, P-

CH3), 20.78 (Mes-CH3), 24.41 (br, Mes-CH3), 120.02 (d, JC-P=91.9 Hz, P-CPh
ipso), 

124.21 (d, JC-P=14.4 Hz), 129.20 (br, Mes-CH), 129.46 (d, JC-P=12.2 Hz, P-CPh
meta), 

131.165 (br, P-CPh
ortho), 131.70 (d, JC-P=3.8 Hz), 132.51 (d, JC-P=3.1 Hz, P-CPh

para), 

133.60 (Mes-CMe), 136.34 (d, JC-P=18.2 Hz), 140.06 (d, JC-P=16.7 Hz), 141.841 (br), 
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172.497. 11B NMR (128.2 MHz, CDCl3): δ −14.8. 31P NMR (161.75 MHz, CDCl3): 25.5. 

Anal. Calcd for C37H39BN3P: C, 78.31; H, 6.93. Found: C, 79.18; H, 7.07. IR νN3 = 2109 

cm-1. 

 

 Synthesis of 15-OH. [15]I (0.1 g, 0.15 mmol) was dissolved in CHCl3 (3 mL) 

and treated with a solution of NaOH (3 mL, 0.9 mmol, 0.3 M in H2O).  The resulting 

solution was stirred for 3h at rt. The mixture was extracted with dichloromethane (2 x 5 

mL), and the organic layers were combined, dried over MgSO4 and the solvent was 

removed under reduced pressure. The white solid was washed with Et2O followed by 

Hexanes and dried under a vacuum (50 mg, 61% yield). 1H NMR (399.572 MHz, 

CDCl3): δ 1.03 (s, 1H, B-OH), 1.85 (bs, 12H, Mes-CH3), 2.21 (s, 6H, Mes-CH3), 2.28 (d, 

3H, JH-P=14 Hz, P-CH3), 6.61 (s, 4H, Mes-CH), 6.93-7.02 (m, 2H), 7.26-7.48 (m, 9H), 

7.56-7.58 (m, 2H), 7.63-7.67 (m, 1H). 13C NMR (100.5 MHz, CDCl3): δ 16.95 (d, JC-

P=73.7 Hz, P-CH3), 20.76 (Mes-CH3), 24.94 (br, Mes-CH3), 121.59 (d, JC-P=101 Hz, P-

CPh
ipso), 123.48 (d, JC-P=16 Hz). 128.87 (br, Mes-CH), 128.93 (d, JC-P=11.3 Hz, P-

CPh
meta), 131.14 (br, P-CPh

ortho), 131.52 (d, JC-P=3 Hz), 132.50 (Mes-CMe), 135.76 (d, JC-

P=19 Hz), 137.65 (d, JC-P=18.2 Hz), 140.90, 155.56, 178.04. 11B NMR (128.2 MHz, 

CDCl3): δ 0.2. 31P NMR (161.75 MHz, CDCl3): δ 20.8. Anal. Calcd for C37H39BN3P: C, 

81.92; H, 7.43. Found: C, 81.07; H, 7.47. 

 

 Formation of 15-OH Under Biphasic Conditions. This experiment was carried 

out by sonicating a biphasic mixture consisting of [15]I in CDCl3 (0.0087 M, 0.6 mL) 
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and NaOH in water (0.1 mL, 0.063 M).  Conversion into 15-OH was complete after 1h 

30 min as shown by the detection of a single 31P-NMR resonance at δ 20.8 ppm. 

 

 Anion Complexation Under Biphasic Conditions. These experiments were 

carried out by shaking a biphasic mixture consisting of [15]I in CDCl3 (0.0125 M, 0.6 

mL) and the sodium salt of the anion in D2O (0.15 M, 0.1 mL) in a 5 mm NMR tube. 

The reactions were monitored by 31P and 1H NMR spectroscopy. 

 

 Biphasic Hydroxide Binding Test. Mixing a biphasic mixture consisting of 

[15]I in CDCl3 (0.0087 M, 0.6 mL) and NaOH aqueous solution (0.1 mL, 0.063 M) 

using a sonicator. The conversion to 15-OH was complete after 1h 30 min showing one 

peak at δ 20.8 ppm in 31P-NMR.  

 

 Computational Details.  DFT calculations (full geometry optimization) were 

carried out with the Gaussian 03 program using the gradient-corrected Becke exchange 

functional (B3LYP) and the Lee-Yang-Parr correlation functional. Geometry 

optimization of 15-N3 was carried out with the following mixed basis set: 6-31+g(d’) for 

the boron, nitrogen, 6-31+g(d) for the phosphorus atom, 6-31g basis set was used for all 

carbon and hydrogen atoms. Frequency calculations, which were carried out on the 

optimized structures of the compounds, confirmed the absence of any imaginary 

frequencies. The Natural Bond Orbital (NBO) analysis was carried out using the stand 

along PC version of GENNBO 5.0 program.   
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CHAPTER V 

A SULFONIUM BORANE FOR THE SELECTIVE COMPLEXATION OF  

CYANIDE IONS IN WATER* 

 

5.1. Introduction 

 Owing to the presence of low lying σ*-orbitals, sulfonium ions are inherently 

Lewis acidic and can interact with electron-rich substrates to form donor-acceptor 

complexes. Although this phenomenon has been documented,184-189 efforts to use 

sulfonium ions as binding site in Lewis acidic hosts have not been reported.  As part of 

our fundamental interest in the chemistry of polydentate Lewis acidic boranes,190-192 we 

have therefore become interested in probing the synthesis and properties of anion 

receptors containing accessible sulfonium ions.  As an added motivation for these 

studies, we anticipated that the anion binding properties of sulfonium boranes would also 

benefit from attractive Coulombic effects similar to those occurring in other cationic 

boron-based anion receptors.14, 16, 18-22, 107, 114, 129, 139-141, 150, 174 

 

5.2. Synthesis and characterization of a sulfonium borane 

 To test the validity of the aforementioned concepts, we synthesized the cationic 

borane [77]+ which features adjacent sulfonium and boryl moieties connected by a o-

phenylene linker (Figure 48). To obtain a borane that could easily be converted into a 

____________ 
∗ This is the pre-peer reviewed version of the following article:  “Sulfonium Boranes for 
the Selective Capture of Cyanide Ions in Water”; Kim, Y.; Zhao, H.; Gabbaï, F. P.; 
Angew. Chem. Int. Ed., 2009, 48, 4957-4960, Copyright 2009 by Wiley InterScience. 
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cationic derivative, we allowed o-lithiothioanisole193 to react with dimesitylboron 

fluoride in Et2O at 0 °C.  The borane 76 was converted into [77]OTf by reaction with 

MeOTf.  

 

Li

SMe
Mes2BF

Et2O

B

SMe

Mes Mes
B

SMe2

Mes Mes
MeOTf

CH2Cl2

[77]OTf

OTf-

76  

Figure 48. Synthesis of [77]OTf. 

 

 

The salt [77]OTf has been isolated and characterized by multinuclear NMR spectroscopy 

and single crystal X-ray diffraction (Figure 49, Table 15). The detection of a 11B NMR 

resonance at 77 ppm and the presence of a low energy UV-vis absorption band at 340 

nm in MeOH for [77]+ indicates the presence of a coordinatively unsaturated boron 

center which mediates π-conjugation of the aromatic ligands.194-197 The resulting boron-

centered chromophores are fluorescent and give rise to a broad emission band at 464 nm 

for [77]+ (φ = 0.12) when excited at 340 nm in MeOH. As reported for other sulfonium 

salts,198 [77]+ are sensitive to UV light and should therefore not be irradiated for 

extended periods of time. The crystal structure of [77]+ clearly show that: 1) the boron 

center adopts a trigonal planar coordination geometry (∑(C-B-C) = 360.0°); 2) the boron-

sulfur separation of 3.12 Å. A Natural Bond Orbital (NBO) analysis carried out at the 

DFT optimized geometry of [77]+ indicates the presence of a lp(S)→p(B) donor-
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acceptor interaction (Figures 49 and 50, Table 16) whose deletion leads to an increase of 

the total energy of the molecule by Edel = 2.3 Kcal/mol. 

 

 

Figure 49. Top: Crystal structure of [77]OTf with thermal ellipsoids set at 50% 
probability level. The triflate anions and H-atoms are omitted for clarity. Bottom: partial 
view of the molecule of [77]+ showing the contour of the NBOs involved in the 
lp(S)→p(B) donor-acceptor interaction. 
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Table 15. Crystal data, data collections, and structure refinement for [77]OTf. 
 

Crystal data 
 

[77]OTf 
Formula  C27H32BF3O3S2 

Mr  536.46 
crystal size (mm3)  0.35 x 0.13 x 0.13 

crystal system  Monoclinic 
space group  P21/c 

a (Å)  8.5100(17) 
b (Å)  23.287(5) 
c (Å)  13.710(3) 
α (°)  
β (°)  99.22(3) 
γ (°)  

V (Å3)  2681.8(9) 
Z  4 

ρcalc (g cm-3)  1.329 

µ (mm-1)  0.247 
F(000)  1128 

  

Data collection  
T (K)  110(2) 

scan mode ω  

hkl range 
-11 → +11 
-31 → +30 
-17 → +18  

measd reflns  61457 
unique reflns [Rint]  6455 [0.0322] 

reflns used for refinement  6455 
  

Refinement  
refined parameters  325 

GooF  1.005 
R1,

a wR2
b all data  0.0532, 0.1258 

ρfin (max/min) (e Å-3)  0.501, -0.360 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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Table 16. Atom coordinates for DFT optimized structure of [77]+. 
 

