APPLICATIONS OF β-LACTONES: UTILITY OF SPIROEPOXY- $\boldsymbol{\beta}$-LACTONES AND

 DEVELOPMENT OF A DOUBLE DIASTEREOSELECTIVE NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATION PROCESS LEADING TO $\boldsymbol{\beta}$-LACTONE FUSED CARBOCYCLES AND TETRAHYDROFURANSA Dissertation
by
KAY ANN MORRIS
Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

August 2010

Major Subject: Chemistry

Applications of β-Lactones: Utility of Spiroepoxy- β-Lactones and Development of a Double Diastereoselective Nucleophile Catalyzed, Aldol-Lactonization Process Leading to β-Lactone Fused Carbocycles and Tetrahydrofurans

Copyright 2010 Kay Ann Morris

APPLICATIONS OF β-LACTONES: UTILITY OF SPIROEPOXY- β-LACTONES AND

DEVELOPMENT OF A DOUBLE DIASTEREOSELECTIVE NUCLEOPHILE

CATALYZED, ALDOL-LACTONIZATION PROCESS LEADING TO $\boldsymbol{\beta}$-LACTONE FUSED CARBOCYCLES AND TETRAHYDROFURANS

A Dissertation
by
KAY ANN MORRIS
Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Approved by:
Chair of Committee, Daniel Romo
Committee Members, David E. Bergbreiter
Brian T. Connell
Charles M. Kenerley
Head of Department, David H. Russell

August 2010
Major Subject: Chemistry

Abstract

Applications of β-Lactones: Utility of Spiroepoxy- β-Lactones and Development of a Double Diastereoselective Nucleophile Catalyzed, Aldol-Lactonization Process Leading to β-Lactone Fused Carbocycles and Tetrahydrofurans.

(August 2010)

Kay Ann Morris, B.S., Cameron University Chair of Advisory Committee: Dr. Daniel Romo

Natural products continue to inspire synthetic chemists to develop novel methodologies to provide efficient and expedient syntheses of the target molecules. Haterumalide NA aroused our interest and prompted development of four differing methodologies. Three of the strategies pursued involved use of β-lactone scaffolds as intermediates. Extensions of the nucleophile catalyzed, aldol-lactonization (NCAL) reaction were also pursued and targeted toward alternative natural product targets.

The reactivity of the unexpectedly stable strained spirocycle, spiroepoxy- β lactone, was explored. Spiroepoxy- β-lactones exhibited a wide range of reactivity, but largely rearranged to tetronic acids. The desired reaction manifold remained inaccessible and led to application of the NCAL process to tetrahydrofuran-fused β-lactones. Several tetrahydrofuran-fused β-lactones were prepared, which displayed low diastereoselectivity. The diastereoselectivity could be somewhat improved in a double diastereoselective NCAL process with varied solvent systems, yet the carbocyclic analogues gave much more promising results. The use of carbocycle-fused β-lactones ultimately culminated in a double diastereoselective NCAL process, and overall led to
improvements in diastereoselectivities from 1:1-2 up to $>19: 1$. Further expansion of the substrate scope for the NCAL process was studied for application to bridged tricyclic β lactones, access to carbocycle-fused γ-lactones, and towards development of a dynamic kinetic resolution NCAL process.

With our interest aimed at haterumalide NA, a modified Negishi cross coupling between zincates and dichloroolefins was also revisited. The stringent anhydrous reaction conditions led to reexamination of initial leads, which provided user-friendly anhydrous conditions by utilizing commercially available anhydrous solvent. However, application was implemented solely to a simplified model system.

DEDICATION

To my loving and supportive parents, John \& Marjorie Morris

ACKNOWLEDGEMENTS

I earnestly thank my research advisor, Prof. Daniel Romo, for his enthusiastic commitment to education. I have had the pleasure to pursue several research projects while in his research group during which he allowed independence to follow my own hypotheses and develop more fully into an independent researcher. I also thank his family for providing a sense of community while in graduate school. His contributions to my career as both a student and researcher are invaluable. In fact, I would not still be pursuing my Ph.D. without the encouragement and persistence he has provided, which has empowered me to continually improve as a researcher.

I also thank several professors, Prof. Bergbreiter, Prof. Connell, and Prof. Kenerley, for serving on my committee and supporting me throughout my graduate career. I am sincerely grateful for the knowledge, skills, and excellent teaching I have acquired while here at Texas A\&M University. I would like to thank Prof. Bergbreiter for creating a supplemental class in which I acquired the necessary skills for understanding and depicting reaction details. Also, I am grateful for the instruction from Prof. Connell and Prof. Yang both inside the classroom and during group meetings. Many thanks to Prof. Kenerley for taking an interest in my research and being a contributing committee member. I greatly appreciate Prof. Singleton for preparing extracurricular problem solving sessions to assist with preliminary examinations.

Of course, I am indebted to both the former and current members of the Romo group. The exceptional training, mentoring, and guidance I received have enabled me to become the researcher and person I am today. Dr. Andrew (Andy) Mitchell and Dr.

Richard Duffy, thank you for being willing to serve as my mentors. You both assisted me countless times, and I could never even begin to return the favor. Your insightful discussions and contributions helped me continue to be inspired by chemistry. Much appreciation goes to all others I had the opportunity to share time with in the laboratory including Andy Skauge, Chun-Xiao Xu, Fang Li, Gil Ma, Huda Henry-Riyad, Jing Li, Liang Tang, Mahesh Peddibhotla, Omar Robles, Paul Dransfield, Wei Zhang, Yongang Wang, and Ziad Moussa. I also thank my peers for their encouragement and assistance during our schooling, namely Andrea Matla, Changsuk Lee, Dorianne Castillo, Francisco Franco-Torres, Gang Liu, Henry Nguyen, J.C. Reyes, Ke Kong, Manuel Zancanella, Morgan Shirley, Ravikrishna Vallakati, Seong Ho Oh, Shaohui Wang, Sung Wook Cho, Supakarn Chamni, Vikram Purohit, Yatsandra Oyola, and our most recent coworkers, Alfred Tuley and Mikail Abbasov. It was a joy to enter graduate school with Henry, Manuel, and Yatsandra, who helped me laugh and further grow as a researcher. A special thanks goes to my collaborators, Andy S., Richard, Ravi, and Kevin for laying an excellent foundation for me to merely stand on and for providing supplemental experimentation as needed. It has been a particularly rewarding experience to mentor Kevin. Thank you for catching on so quickly and being diligent in your research. Also, I thank my predecessors, Guillermo Cortez, Reginald Tennyson, and Seong Ho Oh, who initially developed the NCAL process to access bicyclic β-lactones. Finally, it has been a pleasure working with my great friends, Carolyn Leverett and Kevin Arendt, who have motivated and assisted me during the past few years.

There are several other people who played an integral role in preparing me for graduate school. I cannot forget the training and attention I received at Cameron

University from my chemistry professors, Dr. Ann Nalley, Dr. Clinton Bryan, Dr. Danny McGuire, Dr. Gary Buckley, and Dr. Ted Snider. A special thanks goes to Dr. Bryan and Dr. McGuire for sharing the joy of undergraduate research and serving as my research advisors. Also, thank you Dr. Nalley for kindling my desire to pursue chemistry with your enthusiasm. In fact, your zeal and fervor for chemistry are why I decided to pursue a chemistry career. Thank you for empowering students and women alike to enter into the science field. My sincere thanks to my research colleagues in the medicinal chemistry department at the University of Kansas, Dr. Apurba Dutta, Christina Stauffer (special thanks for teaching me column chromatography techniques), Juhienah Khalaf, and Pushpal Bhaket. Much appreciation goes to Bristol-Myers Squibb, process research and development, and all the personnel for allowing me to gain first hand industrial experience while in graduate school. I thank Chris Sfouggatakis for serving as my mentor, Lindsay Hobson for her useful advice, Justin Sausker for his direction on how to expedite research results, and Prashant Deshpande for providing valuable details regarding career options.

I am indebted to my family for their unwavering support and encouragement in all my endeavors. My utmost gratitude and sincere appreciation goes to my parents, John \& Marjorie Morris, for instilling in me sound principles and for the sacrifices you have made to ensure that your children know they are loved. Thank you for teaching me how to grow into the woman I am called to be. Thank you Kara and Ann for being the two greatest sisters I could ever have asked for. You have been there with me through thick and thin, my dearest thanks. My grandparents, John \& Carrie Matsko and Roger \& Ann Morris, also inspired my quest for knowledge as they have never stopped taking time to
learn. My Grandpa John gave me sound advice that I should pursue a Ph.D. in graduate school, which in honoring his request I have developed a passion to encourage and persuade young people to enter chemistry and related science fields.

I also would like thank Cynthia Samples, Ted Brown, Arika Pravitasar, Rachel DeLeon, Laurel Henderson, and Ron \& Betsy Dupont for their support. Ethan Montgomery, Jeremy Galindo, Jessica Kyle, Ray Alderete, and Zach Laguire, I cannot thank enough for their friendship and encouragement. I consider them a part of my extended family, and College Station as a place I can call home. Thank you for supporting me in my educational endeavor; you have made helped my last year here be one of the most memorable.

Finally, my greatest appreciation goes to Jesus Christ, the Lord of my life. My strength, my help, and my hope come from Him. My ability and sufficiency do not come from my own accord, but they come from God (II Corinthians 3:5).

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS x
LIST OF FIGURES xiv
LIST OF SCHEMES xvi
LIST OF TABLES xX
LIST OF ABBREVIATIONS. xxii
CHAPTER
I INTRODUCTION: NATURAL PRODUCT INSPIRED
METHODOLOGY; TETRAHYDROFURAN SYNTHESIS VIA β -
LACTONES AND ORGANOMETALLIC COUPLINGS WITH
DICHLOROOLEFIN SUBSTRATES 1
1.1 The Cytotoxic Marine Agent, Haterumalide NA, as Inspiration for Method Development 1
1.2 Summary of Haterumalide NA Syntheses 3
1.3 Structural Revision of Haterumalide NA 4
1.4 Tandem Mukaiyama Aldol Lactonization Strategy 6
1.5 Dichloroolefin Cross Couplings 12
1.5.1 Known Methods Prior to Development 12
1.5.2 Review of Known Methods to Date 13
1.5.3 Scope of Modified Negishi Cross Coupling 14
1.6 Spiroepoxy- β-Lactone Approach 19
1.7 Nucleophile Catalyzed, Aldol-Lactonization Strategy 24
1.8 Conclusions 28
CHAPTER Page
II UTILITY OF SPIROEPOXY- β-LACTONES 30
2.1 Retrosynthesis of Haterumalide NA 30
2.2 Potential Reactivity 31
2.3 Discovered Reaction Manifolds 31
2.4 Conclusions 34
III NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATIONS
(NCAL) TO β-LACTONE FUSED TETRAHYDROFURANS 35
3.1 Previous NCAL Studies 35
3.2 Proposed Mechanistic Rationale 37
3.3 Applications to β-Lactone Fused Tetrahydrofurans. 38
3.3.1 Retrosynthesis of Haterumalide NA 38
3.3.2 Substrate Preparation 39
3.3.3 Optimization of Reaction Conditions 41
3.3.4 Summary of β-Lactone Fused Tetrahydrofurans with an Achiral Nucleophile. 46
3.3.5 Diastereoselectivity of β-Lactone Fused Tetrahydrofurans 48
3.4 Conclusions 48
IV DEVELOPMENT OF DOUBLE DIASTEREOSELECTIVE
NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATIONS
(NCAL) TO β-LACTONE FUSED CARBOCYCLES AND
TETRAHYDROFURANS 49
4.1 Double Diastereodifferentiation 49
4.2 Premise for Development 50
4.3 Substrate Preparation of Aldehyde Acids for Carbocycles 51
4.4 Applications to β-Lactone Fused Carbocycles 53
4.4.1 Optimization of Reaction Conditions 53
4.4.2 Screening of Catalysts 56
4.4.3 Double Diastereoselective NCAL Process with Enantioenriched Aldehyde Acids to β-Lactone Fused Carbocycles 57
4.5 Applications to β-Lactone Fused Tetrahydrofurans 60
4.5.1 Initial Studies of a Double Diastereoselective NCAL Process 60
4.5.2 Screening of Catalysts 61
4.5.3 Double Diastereoselective NCAL Process with Enantioenriched Aldehyde Acids to β-Lactone Fused Tetrahydrofurans 62
4.6 Other NCAL Variations: Dynamic Kinetic Resolution. 63
4.6.1 Dynamic Kinetic Resolution Process 63
4.6.2 Previous Studies 65
4.6.3 α-Substituted Aldehydes 66
4.6.4 1,3-Dicarbonyl Containing Aldehydes 68
4.7 Conclusions 72
V NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATION
(NCAL) FOR BRIDGED TRICYCLIC β-LACTONES 73
5.1 Suomilide 73
5.2 Retrosynthesis of Suomilide 74
5.3 Substrate Preparation 75
5.4 Synopsis of Results Toward Bridged Tricyclic β-lactones 75
5.5 Summary of Results with Varied Electrophiles 78
5.6 Conclusions 80
VI STEREOSELECTIVE ACCESS TO (Z)-CHLORODIALKYL
ALKENES THROUGH A MODIFIED NEGISHI CROSS
COUPLING OF ZINCATES AND DICHLOROOLEFINS. 81
6.1 Attempted Application to Model System 81
6.2 Alternative Methods for Cross Coupling of Dichloroolefins 85
6.3 Improvements to the Modified Negishi Cross Coupling 86
6.3.1 Optimization of Reaction Conditions 87
6.3.2 Application with Model Tetrahydrofuran 89
6.3.3 Scalable Route to the Skipped Diene 89
6.4 Conclusions 91
VII CONCLUSIONS 92
REFERENCES 94
APPENDIX A: EXPERIMENTAL PROCEDURES 106
APPENDIX B: SINGLE CRYSTAL X-RAY ANALYSIS 183
APPENDIX C: SELECTED SPECTRAL DATA. 217
Page
APPENDIX D: LETTERS OF PERMISSION. 336
VITA 338

LIST OF FIGURES

Page
Figure 1.1 Structure of haterumalides 1a-1h and biselides 2a-2d 2
Figure 1.2 Summary of haterumalide NA syntheses 4
Figure 1.3 Haterumalide NA as inspiration for method development (numbering on intermediates $\mathbf{9 - 1 2}$ reflects haterumalide numbering) 6
Figure 1.4 Initial strategy to tetrahydrofuran fragment 7
Figure 1.5 Structures of natural products containing a trisubstituted vinyl chloride and synthetic strategy 13
Figure 1.6 Retrosynthetic strategy revealing spiroepoxy-cis- β-lactones and their reactivity patterns 20
Figure 1.7 Known small, spiroheterocyclic ring systems 20
Figure 1.8 Retrosynthetic strategy utilizing tetrahydrofuran-fused β-lactones.. 24
Figure 2.1 Retrosynthetic strategy revealing spiroepoxy-cis- β-lactones 30
Figure 2.2 Summary of known spirocycles and reactive sites of spiroepoxy-β-lactones31
Figure 3.1 Optically active nucleophiles (Lewis bases) employed in NCAL processes. 36
Figure 3.2 Retrosynthetic strategy utilizing tetrahydrofuran-fused β-lactones 39Figure 3.3 Single crystal X-ray structure (ORTEP Representation) oftetrahydrofuran-fused syn- β-lactone 11d41
Figure 4.1 Observed diastereoselectivites for NCAL reactions leading to

Page

β-lactone fused carbocycles and proposed selectivity models
 51

Figure 4.2 Structure of cinchona alkaloid and tetramisole based asymmetric catalysts57

Figure 4.3 Models for tetramisole and related catalyst derivatives................... 62
Figure 4.4 Juxtaposition of kinetic resolution and dynamic kinetic resolution processes .. 64

Figure 5.1 Structures of suomilide 139 and banyasides A-B 140-141 73

Figure 5.2 Retrosynthetic analysis of suomilide Abn core with the NCAL
\qquad
Figure 6.1 Retrosynthetic analysis of haterumalide NA from cross coupling ... 81

LIST OF SCHEMES

Page
Scheme 1.1 Stepwise TMAL-MRC Process 7
Scheme 1.2 Multicomponent Cascade TMAL-MRC Process to
Tetrahydrofurans 8
Scheme 1.3 Utility of Cascade TMAL-MRC towards Colopsinol B 9
Scheme 1.4 Multicomponent Cascade TMAL-MRC to Tetrahydropyrans 10
Scheme 1.5 Proposed Mechanism and Stereochemical Rationale for the Three-Component Cascade TMAL-MRC to Tetrahydrofurans and Tetrahydropyrans 10
Scheme 1.6 Attempted Route towards Requisite Ketoaldehyde 11
Scheme 1.7 Preparation of Precursors for Studies for Anti, Cis- γ-Substituted β-Lactone 11
Scheme 1.8 Attempted TMAL Reactions with α-Silyloxy Aldehydes to Access Anti, Cis- γ-Substituted β-Lactones 12
Scheme 1.9 Overview of Cross Coupling with 1,1-Dichloroolefins 14
Scheme 1.10 Initial Lead for the Modified Negishi Cross Coupling 15
Scheme 1.11 Attempted Synthesis of the Skipped Diene of Haterumalide NA 17
Scheme 1.12 Synthesis of the Skipped Diene of Haterumalide NA. 18
Scheme 1.13 Synthesis of Model Tetrahydrofuran 18
Scheme 1.14 Model Coupling toward Haterumalide NA 19
Scheme 1.15 Homoketene Dimer Epoxidation and Proposed Oxocarbenium
Reduction 21
Scheme 1.16 Epoxidation of Ketene Dimers to Spiroepoxy- β-Lactones (ORTEP Plot of Spiroepoxy-Cis- β-Lactone 10a, inset) 21
Scheme 1.17 Reaction of Spiroepoxy- β-Lactones 22
Scheme 1.18 Rearrangement of Spiroepoxy- β-Lactones to Tetronic Acids. 23
Scheme 1.19 Total Synthesis of Maculalactone A 23
Scheme 1.20 NCAL Process with (a) Aldehyde Acids and (b) Keto Acids 25
Scheme 1.21 Double Asymmetric NCAL Process to Carbocycle-Fused β-Lactones 27
Scheme 1.22 Overview of Double Asymmetric NCAL Process 29
Scheme 2.1 Spiroepoxy- β-Lactone Preparation 31
Scheme 2.2 Attempted Regioselective Ring Opening 32
Scheme 2.3 Discovered Modes of Reactivity 32
Scheme 2.4 Possible Reaction Pathways to Enone 65 and Tetronic Acid 67a 33
Scheme 2.5 Epoxidation of Heteroketene Dimer to Spiroepoxy- β-Lactone 34
Scheme 3.1 Formation of Bicyclic and Tricyclic β-lactones via the NCAL
Process from (a) Aldehyde Acids and (b) Keto Acids 36
Scheme 3.2 Catalytic, Asymmetric NCAL Process with Keto Acids 37
Scheme 3.3 Working Mechanism for the NCAL Process 38
Scheme 3.4 Preparation of Enantioenriched Alcohols 39
Scheme 3.5 Attempted β-Lactone Formation from an Acid Chloride 42
Scheme 3.6 Preparation of Tetrahydrofuran-Fused β-Lactone 11b and Conversion

Page

to the Corresponding Weinreb Amide 44
Scheme 3.7 NCAL Optimization and Subsequent Weinreb Amide Formation 45
Scheme 3.8 Prevention of β-Elimination Pathway 46
Scheme 4.1 Preparation of Enantiopure Aldehyde Acids 71b and 71d. 52
Scheme 4.2 Preparation of Enantiopure Aldehyde Acid 71c 53
Scheme 4.3 Preparation of Enantiopure Aldehyde Acid 71a 53
Scheme 4.4 Summary of Double Diastereoselective Synthesis of Tetrahydrofuran-fused β-Lactones 63
Scheme 4.5 Previous Results Using α-Substituted Aldehyde Acids 65
Scheme 4.6 Aldehyde Acid Preparation for Use in Developing a DKR- NCAL Process 66
Scheme 4.7 Possibility of Dynamic Kinetic Resolution 67
Scheme 4.8 Exploration of Deuterium Incorporation 68
Scheme 4.9 Preparation of Unsubstituted β-Keto Acid 68
Scheme 4.10 Reaction Outcome with Unsubstituted Keto Acid 69
Scheme 4.11 Preparation of Substituted Keto Ester 129b 70
Scheme 4.12 Evidence from the NCAL Process 71
Scheme 4.13 Attempted Preparation of Cyclopentanone-Fused β-Lactone 71
Scheme 5.1 Preparation of Keto Acids 147a-147c 75
Scheme 5.2 Initial Attempts to Bridged Tricyclic β-Lactone 76
Scheme 5.3 Known Cycloaddition to Bridged Tricyclic Cyclobutanone 76
Scheme 5.4 Application of Known Cycloaddition Reaction Conditions 77

Page

Scheme 5.5 Attempted Formation of Bridged β-Lactone from an Acid Chloride 77
Scheme 5.6 Cycloaddition to Tetrahydrofuran-Fused Cyclobutanone 78
Scheme 5.7 Proposed Access to γ-Lactones from the NCAL Process with Epoxy Acids 78
Scheme 5.8 Preparation of Epoxy Acid 159a 79
Scheme 5.9 NCAL Studies with Epoxy Acids 79
Scheme 6.1 Proposed Mechanism for Modified Negishi Cross Coupling 82
Scheme 6.2 Initial Preparation of Model Tetrahydrofuran 83
Scheme 6.3 Scalable Route to Model Tetrahydrofuran 84
Scheme 6.4 Cross Coupling with Model Tetrahydrofuran 84
Scheme 6.5 Cross Coupling with Skipped Diene toward Haterumalide NA 85
Scheme 6.6 Application of Known Negishi Cross Coupling to Dichloroolefins. 86
Scheme 6.7 Use of NMP during Zincate Generation 87
Scheme 6.8 Modified Negishi Cross Coupling with Model Tetrahydrofuran in NMP 89
Scheme 6.9 Alternative Scalable Skipped Diene Route 90
Scheme 6.10 Ylide Preparation and Attempted Application to Skipped Diene... 91

LIST OF TABLES

Page

Table 1.1 Modified Negishi Cross Couplings of 1,1-Dichloroolefins in DMA or NMP16
Table 1.2 Synthesis of Tetrahydrofuran-Fused β-Lactones 26
Table 1.3 Double Asymmetric NCAL Process to Tetrahydrofuran-Fused β-Lactones 28
Table 3.1 Aldehyde and Keto Acid Preparation for Tetrahydrofuran-Fused β-Lactones 40
Table 3.2 Time and Temperature Optimization for Tetrahydrofuran-Fused β-Lactone 11d 41
Table 3.3 Reaction Time and Activation Investigations 43
Table 3.4 Optimization of Reaction Conditions for Tetrahydrofuran-Fused
β-Lactone 11c 44
Table 3.5 Synthesis of Tetrahydrofuran-Fused β-Lactones 47
Table 4.1 Initial Studies Toward a Double Diastereoselective NCAL
Process 55
Table 4.2 Alternative Acid Activation for the Double Diastereoselective
NCAL Process 56
Table 4.3 Catalyst Screening for a Double Asymmetric NCAL with
Aldehyde Acid 71b 58
Table 4.4 Summary of Double Diastereoselective NCAL Reactions with
Page
Enantioenriched Aldehyde Acids 59
Table 4.5 \quad Screening of Cinchona Alkaloids Toward β-Lactone Fused
Tetrahydrofurans. 60
Table 4.6 Catalyst Screening for a Double Asymmetric NCAL with
Aldehyde Acid 76g 61
Table 6.1 Optimization of Modified Negishi Cross Coupling in NMP with
Functionalized Zincates. 87
Table 6.2 Optimization of Modified Negishi Cross Coupling in NMP with
Unfunctionalized Zincates. 88

LIST OF ABBREVIATIONS

2,6-lutidine	2,6-dimethylpyridine
Abn	azabicyclononane
Ac	acetyl
Act	activating
β-ICPD	β-isocupreidine
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
Bn	benzyl
BOP-Cl	bis(2-oxo-3-oxazolidinyl)phosphinic chloride
BTM	benzotetramisole
Bz	benzoyl
$\mathrm{Co}(\mathrm{III})$ salen \bullet OAc	1,2-cyclohexanediamino, N, N^{\prime} '-bis(3,5-di-tert-butyl
	salicylidene) cobalt (III) acetate
CSA	camphorsulfonic acid
Cy	cyclohexyl
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DHP	3,4-Dihydro-2H-pyran
$(\mathrm{DHQ})_{2} \mathrm{PHAL}$	$b i s($ dihydroquinino)phthalazine
(DHQD) $2^{\text {PHAL }}$	$b i s($ dihydroquinidino)phthalazine
DIBAl-H	diisobutylaluminum hydride
DKR	dynamic kinetic resolution
DLD-1	colon cancer cell line

DMA	N, N,-dimethylacetamide
DMAP	N, N-dimethylaminopyridine
DMDO	dimethyldioxirane
DMF	N, N-dimethylformamide
DMP	Dess-Martin periodinane
DMS	dimethylsulfide
DMSO	dimethylsulfoxide
dpephos	oxydiphenyl-2,1-phenylene bis(diphenylphosphine)
dppb	1,4-bis(diphenyphosphino)butane
dr	diastereomeric ratio
ee	enantiomeric excess
equiv	equivalent
HBTM	homobenzotetramisole
HKR	hydrolytic kinetic resolution
HPLC	high performance liquid chromatography
IC_{50}	half maximal inhibitory concentration
Imid.	imidazole
IR	infrared spectroscopy
KR	kinetic resolution
L.A.	Lewis acid
LD_{99}	dosage required to kill 99% of test population
LHMDS	lithium bis(trimethylsilyl)amide
m-CPBA	meta-chloroperbenzoic acid

MDA-MB-231	breast cancer cell line from M. D. Anderson Cancer Center
Me	methyl
MRC	Mead reductive cyclization
Ms	mesyl (methanesulfonyl)
MTPA	α-methoxy- α-(trifluoromethyl)phenylacetic acid
MW	microwave
NCAL	nucleophile catalyzed, aldol-lactonization
NHK	Nozaki-Hiyama-Kishi
NMP	N-methylpyrrolidinone
NMR	nuclear magnetic resonance
Ns	4-nitrobenzenesulfonyl
Nuc	nucleophile
OAc-QD	O-acetyl quinidine
OBz-QD	O-benzoyl quinidine
ORTEP	Oak Ridge Thermal Ellipsoid Plot
OTMS-QD	O-trimethylsilyl quinidine
OTMS-QN	O-trimethylsilyl quinine
P388	murine leukemia cell line
Ph	phenyl
Piv	pivaloyl
PMB	p-methoxybenzyl
PMBTCA	p-methoxybenzyl trichloroacetimidate
PPTS	pyridinium p-toluenesulfonate

PPY	4-pyrrolidinopyridine
Py	pyridine
rds	rate determining step
SPy	thiopyridyl
Sudan Red	N-ethyl-1-[[p-(phenylazo)phenyl]azo]-2-naphthalenamine
TBACl	tetra- n-butylammonium chloride
TBDPS	tert-butyldiphenylsilyl
TBS	2,2,6,6-tetramethyl-1-piperidinyloxy free radical
TEMPO	triethylsilyl
TES	triethylsilyl trifluoromethanesulfonate
TESOTf	triisopropylsilyl
THF	tandem Mukaiyama aldol-lactonization
TIPS	trimethylsilyl
TMAL	2-(trimethylsilyl)ethyl
TMS	TMSE

CHAPTER I

INTRODUCTION: NATURAL PRODUCT INSPIRED METHODOLOGY; TETRAHYDROFURAN SYNTHESIS VIA β-LACTONES AND ORGANOMETALLIC COUPLINGS WITH DICHLOROOLEFIN SUBSTRATES

1.1 The Cytotoxic Marine Agent, Haterumalide NA, as Inspiration for Method Development

The diverse structural complexities and potent biological activities of natural products attract the attention of chemists worldwide. Quantities of natural products are often limited from their producing organisms thus hindering testing and potential applications; however, synthesis can help circumvent this issue. Ideal syntheses have a minimal number of high yielding steps with excellent stereocontrol ultimately aiming for atom economy, ${ }^{1}$ few redox transformations, ${ }^{2,3}$ and high chemoselectivity ${ }^{4}$ thus not requiring masking of intermediate functionalities. Natural product syntheses continue to captivate the efforts of synthetic chemists due to their potential use as pharmaceutical agents ${ }^{5}$ and in order to probe the boundaries of existing synthetic methods. ${ }^{6,7}$ Difficulties regularly arise when applying known methods in total synthesis efforts and when exploring the boundaries within known methodology, ${ }^{8}$ thus improved or new methodologies are conceived and developed as a result of these challenges. Methodology and total synthesis are fields that largely overlap, and thus it is difficult to distinguish the reason for development of new methodology. A few specific examples of method development for natural product syntheses include the four methods of intramolecular ether ring formation towards the synthesis of brevetoxin $B,{ }^{7}$ a palladium catalyzed alkyne-alkyne coupling to give the macrocycle of bryostatin 16, , and a

This dissertation follows the style of the Journal of the American Chemical Society.
double stereoablative enantioselective alkylation to install two quaternary centers in an enantioselective manner culminating in the synthesis of cyanthiwigin F..10,11 Therefore, invention and development of new methods are common to total synthesis efforts, however methods development may also be aimed at a particular reoccurring problematic transformation in synthesis rather than a specific target. Methodology such as hydrolytic kinetic resolution (HKR) studied by Jacobsen, ${ }^{12,13}$ Sharpless asymmetric epoxidation ${ }^{14}$ as well as Sharpless asymmetric dihydroxylation, ${ }^{15,16}$ Noyori hydrogenation, ${ }^{17,18}$ and Yamaguchi macrocyclization ${ }^{19}$ are but a few examples that have been applied in numerous total syntheses, which demonstrate the necessity for continued method advancements.

In efforts toward a total synthesis of haterumalide NA (1a), several opportunities arose to explore new β-lactone-based methodologies and explore new C - C bond disconnections (Figure 1.1). Haterumalide NA belongs to the haterumalide ${ }^{20,21}$ and biselide ${ }^{22,23}$ family of macrolactone natural products. Key structural features include a trans-trisubstituted tetrahydrofuran ring that can be derived from a β-lactone containing subunit, four contiguous stereocenters, and a skipped diene unit possessing an unusual trans-substituted chloroolefin.

1a: A/NA; $R^{1}=A c, R^{2}=H, \quad R^{3}=H \quad \Delta^{16,17}=E$
1b: NB;
1c: NC;
1d: ND;
1e: NE;
$\begin{array}{lll}\mathrm{R}^{1}=\mathrm{H}, & \mathrm{R}^{2}=\mathrm{H}, & \mathrm{R}^{3}=\mathrm{H} \\ \mathrm{R}^{1}=\mathrm{A}^{2}, & \Delta^{216,17}=\mathrm{H} & \mathrm{R}^{3}=\mathrm{H} \\ \Delta^{16,17}=\end{array}$
$\begin{array}{llll}\text { 1f: } & \mathrm{R} ; & \mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{H}, & \mathrm{R}^{3}=\mathrm{H}\end{array} \quad \Delta^{26,17}=Z$

2a: $A ; R^{1}=A c, R^{2}=O A c, R^{3}=O H$,
2b: $B ; R^{1}=A c, R^{2}=O A c, R^{3}=S^{5} \cdot C O C H_{3}$
2c: C; $R^{1}=A c, R^{2}=O H, R^{3}=O H$,
2d: $D ; R^{1}=A c, R^{2}=H, \quad R^{3}=s^{s}, S O_{3} H$

Figure 1.1. Structure of haterumalides 1a-1h and biselides 2a-2d.

Haterumalides NA-NE were initially isolated from a marine sponge of the Ircinia $s p$. off the coast of Hateruma island in Japan, ${ }^{20}$ and later from the soil bacteria, Serratia marcesens and S. plymuthica. (Figure 1.1). ${ }^{24-26}$ Haterumalide NA has shown to be cytotoxic against P 388 cells with an $\mathrm{IC}_{50} 0.68 \mu \mathrm{M}$ and a $\mathrm{LD}_{99} 0.24 \mathrm{~g} / \mathrm{kg}$ towards mice. Further studies have shown that it aids in the decrease of lipid droplet formation in adipocyte cells ${ }^{27-29}$ presenting the haterumalides as promising candidates in the treatment of hypertriglyceridemia and hyperlipidemia ${ }^{30}$ since elevated plasma lipid levels, especially triglyceride levels, are recognized as risks for cardiovascular disease, obesity, diabetes, and hypertension. ${ }^{27}$ Other members of this family, namely biselide A (2a), exhibited cytotoxicity towards DLD-1, human colon cancer, with an $\mathrm{IC}_{50} 0.96 \mu \mathrm{M} .{ }^{23}$ More potent cytotoxicity was observed for haterumalide NA, biselide A, and derivatives towards human breast cancer, MDA-MB-231, and lung cancer cell lines compared to the anticancer drug cisplatin. ${ }^{23}$

1.2 Summary of Haterumalide NA Syntheses

The intriguing biological activity of the haterumalides and biselides sparked several syntheses of haterumalide NA (Figure 1.2). The first total synthesis was reported in 2003 by Kigoshi, first generation route, which resulted in revision of the absolute stereochemistry as to that shown in Figure 1.2. ${ }^{31}$ A Nozaki-Hiyama-Kishi coupling installed the side chain and has been utilized in all of the subsequent syntheses. Snider published the synthesis of enantiomeric haterumalide NA later that year and demonstrated use of a higher yielding Yamaguchi macrocyclization to deliver the desired macrolactone. ${ }^{32}$ Two years later, in 2005, Hoye published the first total synthesis of the correct enantiomer of haterumalide NA and was the first to close the macrolactone in the vicinity of the vinyl chloride through a palladium mediated alkyne haloallylation. ${ }^{33}$ Kigoshi, second generation route, and Roulland next published concurrent syntheses utilizing a Suzuki-Miyaura coupling between a borane derived from tetrahydrofurans $\mathbf{8}$ or $\mathbf{4}$ and a 1,1-substituted haloalkene component,
respectively. ${ }^{34,35}$ Borhan also published a total synthesis of haterumalide NA, which employed a chromium-mediated macrocyclization and a final stage deoxygenation of haterumalide NC. ${ }^{36}$ The total synthesis of haterumalide B has also been reported, ${ }^{37}$ and the synthetic efforts towards the haterumalides have been recently reviewed. ${ }^{38,39}$

Key steps: NHK, Palladium alkyne haloallylation, Roush/Panek method
Longest Linear Sequence: 31
2.1\% overall yield

Key steps: NHK, SuzukiMiyaura Cross-coupling, Yamaguchi macrolactonization Longest Linear Sequence: 19 0.02 \% overall yield Roulland

Key steps: Deoxygenation, NHK, Chromium-mediated macrocyclization Longest Linear Sequence: 16
6.2 \% overall yield

Borhan
from a thiopyridyl ketene acetal, a trialkylsilane, and a ketoaldehyde. The discovery of novel, unexpectedly stable spiroepoxy- β-lactones stemmed from our interest in the preparation of such systems to access γ-hydroxy β-lactones required for a reductive cyclization of keto- β-lactones building on work by Mead. In addition, we developed a variant of our nucleophile catalyzed, aldol-lactonization (NCAL) process that enabled access to tetrahydrofuran-fused β-lactones $\mathbf{1 1}$ and also explored double diastereoselection for these systems and carbocycle fused β-lactones. ${ }^{40}$ Finally, we describe new conditions for Pd-catalyzed coupling reactions of dichloroolefins 12 leading to (Z)-trisubstituted chloroolefins related to those found in HatNA.

Our group envisioned two key fragments towards the synthesis of haterumalide NA; a skipped diene possessing a vinyl chloride, and a trans-trisubstituted tetrahydrofuran ultimately derived from a β-lactone moiety 9 (Figure 1.3). Cross coupling of a 1,1dichloroolefin $\mathbf{1 2}$ would install the vinyl chloride present in the macrolactone ring, a method which had minimal precedent at the onset of our synthetic efforts. ${ }^{41}$ The tetrahydrofuran subunit would be derived from Mead reductive cyclization (MRC) of the corresponding β lactone 9 prepared by a tandem Mukaiyama aldol-lactonization (TMAL). During our initial studies Kigoshi published a total synthesis establishing that the previously reported stereochemistry was in fact a diastereomer of what was originally assigned for haterumalide NA. ${ }^{31}$ The synthesis resulted in a revision of absolute stereochemistry from

Figure 1.3. Haterumalide NA as inspiration for method development (numbering on intermediates $\mathbf{9 - 1 2}$ reflects haterumalide numbering).
the original $3 S, 11 S, 13 S, 14 S, 15 R$ to $3 R, 11 R, 13 R, 14 R, 15 R$ (Figure 1.3 , revised stereochemistry shown). Simultaneously, the revision in stereochemistry also altered the relative stereochemistry of the β-lactone to be employed in the MRC reaction from a trans- β-lactone to a cis- β-lactone 9. As a result of substrate limitations in the TMAL process, alternative strategies were investigated including regioselective reduction of spiroepoxy- β-lactones 10, and a nucleophile catalyzed, aldol-lactonization (NCAL) to provide tetrahydrofuran-fused β-lactone 11.

1.4 Tandem Mukaiyama Aldol-Lactonization Strategy

Initially the tetrahydrofuran unit $\mathbf{1 3}$ was envisioned as coming from a tandem Mukaiyama ${ }^{42-45}$ aldol-lactonization ${ }^{46,47}$ process, which as we previously reported allows access to both cis 46 and $\operatorname{trans}^{47} \beta$-lactones (Figure 1.4). The TMAL methodology provides mild reaction conditions and has supported application to total syntheses such as; (-)panclicin, ${ }^{48}$ okinonellin $B,{ }^{49}$ brefeldin $A,{ }^{50}$ and tetrahydrolipstatin/orlistat. ${ }^{51}$ Thus
combination of the TMAL methodology with Mead reductive cyclization ${ }^{52}$ could provide substituted tetrahydrofurans in a highly diastereoselective manner. Lewis acid mediated cyclization of keto- β-lactones to tetrahydrofurans is known to proceed by invertive alkyl CO ring cleavage, ${ }^{52}$ and the desired trans-substituted tetrahydrofuran was expected following the stereochemical models for nucleophilic addition to oxocarbeniums set forth by Woerpel. ${ }^{53,54}$ Utilizing a α-silyloxy aldehyde $\mathbf{1 4}$ and a thiopyridyl ketene acetal $\mathbf{1 5}$ in the TMAL process was envisioned to afford the anti, cis- γ-substituted β-lactone 9.

Figure 1.4. Initial strategy to tetrahydrofuran fragment.

Both α - and β-oxygenated aldehydes were supported in the stepwise TMAL-MRC process (Scheme 1.1). ${ }^{55}$ High diastereoselectivity was observed with α-benzyloxy aldehydes 16a based on chelation control. Whereas, β-silyloxy aldehydes 16b-16c led to moderate diastereoselectivities consistent with Evan's model for addition to β-silyloxy

Scheme 1.1. Stepwise TMAL-MRC Process

aldehydes. ${ }^{56}$ After ozonolysis, alkenyl- β-lactones $\mathbf{1 7}$ underwent Mead reductive cyclization in the presence of TESOTf, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, or TiCl_{4}. Cyclization proceeded through invertive alkyl C-O cleavage, which upon subsequent reduction via "inside attack" of the resulting cyclic oxocarbenium according to Woerpel's model ${ }^{53,54}$ gave tetrahydrofurans 18a-18c.

Extension to a cascade TMAL-MRC process was feasible with the advent of the stepwise TMAL-MRC process. The cascade, three-component synthesis of tetrahydrofurans utilizes γ-ketoaldehydes, thiopyridyl ketene acetals, and a silyl-based nucleophile. ${ }^{57,58}$ The reaction proceeds through a presumed silylated β-lactone providing further activation for the concomitant cyclization, which allowed use of mild reaction conditions. The ZnCl_{2} mediated cascade TMAL-MRC process with subsequent reduction to ease purification gave tetrahydrofurans $\mathbf{1 8}$ in moderate overall yields (Scheme 1.2). Tetrahydrofuran formation was the major product over competitive furan formation. For ease of purification, the silylester and corresponding acid are directly reduced with DIBAl-H to give tetrahydrofurans $\mathbf{1 8}$ in moderate overall yields Combinations of chelation control and stereoelectronic factors governed the diastereoselectivity and are in accord with previous studies. ${ }^{55,56}$ The average yield per step is 86% over the four steps for the cascade TMAL-MRC process and subsequent reduction with α-benzyloxy- γ ketoaldehydes 14. ${ }^{57}$ The reaction also supported use of β-silyloxy- γ-ketoaldehydes $\mathbf{1 4}$, and allylsilane was used as a nucleophile to generate a quaternary center.

Scheme 1.2. Multicomponent Cascade TMAL-MRC Process to Tetrahydrofurans

The cascade TMAL-MRC methodology was applied to the tetrahydrofuran fragment of colopsinol B (Scheme 1.3). Tetrahydrofuran 18d was formed as a mixture of diastereomers ($\cong 3: 1: 3: 1, \cong 42 \%$). After separation the major diastereomer was obtained in 23% yield ($\cong 70 \%$ yield per step over four steps).

Scheme 1.3. Utility of Cascade TMAL-MRC towards Colopsinol B

The tandem process proved to be more efficient when applied to tetrahydropyrans 20a providing yields up to 75% (Scheme 1.4). ${ }^{58}$ Triethylsilane and allylsilane added effectively and gave high diastereoselectivity of the resulting tetrahydropyran 20a in accord with refined models for additions to 6-membered oxocarbeniums. ${ }^{59}$ Minor amounts of dihydropyran 21 were also formed through elimination in a similar manner as the tetrahydrofuran systems. The selectivity observed was consistent with both the TMAL process and the models for nucleophilic addition to oxocarbeniums $\mathbf{2 3} / \mathbf{2 4}$ proceeding by "inside attack" or "axial attack" for tetrahydrofuran 18e and tetrahydropyran 20b systems, respectively (Scheme 1.5). While not applicable to the synthesis of HatNA due to the stereochemical outcome of the initial TMAL process, this cascade TMAL-MRC provides an efficient methodology to generate up to two $\mathrm{C}-\mathrm{C}$ bonds, one $\mathrm{C}-\mathrm{O}$ bond, and
three newly formed stereocenters for the synthesis of both tetrahydrofurans and tetrahydropyrans.

Scheme 1.4. Multicomponent Cascade TMAL-MRC to Tetrahydropyrans

Scheme 1.5. Proposed Mechanism and Stereochemical Rationale for the ThreeComponent Cascade TMAL-MRC to Tetrahydrofurans and Tetrahydropyrans

Despite the efficiency and substrate scope of the TMAL process, an anti, cis- γ substituted β-lactone remained elusive. After several futile efforts, our focus was aimed on formation of the requisite keto- β-lactone 9 from l-malic acid (Scheme 1.6). Gram scale quantities of lactone 26 were prepared following known procedures and are outlined below. ${ }^{54,60,61}$ Alcohol 26 was protected and subsequent reduction gave lactol 27. ${ }^{62}$ Monoalkylation by Grignard addition provided diol 28, and the primary hydroxyl was easily protected as the corresponding pivalate 29. However, protection of the remaining
alcohol under both basic and acidic conditions led to either loss of the pivalate or silyl migration rather than the desired ether $\mathbf{3 0}$.

Scheme 1.6. Attempted Route towards Requisite Ketoaldehyde

Scheme 1.7. Preparation of Precursors for Studies for Anti, Cis- γ-Substituted β-Lactone

Ketene acetal
(a)

31

(73\%, 2 steps)

32

Model aldehyde

Therefore, model aldehyde $\mathbf{3 6}$ and ketene acetal 15c were prepared for use in the TMAL process. Ketene acetal 15c was prepared by protection of glycolic acid and hydrolysis to give acid 32, which after a two-step sequence yielded thiopyridyl ester $\mathbf{3 3}$ (Scheme 1.7a). ${ }^{63-65}$ Subsequent deprotection and trapping of the enolate led to ketene acetal

15c. Model aldehyde 36 was prepared though Grignard addition and protection followed by ozonolysis (Scheme 1.7b).

