
DESIGN, IMPLEMENTATION AND EVALUATION OF A CONFIGURABLE

NoC FOR AcENoCS FPGA ACCELERATED EMULATION PLATFORM

A Thesis

by

SWAPNIL SUBHASH LOTLIKAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2010

Major Subject: Computer Engineering



DESIGN, IMPLEMENTATION AND EVALUATION OF A CONFIGURABLE

NoC FOR AcENoCS FPGA ACCELERATED EMULATION PLATFORM

A Thesis

by

SWAPNIL SUBHASH LOTLIKAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Paul V. Gratz
Committee Members, A. L. Narasimha Reddy

Eun Jung Kim
Head of Department, Costas N. Georghiades

August 2010

Major Subject: Computer Engineering



iii

ABSTRACT

Design, Implementation and Evaluation of a Configurable NoC for AcENoCs FPGA

Accelerated Emulation Platform. (August 2010)

Swapnil Subhash Lotlikar, B.E., National Institute of Technology Karnataka, India

Chair of Advisory Committee: Dr. Paul V. Gratz

The heterogenous nature and the demand for extensive parallel processing in

modern applications have resulted in widespread use of Multicore System-on-Chip

(SoC) architectures. The emerging Network-on-Chip (NoC) architecture provides an

energy-efficient and scalable communication solution for Multicore SoCs, serving as

a powerful replacement for traditional bus-based solutions. The key to successful

realization of such architectures is a flexible, fast and robust emulation platform for

fast design space exploration. In this research, we present the design and evaluation

of a highly configurable NoC used in AcENoCs (Accelerated Emulation platform for

NoCs), a flexible and cycle accurate field programmable gate array (FPGA) emulation

platform for validating NoC architectures. Along with the implementation details, we

also discuss the various design optimizations and tradeoffs, and assess the performance

improvements of AcENoCs over existing simulators and emulators.

We design a hardware library consisting of routers and links using verilog hard-

ware description language (HDL). The router is parameterized and has a config-

urable number of physical ports, virtual channels (VCs) and pipeline depth. A packet

switched NoC is constructed by connecting the routers in either 2D-Mesh or 2D-Torus

topology. The NoC is integrated in the AcENoCs platform and prototyped on Xilinx

Virtex-5 FPGA.

The NoC was evaluated under various synthetic and realistic workloads generated

by AcENoCs’ traffic generators implemented on the Xilinx MicroBlaze embedded
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processor. In order to validate the NoC design, performance metrics like average

latency and throughput were measured and compared against the results obtained

using standard network simulators. FPGA implementation of the NoC using Xilinx

tools indicated a 76% LUT utilization for a 5x5 2D-Mesh network. A VC allocator

was found to be the single largest consumer of hardware resources within a router.

The router design synthesized at a frequency of 135MHz, 124MHz and 109MHz for

3-port, 4-port and 5-port configurations, respectively. The operational frequency of

the router in the AcENoCs environment was limited only by the software execution

latency even though the hardware itself could be clocked at a much higher rate.

An AcENoCs emulator showed speedup improvements of 10000-12000X over HDL

simulators and 5-15X over software simulators, without sacrificing cycle accuracy.



v

To my Dad, Mom and my Sister



vi

ACKNOWLEDGMENTS

I am very grateful to my advisor Dr. Paul V. Gratz, for giving me an opportunity

to work under him. Without his constant guidance, encouragement and his valuable

suggestions, the work presented in this thesis would have been virtually impossible.

Thank You Dr. Gratz. My sincere thanks also go to Dr. A. L. Narasimha Reddy and

Dr. Eun Jung Kim for their willingness to be on my thesis committee.

I would like to thank Mr. Vinayak Pai, my colleague and project partner on the

AceNoCs project, for all the technical support during this research. I would also like

to thank all the other CAMSIN research group members for their valuable suggestions

during the research meetings.

I would also like to thank my parents for supporting me through difficult times

and inculcating in me the sense of perfection. Whatever I am today is because of

their concern for me. Thank you Mom and Dad.

Finally, I would like to thank all my friends who directly or indirectly helped me

during my studies at Texas A&M and during the course of my research work.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

B. Thesis Organization . . . . . . . . . . . . . . . . . . . . . . 3

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A. Bus and Point-to-Point Architectures . . . . . . . . . . . . 4

B. Network-on-Chip (NoC) . . . . . . . . . . . . . . . . . . . 6

C. NoC Architecture and Components . . . . . . . . . . . . . 6

D. NoC Topologies . . . . . . . . . . . . . . . . . . . . . . . . 9

E. NoC Switching Techniques . . . . . . . . . . . . . . . . . . 10

F. NoC Routing Algorithms . . . . . . . . . . . . . . . . . . . 11

G. NoC Flow Control Techniques . . . . . . . . . . . . . . . . 13

1. Packet-Buffer Flow Control Techniques . . . . . . . . 13

2. Flit-Buffer Flow Control Techniques . . . . . . . . . . 14

H. Buffer Management Techniques . . . . . . . . . . . . . . . 15

III RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . 18

A. NoCs for Software Simulators . . . . . . . . . . . . . . . . 18

B. NoCs for Hardware Emulators . . . . . . . . . . . . . . . . 20

IV AcENoCs ARCHITECTURE . . . . . . . . . . . . . . . . . . . . 22

A. Software Framework . . . . . . . . . . . . . . . . . . . . . 23

B. Hardware Framework . . . . . . . . . . . . . . . . . . . . . 25

C. Hardware-Software Interface . . . . . . . . . . . . . . . . . 25

D. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E. Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

V DESIGN AND IMPLEMENTATION OF AcENoCs HARD-

WARE FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . 28

A. NoC Router Design . . . . . . . . . . . . . . . . . . . . . . 28

1. Input Unit . . . . . . . . . . . . . . . . . . . . . . . . 29

2. Virtual Channel (VC) Allocation Unit . . . . . . . . . 32

3. Switch Allocation Unit . . . . . . . . . . . . . . . . . 35



viii

CHAPTER Page

4. Crossbar Unit . . . . . . . . . . . . . . . . . . . . . . 36

5. Output Unit . . . . . . . . . . . . . . . . . . . . . . . 38

6. Programmable Delay Unit . . . . . . . . . . . . . . . . 38

B. Interconnection Network Design . . . . . . . . . . . . . . . 38

C. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

VI AcENoCs FPGA IMPLEMENTATION AND EMULATION

FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A. AcENoCs FPGA Implementation Tool Flow . . . . . . . . 42

B. AcENoCs Emulation Flow . . . . . . . . . . . . . . . . . . 45

VII VALIDATION AND EVALUATION . . . . . . . . . . . . . . . . 47

A. Evaluation Methodology . . . . . . . . . . . . . . . . . . . 47

B. Network Validation . . . . . . . . . . . . . . . . . . . . . . 47

C. Emulator Performance Evaluation . . . . . . . . . . . . . . 51

D. Hardware Evaluation . . . . . . . . . . . . . . . . . . . . . 53

VIII CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . 57

A. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 58

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



ix

LIST OF TABLES

TABLE Page

I Comparison of Bus and NoC Architectures . . . . . . . . . . . . . . . 7

II Truth Table for Fixed Priority Arbiter . . . . . . . . . . . . . . . . . 33

III Summary of Configurable Features in AcENoCs Hardware Framework 40

IV FPGA Resource Utilization for 3-Port, 4-Port and 5-Port Routers . . 54

V 5-Port Router Critical Path . . . . . . . . . . . . . . . . . . . . . . . 55

VI Percentage FPGA Resource Utilization under Varying Network Sizes 56



x

LIST OF FIGURES

FIGURE Page

1 Bus, Point-to-Point and NoC Communication Architectures . . . . . 5

2 NoC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Mesh, Torus and Irregular Topologies . . . . . . . . . . . . . . . . . . 10