Center Coordinates (Angstroms) Center Coordinates (Angstroms) 

Number X Y Z Number X Y Z 

S1 -2.16276 -1.247116 -1.25418 H31 -1.894618 -0.468013 2.457813 
C2 -1.697295 2.977028 -0.991032 C32 -3.562452 4.366673 0.022985 
H3 -1.752598 3.604609 -1.876623 H33 -3.934784 4.531988 -0.993294 
C4 -0.648666 1.10843 0.204195 H34 -3.091635 5.303249 0.350173 
C5 4.035123 1.33114 0.542094 H35 -4.420603 4.189609 0.678846 
H6 4.550554 2.129485 1.068721 C36 -3.79498 -0.76307 -0.590934 
C7 -1.322712 -2.107429 0.096882 H37 -3.622559 0.064607 0.099815 
C8 2.649613 1.198716 0.706204 H38 -4.26752 -1.60512 -0.082405 
C9 0.068604 -3.488059 2.060583 H39 -4.407905 -0.422072 -1.428757 

H10 0.621631 -4.026531 2.822577 C40 0.557433 -2.272977 1.573355 
C11 2.708452 -0.736372 -0.798744 H41 1.491573 -1.877858 1.957851 
C12 -1.82436 -3.331197 0.563259 B42 0.413112 -0.059581 0.250425 
H13 -2.737026 -3.761898 0.165213 C43 -2.63134 -2.590877 -2.405063 
C14 -2.479657 2.400111 1.206743 H44 -1.712297 -3.074992 -2.740723 
H15 -3.131671 2.591882 2.055162 H45 -3.129929 -2.125217 -3.258628 
C16 1.949705 0.137001 0.046943 H46 -3.293548 -3.319614 -1.936102 
C17 -0.131896 -1.522438 0.590994 C47 -1.128567 -4.017212 1.562111 
C18 -1.548904 1.352315 1.288802 H48 -1.512652 -4.959757 1.93557 
C19 1.960386 2.203217 1.612684 C49 2.069208 -1.856257 -1.604661 
H20 2.702763 2.803043 2.146758 H50 2.7718 -2.233191 -2.353694 
H21 1.325135 1.726425 2.365983 H51 1.174611 -1.520391 -2.144247 
H22 1.325023 2.892596 1.045776 H52 1.778011 -2.70493 -0.975478 
C23 0.189104 1.796295 -2.135791 C53 -2.575605 3.223964 0.075328 
H24 -0.095941 2.481476 -2.939254 C54 4.084338 -0.54221 -0.959022 
H25 0.160761 0.778846 -2.546918 H55 4.634412 -1.198034 -1.628668 
H26 1.231791 2.002707 -1.873741 C56 4.774581 0.475947 -0.284721 
C27 -0.730785 1.962708 -0.940306 C57 6.268538 0.634322 -0.43549 
C28 -1.506902 0.550788 2.580091 H58 6.588694 1.655965 -0.209743 
H29 -2.111388 1.03785 3.350618 H59 6.598086 0.389237 -1.450495 
H30 -0.490375 0.458143 2.977711 H60 6.805014 -0.035667 0.250017 
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Figure 50. DFT optimized structure of [77]+. 
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Figure 51. Spectrophotometric titration curve of [77]+ in H2O/MeOH (95/5, v/v).  The 
absorbance was measured at 330 nm.  The experimental data was fitted to eq. 1 using 
ε([77]+) =  9300 M-1 cm-1, ε(77-OH) = 0 M-1 cm-1, and pKR+ = 7.89 (±0.08). Above pH 
7.5 there were precipitations. 
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5.3 Reaction with hydroxide and pH stability range  

 Next, we decided to investigate the Lewis acidity of [77]+ by studying its 

behavior in aqueous solution as a function of pH.  Since hydroxide binding to the boron 

center is expected to interrupt the π-conjugation mediated by the boron vacant p-orbital,9 

we monitored the absorbance of the boron centered chromophore as a function of pH in 

MeOH/H2O (5/95, v/v) and observed that [77]+ is stable up to pH 7.0 (Figure 51). 

Hydroxide binding to [77]+ is reversible as confirmed by the observed revival of the 

absorbance of the boron-centered chromophore upon acidification of the solution (Figure 

52). 
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Figure 52. The reversibility test between [77]+ and 77-OH in H2O/MeOH 95/5 vol. (3 
mL; 4.13 × 10-5 M; HEPES buffer).  
 

 

5.4. Cyanide ion complexation  

 Having established the pH stability range of this novel cationic borane, we 

decided to compare its anion affinity in aqueous solutions. Bearing in mind that anion 

binding to the boron center should results in a quenching of the low energy band 

observed in the spectra of the boranes, these studies were monitored by UV-vis 
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spectroscopy. Addition of 15 eq. of Cl–, Br–, I–, NO3
–, HSO4

–, H2PO4
–, and CH3CO2

– to a 

32 µM solution of [77]+ in H2O/MeOH (95/5, v/v) at pH 7 did not result in any changes 

of the absorption spectrum indicating the absence of any significant interactions. [77]+ 

gave a small but noticeable response in the presence of fluoride as indicated by the 4% 

absorption quenching measured upon addition of 15 eq. of F–.  A much more drastic 

response was observed in the presence of CN–.  Indeed, addition of only 0.2 eq. of CN– 

to a [77]+ (32 µM) resulted in the formation of a precipitate which was identified as 77-

CN. Increasing the amount of cyanide led to higher yields of 77-CN.  The precipitation 

of 77-CN precluded the determination of the cyanide binding constant of [77]+ under 

these conditions. Nevertheless, a titration carried out in H2O/MeOH (6/4, v/v) at pH 7, 

conditions under which 77-CN does not precipitate, showed that the binding constant 

under these conditions exceeds 108 M–1 (Figure 53, Table 17).   
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Figure 53. Left: Absorbance change of a solution of [77]+ after successive additions of 
cyanide anions; right: The absorbance was measured at 335 nm. Experimental data and 
calculated 1:1 binding isotherm with K > 6 × 108 M-1 using ε([77]+) = 9300 M-1cm-1 and 
ε(77-CN) = 0 M-1cm-1. 
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Table 17. Absorbance of a solution of [77]+ after successive additions of cyanide anions 
in H2O/MeOH (6/4, v/v). 
 

Ccyanide Absexp Abscalc Ccyanide Absexp Abscalc 
0 0.695 0.6944 3.28E-05 0.387 0.391447 

1.10E-05 0.59 0.592803 4.37E-05 0.287 0.292244 
2.19E-05 0.488 0.491763 5.45E-05 0.191 0.19529 

 

 

 The identity of 77-CN has been firmly established using conventional 

characterization techniques. Some of its salient spectroscopic features include: 1) a 11B 

NMR resonance at –14.7 ppm indicating the presence of a four coordinate boron center; 

2) an intense IR band at 2162 cm–1 confirming the presence of the boron-bound cyano 

group.20 17, 121 77-CN has also been analyzed by single crystal X-ray diffraction (Table 

18).  The B(1)-C(27) bond connecting the carbon atom of the cyanide anion to the boron 

center (1.636(5) Å) is comparable to those typically found in triarylcyanoborate 

anions199 such as [Ph3BCN]– (1.65 Å).200  The sum of the Caryl-B-Caryl angles (∑(C-B-C) = 

337.7°) indicates substantial pyramidalization of the boron atom.  The B(1)-C(2)-C(1) 

angle of 122.4(3)° is close to the ideal value of 120° indicating that the structure is 

sterically unhindered.  Finally, the centroid of the C(27)-N(1) (CtCN) bond is separated 

from the sulfur atom by only 3.03 Å and form a CtCN-S(1)-C(8) angle of 164.2°. In order 

to investigate the presence of a possible interaction between the sulfur and cyanide atom, 

we carried out an NBO analysis at the DFT optimized structure (Figures 54 and 55, 

Table 19).  This analysis reveals the presence of a π(C≡N)→σ*(S-C) donor-acceptor 

interaction  unexpectedly complemented by a back-bonding lp(S)→π*(C≡N) component.  
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The concomitant deletion of these two interactions leads to an increase of the total 

energy of the molecule by 4.1 Kcal/mol, an energy comparable to that of a strong 

hydrogen bond.183 In addition to providing some energetic stabilization to the complex 

via formation of the aforementioned interactions, the sulfonium moiety flanks one side 

of the boron-bound cyanide anion thus providing steric protection against water 

molecules. 
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Figure 54. Left: Crystal structure of 77-CN with thermal ellipsoids set at 50% 
probability level. Hydrogen atoms are omitted for clarity. Pertinent metrical parameters 
can be found in the text. Right: NBO contour plots showing π(C≡N)→σ*(S-C) (top) and 
lp(S)→π*(C≡N) (bottom) interactions. 
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Table 18. Crystal data, data collections, and structure refinement for 77-CN. 
 

Crystal data 
 

77-CN 
Formula C27H32BNS 

Mr 413.41 
crystal size (mm3) 0.31 x 0.08 x 0.05 

crystal system Monoclinic 
space group P21/c 

 a (Å) 8.6248(17) 
b (Å) 14.589(3) 
c (Å) 18.030(4) 
α (°)  
β (°) 96.42(3) 
γ (°)  

V (Å3) 2254.5(8) 
Z 4 

ρcalc (g cm-3) 1.218 

µ (mm-1) 0.158 
F(000) 888 

   
Data collection  

T (K) 110(2) 
scan mode ω 

hkl range 
-11 → +11 
-18 → +19 
-23 → +23 

measd reflns 21259 
unique reflns [Rint] 5433 [0.0898] 

 
reflns used for refinement 5433 

  
Refinement  

refined parameters 271 
GooF 1.003 

R1,
a wR2

b all data 0.1361, 0.1696 
 ρfin (max/min) (e Å-3) 1.124 and -0.471 

a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 

 

 

 



 118 

Table 19. Atom coordinates for the DFT optimized structure of 77-CN. 

Center Coordinates (Angstroms) Center Coordinates (Angstroms) 

Number X Y Z Number X Y Z 

S1 -2.54259 -1.21869 0.820103 B32 0.402488 -0.0794 0.302541 

N2 -0.25021 -0.85689 2.906286 C33 2.576501 -1.96449 1.532071 

C3 2.608232 1.255747 -0.61628 H34 3.416608 -2.66632 1.581155 

C4 2.038083 0.168843 0.122948 H35 1.723286 -2.50028 1.111027 

C5 4.003493 1.411822 -0.71263 H36 2.306119 -1.69943 2.560071 

H6 4.39197 2.25076 -1.28607 C37 -2.97683 -2.48792 2.059496 

C7 -0.1044 -1.47585 -0.47167 H38 -2.10142 -2.57814 2.705679 

C8 -1.43945 1.275634 -1.21136 H39 -3.2236 -3.4407 1.589008 

C9 0.082611 -0.48335 1.850491 H40 -3.82097 -2.10969 2.64145 

C10 4.904281 0.533514 -0.10759 C41 6.399147 0.747165 -0.19871 

C11 -0.63947 1.183854 -0.0294 H42 6.943599 -0.20235 -0.14396 

C12 -1.37206 -2.07129 -0.27557 H43 6.764402 1.378314 0.623629 

C13 -0.90776 -3.91858 -1.76114 H44 6.677112 1.243635 -1.13538 

H14 -1.20815 -4.84297 -2.24281 C45 -1.82054 3.197501 0.774188 

C15 2.975562 -0.7399 0.720724 H46 -1.91982 3.973467 1.530995 

C16 1.799832 2.314847 -1.35016 C47 -4.07511 -1.14827 -0.172 

H17 2.472865 2.960037 -1.92528 H48 -3.90401 -0.40401 -0.95132 

H18 1.233886 2.954492 -0.66656 H49 -4.87483 -0.80066 0.486867 

H19 1.079018 1.887289 -2.05026 H50 -4.3325 -2.11421 -0.60828 

C20 0.740497 -2.1795 -1.36387 C51 -1.21779 0.424286 -2.45808 

H21 1.728566 -1.7719 -1.54653 H52 -0.16834 0.15523 -2.5904 

C22 4.361897 -0.54422 0.593929 H53 -1.52846 0.988696 -3.34483 

H23 5.033072 -1.26188 1.061362 H54 -1.78436 -0.51574 -2.46095 

C24 0.357474 -3.36263 -1.99698 C55 -3.76961 4.25055 -0.46926 

H25 1.047577 -3.85942 -2.6722 H56 -3.40168 5.255684 -0.23031 

C26 -1.78069 -3.26686 -0.89159 H57 -4.60592 4.04628 0.213691 

H27 -2.76019 -3.69653 -0.70316 H58 -4.17392 4.27477 -1.48697 

C28 -0.81753 2.22885 0.933972 C59 0.093796 2.395957 2.13964 

C29 -2.67505 3.214201 -0.33523 H60 1.108453 2.042461 1.937308 

C30 -2.43943 2.262623 -1.33126 H61 -0.26834 1.845727 3.014954 

H31 -3.018 2.310814 -2.25271 H62 0.154207 3.45542 2.414412 
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Figure 55. DFT optimized structure of 77-CN. 