Screening known TMAL conditions employing ZnCl_{2} or SnCl_{4} were unsuccessful (Scheme 1.8). Alternative reagents (e.g. $\mathrm{CeCl}_{3}, \mathrm{GaCl}_{3}, \mathrm{SmCl}_{3}, \mathrm{PrCl}_{3}, \mathrm{NdCl}_{3}$, and $\mathrm{Cy}_{2} \mathrm{BCl}$) provided either no reaction or only aldol products. ${ }^{66-70}$ After extensive efforts in our group, anti, cis- γ-substituted β-lactones remain challenging stereochemical arrangements to prepare via the TMAL process.

Scheme 1.8. Attempted TMAL Reactions with α-Silyloxy Aldehydes to Access
Anti, Cis- γ-Substituted β-Lactones

1.5 Dichloroolefin Cross Couplings

1.5.1 Known Methods Prior to Development

Cross coupling of a 1,1-dichloroolefin 12 was envisioned to install the vinyl chloride present in the macrolactone ring of haterumalide NA. Cross coupling with 1,1dichloroalkenes had only minimal precedent at the onset of our studies (Scheme 1.7a). ${ }^{41}$ Although significant advancements have been made toward the stereoselective preparation of trisubstituted alkenes under mild reaction conditions, efforts have been focused on the use of bromo ${ }^{71}$ and iodo ${ }^{72}$ alkenes. A trans-selective cross coupling to provide trisubstituted chlorinated alkenes remained a challenge; however, the presence of these moieties in natural products provoked further method development as we
envisioned a metal catalyzed preparation of vinyl chlorides from a trans-selective cross coupling between a 1,1-dichloroolefin and an appropriate nucleophile. Vinyl chloride moieties are present in natural products such as the aurantosides (e.g. aurantoside A 38), ${ }^{73}$ pinnaic acid 39, tauropinnaic acid $\mathbf{4 0},^{74}$ halichlorine $41,{ }^{75}$ haterumalides ${ }^{20,24}$ (e.g. haterumalide NA/A 1a, our methodology inspiration), and biselides ${ }^{22,23}$ (e.g. biselide A 2a) (Figure 1.5).

Figure 1.5. Structures of natural products containing a trisubstituted vinyl chloride and synthetic strategy.

1.5.2 Review of Known Methods to Date

Recent advancements in palladium catalysis have enabled applications of cross coupling to a variety of challenging substrates. ${ }^{76,77}$ During our initial exploration, Negishi reported his investigations in this area and demonstrated a profound effect of catalyst bite angle and selectivity for monoalkylation 42b over competitive disubstitution (Scheme $1.9 \mathrm{~b}) .{ }^{78}$ The palladium catalyst, PdCl_{2} (dpephos) (dpephos $=$ oxydiphenyl-2,1-phenylene bis(diphenylphosphine), provided good yields of the monosubstituted products $\mathbf{4 2 b}$ in
conjunction with minor amounts of disubstituted products. Ensuingly, Roulland reported use of a trans-selective coupling between 1,1-dichloroalkenes 12c and alkyl boranes thus expanding the substrate scope to include oxygenated substituents to solely provide monosubstitution 42c, and this methodology was applied in the complex setting of natural product synthesis (Scheme 1.9c). ${ }^{35,79}$ Use of PdCl_{2} (xantphos) (xantphos $=9,9-$ dimethyl-4,5-bis-(diphenylphosphino)xanthene, possessing an even larger bite angle, suppressed the disubstitution pathway.

Scheme 1.9. Overview of Cross Coupling with 1,1-Dichloroolefins

Initial Lead by Tamao
(a)

Negishi
(b)

$23^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 12-24 \mathrm{~h}$
$R^{1}=P h$, alkynyl, alkyl
(80-90\%) + (3-25\%)
12b disubstitution
 $\left.\mathrm{Cl}_{2}(\text { XantPhos })_{2}\right]$

$\underbrace{R^{2}}_{9-B B N}$ (46-87\%)

12c

Developed Method
(d)

$\mathrm{R}^{1}=$ alkyl
$R^{2}=$ alkyl, ether, ester 12d

 (30-60\%)

42d

1.5.3 Scope of Modified Negishi Cross Coupling

Herein, we report the stereoselective preparation of (Z)-chlorodialkyl alkenes 42d by a modified Negishi cross coupling of the corresponding 1,1-dichloroolefin 12d and
respective zincate. Our approach employs a more sterically constrained catalyst, microwave heating to enhance reaction rates, and mild conditions for zincate generation. With the assortment of electron rich and sterically constrained palladium catalysts available, we decided to investigate trans-selective cross couplings utilizing bis-(tri-tertbutylphosphine) palladium.

Initial screening of 1,4-bis-(diphenyphosphino)butane-palladium (II) chloride led to no reaction when alkyl Grignard reagents were used as the coupling partner and the use of alkyl zincates gave only disubstituted products. Employing a more sterically encumbered catalyst such as $\operatorname{Pd}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right)_{2}$ (bis-(tri-tert-butylphosphine) palladium), known to effect the desired tranformation with aryl chloride substrates, ${ }^{80}$ provided the desired monosubstituted product. ${ }^{81}$ Microwave heating conditions in the presence of bis-(tri-tertbutylphosphine) palladium with a $1: 1$ mixture NMP:THF were applicable to both alkyl and ester containing zincates and gave good yields of monosubstituted products $\mathbf{4 2} \mathbf{e} \mathbf{- 4 2 f}$, respectively (Scheme 1.10).

Scheme 1.10. Initial Lead for the Modified Negishi Cross Coupling

Since the conditions required use of a zincate, a mild preparation for zincate generation was pursued. Mild reaction conditions were reported by Knochel for formation of zincates in the presence of DMA (N, N-dimethylacetamide) and were thus
explored in subsequent reactions. ${ }^{82-84}$ Coupling proceeded in DMA (N, N dimethylacetamide) with heteroatom substituted zincates 43a-43d to deliver only monosubstituted products $\mathbf{4 4} \mathbf{a}-\mathbf{4 4 d}$ in moderate yields (Table 1.1, entries 1-4). However when unfuntionalized zincates or those with large protecting groups (i.e. TBDPS) were utilized, the coupling did not proceed, although recovery of the 1,1 -dichloroolefin was possible suggestive of the need for intramolecular complexation of the zincate with pendant Lewis basic functional groups. Prior distillation of DMA from BaO was also found to be required since $<100 \mathrm{ppm}$ of water led to significantly lowered conversion. ${ }^{85}$

Table 1.1. Modified Negishi Cross Couplings of 1,1-Dichloroolefins in DMA or NMP

entry	R^{1}	$\mathrm{R}^{2} \mathrm{ZnBr}$	method ${ }^{\text {a }}$	44:45 ${ }^{\text {b }}$	\%yield ${ }^{\text {c }}$
1	12 f	$\underbrace{\sim}_{\text {43a }} \mathrm{ZnBr}$	A	>19:1	52
2	12	XIO	A	>19:1	60
		43b	B	$>19: 1$	39
3	12 f		A	>19:1	39
4	12e	$\underbrace{\mathrm{ZnBr}}_{\sim_{\mathbf{4 3 d}}}$	A	>19:1	40
5	12e	$\begin{gathered} \mathrm{H}_{17} \mathrm{C}_{8}-\mathrm{ZnBr} \\ \mathbf{4 3 e} \end{gathered}$	B	>19:1	$38^{\text {b,d }}$

${ }^{a}$ Method A: Reaction conducted in 1:1 DMA/THF under MW irradiation for 5 h at 100 ${ }^{\circ} \mathrm{C}$. Method B: Reaction conducted in $1: 1 \mathrm{NMP} / \mathrm{THF}$ under MW irradiation for 0.5 h at $80{ }^{\circ} \mathrm{C} .{ }^{b}$ Ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis (integration) of the crude reaction mixtures. ${ }^{c}$ Refers to isolated yield. ${ }^{d}$ Reaction run for 3 h .

The strict anhydrous conditions required for coupling in DMA led us to reexamine some of our initial leads. Coupling reactions conducted in commercially
available anhydrous NMP (1-methyl-2-pyrrolidinone) also afforded the coupled products in moderate yields (Table 1.1, entries 2 and 5). ${ }^{86}$ Employing NMP as the solvent significantly decreased the reaction time and temperature, and the optimal reaction conditions required microwave heating at $80^{\circ} \mathrm{C}$ for 0.5 h . These reaction conditions repeatedly provided the monosubstituted products $\mathbf{4 4 b}$ and $\mathbf{4 4 e}$ while also expanded the substrate scope to include unfunctionalized zincates (Table 1.1, entries 2 and 5). Thus providing more practical cross coupling reaction conditions with NMP, which utilized a commercially available catalyst and solvent while maintaining tolerable anhydrous conditions.

As we sought to apply this methodology, we explored synthetic routes toward the skipped diene of haterumalide NA. Our first route to the skipped diene involved a hetero-Diels-Alder reaction between known diene 46 and chloral which proceeded to give the desired dihydropyran 47 as an inconsequential mixture of diastereomers (Scheme 1.11). ${ }^{87,88}$ Unfortunately, after extensive efforts only complete isomerization of the alkene was observed.

Scheme 1.11. Attempted Synthesis of the Skipped Diene of Haterumalide NA

Due to the difficulties encountered in attempting to prepare 1,1-dichloroolefin 48, an alternative strategy was pursued. ${ }^{89,90}$ After functional group manipulation, diol 49 was obtained (Scheme 1.12). ${ }^{91,92}$ Finally, 1,1-dichloroalkene 50 was prepared upon reductive
fragmentation after protection and acylation, and a similar proceeding was applied in the context of natural product synthesis. ${ }^{35}$

Scheme 1.12. Synthesis of the Skipped Diene of Haterumalide NA

We then constructed a suitable model-coupling partner. This synthesis began with L-malic acid by initial conversion to known alkene 51 (Scheme 1.13). ${ }^{54,61,62}$ Alkene 51 was converted to alcohol 52 via reductive ozonolysis, and the resulting primary alcohol 52 was converted to the corresponding bromide 53 by displacement of the mesylate. This process delivered tetrahydrofuran 53 in excellent yield as a single diastereomer.

Scheme 1.13. Synthesis of Model Tetrahydrofuran

With both the skipped diene $\mathbf{5 0}$ and the model tetrahydrofuran fragment $\mathbf{5 3}$ in hand, we initiated tests for more coupling reactions in a more complex setting (Scheme 1.14). Conversion of bromide 53 to the corresponding zincate and subsequent coupling with model dichloroolefin 41e using our standard protocol in DMA or NMP gave the monosubstituted product 54 in 29% and 30% yield, respectively. Next, the bromide 53 was converted to the zincate and subjected to coupling conditions with skipped diene $\mathbf{5 0}$.

Unfortunately, none of the desired product was obtained. Trace amounts of β-eliminated product derived from bromide 53 were observed along with recovered starting material (not shown). This reaction was run on smaller scale, and the high moisture sensitivity also presumably led to diminished yields. Despite use of a large excess of zincate no coupled product was isolated and we concluded that this methodology was not directly applicable to the HatNA synthesis

Scheme 1.14. Model Coupling toward Haterumalide NA

In summary, our modified Negishi cross coupling method offers a strategy for the highly selective palladium catalyzed coupling of 1,1 -dichloroalkenes with both heteroatom-substituted and unfunctionalized zincates in moderate yields using commercially available catalyst and solvent. We have also demonstrated a route to the skipped diene of haterumalide NA. Significant progress has recently been made with 1,1-dichloroolefin couplings, but limitations of substrate compatibility remain a challenge with our developed reaction conditions.

1.6 Spiroepoxy- β-Lactone Approach

The difficulty in accessing the anti, cis- γ-substituted β-lactone 9 with the TMAL process required us to reconsider alternative strategies including regioselective $\mathrm{C}-\mathrm{O}$ bond cleavage at the desired reaction site of the corresponding spiroepoxy-cis- β-lactone 10, a
strained ring system heretofore unknown (Figures 1.6 and 1.7). ${ }^{93}$ We envisioned the dioxaspiro[2.3]hexan-5-one ring system (spiroepoxy- β-lactone 10) coming from oxidation of the corresponding optically active ketene dimer 58, which may undergo regioselective ring opening at the anomeric carbon followed by facially selective reduction to deliver anti, cis- γ-substituted β-lactone 9 (Scheme 1.15). ${ }^{94-97}$

Figure 1.6. Retrosynthetic strategy revealing spiroepoxy-cis- β-lactones and their reactivity patterns.

54

55

56

Figure 1.7. Known small, spiroheterocyclic ring systems

Indeed the spiroepoxy- β-lactone could be accessed by oxidation of the ketene dimer upon exposure to dimethyldioxirane (DMDO) (Scheme 1.16). ${ }^{98}$ A variety of ketene dimers were converted to the corresponding spiroepoxy-cis- β-lactones $\mathbf{1 0}$ in moderate to good yield with excellent diastereoselective control (dr 10:1 to 24:1) as a result of the incoming oxidant adding opposite to the alkene to avoid steric interactions (cis/trans refers to the β-lactone stereocenters). What was unexpected was the fact that these novel compounds were isolable and in most cases could be purified by typical
chromatography. However, spiroepoxy- β-lactones were typically generated and used within a week, but the shelf life could be extended by proper storage procedures. X-ray analysis was obtained for the cyclohexyl substituted spiroepoxy-cis- β-lactone 10a, and displayed unique bond characteristics (Scheme 1.6, ORTEP plot, inset).

Scheme 1.15. Homoketene Dimer Epoxidation and Proposed Oxocarbenium Reduction

Scheme 1.16. Epoxidation of Ketene Dimers to Spiroepoxy- β-Lactones (ORTEP Plot of Spiroepoxy-Cis- β-Lactone 10a, inset)

Only two of four possible expected modes of reactivity for the spiroepoxy- β lactone systems were observed in conjuction with products formed from unanticipated reaction pathways. Nucleophilic additions provided α-substituted ketones 60-62, and the proposed addition to the C5-O6 bond was confirmed by a heavy water experiment (Scheme 1.17). ${ }^{98,99}$ The strained system 10a was completely unraveled to amides 63-64 upon exposure to secondary amines, and reduced to triol 66 by lithium aluminum
hydride. Reaction with a silyl triflate and base led to minor amounts of enone $\mathbf{6 5}$ arising presumably from α-deprotonation of the epoxide. Tetronic acid 67 was surprisingly obtained upon subjection to a less nucleophilic base such as DBU.

Scheme 1.17. Reaction of Spiroepoxy- β-Lactones

As our interest was in applying a spiroepoxy-cis- β-lactone derived from a heteroketene dimer towards the synthesis of haterumalide NA, heteroketene dimerization and epoxidation were briefly explored (Scheme 1.18). ${ }^{100}$ Heteroketene dimer 58b was formed as part of a statistical mixture of dimers formed from a mixture of propionyl chloride and 4-chlorobutyryl chloride, and the heteroketene dimer underwent epoxidation to spiroepoxy-cis- β-lactone 10b. Spiroepoxy- β-lactone $\mathbf{1 0 b}$ derived from the heteroketene dimer 58b reacted in a similar fashion to other spiroepoxy- β-lactones. However, spiroepoxy- β-lactones were found to have a high propensity to rearrange to the corresponding tetronic acid derivative. Lewis acids easily effected the rearrangement and gave good yields of tetronic acid 67.

Scheme 1.18. Rearrangement of Spiroepoxy- β-Lactones to Tetronic Acids

The rearrangement occurred with retention of stereochemistry as confirmed by the total synthesis of $(+)$-maculalactone A, a natural product with antifouling activity (Scheme 1.19). ${ }^{99}$ Ketene dimerization with O-TMSQN provided the enantioenriched hydrocinnamyl derived ketene dimer 58c. Epoxidation gave spiroepoxy-cis- β-lactone 10c in 57% yield as single diastereomer after purification. The tetronic acid was easily formed, and the relative and absolute stereochemistries were determined by X-ray analysis and Mosher ester derivatives, respectively. The synthesis of (+)-maculalactone A (70) was completed upon triflate formation and subsequent cuprate addition/elimination. ${ }^{101}$

Scheme 1.19. Total Synthesis of Maculalactone A

Spiroepoxy- β-lactones displayed varying modes of reactivity and have a high propensity to rearrange to tetronic acids. The rearrangement was exploited in a small molecule synthesis. After extensive efforts, the anti, cis- γ-substituted β-lactone 9
remained inaccessible and again redirected our strategy to alternative method development.

1.7 Nucleophile Catalyzed, Aldol Lactonization Strategy

Figure 1.8. Retrosynthetic strategy utilizing tetrahydrofuran-fused β-lactones.

Our efforts toward the haterumalides, led us to explore the nucleophile catalyzed, aldol-lactonization (NCAL) process for the synthesis of dioxabicyclo[3.2.0]heptanones (tetrahydrofuran-fused β-lactones e.g. 11) to access the tetrahydrofuran found in these natural products and also extend the scope of the NCAL methodology (Figure 1.8). The NCAL process provides convenient access to enantioenriched carbocycle-fused β lactones bearing one two or more stereocenters. ${ }^{102-104}$ Use of aldehyde acids 71 in the NCAL provides products with excellent enantioselectivity by employing cinchona alkaloid derived catalysts, which have been widely utilized for organ catalysis (Scheme 1.20a). ${ }^{105}$ The substrate scope has been expanded to include keto acids 74 with the use of a stronger nucleophilic promoter such as 4-pyrollidinopyridine, ${ }^{104}$ and an enantioselective variant was realized with the use of tetramisole (Scheme 1.20b). ${ }^{106,107}$ Application to heteroatom containing bicyclic products was achieved in the synthesis of salinosporamide $\mathrm{A},{ }^{108}$ yet further extension to tetrahydrofuran-fused β-lactones remained undescribed.

At the beginning of our studies, there was a sole report by Crich and Hao documenting formation of isolable tetrahydrofuran-fused β-lactones. ${ }^{109}$ The NCAL process indeed furnished anti/syn tetrahyrofuran-fused β-lactones 11a-11f in modest

Scheme 1.20. NCAL Process with (a) Aldehyde Acids and (b) Keto Acids
a)

b)

yields with low diastereoselectivities (anti/syn refers to the stereogenic relationship of the tetrahydrofuran stereocenters) (Table 1.2). ${ }^{68}$ Tetrahyrofuran-fused β-lactones 11a-11b and 11f were of particular interest in our studies toward the haterumalides and laurefucin, respectively (Table 1.2, entries 1-2, 5).

In order to overcome the inherent low diastereoselectivity exhibited with tetrahyrofuran-fused β-lactones, we considered a double asymmetric NCAL approach utilizing both an asymmetric nucleophile and an enantioenriched substrate..40,110,111 The parent carbocycle-fused β-lactone systems delivered much more practical yields and were used for development of double diastereoselective NCAL process. In order to access these systems with greater diastereoselective control, enantioenriched substrates 71 were prepared through Noyori hydrogenation, ${ }^{18}$ asymmetric deprotonation of a substituted cyclohexanone, ${ }^{112}$ or HKR of a terminal epoxide ${ }^{13}$ with subsequent elaboration. After screening a variety of cinchona alkaloid derivatives, O-TMS quinidine (O-TMSQD) and O-TMS quinine (O-TMSQN) emerged as the most promising nucleophilic catalysts. β lactones 73 containing β-substitution with respect to the acid gave high diastereoselective control ($\mathrm{dr}>19: 1$, anti- β-lactone 73) in accord to our previous findings (anti/syn refers to

Table 1.2. Synthesis of Tetrahydrofuran-Fused β-Lactones

${ }^{a}$ Diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis (integration) of the crude reaction mixtures. ${ }^{b}$ Prepared with racemic starting material. ${ }^{c} \mathrm{Et}_{3} \mathrm{~N}$ was used as both the nucleophile and base. ${ }^{d} \mathrm{PPY}$ was used as the nucleophile and $i-\mathrm{Pr}_{2} \mathrm{NEt}$ as base.
the stereochemistry of the carbocycle substituent with respect to the β-lactone) (Scheme 1.21). ${ }^{102,113}$ The inherent substrate bias exhibited by γ-substitution in anti/syn carbocyclefused β-lactones 73 was overridden with O-TMSQD and O-TMSQN and improved the diastereoselectivity (dr 1:7 to $>19: 1$). Both the relative and absolute stereochemistries
were confirmed by X-ray analysis. Substrates possessing δ-substituents also gave good diastereoselectivity. Although the anti/syn cyclohexane-fused β-lactones were only formed in modest yields, the diastereoselectivity could be completely reversed (dr 1:>19 to $>19: 1$).

Scheme 1.21. Double Asymmetric NCAL Process to Carbocycle-Fused β-Lactones

The conditions developed for a double diastereoselective NCAL process with carbocycle-fused β-lactones were not directly applicable to tetrahydrofuran-fused β lactones (Table 1.3, entry 2). Therefore, racemic aldehyde acid $\mathbf{7 6 g}$ was used due to greater availability and in order to test the degree of reagent control. The enhanced nucleophilicity of homobenzotetramisole 77 (HBTM), a tetramisole catalyst derivative developed by Birman as an asymmetric acylation catalyst, provided up to 78% enantiomeric excess albeit in modest yield (Table 1.3, entry 3). Although application of enantioenriched $\mathbf{7 6 g}$ did not lead to a significant improvement in the diastereoselectivity, a marked solvent effect leading to improvement in the diastereoselectivity up to $7: 1$ (Table 1.3, entry 4). Enhancement in the diastereoselectivity was observed, yet it is plausible that the optimization was performed on the substrate leading to a mismatched case. However, the consistently low yields obtained deterred further investigations.

Double asymmetric synthesis was applied to both carbocycle-fused β-lactones and tetrahydrofuran-fused β-lactones (Scheme 1.22). Carbocycle-fused β-lactone
diastereoselectivities were improved from 1:1-2 to $>19: 1$. Direct application of the asymmetric cinchona alkaloid catalysts used for carbocycles was not feasible to tetrahydrofurans. Instead, homobenzotetramisole provided excellent enantioselectivity, and somewhat increased diastereoselectivity was obtained when using toluene as a cosolvent albeit in modest yield. The cinchona alkaloids were able override the inherent substrate bias and in some cases reverse the diastereoselectivity of the NCAL process thus affording a double diastereoselective NCAL process.

Table 1.3. Double Asymmetric NCAL Process to Tetrahydrofuran-Fused β-Lactones

${ }^{a}$ Reactions run with i - $\mathrm{Pr}_{2} \mathrm{NEt}$ as base at $0.5 \mathrm{M} .{ }^{b}$ Enantiomeric excess of major diastereomer. ${ }^{c}(\pm)$-Aldehyde acid was used. ${ }^{d} \mathrm{Et}_{3} \mathrm{~N}$ used as both base and nucleophile. ${ }^{e}$ Reaction run with a 1:1 solvent mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:toluene. ${ }^{f}$ Used enantioenriched $\mathbf{7 6 g}$.

1.8 Conclusions

Natural product diversity continues to serve as a rich source for application and inspiration for novel methodology development. The haterumalides captivated our attention, as a muse, which in turn sparked our creativity and culminated in the development of four differing methods. A cascade, three-component TMAL-MRC converts simple ketoaldehydes and ketene acetals to tetrahydrofurans bearing up to four stereogenic centers and even formation of a quaternary carbon center. Reacting 1,1dichloroolefins in conjunction with a zincate in the modified Negishi cross coupling led

Scheme 1.22. Overview of Double Asymmetric NCAL Process

to trans-trisubstituted alkenes containing a chlorine atom, and similar strategies were in fact applied in total syntheses of haterumalide NA. Highly strained spiroepoxy- β lactones were unexpectedly stable isolable products that displayed varying modes of reactivity. The innate propensity for conversion of spiroepoxy- β-lactones to tetronic acids was utilized in the total synthesis of $(+)$-maculalactone A. Our interest in the synthesis of tetrahydrofuran-fused β-lactones led to studies of a double diastereoselective NCAL process in order to circumvent the inherent substrate bias exerted upon formation of bicyclic β-lactones, which was found to be highly successful with carbocycle-fused- β lactones. The rich informational content of natural products continue to captivate chemists as demonstrated herein, and surely these genetically-encoded small molecules will continue to serve as a vast wealth of inspiration for developing novel of synthetic methodology in the future.

CHAPTER II

UTILITY OF SPIROEXPOXY- β-LACTONES*

2.1 Retrosynthesis of Haterumalide NA

Our initial route to haterumalide NA utilized a tandem Mukaiyama aldol-lactonization (TMAL) ${ }^{46,47}$ process known to provide access to either cis 46 or trans $^{47} \beta$-lactones and subsequent Mead reductive cyclization (MRC) ${ }^{52}$ to the desired tetrahyrofuran moiety. ${ }^{55,57,58}$ The revision in the absolute stereochemistry for the target in conjunction with unfruitful efforts toward the preparation of an anti, cis- γ-substituted β-lactone 9 with the TMAL process redirected our strategy. Our keen interest in β-lactone method development and their synthetic applications focused efforts on formation of the requisite anti, cis- γ substituted β-lactone 9 by a regioselective reduction of the highlighted epoxide $\mathrm{C}-\mathrm{O}$ bond in spiroepoxy-cis- β-lactone 10, which upon subsequent Mead reductive cyclization would deliver the tetrahydrofuran ring of haterumalide NA (Figure 2.1).

Figure 2.1. Retrosynthetic strategy revealing spiroepoxy-cis- β-lactones.

[^0]
2.2 Potential Reactivity

Of four possible predicted modes of reactivity, only two pathways were observed with attack predominating at the ether and ester carbon centers 10d (Figure 2.2). ${ }^{98}$ A detailed review of these systems along with other highly strained spirocycles was recently disclosed. ${ }^{93}$ Although extensive screening did not lead to any desired regioselective reductive ring opening, unexpected reaction pathways were discovered. ${ }^{99}$

Figure 2.2. Summary of known spirocycles and reactive sites of spiroepoxy- β-lactones.

2.3 Discovered Reaction Manifolds

Studies on structure elucidation, preparation and exploration of reactivity patterns set forth by Dr. Richard Duffy for spiroepoxy- β-lactones 10 laid the foundation for further studies regarding reactivity and scope for these spirocycles (vide supra). ${ }^{98,99,114}$ Spiroepoxy-cis- β-lactone $\mathbf{1 0 a}$ was prepared from epoxidation of the corresponding ketene dimer 58a with dimethyldioxirane (DMDO) in accord with procedures developed by Duffy ${ }^{98}$ and Calter, ${ }^{97}$ respectively (Scheme 2.1).

Scheme 2.1. Spiroepoxy- β-Lactone Preparation

Extensive efforts made by Duffy to effect the desired regioselective reduction were unsuccessful. Further studies of the spiroepoxy-cis- β-lactone 10a with Lewis acids ${ }^{115-117}$
only gave rise to enone $\mathbf{6 5}$, tetronic acid $\mathbf{6 7 a}$, or complex mixtures of products (Scheme 2.2). Duffy had previously observed both base and Lewis acid induced formation of tetronic acid 67a occurring through rearrangement of the spiroepoxy- β-lactone system. However, enone 65 arose from an unanticipated reaction pathway.

Scheme 2.2. Attempted Regioselective Ring Opening

A variety of conditions were explored in order to investigate alternate reactivity of spiroepoxy-cis- β-lactone 10a further (Scheme 2.3). Water incorporated into the spiroepoxy- β-lactone framework to afford α-hydroxy substituted ketone 62 . Enone 65 was produced, albeit in low yield, when TMSOTf was used as a Lewis acid in conjunction N, N diisopropylethylamine. ${ }^{118}$ Alternatively, TMSOTf and 2,6-di-tert-butyl-4-methyl pyridine gave moderate yields of tetronic acid 67a. Spiroepoxy-cis- β-lactone 10a could, however, be completely reduced by reaction with lithium aluminum hydride.

Scheme 2.3. Discovered Modes of Reactivity

Reactions with TMSOTf presumably proceed through a transient silylated epoxide 78 (Pathway A and B) or silylated β-lactone 82 (Pathway C) (Scheme 2.4). Enhanced sterics
of the base can obviate the deprotonation pathway and subsequent decarboxylation to enone 65 (Pathway A) to give tetronic acid 67a (Pathway B). The high propensity of the spiroepoxy- β-lactones to rearrange to tetronic acids was utilized in the synthesis of (+)maculalactone A, which also provided evidence for intermediacy of a silylated epoxide $\mathbf{8 2}$ as the rearrangement was found to proceed with retention of stereochemistry at C5.9

Scheme 2.4. Possible Reaction Pathways to Enone 65 and Tetronic Acid 67a

As our efforts were aimed toward the haterumalides, we sought to apply the methodology of spiroepoxy- β-lactones derived from homoketene dimers to those obtained from heteroketene dimers (Scheme 2.5). Partnering with Mr. Ravikrishna Vallakati, we found that heteroketene dimers $\mathbf{5 8 b}, \mathbf{6 8 - 6 9}$ could be obtained. ${ }^{99}$ The heteroketene dimers were obtained as $\sim 7: 1: 1$ mixture $(\mathbf{6 9 / 6 8} / \mathbf{5 8 b})$. Heteroketene dimer 58b was then further oxidized to provide spiroepoxy-cis- β-lactone 10b with good diastereoselectivity (dr 7:1), which exhibited similar reactivity as other spiroepoxy- β-lactones and could easily be converted to the corresponding tetronic acid derivative as demonstrated by Vallakati.

Scheme 2.5. Epoxidation of Heteroketene Dimer to Spiroepoxy- β-Lactone

2.4 Conclusions

Spiroepoxy- β-lactones were prepared in accord with the procedure developed by Duffy. Spiroepoxy- β-lactones obtained from heteroketene dimers were prepared smoothly, and displayed similar reactivity patterns as the spiroepoxy- β-lactones derived from homoketene dimers. However, the desired reaction manifold to open the spiroepoxy- β lactone ring system to the anti, cis- γ-substituted β-lactone for use towards haterumalide NA remained inaccessible after extensive studies. Unanticipated reaction pathways were discovered, namely rearrangement to tetronic acids and formation of enone products. The facile rearrangement of these systems to tetronic acids culminated in the total synthesis of (+)-maculalactone A.

CHAPTER III

NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATIONS (NCAL) TO β-LACTONE FUSED TETRAHYDROFURANS

3.1 Previous NCAL Studies

The development of concise enantioselective routes to β-lactones continues to be an active area of research due to their varied reactivity and applications. ${ }^{19-127}$ Our contributions to this area have focused on an intramolecular, nucleophile catalyzed, aldollactonization (NCAL) process of aldehyde acids that provide convenient access to bicyclic β-lactones bearing two or more stereogenic centers building on elegant work by Wynberg and coworkers (Scheme 3.1a). ${ }^{102-104,128}$ This strategy was previously rendered enantioselective with the use of O-acetyl quinidine $(O-\mathrm{AcQD}$) or β-isocupreidine (β ICPD) as chiral nucleophilic promoters (chiral Lewis bases) to obtain enantioenriched β lactone fused cyclopentanes 73 (Figure 3.1). ${ }^{102-105}$ Silylated cinchona alkaloids $(O$ TMSQD and O-TMSQN) were used in further applications based on Calter's evidence for greater stability and higher enantioselectivities obtained with the silylated derivatives. ${ }^{129}$ The NCAL process, initially inspired by γ-lactam fused β-lactone natural products including omuralide and more recently salinosporamide A, was applied to a concise, bioinspired racemic ${ }^{108}$ and subsequently enantioselective ${ }^{130}$ total synthesis of the latter natural product. More recently, the NCAL process was extended to keto acid 74 substrates with the use of a stronger nucleophilic promoter, 4-pyrrolidinopyridine (PPY) (Scheme 3.1b). ${ }^{113}$ A single example of a stoichiometric, enantioselective reaction was
realized making use of tetramisole. ${ }^{106,107}$ Tricyclic β-lactones produced from the NCAL method featured novel modes of reactivity demonstrating transformations through stereospecific, dyotropic rearrangements involving 1,2-acyl and δ-lactone migrations. ${ }^{106}$

β-ICPD
(84)

O-TMSQD
(85)

O-TMSQN
(86)

HBTM
(77)

Figure 3.1. Optically active nucleophiles (Lewis bases) employed in NCAL processes.

Scheme 3.1. Formation of Bicyclic and Tricyclic β-lactones via the NCAL Process from (a) Aldehyde Acids and (b) Keto Acids
a)

b)

74

75
dr 1:1 to $>19: 1$

A stronger nucleophilic promoter was required with keto acids 74, due to the less electrophilic nature of these systems compared to the corresponding aldehyde acid substrates 71 thus initially precluding an enantioselective variant. Most recently
conditions were developed to facilitate a catalytic, asymmetric NCAL process with keto acids 74 (Scheme 3.2). ${ }^{131}$ The catalytic, asymmetric NCAL process made use of a commercially available activating agent $(p-\mathrm{TsCl})$ and (S)-HBTM as a nucleophilic promoter in conjunction with lithium chloride, ${ }^{132}$ which presumably promoted the reaction through a cyclic transition state arrangement and ultimately provided a significant increase in yields. ${ }^{133,134}$

Scheme 3.2. Catalytic, Asymmetric NCAL Process with Keto Acids

3.2 Proposed Mechanistic Rationale

The NCAL process is thought to proceed by activation of the acid $\mathbf{8 7}$ followed by displacement with the nucleophile to provide the corresponding acyl ammonium species $\mathbf{8 8}$ (Scheme 3.3). ${ }^{113}$ Acylammonium $\mathbf{8 8}$ could then undergo deprotonation to give ammonium enolate 89. The high diastereoselectivity observed for substrates possessing β-substituents provided evidence for a NCAL process proceeding through ammonium enolate intermediates based on $\mathrm{A}^{1,3}$-strain arguments. Establishment of a rapid thermodynamic equilibration between ammonium enolate $\mathbf{8 9}$ and $s y n$-aldolate $\mathbf{9 1}$ led to ring closure to form zwitterionic intermediate 91. Subsequent elimination through direct displacement or through a tetrahedral intermediate $\mathbf{9 2}$ would deliver cis- β-lactone $\mathbf{7 3}$ in enantioenriched form with the use of an asymmetric nucleophile; however, the anti-
aldolate would not proceed to a trans- β-lactone due to ring constraints. Alternatively, displacement of the activated acid, acyl ammonium species, or ammonium enolate leads to ketene 90 that can form racemic β-lactones via a $[2+2]$ reaction pathway.

Scheme. 3.3. Working Mechanism for the NCAL Process

3.3 Applications to β-Lactone Fused Tetrahydrofurans

3.3.1 Retrosynthesis of Haterumalide NA

Our initial routes to haterumalide NA focused on formation and utility of an anti, cis-γ-substituted β-lactone $\mathbf{9}$, which remained elusive from both the TMAL-MRC process as well as from the attempted regioselective reduction of spiroepoxy- β-lactones (vida supra). Our efforts toward the haterumalides, led us to explore the NCAL process for the synthesis of dioxabicyclo[3.2.0]heptanones (tetrahydrofuran-fused β-lactones e.g. 11) to access the required tetrahydrofuran found in these natural products and also extend the scope of the NCAL methodology. Tetrahydrofuran-fused β-lactones were previously reported as isolable products by Crich and Hao via cyclization of the corresponding
hydroxyacid with $\mathrm{BOP}-\mathrm{Cl}$ to prepare C 4 ' α-carboxylated 2'-deoxynucleoside derivatives. ${ }^{109}$ Thus our efforts were redirected toward the preparation and use of tetrahydrofuran-fused β-lactone 11 (Figure 3.2). We envisioned the tetrahydrofuran-fused β-lactone system 11 coming from the NCAL process by subjection of the appropriate aldehyde acid.

Figure 3.2. Retrosynthetic strategy utilizing tetrahydrofuran-fused β-lactones.

3.3.2 Substrate Preparation

Scheme 3.4. Preparation of Enantioenriched Alcohols

Aldehyde acids 76a-76i were prepared from the related alcohols 94a-94i obtained by Grignard addition in the presence of copper iodide to provide the corresponding aldehyde or terminal epoxide (Table 3.1). ${ }^{135}$ Alcohols 94b and 94e-g were prepared in enantioenriched form either by utilizing hydrolytic kinetic resolution (HKR) as developed by Jacobsen ${ }^{12,13,136}$ or from commercially available starting materials (S)-98 (Scheme 3.4). Enantioenriched epoxides underwent further alkylation to give the corresponding alcohols $\mathbf{9 4 b}$ and $94 \mathrm{e}-94 \mathrm{~g}$.

Alkylation of alcohols 94a-94i with iodoacetic acid and subsequent ozonolysis delivered aldehyde acids 76a-76i for use in further studies of the NCAL process in moderate to good yields over the two steps (Table 3.1). ${ }^{137}$ Silylated aldehyde acids 76a and 76f were purified by column chromatography. Whereas, alkylated aldehyde acids 76b-76e and $\mathbf{7 6 g}-76 \mathbf{i}$ were purified easily by acid/base extraction rather than tedious and insufficient purification by column chromatography.

Table 3.1. Aldehyde and Keto Acid Preparation for Tetrahydrofuran-Fused β-Lactones

94

76

entry	alcohol	R^{1}	R^{2}	n	aldehyde acid	\% yield ${ }^{a}$
1	$\mathbf{9 4 a}$	$\mathrm{TBDPSO}\left(\mathrm{CH}_{2}\right)_{2}$	H	1	$\mathbf{7 6 a}^{b}$	38
2	$\mathbf{9 4 b}$	$\mathrm{BnO}\left(\mathrm{CH}_{2}\right)_{2}$	H	1	$\mathbf{7 6 b}^{c}$	69
3^{d}	$\mathbf{9 4 c}$	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	H	0	$\mathbf{7 6 c}^{c}$	28^{e}
4	$\mathbf{9 4 d}$	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	Me	1	$\mathbf{7 6 d}^{c}$	64
5	$\mathbf{9 4 e}$	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	H	2	$\mathbf{7 6 e}^{c}$	44
6	$\mathbf{9 4 f}$	TBSOCH_{2}	H	1	$\mathbf{7 6 f}^{b}$	41
7	$\mathbf{9 4 g}$	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	H	1	$\mathbf{7 6 g}^{c}$	74
8	$\mathbf{9 4 h}$	Ph	H	1	$\mathbf{7 6 h}^{c}$	30
9	$\mathbf{9 4 i}$	$\mathrm{PhCH}_{2}{ }^{f}$	H	0	$\mathbf{7 6 i}^{c}$	74

${ }^{a}$ Yield is calculated for combined alkylation and ozonolysis steps. ${ }^{b}$ DMS used as reducing reagent. ${ }^{c} \mathrm{Ph}_{3} \mathrm{P}$ used as reducing reagent. ${ }^{d}$ tert-butylacrylate used as alkylating agent instead of iodoacetic acid. ${ }^{138} e$ Yield for alkylation, hydrolysis, and ozonolysis combined. ${ }^{f}$ Secondary alcohol replaced with $\mathrm{CH}_{2} \mathrm{OH}$.

3.3.3 Optimization of Reaction Conditions

Bis-cyclization of keto acid 76d provided anti/syn β-lactones 11d in moderate yields (dr 1:1) (Table 3.2, entry 1). Not unexpectedly, β-elimination was observed. The reaction temperature was varied in order to suppress the β-elimination pathway and enhance the diastereoselectivity. When the reaction was carried out at $-30^{\circ} \mathrm{C}$ for keto acid 76d production of β-eliminated product, enone 100a, was suppressed obtaining anti/syn β-lactones 11d in 54% yield (dr 1:1) (Table 3.2, entry 3). A single X-ray crystal structure was obtained for syn- β-lactone 11d, which allowed for assignment of relative stereochemistry for the syn and anti diastereomers (Figure 3.3).

Table 3.2. Time and Temperature Optimization for Tetrahydrofuran-Fused β-Lactone 11d

Figure 3.3. Single crystal X-ray structure (ORTEP Representation) of tetrahydrofuranfused syn - β-lactone 11d.

In order to determine if an acid chloride could be utilized to access tetrahydrofuranfused β-lactone 11d by way of a ketene, the acid chloride was prepared from keto acid 76d (Scheme 3.5). The NCAL reaction conditions were found essential in order to access tetrahydrofuran-fused β-lactones, as was evident by formation of β-chloro ketone 101 alone formed by displacement of the glycolic acid fragment after subjecting the acid chloride to pyridine. The highly labile nature of keto acids and aldehyde acids bearing an oxo bridge must be controlled and required the use of mild NCAL conditions in order to provide any of the desired products.

Scheme 3.5. Attempted β-Lactone Formation from an Acid Chloride

Application of the NCAL conditions employing pyridinium salt 62 and triethylamine as both nucleophile and base to aldehyde acid substrates was more challenging compared to the keto acid substrates. Subjection of aldehyde acid $\mathbf{7 6 g}$ to the standard NCAL conditions gave minor amounts of the desired tetrahydrofuran-fused β-lactone $\mathbf{1 1 g}$ (Table 3.3, entry 1). Decreasing the reaction time provided moderate yields of anti/syn β-lactones $\mathbf{1 1 g}(47 \%)$ (Table 3.3, entry 2). Tetrahydrofuran-fused β-lactone $\mathbf{1 1 g}$ was formed in the absence of a nucleophile in 8% yield as a result of ketene formation (Table 3.3, entry 3). Alternative activating agents (e.g. $\mathrm{NsCl}, \mathrm{MsCl}$, and $\mathrm{Tf}_{2} \mathrm{O}$) were not promising giving rise to reduced yields or predominantly α, β-unsaturated aldehyde 100b (Table 3.3, entries 4-7). β-lactone 11 g was also prepared by employing PPY as the nucleophilic promoter, albeit in reduced yields (Table 3.3, entries 8 and 9).

Alternate substitution patterns were then studied to explore the substrate scope and the effect on diastereoselectivity (Table 3.4). Tetrahydrofuran-fused β-lactone 11c was obtained as the minor product along with enol lactone $\mathbf{1 0 2}$ when the reaction was carried out over extended reaction times with aldehyde acid 76c (Table 3.4, entry 1). However, anti/syn tetrahydrofuran-fused β-lactones 11c (dr 2:1) were formed in modest yield, overall resulting in a 19% increase in yield, after lowering the reaction temperature to $0^{\circ} \mathrm{C}$ and reducing the reaction time (Table 3.4, entries 2 and 3).