4 XY Dimension Order Routing for 2D-Mesh . . . . . . . . . . . . . . 12

5 AcENoCs Emulation Framework . . . . . . . . . . . . . . . . . . . . 23

6 Router Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Flit Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Input Unit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 30

9 Virtual Channel Allocator Block Diagram . . . . . . . . . . . . . . . 34

10 Switch Allocator Block Diagram . . . . . . . . . . . . . . . . . . . . 36

11 Crossbar Switch Block Diagram . . . . . . . . . . . . . . . . . . . . . 37

12 FPGA Implementation Flow . . . . . . . . . . . . . . . . . . . . . . . 43

13 Throughput vs. Flit Injection Rate for (a) Bit-Complement and

(b) Uniform Random Traffic . . . . . . . . . . . . . . . . . . . . . . . 49

14 Average Latency vs. Flit Injection Rate for (a) Bit-Complement

and (b) Uniform Random Traffic . . . . . . . . . . . . . . . . . . . . 49

15 Average Latency vs. Flit Injection Rate across 2x2, 3x3, 4x4 and

5x5 2D-Mesh Networks for (a) AcENoCs and (b) Ocin tsim . . . . . 50

16 Average Latency vs. Flit Injection Rate for 5x5 2D-Mesh Net-

works under Varying Packet Sizes for (a) AcENoCs and (b) Ocin tsim 51

17 Emulation Speed vs. Flit Injection Rate under Varying Network Sizes 52



xi

FIGURE Page

18 Emulation Speed vs. Flit Injection Rate for a 5x5 2D-Mesh Net-

work under Varying Flit Sizes . . . . . . . . . . . . . . . . . . . . . . 52

19 LUT Utilization for a 5-Port Router . . . . . . . . . . . . . . . . . . 54



1

CHAPTER I

INTRODUCTION

A. Motivation

VLSI scaling has resulted in miniaturization of integrated circuits and increased inte-

gration on a single chip. In order to meet computational demands, current System-

on-Chip (SoC) designs incorporate a large number and a wide variety of heterogenous

intellectual property (IP) cores on a single chip. These designs use buses or dedicated

links as a means to establish communication between various cores. However, buses

and dedicated links have several problems. They have scalability issues which limit

their usage to interconnecting a small number of cores. Additionally, long global wires

are prone to noise and have high power consumption. Technology scaling has caused

the wire delay to become a dominant fraction of the clock cycle time as compared to

the logic delay [1]. It is therefore essential to keep the wire length to a minimum. In

order to overcome the limitations of these architectures, alternate means of on-chip

communication have to be developed to effectively utilize the available communication

bandwidth.

A design paradigm, Network-on-Chip (NoC), proposed by Dally and Towles,

serves as an effective replacement for buses or dedicated links in a system with large

number of processing cores [2]. The dimensions of the NoC decide the number of

communicating IP cores that can be connected to it. NoC borrows concepts from

the well established and scalable domain of computer networking. NoCs consist of a

collection of network interfaces (NIs), routers, links and they follow a set of protocols

The journal model is IEEE Transactions on Automatic Control.
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to establish communication between the cores. They are characterized by various

parameters like router architecture, network topology, routing algorithms and flow

control mechanisms. NoCs offer high communication bandwidth with low latency as

compared to the traditional bus based or point-to-point communication architectures.

The shift in focus from computation-centric to communication-centric designs

and the reduced time-to-market requirement has caused communication infrastruc-

ture validation to play a major role in the chip design flow. A fast exploration of

the vast design space offered by NoC communication infrastructure is vital to arrive

at an optimal configuration that meets the communication demands of a particular

application. Typically, validation was accomplished using software or hardware de-

scription language (HDL) simulators. These simulations are time-consuming due to

the inherent sequential nature of software simulators. There is a great demand for

validation tools which are both fast as well as cycle accurate. Field programmable

gate array (FPGA) based emulators can be used as an alternative to software simula-

tors as they help to reduce the validation time without compromising cycle accuracy.

They combine the flexibility of the software simulators together with the cycle accu-

racy of the HDL simulators. Design validation using such emulators permits the user

to exploit the parallel nature of hardware and simulate the HDL at actual hardware

speeds. Such an approach helps to detect design and architectural problems early in

the design cycle and provides an early access of the target platform to the software

developers, thus reducing the number of re-spins and expediting the design cycle.

The main goal of this thesis is to introduce AcENoCs (Accelerated Emulation

platform for NoCs), an emulation platform for validating on-chip interconnection

networks [3]. AcENoCs is built around a robust hardware software framework which

makes efficient utilization of available FPGA resources. The NoC itself is modeled us-

ing the FPGA’s hardware resources, and hence efficiently exploits the parallel nature
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of hardware. The traffic generation and statistical analysis components are imple-

mented in software, utilizing a soft IP processor, leveraging the greater state space

resources available to software. The work presented in this thesis makes the following

contributions:

1. A highly parameterized hardware library consisting of routers, links and the

interconnection network.

2. Implementation and emulation flow for FPGA accelerated NoC emulation using

a Xilinx Virtex-5 FPGA.

3. A complete, cycle accurate and a flexible FPGA accelerated emulation platform

for validating on-chip interconnection networks.

The AcENoCs emulation platform has been jointly developed by a team of two

researchers. It is not possible to present the hardware and software framework totally

independent of each other. A combined framework is presented in this thesis with a

focus on the hardware design.

B. Thesis Organization

The thesis is organized as follows: Chapter II provides a background on NoC. Chap-

ter III describes the previous work in the area of NoC simulation and emulation.

Chapter IV describes the AcENoCs framework and the features of its individual

components. Chapter V describes in detail the design and implementation of the

AcENoCs NoC hardware library components. Chapter VI describes the FPGA imple-

mentation and emulation flow for AcENoCs emulation platform. Chapter VII presents

the experimental results of network validation, AcENoCs performance evaluation and

hardware evaluation. Conclusions and future work are presented in Chapter VIII.
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CHAPTER II

BACKGROUND

An integrated circuit typically consists of processing elements, storage elements, com-

munication infrastructure and input/output (I/O) interfaces as its primary compo-

nents [4]. With advancements in technology, the processing elements have become

much faster. However, the performance of the communication infrastructure has not

scaled at the same rate. Therefore, in modern technologies, the design of communica-

tion infrastructure has taken center-stage in the chip design cycle. NoC is an on-chip

communication infrastructure that applies the principles of computer networks to

efficiently establish on-chip communication and improve performance over existing

bus-based communication architectures. The sections below discuss the bus-based

and NoC communication architectures and the terminology associated with the NoC

based solutions.