 

 Encouraged by the results of our initial anion binding studies, we decided to 

investigate the use of [77]+ for the detection of cyanide near the maximum allowable 

concentration of 50 ppb (1.9 µM) recommended by the European Union for drinking 

water.201  To this end, we monitored the fluorescence at 460 nm (λex = 300 nm) of a 4.0 

µM of [77]+ in pure water upon addition of CN–.  Remarkably, addition of 50 ppb of 

CN– resulted in a 33% quenching of the fluorescence after one hour (Figure 56).  Next, 

we decided to test the behavior of [77]+ in the presence of 0.2 ppm (7.7 µM) of cyanide 

which corresponds to the maximum contaminant level set by the US Environmental 

Protection Agency.85  Under these conditions, an almost complete quenching of the 

fluorescence was observed after one hour (Figure 56).  The naked-eye observation of 

this fluorescence quenching can be readily observed when 0.1 ppm of cyanide is added 

to a 4 µM solution of [77]+ as shown in Figure 57.  Thus, [77]+ is one of the rare 
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molecular system competent for cyanide sensing at the sub-ppm level in water.26, 46, 61, 68, 

76, 80, 82-84 
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Figure 56.  Fluorescence spectrum of [77]+ (4.0 µM) in pure water at pH 7 (HEPES 10 
mM) before and after addition of cyanide. 
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Figure 57. Visible fluorescence changes (under a hand-held UV-lamp) accompanying 
the formation of 77-CN.  The reaction conditions are provided in the figure. 
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5.5. Fluoride and azide ion complexation 

 We find that in addition to cyanide, [77]+ forms adducts with fluoride and azide 

in methanol (Figure 58 ). Compound 77-F and 77-N3 have been isolated and 

characterized by NMR as well as X-ray crystallography (Figures 59 and 60, Table 20). 
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Figure 58. Synthesis of 77-F and 77-N3. 

 

 

The 11B NMR resonance was observed at +6.02 ppm for 77-F and +4.41 ppm for 77-N3. 

The crystal structures of these adducts show that: 1) the boron center adopts a 

trigonalplanar coordination geometry (∑(Caryl-B-Caryl) = 340.3° for 77-F and 334.65° for 

77-N3); 2) the F-S separation (2.665 Å) in 77-F and N-S separation (2.900 Å) in 77-N3 

are well within the sum of van der Waals radii of two atoms. 

 The fluoride titration was carried out in methanol by monitoring the absorbance 

of [77]
+ at 340 nm upon fluoride addition (Figure 61, Table 21). Fitting of the resulting 

isotherms to a 1:1 binding model affords a fluoride binding constant K = 4 (±0.5) × 104 

M-1.   
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Figure 59. Crystal structure of 77-F with thermal ellipsoids set at 50% probability level. 
Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be found in 
the text. 
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Figure 60. Crystal structure of 77-N3 with thermal ellipsoids set at 50% probability level. 
Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be found in 
the text.   
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Table 20. Crystal data, data collections, and structure refinement for 77-F and 77-N3. 
 

Crystal data 
 

77-F·(CH2Cl2) 77-N3 
Formula  C27H34BCl2FS  C26H32BN3S 

Mr  491.31  429.42 
crystal size (mm3)  0.31 x 0.26 x 0.16  0.21 x 0.14 x 0.10 

crystal system  Monoclinic  Monoclinic 
space group  P21/n  C2/c 

a (Å)  11.003(7)  29.424(5) 
b (Å)  14.023(9)  8.4596(15) 
c (Å)  17.510(11)  19.142(3) 
α (°) 90 90 
β (°)  106.621(11)  91.055(2) 
γ (°) 90 90 

V (Å3)  2589(3)  4763.9(14) 
Z  4  8 

ρcalc (g cm-3)  1.261  1.197 

µ (mm-1)  0.352  0.154 
F(000)  1040  1840 

   

Data collection   
T (K)  110(2)  123(2) 

scan mode ω  ω  

hkl range 
-14 → +14 
-18 → +18 
-23 → +17  

-38 → +39 
-11 → +11 
-25 → +25  

measd reflns  15762  28428 
unique reflns [Rint]  6116 [0.0899]  5901 [0.0570] 

reflns used for 
refinement 

 6116  5901 
   

Refinement   
refined parameters  289  280 

GooF  1.008  1.006 
R1,

a wR2
b all data  0.0775, 0.1280  0.0815, 0.1221 

ρfin (max/min) (e Å-3)  0.578, -0.448  0.630, -0.510 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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Figure 61. Left: Absorbance change of a solution of [77]+ after successive additions of 
fluoride anions; right: The absorbance was measured at 340 nm. Experimental data and 
calculated 1:1 binding isotherm with K = 4 × 104 M-1 using ε([77]+) = 9200 M-1cm-1 and 
ε(77-F) = 0 M-1cm-1. 
 

 

Table 21. Absorbance of a solution of [77]+ after successive additions of fluoride anions 
in methanol. 
 

Cfluoride Absexp Abscalc Cfluoride Absexp Abscalc 
0 0.534 0.534 0.00017 0.091 0.095 

2.86E-05 0.387 0.371 0.000198 0.075 0.082 
5.71E-05 0.274 0.257 0.000226 0.065 0.072 
8.56E-05 0.195 0.185 0.000254 0.055 0.065 
0.000114 0.145 0.141 0.000282 0.05 0.060 
0.000142 0.113 0.113 0.00031 0.044 0.056 

 

 

5.6. Conclusion 

 In conclusion, we report the synthesis of a sulfonium borane ([77]+) which can be 

used in pure water for the fluorescence detection of cyanide near the EU maximum 

allowable concentration. The high affinity of this borane arises from favourable 

Coulombic effects which serve to stabilize the cyanoborate complex against dissociation.  
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Last, but not least, the sulfonium moiety interacts with the cyanide guest via both 

bonding and back-bonding interactions thus further enhancing the unusual affinity of 

[77]+ toward cyanide. 

 

5.7. Experimental Section 

 General Considerations. Dimesitylboron fluoride, methyl triflate and potassium 

cyanide were purchased from Aldrich, 2-bromothioanisole from TCI. Solvents were 

dried by passing through an alumina column (n-Hexane, dichloromethane) or refluxing 

under N2 over Na/K (Et2O). UV-vis and emission spectra were recorded on an Ocean 

Optics USB4000 spectrometer with a Ocean Optics ISS light source and an Aminco-

Bowman 2 Luminescence spectrophotometer. IR spectra were obtained using a Bruker 

Tensor 37 infrared spectrophotometer. Elemental analyses were performed by Atlantic 

Microlab (Norcross, GA). pH Measurements were carried out with a Radiometer 

PHM290 pH meter equipped with a VWR SympHony electrode. NMR spectra were 

recorded on Varian Unity Inova 400 FT NMR (399.59 MHz for 1H, 128.19 MHz for 11B, 

100.45 MHz for 13C) spectrometers at ambient temperature. Chemical shifts are given in 

ppm, and are referenced against external BF3·Et2O (11B).   

 

 Crystallography. The crystallographic measurements were performed using a 

Bruker APEX-II CCD area detector diffractometer (Mo-Kα radiation, λ= 0.71069 Å) for 

[77]OTf, 77-CN, 77-F and 77-N3. In each case, a specimen of suitable size and quality 

was selected and mounted onto a nylon loop.  The structures were solved by direct 
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methods, which successfully located most of the non-hydrogen atoms. Subsequent 

refinement on F2 using the SHELXTL/PC package (version 5.1) allowed location of the 

remaining non-hydrogen atoms. 

 

 Synthesis of 76.  To 2-bromothioansile (0.83 g, 4.1 mmol) in diethyl ether (20 

mL) was added n-BuLi (1.95 mL, 4.3 mmol, 2.2M in n-hexane) at 0 °C. After stirring 

the mixture for 1h at 0 °C, dimesitylboron fluoride (1.2 g, 4.5 mmol) was added to the 

lithiated compound at the same temperature.  The mixture was allowed to warm to room 

temperature (rt) and stirred over night. The mixture was quenched with water (10 mL) 

and the organic layer was separated, dried over MgSO4, filtered and concentrated in 

vacuo to get yellow solid. .  The residue was washed with n-Hexane (7 mL) to afford the 

desired product as a pale-yellow solid (66 % yield).  1H-NMR (400 MHz, CDCl3) δ 2.01 

(s, 12H), 2.27 (s, 3H), 2.29 (s, 6H), 6.77 (s, 4H), 7.05 (t, 1H, J=7.2 Hz), 7.12-7.18 (m, 

2H), 7.33 (t, 1H, J=7.2Hz).  13C-NMR (100 MHz, CDCl3) δ 16.61, 21.45, 23.10, 124.50, 

124.72, 128.30, 130.95, 134.41, 139.23, 140.94, 142.78, 143.98, 148.00.  11B-NMR (128 

MHz, CDCl3) δ + 74.94 (bs).  

 

 Synthesis of [77]OTf.  Methyl triflate (0.92 mL, 8.1 mmol) was added to a 

solution of (2-(Dimesityl)phenyl)methylsulfide (0.3 g, 0.81 mmol) in dichloromethane 

(10 mL) at room temperature. The mixture was refluxed overnight and cooled to rt.  The 

solvent was removed in vacuo to yield a foamy solid as a crude product. Purification was 

achieved by adding n-Hexane into a concentrated diethyl ether solution of the crude 
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compound and keeping the solution in a refrigerator. The precipitation was filtered and 

washed with n-Hexane (5 mL) to afford the desired product (88% yield).  1H-NMR (400 

MHz, CDCl3) δ 2.04 (bs, 12H), 2.30 (s, 6H), 3.00 (bs, 6H), 6.85 (s, 4H), 7.46 (d, 1H, 

J=6.4 Hz), 7.67 (t, 1H, J=7.2 Hz) 7.85 (t, 1H, J=7.2 Hz), 8.39 (d, 1H, J=8.4 Hz).  13C-

NMR (100 MHz, CDCl3) δ 21.40, 23.02, 28.82, 118.91, 122.09, 129.32, 129.96, 133.97, 

134.26, 134.88, 141.28, 141.80, 153.95.  11B-NMR (128 MHz, CDCl3) δ +77 (bs).  Anal. 

Calcd for C27H32BF3O3S2 ([77]OTf): C, 60.45; H, 6.01. Found: C, 60.15; H, 6.00. 