Table 3.3. Reaction Time and Activation Investigations

entry ${ }^{\text {a }}$	activating agent	nucleophile (equiv)	base	time (h)	temp $\left({ }^{\circ} \mathrm{C}\right)$	\% yield 11g	$\begin{gathered} \mathrm{dr} \\ \text { (anti:syn) } \end{gathered}$	$\begin{gathered} \% \\ \text { yield } \\ \text { 100b } \end{gathered}$
1	pyridinium salt 72	$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	$\mathrm{Et}_{3} \mathrm{~N}$	33	23	9	2:1	4
2	pyridinium salt 72	$\mathrm{Et}_{3} \mathrm{~N}(1.0)$	$\mathrm{Et}_{3} \mathrm{~N}$	2	23	47	2:1	7
3	$\begin{aligned} & \text { pyridinium } \\ & \text { salt } 72 \end{aligned}$	-	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	3	23	8	2:1	4
4	NsCl	$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	$\mathrm{Et}_{3} \mathrm{~N}$	3	23	23	1:1	5
5	$\mathrm{Tf}_{2} \mathrm{O}$	$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	$\mathrm{Et}_{3} \mathrm{~N}$	9	$0 \rightarrow 23$	< 5%	-	-
6	$\mathrm{Tf}_{2} \mathrm{O}$	PPY (1.0)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	9	$0 \rightarrow 23$	0	-	22
7	MsCl	PPY (0.1)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	9	$0 \rightarrow 23$	0	-	37
8	$\begin{aligned} & \text { pyridinium } \\ & \text { salt } 72 \end{aligned}$	PPY (0.1)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	3	23	35	2:1	6
9	$\begin{gathered} \text { pyridinium } \\ \text { salt } 72 \end{gathered}$	PPY (1.0)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	9	0	21	2:1	6

 Diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis (integration) of the crude reaction mixtures

Table 3.4. Optimization of Reaction Conditions for Tetrahydrofuran-Fused β-Lactone 11c

As our efforts were aimed toward the haterumalides, we incorporated a protected alcohol into the aldehyde acid side chain (Scheme 3.6). Anti/syn tetrahydrofuran-fused β lactones 11b were formed in modest yield as a $1: 1$ mixture of diastereomers. Tetrahydrofuran-fused β-lactone 11b was unstable obtaining only 58% mass recovery after purification of a pure sample of tetrahydrofuran-fused β-lactone 11b on silica gel by flash column chromatography. Alternative purification methods (e.g. florisil, neutral alumina, or deactivated silica gel) were not promising. Therefore, further conversion of the anti/syn tetrahydrofuran-fused β-lactones 11b (85% pure) to the corresponding Weinreb amide was pursued (Scheme 3.6). After briefly screening reaction conditions, Weinreb amide $\mathbf{1 0 3}$ was formed in moderate yield. ${ }^{140,141}$ The mild reaction conditions

Scheme 3.6. Preparation of Tetrahydrofuran-Fused β-Lactone 11b and

Conversion to the Corresponding Weinreb Amide

employing 2-hydroxypyridine were used for subsequent reactions since pyridone byproducts are formed in the NCAL reaction upon reaction of the activating agent thus facilitating a two-step, one pot conversion from an aldehyde acid to the corresponding Weinreb amide.

The NCAL process was followed directly with Weinreb amide formation to provide Weinreb amide $\mathbf{1 0 3}$ in order to circumvent the instability of the tetrahydrofuran-fused β lactone intermediate 11b (Scheme 3.7). Intercepting the unstable β-lactone was feasible; however, improvement in the yield was not observed. Multiple products were formed in the reactions including α, β-unsaturated Weinreb amide 104 and β-eliminated product $100 \mathbf{c}$. The low yields of in situ generated Weinreb amide $\mathbf{1 0 3}$ were consistent with a two-step procedure utilizing isolated tetrahydrofuran-fused β-lactone 11b (Scheme 3.6). Due to formation of multiple products and low yields, alternative tetrahydrofuran-fused β-lactones were explored.

Scheme 3.7. NCAL Optimization and Subsequent Weinreb Amide Formation

In an effort to suppress β-elimination to the α, β-unsaturated aldehydes, a substrate containing gem-dimethyl substitution was prepared. Aldehyde acid 76j was then subjected to the NCAL conditions (Scheme 3.8a). No β-elimination occurred as evidenced by the absence of a α, β-unsaturated aldehyde; however, tetrahydrofuran-fused β-lactone $\mathbf{1 1} \mathbf{j}$ was highly unstable and readily transformed to α, β-unsaturated acid $\mathbf{1 0 5}$ only allowing isolation as a 1:2 mixture of tetrahydrofuran-fused β-lactone $\mathbf{1 1} \mathbf{j}$ and α, β-unsaturated acid $\mathbf{1 0 5}$, respectively. α, β-Unsaturated acid $\mathbf{1 0 5}$ may arise from an aldol condensation pathway or
via β-lactone opening of tetrahydrofuran-fused β-lactone $\mathbf{1 1} \mathbf{j}$ to a transient carbocation intermediate \mathbf{A}, which presumably forms α, β-unsaturated acid $\mathbf{1 0 5}$ upon quenching (Scheme 3.8b). If formation of carbocation \mathbf{A} is indeed occurring, 1,2-methyl migrations may also be observed in acid products \mathbf{B}.

Scheme 3.8. Prevention of β-Elimination Pathway

(a)

3.3.4 Summary of β-Lactone Fused Tetrahydrofurans with an Achiral Nucleophile

Initially studies toward tetrahydrofuran-fused β-lactones provided access to racemic anti/syn tetrahydrofuran- and tetrahydropyran-fused β-lactones 11a-11i (Table 3.5). More tractable keto acid substrates 76d delivered the highest yields for anti/syn β lactones 11d with 4-pyrrolidinopyridine (PPY) as a nucleophilic promoter (Table 3.5, entry 3). The relative stereochemistry of syn- β-lactone 11d was confirmed by single crystal X-ray analysis (Figure 3.3). In the case of anti-tetrahydropyran-fused β-lactone 11e, high diastereoselectivity was observed (Table 3.5, entry 4). Substrates containing γ or δ-substituents consistently gave low diastereoselectivities. Major side reactions included formation of the α, β-unsaturated carbonyl 100 formed from competitive β elimination of the starting material. However, the presence of δ-substitution led to enol lactone $\mathbf{1 0 2}$ with aldehyde acid 76c and with aldehyde acid 76i an unexpected

Table 3.5. Synthesis of Tetrahydrofuran-Fused β-Lactones

			$\begin{aligned} & \mathrm{X}, \mathrm{Y}=\mathrm{O}, \mathrm{CH}_{2} \\ & \mathrm{R}=\mathrm{H}, \mathrm{Me} \\ & \mathrm{n}=1,2 \\ & \hline \end{aligned}$
entry	tetrahydrofuran	icyclic β-lactones	\% yield (dr) ${ }^{a}$
1^{b}			$25^{c, d}(1: 1)$
$2^{\text {b }}$			$35^{c} \quad(2: 1)$
3^{b}			$31^{c, e f}(2: 1)$
4^{b}			$54^{g, h}(1: 1)$
5			$26^{c}(>19: 1)$
6			$17^{c}(4: 1)^{i}$
7	 anti-11g		$47^{c, j}(1: 1)$
8			$16^{c, k}(1: 1)$
9	 anti-11i		$25^{c, l}$ (3:1)

${ }^{a} \mathrm{dr}$ determined by ${ }^{\mathrm{I}} \mathrm{H}$ NMR (500 MHz) analysis of the crude reaction mixtures. ${ }^{b}(\pm)$ Starting material used. ${ }^{c} \mathrm{Et}_{3} \mathrm{~N}$ used nucleophile and base. ${ }^{d} \alpha, \beta$-unsaturated aldehyde formed in 19% yield. ${ }^{e} \mathbf{1 0 2}$ formed in 20% yield. ${ }^{f}$ Run at $0{ }^{\circ} \mathrm{C} .{ }^{g}$ PPY was used as the nucleophile, and the base was $i-\mathrm{Pr}_{2} \mathrm{NEt} .{ }^{h}$ Run at $-30^{\circ} \mathrm{C}$. ${ }^{i}$ Significant improvement in the dr was not observed with O-TMSQD (dr 6:1). ${ }^{j} \mathbf{1 0 0 b}$ formed in 7% yield. ${ }^{k}$ Cinnamaldehyde formed in 6% yield. ${ }^{l}$ Furanone minimized to 1% yield.
furanone, ${ }^{142}$ which presumably arose by a Claisen/retro-Claisen sequence (Table 3.5, entries 3 and 8). Although tetrahydrofuran-fused β-lactones can be prepared with the NCAL process, low yields and formation of multiple products limit the scope of this process. However, competitive β-elimination to the corresponding α, β-unsaturated carbonyl can be suppressed, in some cases, by lowered reaction temperatures or shortened reaction times.

3.3.5 Diastereoselectivity of $\boldsymbol{\beta}$-Lactone Fused Tetrahydrofurans

High diastereoselectivity ($\mathrm{dr}>19: 1$) was observed for the tetrahydropyran-fused β lactone 11e. Tetrahydrofuran-fused β-lactones 11a-11d and 11f-11i were obtained in low yields with low diastereoselectivities (dr $1: 1$ to $4: 1$) when bearing γ - or δ-substituents in analogy to cyclopentyl systems. Thus these positions have little bearing on the diastereoselectivity of the NCAL process, and these results prompted study of double diastereodifferentiation with these systems as well as with carbocyclic systems.

3.4 Conclusions

Tetrahydrofuran-fused β-lactones are accessible with the NCAL process. In many cases β-elimination of the aldehyde acid was competitive with product formation; however, suppression of the α, β-unsaturated carbonyl was feasible with lower reaction temperatures or shortened reaction times. Tetrahydrofuran-fused β-lactones suffer from low yields due to formation of multiple byproducts and low diastereoselectivity as a result of reduced $\mathrm{A}^{1,3}$ strain as in accord to the cyclopentyl systems. The combination of these results prompted study of double diastereodifferentiation with both β-lactone fused tetrahydrofurans and the previously described β-lactone fused carbocycles.

CHAPTER IV

DEVELOPMENT OF DOUBLE DIASTEREOSELECTIVE NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATIONS (NCAL) TO β-LACTONE FUSED CARBOCYCLES AND TETRAHYDROFURANS

4.1 Double Diastereodifferentiation

Enzymes interact with molecules with high specificity. Therefore, the pharmaceutical industry requires the preparation of potential drug candidates as single enantiomers in order to avoid unnecessary and unexpected side effects. The necessity for introduction of asymmetry when creating new chiral centers governs organic synthesis, and the continued development of new pharmaceutical drugs is a driving force for the development of novel asymmetric reactions. Asymmetric syntheses are achieved by use of either enantiomerically enriched reagents (reagent control) or enantiomerically enriched substrates (substrate control), which aside from a few scattered examples were the primary tools of asymmetric synthesis until the 1980's. With the development of both reagent and substrate controlled processes it was inevitable to combine both strategies, and ultimately derive the concept of double asymmetric induction synonymous with double diastereodifferentiation. ${ }^{110,111}$ The significant utility of double diastereodifferentiation has been demonstrated on numerous occasions in the context of natural product total synthesis, and the importance of this strategy cannot be overstated. ${ }^{14-}$ ${ }^{16,143,144}$ Furthermore, the degree to which a chiral reagent can influence stereochemical outcomes by overcoming inherent substrate bias is revealed through the study of double
diastereodifferentiation. The goal of double asymmetric induction is to achieve high diastereoselectivity by combination of both an enantiomerically enriched reagent and an enantiomerically enriched substrate, which also gave rise to the novel concept of matched and mismatched cases as described by Masamune ${ }^{111}$ and Sharpless. ${ }^{110}$ Matched cases are presented when the sense of stereoinduction of the reagent and substrate are the same and reinforce each other, resulting in an increase in diastereoselectivity. Although in a mismatched case, the sense of stereoinduction of the substrate and reagent are different and thus oppose each other.

4.2 Premise for Development

We previously found that with respect to the acid, β-substituents in aldehyde acid substrates provided bicyclic β-lactones (i.e. 73e) with high diastereoselectivity (Figure 4.1). The high diastereoselectivity observed for these substrates provided evidence for a NCAL process proceeding through ammonium enolate intermediates $\mathbf{1 0 6}$ and $\mathbf{1 0 7}$ based on $\mathrm{A}^{1,3}$-strain arguments, since a [2+2] pathway proceeding by a ketene intermediate $\mathbf{1 0 8}$ would be expected to afford low diastereoselectivity. However, substrates bearing substituents at other positions $\mathbf{7 3 f - 7 3 g}$ (i.e. γ, δ) gave low diastereoselectivities as would be predicted based on the absence of $\mathrm{A}^{1,3}$ strain. ${ }^{113}$ This led us to consider double diastereodifferentiation ${ }^{110,111}$ with chiral nucleophiles (e.g. O-TMSQD and O TMSQN) ${ }^{129}$ in conjunction with enantioenriched substrates to determine if catalyst control could override the low diastereoeselectivities obtained from substrate control alone.
$\left(R^{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}^{2}=\mathrm{Me}\right.$, OTBS $)$

73f
$\quad 73 \mathrm{e}$
$(\mathrm{dr}>19: 1)$
(dr 2:1)

73g

Figure 4.1. Observed diastereoselectivities for NCAL reactions leading to β-lactone fused carbocycles and proposed selectivity models.

4.3 Substrate Preparation of Aldehyde Acids for Carbocycles

Enantiomerically enriched aldehyde acids were prepared in order to study a double diastereoselective NCAL process. Racemic epoxide 109 underwent hydrolytic kinetic resolution in the presence of the $(R, R)-\mathrm{Co}(\mathrm{III})$ salen $\bullet \mathrm{OAc}$ catalyst 95 to give enantiopure epoxide $(R)-109\left(98 \%\right.$ ee) (Scheme 4.1a). ${ }^{12,13}$ Epoxide ring opening with either vinylmagnesium bromide or allylmagnesium bromide and subsequent protection of the resulting alcohol provided silyl ether $\mathbf{1 1 0 a - 1 1 0 b} .{ }^{135}$ Selective deprotection of the primary silyl group led to alcohol 111a-111b, which was oxidized under modified Pinnick reaction conditions and later ozonized to obtain aldehyde acid 71b and 71d. ${ }^{145}$ Since reaction optimization was to be conducted with aldehyde acid 71b, a more concise synthetic strategy was amenable with the improvements to ozonolysis of cyclic silyl enol ethers established in our group. ${ }^{146}$ Aldehyde acid 71b (87% ee) was obtained after
subjecting cyclohexanone $\mathbf{1 1 2}$ to asymmetric deprotonation ${ }^{112}$ conditions and subsequent ozonolysis (Scheme 4.1b).

Scheme 4.1. Preparation of Enantiopure Aldehyde Acids 71b and 71d

Silyl enol ether 113 underwent Saegusa oxidation to enone 114 (87% ee, chiral HPLC) (Scheme 4.2). ${ }^{147,148}$ Cuprate addition and subsequent trapping as silyl enol ether 115 followed by ozonolysis furnished aldehyde acid 71c. Filtering the cuprate reaction mixture through silica gel prior to ozonolysis proved to be key in order to provide reproducible results leading to increased yields and suppression of ketone $\mathbf{1 1 6}$ formation, which was obtained in up to 84% yield without filtration (Scheme 4.2, inset).

Noyori hydrogenation ${ }^{18,149}$ of β-keto ester 117 followed with silyl protection afforded ester $\mathbf{1 1 8}$ in $>97 \%$ ee (Scheme 4.3). ${ }^{150}$ Hydrolysis of ester $\mathbf{1 1 8}$ to the carboxylic acid proceeded smoothly. Ozonolysis of alkene 118 delivered aldehyde acid 71a in good yield. Enantiomerically enriched aldehyde acids 71a-71d were utilized in studies towards development of a double diastereoselective NCAL process.

Scheme 4.2. Preparation of Enantiopure Aldehyde Acid 71c

Scheme 4.3. Preparation of Enantiopure Aldehyde Acid 71a

4.4 Applications to $\boldsymbol{\beta}$-Lactone Fused Carbocycles

4.4.1 Optimization of Reaction Conditions

Although low diastereoselectivities observed with tetrahydrofuran-fused β-lactones initially prompted studies of double diastereoselective NCAL processes in efforts toward the tetrahydrofuran of the haterumalides (vide supra), we initiated double diastereodifferentiation studies with the well-studied carbocyclic substrates. ${ }^{40}$ Subjecting enantiomerically enriched γ-substituted aldehyde acid $(+)$-71b (87% ee, based on asymmetric deprotonation) to standard NCAL conditions with $\mathrm{Et}_{3} \mathrm{~N}$ as the nucleophile resulted in a $2: 1$ mixture of anti/syn β-lactones 73b, respectively (Table 4.1, entry 1). The low diastereoselectivity observed was in accord to previous findings with the
tetrahydrofuran and carbocycle systems. Combination of low diastereoselectivity and use of cinchona alkaloid derivatives, which were previously utilized to induce asymmetry with unsubstituted substrates in the NCAL process, ${ }^{102-104}$ allowed for development of a double diastereoselective NCAL process. The inherent substrate bias was overridden with the use of O-TMSQD changing the diastereomeric ratio for anti/syn β-lactones 73b from 2:1 to $1: 7$ (Table 4.1, entry 2). Similarly, O-TMSQN provided anti β-lactone 73b as a single diastereomer (Table 4.1, entry 3). These results showed great promise toward the development of a double diastereoselective NCAL process and were used for further optimization of the reaction conditions. Dilute concentrations required use of extended reaction times as was evidenced by reactions run at increased concentration, 0.2 M , providing similar yields over 24 h (Table 4.1, entry 5). Neither catalyst loading nor addition time of the aldehyde acid had a significant effect on the yield (Table 4.1, entries 6 and 7). Hydrolysis of pyridinium salt 72 became a concern since product formation slowed over time, yet no improvement was observed with portion-wise addition, which ensured presence of active pyridinium salt 72 (Table 4.1, entry 7). However, the yields could be further increased by longer reaction times of 48-72 h (Table 4.1, entries 9-12). Reaction conditions using 3 equiv pyridinium salt 72, 4.0 equiv $i-\operatorname{Pr}_{2} N E t$, and $10 \mathrm{~mol} \%$ nucleophile for 72 h at 0.20 M were deemed optimal and used for further development of a double diastereoselective NCAL process towards β-lactone fused carbocycles.

Alternative methods for acid activation were also explored. Pyridinium salt $\mathbf{7 2}$ provided moderate yield of the anti/syn carbocycle-fused β-lactones 73b (Table 4.2, entries 1 and 2). Reducing the reaction time from the optimal 72 h to 48 h as well as

Table 4.1. Initial Studies Toward a Double Diastereoselective NCAL Process

${ }^{a}$ Reaction run with 3 equiv 72, 4.0 equiv $i-\mathrm{Pr}_{2} \mathrm{NEt}$, and $10 \mathrm{~mol} \%$ nucleophile adding aldehyde acid over $1 \mathrm{~h} .{ }^{b}$ Diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis (integration) of the crude reaction mixtures. ${ }^{c}$ Reaction was run with 3 equiv 72 and 4.0 equiv triethylamine. ${ }^{d}$ Reaction run in acetonitrile. ${ }^{e} 20-40 \mathrm{~mol} \%$ nucleophile used. ${ }^{f}$ Aldehyde acid added over $12 \mathrm{~h} .{ }^{g} i-\mathrm{Pr}_{2} \mathrm{NEt}$ and 72 and added portionwise (3 portions). ${ }^{h} 1.5$ equiv $\mathbf{7 2}$ was used.
determining initial yields by ${ }^{1} \mathrm{H}$ NMR upon comparison to an internal standard established a more rapid screening of activating agents. Methanesulfonyl chloride and triflic anhydride gave mainly unreacted starting material 71b (Table 4.2, entries 3 and 4). Nosyl chloride provided modest yields of the desired carbocycle-fused β-lactone 73b; whereas, tosyl chloride provided similar yields in conjunction with an equal portion of unreacted aldehyde acid 71b (Table 4.2, entries 5 and 6). Extending the reaction time to the optimal time frame led to improved yield of 45% (Table 4.2, entry 7). However, longer reaction times led to reduced yields presumably due to decomposition of the carbocycle-fused β-lactone 73b product (Table 4.2, entry 8). Tosyl chloride was shown
to be a viable alternative to pyridinium salt 72 for keto acids and use of lithium chloride as a Lewis acid further enhanced yields. ${ }^{131}$ A similar trend was not observed with aldehyde acids (Table 4.2, entries 9 and 10). Instead, reduced yields were obtained. Therefore, pyridinium salt 72 remained the activating agent of choice for aldehyde acids leading to β-lactone fused carbocycles.

Table 4.2. Alternative Acid Activation for the Double Diastereoselective NCAL Process

entry a	activating agent	additive (equiv)	time (h)	\% yield 71b	\% yield $\mathbf{7 3 b}^{c}$
1	pyridinium salt 72	-	48	-	55
2	pyridinium salt 72	-	48	0	50^{d}
3	MsCl	-	48	62	$20^{b, e}$
4	Tf 2 O	-	48	91	$0^{b, e}$
5	NsCl	-	48	28	$36^{b, g}$
6	TsCl	-	48	41	$32(42)^{b}$
7	TsCl	-	72	-	45^{h}
8	TsCl	-	96	-	$35(40)^{h}$
9	TsCl	$\mathrm{LiCl}(0.5)$	48	-	$15(42)^{h}$
10	TsCl	$\mathrm{LiCl}(1.0)$	72	-	22^{h}

${ }^{a}$ Reaction run with 1.5 equiv activating agent, 3.0 equiv $i-\mathrm{Pr}_{2} \mathrm{NEt}$, and $10 \mathrm{~mol} \% \mathrm{O}$ TMSQD at $0.20 \mathrm{M} .{ }^{b}$ Yield based on ${ }^{1} \mathrm{H}$ NMR integration compared to 4-bromo-1nitrobenzene as an internal standard. ${ }^{c}$ Isolated yield. ${ }^{d} 50 \%$ enol lactone obtained according to integration. ${ }^{e} \beta$-elimination of aldehyde acid was observed (4-10\%). ${ }^{f} 28 \%$ enol lactone obtained according to integration. ${ }^{g} 17 \%$ enol lactone obtained. ${ }^{i} 3.0$ equiv activating agent was used.

4.4.2 Screening of Catalysts

Use of $10 \mathrm{~mol} \% O$-TMSQD with aldehyde acid 71b led to an increased level of diastereoselection to $7: 1$ for syn/anti β-lactones $\mathbf{7 3 b}$, and the relative and absolute stereochemistry of the major syn- β-lactone 73b was confirmed by X-ray analysis (Figure 4.2 and Table 4.3, entry 1). ${ }^{151}$ Diastereomeric syn- β-lactone 73b was obtained with high
diastereoselectivity ($\mathrm{dr}>19: 1$) employing O-TMSQN indicative of the matched case (Table 4.3, entry 2). O-Bz-QD and β-ICPD provided similar results as $O-\mathrm{TMSQD}$ and O-TMSQN, respectively, albeit in reduced yields (Table 4.3, entries 3 and 4). Commercially available dimeric catalysts, (DHQD) $)_{2} \mathrm{PHAL}$ and $(\mathrm{DHQ})_{2} \mathrm{PHAL}$, were also studied and provided similar results as the corresponding monomeric derivatives (Table 4.3, entries 5 and 6). However, enantiopure tetramisole ${ }^{107}$ and racemic homobenzotetramisole (HBTM), ${ }^{152}$ which proved successful with ketoacid substrates led to low conversions (Table 4.3, entries 7 and 8). ${ }^{106,131}$

β-ICPD
(84)

O-TMSQD (85): R = TMS
O-BzQD (119): R = Bz

O-TMSQN
(86)

Tetramisole
(122)

Figure 4.2. Structure of cinchona alkaloid and tetramisole based asymmetric catalysts.

4.4.3 Double Diastereoselective NCAL Process with Enantioenriched Aldehyde Acids to β-Lactone Fused Carbocycles

As expected, high diastereoselectivity ($\mathrm{dr}>19: 1$) was obtained for anti-silyloxy β -

Table 4.3. Catalyst Screening for a Double Asymmetric NCAL with Aldehyde Acid 71b

${ }^{a}$ Reaction run with 3 equiv pyridinium salt 72 and 4.0 equiv $i-\operatorname{Pr}_{2} \mathrm{NEt}$ for 72 h at 0.20 M .
${ }^{b}$ Diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis (integration) of the crude reaction mixtures. ${ }^{c}$ Reaction carried out for $53 \mathrm{~h} .{ }^{d}$ Reaction run for $24 \mathrm{~h} .{ }^{e}$ Racemic HBTM used.
lactone 73a in analogy to previous NCAL reactions with substrates possessing β substituents. This substrate also provided excellent efficiency as previously reported by Oh. ${ }^{150}$ However, not surprisingly, diastereoselectivity could not be altered with either O TMSQD or O-TMSQN due to the strong conformational bias exerted by allylic 1,3-strain (see Figure 4.1) but rather led only to greatly reduced conversion (Table 4.4, entry 1). Aldehyde acid (+)-71b was utilized for both reaction optimization and catalyst screening, which provided a firm foundation ($\mathrm{dr} 1: 7$ to $>19: 1$) to further explore the double diastereoselective NCAL process (Table 4.4, entry 2). Since double diastereoselectivity was achieved with γ-substituted aldehyde acid substrates 73b, other enantiomerically enriched substrates with alternate substitution patterns were then studied. Use of $\mathrm{Et}_{3} \mathrm{~N}$ with anti- γ, δ-substituted acids 71c gave low diastereoselectivity leading to a $2: 1$ mixture of anti/syn β-lactones 73c (Table 4.4, entry 3). Reversed selectivity was obtained with
O-TMSQD to provide syn/anti β-lactones 73c as the major diastereomer but gave poor selectivity (dr 3:1). However, use of O-TMSQN gave both improved yields and diastereoselectivity (dr 10:1) of anti/syn β-lactones 73c suggestive of a matched case (Table 4.4, entry 3). Double diastereodifferentiation was also possible with anti/syn cyclohexyl-fused β-lactones 73d, which improved a 2:1 diastereomeric ratio obtained

Table 4.4. Summary of Double Diastereoselective NCAL Reactions with Enantioenriched Aldehyde Acids

anti-73
$\mathrm{Et}_{3} \mathrm{~N} \quad O$-TMSQD $\quad O$-TMSQN

| entry | carbocycle-fused
 bicyclic β-lactone | $\mathrm{Et}_{3} \mathrm{~N}$
 $\%$ yield $(\mathrm{dr})^{a, b}$ | O-TMSQD | O yield $(\mathrm{dr})^{b, c}$ |
| :---: | :---: | :---: | :---: | :---: | | O-TMSQN |
| :---: |
| |

1

anti-73a

anti-73b

anti-73c

anti-73d
4

3

syn-73a
 syn-73b

syn-73c

TBSO,

syn-73d

58
$(2: 1)$

45

38

73

32

31
($1>19$)

syn-73
$\overline{{ }^{a}}$ Reaction run with 3 equiv pyridinium salt 62 and 4 equiv $\mathrm{Et}_{3} \mathrm{~N}$ for $12-24 \mathrm{~h}$ at 0.05 M . ${ }^{b}$ Diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis (integration) of the crude reaction mixtures. ${ }^{c}$ Reaction run with 3 equiv pyridinium salt 62 and 4 equiv i $\mathrm{Pr}_{2} \mathrm{NEt}$, and $10 \mathrm{~mol} \%$ nucleophile for $48-72 \mathrm{~h}$ at $0.20 \mathrm{M} .{ }^{d} \mathrm{HBTM}$ gave 17% yield of anti-73b as a single diastereomer.
with $\mathrm{Et}_{3} \mathrm{~N}$ to complete catalyst control with O-TMSQN leading to high diastereoselectivity (>19:1); however, conversions were low (Table 4.4, entry 4).

4.5 Applications to $\boldsymbol{\beta}$-Lactone Fused Tetrahydrofurans

4.5.1 Initial Studies of a Double Diastereoselective NCAL Process

Our initial interest in a double diastereoselective NCAL stemmed from our preliminary findings with tetrahydrofuran-fused β-lactones that gave low diastereomeric ratios. However, the cinchona alkaloid catalysts, which were suitable for the carbocycles, provided poor enantioenrichment when oxygen was incorporated into the aldehyde acid framework (Table 4.5, entry 1). Low diastereoselectivities were also obtained with enantiomerically enriched aldehyde acid $\mathbf{7 6 g}$ as a result of poor reagent control (Table 4.5, entries 3 and 4).

Table 4.5. Screening of Cinchona Alkaloids Toward β-Lactone Fused Tetrahydrofurans

anti-11g

syn-11g

entry a	$\mathbf{7 6 g}$	nucleophile	time (h)	\% yield dr b (anti:syn)	\% ee (anti-11g,syn-11g)	
1	\pm	$O-$ TMSQD d	24	39^{e}	$2: 1$	$12,21^{f}$
2	\pm	$O-$ TMSQN d	48	35	$2: 1$	-
3	R	$O-$ TMSQD	24	13	$1: 1$	100,96
4	R	$O-$ TMSQN	24	16	$1: 1$	98,98

${ }^{a}$ Reaction run with 3.0 equiv pyridinium salt 72, 4.0 equiv $i-\operatorname{Pr}_{2} \mathrm{NEt}$, and $10 \mathrm{~mol} \%$ nucleophile at $0.05 \mathrm{M} .{ }^{b}$ Diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR (500 MHz) analysis (integration) of the crude reaction mixtures. ${ }^{c} 4.0$ equiv of $\mathrm{Et}_{3} \mathrm{~N}$ was used as both nucleophile and base. ${ }^{d}$ Reaction run at 0.20 M . ${ }^{e}$ Similar yield was obtained when reaction run for $48 \mathrm{~h} .{ }^{f}$ Opposite enantiomer is the major product formed.

4.5.2 Screening of Catalysts

Alternative tetramisole derived catalysts have been exploited by Birman ${ }^{107,152}$ as highly effective asymmetric acylation catalysts and proved profitable with ketoacid substrates. ${ }^{106,131}$ Racemic aldehyde acid $\mathbf{7 6 g}$ was used due to greater availability and in order to test the degree of reagent control. A variety of these tetramisole-based derivatives were screened due to the poor reagent control exhibited by cinchona alkaloid catalysts. Enantiopure tetramisole provided excellent enantioselectivities but with low yield and diastereoselectivity (Table 4.6, entry 2). ${ }^{17}$ However, the results obtained with tetramisole were inconsistent and at times irreproducible so alternative catalysts were pursued. Only trace amounts of anti/syn tetrahydrofuran-fused β-lactones $\mathbf{1 1 g}$ were provided with benzotetramisole (Table 4.6, entry 3). However, more nucleophilic $\operatorname{HBTM}^{152}$ provided tetrahydrofuran-fused β-lactones $\mathbf{1 1 g}$ in 78% enantiomeric excess with increased yield (Table 4.6, entry 4). The tetramisole and HBTM catalysts gave enantiomeric products from the NCAL reaction.

Table 4.6. Catalyst Screening for a Double Asymmetric NCAL with Aldehyde Acid 76g

(\pm) 76 g

anti-11g

syn-11g

entry	nucleophile (mol\%)	$\%$ yield	dr (anti:syn)	$\%$ ee (anti-11g,syn-11g)
1	O-TMSQD (10)	13	$2: 1$	$12,21^{b}$
2	Tetramisole (10)	13	$2: 1$	$86-92^{a}$
3	BTM (10)	6	$2: 1$	7^{a}
4	HBTM (10)	30	$2: 1$	$34,78^{b}$
Determined enantiomeric excess only enantiomer is the major product formed.				

Several catalysts models can rationalize the enantioselectivity and lack thereof as observed with tetrahydrofuran-fused β-lactones $\mathbf{1 1 g}$ (Figure 4.3). Tetramisole and the related catalyst derivatives presumably form ammonium enolates $\mathbf{1 1 9}$ and $\mathbf{1 2 0}$, respectively. Attack on the electrophilic aldehyde would then occur from the least hindered face of the ammonium enolates $\mathbf{1 1 9}$ and $\mathbf{1 2 0}$ to give enantiomeric anti- β-lactone $\mathbf{1 1 g}$ and syn- β-lactone $\mathbf{1 1 g}$, respectively. Loss of reagent control arose when employing BTM as an asymmetric nucleophile resulting from insufficient blockage of one face on the ammonium enolate as exhibited in model $\mathbf{1 2 2}$ compared to that found in tetramisole 121 (Figure 4.3, inset).

Figure 4.3. Models for tetramisole and related catalyst derivatives.

4.5.3 Double Diastereoselective NCAL Process with Enantioenriched Aldehyde Acids to $\boldsymbol{\beta}$-Lactone Fused Tetrahydrofurans

Although the more nucleophilic HBTM catalyst provided anti/syn tetrahydrofuranfused β-lactones $\mathbf{1 1 g}$ in 78% enantiomeric excess that was much improved compared to
cinchona alkaloid catalysts, no change in the diastereoselectivity was observed (Scheme 4.4 b and c). Unfortunately, when testing the feasibility of a double diastereoselective NCAL process with tetrahydrofuran-fused β-lactones $\mathbf{1 1 g}$ by employing enantioenriched aldehyde acid 76 g in conjunction with an asymmetric catalyst, no enhancement in the diastereoselectivity was observed (not shown). Interestingly, a marked solvent effect led to improvement in diastereoselectivity when the reaction was run in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{PhMe}$ (dr 7:1). Although enhancement in the diastereoselectivity was observed, it is plausible that the optimization was performed on the substrate leading to a mismatched case, yet the consistently low yields obtained with tetrahydrofuran-fused β lactones deterred further investigations.

Scheme 4.4. Summary of Double Diastereoselective Synthesis of
Tetrahydrofuran-fused β-Lactones

(\pm) $\mathbf{- 7 6 g}$

a) NEt_{3}
b) $O T M S-Q D$
c) HBTM

\qquad (47%) dr 1:1 - (39\%, 21\% ee) dr 2:1
(30\%, 78\% ee) dr 2:1

$+$

Ph syn-11g

(R)-76g

anti-11g	+	syn-11g
	$\operatorname{dr} 7: 1$	

4.6 Other NCAL Variations: Dynamic Kinetic Resolution

4.6.1 Dynamic Kinetic Resolution Process

Advancements have been made to the NCAL process since the initial disclosure ${ }^{102}$
including further development of an asymmetric variant with aldehyde acids, ${ }^{103,104}$ extension to keto acids, ${ }^{113}$ application of an asymmetric version with keto acids using commercially available activating agents, ${ }^{131}$ and development of a double diastereoselective process. ${ }^{68}$ Dynamic kinetic resolution (DKR) ${ }^{153-156}$ in combination with the NCAL process would further extend the scope of this process (Figure 4.4). Kinetic resolution $(\mathrm{KR})^{157}$ occurs when one enantiomer \mathbf{R} in a racemic mixture reacts more readily than the corresponding enantiomer \mathbf{S} to form separable products $\mathbf{P}-\mathbf{Q}$ having a maximum of 50% theoretical yield as in the case of hydrolytic kinetic resolution developed by Jacobsen. ${ }^{13}$ However, chemists continued search and development of new and efficient methods for the formation of enantiomerically enriched compounds led to a novel procedure in asymmetric synthesis that of dynamic kinetic resolution, which does not have the same limitations in yield. Dynamic kinetic resolution couples kinetic resolution of enantiomers with racemization or equilibration of the substrate, which leads to the selective formation of one product enantiomer in 100% theoretical yield. The importance of dynamic kinetic resolution in industry cannot be undermined as enantiopure pharmaceuticals are required by regulatory agencies and modifications of

Figure 4.4. Juxtaposition of kinetic resolution and dynamic kinetic resolution processes.
chiral pool starting materials are often lengthy or limited in scope. ${ }^{158}$ Use of aldehyde acids bearing a chiral δ-substituent (α-substituents with respect to the aldehyde moiety) could provide epimerizable substrates for studies toward the development of a DKRNCAL process.

4.6.2 Previous Studies

Cortez began studies towards the development of a DKR-NCAL process in our group shortly after the initial NCAL conditions were discovered (Scheme 4.5). ${ }^{159}$ Alkylated δ-substituents gave modest yields and diastereoselectivities with excellent enantioselectivities for anti/syn carbocycle-fused β-lactones $\mathbf{7 3 g}$. Further study of a δ substituent containing a heteroatom was investigated in order to increase the acidity and gave up to 50% yield of anti- β-lactone $\mathbf{7 3 g}$ (dr $>19: 1$). δ-Cyano and δ-azido aldehyde acids remained inaccessible due to difficulties encountered in the last step of preparation, hydrolysis of the silylester to the corresponding carboxylic acid. Determination of the absolute stereochemistry of the anti/syn carbocycle-fused β-lactones 73g remained necessary to determine whether the reaction proceeded through a matched/mismatched case as demonstrated with the double diastereoselective NCAL (vide supra) or through dynamic kinetic resolution.

Scheme 4.5. Previous Results Using α-Substituted Aldehyde Acids

4.6.3 α-Substituted Aldehydes

Aldehyde acid 71h was prepared by hydrolysis of 3,4-dihydro-2H-pyran $\mathbf{1 2 3}$ with subsequent vinylmagnesium bromide addition to the lactol to furnish diol, which after further protecting group manipulation gave alcohol 124 (Scheme 4.6). ${ }^{160}$ Modified Pinnick oxidation proceeded to afford acid 126. Final ozonolysis of alkene acid $\mathbf{1 2 6}$ led to aldehyde acid 71h (15\% overall yield) for studies of a DKR-NCAL process.

If rapid equilibration can be achieved with substrates possessing δ-substituents (α substituents with respect to the aldehyde moiety) dynamic kinetic resolution could occur, thereby leading to increased yields and diastereoselectivity. Efforts to explore this reaction pathway were conducted with racemic aldehyde acid $\mathbf{7 1 h}$, and afforded anti- β -

Scheme 4.6. Aldehyde Acid Preparation for Use in Developing a DKR-NCAL Process

lactone 73h as a single diastereomer in the presence of triethylamine (Scheme 4.7a). However, lower diastereomeric ratios (dr 5-6:1) were observed with O-TMSQD and O TMSQN in contrast to the results previously reported (Scheme 4.7b and c). ${ }^{159}$ High enantiopurity was obtained only in the minor diastereomer with both asymmetric nucleophiles providing similar levels but reversed enantioenrichment. Employing
substoichiometric amounts of DBU in attempt to promote racemization led only to reduced yield (31% yield) with consistent product enantiopurities.

Scheme 4.7. Possibility of Dynamic Kinetic Resolution

Attempted deuterium labeling was inconclusive for determining if epimerization was occurring giving rise to deuterium incorporation at the α-position to the acid or multiple products (Scheme 4.8). Subjection of deuterated aldehyde acid d - $\mathbf{7 1 h}$ to the NCAL conditions led to 20% deuterium incorporation at the β-lactone ring juncture providing evidence for ammonium enolate formation (theoretical maximum $=50 \%$). Therefore, epimerization of the δ-substituent remains a challenge towards applying dynamic kinetic resolution in these systems. Although good yields are obtained, the low diastereoselectivities and varied enantioselectivities make it difficult to ascertain which pathway is predominating (matched/mismatched vs. DKR). These pathways could more readily be distinguished by use of an enantiopure δ-substituted aldehyde acid and determination of the absolute stereochemistry for the corresponding products, since any formation of β-lactone with the epimeric δ-substituent would provide direct evidence of a DKR-NCAL process while formation of β-lactones with the same absolute configuration as the starting material would be derived from the matched/mismatched scenario.

Scheme 4.8. Exploration of Deuterium Incorporation

4.6.4 1,3-Dicarbonyl Containing Aldehydes

In order to overcome the racemization issues encountered with δ-substituted aldehyde acids, substituted 1,3-dicarbonyl containing aldehyde acids were studied. The increased acidity of the 1,3-dicarbonyl substrates would allow for facile racemization. An unsubstituted β-keto ester 132a was initially prepared due to its facile preparation (Scheme 4.9a). Methyl acetoacetate was hydrolyzed to provide 3-oxobutanoic acid 128, ${ }^{161}$ which was subsequently alkylated with benzyl-2-bromoacetate in the presence of silver carbonate giving β-keto ester 129a in low yield. ${ }^{162}$ Alkylation of alcohol $131{ }^{163}$ with dioxinone $\mathbf{1 3 0}$ afforded β-keto ester 129a with improved yields, which after hydrogenolysis afforded keto acid 132a along with trace amounts of the corresponding methyl ester (Scheme 4.9b). ${ }^{164}$

Scheme 4.9. Preparation of Unsubstituted β-Keto Acid
(a)

(b)

When keto acid 132a was subjected to the standard NCAL conditions, none of the desired product was formed (Scheme 4.10). Even use of tosyl chloride as an activating agent gave none of the desired product. Due to the volatility of both the products (if formed) and side products, an alternative substituted keto acid was pursued.

Scheme 4.10. Reaction Outcome with Unsubstituted Keto Acid

Dioxinone 130 was alkylated with benzyl bromide to give substituted dioxinone 134, ${ }^{165,166}$ which after reaction with alcohol $\mathbf{1 3 1}$ provided β-keto ester 129b (Scheme 4.11a). ${ }^{163}$ This route suffered from poor selectivity during alkylation to dioxinone $\mathbf{1 3 4}$ as expected (2:1 α-alkylation: γ-alkylation) that ultimately led to reduced yields of β-keto ester 129b. A more scalable route was pursued by alkylation of t-butyl acetoacetate $\mathbf{1 3 5}$ with benzyl bromide and further reaction with acetone provided pure dioxinone $\mathbf{1 3 4}$ after column chromatography (Scheme 4.11b). The two-step sequence avoided alkylation selectivity issues and allowed for greater material throughput. Ketene trapping with alcohol 131 afforded β-keto ester 129b.

Keto ester 129b was converted to keto acid 132b through hydrogenolysis in ethyl acetate in order to avoid trace formation of the methyl ester (Scheme 4.12). Keto acid 132b was then subjected to the NCAL process with PPY as the nucleophilic promoter. After 48 h , presence of a β-lactone was observed as indicated by an IR frequency of 1815 cm^{-1}. However, further attempts to improve the yield by longer reaction times, addition

Scheme 4.11. Preparation of Substituted Keto Ester 129b
(a)

(b)

of potassium carbonate to act as a shuttle base, ${ }^{146}$ or heating due to the sluggish reaction were unsuccessful. The product was unstable and further purification attempts led to product decomposition. Trace amounts of the product were also obtained when tetramisole or HBTM were employed as nucleophiles. Addition of lithium chloride did not lead to any improvement in reaction times or yield. ${ }^{131}$ The 1,3-dicarbonyl system is promising, but trace product formation may be a result of the ester preferring to remain in the s-trans conformation due to electron donation from the $\sigma \rightarrow \sigma^{*}$ orbital of the oxygen atom in the $\mathrm{C}-\mathrm{O}$ bond to the $\mathrm{C}=\mathrm{O}$ bond that must be overturned to access the s-cis conformation in order for cyclization to occur. Also, low yields were observed with tetrahydrofuran-fused β-lactones compared to the carbocyclic analogs, and a similar trend may exist with the β-lactones derived from 1,3-dicarbonyls. Therefore, a carbocyclic 1,3-dicarbonyl analog was pursued.

Alkylation of methyl acetoacetate led to triester 136 in excellent yield (Scheme 4.13). ${ }^{167}$ Acylation of triester $\mathbf{1 3 6}$ in the presence of magnesium chloride while heating gave 4-phenylbutan-2-one 137 as the major product formed from hydrolysis and

Scheme 4.12. Evidence from the NCAL Process

decarboxylation of dioxinone $\mathbf{1 3 4}$ with only trace amounts of the desired keto ester 129c. ${ }^{168}$ The highly reactive ketene intermediate reacted only sparingly with triester 136, and thus hindered further testing. Reaction conditions for alkylation of triester $\mathbf{1 3 6}$ need to be developed of which alkylation with the corresponding acid chloride ${ }^{168,169}$ or heteroketene dimer may prove useful. Hydrogenolysis of keto ester 129c would provide the corresponding keto acid in which the Thorpe-Ingold effect may facilitate ring closure. The keto acid could be utilized in further tests towards development of a DKR-NCAL process.

Scheme 4.13. Attempted Preparation of Cyclopentanone-Fused β-Lactone

4.7 Conclusions

Double diastereodifferentiation with the NCAL process is possible with cinchona alkaloid catalysts and enantioenriched aldehyde acids. In particular, carbocycle-fused β lactones were highly amenable to double diastereodifferentiation leading to improvements in diastereoselectivities from 1:1-2 to $>19: 1$ in several cases. This process thus enables access to highly functionalized carbocycles with existing stereocenters with high diastereoselectivity. While tetrahydrofuran-fused β-lactones were the initial inspiration for this study, only low yields could be obtained with these substrates with some level of double diastereodifferentiation. These studies reveal the exquisite stereochemical control exerted by the cinchona alkaloids in the NCAL process given the ability of these catalysts to override the inherent substrate bias and in some cases reverse the diastereoselectivity obtained from substrate control alone. Combination of dynamic kinetic resolution with the NCAL process would provide an influential strategy towards bicyclic β-lactones; however, further studies are needed for development.