A. Bus and Point-to-Point Architectures

Point-to-Point links and buses have been the simplest and the most widely used means

of on-chip communication in the past. A point-to-point scheme consists of dedicated

channels between communicating nodes in a system. A bus based communication

system, on the other hand, consists of communicating nodes connected to a single

shared channel which acts as a broadcast medium [5]. The nodes which initiate a

transaction on the shared channel are termed as bus masters and the nodes which

respond to requests from masters are called as bus slaves. Messages transmitted by

one node can be intercepted by all the other nodes connected to the shared medium.

If the messages are addressed to a particular slave then that slave node will respond
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by sending an acknowledgement message to the master. A bus arbiter controls access

to the shared resource by granting access to only one of the several requesting masters.

There are several disadvantages associated with these kind of communication

architectures. Both point-to-point as well as bus based communication schemes are

not very scalable and cannot efficiently handle the communication requirements of

modern SoC architectures. The performance of a bus degrades as the number of

requestors connected to the bus increases. This can be attributed to the fact that the

bandwidth of the communication channel is shared among all the bus requestors. This

results in the serialization of the requests to the bus, thus increasing communication

latencies. Also, the complexity and the delay of the arbiter increases as the number of

requestors to the bus increases. Technology scaling has caused wire delay to become a

dominant component of the overall clock cycle time [1]. Long wires in point-to-point

links as well as buses result in increased delays and are susceptible to noise. Hence,

on-chip communication using these schemes is becoming expensive in terms of both

power as well as speed in the era of deep-submiron technologies (DSM).

MEMORY UART ETHERNET

PROCESSOR PROCESSOR DSP

SHARED MEDIUM

PROCESSOR PROCESSOR DSP

MEMORY UART ETHERNET

PROCESSOR PROCESSOR DSP

MEMORY UART ETHERNET

(a) Shared Bus (b) Point-to-Point (c) Network-on-Chip

Figure 1. Bus, Point-to-Point and NoC Communication Architectures
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B. Network-on-Chip (NoC)

The NoC is a highly scalable packet based communication architecture that over-

comes the disadvantages of the bus based communication systems. Table I compares

the bus based and NoC based on-chip communication schemes and has been adapted

from Yoo et al. [6]. NoCs help to accomplish the transfer of maximum amount of in-

formation between communicating nodes within the least possible time. NoCs consist

of routing elements connected by small point-to-point links forming a data routing

network on chip. Unlike bus architectures, where the bus is occupied by one source

node during the entire message transaction, the use of packet based communication

in NoC allows for sharing of the links between various communicating nodes. This

increases throughput and reduces communication latencies. NoC can be easily scaled

by connecting additional routing elements to the existing network. The aggregate

bandwidth of the network scales with increasing network size. NoCs support design

reuse as the same routing element can be used to scale the NoC to higher dimensions.

This reduces the time-to-market and validation costs. Thus, NoCs offer a highly effi-

cient communication infrastructure for modern day SoC and Multicore architectures.

Figure 1 shows some examples of bus, point-to-point and NoC based communication

architectures.

C. NoC Architecture and Components

A NoC consists of routing nodes spread across an entire chip connected together by

communication links [4]. A brief description of the various components of the NoC is

provided below.

Processing Elements (PEs) are the computational elements of the chip. These

can be general purpose processor cores, digital signal processing cores, arithmetic
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Table I. Comparison of Bus and NoC Architectures

BUS ARCHITECTURE NoC ARCHITECTURE

- A single master occupies the shared
bus during entire transaction

+ Packet transactions share links in a
multiplexed manner

- Blocked transactions cause perfor-
mance degradation

+ Multiple concurrent transactions
possible thereby increasing through-
put and lowering latency

- Long bus wires prone to noise and
error

+ Links between routing elements are
short and hence less error prone

- Long bus wires cause increased wire
delays in DSM technology

+ Short point-to-point links keep wire
delay to a minimum

- Bus failure results in system failure + Multiple paths possible between two
communicating elements improving
fault tolerance

- Shared bus is less scalable and gets
slower as number of bus requestors
increase

+ Aggregate network bandwidth
scales with network size

- All bus masters request a single ar-
biter. Arbiter complexity increases
with number of requestors

+ Routing decisions are distributed
across the network thus reducing
complexity

+ Low area overhead - Additional area overhead due to ad-
dition of network routers

+ Design concepts are well under-
stood. Low design complexity

- NoC concept is relatively new. De-
sign complexity is high

logic units, memory cores or any other specialized IP cores. They are the source and

the sink for all the data in the on-chip communication network.

Network Interfaces (NIs) connect the processing elements to the main on-chip

communication network. They decouple the computational elements from the com-

munication infrastructure. NIs convert the messages generated by the PEs into pack-

ets and insert additional routing information based on the architecture of the under-
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Figure 2. NoC Architecture

lying network. Packets are decomposed into smaller units called flow control units

or flits which are transmitted over the network. Flits are further classified as head,

body and tail flits. The head flit carries the routing information required to route the

packet to its destination. The head flit allocates resources for the entire packet as it

traverses from source to destination. The body and tail flits carry only the packet

payload with no routing information and follow the head flit through the network.

The tail flit de-allocates the resources which have been allocated to the packet by the

head flit.

Routing Nodes are the heart of the communication network. They route the

packets onto the appropriate link so that they can reach the intended destination.

Routing protocols in conjunction with the routing information in the packet header

are used to make routing decision at each routing node.

Channels or Links connect the routing nodes in an NoC. Two links are present

between any two routers in the network, one each for data transmission in each
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direction. Links provide the bandwidth required for data transmission. In addition to

the data transmission links, additional links required for control may also be present.

Figure 2 depicts these components for a 3x3 NoC where the routing nodes con-

nected as a grid.

D. NoC Topologies

Network topology refers to the static arrangement of routing nodes and links in an

interconnection network. Selection of a good topology is essential to minimize the

communication latency and maximize the bandwidth. The routing and the flow

control schemes are heavily dependent on the type of the topology selected. Topologies

can be classified into two categories : regular topologies and irregular topologies [5].

The most commonly used type of regular topology is the k -ary n-cube [7]. This

topology consists of N = kn nodes arranged as a regular n-dimensional grid with k

nodes in each dimension connected by a pair of communication links, one in each

direction. Each of the nodes can act as an input or an output or a routing node.

The most commonly used versions of the k -ary n-cube are the torus and mesh net-

works. Torus networks possess edge symmetry. All the nodes in each dimension form

a ring. The edge symmetry of the torus network helps to improve the load balance

across various communication channels. In a torus network all the nodes are of the

same degree. Mesh networks are very similar to the torus, the only difference being

the removal of the wrap around links along the edges. In a mesh network all the

nodes in each dimension form a linear array. The removal of the edge symmetry in

mesh networks can cause load imbalance for some of the traffic patterns. Nonethe-

less, the physical layout of these topologies is well matched to the chip’s packaging

constraints. They minimize the number of hops to the destination thus reducing the
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communication latencies and improving the network throughput.

(a) Mesh (b) Torus (c) Irregular Topology 

‘

‘

‘

‘

‘

‘

‘

‘

‘ ‘

‘

‘ ‘

‘

Figure 3. Mesh, Torus and Irregular Topologies

Irregular topologies are constructed by combining different regular topologies in

hierarchical, hybrid or asymmetric fashion [4]. Figure 3 shows examples of all these

topologies.

