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ABSTRACT

Lp Bernstein Inequalities

and Radial Basis Function Approximation. (August 2010)

John Paul Ward, B.S., University of Georgia

Co–Chairs of Advisory Committee: Dr. Francis J. Narcowich
Dr. Joseph D. Ward

In approximation theory, three classical types of results are direct theorems,

Bernstein inequalities, and inverse theorems. In this paper, we include results about

radial basis function (RBF) approximation from all three classes. Bernstein inequal-

ities are a recent development in the theory of RBF approximation, and on Rd, only

L2 results are known for RBFs with algebraically decaying Fourier transforms (e.g.

the Sobolev splines and thin-plate splines). We will therefore extend what is known

by establishing Lp Bernstein inequalities for RBF networks on Rd. These inequalities

involve bounding a Bessel-potential norm of an RBF network by its corresponding Lp

norm in terms of the separation radius associated with the network. While Bernstein

inequalities have a variety of applications in approximation theory, they are most com-

monly used to prove inverse theorems. Therefore, using the Lp Bernstein inequalities

for RBF approximants, we will establish the corresponding inverse theorems. The

direct theorems of this paper relate to approximation in Lp(Rd) by RBFs which are

perturbations of Green’s functions. Results of this type are known for certain com-

pact domains, and results have recently been derived for approximation in Lp(Rd)

by RBFs that are Green’s functions. Therefore, we will prove that known results for

approximation in Lp(Rd) hold for a larger class of RBFs. We will then show how this

result can be used to derive rates for approximation by Wendland functions.
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1. INTRODUCTION

Radial basis function (RBF) approximation is primarily used for constructing approx-

imants to functions that are only known at discrete sets of points. Some advantages

of this theory are that RBF approximation methods work well in arbitrarily high

dimensional spaces, where other methods break down, and ease of implementataion.

For these reasons, RBF techniques are being used to solve a variety of applied prob-

lems, two examples being problems in statistical learning theory and numerical partial

differential equations.

Given an RBF Φ : Rd → R and a countable set of pointsX ⊂ Rd, we can define an

RBF approximation space SX(Φ) to be a collection of linear combinations of functions

from {Φ(· − ξ) : ξ ∈ X}. Approximation by such spaces has its origins in the work

of Duchon [8, 9], on the thin-plate splines, and Hardy [12], on the multiquadrics, in

the 1970s. Related work, including results about positive (semi-)definite functions,

can be traced back even further to the 1920s, [14]. However, it was not until the late

1980s that a solid foundation began to be laid for RBF approximation. In the late

80’s through the early 90’s, researchers investigated the case where the sets X were

required to be the scaled lattice points in Rd. This was an ideal starting point where

one has access to strong results like the Poisson summation formula and Wiener’s

lemma. With the work of researchers such as M.D. Buhmann and M.J.D. Powell, we

now have a good understanding of approximation in this setting, and much of this

work is summarized in the book of Buhmann, [5]. Unfortunately, in practice, one

is not always given the choice to work with such nice data sets. Therefore, research

in this field now focuses mainly on approximation spaces defined on scattered data

This dissertation follows the style of the Journal of Approximation Theory.
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sites. F.J. Narcowich and J.D. Ward have made significant contributions to this field

studying approximation on compact manifolds where the data sites are allowed to be

quasi-uniform.

The initial approach to scattered data approximation on Rd concerned the sta-

tionary setting, with the RBFs being scaled to be proportional to the fill distance.

In this paper, we will study the alternative nonstationary setting, which is relatively

new and still contains many open problems. One notable contribution to this area

has recently been produced by DeVore and Ron, [7]. In that paper, the authors

derived rates for the approximation of Lp functions by RBF spaces SX(Φ) where X

consists of scattered points in Rd and Φ satisfies a Green’s function-type condition.

The Wendland functions, which have some nice properties and are hence popular for

applications, do not fit the framework of [7]. Therefore, this paper will address a

generalization of a result from [7] that could potentially be broad enough to capture

the Wendland functions. Considering the fact that the Wendland functions, when re-

stricted to the sphere Sn, are perturbations of Green’s functions, cf. [16, Proposition

3.1], we will extend a result of [7] to include similar perturbations.

The other main topic of this paper will be Bernstein inequalities for RBF ap-

proximants. In 1912, S.N. Bernstein proved the first inequality of this type for L∞

norms of trigonometric polynomials, [4]. A generalization can be found in [6]; this

result, which is credited to Zygmund, states that any trigonometric polynomial T of

degree n satisfies ∣∣∣∣T (r)
∣∣∣∣
p
≤ nr ||T ||p

for 1 ≤ p ≤ ∞. A Bernstein inequality of an RBF approximant will take the form

of a Lp Sobolev norm being bounded by the corresponding Lp norm. The exact form

and the relationship to the classical Bernstein inequality will be explained in Section
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2. The first example of a Bernstein-type inequality for RBF approximants was proved

in 2001 by Schaback and Wendland for approximants in bounded domains, [19]; the

authors were able to show that a particular L2 Sobolev norm of an approximant is

bounded by its L∞ norm. More recently, Narcowich, Ward, and Wendland proved a

more standard type of Bernstein inequality, [18]. They proved L2 Bernstein inequali-

ties for approximants coming from an RBF approximation space SX(Φ) on Rd where

the Fourier transform of the RBF has algebraic decay. In the same year, Mhaskar

proved Lp Bernstein inequalities for certain Gaussian networks on Rd, [15]. Lastly, in

[16], Mhaskar, Narcowich, Prestin, and Ward were able to prove Bernstein inequali-

ties in Lp norms for a large class of spherical basis functions (SBFs). In this paper,

we will prove results on Rd that are analagous to those in [16].

In the remainder of this section we will cover preliminary material that will

be needed throughout the paper. We will begin by describing the approximation

procedure that will be used. This will be followed by the definitions of the Fourier

transform and several classes of smooth function spaces. Afterward, we will state

some inequalities for Lp functions and close the section by recalling some results from

measure theory.

Section 2 will cover the foremost topic of the paper; we will prove Lp Bernstein

inequalities for RBFs that have algebraically decaying Fourier transforms. Proving

these inequalities will require us to examine two properties of the RBF approximants.

First, we will need to show that for g =
∑

ξ∈X aξΦ(· − ξ) ∈ SX(Φ), ||a||p can be

bounded by ||g||p, thus showing that a is stable with respect to the norm of g. The

other property concerns the approximation of g by band-limited functions. After

proving Bernstein inequalites for the RBF approximants, we will be able to use them

to derive corresponding inverse theorems.

Direct theorems concerning approximation by RBFs will be the focus of Section
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3. The abilty of Green’s functions to invert differential operators was shown to be

useful for determining approximation results in [7]; however, there are some common

RBFs that do not fit into this framework. We will begin by proving analogous results

for approximation by perturbations of Green’s functions. This will then be followed

by some examples. In particular, polynomial reproducing functionals will be used

to show that the Wendland functions can be well approximated by local translates

of themselves, and an error bound for approximation by some particular Wendland

functions will be derived.

We conclude the paper in Section 4 with a summary of our results. We will

additionally discuss some possibilities for future research based on both of the main

topics contained in this paper. Due to the novelty of Bernstein inequalities and inverse

theorems in RBF approximation, there are several directions in which to continue the

research of Section 2. Future work relating to Section 3 will initially focus on proving

approximation bounds for all of the Wendland functions.

1.1 RBF Approximation Spaces

In this paper we will be concerned with the approximation of functions in Lp(Rd) for

1 ≤ p ≤ ∞. The approximants will be finite linear combinations of translates of an

RBF Φ, and the translates will come from a countable set X ⊂ Rd. The error of

this approximation, which is measured in a Sobolev-type norm, depends on both the

function Φ and the set X. Therefore, given an RBF Φ and a set X, we define the

RBF approximation space SX(Φ) by

SX(Φ) =

{∑
ξ∈Y

aξΦ(· − ξ) : Y ⊂ X,#Y <∞

}
∩ L1(Rd).
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By choosing Φ and X properly, one is able to prove results about rates of approxi-

mation as well as the stability of the approximation procedure.

Some RBFs that are commonly used in applications are the Gaussians, thin-

plate splines, multiquadrics, Wendland functions, and Sobolev splines. In Section 2,

we shall only consider RBFs that have algebraically decaying (generalized) Fourier

transforms. Note that both the thin-plate splines and Sobolev splines fall into this

category.