 

 Synthesis of 77-CN.  [77]OTf (0.1 g, 0.186 mmol) was dissolved in MeOH (10 

mL) and treated with KCN (0.12 g, 1.85 mmo) which resulted in the formation of a 

white solid.  After 30 min, the solid was isolated by filtration, washed with MeOH, and 

dried in vacuo to afford 77-CN as a white solid (61% yield).  1H-NMR (400 MHz, 

CDCl3) δ 1.97 (bs, 12H), 2.24 (s, 6H), 2.75 (s, 6H), 6.73 (s, 4H), 7.29-7.46 (m, 4H). 13C-

NMR (100 MHz, CDCl3) δ 20.93, 25.52, 28.87, 125.50, 127.86, 129.49, 131.96, 134.19, 

138.64, 143.30, 146.77, 166.00. 11B-NMR (128 MHz, CDCl3) δ −14.72 (s). IRνCN = 

2162.4 cm-1. 

 

 Synthesis of 77-F.  [77]OTf (0.08 g, 0.15 mmol) was dissolved in MeOH (5 mL) 

and treated with excess amount of KF which resulted in the formation of a white solid.  

After 30 min, the solid was isolated by filtration, washed with MeOH, and dried in 

vacuo to afford 77-F as a white solid (65% yield). 1H-NMR (400 MHz, CDCl3) δ 1.90 (s, 

12H), 2.23 (s, 6H), 2.75 (s, 6H), 6.66 (s, 4H), 7.30-7.36 (m, 3H), 7.39-7.41 (m, 1H). 13C-
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NMR (100 MHz, CDCl3) δ 21.03, 24.90, 29.24, 123.31, 127.14, 128.85, 128.94, 131.97, 

133.41, 137.39 (d, JC-F=6.1 Hz), 141.87, 151.24 (bs), 168.85 (bs). 11B-NMR (128 MHz, 

CDCl3) δ +6.02 (bs). 19F-NMR (376 MHz, CDCl3) δ −153.32 (s). Anal. Calcd for 

C26H32BFS (2-F): C, 76.84; H, 7.94. Found: C, 75.47; H, 7.75. 

  

 Synthesis of 77-N3.  [77]OTf (0.08 g, 0.15 mmol) was dissolved in MeOH (5 mL) 

and treated with excess amount of NaN3 which resulted in the formation of a white solid.  

After 30 min, the solid was isolated by filtration, washed with MeOH, and dried in 

vacuo to afford 77-N3 as a white solid. 1H-NMR (400 MHz, CDCl3) δ 1.93 (s, 12H), 

2.24 (s, 6H), 2.78 (s, 6H), 6.76 (s, 4H), 7.45-7.50 (m, 2H), 7.60 (t, 1H, J=6.4 Hz), 8.00 

(d, 1H, J=8.0 Hz). 11B-NMR (128 MHz, CDCl3) δ 4.41. 

 

 Acid-base Titration of [77]
+
 in H2O/MeOH (95/5, v/v). A solution of [77]OTf 

(3.0 mL, 3.3 × 10-5 M; HEPES 9.5mM) was titrated by incremental addition of a solution 

of NaOH in water. The resulting data was fitted to the equilibrium shown in eq 1 and 

KR+ values were converted to pKR+ values. 
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 Cyanide Titration. A solution of [77]OTf (3.0 mL, 7.47 × 10-5 M; H2O/MeOH 

6/4 vol.; HEPES buffer 6mM, pH 7) was titrated by incremental addition of a solution of 

KCN in water (6.6 × 10-3 M). 

 

 Fluoride Titration. A methanol solution of [77]OTf (3.0 mL, 5.80 × 10-5 M) 

was titrated by incremental addition of a solution of KCN in water (1.72 × 10-2 M). 

 

 Selectivity Test. To a solution of [77]+ in 95:5 H2O/MeOH (3 mL, 3.2 × 10-5 M; 

pH 7; 9.5 mM HEPES buffer was added 5 µL of a 0.3 M solution of X− (X = F, Cl, Br, I, 

NO3, HSO4, CH3CO2 and H2PO4). Only F− showed absorbance at λ=330 nm changed (4 

% decreased). The absorbance remained unchanged for other anions. 

 

 Fluorescence Measurements. Measurement was carried out SLM/AMINCO, 

Model 8100 spectrofluorometer equipped with a xenon lamp. Because of the known 

light sensitivity of sulfonium salts (see for example W. Zhou, S. M. Kuebler, D. Carrig, 

J. W. Perry, and S. R. Marder J. Am. Chem. Soc. 2002, 124, 1897-1901), irradiation time 

was minimized by opening the excitation shutter only during the time necessary to 

record each spectrum. The same precautions were taken when irradiating the cells with 

the hand-held UV lamp used to take the pictures. The quantum yields were measured 

using anthracene as a standard. 
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 Computational Details. DFT calculations (full geometry optimization) were 

carried out with the Gaussian 03 program using the gradient-corrected Becke exchange 

functional (B3LYP) and the Lee-Yang-Parr correlation functional. Geometry 

optimization of [77]+ was carried out with the following mixed basis set: 6-31+g(d’) for 

the boron, 6-31+g(d) for the sulfur atom, 6-31g basis set was used for all carbon and 

hydrogen atoms. Geometry optimization of 77-CN was carried out with the following 

mixed basis set: 6-31+g(d’) for the boron, nitrogen and C(9) atom, 6-31+g(d) for the 

sulfur atom, 6-31g basis set was used for other remained carbon and hydrogen atoms. 

Frequency calculations, which were carried out on the optimized structures of the 

compounds, confirmed the absence of any imaginary frequencies. The Natural Bond 

Orbital (NBO) analyses of [77]+ and 77-CN was carried out using the stand along PC 

version of GENNBO 5.0 program. 
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CHAPTER VI 

SYNTHESIS AND ANION AFFINITY OF A BIDENDATE SULFONIUM 

FLUOROSILANE LEWIS ACID∗ 

 

6.1. Introduction 

 One of the main themes in the chemistry of polydentate Lewis acids is the 

discovery of new molecular structures that can support anion chelation.  Modulating the 

structures and varying the elements involved in anion binding provides an effective way 

to control the affinity of such systems. To date, a great deal of effort has been devoted to 

the chemistry of boron-based polydentate Lewis acids190-192, 202-204 and their use as 

sensors for the potentially toxic fluoride anion.142 By contrast, and despite the 

widespread use of tetracoordinate halosilanes as Lewis acids in organic synthesis,205-207 

much less is known about silicon based polydentate Lewis acids.31-35, 41, 43, 44, 208  Some of 

the most notable examples of such compounds include 28
41 which displays a high 

affinity for fluoride anions and 32
44 in which the silicon atom assists fluoride binding at 

the boron atom. 
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____________ 
∗ Reprinted in part with permission from, “Synthesis and Anion Affinity of a Bidendate 
Sulfonium Fluorosilane Lewis Acid”; Kim, Y.; Kim, M.; Gabbaï, F. P.; Org. Lett., 2010, 
12, 600-602, Copyright 2010 by the American Chemical Society. 
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 In some of our recent exploratory studies, we have demonstrated that the fluoride 

ion affinity of boranes could be greatly increased by incorporation of proximal 3rd row 

onium functionality as in 15.19, 209 In addition to facilitating anion binding via inductive 

and Coulombic effects, the phosphonium ion of 15 becomes hypervalent and engages the 

anion in a donor-acceptor interaction (Figure 47). Similar effects have been observed in 

the chemistry of sulfonium boranes as cyanide receptors.210 As part of our ongoing 

endeavour in the chemistry of polydentate Lewis acids, we have now decided to 

determine if this “onium-based strategy” (Figure 62) could be extended to silicon Lewis 

acids. 

 

 

LA

-I A-

+

Coulombic
attraction

LA

A-

+ donor-acceptor
interaction

coordinate
covalent bond

+ = PR3 SR2orLA = Lewis acid A- = anion
 

Figure 62. “Onium-based strategy”: Illustration of the forces and bonding interactions 
involved in anion binding by a bidentate 3rd row onium/Lewis acid. 
 

 

6.2. Synthesis and characterization of a sulfonium fluorosilane 

 Triarylfluorosilanes bind fluoride anions to form the corresponding 

triaryldifluorosilicates.38, 40, 211-214  Careful studies by Tamao and Yamaguchi,40 who 
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showed that Ant3SiF (Ant = 9-anthryl) can be used as a fluoride ion sensor in organic 

solvents, led us to consider such fluorosilanes as a starting point for our studies. To 

obtain a fluorosilane that could easily be converted into a cationic derivative, we allowed 

o-lithiothioanisole to react with di(9-anthryl)difluorosilane39 in THF at −78 °C (Figure 

63). The fluorosilane 78 was converted into [79]OTf by reaction with MeOTf. Both 78 

and [79]OTf have been characterized by conventional spectroscopic methods. The 29Si 

NMR resonances of these new compounds were detected at −2.4 ppm (1
JSi-F = 284.2 Hz) 

for 78 and −0.5 ppm (1
JSi-F = 282.0 Hz) for [79]+. In the 19F NMR spectra, the slilicon 

bound fluorine nucleus gives rise to a resonance at −141.0 ppm for 78 and −138.0 ppm 

for [79]+ whose chemical shift is close to that of Ant2PhSiF (δ −143.7).40 Salt [79]OTf is 

stable in organic solvents but decomposes in the presence of water. 
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Figure 63. Synthesis of neutral and sulfonium fluorosilanes. 
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6.3. Fluoride ion complexation  

 With this new cationic silane in hand, we decided to study the responses of [79]+ 

to different anions using 19F NMR spectroscopy. Addition of 5.0 equivalents of Cl−, Br− 

or I− as tetrabutylammonium salts to a CDCl3 solution of [79]+ resulted in the formation 

of the neutral silane 78 (δ(19F) −141.0 ppm) indicating demethylation of the 

aryldimethylsulfonium moiety of [79]+. By contrast, addition of TBAF to [79]+ resulted 

in the formation of 79-F (Figure 64). 79-F could be easily isolated from the reaction of 

[79]OTf with tetrabutylammonium triphenylsilyldifluoride in CH2Cl2. Some of its 

salient NMR spectroscopic features in DMSO-d6 include: 1) two separate sulfur-bound 

methyl signals detected at 2.40 and 2.90 ppm in the 1H-NMR spectrum; 2) two doublets 

at −49.5 and −65.1 with 2
JF-F = 62.4 Hz in the 19F NMR spectrum corresponding to the 

silyl-bound fluorine atoms (Figure 64); 3) a 29Si NMR resonance at –92.7 ppm (dd, 1JSi-F 

= 266.7 Hz, 1
JSi-F = 256.5 Hz) whose chemical shift is comparable to that observed for 

[Ant2PhSiF2]
− (δ = −97.2, JSi-F = 262.9 Hz).40 Altogether, these spectroscopic features 

indicate the presence of two non-equivalent fluorine atoms bound to the silicon center.  