E. NoC Switching Techniques

Switching in an NoC is defined as the transport of data through the interconnec-

tion network. Two of the switching techniques employed in on-chip interconnection

networks are circuit switching and packet switching. These techniques are briefly

described below :

Circuit Switching involves the setup of a dedicated circuit from a source node

to a destination node. One or more packets can be sent over the circuit. In this

switching technique the packets carry only the payload and do not carry any routing

information. Once all the packets have been transmitted the circuit can be discon-

nected. The advantage with this switching technique is that the circuit is setup prior
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to packet transmission and provides guaranteed bandwidth along the circuit. The

disadvantage with this switching technique is that the other nodes cannot use the

path reserved for a circuit until it is freed. This results in increased delay for other

nodes trying to send packets over the same path. Thus, circuit switching reduces the

overall throughput of the interconnection network and increases the average latencies

of communication [4], [5].

Packet Switching involves switching of the packets on a per-hop basis rather

than setting up a dedicated route from the source to destination. In this switching

technique the packet contains both routing information as well as payload. Since

routing decisions are made at intermediate nodes in the interconnection network,

there can exist multiple different paths from a source node to a destination node.

The advantage with this approach is that since a particular path in the network is

not reserved, the same path can be used by multiple packets. The disadvantage with

this scheme is that since routing decisions are mode at every hop, it does not provide

any guaranteed service along the packet transmission path [4], [5].

F. NoC Routing Algorithms

Switching is the transport of data, while routing is the intelligence behind it. Routing

determines the path taken by a packet to travel from a source node to a destination

node and is dependent on the network topology selected [5]. A good routing algorithm

should meet two objectives. Firstly, a routing algorithm should balance the load

across the network terminals even in the presence of non-uniform traffic conditions.

Secondly, it should keep the lengths of the path from source node to destination node

as small as possible. This section describes some of the routing techniques employed

in on-chip interconnection networks.
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Routing algorithms on the other hand can be classified as deterministic, oblivious

or adaptive [5]. A brief description of these algorithms and examples is given below.

Deterministic Routing algorithms always choose the same path from a source

node to a destination node even if multiple paths exist. The path chosen depends

entirely upon the source and the destination coordinates. These algorithms are easy

to implement and are deadlock free in nature. However, they do not balance the

load evenly throughout the network. Common examples of these algorithms include

the XY dimension order routing algorithm [8] and the source routing algorithms. In

XY dimension order routing, a packet first travels along X-dimension. When the

X-coordinate becomes equal to the destination X-coordinate, the packet travels along

Y-dimension till the destination is reached. Thus, the distance traveled by the packet

from source node to the destination node is equal to the manhattan distance between

the two nodes. Figure 4 illustrates the XY dimension order routing algorithm for a

packet traveling from source 01 to destination 32 in a 4x4 2D-Mesh network.

00 01 02 03

10 12 13

20 21 22 23

30 31 32 33

11

Figure 4. XY Dimension Order Routing for 2D-Mesh

Oblivious Routing algorithms are a superset of the deterministic routing algo-

rithms. In these algorithms there is no fixed path from source to destination; however,

the algorithm does not take into account the present state of the network. These al-
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gorithms do a better job of balancing the load across the network as compared to the

deterministic routing algorithms. A common example of this type of an algorithm is

the Valiant et al.’s randomized routing algorithm which uniformly distributes traffic

across all the paths in the network [9].

Adaptive Routing algorithms take into account the present state of the network

to take a routing decision at each network node. The state of the network can be in

the form of the status of a link or a node or the length of the queues in the routers

and so on. Adaptive algorithms are more complex and difficult to implement.

G. NoC Flow Control Techniques

Flow control is a mechanism that governs how a packet moves along the network

path, through the routing nodes, from its source to the destination. The routing

nodes in the network consist of buffers which decouple the allocation of adjacent

communication channels. Flow control governs the allocation of these buffers and

channel bandwidth. Depending upon the granularity at which these resources are

allocated the flow control mechanisms can be classified as being either packet-buffer

flow control or flit-buffer flow control. In packet-buffer flow control both buffers and

channel bandwidth are allocated in units of packets, whereas in flit-buffer flow control

both buffers and channel bandwidth are allocated in units of flits [5], [10]. Different

techniques are available to implement each of these flow control mechanisms. some

of these techniques are described below.

1. Packet-Buffer Flow Control Techniques

In Store-and-Forward flow control, each routing node waits for a complete packet to

be received and stored before forwarding it the next node. In this scheme, a routing
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node waits for a packet sized buffer on the far side of the channel and an exclusive

use of the channel bandwidth before forwarding the packet. Thus, if any of these

resources are not available the packet will not be forwarded. This could result in

wasted channel bandwidth. The major disadvantage of this approach is its very high

latency as the entire packet has to be buffered before it can be forwarded.

Cut-Through flow control [11] overcomes the limitation of high latencies in store-

and-forward flow control by forwarding the packet as soon as the head flit of the

packet is received and the resource allocation is successful, without waiting for the

entire packet to be received. However, the resource allocation for both buffers as

well as channel bandwidth is still done at packet granularity. This approach gives

lower latencies and higher channel utilization as compared to store-and-forward flow

control.

Packet-buffer flow control techniques have some major disadvantages. These

techniques make inefficient utilization of the buffer storage by allocating them at

packet granularity. In these techniques, collision of two packets will result in increased

latency as one of the packets has to wait until the other packet has been transmitted

completely. The limitations of the packet-buffer flow control are overcome by flit-

buffer flow control.

2. Flit-Buffer Flow Control Techniques

In Wormhole flow control [12], resource allocation for buffers and channel bandwidth

is done at the granularity of flits. Once the head flit arrives at a node, it is immediately

forwarded to the next hop when the resources are allocated to it without having to

wait for the entire packet to be received at that node. The subsequent body and

tail flits are forwarded as and when they arrive and grab the resources. In this

technique, the latency at a routing node is just that of a flit and not the whole
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packet. A particular packet may span across several routing nodes appearing like a

worm. Hence the name wormhole flow control. The downside of this approach is that

a stalling packet spanning multiple links will cause all those links to be blocked.

Virtual-Channel flow control [13], [14] overcomes the limitations of wormhole flow

control. This technique associates a physical channel with several logical channels

called virtual channels (VCs). All the VCs share the same physical channel. In this

scheme, the flit has to acquire a VC resource in addition to a flit buffer and channel

bandwidth. An arriving head flit is immediately forwarded to the next hop as and

when these resources are acquired. The body and tail flits use the same VC allocated

to the head flit and must acquire only a downstream flit buffer and channel bandwidth

to proceed. The tail flit frees up the VC allocated to the packet. In this approach, if

a packet on one of the VC stalls then the same physical link bandwidth can be used

by a packet on another VC. This prevents the wastage of physical link bandwidth.

Since the VCs are independent of each other, this approach helps to avoid resource

dependent deadlocks described by Dally and Seitz [15].

H. Buffer Management Techniques

In flow control mechanisms which use flit buffers (packet in packet-buffer flow con-

trol), it is essential for an upstream routing node to know the availability of free

flit buffers in the downstream nodes before sending out the flit on the link. This

type of signalling between the upstream and downstream nodes is achieved through

the means of buffer management techniques. Three flow control mechanisms which

perform buffer management and commonly in use today are credit-based, on/off and

ack/nack flow control [5].