When analyzing an approximation procedure, one often wants to determine the

error of the approximation and the stability of the approximation procedure. When

considering an RBF approximation space SX(Φ), these quantities are bounded in

terms of certain measurements of the set X. The error of approximation will typically

be given in terms of the fill distance

hX = sup
x∈Rd

inf
ξ∈X
||x− ξ||2 ,

which measures how far a point in Rd can be from X, and the stability of the ap-

proximation will be determined by the separation radius

qX =
1

2
inf
ξ,ξ′∈X
ξ 6=ξ′

||ξ − ξ′||2 ,

which measures how close two points in X may be. In order to balance the rate of

approximation with the stability of the procedure, approximation will typically be

restricted to sets X for which hX is comparable to qX , and sets for which the mesh

ratio ρX := hX/qX is bounded by a constant will be called quasi-uniform. In this

paper, we will only consider approximation spaces SX(Φ) where X is quasi-uniform.
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1.2 The Fourier Transform

The Fourier transform is a fundamental tool for proving many results in approxima-

tion theory. We will use it to charcterize the RBFs under consideration and to prove

several results. Throughout this paper, we will use the following convention. Given

a function f : Rd → R in L1, its Fourier transform f̂ will be defined by

f̂(ω) =
1

(2π)d/2

∫
Rd
f(x)e−ix·ωdx.

1.3 Smoothness Classes

Let E be a subset of Rd, then we denote by Ck(E) the collection of real valued

functions defined on E that have continuous partial derivatives up to order k. The

set of functions in Ck(R) that converge to 0 at infinity will be denoted by Ck
0 , and

we represent the compactly supported elements of Ck(Rd) by Ck
c .

We define the Schwartz class S on Rd as follows. A function f : Rd → R is

said to be of Schwartz class if for all multi-indices α and β, there exists a constant

Cα,β > 0 such that ∣∣xαDβf(x)
∣∣ ≤ Cα,β

for all x ∈ Rd.

We shall use the standard definition for the Lp spaces. A Lebesgue measurable

function f : Rd → R is in Lp(Rd) for 1 ≤ p <∞ if

||f ||p =

(∫
Rd
|f(x)|p dx

)1/p

<∞,

and a Lebesgue measurable function f is said to be in L∞(Rd) if

||f ||∞ = ess sup
x∈Rd
|f(x)| <∞.
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We will say a measurable function f is locally integrable, denoted by L1
loc(Rd), if∫

E

|f(x)| dx <∞

for each bounded, measurable set E ⊆ Rd.

We will be concerned with approximating functions that lie in subspaces of Lp

spaces. The spaces that we will be mainly interested in are the Bessel-potential

spaces Lk,p(Rd), which coincide with the standard Sobolev spaces W k,p(Rd) when k

is a positive integer and 1 < p <∞, cf. [20, Section 5.3]. The Bessel potential spaces

are defined by

Lk,p = {f : f̂ = (1 + ||·||22)−k/2ĝ, g ∈ Lp(Rd)}

for 1 ≤ p ≤ ∞, and they are equipped with the norm

||f ||Lk,p = ||g||p .

In Section 3, we will be working with smoothness spaces associated with linear

operators. If T : Ck
c (Rd) → Cc(Rd) is linear, then we define a semi-norm and norm

on C∞c (Rd) by

|f |W (Lp(Rd),T ) = ||Tf ||p

||f ||W (Lp(Rd),T ) = ||f ||p + |f |W (Lp(Rd),T ) .

The completion of C∞c (Rd), with respect to the above norm, will be denoted by

W (Lp(Rd), T ).
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1.4 Some Results for Lp Spaces

We define the convolution of two measurable functions f and g by

f ∗ g =

∫
Rd
f(· − t)g(t)dt

wherever the integral exists. The Lp norm of the convolution of two measurable

functions can be bounded using Young’s inequality. One version of this inequality is

the following.

Theorem 1.1. ([11, Theorem 8.7]) If f ∈ L1 and g ∈ Lp (1 ≤ p ≤ ∞), then

f ∗ g(x) exists for almost every x, f ∗ g ∈ Lp, and

||f ∗ g||p ≤ ||f ||1 ||g||p .

Another useful result for Lp norms is Hölders’s inequality. Suppose 1 ≤ p ≤ ∞

and p−1 + q−1 = 1. Given two measurable functions f and g, we have

||fg||1 ≤ ||f ||p ||g||q ,

cf. [11, Chapter 6].

1.5 Measure Theory

We will now cover some results for M(Rd), the class of finite Borel measures on Rd.

This space is equipped with a norm defined by

||µ|| = |µ| (Rd),
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where |µ| is the total variation of µ. We would first like to point out that the definition

of the Fourier transform can be extended to M(Rd) as follows:

µ̂(ω) =
1

(2π)d/2

∫
Rd
e−ix·ωdµ(x).

Next we will show how to bound the norm of the convolution of a measure

with a function. Note that the following proposition provides an analog of Young’s

inequality.

Proposition 1.2. ([11, Proposition 8.49]) If f ∈ Lp(Rd) (1 ≤ p ≤ ∞) and

µ ∈ M(Rd), then the integral f ∗ µ(x) =
∫

Rd f(x − t)dµ(t) exists for almost every x,

f ∗ µ ∈ Lp, and ||f ∗ µ||p ≤ ||f ||p ||µ||.

In Section 3, we will need to consider a decomposition of measures. Specifically,

any measure µ ∈ M(Rd) can be written as µ = µa + µs + µd, where µa is absolutely

continuous with respect to Lebesgue measure, µd is a countable linear combination

of Dirac measures, and µs = µ− µa − µd is the singular continuous part of µ.
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2. BERNSTEIN INEQUALITIES AND INVERSE THEOREMS

In this section, we will establish Lp Bernstein inequalities for certain RBF approxi-

mation spaces SX(Φ), and these inequalities will take the form ||g||Lk,p ≤ Cq−kX ||g||p.

To prove this, we will use band-limited approximation with the bandwidth propor-

tional to 1/qX . Thus 1/qX acts similarly to a Nyquist frequency, and viewing 1/qX

as a frequency, we can see the connection to the classical Bernstein inequalities for

trigonometric polynomials. In particular, bandwidth is playing the role of the degree

of the polynomial from the classical inequality.

The basic strategy that we will use is the following, which is the same as the

one used in [16]. Given g =
∑

ξ∈X aξΦ(· − ξ) ∈ SX(Φ), we choose an appropriate

band-limited approximant gσ, and we have

||g||Lk,p ≤ ||gσ||Lk,p + ||g − gσ||Lk,p .

We then split the second term into two ratios.

||g||Lk,p ≤ ||gσ||Lk,p +

(
||a||p
||g||p

||g − gσ||Lk,p
||a||p

)
||g||p . (2.1)

The term ||a||p / ||g||p will be bounded by a stabilty ratio RS,p that is independent of

the function g. We will then need to bound the error of approximating g by band-

limited functions. Combining these results with a Bernstein inequality for band-

limited functions, we will be able to prove the Bernstein inequality for all functions

in SΦ(X).

2.1 Radial Basis Functions

In order to prove the Bernstein inequality, we will need to require certain properties

of the RBFs involved. As much of the work will be done in the Fourier domain,
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we state the constraints in terms of the RBFs’ Fourier transforms. Given a radial

function Φ : Rd → R with (generalized) Fourier transform Φ̂, let φ : (0,∞) → R be

the function defined by Φ̂(ω) = φ(||ω||2). We will say a function Φ is admissible of

order β if there exist constants C1, C2 > 0 and β > d such that for all σ ≥ 1, x ≥ 1/2,

and l ≤ ld := d(d+ 3)/2e, we have

(i) C1 ≤ φ(σx)(1 + (σx)2)β/2 ≤ C2

(ii)
∣∣∣((1 + (σx)2)β/2φ(σx)

)(l)
∣∣∣ ≤ C2

Two particular classes of admissible functions are the Sobolev splines and the

thin-plate splines. The Sobolev spline Φ of order β > d is given by

Φ = C ||·||(β−d)/2
2 K(d−β)/2(||·||2),

where K is a modified Bessel function of the third kind. This function possesses the

Fourier transform

Φ̂ = (1 + ||·||22)−β/2.

Since we will mainly be working with Φ̂, we will not discuss formulas and properties

of K and Φ. Instead, we direct the reader to [1, 2, 20, 22, 23]. For a postive integer

m > d/2, the thin-plate splines of order 2m take the form

Φ =

 ||·||
2m−d
2 d odd

||·||2m−d2 log ||·||2 d even

and possess the generalized Fourier transform

Φ̂ = C ||·||−2m
2 .

For further information on these functions see [23].
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2.2 Stability

One of the essential results for proving the Bernstein inequalities is a bound of a

stability ratio for SX(Φ). We define the Lp stability ratio RS,p associated with this

collection by

RS,p = sup
SX(Φ)3g 6=0

||a||p
||g||p

,

where g =
∑

ξ∈X aξΦ(·− ξ). The goal of this subsection is to bound the stabilty ratio

by Cq
d/p′−β
X for some C independent of a and X, where p′ is the conjugate exponent

to p. For this subsection, we will assume we are working with a fixed countable set

X ⊂ Rd with 0 < qX < 1 and an admissible function Φ of order β.

To begin, fix Y = {ξj}Nj=1 ⊂ X and g =
∑N

j=1 ajφ(·−ξj). We will derive a bound

for ||a||p / ||g||p and show the bound is independent of Y and a. The strategy for

proving this is as follows. Let K be a smooth function and define K̂σ(ω) = K̂(ω/σ).