As indicated by 19F NMR, the chemical shift of one of these two fluorine nuclei is 

significantly deshielded and exhibits a smaller 1
JSi-F, possibly suggesting the presence of 

an interaction with the neighboring sulfonium center.187 The detection of two distinct 

sulfur-bound methyl group resonances corroborates this possibility. To firmly 

understand the coordination environment of the silicon and sulfur atoms, the crystal 

structure of in 79-F was determined (Figure 65, Table 22). 
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Figure 64. Formation of 79-F and 19F NMR spectrum. 
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Figure 65. Left: Crystal structure of 79-F with thermal ellipsoids set at 50% probability 
level. Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be 
found in the text. Right: NBO countour plot showing the lp(F)→σ*(S-C) interaction of 
79-F. 
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 Table 22. Crystal data, data collections, and structure refinement for 79-F. 
 

Crystal data 
 

79-F·(CH2Cl2)1.25 
 formula C37.25H30.50Cl2.50F2SSi 

Mr 664.89 
crystal size (mm3) 0.25 x 0.16 x 0.12 

crystal system Tetragonal 
space group P4/n 

a (Å) 24.029(3) 
b (Å) 24.029(3) 
c (Å) 11.095(2) 
α (°) 90 
β (°) 90 
γ (°) 90 

V (Å3) 6406.4(18) 
Z 8 

ρcalc (g cm-3) 1.379 

µ (mm-1) 0.386 
F(000) 2756 

  

Data collection  
T (K) 163(2) 

scan mode ω 

hkl range 
-27 → +15 
-27 → +27 
-11 → +12 

measd reflns 29982 
unique reflns [Rint] 5022 [0.0769] 

reflns used for refinement 5022 
  

Refinement  
refined parameters 401 

GooF 1.001 
R1,

a wR2
b all data 0.1032, 0.1703 

ρfin (max/min) (e Å-3) 0.969, -0.812 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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 Examination of the crystal structure of 79-F confirmed that the silicon atom 

adopts a trigonal-bipyramidal geometry (F(1)-Si(1)-F(2) = 177.32(15)°, Σ(C-Si-C) = 

360°) (Figure 65). Although close to those observed in the [Ant3SiF2]
− anion (1.710-

1.716 Å),40 the silicon-fluorine bond distances in 79-F (Si(1)-F(1) = 1.706(3) Å; Si(1)-

F(2) = 1.732(3) Å) differ by almost 0.03 Å. Further inspection of the structure indicates 

that the F(2) atom is separated from S(1) by only 2.741(3) Å which is well within the 

sum of van der Waals radii of two elements (ca. 3.27 Å). The resulting F(2)-S(1)-C(8) 

angle of 166.5(2)° is also close to linearity. Collectively, these metrical parameters 

suggest the presence of a bonding interaction between the F(2) and S(1) atoms. This 

view is confirmed by an NBO analysis carried out at the DFT optimized geometry 

(Figures 65 and 66 , Table 23). This analysis reveals a donor-acceptor interaction 

involving a fluorine lone pair (lp(F)) as a donor and a carbon-sulfur σ*-orbital (σ*(S-C)) 

as the acceptor (Figure 65). A deletion calculation suggests that this interaction stabilizes 

the molecule by 5.60 Kcal/mol. Presumably, existence of this interaction is responsible 

for the lengthening of the Si(1)-F(2) bond as well as for the somewhat deshielded 19F 

NMR chemical shift measured for the F(2) nucleus. 
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Table 23. Atom coordinates for the DFT optimized structure of 79-F. 
 

Center Coordinates (Angstroms) Center Coordinates (Angstroms) 

Number X Y Z Number X Y Z 

S1 2.281252 1.6768 1.3842 H35 4.015273 -3.7094 0.793816 
Si2 -0.15841 0.2619 -0.457 C36 2.010751 -3.05688 1.220642 
F3 -0.18519 0.0361 -2.176 C37 1.793849 -4.0366 2.244678 
C4 1.535514 2.6793 0.0664 H38 2.592982 -4.74275 2.454751 
F5 -0.0749 0.6894 1.3068 C39 0.611358 -4.08731 2.93773 
C6 0.567882 2.0518 -0.747 H40 0.454188 -4.83571 3.708377 
C7 0.063014 2.8398 -1.808 C41 -0.41955 -3.14948 2.639766 
H8 -0.65756 2.3885 -2.48 H42 -1.35487 -3.1921 3.188959 
C9 0.463321 4.1629 -2.01 C43 -0.24663 -2.19574 1.664642 

H10 0.038971 4.7357 -2.828 H44 -1.04736 -1.49737 1.470856 
C11 1.410178 4.7527 -1.163 C45 0.967605 -2.09843 0.89891 
H12 1.72398 5.7802 -1.314 C46 -2.0726 -0.00149 -0.34394 
C13 1.961058 4.0044 -0.122 C47 -2.94345 0.975959 0.233389 
H14 2.707768 4.4615 0.5183 C48 -2.48746 2.232662 0.767508 
C15 1.644668 2.4046 2.9318 H49 -1.43032 2.445702 0.76414 
H16 2.191449 1.954 3.7641 C50 -3.34976 3.165785 1.2931 
H17 0.594069 2.1176 2.9769 H51 -2.95884 4.10199 1.681266 
H18 1.762982 3.4899 2.9285 C52 -4.75287 2.921867 1.339246 
C19 4.014186 2.2578 1.4191 H53 -5.41947 3.668767 1.759217 
H20 4.529229 1.6705 2.1836 C54 -5.24567 1.740007 0.849068 
H21 4.106472 3.3213 1.6431 H55 -6.31204 1.531016 0.871573 
H22 4.449858 2.0345 0.4431 C56 -4.37823 0.74619 0.28684 
C23 1.159695 -1.128 -0.135 C57 -4.90429 -0.44834 -0.21259 
C24 2.402506 -1.136 -0.846 H58 -5.97697 -0.61956 -0.15789 
C25 2.706127 -0.228 -1.925 C59 -4.08591 -1.42558 -0.78663 
H26 1.929801 0.4305 -2.284 C60 -4.65184 -2.64252 -1.29023 
C27 3.932734 -0.218 -2.55 H61 -5.72689 -2.77874 -1.20644 
H28 4.111136 0.4724 -3.369 C62 -3.86383 -3.60807 -1.8622 
C29 4.961476 -1.126 -2.162 H63 -4.30141 -4.52663 -2.24084 
H30 5.9198 -1.108 -2.672 C64 -2.45805 -3.3982 -1.96216 
C31 4.718248 -2.032 -1.162 H65 -1.83629 -4.15958 -2.42266 
H32 5.480246 -2.748 -0.863 C66 -1.87997 -2.2439 -1.48957 
C33 3.455715 -2.072 -0.482 H67 -0.81372 -2.114 -1.60303 
C34 3.228354 -3.005 0.5341 C68 -2.65381 -1.19857 -0.87307 
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Figure 66. DFT optimized structure of 79-F. 

 

 Formation of 79-F can be followed by monitoring the UV-vis absorption 

spectrum of [79]+ in chloroform upon incremental addition of TBAF (Figure 67, Table 

24).  Analysis of the spectral changes indicate that formation of 79-F induces a blue shift 

of the anthryl-based absorption bands. As previously explained for other 

anthrylfluorosilane species,40 this response can be assigned to a decrease in 

intramolecular anthryl-anthryl π-stacking interactions induced by the change in 

coordination geometry at the silicon center.  Fitting of this data to a 1:1 binding isotherm 

affords a fluoride binding constant K of 7 (±1) × 106 M-1 (Figure 67).  Under these 

conditions, neutral silane 78 captures fluoride with an association constant K of 8(±1) 

M−1 (Figure 68, Table 25). These experiments demonstrate that the fluoride affinity of 

[79]+ exceeds that of neutral silane by at least five orders of magnitude. The drastic 

enhancement observed in the fluoride ion affinity of [79]+ is assigned to the presence of 

the sulfonium moiety which: 1) provides a Coulombic and inductive drive for the 
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formation of the difluorosilicate compound; 2) engages the fluoride anion in a stabilizing 

lp(F)→σ*(S-C) interaction. Although triarylfluorosilanes typically display a lower 

fluoride affinity than triarylboranes,215 we note that the fluoride binding constant of [79]+ 

in chloroform is almost equal to the value of 6.5 (±0.5) × 106 M-1 measured for the 

boron-based receptor [p-Mes2B(C6H4)PMePh2]
+.18, 174 
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Figure 67. Left: Absorbance change of a solution of [79]+ (5.00 × 10-5 M) upon 
successive additions of fluoride in chloroform.  Right: Binding isotherm measured at 403 
nm and fitted with K = 7 × 106 M-1, ε([79]+) = 14,600 M-1 cm-1 and ε(79-F) = 2600 M-1 
cm-1. 
 

 

Table 24. Absorbance of a solution of [79]OTf after successive additions of fluoride 
anions in chloroform. 
 

Cfluoride Absexp Abscalc Cfluoride Absexp Abscalc 
0 0.724 0.73 3.53E-05 0.306 0.301387 

4.46E-06 0.679 0.675442 3.96E-05 0.254 0.250504 
8.90E-06 0.623 0.621102 4.39E-05 0.21 0.202637 
1.33E-05 0.563 0.566992 4.82E-05 0.169 0.163973 
1.77E-05 0.51 0.513132 5.25E-05 0.144 0.144068 
2.21E-05 0.456 0.459553 5.68E-05 0.136 0.136744 
2.65E-05 0.405 0.406311 6.11E-05 0.132 0.133514 
3.09E-05 0.353 0.353513 6.54E-05 0.128 0.13171 
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Figure 68. Absorbance change of a solution of 78 at 401 nm after successive additions 
of fluoride anions. Experimental data and calculated 1:1 binding isotherm with K = 
8(±1) M-1. The same binding constant could be derived from a 1H NMR experiment. 
 

 

Table 25. Absorbance of a solution of 78 after successive additions of fluoride anions in 
chloroform. 
 

Cfluoride Absexp Abscalc Cfluoride Absexp Abscalc 
0 0.938 0.93518 0.00297 0.913 0.905309 

0.000997 0.927 0.925002 0.003947 0.906 0.895779 
0.001987 0.922 0.915047 0.004918 0.9 0.886453 

 

 

6.4. Conclusion 

 The results reported in this communication indicate that proximal 3rd row onium 

ions can serve to enhance the fluoride affinity of fluorosilanes via cooperative effects.  

These results also demonstrate the viability of sulfonium ions as Lewis acidic binding 

sites for fluoride binding. 
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6. 5. Experimental Section 

 General Considerations.  Di(9-anthryl)difluorosiane was prepared by following 

the known method (S. Yamaguchi, S. Akiyama, and K. Tamao, Organometallics 1998, 

17, 4347). Methyl triflate and tetrabutylammonium triphenyldifluorosilicate were 

purchased from Aldrich, 2-bromothioanisole from TCI. Solvents were dried by passing 

through an alumina column (n-pentane, dichloromethane, toluene) or refluxing under N2 

over Na/K (Et2O, THF). UV-vis was recorded on an Ocean Optics USB4000 

spectrometer with a Ocean Optics ISS light source. Elemental analyses were performed 

by Atlantic Microlab (Norcross, GA). NMR spectra were recorded on Varian Unity 

Inova 400 FT NMR (399.59 MHz for 1H, 128.19 MHz for 11B, 100.45 MHz for 13C, 

79.374 MHz for 29Si) spectrometers at ambient temperature. Chemical shifts are given in 

ppm, and are referenced against external BF3·Et2O for 19F and TMS for 29Si.   