CHAPTER V

NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATION (NCAL) FOR BRIDGED TRICYCLIC $\boldsymbol{\beta}$-LACTONES

5.1 Suomilide

Potential application of the NCAL process to the synthesis of natural products, such as haterumalide NA, inspired investigations of other natural products, which could be accessed through the NCAL process. Since tricyclic β-lactones have previously been prepared with this methodology, ${ }^{106,113}$ another variant of the NCAL process could potentially lead to the formation of bridged β-lactones and ultimately culminate in the synthesis of suomilide (Figure 5.1). Suomilide (139) belongs to the aeruginsosin family of natural products, ${ }^{170-172}$ and is a complex natural product bearing six stereogenic centers featuring an azabicyclononane core (Abn). Suomilide was isolated in 1997 by Fujii and coworkers and has shown to have potent biological activity

Figure 5.1. Structures of suomilide 139 and banyasides A-B 140-141.
towards trypsin, thrombin, and plasmin with IC_{50} values of $19.4 \mu \mathrm{M}, 1.8 \mu \mathrm{M}$, and $6.5 \mu \mathrm{M}$ respectively. ${ }^{173}$ Pluotno and Carmeli reported the isolation of the structurally analogous banyasides A (140) and B (141) in 2005. ${ }^{174}$ A common 8-10 step strategy to access the Abn core of these natural products was reported by Carreira, which featured a tandem Diels-Alder, Mukaiyama-aldol reaction to a substituted oxonorbornene and subsequent manganese-catalyzed hydration installed the final hydroxyl group on the Abn core. ${ }^{175}$

5.2 Retrosynthesis of Suomilide

Our strategy towards the suomilide Abn core $\mathbf{1 4 2}$ was envisioned from Hofman rearrangement of tricyclic β-lactone $\mathbf{1 4 3}$, which would be obtained from the NCAL process with the appropriate keto acid 144 (Figure 5.2). Aza-Michael addition between protected aspartic acid derivative 145 and enone 146 would deliver keto acid 144. However, a simplified carbocyclic model system for the Abn core of suomilide was pursued due to further studies required for the aza-Michael reaction (Scheme 5.1, inset).

Figure 5.2. Retrosynthetic analysis of suomilide Abn core with the NCAL process.

5.3 Substrate Preparation

Enone 149b-149c was obtained in good yield after submission of ketone 148 to methyl phenylsulfinate followed by refluxing in toluene (Scheme 5.1). ${ }^{176}$ Enones 149a149c underwent cuprate addition with 5-bromo-1-pentene in a similar manner to provide alkenes $\mathbf{1 5 0 a} \mathbf{- 1 5 0 c}$, which underwent subsequent oxidative cleavage affording keto acids 147a-147c for use in studies of the NCAL process. Keto acid 147 c was also converted to acid chloride 151 in moderate yield.

Scheme 5.1. Preparation of Keto Acids $147 \mathrm{a}-147 \mathrm{c}$

5.4 Synopsis of Results Toward Bridged Tricyclic β-Lactones

Keto acids $\mathbf{1 4 7 a - 1 4 7 b}$ were reacted under standard NCAL conditions at room temperature or at elevated temperatures $\left(40^{\circ} \mathrm{C}\right)$, but only trace reactions were observed (Scheme 5.2). Pyridone was recovered, which hinted at ester activation without subsequent cyclization. A more tractable substrate 147 c was prepared due to the ambiguity of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR when attempting to identify trace products.

Since the NCAL process did not lead to the desired β-lactone $143,[2+2]$ cycloaddition conditions were explored. Funk previously reported the preparation of

Scheme 5.2. Initial Attempts to Bridged Tricyclic β-Lactone

cyclobutanone 154 in moderate yield via [2+2] cycloaddition of alkene acid 152 (Scheme 5.3). ${ }^{177}$ The reaction proceeded through a ketene intermediate, which may offer a viable alternative in the construction of the tricyclic framework of suomilide. Further NCAL reaction conditions could be explored employing alternative nucleophilic promoters and Lewis acids, which were useful in improving yields for keto acid substrates, provided that suitable conditions are found to facilitate the [2+2] cycloaddition to desired β-lactone 143 to then serve as a standard.

Scheme 5.3. Known Cycloaddition to Bridged Tricyclic Cyclobutanone

Keto acid 147 c was subjected to pyridinium salt 153 and triethylamine as demonstrated by Funk to provide effective ketene generation; however, no reaction was observed (Scheme 5.4). ${ }^{178}$ Keto acid $\mathbf{1 4 7} \mathbf{c}$ was then converted to acid chloride 151 and
was submitted to triethylamine while heating in toluene, conditions also known to generate ketene (Scheme 5.5). ${ }^{179}$ Unexpectedly, anhydride 155 was obtained in moderate yield. When acid chloride 151 was submitted to pyridine, keto acid 147 c was recovered in good yield due to hydrolysis of the acid chloride. ${ }^{180}$ Further studies are needed to overcome the difficulties encountered in the preparation of bridged tricyclic- β-lactone 143c.

Scheme 5.4. Application of Known Cycloaddition Reaction Conditions

Scheme 5.5. Attempted Formation of Bridged β-Lactone from an Acid Chloride

Alkene acid 156 was used to determine if the known [2+2] cycloaddition conditions were reproducible (Scheme 5.6). ${ }^{179}$ Indeed, the tetrahydrofuran-fused cyclobutanone 157 was prepared from the known reaction conditions, albeit in low yield. Tetrahydrofuran-fused cyclobutanone $\mathbf{1 5 7}$ could also be prepared in similar yield when subjected to modified pyridinium salt 72 and i - $\mathrm{Pr}_{2} \mathrm{NEt}$ after extended reaction times.

Scheme 5.6. Cycloaddition to Tetrahydrofuran-Fused Cyclobutanone

5.5 Summary of Results with Varied Electrophiles

Variations of the NCAL process have typically investigated substrate scope and asymmetric product formation; however, alteration of the electrophilic component could provide access to varied scaffolds. One variation involved the use of dione containing keto acids, which have provided the highest yields with the NCAL process. ${ }^{106}$ Another alternative that was envisioned was the use of epoxy acids $\mathbf{1 5 9}$ as a means to extend the NCAL reaction scope and access γ-lactones rather than β-lactones (Scheme 5.7).

Scheme 5.7. Proposed Access to γ-Lactones from the NCAL Process with Epoxy Acids

Epoxy acid 159a was desired in order to use NCAL conditions to provide γ-lactone 160a. Alkene 161 was prepared according to literature procedure by alkylation of methyl acetoacetate with allyl bromide and subsequent dioxolane formation (Scheme 5.8). ${ }^{181,182}$ Alkene 161 was epoxidized in the presence of m-CPBA providing epoxide 162 of which the ester was hydrolyzed in moderate yield to afford the desired epoxy acid 159a. ${ }^{183,184}$

Epoxy acid 159a was then submitted to the standard NCAL conditions but provided a complex mixture of products at room temperature. The NCAL reaction temperature

Scheme 5.8. Preparation of Epoxy Acid 159a

was lowered and then run with epoxy acid 159a with PPY as a nucleophilic promoter, yet multiple products continued to form, which were inseparable by column chromatography (Scheme 5.9). A cleaner reaction resulted from the NCAL reaction of epoxy acid 159a with triethylamine, but upon work up a $\sim 1: 1$ mixture of unknown products in addition to starting material were obtained. As in accord to our previous findings, reaction with DMAP as a nucleophile was slow (93 h) and a majority of the starting material remained. Use of a Lewis acid such as lithium chloride may more readily give access to γ-lactones from the NCAL process by further activating the epoxide and thus facilitating ring opening. ${ }^{131}$ Another epoxy acid may provide cleaner reactions with higher regioselectivity as well as minimize side reactions with the dioxolane. In addition, hydroxy acid products may be delivered from incomplete cyclization in the NCAL process so a substrate with limited water solubility would be useful for further studies.

Scheme 5.9. NCAL Studies with Epoxy Acids

5.6 Conclusions

Bridged β-lactones remain inaccessible; however, alternative substrates may give more promising results. The NCAL process continually affords 5 -membered rings in higher yields in comparison to the formation of 6-membered rings. Thus NCAL reactions to produce 5 -membered ring containing bridged tricyclic β-lactones maybe more successful. However, additional [2+2] cycloaddition conditions or NCAL reaction conditions should be explored briefly with keto acid 147 c , as well as be supplemented with computational studies to determine the feasibility for bridged tricyclic- β-lactone formation. Alternate substrates are also needed to make the NCAL process amenable to epoxy acids. Recent applications of the NCAL process employed lithium chloride to increase yields and may assist in epoxide opening to afford γ-lactones.

CHAPTER VI

STEREOSELECTIVE ACCESS TO (Z)-CHLORODIALKYL ALKENES THROUGH A MODIFIED NEGISHI CROSS COUPLING OF ZINCATES AND DICHLOROOLEFINS

6.1 Attempted Application to Model System

Our interest in the haterumalides also stimulated the development of a stereoselective cross coupling method to (Z)-chlorodialkyl alkenes to construct the trans-dialkyl alkene bearing a chlorine atom as found in the natural product (Figure 6.1). A modified Negishi cross coupling between zincates and 1,1-dichloroolefins was further explored based on the reaction conditions found in our group by Dr. Andy Skauge, ${ }^{81}$ which were optimized by Dr. Richard Duffy. ${ }^{114}$ The known conditions required the use of microwave heating to enhance reaction rates and the sterically encumbered, electron rich, $\operatorname{Pd}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right)_{2}($ bis- $($ tri-tert-butylphosphine) palladium) catalyst ($5 \mathrm{~mol} \%$). ${ }^{1}$ Good yields and excellent selectivity were obtained to provide only monosubstituted (Z)-chlorodialkyl alkenes with heteroatom containing zincates (vide supra). ${ }^{81,114}$ Duffy found that mild preparation of the zincate reagent could be carried out with DMA (N, N-dimethylacetamide) as reported by Knochel, ${ }^{82-84}$ and the DMA zincate preparation was utilized in subsequent reactions. ${ }^{114}$

Figure 6.1. Retrosynthetic analysis of haterumalide NA from cross coupling.

The reaction presumably proceeds in a similar manner as the PdCl_{2} (dpephos) catalyst reported by Negishi after displacement of one t - $\mathrm{Bu}_{3} \mathrm{P}$ ligand, which is known to occcur (Scheme 6.1)..78,185 The reaction then progresses via a palladium(0) catalyst, which undergoes oxidative addition 163 to dichloroolefin 12 followed by transmetalation 165 with the zincate 43. Reductive elimination delivers the monosubstituted product 44. Although if the dissociation of the catalyst from the monosubstituted product $\mathbf{4 4}$ is slow, disubstituted products $\mathbf{4 5}$ would form. The formation of disubstituted products can be readily suppressed by promoting catalyst dissociation with the use more sterically encumbered ligands as demonstrated by Negishi. ${ }^{78}$ The electronics of the dichloroolefin also deactivate the initial insertion step, which provides high trans-selectivity for the cross coupling products.

Scheme 6.1. Proposed Mechanism for Modified Negishi Cross Coupling

Duffy proposed the use of a mixture of diastereomeric tetrahydrofurans as a model for cross coupling, and he had demonstrated that strict anhydrous conditions were
necessary for successful cross couplings (DMA $<100 \mathrm{ppm}$ water). ${ }^{114}$ The water content of DMA was controlled by distillation from barium oxide, since commercially available DMA contained $\leq 1000 \mathrm{ppm}$ of water. ${ }^{85}$ DMA was dried by stirring with barium oxide at $40^{\circ} \mathrm{C}$ for 12 h followed by subsequent distillation to provide anhydrous DMA ($\leq 150 \mathrm{ppm}$ water). ${ }^{85}$ However, intial cross coupling attempts with a dichloroolefin were unsuccessful due to quenching of the zincate $(0.83 \mathrm{M}$ in DMA according to iodine titration prior to cross coupling) when DMA was utilized (DMA contained $105 \mathrm{ppm} \mathrm{H}_{2} \mathrm{O}$ after two distillations from barium oxide). ${ }^{85}$ In attempt to provide a more scalable route to the tetrahydrofuran coupling partner and eliminate formation of product mixtures from the palladium catalyzed trans-selective cross coupling, model tetrahydrofuran 169 was prepared (Scheme 6.2). ${ }^{186} \gamma$-Butyrolactone 167 underwent reduction to lactol 168 was followed by malonic acid addition, decarboxylation, and subsequent reduction to deliver alcohol 169. However, the volatility of tetrahydrofuran 169 precluded further use.

Scheme 6.2. Initial Preparation of Model Tetrahydrofuran

Due to the mixtures of diastereomers and small quantities available for the tetrahydrofuran coupling partners, an alternative model tetrahydrofuran was constructed. The synthesis began with l-malic acid by initial conversion to known alkene $\mathbf{5 1}$ by way of lactone 26 (Scheme 6.3). ${ }^{54,61,62}$ The alkene was converted to alcohol 52 via reductive ozonolysis, and the resulting primary alcohol $\mathbf{5 2}$ was converted to the corresponding bromide 53 by displacement of the corresponding mesylate. This process delivered
sufficient quantities (12 g) of tetrahydrofuran 53 in excellent yield as a single diastereomer

Scheme 6.3. Scalable Route to Model Tetrahydrofuran

Next, tests were initiated in a more complex setting. Conversion of bromide 53 to the corresponding zincate and subsequent coupling with model dichloroolefin $\mathbf{1 2 f}$ using our standard protocol in DMA (53 ppm water $)^{85}$ gave the monosubstituted product $\mathbf{4 4 f}$ in 29% yield (Scheme 6.4). The modified Negishi cross coupling provided only the monosubstituted product $\mathbf{4 4 f}$ and none of the disubstitution products were observed.

Scheme 6.4. Cross Coupling with Model Tetrahydrofuran

Bromide 53 was then converted to the zincate and subjected to coupling conditions with skipped diene $\mathbf{5 0}$, which was prepared according to the procedure developed by Duffy (Scheme 6.5). ${ }^{114}$ Unfortunately, none of the desired product 44 g was obtained. Trace amounts of β-eliminated product $171(\cong 6 \%)$ were observed along with
67% of recovered starting material 50. The olefin product 171 presumably arose through a β-elimination pathway. This reaction was run on smaller scale, and the high moisture sensitivity also presumably led to diminished yields. Due to requirements of large excess of zincates, lack of product formation using DMA, and cost concerns, alternative cross coupling methods were explored.

Scheme 6.5. Cross Coupling with Skipped Diene toward Haterumalide NA

6.2 Alternative Methods for Cross Coupling of Dichloroolefins

During our studies reports by Negishi ${ }^{78}$ and Roulland ${ }^{79}$ disclosed the development of methods for the stereoselective formation of (Z)-dialkyl alkenes from dichloroolefins. Roulland's method required use of fluorine additives, which was later circumvented. ${ }^{35}$ Negishi showed that cross couplings occurred in good yield with alkyl zincates in DMF to give predominately monosubstituted products. ${ }^{11}$ Thus we sought to apply this methodology towards haterumalide NA. However, use of heteroatom containing zincates led to reduced yields and conversions of dichloroolefin $\mathbf{1 2 f}$ to monosubstituted product 44f for the Negishi cross coupling method, which supported use of degassed, commercially available, anhydrous DMF (60-140 ppm water) (Scheme 6.6). Application to a more readily available zincate derived from bromide $\mathbf{1 7 2}$ permitted brief screening of reaction conditions (e.g. catalyst loading and zincate equivalents). However, only low yields were obtained. The coordination of the zincate with the heteroatom present within
may affect adversely the reaction rather than coordination effects between the zincate and catalyst since comparable yields were obtained when the reaction was conducted in THF rather than DMF. The low conversions obtained with the use of functionalized zincates with the Negishi protocol in combination with the strict anhydrous conditions required for the microwave mediated cross coupling in DMA led us to reexamine some of our initial leads.

Scheme 6.6. Application of Known Negishi Cross Coupling to Dichloroolefins

6.3 Improvements to the Modified Negishi Cross Coupling

Initial leads for identified by Skauge the stereoselective formation of (Z) chlorodialkyl alkenes employed the sterically encumbered $\operatorname{Pd}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right)_{2}$ catalyst, microwave heating conditions for 0.5 h , and use of a NMP/THF mixed solvent system (vide supra). ${ }^{81}$ Skauge reported two examples with yields up to 66%, but more mild conditions for zincate generation were necessary for further studies. ${ }^{81}$ NMP was then further explored for use in the cross coupling reaction due to the stringent anhydrous conditions, expense when conducting the cross coupling in DMA, and the promising results obtained previously with NMP.

6.3.1 Optimization of Reaction Conditions

Zincate 43b was then prepared in a similar manner to those fomed in DMA and DMF; however, the solvent was replaced with NMP (commercialy available NMP contained 112 ppm water) (Scheme 6.7). Conversion of bromide 174 to zincate 43b proceeded with 100% conversion and provided zincate $\mathbf{4 3 b}$ as a 1.0 M solution in NMP. All subsequent zincates were prepared in a similar fashion.

The results reported by Skauge with commercially available anhydrous NMP (1-methyl-2-pyrrolidinone) were reproducible (Table 6.1, entry 1). ${ }^{81,86}$ Complete conversion

Scheme 6.7. Use of NMP during Zincate Generation

Table 6.1. Optimization of Modified Negishi Cross Coupling in NMP with Functionalized Zincates

entry	12e (equiv)	43b (equiv)	time (h)	temp $\left({ }^{\circ} \mathrm{C}\right)$	\% conversion ${ }^{a}$
1	1	4	0.5	120	100^{c}
2	1	3	2	100	100
3	1	3	2	90	100
4	1	3	2	80	100^{d}
5	1	3	2	60	67
6	1	3	0.5	80	100^{e}
7	1	2	0.5	80	$47(26)^{b}$
8	1	1.2	0.5	80	13

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{b}$ Reaction un at $100{ }^{\circ} \mathrm{C}$.
${ }^{c}$ Obtained 45% isolated yield. ${ }^{d}$ Obtained 40% isolated yield. ${ }^{e}$ Isolated yield was 38%.
to monosubstituted product 44b was observed when the reaction was run at $80^{\circ} \mathrm{C}$ to 120 ${ }^{\circ} \mathrm{C}$ (Table 6.1, entries 1-4). Decreasing the reaction time to 0.5 h did not lead to any decrease in product formation (Table 6.1, entry 5). However, the cross coupling conditions required excess zincate $\mathbf{4 3 b}$, which was not overridden simply by increased reaction temperatures (Table 6.1, entries 6-8). Employing NMP as the solvent significantly decreased the reaction time and temperature (DMA required 5 h), and afforded the coupled products in moderate yields. Reaction conditions deemed optimal for functionalized zincates utilized 3 equiv of zincate at $80{ }^{\circ} \mathrm{C}$ for 0.5 h .

The modified Negishi cross coupling was also extended to include unfunctionalized zincates 43e (Table 6.2). ${ }^{81}$ Unfunctionalized zincates 43e, previously precluded when using DMA, required extended reaction times (Table 6.2, entries 3 and 5). Thus employing NMP provided more practical cross coupling reaction conditions, which utilized commercially available catalyst and solvent while maintaining tolerable anhydrous conditions.

Table 6.2. Optimization of Modified Negishi Cross Coupling in NMP with Unfunctionalized Zincates

entry	12e (equiv)	43e (equiv)	time (h)	\% conversion ${ }^{a}$
1	1	3	0.5	54
2	1	3	2	74
3	1	3	3	90^{b}
4	1	5	0.5	63
5	1	5	2	100

${ }^{a}$ Determined by integration of ${ }^{1} \mathrm{H}$ NMR of crude reaction mixture. ${ }^{b}$ Obtained 38% isolated yield.

6.3.2 Application with Model Tetrahydrofuran

Conversion of bromide 53 to the corresponding zincate and subsequent coupling with model dichloroolefin $\mathbf{1 2 f}$ using in NMP gave the monosubstituted product $\mathbf{4 4 f}$ in 30% yield (Scheme 6.8a). However, further attempts to apply the cross coupling reaction conditions to the skipped diene were unsuccessful providing unreacted dichloroolefin $\mathbf{5 0}$ (Scheme 6.8b). Although due to the limited quantities of the skipped diene $\mathbf{5 0}$ that was used, several variables may have affected the reaction outcome. Thus a scalable route to a skipped diene fragment was pursued.

Scheme 6.8. Modified Negishi Cross Coupling with Model Tetrahydrofuran in NMP
(a)

(b)

6.3.3 Scalable Route to the Skipped Diene

Facile access to a skipped diene in large quantities was pursued to overcome the drawbacks to the skipped diene fragment previously prepared (vide supra). ${ }^{114}$ Protection of 1,3-propanediol with subsequent oxidation gave aldehyde 176, which was easily converted to dichloroolefin 177 under Corey-Fuchs conditions (Scheme 6.9). ${ }^{187}$ The free alcohol 178 was revealed upon treatment with PPTS in ethanol while heating. ${ }^{188}$ Oxidation of alcohol $\mathbf{1 7 8}$ was accomplished with DMP ${ }^{189}$ in order to avoid isomerization
of the aldehyde product $\mathbf{1 7 9}$ that proved facile in the presence of a variety of other oxidation conditions (e.g. PCC, Swern, and Moffatt). Isomerization of aldehyde 179 could be avoided during oxidation by the use of DMP with the appropriate work-up procedure, which entailed dilution with $\mathrm{Et}_{2} \mathrm{O}$ followed by filtering through a pad of celite. Subsequent addition of dimethyl malonate afforded alcohol $\mathbf{1 8 0}$ in moderate yield. However, attempts to eliminate the alcohol in order to provide the desired skipped diene 182 were unsuccessful and gave no reaction (heating PPTS or piperidinium acetate in $\mathrm{PhH} / \mathrm{DMSO}$) or led instead to elimination ($p-\mathrm{TsOH}, \mathrm{PhH}, 78{ }^{\circ} \mathrm{C}$) into conjugation with dichloroolefin 181. ${ }^{190}$ Acidic and buffered conditions were explored since both the aldehyde and the skipped diene were prone to isomerization, yet mild basic conditions may give the desired product. Although, an alternate route was pursued in order utilize more mild conditions during the later stages of skipped diene $\mathbf{1 8 2}$ preparation.

Scheme 6.9. Alternative Scalable Skipped Diene Route

An alternative route was pursued in order to circumvent isomerization and instead install the dichloroalkene moiety at a later stage (Scheme 6.10). However, attempted formation of the diacyl ylide $\mathbf{1 8 4}$ gave the vinyl ester product $\mathbf{1 8 5}$ along with starting material, which demonstrated that the diacyl ylide never formed. ${ }^{191,192}$ A scalable route to the skipped diene fragment is plausible, but formation of the sensitive skipped diene remained elusive from either elimination or Wittig olefination routes. Several methods exist for the preparation of ylide $\mathbf{1 8 4}$, yet several publications of haterumalide syntheses discouraged further pursuit of this methodology. ${ }^{34-37}$

Scheme 6.10. Ylide Preparation and Attempted Application to Skipped Diene

6.4 Conclusions

The modified Negishi cross coupling method offers a strategy for the highly selective palladium catalyzed coupling of 1,1-dichloroalkenes with both heteroatomsubstituted and unfunctionalized zincates in moderate yields using commercially available catalyst and solvent. Significant progress has recently been made with 1,1dichloroolefin couplings. However, limitations of substrate compatibility remain a challenge with our developed reaction conditions.

CHAPTER VII

CONCLUSIONS

The utility of β-lactones as synthetic scaffolds along with natural product targets, haterumalide NA, served as sources of inspiration and prompted studies regarding reactivity of spiroepoxy- β-lactones in conjunction with extensions of the nucleophile catalyzed, aldol-lactonization (NCAL) reaction and improvements to a modified Negishi cross coupling. Spiroepoxy- β-lactones demonstrated several modes of reactivity and could be derived from the corresponding homo- or heteroketene dimers according to known procedures, yet the desired reaction manifold remained elusive. Thus the NCAL process was applied to β-lactone fused tetrahydrofurans. The tetrahydrofuran-fused β-lactones were prepared, albeit in reduced yields, and exhibited some level of double diastereodifferentiation when tetramisole catalyst derivatives were employed. However, development of a double diastereoselective NCAL process was more readily facilitated with the use of β-lactone fused carbocycles. Cinchona alkaloids previously rendered the NCAL process enantioselective, and employing enantioenriched substrates led to a double diastereoselective NCAL process. With carbocyclic substrates the inherent substrate bias could be overcome and led to improvements in the diastereoselectivity form 1:1-2 up to $>$ 19:1. Further applications of the NCAL process included involvement of dynamic kinetic resolution or access to bridged tricyclic β-lactones aimed at other natural products. Initial studies of a DKR-NCAL process were conducted, and the 1,3dicarbonyl containing keto acid substrates are promising. Problematic preparation of the
γ-lactone-fused β-lactone system motivated further studies toward cyclopentanone-fused β-lactones, which may expedite development of a DKR-NCAL process. Substrates directed toward bridged tricyclic β-lactones and carbocycle-fused γ-lactones were also studied briefly. Advent of NCAL conditions utilizing both a nucleophile (Lewis base) as well as a Lewis acid (lithium chloride) may also enable access to carbocycle-fused γ lactone systems via the NCAL process, which warrants further investigations. Initial cross coupling conditions were further optimized and applied with a model tetrahydrofuran fragment towards haterumalide NA. Reacting 1,1-dichoroolefins in conjunction with a functionalized or unfunctionalized zincate in the modified Negishi cross coupling led to trans-trisubstituted alkenes containing a chlorine atom, and similar strategies were in fact applied in total syntheses of haterumalide NA. Use of NMP for zincate generation enabled utility of commercially available anhydrous solvent in the modified Negishi cross coupling.

REFERENCES

(1) Trost, B. Science 1991, 254, 1471-1477.
(2) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem. Int. Ed. 2009, 48, 28542867.
(3) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 3010-3021.
(4) Trost, B. M. Science 1983, 219, 245-250.
(5) Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022-1037.
(6) Nicolaou, K. C.; Snyder, S. A. Classics in Total Synthesis II; Wiley-VCH: Germany, 2003.
(7) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; 4 ed.; VCH Publishers, Inc.: New York, 1996.
(8) Sierra, M. Á.; Torre, M. C. d. 1. Dead Ends and Detours: Direct Ways to Successful Total Synthesis; Wiley-VCH: New York, 2004.
(9) Trost, B. M.; Dong, G. Nature 2008, 456, 485-488.
(10) Enquist Jr, J. A.; Stoltz, B. M. Nature 2008, 453, 1228-1231.
(11) Mohr, J. T.; Ebner, D. C.; Stoltz, B. M. Organic \& Biomolecular Chemistry 2007, 5, 3571-3576.
(12) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307-1315.
(13) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936938.
(14) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976.
(15) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263-4265.
(16) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968-1970.
(17) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932-7934.
(18) Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856-5858.
(19) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989-93.
(20) Takada, N.; Sato, H.; Suenaga, K.; Arimoto, H.; Yamada, K.; Ueda, K.; Uemura, D. Tetrahedron Lett. 1999, 40, 6309-6312.
(21) Ueda, K.; Hu, Y. Tetrahedron Lett. 1999, 40, 6305-6308.
(22) Teruya, T.; Shimogawa, H.; Suenaga, K.; Kigoshi, H. Chem. Lett. 2004, 33, 11841185.
(23) Teruya, T.; Suenaga, K.; Maruyama, S.; Kurotaki, M.; Kigoshi, H. Tetrahedron 2005, 61, 6561-6567.
(24) Strobel, G.; Li, J.-Y.; Sugawara, F.; Koshino, H.; Harper, J.; Hess, W. M. Microbiology 1999, 145, 3557-3564.
(25) Thaning, C.; Welch, C. J.; Borowicz, J. J.; Hedman, R.; Gerhardson, B. Soil Biol. Biochem. 2001, 33, 1817-1826.
(26) Levenfors, J. J.; Hedman, R.; Thaning, C.; Gerhardson, B.; Welch, C. J. Soil Biol. Biochem. 2004, 36, 677-685.
(27) Kobayashi, M.; Sato, K.; Yoshimura, S.; Yamaoka, M.; Takase, S.; Ohkubo, M.; Fujii, T.; Nakajima, H. J. Antibiot. 2005, 58, 648-653.
(28) Sato, B.; Nakajima, H.; Fujita, T.; Takase, S.; Yoshimura, S.; Kinoshita, T.; Terano, H. J. Antibiot. 2005, 58, 634-639.
(29) Yamaoka, M.; Sato, K.; Kobayashi, M.; Nishio, N.; Ohkubo, M.; Fujii, T.; Nakajima, H. J. Antibiot. 2005, 58, 654-662.
(30) Inami, M.; Kawamura, I.; Tsujimoto, S.; Yasuno, T.; Lacey, E.; Hirosumi, J.; Takakura, S.; Nishigaki, F.; Naoe, Y.; Manda, T.; Mutoh, S. J. Antibiot. 2005, 58, 640-647.
(31) Kigoshi, H.; Kita, M.; Ogawa, S.; Itoh, M.; Uemura, D. Org. Lett. 2003, 5, 957-960.
(32) Gu, Y.; Snider, B. B. Org. Lett. 2003, 5, 4385-4388.
(33) Hoye, T. R.; Wang, J. J. Am. Chem. Soc. 2005, 127, 6950-6951.
(34) Hayakawa, I.; Ueda, M.; Yamaura, M.; Ikeda, Y.; Suzuki, Y.; Yoshizato, K.;

Kigoshi, H. Org. Lett. 2008, 10, 1859-1862.
(35) Roulland, E. Angew. Chem. Int. Ed. 2008, 47, 3762-3765.
(36) Schomaker, J. M.; Borhan, B. J. Am. Chem. Soc. 2008, 130, 12228-12229.
(37) Ueda, M.; Yamaura, M.; Ikeda, Y.; Suzuki, Y.; Yoshizato, K.; Hayakawa, I.; Kigoshi, H. J. Org. Chem. 2009, 74, 3370-3377.
(38) Kigoshi, H.; Hayakawa, I. Chem. Rec. 2007, 7, 254-264.
(39) Hiersemann, M. Nachr. Chem. 2006, 54, 1091-1095.
(40) Morris, K. A.; Arendt, K. M.; Oh, S. H.; Romo, D. 2010, submitted.
(41) Minato, A.; Suzuki, K.; Tamao, K. J. Am. Chem. Soc. 1987, 109, 1257-1258.
(42) Taguchi, T.; Nishi, M.; Watanabe, K.; Mukaiyama, T. Chem. Lett. 1973, 1307-10.
(43) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503-7509.
(44) Mukaiyama, T. Aldrichimica Acta 1996, 29, 59-76.
(45) Heathcock, C. H. Science 1981, 214, 395-400.
(46) Wang, Y.; Zhao, C.; Romo, D. Org. Lett. 1999, 1, 1197-1199.
(47) Yang, H. W.; Romo, D. J. Org. Chem. 1997, 62, 4-5.
(48) Yang, H. W.; Zhao, C.; Romo, D. Tetrahedron 1997, 53, 16471-16488.
(49) Schmitz, W. D.; Messerschmidt, N. B.; Romo, D. J. Org. Chem. 1998, 63, 20582059.
(50) Wang, Y.; Romo, D. Org. Lett. 2002, 4, 3231-3234.
(51) Ma, G.; Zancanella, M.; Oyola, Y.; Richardson, R. D.; Smith, J. W.; Romo, D. Org. Lett. 2006, 8, 4497-4500.
(52) Mead, K. T.; Pillai, S. K. Tetrahedron Lett. 1993, 34, 6997-7000.
(53) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Smith, D. M.; Woerpel, K. A. J. Am. Chem. Soc. 2005, 127, 10879-10884.
(54) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem. Soc. 1999, 121, 12208-12209.
(55) Mitchell, T. A.; Romo, D. J. Org. Chem. 2007, 72, 9053-9059.
(56) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322-4343.
(57) Mitchell, T. A.; Zhao, C.; Romo, D. Angew. Chem. Int. Ed. 2008, 47, 5026-5029.
(58) Mitchell, T. A.; Zhao, C.; Romo, D. J. Org. Chem. 2008, 73, 9544-9551.
(59) Ayala, L.; Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 15521-15528.
(60) Tanaka, A.; Yamashita, K. Synthesis 1987, 570-573.
(61) Saito, S.; Hasegawa, T.; Inaba, M.; Nishida, R.; Fujii, T.; Nomizu, S.; Moriwake, T. Chem. Lett. 1984, 13, 1389-1392.
(62) Rhee, J. U.; Bliss, B. I.; RajanBabu, T. V. J. Am. Chem. Soc. 2003, 125, 1492-1493.
(63) Kobayashi, S.; Horibe, M.; Saito, Y. Tetrahedron 1994, 50, 9629-9642.
(64) Wang, Y. Ph.D. Dissertation, Texas A\&M University, 2002.
(65) Yang, H. W. Ph.D. Dissertation, Texas A\&M University, 1998.
(66) Paterson, I.; Temal-Laïb, T. Org. Lett. 2002, 4, 2473-2476.
(67) Murga, J.; Falomir, E.; Carda, M.; González, F.; Marco, J. A. Org. Lett. 2001, 3, 901-904.
(68) Morris, K. A. unpublished results, Texas A\&M University, 2004-2010.
(69) Marco, J. A.; Carda, M.; Diaz-Oltra, S.; Murga, J.; Falomir, E.; Roeper, H. J. Org. Chem. 2003, 68, 8577-8582.
(70) Duffy, R. J. unpublished results, Texas A\&M University, 2002-2007.
(71) Roush, W. R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett. 1990, 31, 6509-6512.
(72) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173-2174.
(73) Sata, N. U.; Matsunaga, S.; Fusetani, N.; van Soest, R. W. M. J. Nat. Prod. 1999, 62, 969-971.
(74) Chou, T.; Kuramoto, M.; Otani, Y.; Shikano, M.; Yazawa, K.; Uemura, D. Tetrahedron Lett. 1996, 37, 3871-3874.
(75) Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Tetrahedron Lett. 1996, 37, 3867-3870.
(76) Netherton, M. R.; Fu, G. C. In Topics in Organometallic Chemistry ; Fürstner, A., Ed.; Palladium in Organic Synthesis 14; Springer: New York: 2005, p 85-108.
(77) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 44424489.
(78) Tan, Z.; Negishi, E.-i. Angew. Chem. Int. Ed. 2006, 45, 762-765.
(79) Liron, F. d. r.; Fosse, C. 1.; Pernolet, A.; Roulland, E. J. Org. Chem. 2007, 72, 22202223.
(80) Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 2719-2724.
(81) Skauge, A. Post-Doctoral Research Final Report, Texas A\&M University, 2005.
(82) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726-14727.
(83) Organozinc Reagents; Knochel, P., Jones, P., Eds.; A Practical Approach Series; Oxford: New York, 1999.
(84) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem. Int. Ed. 2000, 39, 4414-4435.
(85) Water content was measured by Karl-Fischer titration.
(86) Reactions were run with $>100 \mathrm{ppm}$ of water as determined by Karl-Fischer titration.
(87) Barbot, F.; Miginiac, P. Helv. Chim. Acta 1979, 62, 1451-1457.
(88) Dale, W. J.; Sisti, A. J. J. Am. Chem. Soc. 1954, 76, 81-82.
(89) Malanga, C.; Menicagli, R.; Dell'Innocenti, M.; Lardicci, L. Tetrahedron Lett. 1987, 28, 239-240.
(90) Hale, K. J.; Hummersone, M. G.; Bhatia, G. S. Org. Lett. 2000, 2, 2189-2192.
(91) The lactone obtained matched the previously reported data by Roulland, see reference 35 .
(92) Tiseni, P. S.; Peters, R. Angew. Chem. Int. Ed. 2007, 46, 5325-5328.
(93) Duffy, R. J.; Morris, K. A.; Romo, D. Tetrahedron 2009, 65, 5879-5892.
(94) Calter, M. A.; Guo, X. J. Org. Chem. 1998, 63, 5308-5309.
(95) Calter, M. A.; Guo, X.; Liao, W. Org. Lett. 2001, 3, 1499-1501.
(96) Calter, M. A.; Liao, W. J. Am. Chem. Soc. 2002, 124, 13127-13129.
(97) Calter, M. A.; Orr, R. K.; Song, W. Org. Lett. 2003, 5, 4745-4748.
(98) Duffy, R. J.; Morris, K. A.; Romo, D. J. Am. Chem. Soc. 2005, 127, 16754-16755.
(99) Duffy, R. J.; Morris, K. A.; Vallakati, R.; Zhang, W.; Romo, D. J. Org. Chem. 2009, 74, 4772-4781.
(100) Fusetani, N. Nat. Prod. Rep. 2004, 21, 94-104.
(101) Brown, G. D.; Wong, H.-F. Tetrahedron 2004, 60, 5439-5451.
(102) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 2001, 123, 79457946.
(103) Oh, S. H.; Cortez, G. S.; Romo, D. J. Org. Chem. 2005, 70, 2835-2838.
(104) Cortez, G. S.; Oh, S. H.; Romo, D. Synthesis 2001, 1731-1736.
(105) For a review of cinchona alkaloids as organocatalysts see; Marcelli, T.; Maarseveen, J. H. v.; Hiemstra, H. Angew. Chem. Int. Ed. 2006, 45, 7496-7504.
(106) Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478-10479.
(107) Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351-1354.
(108) Ma, G.; Nguyen, H.; Romo, D. Org. Lett. 2007, 9, 2143-2146.
(109) Crich, D.; Hao, X. J. Org. Chem. 1999, 64, 4016-4024.
(110) Sharpless, K. B. Chem. Scr. 1985, 25, 71-77.
(111) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem. Int. Ed. 1985, 24, 1-30.
(112) Parker, K. A.; Dermatakis, A. J. Org. Chem. 1997, 62, 6692-6696.
(113) Henry-Riyad, H.; Lee, C.; Purohit, V. C.; Romo, D. Org. Lett. 2006, 8, 4363-4366.
(114) Duffy, R. J. Ph.D. Dissertation, Texas A\&M University, 2007.
(115) Narasimhan, S.; Madhavan, S.; Prasad, K. G. J. Org. Chem. 1995, 60, 5314-5315.
(116) Geetha Saraswathy, V.; Sankararaman, S. J. Org. Chem. 1994, 59, 4665-4670.
(117) Sudha, R.; Malola Narasimhan, K.; Geetha Saraswathy, V.; Sankararaman, S. J. Org. Chem. 1996, 61, 1877-1879.
(118) Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. 1979, 101, 2738-2739.
(119) For recent publications not included in these reviews, see references 122 and 125127.
(120) Orr, R. K.; Calter, M. A. Tetrahedron 2003, 59, 3545-3565.
(121) Paull, D. H.; Weatherwax, A.; Lectka, T. Tetrahedron 2009, 65, 6771-6803.
(122) Purohit, V. C.; Matla, A. S.; Romo, D. Heterocycles 2008, 76, 949-979.
(123) Yang, H. W.; Romo, D. Tetrahedron 1999, 55, 6403-6434.
(124) For reviews describing enantioselective β-lactone synthesis, see references 120 121 and 123.
(125) Chidara, S.; Lin, Y.-M. Synlett 2009, 1675-1679.
(126) Phillips, E. M.; Wadamoto, M.; Scheidt, K. A. Synthesis 2009, 2009, 687-690.
(127) Wang, X.-N.; Shao, P.-L.; Lv, H.; Ye, S. Org. Lett. 2009, 11, 4029-4031.
(128) Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. 1982, 104, 166-168.
(129) Calter, M. A. J. Org. Chem. 1996, 61, 8006-8007.
(130) Nguyen, H.; Ma, G.; Romo, D. Chem. Commun. 2010, DOI:
10.1039/C0CC00607F.
(131) Leverett, C.; Romo, D. Angew. Chem. Int. Ed. 2010, manuscript in preparation.
(132) Vicario, J. L.; Badia, D.; Carrillo, L. J. Org. Chem. 2001, 66, 5801-5807.
(133) Calter, M. A.; Tretyak, O. A.; Flaschenriem, C. Org. Lett. 2005, 7, 1809-1812.
(134) Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352-5353.
(135) Allais, F.; Cossy, J. Org. Lett. 2006, 8, 3655-3657.
(136) Bose, D. S.; Fatima, L.; Rajender, S. Synthesis 2006, 11, 1863-1867.
(137) Gravestock, M. B.; Knight, D. W.; Lovell, J. S.; Thornton, S. R. J. Chem. Soc., Perkin Trans. 1 1999, 3143-3155.
(138) Simonot, B.; Rousseau, G. Synth. Commun. 1993, 23, 549-60.
(139) Hartke, K.; Richter, W.; Massa, W.; Baum, G. Tetrahedron Lett. 1986, 27, 27432746.
(140) Goel, O. P.; Krolls, U.; Stier, M.; Kesten, S. Organic Synthesis 1989, 67, 69-71.
(141) Tunoori, A. R.; White, J. M.; Georg, G. I. Org. Lett. 2000, 2, 4091-4093.
(142) Crich, D.; Yao, Q. J. Org. Chem. 1996, 61, 3566-3570.
(143) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925-7926.
(144) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65-75.
(145) Wender, P. A.; Horan, J. C.; Verma, V. A. Org. Lett. 2006, 8, 5299-5302.
(146) Lui, G. developed procedure, Texas A\&M Univesity, 2010.
(147) Larock, R. C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. Tetrahedron Lett. 1995, 36, 2423-2426.
(148) Rodeschini, V.; Van de Weghe, P.; Salomon, E.; Tarnus, C.; Eustache, J. J. Org. Chem. 2005, 70, 2409-2412.
(149) Marotta, E.; Foresti, E.; Marcelli, T.; Peri, F.; Righi, P.; Scardovi, N.; Rosini, G. Org. Lett. 2002, 4, 4451-4453.
(150) Oh, S. H. Ph.D. Dissertation, Texas A\&M University, 2006.
(151) For details of the X-ray crystal structure see Appendix A.
(152) Birman, V. B.; Li, X. Org. Lett. 2008, 10, 1115-1118.
(153) Ward, R. S. Tetrahedron: Asymmetry 1995, 6, 1475-1490.
(154) Pellissier, H. Tetrahedron 2003, 59, 8291-8327.
(155) Pellissier, H. Tetrahedron 2008, 64, 1563-1601.
(156) Huerta, F. F.; Minidis, A. B. E.; Backvall, J.-E. Chem. Soc. Rev. 2001, 30, 321331.
(157) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5-26.
(158) Ebbers, E. J.; Ariaans, G. J. A.; Houbiers, J. P. M.; Bruggink, A.; Zwanenburg, B. Tetrahedron 1997, 53, 9417-9476.
(159) Cortez, G. S., Post-Doctoral Research Final Report, Texas A\&M University, 2002.
(160) Murphy, P. J.; Harri Lloyd, W.; Hibbs, D. E.; Hursthouse, M. B.; Abdul Malik, K. M. Tetrahedron 1996, 52, 8315-8332.
(161) Bradley, P. A.; Dack, K. N.; Johnson, P. S.; Skerratt, S. E. Preparation of pyrazole derivatives as progesterone receptor antagonists. U.S. Patent. US 2006-592574, 2007.
(162) Sarek, J.; Hajduch, M.; Svoboda, M.; Novakova, K.; Spacilova, P.; Kubelka, T.; Biedermann, D. Method of preparation of a soluble formulation of water-insoluble pentacyclic and tetracyclic terpenoids, a soluble formulation of a pentacyclic or tetracyclic terpenoid and a pharmaceutical composition containing this soluble formulation. Patent. WO 2007-CZ88, 2008.
(163) Barrish, J. C.; Lee, H. L.; Mitt, T.; Pizzolato, G.; Baggiolini, E. G.; Uskokovic, M. R. J. Org. Chem. 1988, 53, 4282-4295.
(164) Marco, J. L.; MartÌn, N.; MartÌnez-Grau, A.; Seoane, C.; Albert, A.; Cano, F. H. Tetrahedron 1994, 50, 3509-3528.
(165) Graalfs, H.; Fr^hlich, R.; Wolff, C.; Mattay, J. Eur. J. Org. Chem. 1999, 1999, 1057-1073.
(166) Sato, M.; Ogasawara, H.; Oi, K.; Kato, T. Chem. Pharm. Bull. 1983, 31, 18961901.
(167) Fukuda, T.; Makarova, E. A.; Lukprimeyanets, E. A.; Kobayashi, N. Chem. Eur. J. 2004, 10, 117-133.
(168) Rathke, M. W.; Cowan, P. J. J. Org. Chem. 1985, 50, 2622-2624.
(169) Shen, Q.; Huang, W.; Wang, J.; Zhou, X. Org. Lett. 2007, 9, 4491-4494.
(170) Murakami, M.; Ishida, K.; Okino, T.; Okita, Y.; Matsuda, H.; Yamaguchi, K. Tetrahedron Lett. 1995, 36, 2785-2788.
(171) Ishida, K.; Okita, Y.; Matsuda, H.; Okino, T.; Murakami, M. Tetrahedron 1999, 55, 10971-10988.
(172) Ersmark, K.; Del Valle, J. R.; Hanessian, S. Angew. Chem. Int. Ed. 2008, 47, 1202-1223.
(173) Fujii, K.; Sivonen, K.; Adachi, K.; Noguchi, K.; Shimizu, Y.; Sano, H.; Hirayama, K.; Suzuki, M.; Harada, K.-i. Tetrahedron Lett. 1997, 38, 5529-5532.
(174) Pluotno, A.; Carmeli, S. Tetrahedron 2005, 61, 575-583.
(175) Schindler, C. S.; Stephenson, C. R. J.; Carreira, E. M. Angew. Chem. Int. Ed. 2008, 47, 8852-8855.
(176) Resek, J. E.; Meyers, A. I. Tetrahedron Lett. 1995, 36, 7051-7054.
(177) Funk, R. L.; Novak, P. M.; Abelman, M. M. Tetrahedron Lett. 1988, 29, 14931496.
(178) Funk, R. L.; Abelman, M. M.; Jellison, K. M. Synlett 1989, 36-37.
(179) Snider, B. B.; Hui, R. A. H. F. J. Org. Chem. 1985, 50, 5167-5176.
(180) Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 1717-1719.
(181) Keränen, M. D.; Eilbracht, P. Organic \& Biomolecular Chemistry 2004, 2, 16881690.
(182) Funakoshi, K.; Togo, N.; Taura, Y.; Sakai, K. Chem. Pharm. Bull. 1989, 37, 17761779.
(183) Basta, P. V.; Adcock, A. F.; Tallent, C. R.; Fleming, D. N.; Seltzman, H. H.; Whisnant, C. C.; Cook, C. E. J. Immunological Methods 2004, 285, 181-195.
(184) Appleton, D.; Duguid, A. B.; Lee, S.-K.; Ha, Y.-J.; Ha, H.-J.; Leeper, F. J. J. Chem. Soc., Perkin Trans. 1 1998, 89-101.
(185) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 57495752.
(186) Ragoussis, V.; Theodorou, V. Synthesis 1993, 84-85.
(187) Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772-3774.
(188) Qiu, Y.; Li, D. Org. Lett. 2006, 8, 1013-1016.
(189) Mergott, D. J.; Frank, S. A.; Roush, W. R. Org. Lett. 2002, 4, 3157-3160.
(190) Tietze, L. F.; Beifuss, U.; Ruther, M.; R,hlmann, A.; Antel, J.; Sheldrick, G. M. Angew. Chem. Int. Ed. 1988, 27, 1186-1187.
(191) Siebum, A. H. G.; Woo, W. S.; Lugtenburg, J. Eur. J. Org. Chem. 2003, 2003, 4664-4678.
(192) Meshram, H. M.; Reddy, G. S.; Muralidhar Reddy, M.; Yadav, J. S. Tetrahedron Lett. 1998, 39, 4107-4110.
(193) Suffert, J. J. Org. Chem. 1989, 54, 509-510.
(194) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
(195) Purohit, V. C.; Richardson, R. D.; Smith, J. W.; Romo, D. J. Org. Chem. 2006, 71, 4549-4558.
(196) Murray, R. W.; Singh, M. Org. Synth. 1998, Coll. Vol. 9, 288-294.
(197) Caprio, V.; Brimble, M. A.; Furkert, D. P. Tetrahedron 2001, 57, 4023-4034.
(198) Fujisawa, T.; Igeta, K.; Odake, S.; Morita, Y.; Yasuda, J.; Morikawa, T. Biorg. Med. Chem. 2002, 10, 2569-2581.
(199) Ochiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H. Chem. Pharm. Bull. 1985, 33, 989-97.
(200) Burova, S. A.; McDonald, F. E. J. Am. Chem. Soc. 2004, 126, 2495-2500.
(201) Cloninger, M. J.; Overman, L. E. J. Am. Chem. Soc. 1999, 121, 1092-1093.
(202) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron 1999, 55, 977-988.
(203) Evarts Jr, J. B.; Fuchs, P. L. Tetrahedron Lett. 2001, 42, 3673-3675.
(204) Greck, C.; Ferreira, F.; GenÍt, J. P. Tetrahedron Lett. 1996, 37, 2031-2034.
(205) Johannes, J. W.; Wenglowsky, S.; Kishi, Y. Org. Lett. 2005, 7, 3997-4000.
(206) Xie, C.; Nowak, P.; Kishi, Y. Org. Lett. 2002, 4, 4427-4429.
(207) Takahata, H.; Kubota, M.; Momose, T. Tetrahedron: Asymmetry 1997, 8, 28012810.
(208) Perepogu, A. K.; Raman, D.; Murty, U. S. N.; Rao, V. J. Bioorg. Chem. 2009, 37, 46-51.