We will then consider the convolutions Kσ ∗ g(x) =
∑N

j=1 ajKσ ∗ Φ(x − ξj). For an

appropriate choice of σ, the interpolation matrix (Aσ)i,j = Kσ ∗ Φ(ξi − ξj) will be

invertible, and the norm of its inverse will be bounded. Then a = A−1
σ (Kσ ∗ g)|Y

and ||a||p ≤ ||A−1
σ ||p ||Kσ ∗ g|Y ||p. We will then be left with bounding ||Kσ ∗ g|Y ||p in

terms of qX and ||g||p.

2.2.1 Convolution Kernels

We now define the class of smooth functions with which we will convolve g. Let K1

be the collection of Schwartz class functions K : Rd → R that satisfy:

(i) There is a κ : [0,∞)→ [0,∞) such that K̂(ω) = κ(||ω||2).

(ii) κ(r) = 0 for r ∈ [0, 1] and κ is nonvanishing on an open set.
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For each K ∈ K1, we define the family of functions {Kσ}σ≥1 by K̂σ(ω) = K̂(ω/σ).

Note that property (ii) requires each function Kσ to have a Fourier transform which

is 0 in a neighborhood of the origin, and as σ increases, so does this neighborhood.

The convolution Φ ∗ Kσ will retain this property and allow us to obtain diagonal

dominance in Aσ.

Before moving on, we will need to determine certain bounds on the functions in

K1. First we need an L∞ bound.

|Kσ(x)| ≤ Cd

∫
Rd
K̂σ(ω)dω

≤ Cdσ
d

∫ ∞
1

κ(t)td−1dt,

so

|Kσ(x)| ≤ CK,dσ
d. (2.2)

Next we will need a bound on Kσ for r = ||x||2 > 0. Writing Kσ as a Fourier

integral, we see

|Kσ(x)| = r−(d−2)/2

∣∣∣∣∫ ∞
σ

κ(t/σ)td/2J(d−2)/2(rt)dt

∣∣∣∣ ,
and by a change of variables, we have

|Kσ(x)| = σd/2+1r−(d−2)/2

∣∣∣∣∫ ∞
1

κ(t)td/2J(d−2)/2(σrt)dt

∣∣∣∣ .
Therefore by Proposition A.2

|Kσ(x)| ≤ CK,d
σd/2+1−ld

r(d−2)/2+ld
. (2.3)

Using (2.2) and (2.3), we will prove a bound of Lq norms of linear combinations

of translates of Kσ.
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Proposition 2.1. Let T : RN → L1(Rd) ∩ L∞(Rd) be the linear operator defined by

T (h) =
N∑
j=1

hjKσ(x− ξj).

Then

||T (h)||q ≤ Cκ,dσ
d/q′
(

1 +
1

(σq)(d−2)/2+ld

)1/q′

||h||q

Proof. After proving the bound in the cases q = 1 and q = ∞, the result will then

follow by the Riesz-Thorin theorem (cf. [21, Chapter 5]). First, by Proposition B.1

we have,

N∑
j=1

|Kσ(x− ξj)| ≤ ||Kσ||∞ +
∑

||x−ξj ||≥q

|Kσ(x− ξj)|

≤ CK,d

(
σd +

σd/2+1−ld

q(d−2)/2+ld

)
.

Simplifying the previous expression, we obtain

N∑
j=1

|Kσ(x− ξj)| ≤ CK,dσ
d

(
1 +

1

(σq)(d−2)/2+ld

)
. (2.4)

Therefore

||T (h)||∞ =

∣∣∣∣∣
∣∣∣∣∣
N∑
j=1

hjKσ(x− ξj)

∣∣∣∣∣
∣∣∣∣∣
∞

≤

∣∣∣∣∣
∣∣∣∣∣
N∑
j=1

|Kσ(x− ξj)|

∣∣∣∣∣
∣∣∣∣∣
∞

||h||∞

≤ Cκ,dσ
d

(
1 +

1

(σq)(d−2)/2+ld

)
||h||∞
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Now in the case q = 1,

||T (h)||1 =

∣∣∣∣∣
∣∣∣∣∣
N∑
j=1

hjKσ(x− ξj)

∣∣∣∣∣
∣∣∣∣∣
1

≤
N∑
j=1

|hj| ||Kσ||1

≤ CK ||h||1

2.2.2 Interpolation Matrices

The interpolation matrices (Aσ)i,j = Kσ ∗ Φ(ξi − ξj) will be shown to be invertible

by the following lemma. In addition, we will at the same time find a bound for the

`p norm of A−1
σ . Given an n × n matrix A with diagonal part D and F = A−D we

have the following.

Lemma 2.2. ([16, Lemma 5.2]) If D is invertible and ||D−1F ||1 < 1, then A is

invertible and ||A−1||1 < ||D−1||1 (1− ||D−1F ||1)−1.

The diagonal entries of Aσ are equal to Kσ ∗Φ(0), and the off diagonal absolute

column sums are of the form
∑

i 6=j |Kσ ∗ Φ(ξi − ξj)|. In order to apply the lemma, we

must bound the former from below and the latter from above. First we have

Kσ ∗ Φ(0) = Cd

∫ ∞
σ

κ(t/σ)φ(t)td−1dt

= Cdσ
d−β
∫ ∞

1

κ(t)

tβ−d+1
(σt)βφ(σt)dt

≥ CΦ,dσ
d−β
∫ ∞

1

κ(t)

tβ−d+1
dt

,
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and hence

Kσ ∗ Φ(0) ≥ CΦ,K,dσ
d−β. (2.5)

Next, we need a bound on |Kσ ∗ Φ(x)| for x 6= 0. Since Kσ ∗ Φ has a radial

Fourier transform in L1(Rd), we can write it as a one dimensional integral. Note that

in the following integral r = ||x||2.

|Kσ ∗ Φ(x)| = Cdr
−(d−2)/2

∣∣∣∣∫ ∞
σ

κ(t/σ)φ(t)td/2J(d−2)/2(rt)dt

∣∣∣∣
= Cd

σ(d+2)/2−β

r(d−2)/2

∣∣∣∣∫ ∞
1

κ(t)

tβ
(σt)βφ(σt)td/2J(d−2)/2(σrt)dt

∣∣∣∣ ,

and by Proposition A.2

|Kσ ∗ Φ(x)| ≤ CΦ,K,d
σ(d+2)/2−β

r(d−2)/2(σr)ld

With this estimate we can bound the off diagonal absolute column sums of Aσ. Using

Proposition B.1 we have

∑
i 6=j

|Kσ ∗ Φ(ξi − ξj)| ≤ CΦ,K,d
σd−β

(σqX)(d−2)/2+ld
. (2.6)

We are now ready to apply the lemma. Define

M = max

{
1,
(

2C2
Φ,K,d

C1
Φ,K,d

)1/((d−2)/2+ld)
}
,

where the constants C1
Φ,K,d and C2

Φ,K,d are from (2.5) and (2.6) respectively. We then

define σ0 = M/qX , so

(Kσ0 ∗ Φ(0))−1
∑
i 6=j

|Kσ0 ∗ Φ(ξi − ξj)| ≤
1

2
.

Therefore ∣∣∣∣A−1
σ0

∣∣∣∣
1
≤ CΦ,K,dσ

β−d
0 ,
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and in terms of qX , ∣∣∣∣A−1
σ0

∣∣∣∣
1
≤ CΦ,K,dq

d−β
X . (2.7)

As Aσ0 is self-adjoint the same bound holds for
∣∣∣∣A−1

σ0

∣∣∣∣
∞. The Riesz-Thorin

interpolation theorem can then be applied to get

∣∣∣∣A−1
σ0

∣∣∣∣
p
≤ CΦ,K,dq

d−β
X (2.8)

for 1 ≤ p ≤ ∞.

2.2.3 A Marcinkiewicz-Zygmund Type Inequality

To finish the bound of the stability ratio we require a bound of a discrete norm by a

continuous one. To accomplish this, we can use an argument similar to the proof of

[17, Theorem 1]. Let µ denote Lebesgue measure on Rd and let ν =
∑N

j=1 δξj .

Proposition 2.3. If f ∈ L1
µ ∩ L∞µ and K ∈ K1, then

||Kσ0 ∗ f |Y ||p ≤ CK,dq
−d/p
X ||f ||p,µ

Proof. First, define T (τ, f) =
∫

Rd Kσ0(· − y)f(y)dτy. Then choose a compactly sup-

ported simple function H such that ||H||p′,ν = 1 and

||Kσ0 ∗ f |Y ||p =
N∑
j=1

H(ξj)Kσ0 ∗ f(ξj).