 

 Crystallography. The crystallographic measurements were performed using a 

Siemens SMART-CCD area detector diffractometer (Mo-Kα radiation, λ= 0.71069 Å) 

for 79-F. A specimen of suitable size and quality was selected and mounted onto a nylon 

loop. The structure was solved by direct methods, which successfully located most of the 

non-hydrogen atoms. Subsequent refinement on F2 using the SHELXTL/PC package 

(version 5.1) allowed location of the remaining non-hydrogen atoms. 

 

 Synthesis of 78.  o-lithiothioanisole (1.13 mmol) in Et2O (6 mL) was added to 

di(9-anthryl)difluorosiane (0.5g, 1.19 mmol) in THF (6 mL) at −78 °C. The reaction 
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mixture was warmed to room temperature and stirred for 2h. All volatile compounds 

were removed in vacuo. Addition of benzene (30 mL) to the residue followed by 

filtration and evaporation of the solvent afforded a yellow solid which was washed with 

pentane (5 mL) twice to afford 78. Compound 78 could be recrystallized from 

dichloromethane and n-pentane solution (60% yield). mp 133-135 ºC. 1H-NMR (400 

MHz, CDCl3) δ 1.98 (s, 3H), 7.10 (m, 5H), 7.35 (t, J=7.6 Hz, 4H), 7.43-7.49 (m, 3H), 

8.02 (d, J=8.4 Hz, 4H), 8.38 (d, J=8.4 Hz, 4H), 8.26 (s, 2H); 13C-NMR (100 MHz, 

CDCl3) δ 18.27, 124.93, 126.04, 126.21, 128.50 (d, J=4.6 Hz), 129.52, 129.60, 130.72 

(d, 2
JC-F=13.7 Hz), 131.47, 131.91, 132.19, 137.10, 137.39, 138.49 (d, 2

JC-F=15.2 Hz), 

146.33; 19F-NMR (128 MHz, CDCl3) δ −141.00; 29Si-NMR (79.37 MHz, CDCl3) δ 

−2.34 (1
JSi-F=284.2 Hz); Anal. Calcd for (78-0.3C5H12-0.1CH2Cl2) C36.6H28.8FSSiCl0.2: 

C, 79.13; H, 5.21. Found: C, 79.28; H, 5.20.  

 

 Synthesis of [79]OTf. 78 (0.5 g, 1.0 mmol) was allowed to react with methyl 

triflate (0.92 mL, 8.1 mmol) in dichloromethane (15 mL). The resulting mixture was 

stirred at room temperature for 2h. The solvent was removed in vacuo to yield a solid. 

The solid was washed with diethyl ether (5 mL) twice to remove excess methyl triflate. 

Chloroform (20 m) was added to the solid. The organic layer was washed with water (20 

mL) twice, dried over MgSO4 and concentrated in vacuo to afford a yellow solid which 

was washed with diethyl ether. Further purification, the solid was recrystallized from 

chloroform and n-pentane to afford [79]OTf (52% yield). 1H-NMR (400 MHz, CDCl3) δ 

2.67 (s, 6H), 7.21 (t, J=8.2 Hz, 4H), 7.44-7.50 (m, 5H), 7.60 (t, J=7.5 Hz, 1H), 7.93 (t, 
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J=7.5 Hz, 1H), 8.15 (d, J=8.2 Hz, 8H), 8.52 (d, J=7.5 Hz, 1H), 8.80 (s, 2H); 13C-NMR 

(100 MHz, CDCl3) δ 28.37, 125.64, 126.63 (d, 2
JC-F=12.1 Hz), 127.48, 130.26, 131.15, 

131.50, 131.61, 134.09, 134.86, 135.35, 137.27, 137.86, 137.89, 142.10 (d, 2
JC-F=18.2 

Hz); 19F-NMR (128 MHz, CDCl3) δ −78.82 (triflate), −138.00 (Si-F); 29Si-NMR (79.37 

MHz, CDCl3) δ −0.46 (1
JSi-F=282.0 Hz); MS (ESI) m/e 539 (M-OTf). This compound is 

hygroscopic (Anal. Calcd for ([79]OTf-(H2O)3.8) C37H35.6F4O6.8S2Si Cl0.3: C, 58.68; H, 

4.74. Found: C, 58.59; H, 4.71.) 

 
 Synthesis of 79-F. [79]OTF (0.25 g, 0.36 mmol) was dissolved in 

dichloromethane (5 mL) and treated with a dichloromethane solution (5 mL) of 

tetrabutylammonium triphenylsilyldifluoride (0.2 g, 0.36 mmol). The resulting solution 

was stirred for 10 min. The solvent was removed in vacuo to yield a sticky solid. The 

solid was washed with methanol followed by n-pentane and dried under vacuum to 

afford the desired product 79-F as a yellow powder (42% yield). mp 120 ºC. 1H-NMR 

(400 MHz, DMSO-d6) δ 2.40 (s, 3H), 2.90 (s, 3H), 6.66-6.73 (m, 2H), 6.897 (t, J=7.6 

Hz, 1H), 7.12 (t, J=7.2 Hz, 1H), 7.21 (m, 2H), 7.29 (t, J=7.2 Hz, 1H), 7.388 (t, J=7.2 Hz, 

1H), 7.53 (t, J=7.2 Hz, 1H), 7.68 (t, J=7.2 Hz, 1H), 7.77 (d, J=7.6 Hz, 1H), 7.95 (d, 

J=8.4 Hz, 2H), 8.01 (d, J=8.4 Hz, 1H), 8.08-8.14 (m, 2H), 8.20 (d, J=8.0 Hz, 1H), 8.46-

8.61(m, 5H); 13C-NMR (100 MHz, DMSO) δ 24.86, 29.98, 122.75, 122.87, 123.50, 

124.04 (t, J=18.6 Hz), 127.27, 127.36, 127.49, 128.15 (d, J=6.1 Hz), 128.64, 129.14, 

129.80, 129.88, 130.41, 131.01 (d, J=6.1 Hz), 131.26, 131.48 (d, J=8.4 Hz), 131.71, 

131.91 (d, J=8.4 Hz), 132.95, 133.61, 134.53, 134.78, 135.65 (d, J=5.3Hz), 136.50 (d, 

J=6.1 Hz), 137.64, 147.37 (t, 2
JC-F=39.5 Hz), 148.50 (t, 2

JC-F=38 Hz), 157.87 (t, 2
JC-
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F=39.5 Hz); 29Si-NMR (79.37 MHz, DMSO) δ −92.69 (dd, 1
JSi-F=266.7 Hz, 1

JSi-F=256.5 

Hz); 19F-NMR (376 MHz, DMSO) δ −49.54 (d, 2
JF-F=62.4 Hz), −65.06 (d, 2

JF-F=62.4 

Hz); MS (ESI) m/e 539 (M-F). The elemental analysis showed partial loss of the 

interstitial CH2Cl2 solvent.  Anal. Calcd. for (79-F-(CH2Cl2)0.15) C36.15H28.3F2SSi Cl0.3: C, 

75.97; H, 4.99. Found: C, 76.08; H, 4.90. 

 

 Titration of 78 and [79]
+
 with Fluoride in Chloroform. A solution of the 

fluorosilanes (78: 3.0 mL, 3.80 × 10-5 M), [79]OTf: 3.0 mL, 5.00 × 10-5 M) was titrated 

by incremental addition of a solution of TBAF in chloroform (0.3 M for 78 and 0.00268 

M for [79]+). 

 

 

 Computational Details. DFT calculations (full geometry optimization) were 

carried out with the Gaussian 03 program using the gradient-corrected Becke exchange 

functional (B3LYP) and the Lee-Yang-Parr correlation functional. Geometry 

optimization of 79-F was carried out with the following mixed basis set: 6-31+g(d’) for 

the fluorine, 6-31+g(d) for the silicon and sulfur atoms, 6-31g basis set was used for all 

carbon and hydrogen atoms. Frequency calculations, which were carried out on the 

optimized structures of the compound, confirmed the absence of any imaginary 

frequencies. The Natural Bond Orbital (NBO) analyses of 79-F was carried out using the 

stand along PC version of GENNBO 5.0 program.  
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CHAPTER VII 

SYNTHESIS, CHARACTERIZATION AND ELECTROCHEMICAL PROPERTIES 

OF A GOLD COMPLEX FEATURING AN UNUSUAL Au→C+ INTERACTION 

 

7.1. Introduction 

 Organometallic compounds can be described according to the MLlXxZz 

formalism where the ligating atoms are classified as L, X and Z ligands.216, 217 L type 

ligands provide two electrons for a L→M bond. X type ligands are one electron donors 

that form the classical covalent bond of M−X. Z type ligands accept a pair of electrons 

from the metal to form a M→Z bond. (Figure 69).     
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Figure 69. Three types of interactions between a metal and a ligand. 

 

Recently, complexes such as 80 featuring M→B interactions have been attracted a great 

deal of attention.218-222 However, because the degree of electron transfer is hard to 

measure, the oxidation state of the metal in such complexes is difficult to assign. This 

difficulty has sparked an active debate. Hill proposed that the metal center binds to 
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boron center maintaining its dn configuration. Parkin, however, suggested a model in 

which a reduced [BR3]
2− species binds to the oxidized metal center (Figure 70).217, 223, 224 
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Figure 70. The new bonding paradigms for the M→B bonds. 

 

 In order to understand such an unusual bond of M→B, complex 81 featuring a 

gold center as a donor and a borane as an acceptor has been investigated.224 Because the 

gold center adopts a square-planar geometry with a short Au-B distance of 2.31 Å, 81 

can be considered a d8 gold (III) complex. However, a moderate change in NBO charge, 

accompanied by a Au→B interaction leads to 81 being described as a gold (I) rather than 

a gold (III) complexe. This result is further confirmed by Mössbauer spectroscopic 

measurements. 
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 Utilizing an electron-deficient borafluorene moiety, the gold complex 82 displays 

an unusual bonding motif involving gold (I) as an electron donor and boron as an 

electron acceptor.225 The Au-B distance of 2.66 Å is well within the sum of van der 

Waals radii of Au and B, thus confirming the presence of a Au→B bond. Computational 

results reveal that the shortening of the Au-B distance is accompanied by an increase of 

electron transfer from the gold(I) center to the borane moiety. 
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  The synthesis and study of ambiphilic ligands containing a Lewis basic 

functionality and a Lewis acidic carbocationic center is of interest. This work is inspired 

by the aforementioned series of efforts concerning boron containing ambiphilic ligands 

and their complexes. In these complexes, the metal is bound to the boron center via a 
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very unusual donor-acceptor interaction in which the metal acts as a donor. Interestingly, 

efforts to prepare related ambiphilic ligands containing a carbocationic center rather than 

a boron center have not been reported. In order to determine how the structure and 

bonding in such complexes is affected by substitution of the boron center by a 

carbocationic center, we have investigated the synthesis of cationic ligands such as I 

which are related to the phosphinoborane II present in complex 82 (Figure 71). These 

new ambiphilic ligands were incorporated in gold complexes whose structures and 

bonding characteristics were studied using a both experiment and theory. 
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Figure 71. Ambiphilic ligands. 