APPENDIX A

EXPERIMENTAL PROCEDURES

General Procedures

All non-aqueous reactions were carried out under nitrogen atmosphere in ovendried glassware $\left(120{ }^{\circ} \mathrm{C}\right)$. Acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, and toluene were obtained from a MBraun solvent purification system (alumina). Tetrahydrofuran (THF) was distilled from a sodium/benzophenone ketyl still. Methanol was distilled from magnesium prior to use. Triethyl amine ($\mathrm{Et}_{3} \mathrm{~N}$), diisopropylamine $\left(i-\mathrm{Pr}_{2} \mathrm{NH}\right)$, and diisopropylethyl amine $\left(i-\mathrm{Pr}_{2} \mathrm{NEt}\right)$ were distilled from calcium hydride immediately prior to use. Anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ or anhydrous magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ were used in the following procedures. Deuterated solvents were purchased from either Aldrich or Cambridge Isotopes and used as received. Brine refers to a saturated aqueous sodium chloride solution. The molarities indicated for organolithium reagents were established by titration with N-Pivaloyl-otoluidine as indicator. ${ }^{193}$ All other commercially available reagents were used as received. Flash column chromatography was carried out with silica gel $60 \AA(230-400$ Mesh) as a stationary phase as described by Still. ${ }^{194}$ Thin layer chromatography was carried out with silica gel $60 \AA$ F254 glass plates $(0.25 \mathrm{~mm}) .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a 500 or 300 MHz spectrometer and ${ }^{13} \mathrm{C}$ spectra were recorded on a 125 or 75 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported as δ values in ppm relative to residual $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ or residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}(7.16 \mathrm{ppm})$. ${ }^{1} \mathrm{H}$ NMR coupling constants (J) are reported in Hertz (Hz), and multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), app t (apparent triplet), td (triplet of doublets), q (quartet), p (pentet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dddd (doublet of doublet of doublet of doublets), dt (doublet of triplets), ddt (doublet of
doublet of triplets), dq (doublet of quartets), app p (apparent pentet), m (multiplet), bs (broad singlet). Diastereomeric ratios were determined by crude ${ }^{1} \mathrm{H}$ NMR analysis (300 MHz). Deuterobenzene (benzene- d_{6}) or deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ served as internal standards ($128.23 \mathrm{ppm}, 77.00 \mathrm{ppm}$, respectively unless otherwise stated) for all ${ }^{13} \mathrm{C}$ spectra. Based on intensity in the ${ }^{13} \mathrm{C}$ spectra, both magnetic and chemical shift equivalent peaks are noted in parentheses. Mass spectra were obtained at the Center for Chemical Characterization and Analysis at Texas A\&M University. Infrared spectra were obtained as thin film on NaCl plates on a FTIR spectrometer. Optical rotations were recorded at 589 nm using a $250 \mu \mathrm{~L}$ cell.

Hazard Warning

Ozonides are produced in several procedures described below to generate aldehyde acid and keto acid substrates. To ensure complete reduction of the ozonides, excess quenching agent should be used and stirring should continue for at least 12 h at 25 ${ }^{\circ} \mathrm{C}$ prior to further handling.

CHAPTER I - INTRODUCTION: NATURAL PRODUCT INSPIRED METHODOLOGY; TETRAHYDROFURAN SYNTHESIS VIA β-LACTONES AND DICHLOROOLEFIN COUPLINGS

28
(2S)-2-(tert-butyldimethylsilyloxy)hept-6-ene-1,4-diol (28). To a flask containing lactol $27^{54,60-62}(4.20 \mathrm{~g}, 19.3 \mathrm{mmol})$ was added $\mathrm{Et}_{2} \mathrm{O}(190 \mathrm{~mL})$. The vessel was cooled to $0^{\circ} \mathrm{C}$ and allyl magnesium bromide (7.72 mL of 2.0 M solution in THF, 15.4 mmol) was added down the side of cooled reaction vessel. The reaction was stirred for an additional 10 h at $0^{\circ} \mathrm{C}$, then warmed to $23^{\circ} \mathrm{C}$ for 1 h . The reaction was again cooled to $0^{\circ} \mathrm{C}$ and additional allyl magnesium bromide (11.58 mL of 2.0 M solution in THF, 23.2 mmol) was added. The reaction was stirred for 3 h at $0^{\circ} \mathrm{C}$. The reaction was then quenched upon addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$. The aqueous layer was separated and acidified with 1 NHCl to pH 3 and then extracted with $\mathrm{Et}_{2} \mathrm{O}(6 \times 20 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to $1: 0$) to provide diol 28 ($3.88 \mathrm{~g}, 78 \%$) as a white solid. (diastereomer 1) IR (thin film) $v_{\max } 3363,1472,1255,1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.86-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.00(\operatorname{app} \mathrm{p}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=4.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=3.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{bs}, 2 \mathrm{H})$, 2.29-2.17 (m, 2H), 1.75 (ddd, $J=2.5,6.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=6.0,9.5,14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.101(\mathrm{~s}, 3 \mathrm{H}), 0.099(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.5$, 118.1, 71.1, 67.5, 66.0, 42.6, 40.5, 25.8 (3), 18.0, -4.6, -4.8; LRMS (CI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}] 261$, found 261. (diastereomer 2) IR (thin film) $v_{\max } 3425,1641$,
$1044 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.13-$ $5.11(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dddd}, J=2.5,5.5,7.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=$ $4.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=4.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{ddd}, J=2.5$, $6.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=4.5,10.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10$ (s, 3 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.5,118.2,71.1,67.5,66.6,42.7,40.5,25.8$ (3), 18.0, -4.6, -4.8; LRMS (CI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}] 261$, found 261.

28

$$
\frac{\text { PivCl, } \mathrm{NEt}_{3}}{\text { DMAP, } \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}}
$$

thylsilyloxy)-4-hydroxyhept-6-enyl

29
2,2-dimethylpropanoate (29). To a solution of diol $28(3.88 \mathrm{~g}, 14.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(72 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ was added triethylamine ($8.33 \mathrm{~mL}, 59.8 \mathrm{mmol}$) followed by dropwise addition of trimethylacetyl chloride ($2.02 \mathrm{~mL}, 16.4 \mathrm{mmol}$). Vapor evolved upon addition of trimethylacetyl chloride. The solution was stirred for 14 h , and then DMAP $(0.206 \mathrm{~g}, 1.79 \mathrm{mmol})$ was added. The reaction was stirred for an additional 21 h , and was quenched upon addition saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}(60 \mathrm{~mL})$. The layers were separated, and the organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(4 \times 15 \mathrm{~mL})$. The aqueous layers were combined and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (3:7) to afford alcohol $29(4.64 \mathrm{~g}, 90 \%)$ as a colorless oil. Diastereomers were inseparable by column chromatography. IR (thin film) $v_{\max } 3438,1731,1285,1255,1163 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84-5.73$ $(\mathrm{m}, 2 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 4 \mathrm{H}), 4.19-3.88(\mathrm{~m}, 6 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{bs}, 2 \mathrm{H}), 2.21$ (app t, $J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~s}, 18 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}), 0.10(\mathrm{~s}, 12 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.3,178.2,134.6,134.5,117.8,117.7,69.80,69.97,68.4$, 67.7, 67.2, 67.1, 42.4, 42.1, 40.5, 39.8, 38.71, 38.67, 27.1 (6), 25.7 (3), 25.6 (3), 17.84, 17.79, $-4.5,-4.7,-4.9,-5.0$; LRMS (CI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}] 345$, found 345.

S-pyridin-2-yl 2-(tert-butyldimethylsilyloxy)ethanethioate (33). Thionyl chloride $(9.80 \mathrm{~mL}, 146 \mathrm{mmol})$ was added to a solution of acid $32(2.77 \mathrm{~g}, 14.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(210 \mathrm{~mL})$. The solution was refluxed for 15 min ., and then cooled to room temperature and stirred for 12 h . The solution was concentrated by rotary evaporation to give the corresponding acid chloride $\mathbf{S 1}$. The crude oily residue was taken on without further purification.

A solution of 2-mercaptopyridine $(0.978 \mathrm{~g}, 8.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and triethylamine $(1.73 \mathrm{~mL}, 12.2 \mathrm{mmol})$ was added. A solution of freshly prepared acid chloride $\mathbf{S} \mathbf{~}(1.77 \mathrm{~g}, 8.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was subsequently added via syringe pump. The yellow solution was stirred for 2 h and was then concentrated by rotary evaporation. The residue was redissolved in pentane and washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to 1:4) to provide thioester $\mathbf{3 3}(1.89 \mathrm{~g}, 79 \%)$ as a pale yellow solid. $\mathrm{R}_{f} 0.44$ (1:4 EtOAc:hexanes); IR (thin film) $v_{\max } 1706,1617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65$ (ddd, $J=0.5,2.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{ddd}, J=2.0,7.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=1.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{ddd}, J=1.0,5.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.0,151.5,150.5,136.9,136.4,130.4,123.3,68.8,25.6$ (3), 18.1, -5.7 (2); HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]$ 284.1141, found 284.1149.

(Z)-2-(2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladec-5-en-5-ylthio)pyridine (15c). To a flask containing DMF ($0.99 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added LHMDS $(4.6 \mathrm{~mL}$ of 1.0 M solution in THF, 4.28 mmol). The solution was then cooled to $-78^{\circ} \mathrm{C}$. Triethylamine $(0.50 \mathrm{~mL}, 7.13 \mathrm{mmol})$ was then added, followed by t-butyldimethylsilyl chloride (0.58 g , $7.13 \mathrm{mmol})$ in THF (1 mL) and thioester $33(1.04 \mathrm{~g}, 3.67 \mathrm{mmol})$ in THF (3 mL), respectively. The reaction was stirred at $-78^{\circ} \mathrm{C}$, and then quenched upon addition of pH 7 buffer (4 mL) and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The solution was warmed to room temperature with vigorous stirring. The layers were separated, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a mixture of pentane: $\mathrm{Et}_{2} \mathrm{O}: \mathrm{Et}_{3} \mathrm{~N}$ (95:5:2) to provide ketene acetal $\mathbf{1 5 c}(0.649 \mathrm{~g}, 45 \%)$ as a white solid. $\mathrm{R}_{f} 0.61(1: 4$ EtOAc:hexanes); IR (thin film) $v_{\max } 1636,1575,1561 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.40(\mathrm{ddd}, J=0.9,1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.51(\mathrm{ddd}, J=1.8,7.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=$ $0.9,1.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=1.2,4.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 0.88$ (s, 9H), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.3, $136.2,135.5,133.8,130.7,121.7,119.4,25.6$ (3), 25.5 (3), 18.2, 17.9, -4.8 (2), -5.3 (2); LRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{SSi}_{2}[\mathrm{M}+\mathrm{H}] 398$, found 398.

tert-butyldimethyl(5-phenylpent-1-en-3-yloxy)silane (35). To a solution of alcohol S2 $(4.84 \mathrm{~g}, 29.9 \mathrm{mmol})$ in DMF $(180 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ was added tert-butyldimethylsilyl chloride $(7.07 \mathrm{~g}, 12.9 \mathrm{mmol})$ and triethylamine $(8.33 \mathrm{~mL}, 59.8 \mathrm{mmol})$, respectively. The mixture was stirred for 12 h . The reaction was diluted with EtOAc (100 mL). The organic layer was then washed with brine (5 x 10 mL). The aqueous layers were combined and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with only hexanes to provide alkene $35(5.56 \mathrm{~g}, 67 \%)$ as a viscous, colorless oil. $\mathrm{R}_{f} 0.40$ (hexanes); IR (thin film) $\boldsymbol{v}_{\max } 1472,1085 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.97(\mathrm{ddd}, J=6.0,10.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (ddd, 2.0, 2.0, 17.0 Hz, 1H), $5.19(\mathrm{ddd}, J=2.0,2.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~d}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.4,141.4,128.4(2), 128.3(2), 125.7,113.9,73.3,39.8$, 31.5, 25.9 (3), 18.3, -4.3, -4.8; LRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OSiLi}[\mathrm{M}+\mathrm{Li}]$ 283, found 283.

CHAPTER II - UTILITY OF SPIROEPOXY- $\boldsymbol{\beta}$-LACTONES

(2R,3S,6S)-2,6-bis(cyclohexylmethyl)-1,4-dioxaspiro[2.3]hexan-5-one (10a). To a flask under nitrogen containing homoketene dimer 58a ${ }^{97,195}(0.220 \mathrm{~g}, 0.803 \mathrm{mmol})$ and
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added MgSO_{4} (the tip of a spatula amount) to which DMDO ${ }^{196}$ was added at $0{ }^{\circ} \mathrm{C}$, which was obtained from 300 g of Oxone. ${ }^{\circledR}$ The solution was stirred for 1.5 h , and then as warmed to room temperature and stirred for an additional 3.5 h . The reaction mixture was filtered through MgSO_{4} and concentrated by rotary evaporation to obtain spiroepoxy- β-lactone 10a as a colorless oil, which was purified rapidly by flash column chromatography with a mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (1:9) to afford cis/trans spiroepoxy- β-lactone $10 \mathrm{a}(0.168 \mathrm{~g}, 62 \%$, dr $10: 1)$ as a colorless oil. Store frozen in benzene if not used immediately. $\mathrm{R}_{f} 0.45$ (1:9 $\mathrm{Et}_{2} \mathrm{O}$:hexanes); IR (thin film) $\nu_{\max } 1852$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, benzene- $\left.d_{6}\right) \delta 3.36(\mathrm{dd}, J=6.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=5.4$, 6.9 Hz, 1H), 0.50-1.64 (m, 31H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , benzene- d_{6}) $\delta 167.8,91.8,58.3$, $52.3,35.9,35.7,33.7,33.4,33.3,33.1,32.9,26.8,26.7,26.64,26.57,26.51,26.44$, 26.42; LRMS (APCI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}] 293$, found 293.

(E)-1,5-dicyclohexylpent-1-en-3-one (65). A solution of spiroepoxy- β-lactone 10a (340 $\mathrm{mg}, 1.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was cooled to $-96{ }^{\circ} \mathrm{C}$. To the solution was added i $\operatorname{Pr}_{2} \mathrm{NEt}$ (0.59 mL of a 2.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed directly by addition of trimethylsilyl triflate $\left(0.45 \mathrm{~mL}\right.$ of 2.6 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solution was stirred for 0.5 h , then warmed to $-78{ }^{\circ} \mathrm{C}$ for 2 h and then $-40^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched at $-40^{\circ} \mathrm{C}$ by the addition of saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The solution was warmed to $23^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of
$\mathrm{Et}_{2} \mathrm{O}$:hexanes (0:1 to $0.5: 9.5$) to afford enone $\mathbf{6 5}(18.6 \mathrm{mg}, 6 \%)$ as a colorless oil. Store frozen in benzene if not used immediately. $\mathrm{R}_{f} 0.63\left(2: 8 \mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $)$; IR (thin film) $v_{\text {max }}$ 1754, 1721, 1697, 1673, 1628, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , benzene- d_{6}) $\delta 6.72(\mathrm{dd}, J$ $=6.6,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.48(\mathrm{~m}$, $21 \mathrm{H})$ 1.32-0.64 (m, 26H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}) $\delta 199.4,150.9,40.8,38.2$, 37.8, 33.7, 32.2, 32.1, 30.4 (2), 27.1, 26.9 (2), 26.4, 26.2 (2); LRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OLi}[\mathrm{M}+\mathrm{Li}] 255$, found 255.

(S)-3,5-bis(cyclohexylmethyl)-4-hydroxyfuran-2(5H)-one (67a). To a flask at $-42{ }^{\circ} \mathrm{C}$ containing TMSOTf ($0.305 \mathrm{~g}, 1.40 \mathrm{mmol}$), 2,6-ditertbutyl-4-methyl-pyridine (0.281 g , $1.40 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.160 \mathrm{~g}, 1.40 \mathrm{~mol})$ under nitrogen was added spiroepoxy- β lactone 10a by cannula transfer in solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was stirred for 2 h , warmed to $0^{\circ} \mathrm{C}$ and stirred for an additional 3 h . Further TMSOTf $(0.204 \mathrm{~g}$, 0.916 mmol), 2,6-ditertbutyl-4-methyl-pyridine ($0.188 \mathrm{~g}, 0.916 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{SiH}$ $(0.107 \mathrm{~g}, 0.916 \mathrm{mmol})$ were added again. The solution was warmed to $23^{\circ} \mathrm{C}$ and stirred for 19 h . A white solid formed which was soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was quenched upon addition of saturated NaHCO_{3}, which was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic phase was then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by rotary evaporation to obtain 67 a as a crude mixture. The mixture was filtered, and the
collected precipitate was tetronic acid $67 \mathrm{a}(0.078 \mathrm{~g}, 56 \%)$ collected as a white solid. The spectroscopic data matched that found in the literature. ${ }^{98}$

(S)-1,5-dicyclohexyl-2-hydroxypentan-3-one (62). To a solution of spiroepoxy- β lactone 10a ($46.5 \mathrm{mg}, 1.59 \mathrm{mmol}$) in THF (1.45 mL) was added doubly distilled $\mathrm{H}_{2} \mathrm{O}$ $(0.25 \mathrm{~mL}, \mathrm{pH}=6.5)$. The solution was allowed to stir for 19 h at $23{ }^{\circ} \mathrm{C}$. The reaction was then filtered through $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (1:4) to afford α-hydroxy ketone $\mathbf{6 2}(9.9 \mathrm{mg}, 53 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.48(1: 4$ $\mathrm{Et}_{2} \mathrm{O}:$ hexanes $)$; IR (thin film) $\boldsymbol{v}_{\max } 3475,1709,1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, benzene$\left.d_{6}\right) \delta 4.04(\mathrm{ddd}, J=3.1,5.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=6.5$, $26.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (ddd, $J=6.5,26.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.34(\mathrm{~m}, 18 \mathrm{H})$, $1.27-0.98(\mathrm{~m}, 11 \mathrm{H}), 0.93-0.74(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.8,74.5,41.6$, $37.2,35.2,34.40,33.97,33.1,33.0,32.16,31.1,26.49,26.46,26.3,26.2$ (2), 26.0; LRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]$ 273, found 273.

(2R,4S)-5-cyclohexyl-2-(cyclohexylmethyl)pentane-1,3,4-triol (66). A solution of spiroepoxy- β-lactone $\mathbf{1 0 a}(112 \mathrm{mg}, 0.384 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.9 \mathrm{~mL})$ was added dropwise to
a suspension of $\mathrm{LiAlH}_{4}(18.5 \mathrm{mg}, 0.768 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.6 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred 8 min . and then warmed to $0^{\circ} \mathrm{C}$ for 45 min . Then, the mixture was further warmed to $23^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by dilution with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and slow addition of $\mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{~mL})$ followed by addition of $15 \% \mathrm{NaOH}$ $(0.02 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.06 \mathrm{~mL})$. The reaction mixture was stirred vigorously until all the gray color disappeared, and then $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added. The mixture was stirred for 15 min ., filtered through MgSO_{4} and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (1:1) to give triol 66 ($106 \mathrm{mg}, 92 \%$, dr 3:1) as a milky oil. $\mathrm{R}_{f} 0.40$ (1:1 $\mathrm{Et}_{2} \mathrm{O}$:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 3362,1447 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.84-3.71(\mathrm{~m}, 6 \mathrm{H}), 3.70-3.60(\mathrm{~m}$, $2 H), 3.42-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{bs}, 1 \mathrm{H}), 2.72(\mathrm{bs}, 1 \mathrm{H}), 2.02-0.63(\mathrm{~m}, 68 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 78.1,77.5,70.1,69.9,64.6,63.5,41.8,41.0$ (2), 39.4, 38.0, 36.8, 35.1, $34.9,34.7,34.3,34.00,33.97,33.8,33.3,32.7,32.6,32.5,32.1,29.7,26.61,26.55$ (2), 26.43 (2), 26.35, 26.30, 26.2 (2) 26.1 (2); LRMS (APCI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 299, found 299.

(\boldsymbol{Z})-4-(3-chloropropylidene)-3-methyloxetan-2-one (58b): To a solution of 4chlorobutyryl chloride ($10.0 \mathrm{~g}, 0.07 \mathrm{~mol}$) and propionyl chloride $(8.5 \mathrm{~g}, 0.09 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(106 \mathrm{~mL})$, was added triethylamine $(25.0 \mathrm{~mL}, 0.18 \mathrm{~mol})$ at $23^{\circ} \mathrm{C}$ through a syringe pump over 1.5 h maintaining the reaction at room temperature using water bath. Stirring was
continued for an additional 1.5 h at room temperature. The reaction mixture was diluted with hexane $(400 \mathrm{~mL})$, filtered through a pad of silica gel, and then washed with a $1: 1$ mixture of hexanes and $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$. The solution was concentrated by rotary evaporation and then purified by flash column chromatography with a mixture of $\mathrm{Et}_{2} \mathrm{O}$:pentane: (0.5:9.5) to give heteroketene dimer $\mathbf{5 8 b}$ ($440 \mathrm{mg}, 4 \%$) as a colorless oil. The ketene dimers were obtained as a $\sim 7: 1: 1$ mixture ($\mathbf{6 9} / \mathbf{6 8} / \mathbf{5 8 b}$), which was separable by column chromatorgraphy. (Z)-4-(3-chloropropylidene)-3-methyloxetan-2-one (58b): $\mathrm{R}_{f} 0.33$ (1:9 $\mathrm{Et}_{2} \mathrm{O}$:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 1880,1726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- $\left.d_{6}\right) \delta 4.20(\mathrm{dt}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dddd}, J=15.5,7.5,2.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 2 \mathrm{H}), 0.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , benzene $-d_{6}$) $\delta 169.0,149.7,96.4,49.3,44.2,28.3,12.0$. Mass spectral data could not be obtained. (Z)-3-(2-chloroethyl)-4-ethylideneoxetan-2-one (68): Dimer 68 (320 $\mathrm{mg}, 3 \%$) was obtained as a colorless oil. $\mathrm{R}_{f} 0.32$ (1:9 $\mathrm{Et}_{2} \mathrm{O}$:hexanes); IR (thin film) $v_{\max }$ $1872,1730,827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}) $\delta 4.20(\mathrm{qd}, J=1.13,6.93 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=11.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J=11.5,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.57 (app sextet, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.53-1.43 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}) δ $168.1,145.4,96.6,51.0,41.3,30.3,9.8$. Mass spectral data could not be obtained. (Z)-3-(2-chloroethyl)-4-(3-chloro-propylidene)oxetan-2-one (69): Dimer 69 (21\%) was obtained as a colorless oil. $\mathrm{R}_{f} 0.19$ (1:9 $\mathrm{Et}_{2} \mathrm{O}$:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 1874,1727$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, benzene- $\left.d_{6}\right) \delta 3.34(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dt}, J=7.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.04(\mathrm{~m}, 4 \mathrm{H}), 2.33-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , benzene $\left.-d_{6}\right) \delta 167.7,146.9,98.0,51.5,43.9,41.3,30.1,28.2$. Mass spectral data could not be obtained.

(2R,3S,6S)-2-(2-chloroethyl)-6-methyl-1,4-dioxaspiro[2.3]hexan-5-one (10b): To a solution of heteroketene dimer $\mathbf{5 8 b}(50.0 \mathrm{mg}, 0.312 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added a scoopula amount of MgSO_{4}. To the mixture was added the freshly prepared $\mathrm{DMDO}^{196} /$ acetone mixture $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ via cannula transfer. After 2 h of stirring at 0 ${ }^{\circ} \mathrm{C}$, the mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for an additional 3 h . The solution was then filtered through MgSO_{4}, concentrated by rotary evaporation, and purified by flash column chromatography eluting with a mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (1.5:8.5). Spiroepoxy- β lactone 10b ($200 \mathrm{mg}, 45 \%$, dr 7:1) was obtained as a colorless oil. (major) $\mathrm{R}_{f} 0.40$ (2:8 $\mathrm{Et}_{2} \mathrm{O}:$ hexanes $)$; IR (thin film) $v_{\max } 1857,1516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}) δ $3.10-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=6.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.55(\mathrm{~m}$, $2 \mathrm{H}), 0.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , benzene- d_{6}) $\delta 167.2,91.5,55.9,48.8$, 40.9, 30.7, 9.3; HRMS (ESI) Calcd. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}] 177.0318$, found 177.0310 .

CHAPTER III - NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATIONS (NCAL) TO β-LACTONE FUSED TETRAHYDROFURANS

2-(1-(tert-butyldiphenylsilyloxy)hex-5-en-3-yloxy)acetic acid (S3). Sodium hydride, 60% suspension in mineral oil $(1.35 \mathrm{~g}, 33.4 \mathrm{mmol})$ was washed with hexanes ($2 \times 2 \mathrm{~mL}$). The solid was evaporated to dryness under nitrogen and then suspended in
tetrahydrofuran $(3 \mathrm{~mL})$. A solution of iodoacetic $\operatorname{acid}^{137}(1.14 \mathrm{~g}, 6.14 \mathrm{mmol})$ in tetrahydrofuran $(4 \mathrm{~mL})$ was then added dropwise at $23^{\circ} \mathrm{C}$. During addition, evolution of hydrogen gas was evident by the mixture bubbling. The mixture was stirred for an additional hour. Alcohol $94 \mathbf{a}^{197}(2.07 \mathrm{~g}, 5.85 \mathrm{mmol})$ was then added as a solution in tetrahydrofuran $(6 \mathrm{~mL})$. The mixture was refluxed for 4.5 h and then cooled to room temperature and allowed to stir for 11 h . The reaction was quenched upon partitioning between $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The mixture was acidified to pH 1 with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (2:5 to 1:0) to provide acid $\mathbf{S 3}(1.29 \mathrm{~g}, 53 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.57$ (1:1 EtOAc:hexanes); IR (thin film) $\nu_{\max } 1733,1427,1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.21(\mathrm{bs}, 1 \mathrm{H}), 7.75-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 6 \mathrm{H}), 5.91-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.17-$ $5.06(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.69(\mathrm{~m}, 3 \mathrm{H})$, 2.38-2.31 (m, 2H), $1.79(\operatorname{appq}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.6,135.44$ (2), 135.43 (2), 133.9, 133.5, 133.4, 129.62, 129.61, 127.61 (2), 127.60 (2), 117.7, 77.6, 62.4, 60.3, 38.3, 36.4, 26.8 (3), 19.1; HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}] 413.2148$, found 413.2141.

(土)-2-(1-(tert-butyldimethylsilyloxy)-5-oxopentan-3-yloxy)acetic acid (76a). Alkene acid $\mathbf{S 3}$ ($250 \mathrm{mg}, 0.61 \mathrm{mmol}$) underwent ozonolysis according to the representative
procedure for ozonolysis of alkene acids. Dimethylsulfide $(0.47 \mathrm{~mL}, 380 \mathrm{mg}, 6.00$ mmol) was used as reducing reagent. The reaction was worked up with addition of brine $(20 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with dichloromethane ($2 \times 20 \mathrm{~mL}$). The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation. The crude material was purified by flash column chromatography on silica gel (10:2:88 acetone: $\mathrm{AcOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield aldehyde acid 76a $(180 \mathrm{mg}, 72 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.33$ (1:4 EtOAc:Hexanes); IR (thin film) $\boldsymbol{v}_{\max }$ $3071,1728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.50(\mathrm{bs}, 1 \mathrm{H}), 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.64$ $(\mathrm{m}, 4 \mathrm{H}), 7.54-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.21(\mathrm{~s}, 3 \mathrm{H}), 3.92-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=17.4,7.8,1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=17.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \delta \mathrm{CDCl}_{3}$ at 77.23 ppm$) \delta 201.9,175.1,135.8$ (4), 133.6 (2), 130.2 (2), 128.1 (4), 73.5, 66.8, 60.1, 48.7, 36.7, 27.2 (3), 19.4; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SiLi}[\mathrm{M}+\mathrm{Li}]$ 421.2023, found 421.2020.

76a

$\overrightarrow{\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}}$

anti-11a

syn-11a

Representative Procedure for Nucleophile Catalyzed Aldol Lactonization (NCAL) with achiral nucleophile as described for Tetrahydrofuran-fused β-lactone 11 a . Aldehyde acid 76a was azeotroped with xylenes prior to use. To a flask containing pyridinium salt $72(33.6 \mathrm{mg}, 0.09 \mathrm{mmol})$ was added $0.50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogen followed by triethylamine $(0.027 \mathrm{~mL}, 0.19 \mathrm{mmol})$. The solution turned pale yellow. To the reaction mixture at $23{ }^{\circ} \mathrm{C}$ was added a solution of aldehyde acid $76 \mathbf{a}(16.5 \mathrm{mg}, 0.05$
$\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.45 \mathrm{~mL})$ via syringe pump over 1 h . The solution turned orangebrown. The reaction was quenched after an additional 11 h of stirring by washing with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, brine, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The crude residue was purified by flash column chromatography with EtOAc:hexanes (1:9) to provide anti/syn tetrahydrofuranfused β-lactones $11 \mathrm{a}(4.0 \mathrm{mg}, 25 \%$, dr 1:1) as a colorless oil. The diastereomers were inseparable during column chromatography. (土)-3-[2-(tert-butyldimethyl-silyloxy)ethyl]-2,6-dioxabicyclo[3.2.0]heptan-7-one (anti/syn 11a). $\quad \mathrm{R}_{f}=0.38$ (1:4 EtOAc:Hexanes); IR (thin film) $\boldsymbol{v}_{\text {max }} 1836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.65$ $(\mathrm{m}, 5 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.44(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=$ 4.0 Hz, 1H), $5.15(\mathrm{t}, J=3.82 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.73$ (m, 2H) 3.83-3.79 (m, 2H), $2.38(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.24$ $(\mathrm{m}, 2 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.94(\mathrm{~m} 2 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \delta \mathrm{CDCl}_{3}\right.$ at 77.23 ppm) $\delta 170.3,168.8,135.73$ (4), 135.70 (4), 133.7 (2), 133.5 (2), 129.91 (2), 129.90 (2), 127.93 (4), 127.92 (4), $88.2,88.0,81.3,80.0,78.7,77.2,60.8,60.7,38.7,37.0,36.7$, 34.8, 27.03 (3), 27.01 (3), 19.4, 19.3; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$ 397.1835, found 397.1830.

(\pm)-3-(5-phenylpent-1-en-3-yloxy)propanoic acid (S5). To a round bottom flask containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and thioanisole $(0.24 \mathrm{~mL}, 250 \mathrm{mg}, 2.01 \mathrm{mmol})$ at room
temperature was added t-butyl ester $\mathbf{S 4}(583 \mathrm{mg}, 2.01 \mathrm{mmol}) .{ }^{198}$ This was followed directly by addition of trifluoroacetic acid $(0.77 \mathrm{~mL}, 1.14 \mathrm{~g}, 10.0 \mathrm{mmol})$. A reflux condenser was attached, and the solution was warmed to $35^{\circ} \mathrm{C}$ and stirred for 2.5 h . The dark purple solution was cooled to room temperature and concentrated by rotary evaporation. The crude oily residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to 1:0) to afford acid $\mathbf{S 5}(456 \mathrm{mg}, 97 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.17$ (1:4 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 3171,1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.81-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.19(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{dt}, J$ $=6.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dt}, J=6.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.62(\mathrm{~m}, 4 \mathrm{H})$, 2.02-1.86(m, 1H), 1.86-1.73(m, 1H); ${ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.9,141.9,138.4,128.4$ (2), 128.3 (2), 125.7, 117.4, 80.9, 63.4, 36.8, 34.9, 31.4; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]$ 233.1178, found 233.1176.

(\pm)-3-(1-oxo-4-phenylbutan-2-yloxy)propanoic acid (76c). Alkene acid $\mathbf{S 5}$ (232 mg, 0.95 mmol) underwent ozonolysis according to the representative procedure for ozonolysis of alkene acids. Triphenylphosphine ($288 \mathrm{mg}, 1.10 \mathrm{mmol}$) was used as the reducing reagent. The crude residue was purified by acid/base extraction by partitioning between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The layers were separated, and the aqueous layer was washed subsequently with hexanes ($2 \times 10 \mathrm{~mL}$), and then acidified with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to pH 2. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5
x 15 mL) and with $\mathrm{Et}_{2} \mathrm{O}(4 \times 15 \mathrm{~mL})$. The extracts obtained after acidification were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation to afford aldehyde acid 76c (174 mg, 74\%) as a colorless oil. $\mathrm{R}_{f} 0.30$ (1:1 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max }$ 3027, $1729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}$, $5 \mathrm{H}), 3.88(\mathrm{dt}, J=6.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.61(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.89(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.5,177.2,140.6,128.39$ (2), 128.36 (2), 126.0, 83.4, 65.5, 34.8, 31.3, 30.6; LRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}] 235$, found 235.

Aldehyde acid 76 c ($69.9 \mathrm{mg}, 0.30 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with achiral nucleophile for tetrahydrofuran-fused β lactone. The orange solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h total. The crude residue was purified by flash column chromatography with EtOAc:hexanes (1:9) to provide anti/syn tetrahydrofuran-fused β-lactones $\mathbf{1 1 c}(19.9 \mathrm{mg}, 31 \%$, dr 2:1) as a colorless oil. (\pm)-4-phenethyl-3,6-dioxabicyclo[3.2.0]heptan-7-one (anti-11c), (major). $\mathrm{R}_{f} 0.21$ (1:4 EtOAc:hexanes); IR (thin film) $v_{\max } 1833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.17$ $(\mathrm{m}, 5 \mathrm{H}), 4.85(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=5.0,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=6.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, J=5.5,9.5,14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.70(\mathrm{dt}, J=8.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(1 \mathrm{H}) ;{ }^{13} \mathrm{C}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,140.5,128.6$ (2), 128.4 (2), 126.3, 79.3, 77.9, 64.8, 56.8, 31.3, 29.7; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]$ 225.1103, found 225.1108. (\pm)-4-
phenethyl-3,6-dioxabicyclo[3.2.0]heptan-7-one (syn-11c), (minor). $\mathrm{R}_{f} 0.14$ (1:4 EtOAc:hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.87(\mathrm{dd}, J=2.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=5.5,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{ddd}, J=2.0,4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=6.0,8.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J$ $=8.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.2,143.4,141.3,128.5$ (2), 128.4 (2), 126.0, 86.2, 73.3, 36.7, 31.4, 29.7.

94d

THF

S6
(\pm)-2-(5-methyl-1-phenylhex-5-en-3-yloxy)ethanoic acid (S6). Sodium hydride, 80\% suspension in mineral oil ($1.62 \mathrm{~g}, 0.05 \mathrm{~mol}$) was washed with hexanes ($2 \times 2 \mathrm{~mL}$). The solid was evaporated to dryness under nitrogen and then suspended in tetrahydrofuran (9 $\mathrm{mL})$. A solution of iodoacetic acid ${ }^{137}(3.35 \mathrm{~g}, 0.02 \mathrm{~mol})$ in tetrahydrofuran $(6 \mathrm{~mL})$ was then added dropwise at $23{ }^{\circ} \mathrm{C}$. During addition, evolution of hydrogen gas was evident by the mixture bubbling. The mixture was stirred for an additional 15 min . Alcohol $\mathbf{9 4 d}^{199}(1.77 \mathrm{~g}, 0.01 \mathrm{~mol})$ was then added as a solution in tetrahydrofuran $(5 \mathrm{~mL})$. The mixture was allowed to stir for 36 h . The reaction ceased upon dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 $\mathrm{mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The mixture was then acidified to pH 2 with 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 35 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (2:5 to $4: 5$) to provide acid S6 ($2.06 \mathrm{~g}, 89 \%$) as a pale yellow oil. $\mathrm{R}_{f} 0.22$ (4:6 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max }$ $\mathrm{cm}^{-1} 3425,1733,1454,1126 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.92-$
$4.86(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.61 (dddd, $J=5.5,5.5,11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{ddd}, J=0.5,7.5$, $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=1.0,6.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 172.6, 142.1, 141.5, 128.5 (2), 128.3 (2), 126.0, 113.9, 78.9, 66.2, 42.4, 35.4, 31.4, 22.5; HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]$ 255.1572, found 255.1563.

(土)-2-(5-0xo-1-phenylhexan-3-yloxy)ethanoic acid (76d). Alkene acid S6 (168 mg, 0.68 mmol) underwent ozonolysis according to the representative procedure for ozonolysis of alkene acids. Triphenylphosphine ($231 \mathrm{mg}, 0.88 \mathrm{mmol}$) was added as the reducing reagent. The crude residue was purified by acid/base extraction by partitioning between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was washed subsequently with hexanes ($2 \times 15 \mathrm{~mL}$), and then acidified with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to pH 2. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 25 mL) and with $\mathrm{Et}_{2} \mathrm{O}(4 \times 25 \mathrm{~mL})$. The extracts obtained after acidification were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation to afford keto acid $\mathbf{7 6 d}$ ($122 \mathrm{mg}, 72 \%$) as a pale yellow oil. $\mathrm{R}_{f} 0.15$ (4:1 EtOAc:hexanes); IR (thin film) $v_{\max }$ $3485,1712,1358,1126 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.30(\mathrm{bs}, 1 \mathrm{H}), 7.37-7.16(\mathrm{~m}$, $5 \mathrm{H}), 4.31(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.91$ $(\mathrm{m}, 1 \mathrm{H}), 2.83-2.872(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.70(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta$ 208.7, 173.8, 141.0, 128.4 (2), 128.0 (2), 126.0, 75.5, 66.3, 47.6, 34.8, 30.8, 30.6; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 249.1127, found 249.1135.