18

Appealing to Fubini’s theorem, we get

||T (µ, f)||1,ν =

∣∣∣∣∫
Rd
T (µ, f)(x)H(x)dνx

∣∣∣∣
=

∣∣∣∣∫
Rd

∫
Rd
Kσ0(x− y)f(y)H(x)dµydνx

∣∣∣∣
=

∣∣∣∣∫
Rd

∫
Rd
Kσ0(x− y)f(y)H(x)dνxdµy

∣∣∣∣
=

∣∣∣∣∫
Rd
T (ν,H)(y)f(y)dµy

∣∣∣∣ .
Now we may apply Hölders’s inequality and Proposition 2.1 as follows:

||T (µ, f)||1,ν ≤ ||T (ν,H)||p′,µ ||f ||p,µ

=

∣∣∣∣∣
∣∣∣∣∣
N∑
j=1

Kσ0(· − ξj)H(ξj)

∣∣∣∣∣
∣∣∣∣∣
p′,µ

||f ||p,µ

≤ CK,dq
−d/p
X ||f ||p,µ .

2.2.4 Stability Ratio Bound

We are now in a position to prove the bound on the stabilty ratio for p ∈ [1,∞]. Recall

X is a countable subset of Rd with 0 < qX < 1, and Φ is an admissible function of

order β.

Theorem 2.4. Let RS,p be the stability ratio associated with SX(Φ). Then

RS,p = sup
SX(Φ)3g 6=0

||a||p
||g||p

≤ CΦ,dq
d/p′−β
X

Proof. It has been shown that the interpolation matrix (Aσ0)i,j = Kσ0 ∗ Φ(ξi − ξj) is

invertible. Therefore ||a||p ≤
∣∣∣∣A−1

σ0

∣∣∣∣
p
||Kσ0 ∗ g|Y ||p. Using (2.8), we get

||a||p ≤ CΦ,K,dq
d−β
X ||Kσ0 ∗ g|Y ||p .



19

Finally, applying the M-Z inequality and taking the infimum over K ∈ K1 gives the

result.

2.3 Band-Limited Approximation

As in the previous subsection, X will be a fixed countable set with 0 < qX < 1, and

Φ will be an admissible function of order β. At this point, we are left with bounding

the two remaining terms of (2.1). This will require choosing band-limited functions

that approximate the elements of SX(Φ) and satisfy the Bernstein inequality as well.

In particular, given g ∈ SX(Φ) we need to find a band-limited function gσ so that

||g − gσ||Lk,p
||a||p

≤ Cq
β−k−d/p′
X

for 1 ≤ p ≤ ∞. Since most of the work will be done in the Fourier domain, we will

require k < β − d.

2.3.1 Band-Limited Approximants

We begin by defining a class of band-limited functions. A function g ∈ SX(Φ) will be

convolved with one of these functions in order to define its band-limited approximant.

Let K2 be the collection of Schwartz class functions K : Rd → R that satisfy the

following properties:

(i) There is a nonincreasing κ : [0,∞)→ [0,∞) such that K̂(ω) = κ(||ω||2)

(ii) κ(ω) = 1 for ω ≤ 1
2
, and κ(ω) = 0 for ω ≥ 1

For each K ∈ K2, we define the family of functions {Kσ}σ≥1 by K̂σ(ω) = K̂(ω/σ).

Band-limited approximants to g ∈ SX(Φ) are then defined by gσ = Kσ ∗ g. The first

thing we must check is that gσ satisfies the Bernstein inequality. The following lemma

addresses this issue.
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Lemma 2.5. Let f ∈ L1(Rd) ∩ L∞(Rd), and let K ∈ K2. Then

||f ∗Kσ||Lm,p ≤ CK,dσ ||f ∗Kσ||Lm−1,p

for 1 ≤ p ≤ ∞ and any positive integer m.

Proof. We begin with an application of Young’s inequality.

||f ∗Kσ||Lm,p =

∣∣∣∣∣∣∣∣[(1 + ||·||22)m/2K̂σf̂
]∨∣∣∣∣∣∣∣∣

p

=

∣∣∣∣∣∣∣∣[(1 + ||·||22)1/2K̂2σ(1 + ||·||22)(m−1)/2K̂σf̂
]∨∣∣∣∣∣∣∣∣

p

≤
∣∣∣∣∣∣∣∣[(1 + ||·||22)1/2K̂2σ

]∨∣∣∣∣∣∣∣∣
1

∣∣∣∣∣∣∣∣[(1 + ||·||22)(m−1)/2K̂σf̂
]∨∣∣∣∣∣∣∣∣

p

=

∣∣∣∣∣∣∣∣[(1 + ||·||22)1/2K̂2σ

]∨∣∣∣∣∣∣∣∣
1

||f ∗Kσ||Lm−1,p .

Now it is known that there exist finite measures ν and λ such that

(1 + ||x||22)1/2 = ν̂(x) + 2π ||x||2 λ̂(x),

cf. [20, Chapter 5]. We therefore have∣∣∣∣∣∣∣∣[(1 + ||·||22)1/2K̂2σ

]∨∣∣∣∣∣∣∣∣
1

=

∣∣∣∣∣∣∣∣[ν̂K̂2σ + 2π ||·||2 λ̂K̂2σ

]∨∣∣∣∣∣∣∣∣
1

≤ ||ν ∗K2σ||1 + 2π

∣∣∣∣∣∣∣∣λ ∗ [||·||2 K̂2σ

]∨∣∣∣∣∣∣∣∣
1

≤ C

(
1 +

∣∣∣∣∣∣∣∣[||·||2 K̂2σ

]∨∣∣∣∣∣∣∣∣
1

)
,



21

and it remains to prove

∣∣∣∣∣∣∣∣[||·||2 K̂2σ

]∨∣∣∣∣∣∣∣∣
1

≤ Cσ. First

∣∣∣∣∣∣∣∣[||·||2 K̂2σ

]∨∣∣∣∣∣∣∣∣
∞
≤ Cd

∫
Rd
||ω||2 K̂2σ(ω)dω

= Cd

∫ 2σ

0

tκ

(
t

2σ

)
td−1dt

= Cdσ
1+d

∫ 2

0

κ

(
t

2

)
tddt,

and hence ∣∣∣∣∣∣∣∣[||·||2 K̂2σ

]∨∣∣∣∣∣∣∣∣
∞
≤ CK,dσ

1+d. (2.9)

Now, for ||x||2 = r > 0∣∣∣∣[||·||2 K̂2σ

]∨
(x)

∣∣∣∣ = r−(d−2)/2

∣∣∣∣∫ 2σ

0

tκ

(
t

2σ

)
td/2J(d−2)/2(rt)dt

∣∣∣∣
= r−(d−2)/2σd/2+2

∣∣∣∣∫ 2

0

tκ

(
t

2

)
td/2J(d−2)/2(σrt)dt

∣∣∣∣ ,

so by Proposition A.2 ∣∣∣∣[||·||2 K̂2σ

]∨
(r)

∣∣∣∣ ≤ CK,d
r−(d−2)/2σd/2+2

(σr)ld
. (2.10)

Utilizing inequalities 2.9 and 2.10, we get∣∣∣∣∣∣∣∣[||·||2 K̂2σ

]∨∣∣∣∣∣∣∣∣
1

≤ Cdσ
−d
∣∣∣∣∣∣∣∣[||·||2 K̂2σ

]∨∣∣∣∣∣∣∣∣
∞

+

∫
||x||2≥

1
σ

∣∣∣∣[||·||2 K̂2σ

]∨
(x)

∣∣∣∣ dx
≤ CK,dσ + CK,d

∫ ∞
1
σ

r−(d−2)/2σd/2+2

(σr)ld
rd−1dr

≤ CK,dσ
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Now if we define σ1 := 1/qX , then the next corollary follows easily.

Corollary 2.6. For all g ∈ SX(Φ),

||g ∗Kσ1||Lk,p ≤ CΦ,K,dq
−k
X ||g||p

2.3.2 Approximation Analysis

Now that we know the band-limited approximants to the elements of SX(Φ) satisfy the

Bernstein inequality, we must bound the error of approximation in Lk,p. We will begin

by bounding the approximation error in Lk,1 and Lk,∞ and then use interpolation to

obtain the result for all other values of p. In both extremal cases, this reduces to

bounding the error of approximating the RBF by band-limited functions. For p = 1

this is straightforward; however, the case p =∞ is more involved.

In order to simplify some expressions, we define the functions

EΦ,K,k :=
∣∣∣((1 + ||·||22)k/2(Φ− Φ ∗Kσ1)∧

)∨∣∣∣ ,
h(t) := φ(t)(1 + t2)β/2.

If we are to bound the error of approximating Φ by band-limited functions, we will

certainly need a point-wise bound of EΦ,K,k. Let us begin with an L∞ bound.

EΦ,K,k(x) ≤
∫

Rd
(1− K̂σ1(ω))Φ̂(ω)(1 + ||ω||22)k/2dω

≤ Cdσ1
d−β+k

∫ ∞
1/2

(1− κ(t))h(σ1t)t
d−1

(1/σ1
2 + t2)(β−k)/2

dt.