In Credit-Based flow control, each upstream router keeps a count of the number
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of buffers available in each VC fifo (first-in-first-out) in the downstream router. When

an upstream router forwards a flit to a downstream router, the credit count for the

appropriate downstream VC is decremented. When the downstream router forward

the same flit, thus freeing its buffer, a credit is returned to the upstream router over

the reverse channel. This causes an increase in the appropriate credit counter in the

upstream router. If the credit count in an upstream router becomes zero then all the

buffers in the downstream router corresponding to that counter are in use and a flit

cannot be forwarded downstream.

In On/Off flow control, the upstream router only maintains a single bit which

indicates whether it is allowed to forward data to the downstream router (on) or not

(off). Downstream router only indicates changes in this bit to the upstream router.

When the free buffer count in the downstream router falls below a specific threshold

Foff , an off indication is provided to the upstream router. When the free buffer count

rises above a threshold Fon, an on indication is provided to the upstream router.

With Ack/Nack flow control, the upstream router does not maintain any sta-

tus of the buffer availability in downstream router. Upstream router forwards flits

optimistically as and when they become available. If the downstream router has

buffers available and accepts the flit, it sends an acknowledge (ack) indication to the

upstream router. If no buffers are available to store the incoming flit, it sends a

negative acknowledge (nack) indication to the upstream router. In that case, the up-

stream router has to retransmit the flit. Thus, flits have to be stored in the upstream

router till an ack is received for the flit from the downstream router. This technique

may result in flits being received out of order at a downstream node. Hence, the

downstream node should be capable of re-ordering the received flits.

The NoC implemented for the AcENoCs emulation framework is a packet switched

NoC and uses XY dimension order routing algorithm for 2D-Mesh and 2D-Torus
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topologies. AcENoCs’ NoC employs virtual-channel flow control with a credit-based

buffer management technique.

This chapter briefly describes the concepts required to understand this thesis.

With this background, the next chapter will introduce the framework of the AcENoCs

FPGA emulation platform.
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CHAPTER III

RELATED WORK

The need for fast exploration of the vast design space provided by NoCs in modern

communication-centric designs has resulted in the development of several architectural

simulators. These can be classified into two categories: software simulators and FPGA

based emulators. Most of the software simulators model the NoC at a high level of

abstraction and hence are not cycle accurate. On the other hand, FPGA based

emulators are fast and maintain cycle accuracy.

A. NoCs for Software Simulators

NoC architecture validation can be performed at different levels of abstraction. The

simulation speed decreases as we move towards more detailed simulations at lower

levels of abstraction. In order to perform NoC architecture validation at the system

level several SystemC based simulators have been proposed. Coppola et al. propose

a NoC modeling and simulation framework based on a object oriented C++ library

built on top of SystemC [16]. In this work, the authors model the NoC communication

using simple transmission and reception application programming interfaces (APIs)

called the MasterPort and SlavePort respectively. A message to be transmitted over

the network is fragmented into several protocol data units (PDUs). A PDU represents

the smallest data unit that can be transmitted over the network. This method uses

specialized C++ classes to measure parameters like latency, throughput, packet loss

ratio and so on.

Similarly, Kogel et al. propose another modular SystemC based NoC exploration

framework to address system level design issues in the communication infrastruc-
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ture [17]. Here, data exchange is modeled at a high level of abstraction in terms of

packet transfers using transaction-level modeling (TLM) while still capturing the ef-

fect on performance. Network engines model traffic characteristics and NoC channel

handles the processing of communication. Network statistics like resource utilization,

latency and throughput are captured by evaluation modules connected to the network

engines. This scheme achieves high simulation speeds but its accuracy is affected by

the coarse granularity of packet based communication making it non-cycle accurate.

Goossens et al. present another SystemC simulator in which the NoC is simulated

at the flit level and the IP-NI interface is modeled at the transaction level [18].

Here, the SystemC simulation is based on XML files for topology, mapping, NoC

configuration and IP configuration. All IPs are modeled as traffic generators using

SystemC. This approach is suitable for performance evaluation early in the design

cycle when the HDL for IPs is not available. The measurement of throughput, latency

and NI buffer statistics is done using the traffic generators itself. This approach is

again not cycle accurate.

A common problem with all the system level validation approaches presented

above is that they are all non-cycle accurate [16], [17], [18]. Prabhu et al. present

a C++ based cycle accurate simulator for NoCs, Ocin tsim [19]. Here, each com-

ponent of the network is implemented as a separate C++ class in a modular and

object-oriented design style. The traffic generators used in Ocin tsim are capable of

generating a wide variety of synthetic workloads as well as trace driven workloads.

Although this simulator is cycle accurate, it is sequential in nature and its simulation

speed degrades with increasing network size, making simulation time prohibitive to

run real application traffic traces.
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B. NoCs for Hardware Emulators

To overcome the limitations of the software simulators several FPGA based NoC

emulators were proposed. Genko et al. propose an emulation platform using Xilinx

Virtex-II Pro FPGA with an embedded PowerPC processor, emulating a network

comprised of six routers [20], [21]. The hardware platform is comprised of traffic

generators (TGs), traffic receptors (TRs), control module and the network to be

emulated. The network to be emulated is generated using Xpipes compiler. Xpipes

architecture uses static source routing and does not support dimension order routing.

Xpipes router does not support configurable number of pipeline stages, a desirable

feature in routers used for NoC architectural exploration [22]. Software running

on the PowerPC processor handles the configuration of the platform and controls

the entire emulation process. TG/TRs and controllers consume a fraction of the

FPGA’s hardware resources and this fraction is expected to grow with the size of

the emulated network. Source queues are modeled in hardware and are statically

allocated, resulting in inefficient memory utilization for non-uniform traffic.

Peng et al. present another FPGA based NoC emulation framework for a 4x4

2D-Mesh network [23]. In this framework, the authors use an FPGA without an

embedded processor to efficiently utilize the available hardware resources. Instead,

they use an external instruction set simulator (ISS) running on a host computer to

control and configure the emulation system. Communication is established via a

USB interface. Similar to Genko et al.’s work, the authors also implement traffic

generators, traffic receivers, a controller, an analysis module and a USB controller in

hardware, thus occupying additional hardware resources. Since the ISS runs on an

external host computer, the communication latencies are high.

Another scheme to emulate large, parallel homogenous and heterogeneous NoCs
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is presented by Wolkotte et al. [24]. Here, each router of a large NoC is simulated

sequentially using a single router model synthesized on an FPGA. The router model

used has 5 ports with 5 virtual channels (VCs) per port. Each VC buffer is 4 flit buffers

deep. After the evaluation of each router, the state associated with that router and its

links is stored in a memory and is retrieved whenever necessary. As this approach does

not exploit the true parallel nature of hardware to speed up simulations, a speedup

of only 80-300X compared to a SystemC simulator is achieved.

The concept of polymorphic on-chip networks is presented by Kim et al. in [25].

The polymorphic network is formed by interconnecting a configurable collection of

network building blocks in an arbitrary network topology. The configuration of the

polymorphic network can be done post-fabrication. This allows the flexibility to tune

the network on a per-application basis, thereby improving performance across a range

of applications as compared to a network of fixed configuration. The polymorphic

networks support customization in terms of network topology, link width and buffer

capacity. These features allow polymorphic networks to be used in on-chip intercon-

nection network emulation platforms for architectural design space exploration. But,

this flexibility in polymorphic networks comes at the cost of increased area overhead.