 

 

7.2. Synthesis and characterization of a gold complex 

 The type of cationic ambiphilic ligand considered in these studies contains a 

phosphine as a donor and a xanthenium unit as an acceptor. In order to prepare such 

species, o-lithio-diphenylphosphino-benzene (obtained by reaction of 83 with n-BuLi) 

was allowed to react with xanthone at −78 °C in THF to afford the corresponding 

alcohol 84 (Figure 72). Attempts to generate the corresponding xanthylium phosphine 

[85]+ by treatment with various acids failed. Interestingly, treatment of 84 with thionyl 
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chloride afforded the xanthylium phosphine oxide species [ 86 ]+ as a chloride salt 

indicating oxidation of the phosphorus.  
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Figure 72. Synthesis of [86]Cl. 

 

 

The [PF6]
− salt of this cation has been obtained after treatment with NaPF6 and has been 

characterized by X-ray analysis (Figure 73, Table 26). The oxygen atom of the P=O unit 

is localized only 2.817 Å away from the methylium carbon atom C(19) suggesting the 

presence of a weak interaction. 
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 Table 26. Crystal data, data collections, and structure refinement for [86]PF6. 
 

Crystal data [86]PF6 
formula C31H22F6O2P2 

Mr 602.43 
Crystal size (mm3) 0.11 x 0.09 x 0.05 

crystal system Monoclinic 
space group P21/c 

a (Å) 11.3030(16) 
b (Å) 16.708(2) 
c (Å) 14.014(2) 
α (°) 90 
β (°) 95.597(3) 
γ (°) 90 

V (Å3) 2634.0(7) 
Z 4 

ρcalc (g cm-3) 1.519 
µ (mm-1) 0.238 
F(000) 1232 

  
Data collection  

T (K) 146(2) 
scan mode ω 

hkl range 
-12 → +12, 
-19 → +19, 
-16 → +16 

measd reflns 22719 
Unique reflns [Rint] 4127 [0.0582] 

reflns used for refinement 4127 
  

Refinement  
refined parameters 370 

GooF 1.003 
R1,

a wR2
b all data 0.0874, 0.1713 

ρfin (max/min) (e Å-3) 0.941, -0.296 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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Figure 73. Crystal structure of [86]+ with thermal ellipsoids set at 50% probability level. 
The PF6

− anion and hydrogen atoms are omitted for clarity. Pertinent metrical 
parameters can be found in the text. 
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Figure 74. Synthesis of [88]PF6. 

 

 Because the targeted the xanthenium phosphine ligand [85]+ could not be 

obtained directly from the alcohol, we decided to determine if metal complexes 

containing this ligand could be prepared by first incorporating the metal and then 

dehydrating the xanthenol. With this in mind, 84 was treated with (tht)AuCl (tht = 
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tetrahydrothienyl) to produce 87 as a white solid  (Figure 74). Reaction of 87 with HPF6 

afforded the target gold compound [88]+ as a [PF6]
− salt. This salt is air-stable and 

yellow in color.  

 It has been characterized by X-ray analysis which shows that the gold atom 

Au(1) is separated by 3.13 Å from the methylium carbon atom C(19) suggesting a weak 

interaction (Figure 75, Table 27). Presumably, the methylium atom of the xanthenium 

unit is too electron rich because of the aromaticity of the central six-member ring. We 

carried out AIM analysis at ADF optimized geometry of [88]+ (Figures 76 and 77, Table 

28). The electron density maps show the presence of bond paths between Au and 

carbocation with localized bond critical points whose electron density ρ(r) is 1.7 × 10−2 

ebohr−3. 
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Figure 75. Crystal structure of [88]+ with thermal ellipsoids set at 50% probability level. 
The PF6

− anion and hydrogen atoms are omitted for clarity. Pertinent metrical 
parameters can be found in the text.  
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 Table 27. Crystal data, data collections, and structure refinement for [88]PF6. 
 

Crystal data [88]PF6 
formula C31H22AuClF6OP2 

Mr 818.84 
Crystal size (mm3) 0.29 x 0.10 x 0.07 

crystal system Triclinic 
space group P-1 

a (Å) 8.5451(17) 
b (Å) 10.210(2) 
c (Å) 17.440(4) 
α (°) 75.05(3) 
β (°) 77.74(3) 
γ (°) 83.77(3) 

V (Å3) 1434.2(5) 
Z 2 

ρcalc (g cm-3) 1.896 
µ (mm-1) 5.398 
F(000) 792 

  
Data collection  

T (K) 110(2) 
scan mode ω 

hkl range 
-10 → +8, 

-10 → +12, 
-21 → +21 

measd reflns 8130 
Unique reflns [Rint] 5622 [0.0311] 

reflns used for refinement 5622 
  

Refinement  
refined parameters 379 

GooF 1.006 
R1,

a wR2
b all data 0.0517, 0.1152 

ρfin (max/min) (e Å-3) 1.055, -1.312 
a
 R1 = Σ||Fo| - |Fc||/Σ|Fo|. b wR2 = [[Σw(Fo2 - Fc2)2]/[Σw(Fo2)2]]1/2. 
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Figure 76. Calculated electron density maps for complexes [88]+ with relevant bond 
paths and bond critical points.   
 
 

 

 

Figure 77. DFT optimized structure of [88]+ 
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Table 28. Atom coordinates for the DFT optimized structure of [88]+. 

Center Coordinates (Angstroms) Center Coordinates (Angstroms) 

Number X Y Z Number X Y Z 

Au1 0.292 -0.473 -1.360 C30 -3.398 3.512 0.520 
P2 -1.464 -0.118 0.010 C31 -5.123 -1.991 -0.370 
O3 3.905 0.664 -0.050 C32 -2.824 2.265 0.790 
C4 1.519 0.211 1.380 C33 -2.206 2.055 -1.540 
C5 2.219 -2.190 1.570 C34 -4.149 -1.004 -0.190 
C6 -1.003 -0.184 1.800 Cl35 2.041 -0.784 -2.830 
C7 3.624 -0.581 0.400 H36 1.314 -2.421 2.130 
C8 1.073 2.671 1.210 H37 0.154 2.555 1.780 
C9 3.074 1.702 0.210 H38 5.435 -1.328 -0.480 

C10 0.327 -0.018 2.250 H39 -1.360 -2.979 -0.370 
C11 4.552 -1.581 0.100 H40 2.960 5.035 -0.340 
C12 -2.416 -2.705 -0.350 H41 2.962 -4.198 1.610 
C13 2.435 -0.849 1.140 H42 5.015 -3.660 0.300 
C14 -2.225 1.528 -0.240 H43 4.394 3.045 -0.820 
C15 2.663 4.051 0.010 H44 -3.030 -0.619 2.400 
C16 1.865 1.518 0.940 H45 1.621 0.043 3.980 
C17 3.136 -3.175 1.280 H46 -2.541 -0.677 4.820 
C18 -2.791 -1.359 -0.170 H47 -0.193 -0.340 5.620 
C19 4.303 -2.869 0.540 H48 -5.511 -4.094 -0.680 
C20 3.468 2.957 -0.260 H49 -3.825 5.003 -0.980 
C21 -2.013 -0.435 2.750 H50 -2.763 3.698 -2.820 
C22 0.595 -0.081 3.630 H51 0.857 4.786 0.960 
C23 -1.737 -0.483 4.110 H52 -3.099 -4.724 -0.660 
C24 -0.428 -0.298 4.560 H53 -3.860 4.078 1.330 
C25 -4.749 -3.328 -0.530 H54 -6.176 -1.709 -0.400 
C26 -3.379 4.029 -0.770 H55 -2.843 1.877 1.810 
C27 -2.785 3.298 -1.800 H56 -1.728 1.495 -2.350 
C28 1.467 3.910 0.750 H57 -4.447 0.040 -0.090 
C29 -3.394 -3.684 -0.520     
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Figure 78. Cyclic voltammogram of [88]PF6 measured at a scan rate of 0.1 V/s in THF 
with a carbon working electrode: 0.1 M NBu4PF6.  
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Figure 79. Left: the EPR spectrum of 88• in THF at room temperature and the simulated 
EPR spectrum. Right: Observed hyperfine coupling constants for 88•. 
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7.3. Electrochemistry of [88]+ 

 The cyclic voltammogram of [88]+ in THF displays a single reversible reduction 

wave at E1/2=−0.46 V vs Fc/Fc+ which is close to that of 9-phenylxanthen-9-ylium cation 

(Figure 78 ).226 Encouraged by the reversibility of the reduction of [88]+, we have 

investigated the chemical generation of the corresponding radical. To this end, [88]PF6 

was treated with powdered magnesium metal in THF to produce a yellow solution 

containing the radical 88•. The EPR simulation shows that the radical is mostly based on 

the 9-phenylxanthen-9-ylium moiety in an agreement with the reduction potential of 

[88]+ (Figure 79).  

 

7.4. Conclusion 

 The gold complex [88]
+
 featuring the cationic ambiphilic ligand was successfully 

prepared. Because the carbocation of the xanthenium moiety is stabilized by the 

aromaticity of the central six-member ring, the Au→C+ interaction presenting [88]
+
 is 

weak. 

 

7.5. Experimental section 

 General Considerations. 2-Bromophenyldiphenylphosphine was prepared by 

following the known method (D. Brauer, M. Hingst, M., K. Kottsieper, C. Liek, T. 

Nickel, M. Tepper, O. Stelzer and W. Sheldrick, J.Organomet. Chem., 2002, 645, 14.). 

1-bromo-2-iodobenzene and xanthone were purchased from Alfa Aesar. Solvents were 

dried by passing through an alumina column (dichloromethane, toluene) or refluxing 
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under N2 over Na/K (THF). NMR spectra were recorded on Varian Unity Inova 400 FT 

NMR (399.59 MHz for 1H, 128.19 MHz for 11B, 100.45 MHz for 13C, 79.374 MHz for 

29Si) spectrometers at ambient temperature. Chemical shifts are given in ppm, and are 

referenced against external BF3·Et2O for 19F and H3PO4 for 31P. 

 

 Crystallography.  The crystallographic measurements were performed using a 

Siemens SMART-CCD area detector diffractometer (Mo-Kα radiation, λ= 0.71069 Å) 

for [86]PF6 and [88]PF6.  In each case, a specimen of suitable size and quality was 

selected and mounted onto a nylon loop.  The structure was solved by direct methods, 

which successfully located most of the non-hydrogen atoms. Subsequent refinement on 

F2 using the SHELXTL/PC package (version 5.1) allowed location of the remaining non-

hydrogen atoms. 

 

 Synthesis of 84. To o-diphenylphosphinobenzenbromide (0.3 g, 0.88 mmol) in 

THF (5 mL) was added n-BuLi (0.35 mL, 0.88 mmol, 2.5 M in n-Hexane) at −78 °C. 