Therefore

EΦ,K,k(x) ≤ Cβ,K,dσ1
d−β+k. (2.11)
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Next, for ||x||2 = r > 0

EΦ,K,k(x) = r−(d−2)/2

∣∣∣∣∫ ∞
σ1/2

(1− κ(t/σ1))h(t)

(1 + t2)(β−k)/2
td/2J(d−2)/2(rt)dt

∣∣∣∣
=

σ1
d/2+1−β+k

r(d−2)/2

∣∣∣∣∫ ∞
1/2

(1− κ(t))h(σ1t)

(1/σ1
2 + t2)(β−k)/2

td/2J(d−2)/2(σ1rt)dt

∣∣∣∣ .

Therefore by Proposition A.2

EΦ,K,k(x) ≤ CΦ,K,d
r−(d−2)/2σ1

d/2+1−β+k

(σ1r)ld
(2.12)

With these results we are now able to bound the error in approximating SX(Φ).

Let Y = {ξi}Ni=1 be a finite subset of X, and let K ∈ K2

Theorem 2.7. Given g =
∑N

j=1 ajΦ(· − ξj) ∈ SX(Φ), we have

||g − g ∗Kσ1||Lk,p ≤ CΦ,dq
β−k−d/p′
X ||a||p

for 1 ≤ p ≤ ∞.

Proof. We will show this holds when p = 1 and p = ∞, and the result will follow

from the Riesz-Thorin interpolation theorem. Letting gσ1 = g ∗Kσ1 , we have

||g − gσ1 ||Lk,∞ =

∣∣∣∣∣
∣∣∣∣∣
N∑
j=1

ajΦ(· − ξj)−
N∑
j=1

ajΦ ∗Kσ1(· − ξj)

∣∣∣∣∣
∣∣∣∣∣
Lk,∞

=

∣∣∣∣∣
∣∣∣∣∣
N∑
j=1

aj
(
(1 + ||·||22)k/2(Φ− Φ ∗Kσ1)∧

)∨
(· − ξj)

∣∣∣∣∣
∣∣∣∣∣
∞

,

and using the notation for EΦ,K,k above

||g − gσ1 ||Lk,∞ ≤ ||a||∞

∣∣∣∣∣
∣∣∣∣∣
N∑
j=1

EΦ,K,k(· − ξj)

∣∣∣∣∣
∣∣∣∣∣
∞
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Now by (2.11), (2.12), and Proposition B.1 we have

N∑
j=1

EΦ,K,k(x− ξj) ≤ ||EΦ,K,k||∞ +
∑

||x−ξj ||2≥qY

EΦ,K,k(x− ξj)

≤ CΦ,K,dσ1
d−β+k

(
1 +

1

(σ1qX)(d−2)/2+ld

)
.

For p = 1, we have ||g − gσ1||Lk,1 ≤ ||a||1 ||EΦ,K,k||1, and

||EΦ,K,k||1 ≤ Cdq
d
X ||EΦ,K,k||∞ +

∫
||x||2≥qX

EΦ,K,k(x)dx

≤ CΦ,K,dσ1
k−β + CΦ,K,d

∫ ∞
q

σ1
d/2+1−β+k−ld

r(d−2)/2+ld−d+1
dr

≤ CΦ,K,dσ1
k−β

We finish the proof by taking the infimum over K ∈ K2.

2.4 Bernstein Inequalities and Inverse Theorems

In approximation theory, there are a variety of applications for Bernstein inequalities.

While they are most commonly associated with the derivation of inverse theorems,

they can also be useful in proving direct theorems. For example, a Bernstein inequality

for multivariate polynomials is used in certain RBF approximation error estimates,

cf. [23, Chapter 11]. However, in this paper, we will only address the Bernstein

inequalities themselves and their matching inverse theorems.

With the bound of the stability ratio and the band-limited approximation esti-

mate in hand, we are in a position to prove the Bernstein inequalities. Let X be a

countable set with 0 < qX < 1, and let Φ be an admissible function of order β.
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Theorem 2.8. If k < β − d, 1 ≤ p ≤ ∞, and g ∈ SX(Φ), then

||g||Lk,p ≤ CΦ,dq
−k
X ||g||p

Proof. Let gσ1 be the previously defined approximant of g. Then

||g||Lk,p ≤ ||gσ1||Lk,p + ||g − gσ1 ||Lk,p

= ||gσ1||Lk,p +

(
||a||p
||g||p

||g − gσ1||Lk,p
||a||p

)
||g||p

Applying Theorem 2.4, Corollary 2.6, and Theorem 2.7, we get

||g||Lk,p ≤ ||gσ1||Lk,p +

(
||a||p
||g||p

||g − gσ1||Lk,p
||a||p

)
||g||p

≤ CΦ,dq
−k
X ||g||p +

(
CΦ,dq

d
p′−β
X

)(
CΦ,dq

β−k− d
p′

X

)
||g||p

≤ CΦ,dq
−k
X ||g||p .

Having established Bernstein inequalities for SX(Φ), we can now prove the cor-

responding inverse theorems. In what follows, Xn will denote a sequence of countable

sets in Rd such that Xn ⊂ Xn+1, ρXn = ρn ≤ C, and 0 < hn, qn < 2−n, and Φ will be

an admissible RBF of order β. We will additionally use the notation Sn = SXn(Φ).

In this situation, we define the error of approximation by

E(f, Sn)Lp = inf
g∈Sn
||f − g||Lp(Rd) .

Using the standard technique for proving inverse theorems from Bernstein inequalities,

we will show that if a function is well approximated by Sn then it must lie in some

Bessel-potential space.
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Theorem 2.9. Let 1 ≤ p ≤ ∞, and let f ∈ Lp(Rd). If there is a constant cf > 0,

independent of n, and a positive integer l such that

E(f, Sn)Lp ≤ cfh
l
n,

then for every 0 ≤ k < min{β − d, l}, f ∈ Lk,p.

Proof. Let fn ∈ Sn be a sequence of functions satisfying ||f − fn||p ≤ 2cfh
l
n. Note

that fn ∈ Sm for m > n. We now have

||fn+1 − fn||Lk,p ≤ CΦ,d

(
hn+1

qn+1

)k
h−kn+1 ||fn+1 − fn||p

≤ CΦ,dh
−k
n+1(||fn+1 − f ||p + ||f − fn||p)

≤ CΦ,d,fh
−k
n+1(hln+1 + hln),

and since hn < 2−n, it follows that

||fn+1 − fn||Lk,p ≤ CΦ,d,f2
−(l−k)n.

This shows fn is a Cauchy sequence in Lk,p. Since Lk,p is complete, fn converges to

some function h ∈ Lk,p. Since fn converges to both f and h in Lp, f = h a.e., and

therefore f ∈ Lk,p.
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3. APPROXIMATION ERROR ESTIMATES

Now that we have established Bernstein inequalities and inverse theorems for RBF

approximants, we turn to the issue of direct theorems. Our approach will be to

extend a recent result of DeVore and Ron. In the paper [7], the authors made use of a

Green’s function-type condition in order to determine rates of approximation. They

were concerned with approximating functions in Lp(Rd) by approximation spaces

SX(Φ), where X has no accumulation points and hX is finite. The essence of their

argument is as follows.

Property 1. Suppose T : Ck
c (Rd) → Cc(Rd) is a linear operator, Φ ∈ L1

loc(Rd), and

for any f ∈ Ck
c (Rd) we have

f =

∫
Rd
Tf(t)Φ(· − t)dt. (3.1)

Now, given an f ∈ Ck
c (Rd), we can form an approximant by replacing Φ with a

suitable kernel in (3.1). Since we are interested in approximating f by SX(Φ), the

kernel should have the form

K(·, t) =
∑
ξ∈X(t)

A(t, ξ)Φ(· − ξ). (3.2)

The collection of possible kernels is restricted by requiring X(t) ⊂ B(t, ChX) ∩ X

for a constant C > 0 and additionally requiring A(t, ξ) to be in L1 for all ξ. An

essential ingredient for deriving approximation rates is showing that Φ can be well

approximated by K. We therefore define the error kernel

E(x, t) := Φ(x− t)−K(x, t). (3.3)

and assume the following property.
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Property 2. Given Φ, there exists a kernel K of the form (3.2) and constants l > d,

κ > 0, and C > 0 such that

|E(x, t)| ≤ ChκX(1 + ||x− t||2)−l.

While this approach can be used to provide estimates for some popular RBFs,

e.g. the thin-plate splines, not all RBFs are Green’s functions. Therefore our goal

will be to extend the class of applicable RBFs. Note that in [7], the authors were

concerned with proving error bounds that account for the local density of the data

sites. As our goal is to extend the class of applicable RBFs, we will not discuss this

more technical approach; instead we will assume X is quasi-uniform, and our bound

will be written in terms of the global density parameter hX .

3.1 General Error Estimates

In this subsection, we will show that it is possible to replace Property 1 by a con-

dition that only requires Φ to be “close” to a function that satisfies this property.

Specifically, we will consider RBFs Φ that satisfy the following.