This approach shows an average of 40% area overhead as compared to fixed networks.

To summarize, most of the system level NoC software simulators are non-cycle

accurate or tend to become slow as we move towards lower levels of abstraction and

networks of larger dimensions. FPGA emulators overcome limitations of software

simulators and are both fast as well as cycle accurate. Most of the previous emulation

platforms do not make efficient utilization of the FPGA resources, cannot handle

non-uniform traffic or lack flexibility. AcENoCs overcomes the shortcomings of both

software simulators and earlier FPGA emulation platforms in terms of speed, cycle

accuracy and resource utilization.
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CHAPTER IV

AcENoCs ARCHITECTURE

AcENoCs is a cycle accurate and a flexible FPGA accelerated emulation platform

for validating on-chip interconnection networks. The AcENoCs emulation platform is

instantiated on a Xilinx university program XUPV5 FPGA board. Figure 5 shows the

AcENoCs emulation framework. The XUPV5 board houses the Virtex-5 (VLX110T)

FPGA. It also contains other peripherals, including an RS-232 serial communication

port, DDR2 RAM, System ACE compact flash interface and the JTAG programming

interface.

AcENoCs is centered around a hardware/software framework that makes effi-

cient utilization of the available FPGA resources. The FPGA’s resources constitute

the hardware framework and the MicroBlaze softcore processor with its associated

peripherals constitute the software framework . The Microblaze processor is a five

stage pipelined processor and operates at a maximum frequency of 125MHz. Some of

the AcENOCs software operations are floating point intensive or require a lot of shift

operations. These software operations are expensive in terms of the number of pro-

cessor cycles. Therefore, add-ons like dedicated hardware floating point unit (FPU)

and barrel shifter can be instantiated depending upon the performance requirements

of the emulator.

An on-chip block RAM (BRAM) stores the program for the software running on

the processor. Alternately, external DDR2 RAM can also be used for this purpose, but

at the cost of reduced emulation speed due to increased memory access latencies. The

hardware and the software framework interact with each other through the processor

local bus (PLB). A brief explanation of each of the components of AcENoCs is also
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Figure 5. AcENoCs Emulation Framework

provided below.

A. Software Framework

AcENoCs software framework comprises of the traffic generators, traffic receptors,

source queues and the clock generator.

Traffic Generators (TGs) are responsible for generating the packets to be injected

into the network. There is one TG associated with each routing node in the emulation

network. The generated packets are queued up in the source queues before getting

injected into the network through a router’s local port. The TGs are capable of gen-

erating both synthetic as well as trace driven workloads. The synthetic workloads

supported include Uniform Random, Bit Complement, Bit Reversal, Matrix Trans-

pose, Bit Shuffle, Bit Rotation and Hotspot [5], [26]. For trace driven workloads, the

traces are read from an external SystemACE compact flash card. Each entry stored
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on flash card is a packet descriptor and contains packet injection time, packet source

address and the packet destination address. The TGs can be configured using an

emulation configuration file.

Source Queues act as a temporary packet storage for each routing node and help

to decouple the packet generation process from the state of the network. Software im-

plementation allows dynamic memory allocation to the source queues, thus enabling

them to efficiently handle non-uniform traffic conditions.

Traffic Receptor (TR) is associated with every routing node in the network.

The TRs decode the information present in the packets received at the destination

routing node and validate their destination. The TRs also play a role in the latency

calculation of each received packet and report the average latency and throughput at

the end of the emulation process.

Clock Generator is responsible for generating the clock to the emulated network

called emulation clock. Each emulation clock cycle is comprised of several processor

clock cycles, the number of actual processor cycles being dependent on the software

execution latency. The provision of a software generated clock helps to achieve proper

synchronization between software and the hardware events scheduled to occur in a

particular emulation cycle. This kind of dynamic emulation clock control is much

more efficient than static emulation clock control as it allows the hardware to run

much faster depending on the software latency per emulation cycle. The period of

the emulation cycle varies with the packet injection rate and also with the size of the

network being emulated.

The ability to control emulation parameters like packet injection rate, packet

sizes, traffic patterns, number of packets etc. through software adds a great amount

of flexibility to the AcENoCs emulation platform. These parameters can be easily

changed to explore several emulation configurations in a very short span of time.
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B. Hardware Framework

The hardware framework of AcENoCs emulation platform is the on-chip intercon-

nection network to be emulated. The NoC is constructed using a custom built and

highly parameterized hardware library consisting of network routers and links. The

routers can be interconnected using either a 2D-Mesh or a 2D-Torus topology. A

routing scheme decides how a packet traverses the network to reach the intended

destination. A flow control scheme decides the allocation of the network resources

to the packet’s flits as they traverse the network. The use of VC based flow control

instantiates multiple buffers per physical channel instead of just one buffer. This

helps to improve network throughput and avoid deadlock conditions. The buffers are

implemented using the distributed RAM resources of the FPGA. A detailed design

and implementation of the hardware library components for AcENoCs is provided in

Chapter V.

C. Hardware-Software Interface

The interfacing between the hardware and software components on the AcENoCs

embedded emulation platform happens through the PLB bus. AcENoCs has a register

based interface for providing communication between the on-chip emulation network

and the software running on the MicroBlaze processor. The registers are classified

into five categories :

1. Clock Register : This register is used to provide software controlled clock to the

emulated network.

2. Input Data and Data Valid Registers : These registers are used to inject flits

generated by the TGs into the local data ports of the emulated network.
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3. Output Data Registers : These registers are used to capture the flits ejected by

the emulation network and transfer them to the software for analysis.

4. Input Status Registers : These registers maintain status information regarding

the occupancy of the input VC fifos.

5. Output Status Registers : These registers contain indications of the output flit

availability at a particular router.

All of these registers are connected to PLB and are software accessible.

D. Memory

On-Chip BRAM memory is used to store the programs running on the MicroBlaze

processor to implement the functionality of the software framework. The BRAM

also holds the data structures used for bookkeeping purposes. An external DDR2

RAM can also be used as an alternative to BRAM, but the memory access latency of

DDR2 RAM is much higher than that of on-chip BRAM and hence impacts AcENoCs’

performance.

E. Interfaces

The different interfaces present on the AcENoCs emulation platform are briefly ex-

plained below.

UART Serial Communication Interface on the XUPV5 FPGA board is used

to display emulation configuration, debug messages during emulation process and

statistics display at the end of emulation process.

SystemACE Compact Flash Interface on the XUPV5 board is used to read the

trace driven workload data from an external compact flash memory. A maximum of
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4-GB of trace data can be read from the external flash card.

JTAG Programming Interface is used to download the configuration file gener-

ated by the Xilinx toolset to the FPGA.

This chapter provides an overview of the AcENoCs emulation platform. The

NoC hardware library components described in the next chapter are instantiated in

this AcENoCs platform.
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CHAPTER V

DESIGN AND IMPLEMENTATION OF AcENoCs HARDWARE FRAMEWORK

The AcENoCs hardware framework consists of NoC routers connected together using

links. The routers can be connected using either a mesh or a torus topology. This

chapter describes the design and implementation details of the NoC router, the net-

work and the network wrapper used in the AcENoCs emulation platform. Various

optimizations involved in the design of these components are also discussed together

with the configurability added by each of them.