To a flask containing 4-pyrrolidinopyridine ($650 \mathrm{mg}, 0.38 \mathrm{mmol}$) and pyridinium salt 72 $(133 \mathrm{mg}, 0.38 \mathrm{mmol})$ under nitrogen was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.09 \mathrm{~mL}$, 0.51 mmol), respectively. The reaction mixture turned pale yellow and was then cooled to $-30^{\circ} \mathrm{C}$. A solution of keto acid $\mathbf{7 6 d}(640 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added via syringe pump over 2 h . The mixture was allowed to stir for 64 h at $-30^{\circ} \mathrm{C}$ and then was quenched upon washing twice with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, twice with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was then concentrated and purified by flash column chromatography with EtOAc:hexanes (1:4) to provide anti/syn tetrahydrofuran-fused β lactones 11d (32.0 mg, 54\%, dr 1:1). (1S,3R,5R)-5-methyl-3-phenethyl-2,6-dioxabicyclo[3.2.0]heptan-7-one (anti-11d). $\mathrm{R}_{f} 0.42$ (1:4 EtOAc:hexanes); IR (thin film) $v_{\max } 1828 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H})$, 4.18-4.14 (m, 1H), $2.82(\mathrm{ddd}, J=5.2,9.4,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=6.8,9.4,13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{dd}, J=4.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $1.51(\mathrm{dd}, J=11.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,141.0,128.5$ (2), 128.3 (2), 126.1, 89.8, 88.4, 79.7, 41.9, 35.5, 32.1, 19.9; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Li}[\mathrm{M}+\mathrm{Li}] 239.1259$, found 239.1250. (1R,3R,5S)-5-methyl-3-phenethyl-2,6-dioxabicyclo[3.2.0]heptan-7-one (syn-11d). This diastereomer has been assigned as the
$(1 R, 3 R, 5 S)$-diastereomer in accordance with the crystal structure obtained. $\mathrm{R}_{f} 0.36$ (1:4 EtOAc:hexanes); IR (thin film) $v_{\max } 1824 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.14$ $(\mathrm{m}, 5 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{dddd}, J=2.1,5.1,8.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.78(\mathrm{~m}, 1 \mathrm{H})$, 2.75-2.62 (m, 1H), $2.29(\mathrm{dd}, J=2.1,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=8.1,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-$ $2.11(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 169.5, 141.0, 128.6 (2), 128.4 (2), 126.0, 89.9, 89.7, 83.6, 40.1, 37.3, 32.5, 20.7; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]$ 239.1259, found 239.1262

4-chloro-6-phenylhexan-2-one (101). To a solution of keto acid 76d (312 mg, 0.125 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DMF (1 drop) followed by oxalyl chloride ($0.016 \mathrm{~mL}, 0.187 \mathrm{mmol}$). After 10 min ., the solution was warmed to room temperature and stirred for 4 h . The solution was quickly filtered through a glass fritted funnel containing a pad of celite and sodium sulfate eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was concentrated to afford a yellow residue and used without further purification. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ and cooled to $-10^{\circ} \mathrm{C}$. Pyridine $(0.040$ $\mathrm{mL}, 0.499 \mathrm{mmol}$) was added, and the solution was stirred for 2 h . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and then washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with EtOAc:hexanes (1:9) to provide ketone 101 (17.7 mg, 67\%) as a colorless oil. IR (thin film) $v_{\max } 1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.19(\mathrm{~m}$, $5 \mathrm{H}), 4.32$ (dddd, $J=3.5,5.0,9.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=8.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$
$(\mathrm{ddd}, J=5.0,9.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.96(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,140.6,128.50$ (2), 128.46 (2), 126.1, 56.5, 51.7, 39.7, 32.5, 30.7; LRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClOLi}$ [M+Li] 217, found 217.

(S)-1-phenylhept-6-en-3-ol (94e). To a flask containing CuI ($0.39 \mathrm{~g}, 2.04 \mathrm{mmol}$) was added $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. Benzylmagnesium bromide (6.64 mL of 2.0 M solution in tetrahydrofuran, 13.3 mmol) was added dropwise, and the mixture was stirred for 0.5 h . The solution was warmed at room temperature until the mixture turned black ($\sim 0.5 \mathrm{~h}$) and then was cooled again to $-78^{\circ} \mathrm{C}$. A solution of epoxide $\mathbf{9 7}^{200}(1.00 \mathrm{~g}, 10.2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was then added. The mixture was slowly warmed to room temperature over $\sim 5 \mathrm{~h}$ and continued stirring for a total of 23 h . The reaction was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. After separating the layers, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The organic phases were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography EtOAc:hexanes (4:6) to yield alcohol $\mathbf{9 4 e}$ $(1.94 \mathrm{~g}, 99 \%)$ as a pale yellow oil. A single enantiomer was formed (absolute stereochemistry determined by comparison of optical rotations from epichlorohydrin precursor; (S)-epichlorohydrin $=[\alpha]_{\mathrm{D}}^{20}-33.2(c=4.28, \mathrm{MeOH}),(S)$-epichlorohydrin literature value $[\alpha]^{22}{ }_{\mathrm{D}}-33.0(c=4.22, \mathrm{MeOH}) .{ }^{12} \mathrm{R}_{f} 0.44$ (1:4 EtOAc:hexanes); $[\alpha]^{19}{ }_{\mathrm{D}}-6.1$ $\left(c=2.01, \mathrm{CHCl}_{3}\right) ;$ IR (thin film) $v_{\max } 3356,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.32-7.16 (m, 5H), $5.84(\mathrm{dddd}, J=7.0,7.0,10.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.71-$
$3.63(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=5.5,9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=6.5,9.5$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.1,138.5,128.4$ (4), 125.8, 114.8, 70.9, 39.1, 36.5, 32.0, 30.0; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{OLi}[\mathrm{M}+\mathrm{Li}]$ 197.1518, found 197.1521.

(S)-2-(1-phenylhept-6-en-3-yloxy)acetic acid (S7). Sodium hydride, 60% suspension in mineral oil $(2.40 \mathrm{~g}, 58.1 \mathrm{mmol})$ was washed with hexanes $(2 \mathrm{x} 5 \mathrm{~mL})$. The solid was dried under nitrogen and then was suspended in tetrahydrofuran $(5 \mathrm{~mL})$. A solution of iodoacetic acid ${ }^{135}(2.05 \mathrm{~g}, 10.7 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{~mL})$ was then added dropwise at $23{ }^{\circ} \mathrm{C}$. During addition, evolution of hydrogen gas was evident by the mixture bubbling. The mixture was stirred an additional hour. Alcohol $94 \mathrm{e}(1.94 \mathrm{~g}, 10.2$ mmol) was then added as a solution in tetrahydrofuran $(10 \mathrm{~mL})$. The mixture was allowed to stir for 48 h . The reaction was quenched upon dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(67 \mathrm{~mL})$. The mixture was acidified to pH 2 with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:1 to 7:3) to provide acid $\mathbf{S} 7(1.18 \mathrm{~g}, 47 \%)$ as a pale yellow oil. R_{f} 0.29 (3:7 EtOAc:hexanes); $[\alpha]^{18}{ }_{\mathrm{D}}-5.7\left(c=1.06, \mathrm{CHCl}_{3}\right)$; IR (thin film) $v_{\max } 3165,1732$, $1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{ddd}, J=6.9,6.9,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{p}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.61(\mathrm{~m}, 2 \mathrm{H})$,
$2.15(\mathrm{dd}, J=6.9,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3,141.7,137.9,128.4$ (2), 128.3 (2), 125.9, 115.0, 79.9, 65.8, 35.1, 32.5, 31.4, 29.3; HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}$ [M-H] 247.1334, found 247.1327.

(R)-2-(6-oxo-1-phenylhexan-3-yloxy)acetic acid (76e). Alkene acid $\mathbf{S 7}$ ($210 \mathrm{mg}, 0.85$ mmol) underwent ozonolysis according to the representative procedure for ozonolysis of alkene acids. Triphenylphosphine ($266 \mathrm{mg}, 1.01 \mathrm{mmol}$) was added as the reducing reagent. The crude residue was purified by acid/base extraction by partitioning between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was washed subsequently with hexanes ($2 \times 7 \mathrm{~mL}$), and then acidified with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to pH 1. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The extracts obtained after acidification were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation to afford aldehyde acid 76e $(198 \mathrm{mg}$, 94\%) as a pale yellow oil. $\mathrm{R}_{f} 0.57$ (7:3 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 2934,1723$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , benene- d_{6}) $\delta 10.87(\mathrm{bs}, 1 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.01(\mathrm{~m}, 5 \mathrm{H})$, $3.81(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{p}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.20(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, benzene- $\left.d_{6}\right) \delta$ $201.9,176.9,142.4,128.9$ (2), 128.8 (2), 126.4, 79.2, 65.9, 39.6, 35.5, 31.7, 26.0; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 249.1127, found 249.1130.

Aldehyde acid 76e ($88.2 \mathrm{mg}, 0.35 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with achiral nucleophile for tetrahydrofuran-fused β lactone. The crude residue was purified by flash column chromatography with EtOAc:hexanes (1:9) to provide anti-tetrahydropyran-fused β-lactone 11e ($26.3 \mathrm{mg}, 26 \%$, $\mathrm{dr}>19: 1$) as a colorless oil. ($\mathbf{1 S , 3 R , 6 R}$)-3-phenethyl-2,7-dioxabicyclo[4.2.0]octan-8one (anti-11e). $\mathrm{R}_{f} 0.30$ (1:4 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\text {max }} 1827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dddd}, J=0.9,1.8$, $3.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.87-1.65(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,141.5,128.5$ (2), 128.3 (2), 125.8, 77.4, 74.5, 72.0, 38.4, 31.2, 24.6, 22.8; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Li}$ [M+Li] 239.1259, found 239.1262.

(R)-1-Phenylhex-5-en-3-ol (94g). Epoxide 93a (absolute stereochemistry assumed to be R, since the R, R-catalyst was employed $)^{13}$ was determined to have an enantiomeric excess $=94 \%$ (chiral HPLC, Chiralcel OD, 98:2 hexanes: i-PrOH eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of 210 nm) t_{r} (major) $=6.960 ; \mathrm{t}_{\mathrm{r}}$ (minor) $=8.954$.) To a flask containing $\mathrm{CuI}(1.25 \mathrm{~g}, 6.57 \mathrm{mmol})$ was added $\mathrm{Et}_{2} \mathrm{O}(245 \mathrm{~mL})$, and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Vinylmagnesium bromide ($59.1 \mathrm{~mL}, 59.1 \mathrm{mmol}$) was added dropwise, and the mixture was stirred for 30 minutes. The solution was warmed at room
temperature until the mixture turned black and then was cooled again to $-78{ }^{\circ} \mathrm{C}$. A solution of epoxide $\mathbf{9 3 a}{ }^{201}(4.87 \mathrm{~g}, 32.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(85 \mathrm{~mL})$ was then slowly added. The mixture was slowly warmed to room temperature over $\sim 5 \mathrm{~h}$ and continued stirring for a total of 23 h . The reaction was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$. After separating the layers, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography EtOAc:hexanes (4:6) to yield alcohol $\mathbf{9 4 g}(5.70 \mathrm{~g}, 98 \%)$ as a pale yellow oil. $[\alpha]^{19}{ }_{\mathrm{D}}+23.5$ ($c=0.17$, acetone). The spectroscopic data matched that found in the literature. ${ }^{202}$

(R)-2-(1-phenylhex-5-en-3-yloxy)ethanoic acid (S8). Sodium hydride, 80% suspension in mineral oil ($2.15 \mathrm{~g}, 0.07 \mathrm{~mol}$) was washed with hexanes $(2 \mathrm{x} 5 \mathrm{~mL})$. The solid was dried under nitrogen and then was suspended in tetrahydrofuran (12 mL). A solution of iodoacetic acid ${ }^{137}(4.45 \mathrm{~g}, 0.02 \mathrm{~mol})$ in tetrahydrofuran $(10 \mathrm{~mL})$ was then added dropwise at $23{ }^{\circ} \mathrm{C}$. The mixture was stirred for an additional 15 min . Alcohol $\mathbf{9 4 g}(2.21 \mathrm{~g}, 0.01$ $\mathrm{mol})$ was then added as a solution in tetrahydrofuran $(6 \mathrm{~mL})$. The mixture was allowed to stir for 14 h . The reaction was quenched upon dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:1 to 1:0) to provide acid $\mathbf{S 8}(2.82 \mathrm{~g}, 96 \%)$ as a white solid. $\mathrm{R}_{f} 0.61$ (7:3 EtOAc:hexanes);
$[\alpha]^{19}{ }_{\mathrm{D}}+31.1\left(c=1.35\right.$, acetone); IR (thin film) $v_{\max } 3422,1731,1130 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{bs}, 1 \mathrm{H}), 7.33-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{dddd}, J=7.0,7.0,14.0,17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{tt}, J=$ $5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=5.5,9.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=6.5,9.5,13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.5,141.6$, 133.8, 128.4 (2), 128.3 (2), 125.9, 118.0, 79.8, 66.1, 38.0, 35.2, 31.4; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}] 233.1178$, found 233.1180.

(R)-2-(1-oxo-5-phenylpentan-3-yloxy)acetic acid (76g). Alkene acid S8 (511 mg, 2.18 mmol) was ozonolyzed according to the representative procedure for ozonolysis of alkene acids. Triphenylphosphine ($686 \mathrm{mg}, 2.61 \mathrm{mmol}$) was added as the reducing reagent. The crude residue was purified by acid/base extraction by partitioning between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The layers were separated, and the aqueous layer was washed subsequently with hexanes ($2 \times 15 \mathrm{~mL}$), and then acidified with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to pH 1 . The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20$ $\mathrm{mL})$ and with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The extracts obtained after acidification were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation to afford aldehyde acid $\mathbf{7 6 g}$ (432 $\mathrm{mg}, 84 \%$) as a colorless oil. $\mathrm{R}_{f} 0.55$ (8:2 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 3426,1729$, $1641 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{bs}, 1 \mathrm{H}), 7.34-7.1(\mathrm{~m}, 5 \mathrm{H})$, 4.18 (dd, $J=17.0,24.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=2.0 ; 7.5 ; 17.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.74-2.62 (m, 2H), 2.03-1.82 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.6, 174.5,
140.9, 128.4 (2), 128.2 (2), 126.0, 74.9, 66.2, 47.9, 35.3, 30.9; LRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}] 235$, found 235.

Aldehyde acid $\mathbf{7 6 g}$ was azeotroped with xylenes prior to use. To a flask containing pyridinium salt $72(332 \mathrm{mg}, 0.94 \mathrm{mmol})$ was added $6.4 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ under nitrogen followed by triethylamine $(0.26 \mathrm{~mL}, 1.88 \mathrm{mmol})$. The solution turned pale yellow. To the reaction mixture at $23^{\circ} \mathrm{C}$ was added a solution of aldehyde acid $\mathbf{7 6 g}(111 \mathrm{mg}, 0.47$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ via syringe pump over 1 h . The solution darkened to maroon. The reaction was quenched after an additional hour of stirring by washing twice with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated and purified by flash column chromatography by $\mathrm{Et}_{2} \mathrm{O}$:hexanes (0.6:9.4) to afford anti/syn tetrahydrofuran-fused β-lactones $\mathbf{1 1 g}(48.2 \mathrm{mg}, 47 \%$, dr 1:1) as a colorless oils.

Representative Procedure for Nucleophile Catalyzed Aldol Lactonization (NCAL)

 with asymmetric nucleophile as described for Tetrahydrofuran-fused $\boldsymbol{\beta}$-lactone $\mathbf{1 1 g}$. Aldehyde acid $\mathbf{7 6 g}$ was azeotroped with xylenes prior to use. To a flask containing pyridinium salt $72(223 \mathrm{mg}, 0.64 \mathrm{mmol})$ and the asymmetric nucleophile, homobenzotetramisole, ($8.4 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added $3.8 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogenfollowed by $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.21 \mathrm{~mL}, 1.28 \mathrm{mmol})$. The solution turned pale yellow. To the reaction mixture at $23{ }^{\circ} \mathrm{C}$ was added a solution of aldehyde acid $\mathbf{7 6 g}(75.4 \mathrm{mg}, 0.32$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ via syringe pump over 1 h . The solution darkened to orangered. The reaction was concentrated after an additional 18 h of stirring and then purified by flash column chromatography by a gradient mixture of EtOAc:hexanes (1:9 to $1: 4$) to afford anti/syn tetrahydrofuran-fused β-lactones $\mathbf{1 1 g}(21.2 \mathrm{mg}, 30 \%, \mathrm{dr} 2: 1)$ as a colorless oils. (1S,3R,5R)-3-phenethyl-2,6-dioxabicyclo[3.2.0]heptan-7-one (anti-11g). $\mathrm{R}_{f} 0.30$ (1:4 EtOAc:hexanes); $[\alpha]^{19}{ }_{\mathrm{D}}+27.6\left(c=0.58, \mathrm{CHCl}_{3}\right)$; IR (thin film) $v_{\max } 1824 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.47(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=3.9$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=4.5,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{ddd}, J=4.2,10.5,14.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.6,141.0,128.5$ (2), 128.3 (2), 126.1, 87.9, 78.7, 78.4, 36.5, 35.4, 32.2; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{3}$ [M-H] 217.0865, found 217.0859. (1R,3R,5S)-3-phenethyl-2,6-dioxabicyclo[3.2.0]heptan-7-one (syn-11g). $\mathrm{R}_{f} 0.18$ (1:4 EtOAc:hexanes); $[\alpha]^{19}{ }_{\mathrm{D}}+55.3$ $\left(c=1.23, \mathrm{CHCl}_{3}\right) ;$ IR (thin film) $v_{\max } 1825 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 5.42(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{ddd}, J=1.0,4.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dddd}, J=$ $2.5,5.5,8.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=5.0,9.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=7.5,9.0$, $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=1.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.09(\mathrm{~m}$, $1 \mathrm{H}), 1.82$ (dddd, $J=5.5,7.5,13.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1$, 149.9, 128.6 (2), 128.4 (2), 126.0, 88.0, 83.1, 79.5, 37.8, 34.8, 32.5; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}] 217.0865$, found 217.0859.

Aldehyde acid $\mathbf{7 6 g}$ was azeotroped with xylenes prior to use. To a flask containing pyridinium salt $72(267 \mathrm{mg}, 0.76 \mathrm{mmol})$ and O-TMSQD $(10.1 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.77 \mathrm{~mL})$ under nitrogen followed by $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.18 \mathrm{~mL}, 1.02 \mathrm{mmol})$. The solution turned pale green-yellow. To the reaction mixture at $23{ }^{\circ} \mathrm{C}$ was added a solution of aldehyde acid $\mathbf{7 6 g}(60.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.78 \mathrm{~mL})$ via syringe pump over 1 h . The solution darkened to deep red. The reaction was concentrated after an additional 23 h of stirring and then purified by flash column chromatography with a mixture of EtOAc:hexanes (1:4) to afford anti/syn tetrahydrofuran-fused β-lactones $\mathbf{1 1 g}$ ($21.6 \mathrm{mg}, 39 \%$, dr $2: 1$) as a colorless oil.

Aldehyde acid $\mathbf{7 6 g}$ was azeotroped with xylenes prior to use. To a flask containing pyridinium salt $72(140 \mathrm{mg}, 0.40 \mathrm{mmol})$ and the asymmetric nucleophile, homobenzotetramisole, ($5.3 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added $\mathrm{PhMe}(4.0 \mathrm{~mL})$ under nitrogen followed by $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.13 \mathrm{~mL}, 0.80 \mathrm{mmol})$. The solution turned pale yellow. To the reaction mixture at $23{ }^{\circ} \mathrm{C}$ was added a solution of aldehyde acid $\mathbf{7 6 g}(47.2 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ via syringe pump over 1 h . The reaction was concentrated after an additional 18 h of stirring and then purified by flash column chromatography by
a gradient mixture of EtOAc:hexanes (1:9 to 1:4) to afford anti/syn tetrahydrofuran-fused β-lactones $\mathbf{1 1 g}(9.4 \mathrm{mg}, 22 \%, \mathrm{dr} 7: 1)$ as a colorless oil.

3-phenyl-2,6-dioxabicyclo[3.2.0]heptan-7-one (11h). To a flask containing pyridinium salt $72(0.353 \mathrm{~g}, 0.662 \mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ and triethylamine $(0.19 \mathrm{~mL}$, $1.32 \mathrm{mmol})$. The solution turned pale yellow and was cooled to $-30^{\circ} \mathrm{C}$. Aldehyde acid 76h $(0.069 \mathrm{~g}, 0.331 \mathrm{mmol})$ was added over 3 h via syringe pump as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.2 mL). After 14 h of stirring, the solution was warmed to $-5^{\circ} \mathrm{C}$ and stirred for an additional 5 h . The solution was partitioned between $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, twice with brine, filtered $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and then concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a mixture of EtOAc:hexanes (1:4) to give anti/syn tetrahydrofuran-fused β-lactones $\mathbf{1 1 h}(0.010 \mathrm{~g}, 16 \%$, dr 1.3:1) as a colorless oil. (major) $\mathrm{R}_{f} 0.27$ (1:4 EtOAc:hexanes); IR (thin film) $v_{\max } 1827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=4.8,10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=4.8,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ (ddd, $J=4.8,10.8,14.7 \mathrm{~Hz}, 1 \mathrm{H}) ;$ HRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 191.0708, found 191.0699.

CHAPTER IV - DEVELOPMENT OF DOUBLE DIASTEREOSELECTIVE NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATIONS (NCAL) TO β LACTONE FUSED CARBOCYCLES AND TETRAHYDROFURANS

113

then DMS, $-78^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}$

71b
(\boldsymbol{R})-4-(tert-butyldimethylsilyloxy)-6-oxohexanoic acid (71b). ${ }^{146}$ Silyl enol ether $\mathbf{1 1 3}$ was prepared according to known literature procedure via asymmetric deprotonation in the presence of $(-)$-bis[(S)-1-phenylethyl]amine. ${ }^{112}$ Enantiomeric excess $=87 \%$ was determined by oxidation of silyl enol ether to enone 114 (vida infra), and the absolute stereochemistry was determined by comparison of optical rotations for enone $114=[\alpha]^{18}{ }_{D}$ $+87.4\left(c=1.19, \mathrm{CHCl}_{3}\right)$, literature value $[\alpha]_{\mathrm{D}}+103.8\left(c=0.04, \mathrm{CHCl}_{3}\right)^{203}$ and ultimately confirmed by X-ray analysis of syn- β-lactone 73b. A solution of silyl enol ether $\mathbf{1 1 3}$ $(3.09 \mathrm{~g}, 10.3 \mathrm{mmol})$, ,, 6 -lutidine $(1.19 \mathrm{~mL}, 10.3 \mathrm{mmol})$, and Sudan Red 7B $(<1.0 \mathrm{mg})$ in a mixture of methanol $(79 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(79 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. Ozone was bubbled through the pink solution via a gas sparging tube until solution until the pink color dissipated. This was followed with bubbling of nitrogen (twice the time required for pink color to dissipate). Dimethyl sulfide ($3.79 \mathrm{~mL}, 51.4 \mathrm{mmol}$) was added and the solution was allowed to warm slowly to room temperature over $\sim 10 \mathrm{~h}$. After 3 h of additional stirring at room temperature, the solution was concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (3:7 to 1:1) to afford aldehyde acid $\mathbf{7 1 b}$ ($1.75 \mathrm{~g}, 65 \%$) as a colorless oil. Store frozen in benzene if not used immediately. $\mathrm{R}_{f} 0.39$ (2:3 EtOAc:hexanes); $[\alpha]^{21}{ }_{\mathrm{D}}$ $+1.3\left(c=1.56, \mathrm{CHCl}_{3}\right)$; IR (thin film) $\boldsymbol{v}_{\max } 3044,2730,1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 9.79(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{ddd}, J=2.0,5.5,8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.4,179.3,66.7,50.6,32.1,29.4,25.7$ (3), 17.9, -4.68, -4.72;
HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}-\mathrm{H}] 259.1366$, found 259.1364 .

Representative Procedure for Nucleophile Catalyzed Aldol Lactonization (NCAL) with achiral nucleophile as described for Carbocycle 73b. Aldehyde acid 71b was azeotroped with xylenes in a separate vial prior to use. To a round bottom flask at room temperature containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added pyridinium salt $72(369 \mathrm{mg}, 1.05$ $\mathrm{mmol})$ and triethylamine $(0.20 \mathrm{~mL}, 1.41 \mathrm{mmol})$. A solution of aldehyde acid $\mathbf{7 1 b}(91.5$ $\mathrm{mg}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added over 1 h via syringe pump. The yellow solution turned dark-red and was stirred for 23 h . The dark red solution was concentrated by rotary evaporation and then portioned between $\mathrm{EtOAc}(15 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(15 \mathrm{~mL})$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The crude dark brown residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to 3:7) to afford anti/syn carbocycle-fused β-lactones 73b ($49.4 \mathrm{mg}, 58 \%$, dr $2: 1$) as a pale yellow oil.

Representative Procedure for Nucleophile Catalyzed Aldol Lactonization (NCAL) with asymmetric nucleophile as described for Carbocycle 73b. Aldehyde acid 71b was azeotroped with xylenes in a separate vial prior to use. To a vial at room temperature containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ was added pyridinium salt $72(397 \mathrm{mg}, 1.13 \mathrm{mmol})$, asymmetric nucleophile O-TMSQD ($14.9 \mathrm{mg}, 0.04 \mathrm{mmol}$) and $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.25 \mathrm{~mL}, 1.51$ mmol). The mixture was biphasic, and then a solution of aldehyde acid 71b (97.2 mg , $0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added over 1 h via syringe pump. The yellow-green solution turned dark-red and was stirred for 71 h . The dark brown-red solution was concentrated by rotary evaporation, and the crude dark brown residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to 1:4) to afford anti/syn carbocycle-fused β-lactones 73b ($66.3 \mathrm{mg}, 73 \%$, dr 1:7) as a pale yellow oil. (1R,3R,5S)-3-(tert-butyldimethylsilyloxy)-6-oxabicyclo[3.2.0]heptan-7-one (anti73b). $\mathrm{R}_{f} 0.61$ (3:7 EtOAc:hexanes); $[\alpha]_{\mathrm{D}}^{17}-6.6\left(c=1.51, \mathrm{CHCl}_{3}\right)$; IR (thin film) $\boldsymbol{v}_{\max }$ $1828 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.01(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94(\mathrm{dd}, J=4.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{ddd}, J=4.0,8.5,14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75(\mathrm{dt}, J=4.5,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,77.3,73.5,55.1,39.7,37.3,25.5$ (3), 17.7, $-5.0,-5.1$; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiLi}[\mathrm{M}+\mathrm{Li}]$ 249.1498, found 249.1502. (1S,3R,5R)-3-(tert-butyldimethylsilyloxy)-6-oxabicyclo[3.2.0]heptan-7-one (syn-73b). Relative and absolute stereochemistry confirmed by X-ray analysis. $\mathrm{R}_{f} 0.36$ (3:7 EtOAc:hexanes);
$[\alpha]^{17}{ }_{\mathrm{D}}+20.0\left(c=1.10, \mathrm{CHCl}_{3}\right)$; IR (thin film) $\boldsymbol{v}_{\max } 1833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.94(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=4.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dd, $J=6.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=6.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}$, 9H), $0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,75.7,70.9,53.3,39.4,34.6,25.7$ (3), 18.0, -4.91, -4.94; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiLi}$ [M+Li] 249.1498, found 249.1496.

Aldehyde acid 71b ($84.1 \mathrm{mg}, 0.32 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQN as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to $1: 4$) to provide anti-carbocycle-fused β-lactones 73b $(46.9 \mathrm{mg}$, $60 \%, \mathrm{dr}>19: 1)$ as a colorless oil.

Aldehyde acid 71b ($70.9 \mathrm{mg}, 0.27 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using (DHQD) $)_{2} \mathrm{PHAL}$ as the asymmetric nucleophile. The solution was then concentrated by
rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to $1: 4$) to provide anti/syn carbocycle-fused β-lactones 73b (39.0 $\mathrm{mg}, 59 \%$, dr 1:4) as a colorless oil.

Aldehyde acid 71b ($67.2 \mathrm{mg}, 0.26 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using $(\mathrm{DHQ})_{2} \mathrm{PHAL}$ as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to $1: 4$) to provide anti-carbocycle-fused β-lactone 73b (32.9 mg , $53 \%, \mathrm{dr}>19: 1$) as a colorless oil.

Aldehyde acid 71b ($52.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using $O-\mathrm{BzQD}$ as the asymmetric nucleophile. Reaction stopped after 53 h . The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to $1: 4$) to provide anti/syn carbocyclefused β-lactones 73b ($15.8 \mathrm{mg}, 33 \%$, dr 1:6) as a colorless oil.

Aldehyde acid 71b ($52.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using β-ICPD as the asymmetric nucleophile. Reaction stopped after 53 h . The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to $1: 4$) to provide anti/syn carbocyclefused β-lactones 73b ($12.0 \mathrm{mg}, 23 \%$, dr 16-19:1) as a colorless oil.

Aldehyde acid 71b ($97.4 \mathrm{mg}, 0.37 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using $(\pm)-\mathrm{HBTM}$ as the achiral nucleophile. The reaction was run for only 48 h . The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to 1:4) to provide anti/syn carbocycle-fused β-lactones 73b ($30.5 \mathrm{mg}, 34 \%$, dr $2: 1$) as a colorless oil.

(\boldsymbol{R})-methyl 3-(tert-butyldimethylsilyloxy)-7-methyloct-6-enoate (118). The enantiomeric excess ($>97 \%$ ee) and the absolute stereochemistry of alcohol $\mathbf{S 9}$ was
determined by comparison of optical rotations; alcohol $\mathbf{S 9}=[\alpha]^{18}{ }_{D}-16.8(c=1.29$, $\left.\mathrm{CHCl}_{3}\right)$, literature value $[\alpha]_{\mathrm{D}}-15.7\left(c=1.07, \mathrm{CHCl}_{3}\right) .{ }^{149}$ To a solution of alcohol $\mathbf{S} \boldsymbol{9}^{18,204}$ $(1.51 \mathrm{~g}, 8.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added imidazole $(2.21 \mathrm{~g}, 32.5 \mathrm{mmol})$ and tert-butyldimethylchlorosilane $(1.47 \mathrm{~g}, 9.76 \mathrm{mmol})$, respectively. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then quenched upon addition of brine $(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc (3 $\mathrm{x} 40 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated by rotary evaporation. The residue was then purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (0.5:9.5 to $1: 9$) to provide ester $118(1.86 \mathrm{~g}, 76 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.56(1: 9 \mathrm{EtOAc}:$ hexanes $) ;[\alpha]^{20}{ }_{\mathrm{D}}-1.95(c=$ $\left.2.05, \mathrm{CHCl}_{3}\right)$. IR (thin film) $v_{\max } 1743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.08(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{p}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{dd}, J=7.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ $(\mathrm{dd}, J=6.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{ddd}, J=$ $6.0,8.5,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,131.8,123.9,69.2,51.4,42.4,37.6,25.72$ (3), 25.66, 23.6, 17.9, 17.6, 4.6, -4.9; HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}] 300.2199$, found 300.2208 .

(R)-3-(tert-butyldimethylsilyloxy)-7-methyloct-6-enoic acid (S10). Ester 118 (1.80 g, $5.99 \mathrm{mmol})$ dissolved in $\mathrm{MeOH}(21 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and treated with 1 N NaOH $(12.0 \mathrm{~mL}, 11.97 \mathrm{mmol})$. After 20 mins , the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and then stirred for 6 h . The reaction mixture was further heated to $40^{\circ} \mathrm{C}$ for 12 h . The
reaction mixture was then cooled to room temperature, and the volatiles were removed under reduced pressure to give a residue that was dissolved in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The crude residue was washed with hexanes $(10 \mathrm{~mL})$, and the aqueous layer was acidified with 1% HCl solution. The aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$), and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation to afford a light yellow residue. The residue was then purified by flash column chromatography with a mixture of EtOAc:hexanes (1:4) to provide acid $\mathbf{S 1 0}(1.01 \mathrm{~g}$, $59 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.35(2: 3$ EtOAc:hexanes $) ;[\alpha]^{25}{ }_{\mathrm{D}}+2.4\left(c=0.01, \mathrm{CHCl}_{3}\right)$. IR (thin film) $\boldsymbol{v}_{\max } 3038,1717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.11(\mathrm{tq}, J=6.9,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.71$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{dq}, J=7.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{ddd}, J$ $=7.5,6.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.3,132.5,123.7,77.5,69.4,42.0,37.5,26.0$ (2), 25.9, 24.0, 18.2, 17.9, 4.29, -4.59; HRMS (MALDI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}$ [M+Na] 309.1856, found 309.1861.

(R)-3-(tert-Butyldimethylsilyloxy)-6-oxohexanoic acid (71a). A solution of alkene acid $\mathbf{S 1 0}(2.20 \mathrm{~g}, 7.68 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$. Then O_{3} was bubbled through solution via a gas sparging tube until solution turned blue ($\sim 15 \mathrm{~min}$). This was followed with bubbling of N_{2} (twice the time required for solution to turn blue). Reducing reagent, crushed triphenylphosphine ($4.03 \mathrm{~g}, 15.4 \mathrm{mmol}$), was added. The
solution was allowed to slowly warm to room temperature over $\sim 5 \mathrm{~h}$. After 7 h of additional stirring at room temperature, the solution was concentrated by rotary evaporation. The residue was then purified by medium pressure liquid chromatography (MPLC) with a gradient mixture of (EtOAc:hexanes (1:4 to 2:3) to afford aldehyde acid 71a (1.30 g, 76\%) as a colorless oil. $\mathrm{R}_{f} 0.25$ (2:3 EtOAc:hexanes); $[\alpha]_{\mathrm{D}}^{25}+21.9(c=$ $0.02, \mathrm{MeOH})$. IR (thin film) $\boldsymbol{v}_{\max } 3031,1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{t}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dt}, J=6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, J=6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=$ $11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (dddd, $J=14.5,12.5,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dt}, J=7.5,6.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{~h}), 0.54(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.1, 177.0, 68.2, 42.2, 39.5, 29.4, 26.0 (3), 18.2, -4.39, -4.57; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}-\mathrm{H}]$ 259.1366, found 259.1373.

(1R,2R,5R)-2-(tert-butyldimethylsilyloxy)-6-oxabicyclo[3.2.0]heptan-7-one (73a). To a solution of pyridinium salt $72(350 \mathrm{mg}, 1.00 \mathrm{mmol})$ and triethylamine $(281 \mu \mathrm{~L}, 2.00$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added a solution of aldehyde acid 71a ($130 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ over 1 h via syringe pump. The resulting light red solution was stirred for another 11 h , at which point the volatiles were removed under reduced pressure to give a dark red residue. The crude reaction mixture was then partitioned between ethyl acetate and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL each). The layers were separated, and organic layer was washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to afford a light red residue that was purified by flash chromatography with EtOAc:hexanes (1:9,
with 1% triethylamine) to afford anti-carbocycle-fused β-lactone 73a (101 mg, 84%, dr 1: >19) as a light yellow oil. $\mathrm{R}_{f} 0.57$ (1:4 EtOAc:hexanes); $[\alpha]^{25}{ }_{\mathrm{D}}+10.4(c=0.02$, CHCl_{3}). IR (thin film) $v_{\max } 1822 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13($ app $\mathrm{t}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=2.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.7, 78.9, 72.2, 65.8, 32.4, 28.3, 25.6 (3), 17.9, -4.85, -4.93; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiLi}[\mathrm{M}+\mathrm{Li}]$ 249.1498, found 249.1502 .

Aldehyde acid 71a ($63.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQD as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9, with 1% triethylamine) to provide anti-carbocycle-fused β-lactone 73a ($19.7 \mathrm{mg}, 33 \%, \mathrm{dr}>19: 1$) as a colorless oil.

Aldehyde acid 71a ($63.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using
O-TMSQN as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9, with 1% triethylamine) to provide anti-carbocycle-fused β-lactone 73a ($13.5 \mathrm{mg}, 23 \%, \mathrm{dr}>19: 1$) as a colorless oil.

Aldehyde acid 71a ($63.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQN as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9, with 1% triethylamine) to provide anti-carbocycle-fused β-lactone 73a (10.0 mg, 17\%, dr >19:1) as a colorless oil.

tert-butyldimethyl[(1R,2R)-2-methyl-4-(trimethylsilyloxy)cyclohex-3-enyloxy]silane (115). Enone 114 was prepared according to known literature procedure by oxidation of the corresponding silyl enol ether 113. ${ }^{147,148}$ Enantiomeric excess $=87 \%$ (chiral HPLC, Chiralcel OD, 99:1 hexanes: $i-\mathrm{PrOH}$ eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of $222 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=8.214 ; \mathrm{t}_{\mathrm{r}}($ major $\left.)=9.642.\right)$ Absolute stereochemistry determined by comparison of optical rotations; enone $\mathbf{1 1 4}=[\alpha]^{18}{ }_{\mathrm{D}}+87.4\left(c=1.19, \mathrm{CHCl}_{3}\right)$, literature
value $[\alpha]_{\mathrm{D}}+103.8\left(c=0.04, \mathrm{CHCl}_{3}\right){ }^{203} \mathrm{~A}$ mixture of $\mathrm{CuBr} \bullet \mathrm{DMS}(300 \mathrm{mg}, 1.46 \mathrm{mmol})$ and toluene (9.5 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. After 15 min . of stirring, methyl lithium (2.70 mL of 1.15 M in $\mathrm{Et}_{2} \mathrm{O}, 3.11 \mathrm{mmol}$) was added slowly. After 45 min ., the mixture was warmed to $-10^{\circ} \mathrm{C}(\sim 30 \mathrm{~min}$.). The colorless, homogenous solution was again cooled to $-78^{\circ} \mathrm{C}$. After subsequent addition of trimethylsilyl chloride ($0.25 \mathrm{~mL}, 1.94 \mathrm{mmol}$) and enone $114(220 \mathrm{mg}, 0.97 \mathrm{mmol})$ the solution turned yellow and was stirred for 5 h . Triethylamine ($0.47 \mathrm{~mL}, 3.40 \mathrm{mmol}$) was then added and the mixture was warmed to room temperature with 4 h of additional stirring over which time the solution became yellow and heterogenous. Additional triethylamine $(0.88 \mathrm{~mL}, 6.31 \mathrm{mmol})$ was added to reaction mixture. The mixture was filtered through a pad of silica gel (7 g) and celite with pentane $(200 \mathrm{~mL})$, which had been eluted with mixture of triethylamine $(0.88 \mathrm{~mL})$ and pentane (100 mL) prior to filtration. The solution was concentrated by rotary evaporation and further under high vacuum to afford the desired silyl enol ether 115 (280 $\mathrm{mg}, 92 \%$) as a colorless oil. $\mathrm{R}_{f} 0.84$ (1:9 EtOAc:hexanes); IR (thin film) $v_{\max } 1667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.62-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{ddd}, J=3.0,6.3,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (s, 9H), $0.18(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,108.5,73.8,37.8$, 30.5, 28.4, 25.8 (3), 20.0, 18.0, 0.24 (3), $-4.3,-4.7$; HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}_{2}$ [M-H] 313.2019, found 313.2016.

$(4 R, 5 S)$-4-(tert-butyldimethylsilyloxy)-5-methyl-6-oxohexanoic acid (71c). A solution of silyl enol ether 115 ($155 \mathrm{mg}, 0.48 \mathrm{mmol}$), 2,6-lutidine ($0.06 \mathrm{~mL}, 0.48 \mathrm{mmol}$), and Sudan red 7B ($<1.0 \mathrm{mg}$) in methanol (7 mL) was cooled to $-78{ }^{\circ} \mathrm{C} .{ }^{146}$ Ozone was bubbled through the pink solution via a gas sparging tube until solution until the pink color dissipated. This was followed with bubbling of nitrogen (twice the time required for pink color to dissipate). Dimethyl sulfide ($0.18 \mathrm{~mL}, 2.38 \mathrm{mmol}$) was added and the solution was allowed to warm slowly to room temperature over $\sim 5 \mathrm{~h}$. After 10 h of additional stirring at room temperature, the solution was concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to 3:7) to afford aldehyde acid 71c (86 mg, 64\%) as a colorless oil. Store frozen in benzene if not used immediately. $\mathrm{R}_{f} 0.52$ (2:3 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 3120,1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=4.2,5.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.32(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 204.7, 178.1, 71.1, 51.4, 29.9, 29.1, 25.7 (3), 17.9, 8.3, -4.50, -4.55; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}-\mathrm{H}]$ 273.1522, found 273.1520.

Aldehyde acid 71c ($44.7 \mathrm{mg}, 0.16 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with achiral nucleophile for carbocycles. The crude residue was concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (0.5:9.5 to $1: 4$) to provide anti/syn carbocycle-fused β-lactones 73c (18.6 mg, 45\%, dr 2:1) as a colorless oil.

Aldehyde acid 71c ($26.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQD as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (0.5:9.5 to $1: 4$) to provide anti/syn carbocycle-fused β-lactones 73c (8.1 $\mathrm{mg}, \mathbf{3 2 \%}$, dr 1:3) as a pale yellow oil. ($\mathbf{1 R , 3 R , 4 R , 5 S) - 3 - (t e r t - b u t y l d i m e t h y l s i l y l o x y) - 4 - ~}$ methyl-6-oxabicyclo[3.2.0]heptan-7-one (anti-73c). $\mathrm{R}_{f} 0.68$ (1:4 EtOAc:hexanes); $[\alpha]^{18}{ }_{\mathrm{D}}-66.7\left(c=0.03, \mathrm{CHCl}_{3}\right) ;$ IR (thin film) $v_{\max } 1831 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, benzene $\left.-d_{6}\right) \delta 3.88(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=6.5,9.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=$ $4.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=6.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.08(\mathrm{~m}, 1 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}) ;-0.10(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}(75 \mathrm{MHz}$, benzene-
$\left.d_{6}\right) \delta 165.5,77.6,76.1,52.2,45.1,34.4,26.0$ (4), 11.1, -4.5, -4.8; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si} \quad[\mathrm{M}+\mathrm{H}] \quad 257.1573$, found 257.1558 . (1S,3R,4R,5R)-3-(tert-butyldimethylsilyloxy)-4-methyl-6-oxabicyclo[3.2.0]heptan-7-one (syn-73c). $\mathrm{R}_{f} 0.55$ (1:4 EtOAc:hexanes); $[\alpha]^{18}{ }_{\mathrm{D}}-3.9\left(c=0.67, \mathrm{CHCl}_{3}\right)$; IR (thin film) $\boldsymbol{v}_{\max } 1830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , benzene $-d_{6}$) $\delta 3.85(\mathrm{dd}, J=1.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.17(\mathrm{dd}, J=4.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24$ (ddd, $J=4.5,8.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}\right.$, benzene- $\left.d_{6}\right) \delta 170.7,80.9,80.2,55.1,45.4,35.2,25.9$ (3), 18.3, 14.3, -4.66, -4.71; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiLi}$ [M+Li] 263.1655, found 263.1652 .

Aldehyde acid 71c ($28.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQN as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (0.5:9.5 to 1:4) to provide anti-carbocycle-fused β-lactone $\mathbf{7 3 c}(14.8 \mathrm{mg}$, $55 \%, \mathrm{dr}>19: 1$) as a colorless oil.