Property 1’. Let T : Ck
c (Rd) → Cc(Rd) and G ∈ L1

loc(Rd) be a pair satisfying

Property 1, and suppose G = Φ ∗ µn + νn where Φ ∈ L1
loc(Rd), µn is a sequence of

compactly supported, finite Borel measures with ||µn|| bounded by a constant, and νn

is a sequence of finite Borel measures with ||νn|| converging to 0.

The next theorem provides an error bound for approximation by SX(Φ) where

X is quasi-uniform. For 1 ≤ p ≤ ∞, we define the error of approximation by

E(f, SX(Φ))p = inf
S∈SX(Φ)

||f − S||Lp(Rd)
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Theorem 3.1. Suppose Φ is an RBF satisfying Property 1’ and Property 2, and let

f ∈ Ck
c (Rd), then

E(f, SX(Φ))p ≤ ChκX |f |W (Lp(Rd),T )

Proof. First, we define a sequence of approximants to f by

Fn :=

∫
Rd
Tf ∗ µn(t)K(·, t)dt

=
∑
ξ∈X

Φ(· − ξ)
∫

Rd
Tf ∗ µn(t)A(t, ξ)dt.

Note that this sum is finite due to the compact support of Tf ∗µn and the conditions

imposed on A(·, ·). Now

|f − Fn| =

∣∣∣∣∫
Rd
Tf(t)G(· − t)dt−

∫
Rd
Tf ∗ µn(t)K(·, t)dt

∣∣∣∣
=

∣∣∣∣∫
Rd
Tf ∗ µn(t) (Φ(· − t)−K(·, t)) dt+ Tf ∗ νn

∣∣∣∣
≤

∫
Rd
|Tf ∗ µn(t)| |Φ(· − t)−K(·, t)| dt+ |Tf ∗ νn| ,

and by Property 2,

|f − Fn| ≤ ChkX

∫
Rd
|Tf ∗ µn(t)| (1 + ||· − t||2)−ldt+ |Tf ∗ νn| .

Therefore

||f − Fn||p ≤ ChkX
∣∣∣∣|Tf ∗ µn| ∗ (1 + ||·||2)−l

∣∣∣∣
p

+ ||Tf ∗ νn||p

≤ ChkX ||Tf ||p ||µn||+ ||Tf ||p ||νn||

by Proposition 1.2. Hence, for some N sufficiently large, we will have

||f − FN ||p ≤ ChkX ||Tf ||p ,

where C depends only on Φ, G, and the constant from Property 2.
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Now that we have established this result for Ck
c , we would like to extend it to

all of W (Lp(Rd), T ). This is accomplished in the following corollary using a density

argument.

Corollary 3.2. Suppose f ∈ W (Lp(Rd), T ), then

E(f, SX(Φ))p ≤ ChκX |f |W (Lp(Rd),T )

Proof. Let fn ∈ C∞c be a sequence converging to f in W (Lp(Rd), T ), and let Fn ∈

SX(Φ) be a sequence of approximants satisfying

||fn − Fn||p ≤ ChκX |fn|W (Lp(Rd),T ) .

Then

||f − Fn||p ≤ ||f − fn||p + ||fn − Fn||p

≤ ||f − fn||p + ChκX |fn|W (Lp(Rd),T ) .

Now since fn converges to f in W (Lp(Rd), T ), the result follows.

3.2 Special Cases

We will now give some examples showing how to verify the properties listed above.

One goal of this theory is to derive approximation results for the Wendland functions,

which are a class of compactly supported RBFs. We will denote by Φd,k, the Wendland

function in C2k(Rd) of minimal degree. In this section, we will always assume that X

is a quasi-uniform subset of Rd.

First we will show that Property 2 holds for the Wendland functions when k ≥ 1.

Following the proof for the thin-plate splines presented in [7], we will make use of local

polynomial reproduction. To that end, let P denote the space of polynomials of degree
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at most 2k − 1 on Rd. Now for a finite set Y ⊂ Rd, let ΛY be the set of extensions

to C(Rd) of linear combinations of the point evalution functionals δy : P |Y → R. We

will assume the following:

(i) There is a constant C1 such that X(t) ⊂ B(t, C1hX) ∩X for all t ∈ Rd.

(ii) For all t, there exists λt ∈ ΛX(t) such that λt agrees with δt on P .

(iii) ||λt|| ≤ C2 for some constant C2 independent of t.

Based on these assumptions, λt takes the form
∑

ξ∈X(t) A(ξ, t)δξ, and we can define

the kernel approximant to Φd,k by

K(x, t) = λt(Φd,k(x− ·))

=
∑
ξ∈X(t)

A(t, ξ)Φ(x− ξ).

One way to verify the validity of our assumptions is the following. For each

x ∈ hXZd, we denote by Qx the cube of side length hX centered at x. This provides a

partition of Rd into cubes. We then associate to each cube Qx the ball B(x,C3hX) for

some constant C3, and for each t in a fixed Qx0 , we define X(t) = X ∩ B(x0, C3hX).

By choosing C3 appropriately and bounding the possible values of hX , one can show

that there exists λt satisfying the above properties, with C2 = 2, for all t ∈ Qx0 ,

cf. [23, Chapter 3]. As x0 was arbitrary, the result holds for all t ∈ Rd. Note that

by using the same set X(t) for all t in a given cube Qx0 , we are able to choose the

coefficients A(ξ, t) so that they are continuous with respect to t in the interior of the

cube. To see this, let {pi}mi=1 be a basis for P and let B(x0, C3hX)∩X = {ξj}Nj=1. We

now define the matrix Mi,j := pi(ξj) and the t dependent vector β(t)i := pi(t). Since

λt reproduces polynomials, there exists a vector α(t) such that Mα(t) = β(t) for all

t ∈ Qx0 . We could therefore choose a specific α(t) by means of a pseudo-inverse, i.e.
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α(t) := MT (MMT )−1β(t). In this form it is clear that α is a continuous function of

t and λt :=
∑N

i=1 αi(t)δξi satisfies the required properties.

We will now use the polynomial reproducing functionals λt to verify Property

2. Note that Φd,k(x − t) and λt(Φd,k(x − ·)) are both zero for ||x− t||2 > 1 + C1hX .

Therefore in order to verify Property 2, it suffices to show that for ||x− t||2 < 1+C1hX

we have |Φd,k(x− t)− λ0(Φd,k(x− ·))| ≤ Ch2k
X . This inequality will only be verified

for t = 0, as all other cases work similarly. To begin, fix x, and let R be the 2k − 1

degree Taylor polynomial of Φd,k at x. Then

|Φd,k(x)− λ0(Φd,k(x− ·))| = |Φd,k(x)−R(x)− λ0(Φd,k(x− ·)−R(x− ·))|

≤ ||λ0|| ||Φd,k(x− ·)−R(x− ·)||L∞(B(0,C1hX))

= ||λ0|| ||Φd,k −R||L∞(B(x,C1hX))

≤ CΦd,k ||λ0|| ||Φd,k||W 2k,∞ h
2k
X

We have therefore shown that each Φd,k satisfies Property 2 with κ = 2k.

In order to prove Property 1’, we can work in the Fourier domain, where the

convolution becomes a standard product. For example, to show that G = Φ ∗ µ for

some µ ∈M(Rd), we can verify that Ĝ/Φ̂ is the Fourier transform of some µ ∈M(Rd).

The difficulty lies in characterizing the space of Fourier transforms of M(Rd). This

is known to be a very difficult problem, cf. [3]. However, in certain situations, we are

able to make this determination. Suppose that we know Φ̂/Ĝ is the Fourier transform

of some µ ∈ M(R). Then the following result will give conditions for µ̂−1 = Ĝ/Φ̂

being the Fourier transform of an element of M(R). Recall the decomposition of

measures from Section 1; a Borel measure µ can be written as µa + µs + µd. Using

this notation, we state the following theorem of Benedetto. Note that the author
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proved this theorem in a more general setting with R replaced by an arbitrary locally

compact abelian group.

Theorem 3.3. ([3, Theorem 2.4.4]) Let µ ∈ M(R) such that |µ̂| never vanishes

and

||µs|| < inf
x∈R
|µ̂d(x)| .

Then µ̂−1 is the Fourier transform of an element of M(R)

With this theorem, we will be able to verify Property 1’ for the Wendland func-

tions on R. At this point we are only able to handle the 1-dimensional case; however,

we would like to point out that the authors of [16] were able to show that when

restricted to Sn, all of the Wendland functions are perturbations of Green’s functions.

We now fix k ≥ 1, and we must select a Green’s function G and corresponding

differential operator T so that Φ̂1,k/Ĝ satisfies the necessary conditions. Considering

the decay of Φ̂1,k, we choose Ĝ = (1 + |·|2k+2)−1 and T = (1 + (−1)k+1∆k+1). Note

that for 1 ≤ p <∞ we have W (Lp(R), T ) is equivalent to the spaces W 2k+2,p(R) and

L2k+2,p(R). We now verify the hypotheses of Theorem 3.3. By Proposition C.2, we

know that for some Bk > 0 and C ∈ R we have

Φ̂1,k

Ĝ
(x) = Φ̂1,k +Bk

(
1

k!
+

(−1)k+1

k!2k
cos(x)− C sin(x)

x
+ ĥ(x)

)
where ĥ is the Fourier transform of an L1 function, h. The fact that Φ̂1,k/Ĝ is positive

follows from the positivity of Φ̂1,k, cf. [23, Chapter 10]. Now let µ be the measure

defined by

µ = Φ1,k +
√

2πBk

(
1

k!
δ0 +

(−1)k+1

k!2k+1
(δ−1 + δ1)− C

2
χ

[−1,1] +
1√
2π
h

)
.