A. NoC Router Design

VC 
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SWITCH
ALLOCATION
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SWITCH

INPUT UNIT

INPUT UNIT

OUTPUT UNIT

OUTPUT UNIT
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VC n STATE
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Figure 6. Router Architecture

A NoC router is the major building block of the AcENoCs hardware framework.

The NoC router used in AcENoCs is comprised of an input unit, routing unit, virtual
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channel (VC) allocation unit, switch allocation unit, crossbar unit and an output unit.

Figure 6 illustrates the block diagram of the AcENoCs NoC router. The number of

pipeline stages in the router is configurable and can vary from single stage pipeline

to a five stage pipeline. The local port of each of the routers is used to connect to

the software TGs and TRs in the emulation platform. A design of the various router

components is discussed below.

1. Input Unit

The input unit receives flits from the neighboring routers in the interconnection net-

work. The structure of the received flits is shown in Figure 7. The default flit width is

32-bits, the minimum required to carry the routing information present in the header

flit.

FT VCID CNOP SRC_X_COOR SRC_Y_COOR DEST_X_COOR DEST_Y_COOR PACKET ID

31 30 29 29 28 26 25 23 22 20 19 17 16 14 13 0

FT VCID UNUSED

31 30 29 29 28 0

(a) Head Flit

(b) Body & Tail Flits

FT - FLIT TYPE (00-HEAD FLIT, 01-BODY FLIT, 10-TAIL FLIT, 11-UNUSED)
VCID - VIRTUAL CHANNEL IDENTIFIER
CNOP - CURRENT NODE OUTPUT PORT
SRC_X_COOR, SRC_Y_COOR - PACKET SOURCE X AND Y COORDINATES
DEST_X_COOR, DEST_Y_COOR - PACKET DESTINATION X AND Y COORDINATES

Figure 7. Flit Structure

One input unit is instantiated per input physical port present on the router. As

shown in Figure 8, the input unit instantiates the VC fifo buffers (VC0-VCn) to buffer

the received flits until they can be forwarded to the downstream router. The virtual

channel identifier (VCID) present in the received flits is used to de-multiplex the flits
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to the appropriate VC fifo. The number of VCs, the depth and width of each VC fifo

can be configured as a parameter. Data is read out from the VC fifos as and when

the fifo has data and the switch allocator and VC allocator are ready to accept new

requests.

NRC
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REQESTOR

REG R

REG O
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wr_data
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Figure 8. Input Unit Block Diagram

The output port for any packet at the current router is extracted from the cur-

rent node output port (CNOP) field contained in the head flit of that packet. The

extracted output port is stored in register “R” till all the flits of that packets have

been transmitted by the current router. One register is present for each input VC

instantiated in the input unit. The input unit also comprises of a next hop routing

computation unit (NRC). This unit implements the look ahead routing technique [27].

The NRC unit at each router computes the output port for a packet at the downstream

router. The output port is computed based on the coordinates of the downstream

router and source/destination coordinates of the packet using a deadlock-free, XY

dimension order deterministic routing algorithm. The coordinates of the downstream

router can be computed by knowing the coordinates of the current router and the

output port of the packet on the current router. In the XY dimension order routing
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algorithm, a packet first travels along the X-direction and then along the Y-direction.

The complete algorithm is provided in Algorithm 1 for 2D-Mesh topology . The com-

puted output port is inserted in the outgoing header flit of the packet for use by the

downstream router. The look ahead routing scheme enables the route computation

to be done in parallel with switch and VC allocation. Alternate routing algorithms

can be easily implemented by modifying the functionality implemented by NRC.

Algorithm 1 XY-Dimension Order Routing for 2D-Mesh

Input Coordinates of the downstream node(Xdownstream,Ydownstream)

Coordinates of the destination node(Xdest,Ydest)

Output Output port for downstream node(Output Port)

Procedure

if (Xdest > Xdownstream) then

OutputPort = PORT EAST

else if (Xdest < Xdownstream) then

OutputPort = PORT WEST

else if (Y dest > Y downstream) then

OutputPort = PORT NORTH

else if (Y dest < Y downstream) then

OutputPort = PORT SOUTH

else

OutputPort = PORT LOCAL

end if

The input unit generates requests to the VC allocator and the switch allocator

to gain access to an output VC and the switching resource respectively. The output
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VC assignment done by the VC allocator is stored in the register “O” instantiated

per input VC. The value contained in this register will be used for directing the body

and tail flits of the packet on the same output VC as the head flit or by the head flit

itself in case of switch allocation failure. The VCID corresponding to the output VC

assignment is inserted in the VCID field of each outgoing flit. The interface between

the input unit and the VC and switch allocators is a request-acknowledge interface.

A successful VC and switch allocation causes the flit to be transmitted on the link

after traversing the switching resource.

Input unit plays an active role in the implementation of credit based flow con-

trol [5]. The input unit generates a request to the output unit to decrement the

appropriate credit counter for every flit transmitted downstream on a particular out-

put VC. It also sends a credit upstream, indicating that a flit buffer is freed in one

of its VC fifo buffers. The input unit generates a request to free an output VC when

the tail flit of a packet occupying an output VC is transmitted to the downstream

router.

2. Virtual Channel (VC) Allocation Unit

The VC allocation unit allocates an output VC to a packet from amongst the several

VCs available on the output port indicated by the routing unit. The VC allocation

unit is triggered only for head flits and not for body and tail flits. Only those output

VCs which are in IDLE state can be allocated to a packet by the VC allocator. The

VC allocation is implemented in the form of two level arbitration. The first level of

arbitration consists of one arbiter instance per input VC. This level of arbitration

selects one output VC on an output port from among all the free output VCs on that

particular output port. Thus the outcome of the first level of arbitration is a request

to a single output VC from each of the input VCs on each input port. The second
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Table II. Truth Table for Fixed Priority Arbiter

INPUTS OUTPUTS

R0 R1 R2 R3 G0 G1 G2 G3

1 X X X 1 0 0 0

0 1 X X 0 1 0 0

0 0 1 X 0 0 1 0

0 0 0 1 0 0 0 1

level of arbitration consists of one arbiter instance per output VC. The winner of the

first level of arbitration is routed to the appropriate second level arbiter. This arbiter

selects one winner for an output VC from among the several requests from each of

the input VCs. This kind of a virtual channel allocation scheme has been described

by Mullins et al. [28].

The VC allocation implements both fixed as well as round-robin priority arbiters.

The selection of arbitration scheme is done through a configuration. In a fixed priority

arbiter, priority is assigned in a linear fashion to each of the request lines of the arbiter.

Thus, if multiple request lines are asserted simultaneously at the input of a particular

arbiter then the one with the highest priority will be serviced first. The fixed priority

arbiter can be implemented using a priority encoder. The behavior of a four input

fixed priority arbiter is indicated in Table II. R0, R1, R2, R3 represent the request

lines and G0, G1, G2, G3 are the corresponding grant lines. The disadvantage with

this scheme is that the lower priority requestors will starve if there are burst requests

from a high priority requestor. The fixed priority scheme is not a fair arbitration

scheme. Round-robin arbitration scheme overcomes this limitation of fixed priority

arbitration. Round-robin arbitration operates on the principle that a request that
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was just serviced will be given lower priority on the next round of arbitration [5]. All

the pending requests will be serviced before the same request line gets selected again.