(S)-5-(but-3-enyl)-2,2,3,3,10,10,11,11-octamethyl-4,9-dioxa-3,10-disiladodecane

(110b). Epoxide (R)-109 was prepared according to the known literature procedure, and the spectroscopic data matched that found in the literature. ${ }^{13,205,206}$ The enantiomeric excess $=98 \%$ (determined by exchange of the TBS to the TBDPS protecting group that was then analyzed with chiral HPLC, Chiralcel OD, 99.7:0.3 hexanes:i-PrOH eluent, 1.00 $\mathrm{mL} / \mathrm{min}$ flow rate and a lamp setting of 230 nm$) \mathrm{t}_{\mathrm{r}}($ minor $)=10.931 ; \mathrm{t}_{\mathrm{r}}($ major $\left.)=11.999\right)$, and the absolute stereochemistry were determined by comparison of optical rotations; epoxide $(R) \mathbf{- 1 0 9}=[\alpha]^{20}{ }_{\mathrm{D}}+5.8\left(c=2.06, \mathrm{CHCl}_{3}\right)$, literature value $[\alpha]_{\mathrm{D}}+5.1(c=1.28$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{207}$ A flask containing copper iodide ($\left.1.06 \mathrm{~g}, 5.57 \mathrm{mmol}\right)$, and $\mathrm{Et}_{2} \mathrm{O}(210 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} .{ }^{135}$ Vinylmagnesium bromide $(25.1 \mathrm{~mL}$ of 2.0 M solution in THF, 50.2 mmol) was then added. After 0.5 h , the mixture was warmed at room temperature until it turned black. The mixture was directly cooled again to $-78{ }^{\circ} \mathrm{C}$, and a solution of epoxide $(R)-\mathbf{1 0 9}(6.03 \mathrm{~g}, 27.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(69 \mathrm{~mL})$ was added. The mixture was slowly warmed to room temperature over $\sim 5 \mathrm{~h}$. The reaction was quenched after an additional 3 h of stirring upon addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(180 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 80 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by rotary evaporation. The desired product, crude alcohol S11, was obtained as a colorless oil.
t-Butylchlorodimethylsilane ($5.05 \mathrm{~g}, 33.4 \mathrm{mmol}$), imidazole ($7.60 \mathrm{~g}, 111.4 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$ were added to a flask containing crude alcohol $\mathbf{S 1 1}(7.20 \mathrm{~g}, 27.9 \mathrm{mmol})$.

The solution was stirred at room temperature for 48 h . The reaction was then quenched upon addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The organic layer was washed with water (15 $\mathrm{mL})$ and brine $(15 \mathrm{~mL})$, respectively. The organics were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation and purified by flash column chromatography eluting with a mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (0.5:9.5) to provide the bisprotected product $\mathbf{1 1 0 b}$ (8.82 $\mathrm{g}, 85 \%, 2$ steps $)$ as a colorless oil. $\mathrm{R}_{f} 0.79$ (1:9 EtOAc:hexanes); $[\alpha]^{18}{ }_{\mathrm{D}}-4.6(c=0.59$, CHCl_{3}); IR (thin film) $\boldsymbol{v}_{\max } 1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.16$ (dddd, $J=6.9$, $6.9,10.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{p}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.49-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.38(\mathrm{~s}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ (75 MHz, CDCl_{3}) $\delta 138.9,114.2,71.6,63.4,36.2,33.2,29.6,28.5,26.0(3), 25.9$ (3), 18.3, 18.1, -4.4, -4.5, -5.3 (2); HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Li}]$ 379.3040, found 379.3048.

(S)-4-(tert-butyldimethylsilyloxy)oct-7-en-1-ol (111b). To a flask containing bisprotected ether $\mathbf{1 1 0 b}(8.82 \mathrm{~g}, 23.7 \mathrm{mmol})$ was added pyridinium para-toluenesulfonate ($10.41 \mathrm{~g}, 41.4 \mathrm{mmol}$) and ethanol (390 mL). The solution was stirred at room temperature for 4 h and then quenched upon addition of brine (200 mL) and saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted (4 x 60 mL) with EtOAc. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:4 to $3: 7$) to afford alcohol $\mathbf{1 1 1 b}(2.96 \mathrm{~g}, 47 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.58$ (3:7

EtOAc:hexanes); $[\alpha]{ }^{17}{ }_{\mathrm{D}}-10.0\left(c=0.60, \mathrm{CHCl}_{3}\right)$; IR (thin film) $\boldsymbol{v}_{\max } 3331,1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.81$ (dddd, $\left.J=6.6,6.6,10.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.06-4.91(\mathrm{~m}$, $2 \mathrm{H}), 3.75(\mathrm{p}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{bs}, 1 \mathrm{H}), 1.69-$ $1.48(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.7,114.4,71.5,63.2$, 35.7, 33.3, 29.7, 28.1, 25.9 (3), 18.1, $-4.46,-4.51$; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiLi}$ [M+Li] 265.2175, found 265.2179.

(S)-4-(tert-butyldimethylsilyloxy)oct-7-enoic acid (S12). A mixture of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy free radical) ($537 \mathrm{mg}, 3.44 \mathrm{mmol}$), $\mathrm{NaClO}_{2}(8.29 \mathrm{~g}$, 91.6 mmol), and $\mathrm{NaClO}(29 \mathrm{~mL}, 5 \%$ in water) was added to a solution of alcohol 111b ($2.96 \mathrm{~g}, 11.5 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{3} \mathrm{CN}(319 \mathrm{~mL})$ and pH 7 buffer $(229 \mathrm{~mL}) .{ }^{145}$ The solution turned dark purple and was stirred at $55^{\circ} \mathrm{C}$ for 12 h over which time the color faded to yellow. The solution was cooled to room temperature. The reaction was quenched upon addition of brine (400 mL) and then extracted ($4 \times 100 \mathrm{~mL}$) with $\mathrm{Et}_{2} \mathrm{O}$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:4 to 3:7) to afford alkene acid $\mathbf{S 1 2}(2.16 \mathrm{~g}, 69 \%)$ as a colorless oil. R_{f} 0.24 (1:4 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 1712,1415 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.26(\mathrm{bs}, 1 \mathrm{H}), 5.89-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{p}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.09$ $(\mathrm{s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,138.4,114.4,70.4,35.9,31.2,29.7$,
29.3, 25.7 (3), 17.9, -4.6, -4.7; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}-\mathrm{H}]$ 271.1729, found 271.1727 .

Representative Procedure for Ozonolysis of Alkene Acids as described for Aldehyde

Acid 71d. A solution of alkene acid $\mathbf{S 1 2}(502 \mathrm{mg}, 1.84 \mathrm{mmol})$ in dichloromethane (10 mL) was cooled to $-78^{\circ} \mathrm{C}$. Then O_{3} was bubbled through solution via a gas sparging tube until solution turned blue. This was followed with bubbling of O_{2} (twice the time required for solution to turn blue). Reducing reagent, crushed triphenylphosphine (580 $\mathrm{mg}, 2.21 \mathrm{mmol}$), was added. The solution was allowed to slowly warm to room temperature over $\sim 5 \mathrm{~h}$. After 7 h of additional stirring at room temperature, the solution was concentrated by rotary evaporation. The residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to 4:6) to afford aldehyde acid 71d ($445 \mathrm{mg}, 88 \%$) as a colorless oil. Store frozen in benzene if not used immediately. (S)-4-(tert-butyldimethylsilyloxy)-7-oxoheptanoic acid (71d). $\mathrm{R}_{f} 0.39$ (4:6 EtOAc:hexanes); IR (thin film) $v_{\max } 3040,2858,1711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.79(\mathrm{t}, J=1.5 \mathrm{~Hz}, 0.1 \mathrm{H}), 3.80(\mathrm{p}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42($ app $\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-1.68(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.3,180.1,69.7,39.4,31.2,29.6,28.6,25.6$ (3), 17.9, -4.7 (2); HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}-\mathrm{H}]$ 273.1522, found 273.1519.

Aldehyde acid 71d ($109 \mathrm{mg}, 0.40 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with achiral nucleophile for carbocycles. The crude residue was concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to $1: 4$) to provide anti/syn carbocycle-fused β-lactones $73 \mathbf{d}(38.4 \mathrm{mg}, 38 \%$, dr $2: 1)$ as a colorless oil.

Aldehyde acid 71d ($104 \mathrm{mg}, 0.40 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQD as the asymmetric nucleophile. The crude residue was filtered though a short pad of silica gel eluting with $\mathrm{Et}_{2} \mathrm{O}$. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to $1: 4$) to provide syn-carbocycle-fused β-lactone 73d (29.9 mg , 31%, $\mathrm{dr} 1:>19$) as a colorless oil. (1S,3S,6R)-3-(tert-butyldimethylsilyloxy)-7-oxabicyclo[4.2.0]octan-8-one (syn-73d). $\mathrm{R}_{f} 0.43$ (1:4 EtOAc:hexanes); $[\alpha]{ }^{17}{ }_{\mathrm{D}}-1.7(c=$ $1.20, \mathrm{CHCl}_{3}$); IR (thin film) $v_{\max } 1824 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.71$ (ddd, $J=$ $3.3,6.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=2.7,6.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (dddd, $J=3.3,5.7,9.6,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.51(\mathrm{~m}, 1 \mathrm{H})$,
$0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,68.9,65.5,45.3$, 29.9, 27.9, 25.6 (3), 23.8, 17.9, -5.0 (2); HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiLi}[\mathrm{M}+\mathrm{Li}]$ 263.1655, found 263.1657.

Aldehyde acid 71d ($123 \mathrm{mg}, 0.45 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQN as the asymmetric nucleophile. The crude residue was filtered though a short pad of silica gel eluting with $\mathrm{Et}_{2} \mathrm{O}$. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:9 to 4:6) to provide anti-carbocycle-fused β-lactone 73d (11.0 mg , $10 \%, \mathrm{dr}>19: 1$) as a colorless oil. (1R,3S,6S)-3-(tert-butyldimethylsilyloxy)-7-oxabicyclo[4.2.0]octan-8-one (anti-73d). $\mathrm{R}_{f} 0.59$ (1:4 EtOAc:hexanes); $[\alpha]_{\mathrm{D}}^{17}-10.3(c=$ $0.39, \mathrm{CHCl}_{3}$); IR (thin film) $v_{\max } 1824 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.76(\mathrm{ddd}, J=$ $2.4,4.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{p}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.07(\mathrm{~m}, 2 \mathrm{H})$, 2.04-1.94(m, 1H), 1.88-1.73(m, 3H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.8, 70.1, 63.9, 45.4, 29.3, 26.5, 25.7 (3), 22.1, 18.0, -4.9 (2); HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiLi}[\mathrm{M}+\mathrm{Li}]$ 263.1655, found 263.1652.

5-(tert-butyldiphenylsilyloxy)-6-oxohexanoic acid (71h). Alkene acid $\mathbf{1 2 6}^{208}$ (477 mg , 1.25 mmol) was ozonolyzed according to the representative procedure for ozonolysis of alkene acids. Dimethyl sulfide ($0.92 \mathrm{~mL}, 12.5 \mathrm{mmol}$) was used as the quenching reagent. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (2:3 to 3:2) to afford aldehyde acid 71h ($399 \mathrm{mg}, 83 \%$) as a colorless oil. $\mathrm{R}_{f} 0.52$ (2:3 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 3429,1733,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , benzene- d_{6}) $\delta 9.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 6 \mathrm{H})$, $3.91(\mathrm{dt}, J=1.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}(75$ MHz , benzene- d_{6}) $\delta 201.9,179.9,136.4$ (2), 136.3 (2), 133.7, 133.6, 130.5 (2), 128.4 (4), 78.1, 33.7, 32.1, 27.3 (3), 27.2, 19.7; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}$ [M-H] 383.1679, found 383.1665 .

71h

anti-73h
syn-73h

Aldehyde acid 71h ($81.9 \mathrm{mg}, 0.21 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with achiral nucleophile for carbocycles. The reaction mixture was concentrated by rotary evaporation and purified by flash column chromatography with EtOAc:hexanes (1:9) to provide anti-carbocycle-fused β-lactone 73h (40.4 mg, 52%, dr $>19: 1$) as a colorless oil. Chiral HPLC analysis method: β -
lactone 73h: (Chiralcel OD, 95.5:0.5 hexanes: i-PrOH eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of 210 nm) $\mathrm{t}_{\mathrm{r}}[$ syn-73h$]=3.581 ; \mathrm{t}_{\mathrm{r}}[$ syn-73h $]=5.317 ; \mathrm{t}_{\mathrm{r}}[$ anti-73h $]=9.260$; and $\mathrm{t}_{\mathrm{r}}[$ anti-73h $]=10.283$.

71h

anti-73h

syn-73h

Aldehyde acid 71h ($51.6 \mathrm{mg}, 0.13 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQD as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a mixture of EtOAc:hexanes (0.5:9.5) to provide anti/syn carbocycle-fused β-lactones 73h (34.6 mg , 70%, dr 5:1) as a colorless oil. (1S,4S,5S)-4-(tert-butyldiphenylsilyloxy)-6-oxabicyclo[3.2.0]heptan-7-one (anti-73h). $\mathrm{R}_{f} 0.57$ (1:9 EtOAc:hexanes); IR (thin film) $v_{\max } 1835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 5 \mathrm{H}), 4.61$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=3.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.03(\mathrm{~m}$, $2 \mathrm{H}), 1.92(\mathrm{dd}, J=6.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dddd}, J=3.6,7.2,13.8,20.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,135.6$ (2), 135.5 (2), 133.2, 133.1, 130.1, 130.0, 127.9 (2), 127.8 (2), 78.6, 73.8, 55.5, 31.4, 26.8 (3), 24.2, 19.1; HRMS (MALDI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si} \quad[\mathrm{M}+\mathrm{H}] \quad 367.1724$, found 367.1713. (1R,4S,5R)-4-(tert-butyldiphenylsilyloxy)-6-oxabicyclo[3.2.0]heptan-7-one (syn-73h). $\quad \mathrm{R}_{f} 0.34$ (1:9 EtOAc:hexanes); $[\alpha]^{19}{ }_{\mathrm{D}}-78.0\left(c=0.13, \mathrm{CHCl}_{3}\right)$; IR (thin film) $\nu_{\text {max }} 1830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.74-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.38(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$
(ddd, $J=4.0,7.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=4.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.50-$ $1.36(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,135.7$ (2), 135.6 (2), 133.4, $133.3,130.0,129.9,127.81$ (2), 127.78 (2), 75.3, 74.3, 53.4, 28.7, 26.7 (3), 21.1, 19.1; HRMS (MALDI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$ 367.1724, found 367.1739.

Aldehyde acid 71h ($64.9 \mathrm{mg}, 0.17 \mathrm{mmol}$) underwent cyclization according to the representative procedure for NCAL with asymmetric nucleophile for carbocycles using O-TMSQN as the asymmetric nucleophile. The solution was then concentrated by rotary evaporation and purified by flash column chromatography with a mixture of EtOAc:hexanes (0.5:9.5) to provide anti/syn carbocycle-fused β-lactones 73 h (49.4 mg , 80%, $\operatorname{dr} 6: 1$) as a colorless oil.

2-(benzyloxy)-2-oxoethyl 3-oxobutanoate (129a). A solution of dioxinone $\mathbf{1 3 0}$ (2.57 g , $18.1 \mathrm{mmol})$ and alcohol $\mathbf{1 3 1}(3.00 \mathrm{~g}, 18.1 \mathrm{mmol})$ in xylenes $(10.6 \mathrm{~mL})$ was heated in a previously heated oil bath at $150{ }^{\circ} \mathrm{C}$ while stirring vigorously. ${ }^{164}$ Evolution of acetone became apparent within several minutes. After 4 h , the mixture was cooled to room temperature and the solvent was removed in vacuo. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:4 to 2:3) to
give β-keto ester 129a ($3.85 \mathrm{~g}, 85 \%$, keto:enol 7:1) as a colorless oil. (major) $\mathrm{R}_{f} 0.30$ (3:7 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 1752,1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.39-7.28 (m, 5H), $5.17(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.7, 167.0, 166.3, 134.7, 128.45 (2), 128.40, 128.2 (2), 67.0, 61.0, 49.3, 29.8; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Li}$ [M+Li] 257.1001, found 257.1008.

2-(3-oxobutanoyloxy)acetic acid (132a). To a solution of β-keto ester 129a (1.00 g, $4.00 \mathrm{mmol})$ in methanol (27 mL) was added 10% palladium on carbon (wet) $(0.500 \mathrm{~g}$, $0.467 \mathrm{mmol})$. Hydrogen was bubbled through the solution for 1 min ., and then a balloon of hydrogen was affixed. The mixture stirred at room temperature under hydrogen for 48 h. The black mixture was then filtered through a pad of silica gel and celite eluting with acetone. The solution was concentrated by rotary evaporation to afford keto acid 132a $\left(0.586 \mathrm{~g}, 91 \%\right.$, keto:enol 7:1) as a colorless oil. (major) $\mathrm{R}_{f} 0.40$ (1:1 acetone: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film) $v_{\max } 3208,1744,1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.57$ (s, 2H), $2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 201.0, 171.6, 166.5, 60.8, 49.3, 30.0; HRMS (ESI) Calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{5} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]$ 167.0539, found 167.0528.

2-(benzyloxy)-2-oxoethyl 2-benzyl-3-oxobutanoate (129b). A solution of dioxinone
$134(2.04 \mathrm{~g}, 8.61 \mathrm{mmol})$ and alcohol $131(1.43 \mathrm{~g}, 8.61 \mathrm{mmol})$ in xylenes (9.0 mL) was
heated in a previously heated oil bath at $150{ }^{\circ} \mathrm{C}$ while stirring vigorously. ${ }^{164}$ Evolution of acetone became apparent within several minutes. After 10 h , the mixture was cooled to room temperature and the solvent was removed in vacuo. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1:4 to 3:7) to give β-keto ester $\mathbf{1 2 9 b}(1.17 \mathrm{~g}, 39 \%)$ as a pale yellow oil. $\mathrm{R}_{f} 0.27$ (1:4 EtOAc:hexanes); IR (thin film) $v_{\max } 1750,1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.14 (m, 10H), $5.18(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $201.7,168.5,167.1,137.9,134.8,128.8$ (2), 128.68 (2), 128.65 (2), 128.51 (2), 128.50, 126.8, 67.3, 61.2, 60.7, 33.9, 29.7; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]$ 347.1471, found 347.1459.

2-(2-benzyl-3-oxobutanoyloxy)acetic acid (132b). To a solution of β-keto ester 129b $(1.17 \mathrm{~g}, 3.45 \mathrm{mmol})$ in EtOAc (68 mL) was added 10% palladium on carbon (wet) (0.440 $\mathrm{g}, 0.414 \mathrm{mmol}$). Hydrogen was bubbled through the solution for 1 min. , and then a balloon of hydrogen was affixed. The mixture stirred at room temperature under hydrogen for 12 h . The black mixture was then filtered through a pad of silica gel and celite eluting with acetone. The solution was concentrated by rotary evaporation to afford keto acid $\mathbf{1 3 2 b}(0.803 \mathrm{~g}, 93 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.24$ (1:2 EtOAc:hexanes); IR (thin film) $v_{\max } 3178,1749,1718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.17(\mathrm{~m}, 5 \mathrm{H})$, $4.71(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.17$
(m, 2H), $2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 202.1,172.3,168.5,137.6,128.7$ (2), 128.6 (2), 126.8, 60.7, 33.8, 30.9, 29.7; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$ 251.0919, found 251.0910.

2-benzyl 1,1-dimethyl ethane-1,1,2-tricarboxylate (136). A solution of dimethyl malonate ($5.00 \mathrm{~g}, 31.2 \mathrm{mmol}$) in THF (47 mL) was stirred at $0^{\circ} \mathrm{C} .60 \%$ sodium hydride $(1.34 \mathrm{~g}, 34.3 \mathrm{mmol})$ was added in three portions, and the resulting mixture was stirred for 1 h . A solution of benzyl 2-bromoacetate ($7.87 \mathrm{~g}, 34.3 \mathrm{mmol}$) in THF (46 mL) was added over $\sim 5 \mathrm{~min}$. The reaction continued to stir while slowly warming to room temperature overnight (stirring for a total of 18 h). The reaction was quenched upon addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (3 x $30 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (1.5:8.5 to 3:7) to give triester 136 ($8.11 \mathrm{~g}, 93 \%$) as a colorless oil. $\mathrm{R}_{f} 0.44$ (3:7 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 1737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$, $3.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,168.6$ (2), 135.4, 128.5 (2), 128.3, 128.2 (2), 66.8, 52.8 (2), 47.3, 33.1; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]$ 281.1025, found 281.1023.

CHAPTER V - NUCLEOPHILE CATALYZED, ALDOL-LACTONIZATION (NCAL) FOR BRIDGED BICYCLIC β-LACTONES

4-(3-oxocyclohexyl)butanoic acid (147a). To a flask containing alkene 150 a (0.602 g , $3.60 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$ was added deionized water (115 mL), potassium permanganate $(0.103 \mathrm{~g}, 0.650 \mathrm{mmol})$, and sodium periodate $(4.64 \mathrm{~g}, 21.7 \mathrm{mmol})$, respectively. The biphasic purple mixture was stirred 20 h at $23{ }^{\circ} \mathrm{C}$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{x} 100$ $\mathrm{mL})$. The organic layers were combined, filtered $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by acid/base extraction by partitioning between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was washed subsequently with hexanes (20 mL), and then acidified with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to pH 3 . The aqueous mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$ followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic layers obtained after acidification were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation to afford keto acid 147a $(0.356 \mathrm{~g}, 53 \%)$ as a colorless oil. IR (thin film) $v_{\max } 3451,1708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.50-10.90(\mathrm{bs}, 1 \mathrm{H}), 1.00-2.50(\mathrm{~m}, 17 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 212.3,178.7,47.6,41.0,38.5,35.5,33.6,30.7,24.8,21.5$; LRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]$ 183, found 183.

4-(tert-butyldimethylsilyloxy)-3-(pent-4-enyl)cyclohexanone (150c). A solution of 5-bromo-1-pentene ($2.53 \mathrm{~mL}, 21.3 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(42 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and stirred 10 min . to which a solution of $t-\mathrm{BuLi}(17.0 \mathrm{~mL}, 25.6 \mathrm{mmol}$ of 1.5 M solution) was added. The mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$, and then the colorless solution was cannula transferred to a flask containing $\mathrm{CuBr} \cdot$ dimethyl sulfide $(2.09 \mathrm{~g}, 10.2 \mathrm{mmol})$ and degassed toluene (86 mL). After 20 min ., the mixture was warmed until it turned black ($\sim 20 \mathrm{~min}$.). The mixture was again cooled to $-78^{\circ} \mathrm{C}$, and enone $149 \mathrm{c}(2.12 \mathrm{~g}, 9.28 \mathrm{mmol})$ was added as a solution toluene (4 mL). The mixture was warmed to $-42^{\circ} \mathrm{C}$ and stirred 4 h . The reaction was quenched upon addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and then allowed to warm to room temperature while stirring vigorously. The mixture turned blue. The aqueous mixture was partitioned between saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL). The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x $100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (1:9) to give alkene $\mathbf{1 5 0 c}(2.08 \mathrm{~g}, 75 \%)$ as a colorless oil. R_{f} 0.33 (1:9 $\mathrm{Et}_{2} \mathrm{O}$:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 1717,1253,1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.71(\mathrm{ddt}, J=6.5,10.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{td}, J=3.05 .5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=1.5,5.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H})$, 2.05-1.86 (m, 5H), 1.82-1.73 (m, 1H), 1.46-1.32 (m, 2H), 1.31-1.21 (m, 1H), 1.13-1.03 $(\mathrm{m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 211.2, 138.1, 114.6, 70.2,
44.4, 42.1, 37.1, 33.6, 31.7, 31.1, 25.9, 25.6 (3), 17.8, -4.7, -5.0; HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiLi}[\mathrm{M}+\mathrm{Li}]$ 297.2250, found 297.2252.

4-(2-(tert-butyldimethylsilyloxy)-5-oxocyclohexyl)butanoic acid (147c). To a flask containing alkene $150 \mathrm{c}(0.922 \mathrm{~g}, 3.11 \mathrm{mmol})$ at $23{ }^{\circ} \mathrm{C}$ was added deionized water (75 $\mathrm{mL})$, potassium permanganate $(0.079 \mathrm{~g}, 0.50 \mathrm{mmol})$, and sodium periodate $(3.99 \mathrm{~g}, 18.67$ mmol), respectively. The biphasic purple mixture was stirred 12 h at $23^{\circ} \mathrm{C}$, and then acetone (30 mL) was added to aid with solubility and the mixture was stirred an additional 15 h . The aqueous mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(7 \times 80 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (3:7 to 1:0) to afford keto acid $\mathbf{1 4 7 c}(0.648 \mathrm{~g}, 66 \%)$ as a colorless oil. R_{f} 0.60 (1:1 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 3081,1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.79(\mathrm{td}, J=3.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{ddd}, J=1.5,5.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.53$ $(\mathrm{m}, 1 \mathrm{H}), 2.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.10(\mathrm{~m}$, $4 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.4,178.1,69.9,44.1,41.7$, $36.8,33.5,31.4,30.9,25.7$ (3), 21.5, 17.6, -4.9, -5.3; HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si}$ [M-H] 313.1835, found 313.1840.

4-(2-(tert-butyldimethylsilyloxy)-5-oxocyclohexyl)butanoyl chloride (151). A solution of keto acid $\mathbf{1 4 7} \mathbf{c}(215 \mathrm{mg}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was stirred at $23{ }^{\circ} \mathrm{C}$. Oxalyl chloride ($130 \mathrm{mg}, 1.03 \mathrm{mmol}$) was added to the colorless solution. Bubbling of solution became apparent. After 4.3 h bubbling ceased, and the solution turned pale yellow. The solution was concentrated in vacuo to give acid chloride 151 ($146 \mathrm{mg}, 64 \%$) as a colorless oil. The crude residue was used immediately in further reactions without purification. Reaction monitored by ${ }^{1} \mathrm{H}$ NMR. IR (thin film) $\boldsymbol{v}_{\max } 1799,1718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.79(\mathrm{td}, J=3.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74$ (ddd, $J=1.5,5.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dddd}, J=1.5,5.4,7.2,14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13-1.45(\mathrm{~m}, 8 \mathrm{H}), 1.27-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 211.4,168.9,70.2,44.5,42.1,37.3,35.1,31.7,31.5,31.2,25.7$ (3), 21.4, -4.6, 4.9.

4-((1R,2R)-2-(tert-butyldimethylsilyloxy)-5-oxocyclohexyl)butanoic anhydride (155).
To a solution of triethylamine ($20.0 \mathrm{mg}, 0.210 \mathrm{mmol}$) and toluene $(2.0 \mathrm{~mL})$ was added acid chloride $151(50.0 \mathrm{mg}, 0.150 \mathrm{mmol})$ as a solution in toluene $(1 \mathrm{~mL})$ over 8 h via syringe pump. The mixture was stirred and additional solvent was added (toluene $=1.0$
mL ; acetonitrile $=1.0 \mathrm{~mL}$). The solution stirred for 99 h . The residue was filtered through a glass fritted funnel and washed with anhydrous toluene. The solution was concentrated by rotary evaporation, filtered through a plug of silica gel eluting with EtOAc:hexanes (1:9 to 3:7) to provide anhydride 155 ($22.3 \mathrm{mg}, 49 \%$) as a colorless oil. $\mathrm{R}_{f} 0.26$ (1:0 EtOAc:hexanes); IR (thin film) $\boldsymbol{v}_{\max } 1817,1735,1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79(\mathrm{td}, J=3.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-1.10(\mathrm{~m}, 44 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.7$ (2), 179.1 (2), 70.2 (2), 44.5 (2), 42.2 (2), 37.3 (2), 33.9 (2), 31.7 (2), 31.2 (2), 25.7 (6), 21.9 (2), 18.0 (2), -4.6 (2), -4.9 (2); LRMS (ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}] 611$, found 611.

Methyl 2-(2-(2-(oxiran-2-yl)ethyl)-1,3-dioxolan-2-yl)acetate (162). A mixture of 70$75 \% \mathrm{wt} . m$-CPBA $(6.90 \mathrm{~g}, 28.0 \mathrm{mmol})$ and alkene $161(4.67 \mathrm{~g}, 23.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28$ mL) was stirred at $23{ }^{\circ} \mathrm{C}$ for 5 h . The white mixture was then cooled to $-25^{\circ} \mathrm{C}$ and filtered and eluted with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to remove the excess 3-chlorobenzoic acid byproduct. The solution was concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (3:7 to $1: 1$) to afford epoxide $162(4.31 \mathrm{~g}, 86 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.39$ (2:3 EtOAc:hexanes); IR (thin film) $v_{\max } 1737,1625,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 4.06-3.94(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=4.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ $(\mathrm{s}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J=2.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,108.5,64.9$ (2), 51.7, 51.5, 46.9, 42.2, 33.3, 26.3; HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$ 217.1076, found 217.1082.

2-(2-(2-(oxiran-2-yl)ethyl)-1,3-dioxolan-2-yl)acetic acid (159a). A mixture of epoxide $162(1.22 \mathrm{~g}, 5.55 \mathrm{mmol})$ in water $(3.1 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 10 min . Then aqueous $\mathrm{NaOH}(3.10 \mathrm{~mL}, 1.80 \mathrm{M})$ was added dropwise. The colorless solution was stirred for 2 h and then additional $\mathrm{NaOH}(1.00 \mathrm{~mL}, 1.80 \mathrm{M})$ was added. The solution stirred for an additional 0.75 h . The reaction mixture was then partitioned between $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The mixture was acidified to pH 4 with 1.0 M HCl . The aqueous layer was then extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 40 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and subsequently concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of EtOAc:hexanes (2:3 to 1:0) to afford epoxy acid $\mathbf{1 5 9 a}(0.68 \mathrm{~g}, 59 \%)$ as a pale yellow oil. $\mathrm{R}_{f} 0.42$ (EtOAc); IR (thin film) $v_{\max } 1724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76$ (bs, $1 \mathrm{H}), 3.94-3.83(\mathrm{~m}, 4 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=4.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 2 \mathrm{H})$, $2.39(\mathrm{dd}, J=2.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.6,108.3,64.8(2), 51.9,49.9,42.0,33.1,26.1$.

CHAPTER VI - STEREOSELECTIVE ACCESS TO (Z)-CHLORODIALKYL ALKENES THROUGH A MODIFIED NEGISHI CROSS-COUPLING OF ZINCATES AND DICHLOROOLEFINS

51

then $\mathrm{NaBH}_{4},-78^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}$

52

2-((2R,4S)-4-(tert-butyldimethylsilyloxy) tetrahydrofuran-2-yl)ethanol (52). A solution of alkene $\mathbf{5 1}(2.91 \mathrm{~g}, 12.0 \mathrm{mmol})$ in mixture of methanol $(60 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(60 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$. Then O_{3} was bubbled through solution via a gas sparging tube until solution turned blue. This was followed with bubbling of O_{2} (twice the time required for solution to turn blue). Reducing reagent, sodium borohydride ($2.73 \mathrm{~g}, 72.0$ mmol), was added. The solution was allowed to slowly warm to room temperature over $\sim 5 \mathrm{~h}$. After 9 h of additional stirring at room temperature, the solution was concentrated by rotary evaporation. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ was added. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water, brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated by rotary evaporation. The crude residue was purified by flash column chromatography with a gradient mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (3:5) to afford alcohol $52(2.79 \mathrm{~g}, 94 \%$, dr $>19: 1)$ as a colorless oil. $\mathrm{R}_{f} 0.37$ (2:5 EtOAc:hexanes); $[\alpha]_{\mathrm{D}}{ }^{20}+7.1\left(c=1.13, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ (thin film) $v_{\max } 3409,1114,1039 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.48-4.38(\mathrm{~m}, 1 \mathrm{H})$, $4.09(\mathrm{dq}, J=3.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=4.0$, $7.0,13.0,1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 78.5, 75.4, 72.5, 61.1, 41.3, 37.2, 25.7 (3), 18.0, -4.85, -4.87; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$ 253.1729, found 253.1723.

((3S,5S)-5-(2-bromoethyl)tetrahydrofuran-3-yloxy)(tert-butyl)dimethylsilane (53). To a solution of alcohol $52(1.44 \mathrm{~g}, 5.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL})$ was added triethylamine ($4.11 \mathrm{~mL}, 29.2 \mathrm{mmol}$). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and methanesulfonyl chloride ($0.68 \mathrm{~mL}, 8.78 \mathrm{mmol}$) was added. The solution was stirred for 2 h , and then quenched upon addition of pH 7 buffer $(60 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation to provide mesylate S13. The mesylate was taken on without further purification.

To a solution of mesylate $\mathbf{S 1 3}$ in acetone (32 mL) was added lithium bromide (3.37 g , 38.8 mmol). The mixture was refluxed for 3 h and then cooled to room temperature and stirred 11 h . The reaction was then quenched upon addition of water (49 mL). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$. The combined organics dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated by rotary evaporation to provide bromide $\mathbf{5 3}(1.79 \mathrm{~g}, 99 \%)$. $\mathrm{R}_{f} 0.65$ (1:1 EtOAc:hexanes); $[\alpha]_{\mathrm{D}}{ }^{19}+23.2\left(c=2.67, \mathrm{CHCl}_{3}\right)$; IR (thin film) $v_{\max } 1110$, $909,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.46-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.76$ $(\mathrm{dd}, J=4.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=1.0,2.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.32-$ $2.22(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.054(\mathrm{~s}, 3 \mathrm{H}), 0.049(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 76.4,75.2,72.5,40.9,38.9,30.4,25.7$ (3), 17.9, 4.88, -4.94; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{BrO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$ 309.0885, found 309.0896.

tert-butyl((3S,5R)-5-((Z)-3-chloroundec-3-enyl)tetrahydrofuran-3-yloxy)dimethyl-
silane (44f). To a flask containing zinc powder ($419 \mathrm{mg}, 6.46 \mathrm{mmol}$) was added DMA (3.2 mL) and iodine $(81.4 \mathrm{mg}, 0.323 \mathrm{mmol})$. DMA was distilled from barium oxide prior to use and contained 10 ppm of water as determined by Karl-Fisher titration. This slurry was stirred at $60^{\circ} \mathrm{C}$ until the brown color of the iodine had disappeared. The alkyl bromide 53 ($99.9 \mathrm{mg}, 3.23 \mathrm{mmol}$) was then added to this slurry and heated to $85^{\circ} \mathrm{C}$ for 20 h . The disappearance of the starting material was monitored by TLC and ${ }^{1} \mathrm{H}$ NMR. The mixture was cooled to room temperature for 2 h , and the yellow supernatant liquid, zincate, was used immediately in subsequent reactions.

1,1-dichloroalkene $\mathbf{1 2 f}$ was purified over neutral alumina eluting with hexanes prior to use. To a 10 mL microwave tube was added bis(tri-tert-butylphosphine)palladium (0) $(6.50 \mathrm{mg}, 0.013 \mathrm{mmol})$ in a glove box. A microwave cap was affixed to the tube. This was followed by 1,1-dichloroalkene $\mathbf{1 2 f}(49.5 \mathrm{mg}, 0.253 \mathrm{mmol})$ as a solution in THF (1.3 mL). The zincate (1 M in DMA, 1.3 mL) derived from bromide $\mathbf{5 3}$ was added to resulting in a dark purple-brown solution. Argon was bubbled through the solution to degass for 10 min . The tube was then heated with MW irradiation for 5 h at $100{ }^{\circ} \mathrm{C}$. After cooling the solution was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organics were then washed with brine ($3 \times 1 \mathrm{~mL}$). Finally, the organics were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated by rotary evaporation. The golden residue was then purified by flash column chromatography with a gradient mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (3:97) to afford vinyl chloride $\mathbf{4 4 f}(58.1 \mathrm{mg}, 29 \%)$ as
a colorless oil. $\mathrm{R}_{f} 0.67(1: 10 \mathrm{EtOAc}:$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{20}+6.0\left(c=1.33, \mathrm{CHCl}_{3}\right)$; IR (thin film) $v_{\max } 1114,1044,836,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.47(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{ddd}, J=5.5,7.5,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=4.5,9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{dd}, J=4.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{dt}, J=7.012 .5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{ddd}, J=0.5,4.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-$ $1.17(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{~s}, 12 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $134.1,126.0,77.8,75.2,72.8,41.4,36.4,33.9,32.0,29.30,29.26,28.8,28.6,25.9$ (3), $22.8,18.2,14.3,-4.6,-4.7$; HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{ClO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$ 389.2643, found 389.2603.

To a flask containing zinc powder ($654 \mathrm{mg}, 10.0 \mathrm{mmol}$) was added NMP $(2.5 \mathrm{~mL})$ and iodine ($25.4 \mathrm{mg}, 0.999 \mathrm{mmol}$). Anhydrous NMP was used directly from commercial source. This slurry was stirred at $60{ }^{\circ} \mathrm{C}$ until the brown color of the iodine had disappeared. The alkyl bromide $53(1.55 \mathrm{~g}, 5.00 \mathrm{mmol})$ was then added to this slurry and heated to $85^{\circ} \mathrm{C}$ for 24 h . The disappearance of the starting material was monitored by TLC and ${ }^{1} \mathrm{H}$ NMR. The mixture was cooled to room temperature for 2 h , and the supernatant liquid, zincate, was used immediately in subsequent reactions.

1,1-dichloroalkene $\mathbf{1 2 f}$ was purified over neutral alumina eluting with hexanes prior to use. To a 10 mL microwave tube was added bis(tri-tert-butylphosphine)palladium (0) $(13.9 \mathrm{mg}, 0.027 \mathrm{mmol})$ in a glove box. A microwave cap was affixed to the tube. This was followed by 1,1 -dichloroalkene $\mathbf{1 2 f}(106 \mathrm{mg}, 0.542 \mathrm{mmol})$ as a solution in THF $(0.96$
mL). The zincate (1.69 M in NMP, 0.96 mL) derived from bromide 53 was added to resulting in a dark purple-brown solution. Argon was bubbled through the solution to degass for 10 min . The tube was then heated with MW irradiation for 0.5 h at $80^{\circ} \mathrm{C}$. After cooling the solution was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The mixture was filtered through a pad of celite eluting with $\mathrm{Et}_{2} \mathrm{O}$. The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organics were then washed with brine ($2 \times 1 \mathrm{~mL}$). Finally, the organics were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated by rotary evaporation. The crude residue was then purified by flash column chromatography with a gradient mixture of $\mathrm{Et}_{2} \mathrm{O}$:hexanes (3:97) to afford vinyl chloride $\mathbf{4 4 f}(65.9 \mathrm{mg}, 31 \%)$ as a colorless oil.

Determination of enantiomeric excess of via chiral HPLC: Enone 114

Analysis of (+)-enone 114: (Chiralcel OD, 99:1 hexanes:i-PrOH eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of 222 nm$) \mathrm{t}_{\mathrm{r}}($ minor $)=8.214 ; \mathrm{t}_{\mathrm{r}}($ major $)=9.642$.

Determination of enantiomeric excess of via chiral HPLC: Epoxide 93a

Analysis of (R)-epoxide 93a: (Chiralcel OD, 98:2 hexanes: $i-\mathrm{PrOH}$ eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of 210 nm$) \mathrm{t}_{\mathrm{r}}($ major $)=6.960 ; \mathrm{t}_{\mathrm{r}}($ minor $)=8.954$

Determination of enantiomeric excess of via chiral HPLC: β-lactone 11 g

Analysis of (\pm)-Tetrahydrofuran-fused $\boldsymbol{\beta}$-Lactone 11g: (Chiralcel OD, 85:15 hexanes: i-PrOH eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of 210 nm$) \mathrm{t}_{\mathrm{T}}[(-)$-syn$\mathbf{1 1 g}]=10.737 ; \mathrm{t}_{\mathrm{r}}[(+)$-anti-11g $]=12.016 ; \mathrm{t}_{\mathrm{r}}\left[(+)-\right.$ syn-11g] $=14.411 ;$ and $\mathrm{t}_{\mathrm{r}}[(-)$-anti-11g] $=24.911$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.737	BB	0.2744	748.82648	42.32589	22.8770
2	12.016	BB	0.3235	908.69922	43.17534	27.7612
3	14.411	BB	0.3794	861.29413	35.45998	26.3129
4	24.911	BB	0.6742	754.45587	17.38839	23.0490
Total	s :			3273.27570	138.34961	

After separation of diastereomers by flash column chromatography. (Chiralcel OD, 85:15 hexanes: i-PrOH eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of 210 nm$) \mathrm{t}_{\mathrm{r}}[(-)$-syn$\left.11 \mathbf{g}_{\text {major }}\right]=10.709$ and $\mathrm{t}_{\mathrm{r}}[(+)-$ syn- $\mathbf{1 1 g}]=14.376$.

(Chiralcel OD, 85:15 hexanes: i-PrOH eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of $210 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}[(-)-$ syn-11g major $]=10.638 ; \mathrm{t}_{\mathrm{r}}[(+)$-anti- $\mathbf{1 1 g}]=11.882 ; \mathrm{t}_{\mathrm{r}}[(+)-$ syn- $\mathbf{1 1 g}]=$ 14.366; and $\mathrm{t}_{\mathrm{r}}[(-)$-anti- $\mathbf{1 1 g}]=24.831$.

(Chiralcel OD, $85: 15$ hexanes: i-PrOH eluent, $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate and a lamp setting of $210 \mathrm{~nm}) \operatorname{tr}_{\mathrm{r}}[(-)-$ syn-11g$]=10.718 ; \mathrm{t}_{\mathrm{r}}\left[(+)\right.$-anti-11 $\left.\mathbf{g}_{\text {major }}\right]=11.867 ; \mathrm{t}_{\mathrm{r}}\left[(+)-\right.$ syn $^{\mathbf{1 1} \mathbf{1 g}]}=$ 14.382; and $\mathrm{t}_{\mathrm{r}}[(-)$-anti-11g] $=24.933$.

APPENDIX B

SINGLE CRYSTAL X-RAY ANALYSIS

Crystal and Molecular Structure Determination for Syn-Tetrahydrofuran-Fused $\boldsymbol{\beta}$ Lactone 11d.

X-ray Diffraction Laboratory
Department of Chemistry
Texas A\&M University

Report:	June 05, 2006
Structure:	DR_060206 (GADDS)
Nattamai Bhuvanesh	(Sample from Kay Morris)

Table B1. Crystal data and structure refinement for DR_060206.

Identification code	dr
Empirical formula	C14 H16 O3
Formula weight	232.27
Temperature	110(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=11.407(4) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=8.586(3) \AA & \beta=90.501(9)^{\circ} . \\ \mathrm{c}=12.661(4) \AA & \gamma=90^{\circ} . \end{array}$
Volume	1240.0(7) \AA^{3}
Z	4
Density (calculated)	$1.244 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.704 \mathrm{~mm}^{-1}$
$F(000)$	496
Crystal size	$0.22 \times 0.21 \times 0.14 \mathrm{~mm}^{3}$
Theta range for data collection	5.20 to 60.59°.
Index ranges	$-12<=\mathrm{h}<=12,-9<=\mathrm{k}<=9,-14<=\mathrm{l}<=13$
Reflections collected	7435
Independent reflections	$1791[\mathrm{R}(\mathrm{int})=0.0439]$
Completeness to theta $=60.59^{\circ}$	95.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9085 and 0.8606
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$1791 / 0 / 155$
Goodness-of-fit on F^{2}	1.020
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0378, \mathrm{wR} 2=0.0988$
R indices (all data)	$\mathrm{R} 1=0.0443, \mathrm{wR} 2=0.1067$
Largest diff. peak and hole	0.179 and -0.229 e. \AA^{-3}

Table B2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathbf{x}\right.$ $10^{\mathbf{3}}$) for DR_060206. $U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$1409(1)$	$1380(2)$	$3143(1)$	$21(1)$
$\mathrm{C}(2)$	$2085(1)$	$2047(2)$	$2342(1)$	$23(1)$
$\mathrm{C}(3)$	$1973(2)$	$1555(2)$	$1292(1)$	$28(1)$
$\mathrm{C}(4)$	$1164(2)$	$403(2)$	$1037(1)$	$29(1)$
$\mathrm{C}(5)$	$473(2)$	$-253(2)$	$1818(2)$	$29(1)$
$\mathrm{C}(6)$	$604(1)$	$229(2)$	$2865(1)$	$25(1)$
$\mathrm{C}(7)$	$1605(2)$	$1883(2)$	$4283(1)$	$26(1)$
$\mathrm{C}(8)$	$2785(1)$	$1298(2)$	$4716(1)$	$21(1)$
$\mathrm{C}(9)$	$3059(1)$	$1892(2)$	$5836(1)$	$21(1)$
$\mathrm{C}(10)$	$4233(2)$	$1335(2)$	$6311(1)$	$22(1)$
$\mathrm{C}(11)$	$3929(1)$	$-65(2)$	$6991(1)$	$21(1)$
$\mathrm{C}(12)$	$2585(1)$	$43(2)$	$7125(1)$	$20(1)$
$\mathrm{C}(13)$	$2553(2)$	$-1453(2)$	$6459(1)$	$22(1)$
$\mathrm{C}(14)$	$479(2)$	$-427(2)$	$7922(1)$	$27(1)$
$\mathrm{O}(1)$	$2170(1)$	$1400(1)$	$6598(1)$	$21(1)$
$\mathrm{O}(2)$	$-2342(1)$	$6100(1)$	$30(1)$	
$\mathrm{O}(3)$	$1837(1)$	$-1510(1)$	$6313(1)$	$24(1)$

Table B3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $D R _060206$.