Then µ is a finite Borel measure with µ̂ = Φ̂1,k/Ĝ. Additionally, µ has no singular
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continuous part, and

|µ̂d(ω)| = Bk

(
1

k!
+

(−1)k+1

k!2k
cos(ω)

)
≥ Bk

2k!

Therefore Theorem 3.3 implies that 1/µ̂ = Ĝ/Φ̂1,k is the Fourier transform of some

finite Borel measure µ̃. By letting µ̃n be the restriction of µ̃ to B(0, n), we can see

that

G = Φ1,k ∗ µ̃

= Φ1,k ∗ µ̃n + Φ1,k ∗ (µ̃− µ̃n),

and hence corollary 3.2 applies.

Theorem 3.4. Let Φ1,k be as above, and let X be a quasi-uniform subset of R. Then

for f ∈ W 2k+2,p(R) and 1 ≤ p <∞, we have

E(f, SX(Φ1,k))p ≤ Ch2k
X |f |W 2k+2,p(R)

By examining this example, we can determine what the analogous result would

be for the remaining Wendland functions. If k ≥ 1, then it is known that Φ̂d,k > 0

and

c1(1 + ||ω||22)−(d+2k+1)/2 ≤ Φ̂d,k(ω) ≤ c2(1 + ||ω||22)−(d+2k+1)/2

for some positive constants c1 and c2, cf. [23, Theorem 10.35]. Therefore, we

could choose G to be the Sobolev spline of order d + 2k + 1 (i.e. Ĝ(ω) = (1 +

||ω||22)−(d+2k+1)/2), which is the Green’s function for the pseudo-differential operator

T = (1−∆)(d+2k+1)/2, so that Ĝ and Φ̂d,k have similar decay. In this situation, Ĝ/Φ̂d,k

is a continous function that is bounded above and bounded away from 0. If we as-

sume Ĝ/Φ̂d,k is the Fourier transform of an element of M(Rd), then we could apply

corollary 3.2 to obtain the following.
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Conjecture 3.5. Let Φd,k be as above with k ≥ 1, and let X be a quasi-uniform

subset of Rd. Then for f ∈ Ld+2k+1,p(Rd) and 1 ≤ p <∞, we have

E(f, SX(Φd,k))p ≤ Ch2k
X |f |Ld+2k+1,p(Rd) .
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4. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have proved results concerning the approximation of functions in

Lp(Rd) by RBF approximation spaces. Using the stability of the approximants and

band-limited approximation, we were able to show that functions in SX(Φ) satisfy a

Bernstein inequality if Φ has an algebraically decaying (generalized) Fourier trans-

form. Making use of these inequalities, we were able to prove corresponding inverse

theorems. Specifically, we showed that if a function can be approximated well by

SXn(Φ), where hXn converges to 0, then that function must lie in a Bessel-potential

space.

While the Bernstein inequalities contained in this paper used norms defined

on Rd, there are many instances for which one is interested in approximation on a

bounded domain. In [19], Schaback and Wendland proved a Bernstein-type inequality

for bounded domians; however, it was restricted to a particular L2 Sobolev norm of

an approximant being bounded by its L∞ norm. It would be interesting to know

if one could prove a Bernstein or Markov type inequality for RBF approximants on

a bounded domain Ω ⊂ Rd, one in which an Lp Sobolev norm is bounded by the

corresponding Lp norm.

Another avenue for future research in this area concerns the choice of RBF.

Our method of proving the Bernstein inequalities relied on the algebraic decay of the

Fourier transforms of the RBFs involved. Is it possible to modify this proof so that we

can include RBFs with exponentially decaying Fourier transforms, e.g. the Gaussians

and inverse multiquadrics? In the case of the Gaussians, Mhaskar has shown that a

Bernstein inequality does hold for RBF approximants if one bounds the number of

centers in X, [15].

In Section 3, we proved a direct theorem concerning approximation by perturba-
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tions of Green’s functions. To accomlish this, we used the fact that Green’s functions

provide a way to invert pseudo-differential operators. While we were able to verify

the hypotheses for some specific Wendland functions, we could not show that the

result holds in general. One direction for future research is to show that all of the

Wendland functions satisfy the necessary conditions.

Prior to the work [7] of Devore and Ron, there were results for Lp approximation

by Radial Basis functions on Rd, [13, 24]. One improvement of the Devore-Ron paper

is that the error bounds account for the local density of the data. Previous work had

only dealt with bounding the error in terms of a global density parameter, as we did

in Section 3. Since we have adapted the method of [7], it seems reasonable that we

should be able to prove a result about approximating by perturbations of Green’s

functions where we account for the local density of the data sites.
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APPENDIX A

BESSEL FUNCTIONS AND FOURIER INTEGRALS

A d-dimensional Fourier integral of a radial function reduces to a 1-dimensional

integral involving a Bessel function of the first kind. In what follows, we will list some

of the properties of these Bessel functions and prove two propositions which will be

useful for bounding Fourier integrals.

Proposition A.1. ([23, Proposition 5.4 & Proposition 5.6])

(1) d
dz
{zνJν(z)} = zνJν−1(z)

(2) J1/2(z) =
√

2
πz

sin(z), J−1/2(z) =
√

2
πz

cos(z)

(3) Jν(r) =
√

2
πr

cos(r − νπ
2
− π

4
) +O(r−3/2) for r →∞ and ν ∈ R

(4) J2
l/2(r) ≤ 2l+2

πr
for r > 0 and l ∈ N

(5) limr→0 r
−lJ2

l/2(r) = 1
2lΓ2(l/2+1)

for l ∈ N

The next proposition makes use of integration by parts in order to bound the

Fourier integral of a function whose support lies outside of a neighborhood of the

origin.

Proposition A.2. Let α ≥ 1, and let f ∈ Cn([0,∞)) for some natural number

n > 1. Also, assume there are constants C, ε > 0 such that f = 0 on [0, 1
2
] and∣∣f (j)(t)

∣∣ ≤ Ct−d−ε for j ≤ n. Then there is a constant Cε such that∣∣∣∫∞1/2 f(t)td/2J(d−2)/2(αt)dt
∣∣∣ ≤ Cεα

−n

Proof. We first define a sequence of functions arising when integrating by parts. Let

f0 = f , f1 = f ′, and fj =
(
fj−1

t

)′
for j ≥ 2. Note that when j ≥ 2, there are con-

stants cj,l such that fj(t) =
∑j

l=1 cj,lf
(l)(t)t−2j+l+1, and therefore |fj(t)| ≤ Ct−d−j+1−ε.
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Applying the Dominated Convergence Theorem, we have∣∣∣∣∫ ∞
1/2

f0(t)td/2J(d−2)/2(αt)dt

∣∣∣∣ = lim
b→∞

∣∣∣∣∫ b

1/2

f0(t)td/2J(d−2)/2(αt)dt

∣∣∣∣ .
After ingetrating by parts and taking the limit we get∣∣∣∣∫ ∞

1/2

f0(t)td/2J(d−2)/2(αt)dt

∣∣∣∣ =
1

α

∣∣∣∣∫ ∞
1/2

f1(t)

t
td/2+1Jd/2(αt)dt

∣∣∣∣ .
Integrating by parts j times, we have∣∣∣∣∫ ∞

1/2

f0(t)td/2J(d−2)/2(αt)dt

∣∣∣∣ =
1

αj
lim
b→∞

∣∣∣∣∫ b

1/2

fj(t)

t
td/2+jJd/2+j−1(αt)dt

∣∣∣∣
=

1

αj+1

∣∣∣∣∫ ∞
1/2

fj+1(t)

t
td/2+j+1Jd/2+j(αt)dt

∣∣∣∣ ,
and therefore∣∣∣∣∫ ∞

1/2

f0(t)td/2J(d−2)/2(αt)dt

∣∣∣∣ ≤ 1

αn

∫ ∞
1/2

∣∣∣∣fn(t)

t
td/2+nJd/2+n−1(αt)

∣∣∣∣ dt.

We will also need a bound on Fourier integrals of functions that are identically

one in a neighborhood of the origin and have compact support. As in the previous

case, the proof relies on integration by parts.