After stirring the mixture for 1h at −78 °C, a solutiono of xanthone (0.19 g, 0.97 mmol) 

in THF (5 mL) was added to the lithiated compound at the same temperature. The 

solution was warmed to room temp (rt) and stirred overnight. The solvent was removed 

in vacou. The residue was treated with diethyl ether and saturated aqueous NH4Cl 

solution. The organic layer was separated, dried over MgSO4, filtered through silca-gel, 

and concentrated in vacuo to yield a solid. The solid was washed with acetonitrile to 

afford the desired product 84 as a white solid (Yield : 55%). 1H-NMR (300 MHz , 
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actone-d6) : δ 6.59-6.64 (m, 4H), 6.70-6.75 (m, 2H), 6.87-6.90 (m, 2H), 7.05-7.15 (m, 

11H), 7.32 (t, J=7.5 Hz, 1H), 7.56 (t, J=7.5 Hz, 1H), 8.60 (m, 1H). 13C-NMR (400 MHz, 

actone-d6) : δ 70.65 (d, J=9.1 Hz), 116.46, 123.17, 126.99 (d, J=6.8 Hz), 128.41, 128.58 

(d, J=6.1 Hz), 129.21, 129.40, 130.76, 133.53 (d, J=19.7 Hz), 136.18 (d, J=19.8 Hz), 

138.50 (d, J=14.4 Hz), 138.79, 138.82, 151.08, 151.11 , 154.68 (d, J=23.5 Hz). 31P-

NMR (121 MHz, acetone-d6) : δ −18.70 

 

 Synthesis of 87. 84 (0.1 g, 0.22 mmol) was added to a solution of (tht)AuCl 

(0.067 g, 0.22 mmol) in dichloromethane (4 mL) at rt. The white precipitation was 

formed after overnight. The solid was isolated by filtration, washed with 

dichloromethane, and dried in vacuo to afford 87 as a white solid (Yield : 53%). 1H-

NMR (400 MHz , CDCl3) : δ 2.77 (s, 1H), 6.94-6.98 (m, 1H), 7.02 (t, J=7.8 Hz, 2H), 

7.12 (t, J=7.6 Hz, 1H), 7.17 (d, J=7.6 Hz, 2H), 7.26-7.31 (m, 4H), 7.36 (m, 2H), 7.47-

7.53 (m, 6H), 7.79 (m, 4H). 13C-NMR (100 MHz, CDCl3) : δ 116.88, 123.89, 127.15, 

127.25, 129.16 (d, J=12.2 Hz), 129.86, 130.21, 131.41, 131.43, 132.51 (d, J=63.8 Hz), 

133.45, 134.55 (d, J=14.4 Hz), 134.91, 149.29, 152.80. 31P-NMR (161 MHz, CDCl3) : δ 

39.85 (bs).  Anal. Calcd for C31H23AuClO2P: C, 53.89; H, 3.36. Found: C, 53.65; H, 3.25  

 

 Synthesis of [88]PF6. 87 (0.05 g, 0.072 mmol) was dissolved in dichloromethane 

(2 mL) and treated with excess HPF6. After 10 min, the solvent was removed in vacuo. 

The residue was washed with diethyl ether and dried in vacuo to afford [88]PF6 as a 

yellow solid (Yield : 85%). 1H-NMR (400 MHz, CD3CN) : δ 7.39-7.50 (m, 8H), 7.57-
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7.63 (m, 3H), 7.64-7.72 (m, 5H), 7.91-7.99 (m, 2H), 8.39-8.41 (m, 2H), 8.53-8.57 (m, 

2H). 13C-NMR (400 MHz, CD3CN) : δ 121.07, 126.36, 127.95 (d, J=63.6 Hz), 130.65 

(d, J=12.4 Hz), 131.59, 131.67, 131.74, 132.99 (d, J=8.5 Hz), 133.41 (d, J=2.0 Hz), 

133.74 (d, J=3.0 Hz), 135.26 (d, J=14.1 Hz), 136.73 (d, J=4.6 Hz), 146.49, 158.96, 

174.17. 31P-NMR (161 MHz, CD3CN) : δ 25.91, −143.18 (septet, J=706 Hz, PF6). 
19F-

NMR (376 MHz, CD3CN) : δ −76.18 (d, J=706 Hz, PF6). MS (ESI) m/e 673.0355 (M-

PF6). 

 

 Synthesis of [86]Cl. 84 (0.05 g, 0.11 mmol) was dissolved in THF (2 mL) and 

treated with excess SOCl2 at 0 °C which resulted in the formation of a yellow solid. 

After 10 min, the solid was isolated by filtration, washed with THF, and dried in vacuo 

to afford [86]Cl as a yellow solid (Yield : 88%). ([86]Cl was air and moisture sensitive). 

1H-NMR (300 MHz, CDCl3) : δ 7.33-7.37 (m, 8H), 7.49-7.69 (m, 8H), 7.84 (t, J=7.2 Hz, 

1H), 7.92 (t, J=7.2 Hz, 1H), 8.25-8.27 (m, 2H), 8.39 (m, 2H). 13C-NMR (100 MHz, 

CDCl3) : δ 119.61, 124.34, 128.62, 129.03 (d, J=12.9 Hz), 129.17, 130.13 (d, J=9.1 Hz), 

130.22, 130.83, 131.38 (d, J=12.1 HZ), 131.63 (d, J=10.6 Hz), 132.32, 133.09(d, J=2.2 

Hz), 133.64 (d, J=10.6 Hz), 135.75 (d, J=6.0 Hz), 143.72, 157.03, 172.94. 31P-NMR 

(121 MHz, CD3CN) : δ 31.70. 

  

 To obtain the single crystal of [86]+, the ion exchange reaction was performed. 

To [86]Cl in acetonitrile 2 eq. of NaPF6 was added in a dry box. The crystal of [86]PF6 
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was grown by slow diethyl ether diffusion to the acetonitrile solution of [86]PF6 in the 

dry box. 

 

 Computational Results. For [88]+, density functional theory (DFT) calculations 

were carried out using ADF 2008.01. All calculations were carried out using the BP86 

functional with a TZP basis set for all atoms as implemented in ADF. All calculations 

were performed using the Zero Order Regular Approximation (ZORA). The topology of 

the electron density of the ADF optimized structures was subjected to an Atoms-In 

Molecules analysis using the Dgrid program (version 4.4). Visualization of the geometry 

(including bond paths and bond critical points) as well as of the electron density map in 

the plane containing the Au, Cl and C atoms was carried with Material Studio (version 

4.4). 
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CHAPTER VIII 

SUMMARY 

 
8.1. Fluoride and cyanide sensing using phosphonium borane in water 
 
 In order to understand how simple variations in the structure and composition of 

boranes impacts their anion binding properties, we have investigated phosphonium 

boranes of the general formula [p-Mes2B-C6H4-PPh2R]+ with R = Me ([14]+)  Et ([70]+), 

n-Pr ([71]+), and Ph ([72]+). These boranes are water stable but undergo conversion to 

the corresponding zwitterionic hydroxide species upon elevation of the pH.  The pKR+ 

values of these boranes, which were derived from spectrophotmetric acid-base titrations, 

indicate that the Lewis acidity of the boranes increases with their hydrophobicity.  A 

similar trend is observed in the fluoride affinity of these compounds as shown by the 

fluoride binding constant K of [72]+ which exceeds that of [14]+ by more than one order 

of magnitude.  Presumably, the increased hydrophobicity and decreased solvation of 

[72]+ facilitates the covalent ion pairing process that occurs upon reaction with fluoride 

(or hydroxide).  None of these phosphonium boranes interact with other commonly 

encountered anions, such as Cl−, Br−, I−, OAc−, NO3
−, H2PO4

−, and HSO4
−. From an 

applied perspective, these hydrophobic effects are significant as shown by the ability of 

[72]+ to detect fluoride ions in water below the maximum contaminant level of 4 ppm set 

by the EPA.  

 We have demonstrated that cyanide binding to the boron center of phosphonium 

boranes [73]+ and [74]+ results in a turn-on response of the fluorescence of the 

anthracenyl and dansyl chromophores, respectively. This increase can be explained by 
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assuming 1) that the chromophore of [73]+ and [74]+ is quenched via intramolecular 

charge transfer from the excited chromophore to the electron deficient boron center; 2) 

that addition of cyanide to the boron center annuls its electron accepting properties 

leading to a revival of the fluorescence of the chromophore. While [73]+ decomposes in 

water, [74]+ allows for sensitive and selective detection of cyanide with a detection limit 

of 26 ppb in H2O/MeOH (6/4, v/v). The high affinity of this borane arises from 

favourable Coulombic effects which serve to stabilize the cyanoborate complex against 

dissociation.    
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8.2. Anion affinity of bidentate cationic boranes 
 
 Due to the presence of low lying σ* orbitals, phosphonium and sulfonium ions 

are inherently Lewis acidic and can interact with electron-rich substrates to form 

donor/acceptor complexes. To test the validity of these concepts, the anion binding 

properties of phosphonium borane [15]+ and sulfonium borane [77]+ were investigated. 

We find that the phosphonium borane [15]+ is selective for N3
− over F− in CHCl3/H2O 

biphasic mixtures. The high selectivity observed in these phase-transfer reactions most 
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likely results from the lipophilic character of the azide anion as well as from its ability to 

interact with both the boron and phosphorus Lewis acidic sites of the receptor via 

chelation (lp(N)→σ*(P-C)) in 15-N3. 

 Sulfonium borane [77]+ behaves as a selective cyanide sensor that can be used in 

pure water for the fluorescence detection of cyanide at the EU maximum allowed 

concentration of 50 ppb. A structural analysis of 77-CN shows that the sulfonium moiety 

interacts with the cyanide guest via both a bonding π(C≡N)→σ*(S-C)  and back-bonding 

lp(S)→π*(C≡N) interaction.  The results obtained in the chemistry of the phosphonium 

borane [15]+ and sulfonium borane [77]+ demonstrate that Coulombic and chelate effects 

are additive and can be combined to boost the anion affinity of the Lewis acidic hosts. 
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8.3. Anion affinity of a bidentate sulfonium fluorosilane 

 This “onium-based strategy” used to enhance the anion affinity of Lewis acids 

has been extended to silicon Lewis acids. The fluoride affinity of sulfonium fluorosilane 

[79]+ is higher than that of the neutral silane 78 by several orders of magnitude. This 

dramatic enhancement observed in the fluoride ion affinity of [79]+ is assigned to the 

presence of the sulfonium moiety which: 1) provides a Coulombic and inductive drive 
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for the formation of the difluorosilicate compound; and 2) engages the fluoride anion in 

a stabilizing lp(F)→σ*(S-C) interaction in 79-F. 

 

Ant = 9-anthryl [79]+
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8.4. Conclusion 

 This dissertation illustrates how the introduction of cationic groups impacts the 

anion binding properties of Lewis acids. Because of favorable Coulombic effects, 

cationic Lewis acids show an increase Lewis acidity when compared to their neutral 

counterparts. Cationic boranes can be used to detect ppm levels of fluoride and ppb 

levels of cyanide in water due to a combination of Coulombic, cooperative and 

hydrophobic effects.  
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