$\mathrm{C}(1)-\mathrm{C}(6)$	1.393(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.402(2)$
$\mathrm{C}(1)-\mathrm{C}(7)$	1.521(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.399(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.389(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.389(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.396(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.534(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.537(2)
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.469(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.539(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	1.520(2)
$\mathrm{C}(11)-\mathrm{C}(14)$	1.510(2)
$\mathrm{C}(11)-\mathrm{O}(3)$	1.522(2)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.546(2)
$\mathrm{C}(12)-\mathrm{O}(1)$	$1.4215(19)$
$\mathrm{C}(12)-\mathrm{C}(13)$	1.537(2)
$\mathrm{C}(13)-\mathrm{O}(2)$	1.204(2)
$\mathrm{C}(13)-\mathrm{O}(3)$	1.373(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	118.24(15)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	122.14(15)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	119.59(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.17(17)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.42(16)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.19(15)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.98(16)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	120.98(16)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	111.57(14)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	113.12(14)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	111.97(13)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	104.92(12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	115.28(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	105.38(13)

$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(10)$	$117.85(14)$
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{O}(3)$	$110.57(13)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(3)$	$110.90(12)$
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.80(14)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$104.23(13)$
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$88.74(11)$
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$114.91(13)$
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	$108.95(13)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$84.76(12)$
$\mathrm{O}(2)-\mathrm{C}(13)-\mathrm{O}(3)$	$126.58(15)$
$\mathrm{O}(2)-\mathrm{C}(13)-\mathrm{C}(12)$	$138.56(16)$
$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(12)$	$94.82(12)$
$\mathrm{C}(12)-\mathrm{O}(1)-\mathrm{C}(9)$	$108.31(12)$
$\mathrm{C}(13)-\mathrm{O}(3)-\mathrm{C}(11)$	$91.62(11)$

Table B4. Anisotropic displacement parameters $\left(\AA^{2} \times \mathbf{1 0}^{\mathbf{3}}\right.$) for DR_060206. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$18(1)$	$21(1)$	$23(1)$	$2(1)$	$-1(1)$	$4(1)$
$\mathrm{C}(2)$	$19(1)$	$24(1)$	$25(1)$	$2(1)$	$-4(1)$	$-1(1)$
$\mathrm{C}(3)$	$25(1)$	$37(1)$	$23(1)$	$3(1)$	$0(1)$	$7(1)$
$\mathrm{C}(4)$	$29(1)$	$33(1)$	$26(1)$	$-11(1)$	$-9(1)$	$15(1)$
$\mathrm{C}(5)$	$24(1)$	$20(1)$	$45(1)$	$-7(1)$	$-10(1)$	$3(1)$
$\mathrm{C}(6)$	$20(1)$	$22(1)$	$33(1)$	$7(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(7)$	$26(1)$	$30(1)$	$22(1)$	$0(1)$	$1(1)$	$3(1)$
$\mathrm{C}(8)$	$24(1)$	$21(1)$	$18(1)$	$0(1)$	$1(1)$	$1(1)$
$\mathrm{C}(9)$	$25(1)$	$18(1)$	$20(1)$	$1(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(10)$	$21(1)$	$22(1)$	$23(1)$	$-1(1)$	$0(1)$	$-5(1)$
$\mathrm{C}(11)$	$23(1)$	$17(1)$	$22(1)$	$-4(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(12)$	$21(1)$	$19(1)$	$20(1)$	$3(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(13)$	$26(1)$	$21(1)$	$20(1)$	$5(1)$	$0(1)$	$-2(1)$
$\mathrm{C}(14)$	$26(1)$	$28(1)$	$28(1)$	$1(1)$	$-5(1)$	$4(1)$
$\mathrm{O}(1)$	$22(1)$	$22(1)$	$20(1)$	$3(1)$	$2(1)$	$4(1)$
$\mathrm{O}(2)$	$37(1)$	$27(1)$	$26(1)$	$0(1)$	$-3(1)$	$-11(1)$
$\mathrm{O}(3)$	$26(1)$	$19(1)$	$26(1)$	$-4(1)$	$0(1)$	$2(1)$

Table B5. Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters ($\AA^{\mathbf{2}} \mathbf{x} 10{ }^{\mathbf{3}}$) for DR_060206.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(2)$	2628	2848	2514	27
H(3)	2446	2005	759	34
H(4)	1083	62	326	35
H(5)	-88	-1030	1639	35
H(6)	135	-235	3396	30
H(7A)	964	1469	4724	31
H(7B)	1582	3034	4325	31
H(8A)	3416	1637	4236	25
H(8B)	2779	145	4723	25
H(9)	3068	3056	5817	25
H(10A)	4783	1035	5746	27
$\mathrm{H}(10 \mathrm{~B})$	4598	2166	6745	27
H(12)	2307	-81	7866	24
H(14A)	4434	-1362	8281	40
H(14B)	4716	454	8415	40
$\mathrm{H}(14 \mathrm{C})$	5519	-606	7674	40

Crystal and Molecular Structure Determination for Syn-Carbocycle-Fused $\boldsymbol{\beta}$ Lactone 73b.

X-ray Diffraction Laboratory
Department of Chemistry
Texas A\&M University

Report:
Structure:
Joe Reibenspies

May 28, 2009
DR70
(Sample from Kay Morris)

Table B6. Crystal data and structure refinement for DR70.

Identification code	dr70
Empirical formula	C12 H22 O3 Si
Formula weight	242.39
Temperature	70(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$\mathrm{a}=12.2353(8) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=13.6398(9) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=16.6225(12) \AA \quad \gamma=90^{\circ}$.
Volume	2774.1(3) \AA^{3}
Z	8
Density (calculated)	$1.161 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.161 \mathrm{~mm}^{-1}$
F(000)	1056
Crystal size	$0.30 \times 0.30 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	1.93 to 25.00°.
Index ranges	$-14<=\mathrm{h}<=14,-16<=\mathrm{k}<=16,-19<=1<=19$
Reflections collected	36585
Independent reflections	4857 [$\mathrm{R}(\mathrm{int}$) $=0.0504]$
Completeness to theta $=25.00^{\circ}$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9841 and 0.9532
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4857 / 0 / 299
Goodness-of-fit on F^{2}	1.005
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0414, \mathrm{wR} 2=0.0982$
R indices (all data)	$\mathrm{R} 1=0.0544, \mathrm{wR} 2=0.1073$
Absolute structure parameter	-0.07(17)
Largest diff. peak and hole	0.332 and -0.210 e. \AA^{-3}

Table B7. Atomic coordinates ($\mathbf{x} \mathbf{1 0}^{4}$) and equivalent isotropic displacement parameters ($\AA^{\mathbf{2}} \mathbf{x} \mathbf{1 0}^{\mathbf{3}}$) for DR70. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	X	y	Z	U(eq)
Si(1A)	3988(1)	6244(1)	1846(1)	23(1)
$\mathrm{O}(1 \mathrm{~A})$	3022(2)	6184(1)	1159(1)	34(1)
$\mathrm{O}(2 \mathrm{~A})$	2567(2)	5249(1)	-425(1)	42(1)
$\mathrm{O}(3 \mathrm{~A})$	1484(2)	4346(1)	408(1)	44(1)
C(1A)	2554(2)	6995(2)	737(2)	30(1)
$\mathrm{C}(2 \mathrm{~A})$	1334(2)	6809(2)	672(2)	37(1)
C(3A)	1231(2)	6104(2)	-36(2)	36(1)
C(4A)	2229(3)	6289(2)	-564(2)	41(1)
C(5A)	2937(3)	7011(2)	-128(2)	36(1)
C(6A)	1702(2)	5091(2)	68(2)	33(1)
C(7A)	4356(2)	4930(2)	2044(2)	27(1)
C(8A)	3321(2)	4337(2)	2206(2)	33(1)
C(9A)	4930(3)	4499(2)	1311(2)	44(1)
C(10A)	5110(3)	4869(2)	2783(2)	47(1)
C(11A)	3446(3)	6851(2)	2774(2)	40(1)
$\mathrm{C}(12 \mathrm{~A})$	5182(3)	6955(2)	1465(2)	45(1)
Si(1B)	5993(1)	3796(1)	-1848(1)	24(1)
$\mathrm{O}(1 \mathrm{~B})$	6945(2)	3832(1)	-1156(1)	38(1)
$\mathrm{O}(2 \mathrm{~B})$	8752(2)	4796(2)	-304(1)	45(1)
$\mathrm{O}(3 \mathrm{~B})$	7333(2)	5533(2)	322(2)	61(1)
C(1B)	7384(2)	3001(2)	-748(2)	29(1)
C(2B)	7119(3)	3068(2)	146(2)	35(1)
C(3B)	7966(3)	3779(2)	466(2)	40(1)
C(4B)	8938(3)	3738(2)	-103(2)	45(1)
C(5B)	8629(2)	3051(2)	-770(2)	41(1)
C(6B)	7879(3)	4838(2)	195(2)	38(1)
C(7B)	5689(2)	5121(2)	-2063(2)	27(1)
C(8B)	5120(3)	5585(2)	-1337(2)	46(1)
C(9B)	6753(2)	5672(2)	-2224(2)	36(1)
C(10B)	4940(3)	5198(2)	-2804(2)	44(1)
C(11B)	6522(3)	3147(2)	-2750(2)	40(1)
C(12B)	4777(3)	3127(2)	-1472(2)	50(1)

Table B8. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for DR70.

$\mathrm{Si}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$	1.6445 (19)
$\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	$1.865(3)$
$\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	1.872(3)
Si(1A)-C(7A)	1.878(3)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	$1.430(3)$
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	$1.356(4)$
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	$1.496(3)$
$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.193(3)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.512(4)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.519(4)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	1.0000
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	1.525(4)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 1)$	0.9900
$\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 2)$	0.9900
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.507(4)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	1.525(4)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A})$	1.0000
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.498(4)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A})$	1.0000
$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$	0.9900
$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	0.9900
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	1.524(4)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	1.527(4)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.538(4)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$	0.9800
$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	0.9800
$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 3)$	0.9800
$\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 1)$	0.9800
$\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 2)$	0.9800
$\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 3)$	0.9800
$\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~A})$	0.9800
$\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~B})$	0.9800
$\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	0.9800
$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$	0.9800

$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	0.9800
$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$	0.9800
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{Si}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$	1.639(2)
Si(1B)-C(12B)	1.854(3)
Si(1B)-C(11B)	1.858(3)
$\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	1.879(3)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	1.425(3)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.354(4)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	1.498(3)
$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.178(4)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.524(4)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	1.525(4)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$	1.0000
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	1.516(4)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 1)$	0.9900
$\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 2)$	0.9900
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.518(4)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	1.521(4)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{~B})$	1.0000
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	1.500(4)
$\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B})$	1.0000
$\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 1)$	0.9900
$\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$	0.9900
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	1.527(4)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	1.531(4)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	1.538(4)
$\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 1)$	0.9800
$\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 2)$	0.9800
C(8B)-H(8B3)	0.9800
$\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B} 1)$	0.9800
$\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B} 2)$	0.9800
C(9B)-H(9B3)	0.9800
$\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{D})$	0.9800

$\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{E})$	0.9800
$\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~F})$	0.9800
$\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	0.9800
$\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{E})$	0.9800
$\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~F})$	0.9800
$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	0.9800
$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{E})$	0.9800
$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~F})$	0.9800
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	110.72(13)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	109.86(12)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	109.08(16)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	104.30(11)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	111.58(14)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	111.24(14)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})$	126.11(17)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	91.6(2)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	110.7(2)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	107.4(2)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	103.8(2)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	111.5
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	111.5
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	111.5
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	104.0(2)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 1)$	111.0
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 1)$	111.0
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 2)$	111.0
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 2)$	111.0
$\mathrm{H}(2 \mathrm{~A} 1)-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A} 2)$	109.0
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	117.2(2)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	84.9(2)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	105.9(2)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A})$	114.9
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A})$	114.9
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A})$	114.9
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	112.9(3)

$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	88.6(2)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	107.0(2)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A})$	115.1
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A})$	115.1
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A})$	115.1
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	105.8(3)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$	110.6
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$	110.6
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	110.6
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	110.6
$\mathrm{H}(5 \mathrm{~A} 1)-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	108.7
$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$	126.5(3)
$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	138.6(3)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	94.8(2)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	108.6(2)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	109.9(2)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	109.2(2)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})$	109.77(19)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})$	109.73(18)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{Si}(1 \mathrm{~A})$	109.61(19)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	109.5
$\mathrm{H}(8 \mathrm{~A} 1)-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 3)$	109.5
$\mathrm{H}(8 \mathrm{~A} 1)-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 3)$	109.5
$\mathrm{H}(8 \mathrm{~A} 2)-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 3)$	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 1)$	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 2)$	109.5
$\mathrm{H}(9 \mathrm{~A} 1)-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 2)$	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 3)$	109.5
H(9A1)-C(9A)-H(9A3)	109.5
H(9A2)-C(9A)-H(9A3)	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	109.5

$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{Si}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	110.41(14)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	109.46(13)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	108.48(16)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	104.23(11)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	112.25(15)
$\mathrm{C}(11 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	111.96(14)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})$	125.31(17)
$\mathrm{C}(6 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	91.4(2)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	109.6(2)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	109.2(2)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	103.5(3)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$	111.4
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$	111.4
$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$	111.4
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	103.6(2)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 1)$	111.0
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 1)$	111.0
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 2)$	111.0
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 2)$	111.0
$\mathrm{H}(2 \mathrm{~B} 1)-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B} 2)$	109.0
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	117.1(3)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	107.0(2)

$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	84.5(2)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{~B})$	114.7
$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{~B})$	114.7
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{~B})$	114.7
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	113.5(2)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	89.2(2)
$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	106.6(2)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B})$	114.9
$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B})$	114.9
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B})$	114.9
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	105.2(2)
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 1)$	110.7
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 1)$	110.7
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$	110.7
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$	110.7
$\mathrm{H}(5 \mathrm{~B} 1)-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$	108.8
$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})$	126.3(3)
$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	138.8(3)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	94.9(3)
$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	108.8(2)
$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	109.5(2)
$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	109.4(2)
$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})$	109.74(19)
$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})$	109.75(19)
$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{Si}(1 \mathrm{~B})$	109.65(19)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 1)$	109.5
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 2)$	109.5
$\mathrm{H}(8 \mathrm{~B} 1)-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 2)$	109.5
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 3)$	109.5
$\mathrm{H}(8 \mathrm{~B} 1)-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 3)$	109.5
$\mathrm{H}(8 \mathrm{~B} 2)-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 3)$	109.5
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B} 1)$	109.5
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B} 2)$	109.5
$\mathrm{H}(9 \mathrm{~B} 1)-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B} 2)$	109.5
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B} 3)$	109.5
$\mathrm{H}(9 \mathrm{~B} 1)-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B} 3)$	109.5

$\mathrm{H}(9 \mathrm{~B} 2)-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B} 3)$	109.5
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{D})$	109.5
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{E})$	109.5
$\mathrm{H}(10 \mathrm{D})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{E})$	109.5
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~F})$	109.5
$\mathrm{H}(10 \mathrm{D})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~F})$	109.5
$\mathrm{H}(10 \mathrm{E})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~F})$	109.5
$\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	109.5
$\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{E})$	109.5
$\mathrm{H}(11 \mathrm{D})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{E})$	109.5
$\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~F})$	109.5
$\mathrm{H}(11 \mathrm{D})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~F})$	109.5
$\mathrm{H}(11 \mathrm{E})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~F})$	109.5
$\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	109.5
$\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{E})$	109.5
$\mathrm{H}(12 \mathrm{D})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{E})$	109.5
$\mathrm{Si}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~F})$	109.5
$\mathrm{H}(12 \mathrm{D})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~F})$	109.5
$\mathrm{H}(12 \mathrm{E})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~F})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table B9. Anisotropic displacement parameters ($\AA^{\AA^{2}} \times 10^{3}$) for DR70. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Si}(1 \mathrm{~A})$	$25(1)$	$19(1)$	$26(1)$	$-1(1)$	$0(1)$	$-1(1)$
$\mathrm{O}(1 \mathrm{~A})$	$47(1)$	$20(1)$	$34(1)$	$4(1)$	$-16(1)$	$0(1)$
$\mathrm{O}(2 \mathrm{~A})$	$57(1)$	$28(1)$	$42(1)$	$-9(1)$	$7(1)$	$4(1)$
$\mathrm{O}(3 \mathrm{~A})$	$47(1)$	$27(1)$	$59(1)$	$6(1)$	$-15(1)$	$-6(1)$
$\mathrm{C}(1 \mathrm{~A})$	$46(2)$	$15(1)$	$30(2)$	$2(1)$	$-4(1)$	$6(1)$
$\mathrm{C}(2 \mathrm{~A})$	$45(2)$	$30(2)$	$36(2)$	$2(1)$	$2(1)$	$14(1)$
$\mathrm{C}(3 \mathrm{~A})$	$37(2)$	$31(2)$	$40(2)$	$2(1)$	$-15(1)$	$6(1)$
$\mathrm{C}(4 \mathrm{~A})$	$66(2)$	$30(2)$	$25(1)$	$0(1)$	$1(2)$	$5(2)$
$\mathrm{C}(5 \mathrm{~A})$	$49(2)$	$27(2)$	$31(2)$	$2(1)$	$4(2)$	$-1(1)$
$\mathrm{C}(6 \mathrm{~A})$	$34(2)$	$28(2)$	$39(2)$	$-6(1)$	$-14(1)$	$-1(1)$
$\mathrm{C}(7 \mathrm{~A})$	$24(1)$	$23(1)$	$34(2)$	$3(1)$	$-3(1)$	$1(1)$
$\mathrm{C}(8 \mathrm{~A})$	$33(2)$	$27(2)$	$38(2)$	$10(1)$	$-3(1)$	$-6(1)$
$\mathrm{C}(9 \mathrm{~A})$	$46(2)$	$22(1)$	$62(2)$	$-4(2)$	$19(2)$	$1(1)$
$\mathrm{C}(10 \mathrm{~A})$	$43(2)$	$35(2)$	$63(2)$	$4(2)$	$-24(2)$	$4(2)$
$\mathrm{C}(11 \mathrm{~A})$	$38(2)$	$42(2)$	$39(2)$	$-12(2)$	$-1(1)$	$9(2)$
$\mathrm{C}(12 \mathrm{~A})$	$44(2)$	$29(2)$	$62(2)$	$1(2)$	$13(2)$	$-10(2)$
$\mathrm{Si}(1 \mathrm{~B})$	$24(1)$	$19(1)$	$29(1)$	$-2(1)$	$-2(1)$	$-3(1)$
$\mathrm{O}(1 \mathrm{~B})$	$56(1)$	$18(1)$	$40(1)$	$0(1)$	$-20(1)$	$-2(1)$
$\mathrm{O}(2 \mathrm{~B})$	$39(1)$	$38(1)$	$58(1)$	$4(1)$	$-3(1)$	$-10(1)$
$\mathrm{O}(3 \mathrm{~B})$	$78(2)$	$31(1)$	$74(2)$	$-18(1)$	$16(1)$	$-9(1)$
$\mathrm{C}(1 \mathrm{~B})$	$40(2)$	$21(1)$	$24(2)$	$0(1)$	$-4(1)$	$0(1)$
$\mathrm{C}(2 \mathrm{~B})$	$50(2)$	$24(2)$	$31(2)$	$2(1)$	$11(2)$	$-1(1)$
$\mathrm{C}(3 \mathrm{~B})$	$58(2)$	$37(2)$	$24(1)$	$0(1)$	$-9(1)$	$-8(2)$
$\mathrm{C}(4 \mathrm{~B})$	$34(2)$	$41(2)$	$60(2)$	$16(2)$	$-9(2)$	$1(2)$
$\mathrm{C}(5 \mathrm{~B})$	$44(2)$	$33(2)$	$46(2)$	$3(1)$	$11(2)$	$13(1)$
$\mathrm{C}(6 \mathrm{~B})$	$45(2)$	$31(2)$	$40(2)$	$-9(1)$	$-4(2)$	$-12(2)$
$\mathrm{C}(7 \mathrm{~B})$	$27(1)$	$21(1)$	$33(2)$	$1(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(8 \mathrm{~B})$	$49(2)$	$32(2)$	$58(2)$	$-6(2)$	$11(2)$	$7(2)$
$\mathrm{C}(9 \mathrm{~B})$	$36(2)$	$28(2)$	$46(2)$	$11(2)$	$-7(2)$	$-7(1)$
$\mathrm{C}(10 \mathrm{~B})$	$39(2)$	$34(2)$	$58(2)$	$2(2)$	$-19(2)$	$0(2)$
$\mathrm{C}(11 \mathrm{~B})$	$43(2)$	$38(2)$	$39(2)$	$-7(2)$	$-3(2)$	$9(2)$

$\mathrm{C}(12 \mathrm{~B})$	$46(2)$	$35(2)$	$70(2)$	$1(2)$	$16(2)$

Table B10. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters ($\AA^{\mathbf{2}} \mathbf{x} 10{ }^{\mathbf{3}}$) for DR70.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1A)	2712	7630	1014	36
H(2A1)	932	7426	566	44
H(2A2)	1047	6508	1172	44
H(3A)	514	6129	-325	43
H(4A)	2064	6459	-1137	49
H(5A1)	2852	7674	-361	43
H(5A2)	3715	6817	-164	43
H(8A1)	3517	3651	2309	49
H(8A2)	2839	4371	1736	49
H(8A3)	2943	4606	2676	49
H(9A1)	4447	4543	843	65
H(9A2)	5109	3810	1414	65
H(9A3)	5603	4866	1206	65
H(10A)	5767	5263	2687	70
H(10B)	5319	4185	2876	70
H(10C)	4724	5121	3256	70
H(11A)	2863	6448	3005	59
H(11B)	3155	7498	2635	59
$\mathrm{H}(11 \mathrm{C})$	4038	6924	3167	59
H(12A)	4941	7608	1296	68
H(12B)	5507	6611	1005	68
H(12C)	5728	7019	1894	68
H(1B)	7109	2375	-986	34
H(2B1)	6370	3321	232	42
H(2B2)	7187	2419	408	42
H(3B)	8153	3690	1048	48
H(4B)	9655	3593	160	54
H(5B1)	8951	2395	-681	49
H(5B2)	8885	3305	-1295	49
H(8B1)	4402	5280	-1261	70

$\mathrm{H}(8 \mathrm{~B} 2)$	5027	6290	-1430	70
$\mathrm{H}(8 \mathrm{~B} 3)$	5566	5483	-854	70
$\mathrm{H}(9 \mathrm{~B} 1)$	7217	5646	-1744	55
$\mathrm{H}(9 \mathrm{~B} 2)$	6589	6356	-2355	55
$\mathrm{H}(9 \mathrm{~B} 3)$	7137	5366	-2677	55
$\mathrm{H}(10 \mathrm{D})$	4766	5888	-2905	65
$\mathrm{H}(10 \mathrm{E})$	4264	4833	-2704	65
$\mathrm{H}(10 \mathrm{~F})$	5314	4922	-3273	65
$\mathrm{H}(11 \mathrm{D})$	6772	2491	-2596	60
$\mathrm{H}(11 \mathrm{E})$	7134	3517	-2979	60
$\mathrm{H}(11 \mathrm{~F})$	5938	3090	-3151	60
$\mathrm{H}(12 \mathrm{D})$	4480	3468	-1001	76
$\mathrm{H}(12 \mathrm{E})$	4987	2459	-1321	76
$\mathrm{H}(12 \mathrm{~F})$	4220	3102	-1896	76

Data Collection:

A Leica Z microscope was used to identify a suitable colorless parallelpiped $0.3 \mathrm{~mm} \times 0.3 \mathrm{~mm} \times 0.1 \mathrm{~mm}$ from a representative sample of crystals of the same habit. The crystal was coated in a cryogenic protectant (paratone), and was then fixed to a loop, which in turn was fashioned to a copper mounting pin. The mounted crystal was then placed in a cold nitrogen stream (Oxford) maintained at 110 K .

A BRUKER SMART SMART100 X-ray three-circle diffractometer was employed for crystal screening, unit cell determination and data collection. The goniometer was controlled using the SMART software suite (Microsoft operating system). The sample was optically centered with the aid of a video camera such that no translations were observed as the crystal was rotated through all positions. The detector was set at 5.0 cm from the crystal sample (CCD-, 512×512 pixel). The X-ray radiation employed was generated from a Mo sealed X-ray tube ($\mathrm{K}_{\alpha}=0.70173 \AA$ with a potential of 50 kV and a current of 40 mA) and filtered with a graphite monochromator in the parallel mode (175 mm collimator with 0.8 mm pinholes).

Dark currents were obtained for the appropriate exposure time 10 sec and a rotation exposure was taken to determine crystal quality and the X-ray beam intersection with the detector. The beam intersection coordinates were compared to the configured coordinates and changes were made accordingly. The rotation exposure indicated acceptable crystal quality and the unit cell determination was undertaken. Forty data frames were taken at widths of 0.5° with an exposure time of 10 seconds. Over 200 reflections were centered and their positions were determined. These reflections were used in the auto-indexing procedure to determine the unit cell. A suitable cell was found and refined by nonlinear least squares and Bravais lattice procedures and reported. The unit cell was verified by examination of the hkl overlays on several frames of data, including zone photographs. No super-cell or erroneous reflections were observed.

After careful examination of the unit cell, a standard data collection procedure was initiated. This procedure consists of collection of one hemisphere of data collected using omega scans, involving the collection over 36000.5° frames at fixed angles for ϕ, 2θ, and $\chi\left(2 \theta=-28^{\circ}, \chi=54.73^{\circ}\right)$, while varying omega. Each frame was exposed for 20 sec and contrasted against a 20 sec . dark current exposure. The total data collection was
performed for duration of approximately 24 hours at 110 K . No significant intensity fluctuations of equivalent reflections were observed. After data collection, the crystal was measured carefully for size, morphology and color.

Crystal and Molecular Structure Determination for Anti-Carbocycle-Fused β Lactone 73h.

X-ray Diffraction Laboratory
Department of Chemistry
Texas A\&M University

Report: October 14, 2009
Structure:
Joe Reibenspies

DR74
(Sample from Kay Morris)

Table B11. Crystal data and structure refinement for DR74M.

Identification code	dr74m
Empirical formula	C22 H26 O3 Si
Formula weight	366.52
Temperature	110(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=14.553(4) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=8.483(3) \AA & \beta=110.019(12)^{\circ} . \\ \mathrm{c}=17.092(6) \AA & \gamma=90^{\circ} . \end{array}$
Volume	1982.6(11) \AA^{3}
Z	4
Density (calculated)	$1.228 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.186 \mathrm{~mm}^{-1}$
$F(000)$	784
Crystal size	$0.10 \times 0.03 \times 0.01 \mathrm{~mm}^{3}$
Theta range for data collection	7.17 to 59.99°.
Index ranges	$-16<=\mathrm{h}<=16,-9<=\mathrm{k}<=9,-19<=\mathrm{l}<=19$
Reflections collected	11915
Independent reflections	$2752[\mathrm{R}(\mathrm{int})=0.3605]$
Completeness to theta $=59.99^{\circ}$	93.2 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9882 and 0.8906
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2752 / 0 / 238
Goodness-of-fit on F^{2}	1.006
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0762, \mathrm{wR} 2=0.1055$
R indices (all data)	$\mathrm{R} 1=0.2237, \mathrm{wR} 2=0.1488$
Largest diff. peak and hole	0.202 and -0.260 e. \AA^{-3}

Table B12. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathbf{x}\right.$ $10^{\mathbf{3}}$) for DR74M. $\mathbf{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
Si(1)	14862(1)	-3893(3)	7088(1)	58(1)
$\mathrm{O}(1)$	11512(3)	1414(6)	4615(2)	84(2)
$\mathrm{O}(2)$	11957(3)	-357(6)	5734(2)	68(1)
$\mathrm{O}(3)$	14233(3)	-2809(6)	6291(2)	57(1)
C(1)	11948(6)	273(11)	4953(4)	80(3)
C(2)	12645(5)	-976(9)	4844(3)	68(2)
C(3)	13685(4)	-332(9)	4991(3)	76(3)
C(4)	14070(4)	-48(9)	5963(3)	63(2)
C(5)	13673(4)	-1329(10)	6324(3)	68(2)
C(6)	12623(4)	-1651(9)	5711(3)	62(2)
C(7)	15895(5)	-4611(10)	6792(4)	78(2)
C(8)	15544(6)	-6004(9)	6148(4)	108(3)
C(9)	16310(5)	-3374(10)	6324(4)	88(3)
C(10)	16737(6)	-5287(12)	7532(4)	169(5)
C(11)	15284(4)	-2647(8)	8055(3)	52(2)
C(12)	15032(4)	-3017(8)	8762(3)	58(2)
C(13)	15318(4)	-2090(9)	9493(3)	66(2)
C(14)	15813(4)	-687(9)	9477(3)	66(2)
C(15)	16063(4)	-265(9)	8777(4)	71(2)
C(16)	15799(4)	-1227(8)	8092(3)	56(2)
C(17)	14094(4)	-5545(8)	7190(3)	58(2)
C(18)	13153(4)	-5798(8)	6585(3)	60(2)
C(19)	12542(5)	-7028(8)	6634(4)	69(2)
C(20)	12822(5)	-8051(9)	7304(3)	73(2)
C(21)	13750(4)	-7873(9)	7920(3)	66(2)
C(22)	14359(4)	-6662(8)	7861(3)	60(2)

Table B13. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $D R 74 M$.

$\mathrm{Si}(1)-\mathrm{O}(3)$	$1.639(4)$
$\mathrm{Si}(1)-\mathrm{C}(17)$	1.837(7)
$\mathrm{Si}(1)-\mathrm{C}(7)$	1.847(7)
$\mathrm{Si}(1)-\mathrm{C}(11)$	1.879(6)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.193(8)
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.435(8)$
$\mathrm{O}(2)-\mathrm{C}(6)$	1.474(7)
$\mathrm{O}(3)-\mathrm{C}(5)$	1.508(8)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.521(9)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.547(8)
$\mathrm{C}(2)-\mathrm{C}(6)$	1.598(7)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.579(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.463(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.553(7)$
$\mathrm{C}(7)-\mathrm{C}(10)$	1.540(9)
$\mathrm{C}(7)-\mathrm{C}(9)$	1.560(9)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.575(9)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.409(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.413(8)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.412(7)$
$\mathrm{C}(13)-\mathrm{C}(14)$	1.397(8)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.410(7)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.370(8)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.422(7)$
$\mathrm{C}(17)$-C(22)	$1.435(8)$
$\mathrm{C}(18)$-C(19)	$1.392(8)$
$\mathrm{C}(19)$-C(20)	$1.382(8)$
$\mathrm{C}(20)-\mathrm{C}(21)$	1.408(7)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.384(8)
$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(17)$	108.8(2)
$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(7)$	103.4(2)
$\mathrm{C}(17)-\mathrm{Si}(1)-\mathrm{C}(7)$	110.7(3)
$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(11)$	109.7(3)

$\mathrm{C}(17)-\mathrm{Si}(1)-\mathrm{C}(11)$	111.9(3)
$\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{C}(11)$	112.0(3)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(6)$	92.8(5)
$\mathrm{C}(5)-\mathrm{O}(3)-\mathrm{Si}(1)$	126.3(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	125.9(7)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	140.6(7)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	93.5(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.0(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	84.9(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	107.8(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	101.5(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	106.4(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(3)$	107.8(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	106.5(5)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	104.4(6)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	110.8(6)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(2)$	88.9(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	103.6(5)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(9)$	109.5(6)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(8)$	105.7(7)
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	103.7(5)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{Si}(1)$	113.0(5)
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{Si}(1)$	114.4(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{Si}(1)$	109.8(4)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	116.2(5)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{Si}(1)$	122.0(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{Si}(1)$	121.7(5)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	123.3(6)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	117.1(6)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.2(6)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	119.7(7)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	122.5(6)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	114.2(6)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{Si}(1)$	120.8(5)
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{Si}(1)$	125.0(4)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	123.0(6)

$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$120.5(6)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.2(6)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$120.0(6)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$	$123.0(5)$

Symmetry transformations used to generate equivalent atoms:

Table B14. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for DR74M. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Si}(1)$	$49(1)$	$79(2)$	$31(1)$	$-1(1)$	$-6(1)$	$-4(1)$
$\mathrm{O}(1)$	$76(3)$	$101(5)$	$48(2)$	$5(3)$	$-16(2)$	$17(3)$
$\mathrm{O}(2)$	$63(3)$	$86(4)$	$36(2)$	$0(2)$	$-6(2)$	$6(3)$
$\mathrm{O}(3)$	$47(3)$	$81(4)$	$29(2)$	$2(2)$	$-5(2)$	$10(2)$
$\mathrm{C}(1)$	$76(6)$	$95(8)$	$47(4)$	$-13(5)$	$-8(4)$	$9(5)$
$\mathrm{C}(2)$	$74(5)$	$84(6)$	$29(3)$	$2(4)$	$-4(3)$	$-1(5)$
$\mathrm{C}(3)$	$60(4)$	$135(8)$	$33(3)$	$-3(4)$	$17(3)$	$-16(4)$
$\mathrm{C}(4)$	$38(3)$	$98(7)$	$39(3)$	$-4(4)$	$-3(3)$	$-3(4)$
$\mathrm{C}(5)$	$40(4)$	$121(8)$	$26(3)$	$6(4)$	$-12(3)$	$-26(5)$
$\mathrm{C}(6)$	$47(4)$	$83(6)$	$39(3)$	$9(4)$	$-8(3)$	$-4(4)$
$\mathrm{C}(7)$	$67(5)$	$110(7)$	$39(3)$	$12(4)$	$-6(3)$	$-16(4)$
$\mathrm{C}(8)$	$113(6)$	$121(9)$	$92(5)$	$-57(6)$	$39(5)$	$-21(6)$
$\mathrm{C}(9)$	$66(5)$	$120(8)$	$75(4)$	$-10(5)$	$19(4)$	$2(5)$
$\mathrm{C}(10)$	$138(8)$	$304(15)$	$77(5)$	$82(8)$	$52(6)$	$148(9)$
$\mathrm{C}(11)$	$32(3)$	$94(6)$	$21(3)$	$10(3)$	$-2(2)$	$-8(4)$
$\mathrm{C}(12)$	$36(3)$	$71(6)$	$51(3)$	$-16(4)$	$-5(3)$	$-2(3)$
$\mathrm{C}(13)$	$51(4)$	$90(7)$	$41(3)$	$1(4)$	$-3(3)$	$-3(4)$
$\mathrm{C}(14)$	$47(4)$	$101(8)$	$38(3)$	$2(4)$	$-1(3)$	$7(4)$
$\mathrm{C}(15)$	$50(4)$	$75(6)$	$72(5)$	$-17(4)$	$-1(4)$	$-24(4)$
$\mathrm{C}(16)$	$50(4)$	$80(6)$	$29(3)$	$-4(4)$	$1(3)$	$-13(4)$
$\mathrm{C}(17)$	$58(4)$	$77(6)$	$21(3)$	$-7(3)$	$-8(3)$	$13(4)$
$\mathrm{C}(18)$	$63(4)$	$73(6)$	$36(3)$	$8(4)$	$5(3)$	$6(4)$
$\mathrm{C}(19)$	$63(4)$	$86(7)$	$44(3)$	$19(4)$	$0(3)$	$-13(4)$
	$76(5)$	$94(7)$	$45(3)$	$-1(4)$	$15(3)$	$-26(4)$
	$95(4)$	$95(7)$	$24(3)$	$10(4)$	$0(3)$	$-11(4)$
		$31(3)$	$5(4)$	$2(3)$	$15(4)$	

Table B15. Hydrogen coordinates ($x \mathbf{1 0}^{4}$) and isotropic displacement parameters ($\AA^{2} \mathbf{x} \quad 10{ }^{\mathbf{3}}$) for DR74M.

	x	y	z	U(eq)
H(2)	12372	-1688	4353	82
H(3A)	13666	661	4682	91
H(3B)	14093	-1113	4829	91
H(4A)	14793	-64	6185	75
H(4B)	13842	984	6095	75
H(5)	13685	-1082	6900	82
H(6)	12367	-2747	5704	75
H(8A)	16043	-6218	5896	162
H(8B)	14930	-5710	5713	162
H(8C)	15440	-6950	6436	162
H(9A)	16596	-2491	6697	132
H(9B)	15780	-2986	5835	132
H(9C)	16815	-3869	6146	132
H(10A)	16489	-6147	7788	254
H(10B)	17006	-4455	7945	254
H(10C)	17251	-5689	7336	254
H(12)	14652	-3935	8745	69
H(13)	15179	-2408	9974	79
H(14)	15984	-5	9946	79
H(15)	16412	683	8781	86
H(16)	15970	-925	7625	68
H(18)	12930	-5095	6125	72
H(19)	11928	-7165	6204	83
H(20)	12393	-8864	7348	88
H(21)	13957	-8584	8376	79
H(22)	14982	-6566	8284	72

APPENDIX C

SELECTED SPECTRAL DATA

$$
\xrightarrow[c c c c c c c]{c}
$$

APPENDIX D

LETTERS OF PERMISSION

American Chemical Society's Policy on Theses and Dissertations

If your university requires a signed copy of this letter see contact information below.

Thank you for your request for permission to include your paper(s) or portions of text from your paper(s) in your thesis. Permission is now automatically granted; please pay special attention to the implications paragraph below. The Copyright Subcommittee of the Joint Board/Council Committees on Publications approved the following:

Copyright permission for published and submitted material from theses and dissertations
ACS extends blanket permission to students to include in their theses and dissertations their own articles, or portions thereof, that have been published in ACS journals or submitted to ACS journals for publication, provided that the ACS copyright credit line is noted on the appropriate page(s).

Publishing implications of electronic publication of theses and dissertation material
Students and their mentors should be aware that posting of theses and dissertation material on the Web prior to submission of material from that thesis or dissertation to an ACS journal may affect publication in that journal. Whether Web posting is considered prior publication may be evaluated on a case-by-case basis by the journal's editor. If an ACS journal editor considers Web posting to be "prior publication", the paper will not be accepted for publication in that journal. If you intend to submit your unpublished paper to ACS for publication, check with the appropriate editor prior to posting your manuscript electronically.

If your paper has not yet been published by ACS , we have no objection to your including the text or portions of the text in your thesis/dissertation in print and microfilm formats; please note, however, that electronic distribution or Web posting of the unpublished paper as part of your thesis in electronic formats might jeopardize publication of your paper by ACS. Please print the following credit line on the first page of your article: "Reproduced (or 'Reproduced in part') with permission from [JOURNAL NAME], in press (or 'submitted for publication'). Unpublished work copyright [CURRENT YEAR] American Chemical Society." Include appropriate information.

If your paper has already been published by ACS and you want to include the text or portions of the text in your thesis/dissertation in print or microfilm formats, please print the ACS copyright credit line on the first page of your article: "Reproduced (or 'Reproduced in part') with permission from [FULL REFERENCE CITATION.] Copyright [YEAR] American Chemical Society." Include appropriate information.

Submission to a Dissertation Distributor: If you plan to submit your thesis to UMI or to another dissertation distributor, you should not include the unpublished ACS paper in your thesis if the thesis will be disseminated electronically, until ACS has published your paper. After publication of the paper by ACS, you may release the entire thesis (not the individual ACS article by itself) for electronic dissemination through the distributor; ACS's copyright credit line should be printed on the first page of the ACS paper.

Use on an Intranet: The inclusion of your ACS unpublished or published manuscript is permitted in your thesis in print and microfilm formats. If ACS has published your paper you may include the manuscript in your thesis on an intranet that is not publicly available. Your ACS article cannot be posted electronically on a publicly available medium (i.e. one that is not password protected), such as but not limited to, electronic archives, Internet, library server, etc. The only material from your paper that can be posted on a public electronic medium is the article abstract, figures, and tables, and you may link to the article's DOI or post the article's author-directed URL link provided by ACS. This paragraph does not pertain to the dissertation distributor paragraph above.

Questions? Call +1 202/872-4368/4367. Send e-mail to copyright@acs.org or fax to +1 202-776-8112.

VITA

Name: Kay Ann Morris
Address: Texas A\&M University, Department of Chemistry, P.O. Box 30012, College Station, TX 77842-3012

E-mail Address: kaymorris77@gmail.com
Education: B.S., Chemistry, Cameron University, 2004

Publications: Morris, K. A.; Arendt, K. M.; Oh, S. H.; Romo, D. "Double Diastereoselective, Nucleophile-Catalyzed Aldol Lactonizations (NCAL) Leading to β-Lactone Fused Carbocycles and Extensions to β-Lactone Fused Tetrahydrofurans" 2010, submitted.

Duffy, R. J.; Morris, K. A.; Romo, D. "Synthesis of Unusually Strained Spiroheterocyclic Ring Systems and Their Exploits in Synthesis" Tetrahedron 2009, 65, 5879-5892

Duffy, R. J.; Morris, K. A.; Vallakati, R.; Zhang, W.; Romo, D. "Asymmetric Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy- β-Lactones Including Facile Conversion to Tetronic Acids: Application to (+)-Maculalactone A" J. Org. Chem. 2009, 74, 4772-4781.

Duffy, R. J.; Morris, K. A.; Romo, D. "Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy- β-Lactones Obtained by Epoxidation of 4-Alkylidene-2-Oxetanones" J. Am. Chem. Soc. 2005, 127, 16754-16755.

Bhaket, P.; Morris, K.; Stauffer, C. S.; Datta, A. "Total Synthesis of Cytotoxic Anhydrophytosphingosine Pachastrissamine (Jaspine B)" Org. Lett. 2005, 7, 875-876.

Honors: Cameron University Alumni Association Outstanding Young Alumni Award (2010)

Bristol-Myers Squibb Minority Chemist Graduate Fellowship (2008-2009)

American Chemical Society Division of Organic Chemistry Graduate Fellowship, sponsor: Eli Lilly (2007-2008)

Diversity Fellowship, Texas A\&M University (2004-2007)

[^0]: *Part of the data reported in this chapter is reproduced with permission from "Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy- β-Lactones Obtained by Epoxidation of 4-Alkylidene-2-Oxetanones" by Duffy, R. J.; Morris, K. A.; Romo, D. J. Am. Chem. Soc. 2005, 127, 16754-16755. Copyright 2005 American Chemical Society and from "Asymmetric Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy- $\boldsymbol{\beta}$-Lactones Including Facile Conversion to Tetronic Acids: Application to (+)-Maculalactone A" by Duffy, R. J.; Morris, K. A.; Vallakati, R.; Zhang, W.; Romo, D. J. Org. Chem. 2009, 74, 4722-4781. Copyright 2009 American Chemical Society See Appendix D.