Proposition A.3. Let α ≥ 1, and let f be a function in Cn([0,∞)) for some natural

number n > 1. Also, assume f = 1 in a neighborhood of 0 and f = 0 for x > 2. Then

there is a constant C such that∣∣∣∫ 2

0
tf(t)td/2J(d−2)/2(αt)dt

∣∣∣ ≤ Cα−n

Proof. We first define a sequence of functions arising when integrating by parts. Let

f0(t) = tf(t), f1 = f ′0, and fj =
(
fj−1

t

)′
for j ≥ 2. Note that when j ≥ 2, fj(t) =
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O(t−2j+2) as t→ 0. After integrating by parts n times, we have∣∣∣∣∫ 2

0

f0(t)td/2J(d−2)/2(αt)dt

∣∣∣∣ =
1

αn

∣∣∣∣∫ 2

0

fn(t)

t
td/2+nJd/2+n−1(αt)dt

∣∣∣∣ .
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APPENDIX B

SUMS OF FUNCTION VALUES

Proposition B.1. Let X ⊂ Rd be a countable set with qX > 0, and let Y = {yj}Nj=1

be a subset of X such that ||yj||2 ≥ qX for 1 ≤ j ≤ N . If f : Rd → R is a function

with |f(x)| ≤ C ||x||−d−ε2 for some C, ε > 0, then

N∑
j=1

|f(yj)| ≤ 3d(1 + 1/ε)(Cq−d−εX ).

Proof. We can bound the sum using the volume argument found in the proof of [23,

Theorem 12.3]. Following the same procedure, we define

Em = {x ∈ Rd : mqY ≤ ||x||2 < (m+ 1)qY }.

for each positive integer m. Now by comparing the volume of Em to the volume of a

ball of radius qY , one finds that #Y ∩ Em ≤ 3dmd−1. Therefore,

N∑
j=1

|f(yj)| ≤
N∑
j=1

C

||yj||d+ε
2

≤
∞∑
m=1

(#Y ∩ Em) max
y∈Em

{
C

||y||d+ε
2

}

≤
∞∑
m=1

3dmd−1 C

(mqY )d+ε

≤ 3d(1 + 1/ε)Cq−d−εX
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APPENDIX C

WENDLAND FUNCTIONS

The Wendland functions are a class of compactly supported RBFs that are ra-

dially defined as piecewise polynomials, and some examples are provided in the table

below. Wendland’s book [23] (particularly chapter 9) provides a detailed analysis

of these functions and some their approximation properties. In this appendix, our

focus will be on computing the Fourier transforms of these functions. The Wendland

functions are determined by a dimension parameter d and a smoothness parameter

k, and Φd,k ∈ C2k(Rd). In what follows, r will denote ||x||2, and
.
= will be used to

indicate equality up to some positive constant factor.

Table 1

Examples of Wendland functions

Function Smoothness

Φ1,0(x) = (1− r)+ C0

Φ1,1(x)
.
= (1− r)3

+(3r + 1) C2

Φ1,2(x)
.
= (1− r)5

+(8r2 + 5r + 1) C4

Φ3,0(x) = (1− r)2
+ C0

Φ3,1(x)
.
= (1− r)4

+(4r + 1) C2

Φ3,2(x)
.
= (1− r)6

+(35r2 + 18r + 3) C4

Φ3,3(x)
.
= (1− r)8

+(32r3 + 25r2 + 8r + 1) C6
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We will now derive an explicit form of the Fourier transform of Φd,k in the case d

is odd. Using the notation of [23, Section 10.5], let d = 2n+ 1 and m = n+ k. Then

by [23, Lemma 6.19] and the definition of Φd,k, we have

Φ̂d,k(x) = Bmfm(r)r−3m−2 (C.1)

where Bm is a positive constant and the Laplace transform of fm satisfies

Lfm(r) =
1

rm+1(1 + r2)m+1
.

In order to find the inverse Laplace transform of the above expression, we will make

use of partial fractions. First, note that there exist constants αj, βj, and γj such that

1

sm+1(1 + s2)m+1
=

m∑
j=0

αj
sj+1

+
m∑
j=0

βj
(s+ i)j+1

+
m∑
j=0

γj
(s− i)j+1

, (C.2)

and this decomposition is unique. Now for any real s, the expression on the left is

real. Therefore, taking the complex conjugate of both sides, we get

1

sm+1(1 + s2)m+1
=

m∑
j=0

ᾱj
sj+1

+
m∑
j=0

β̄j
(s− i)j+1

+
m∑
j=0

γ̄j
(s+ i)j+1

.

Uniqueness of the decomposition then implies that for each j:

(i) αj is real

(ii) βj = γ̄j.

To further characterize the coefficients, we replace s by −s in (C.2). First, we

have

(−1)m+1

sm+1(1 + s2)m+1
=

m∑
j=0

(−1)j+1αj
sj+1

+
m∑
j=0

(−1)j+1βj
(s− i)j+1

+
m∑
j=0

(−1)j+1β̄j
(s+ i)j+1

,
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and therefore

1

sm+1(1 + s2)m+1
=

m∑
j=0

(−1)j+mαj
sj+1

+
m∑
j=0

(−1)j+mβj
(s− i)j+1

+
m∑
j=0

(−1)j+mβ̄j
(s+ i)j+1

. (C.3)

Again using the uniqueness of the partial fraction decomposition, it follows that

(i) (−1)j+mαj = αj

(ii) (−1)j+mβj = β̄j

for each j. The first property implies that αj = 0 for either all odd j or all even j.

The second property tell us that βj is real when j + m is even, and it is imaginary

when j +m is odd.

We now compute fm as the inverse Laplace transform of the sum in (C.2).

fm(r) =
m∑
j=0

αj
j!
rj +

m∑
j=0

βj
j!
rje−ir +

m∑
j=0

β̄j
j!
rjeir

Now if m is odd, we have m = 2l + 1 and

fm(r) =
l∑

j=0

α2j+1

(2j + 1)!
r2j+1 +

l∑
j=0

β2j+1

(2j + 1)!
r2j+1(e−ir + eir)−

l∑
j=0

β2j

(2j)!
r2j(−e−ir + eir),

which can be simplified to

f2l+1(r) =
l∑

j=0

α2j+1

(2j + 1)!
r2j+1 +

l∑
j=0

2β2j+1

(2j + 1)!
r2j+1 cos(r)−

l∑
j=0

2iβ2j

(2j)!
r2j sin(r).

Similarly, when m = 2l we have

f2l(r) =
l∑

j=0

α2j

(2j)!
r2j −

l−1∑
j=0

2iβ2j+1

(2j + 1)!
r2j+1 sin(r) +

l∑
j=0

2β2j

(2j)!
r2j cos(r).
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Lemma C.1. Let Φd,k be a Wendland function with d odd, and define n and m by

d = 2n + 1 and m = n + k. Then the exact form of the Fourier transform of Φd,k is

found by substituting the above representations of fm into Φ̂d,k(x) = Bmfm(r)r−3m−2.

We will now take a closer look at the 1-dimensional case.

Proposition C.2. If k ∈ N, then there exists C ∈ R and h ∈ L1(R) such that

x2k+2Φ̂1,k(x) = Bk

(
1

k!
+

(−1)k+1

k!2k
cos(x) + C

sin(x)

x
+ ĥ(x)

)
, (C.4)

where ĥ is the Fourier transform of h.

Proof. Since the case where k is odd is similar to the case where k is even, we will only

prove the former. Recall that Φ̂1,k(x) = Bkfk(r)r
−3k−2, so let us begin by examining

the function fk. For k = 2l + 1, we have

r−1fk(r) =
l∑

j=0

ajr
2j +

l∑
j=0

bjr
2j cos(r)−

l∑
j=0

cjr
2j sin(r)

r
(C.5)

for some constants aj, bj, and cj. We can then define an analytic function f̃k : R→ R

by

f̃k(x) = |x|−1 fk(|x|),

and we will have x2k+2Φ̂1,k(x) = Bkx
−k+1f̃k(x). Now since Φ1,k ∈ L1 and Φ̂1,k(x) =

Bkfk(r)r
−3k−2, f̃k(x) must have a zero of order 3k + 1 at 0, and therefore f̃k(x) has

a power series of the form

f̃k(x) =
∞∑

j=3k+1

djx
j. (C.6)

In order to verify (C.4), we first need to determine some of the coefficients in

(C.5). From our previous work, we know that cl ∈ R, and we can find al and

bl as follows. In the partial fraction decomposition (C.2), multiply both sides by

sm+1(1 + s2)m+1. By substituting the values s = 0 and s = −i, we find that αm = 1
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and βm = (−1)m/2m+1, and therefore al = 1/k! and bl = (−1)k/(k!2k+1).

We can now finish the proof by showing that

h̃k(x) := x−k+1f̃k(x)−
(

1

k!
+

(−1)k+1

k!2k
cos(x)− cl

sin(x)

x

)
is the Fourier transform of an L1 function. Since h̃k(x) is identically 0 for k = 1, we

need only consider k ≥ 3. This can be verified by determining that h̃k(x) has two

continuous derivatives in L1, cf. [10, p. 219]. Considering the representation (C.6),

it is clear that h̃k(x) has two continuous derivatives, and the decay of these functions

can be bounded using (C.5).
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