Thus the round-robin arbiter can be considered as being similar to fixed priority but,

with the priority rotating after each selection. The round-robin arbitration scheme

exhibits strong fairness.
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Figure 9. Virtual Channel Allocator Block Diagram

Figure 9 shows the implementation of VC allocator using two level of arbitration.

The figure shows that, if there are P physical ports and V virtual channels per physical

port then, V arbiters of the type V:1 will be instantiated per input physical port.

There will be a total of PxV first level arbiters. One PV:1 arbiter will be instantiated

per output virtual channel. There will be a total of PxV second level arbiters. Thus,
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the complexity of VC allocator is very high and is strongly dependent on the number

of physical ports on a router and the number of VCs per physical port. The key to

lowering the complexity of the VC allocator is to reduce the number of physical ports

on a router or split the high complexity arbiters into smaller low complexity arbiters.

3. Switch Allocation Unit

The switch allocation unit controls the access to the switching resource of the router

i.e. the crossbar unit. Like the VC allocator, this can also be implemented using two

levels of arbitration [28]. The first level of arbitration consists of one arbiter instance

per input physical port. This arbiter decides which input VC on a physical port

gains access to the crossbar. This reflects the sharing of a single crossbar physical

port by all the input VCs at a particular input physical port. The second level

of arbitration consists of one arbiter per output port. These arbiters decide which

input port gains access to a particular output physical port. The switch allocator

provides control signals to the crossbar unit to enable the appropriate data path in

the crossbar. The switch allocator grants access to the crossbar if and only if credits

are available on the downstream VC which has been allocated to the packet requesting

the crossbar resource. The switch allocation is done in the same emulation cycle as

the VC allocation, thus reducing the router pipeline latency. Unlike VC allocation,

switch allocation is done for all the flits of a packet.

Like the VC allocator, the switch allocator also implements both round-robin

and fixed priority based arbitration schemes, the selection of the arbitration scheme

being done through a configuration. Figure 10 shows the implementation of the switch

allocator using two levels of arbitration. The figure shows that if there are P physical

ports and V VCs per physical port, then the first level of arbitration will have P

arbiters of the type V:1. The second level of arbitration will have P arbiters of the
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Figure 10. Switch Allocator Block Diagram

type P:1. The complexity of the switch allocator is much lower than that of a VC

allocator.

4. Crossbar Unit

The crossbar unit is the switching resource of the router. The crossbar is fully con-

nected and provides a data path from each input physical port to every output phys-

ical port. If a router has I input physical ports and O output physical ports then,

the crossbar unit will have IxO physical ports. It is designed using two levels of

multiplexers controlled by the switch allocation unit. The control signals to the first

level of multiplexers are provided by the first level of arbiters of the switch allocator.
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Similarly, the control signals to the second level of multiplexers of the crossbar unit

are provided by the second level of arbiters of the switch allocation unit. The input

data to the crossbar unit comes directly from the VC fifos instantiated in the input

unit. The crossbar unit supports multiple simultaneous active connections from its

input to the output, thus increasing the throughput of the router. The crossbar unit

drives its output data to the programmable delay unit along with the appropriate

valid bits to qualify the data. An implementation of the crossbar unit using the two

level multiplexer scheme is shown in Figure 11.
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5. Output Unit

The output unit maintains the status of output VCs as either idle or active. The

output VC is activated when it is allocated to a packet by the VC allocator. It is freed

when the tail flit corresponding to that packet departs the router under consideration

and a VC fifo buffer is allocated to it in the downstream router i.e. on the success of

switch allocation to the tail flit of that packet. The output unit also keeps track of

the credits available in the downstream routers VC fifo. The credits are decremented

when a buffer is allocated to a particular flit in the downstream router and they are

incremented when the same flit departs the downstream router. The departure of the

flit from the downstream router is indicated to the upstream router by returning a

credit indication over the reverse link. This is implemented using credit based flow

control.

6. Programmable Delay Unit

This unit consists of a series of programmable delay registers which delay the output

data and data valid from appearing on the link and is a unique feature of the AcENoCs

hardware framework. These delay units can be used to emulate either a router pipeline

stage or link delay. Thus, by varying the programmable delay, routers of different

pipeline depth or even pipelined links can be emulated with ease.

B. Interconnection Network Design

The interconnection network is constructed by connecting NoC routers together in

a particular topology. Two topologies supported by AcENoCs emulation framework

are 2D-Mesh and 2D-Torus topologies. These topologies are explained in Chapter II.

AcENoCs instantiates links to connect routers together for data flit traversal accord-
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ing to the specifications of the network topology being emulated. The width of the

link can be configured as a parameter. By default, link traversal is completed in a

single cycle unless additional link delay is introduced using the programmable de-

lay registers present in the NoC router. In addition to the links carrying the data

flits, there are dedicated links available to implement credit based flow control for

transporting credits from a downstream router to an upstream router.

A network wrapper instantiates this interconnection network together with a se-

ries of registers required to interface with the software framework of AcENoCs. These

registers are connected to the PLB bus and can be accessed by the software running on

the MicroBlaze processor. As discussed in the earlier chapters, five different categories

of registers are defined namely, clock register, input data and data valid registers, out-

put data registers, input status registers and output status registers. Clock register

drives the emulation clock to the network. Input data and the data valid registers are

connected to the local port of each of the routers in the network. These are used to

drive the input flits into the network. The output data registers are also connected

to the local port of each of the routers in the network. They capture the flits ejected

from the network. Input status registers hold the fifo occupancy status of the input

VC fifos on the local ports of each of the router in the network. These are checked

by the software framework before driving data onto the local ports to prevent fifo

overflow. Output status registers are used to indicate output flit availability on the

local port of the routers in the network. These register values are used by the soft-

ware as the qualifying signals for the the data contained in the output data registers.

The network wrapper is combined with the software framework to form the complete

AcENoCs emulation platform described in Chapter IV.

Table III provides a summary of the configurable features available in the AcENoCs

hardware framework.



40

Table III. Summary of Configurable Features in AcENoCs Hardware Framework

FEATURE RANGE

Router

Number of router physical ports > 1

Data width ≥ 32 bits

Number of virtual channels fifos ≥ 1

Virtual channel fifo depth ≥ 1 flit buffer

Virtual channel fifo width ≥ 32 bits

VC allocator arbitration scheme Fixed-Priority, Round-Robin

Switch allocator arbitration scheme Fixed-Priority, Round-Robin

Number of router pipeline stages 1-5

Links

Link width ≥ 32 bits

Link delay ≥ 1

C. Discussion

Typical NoC routers are connected together by links of a given width. These links

carry data flits from one router to another and their width directly affects the number

of flits required to transmit a complete packet. In AcENoCs, the default link width of

the instantiated routers is 32 bits, the minimum required to carry routing information

in the header flit; however, different link widths can be easily emulated by changing

the number of flits transmitted per packet. The number of flits per packet is given

by :

Number of Flits Per Packet = dPacket Size

F lit Width
e
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Two options are available for implementing the VC fifos viz. dual port on-

chip block RAM (BRAM) memory or the dual port distributed RAM memory using

FPGA’s lookup tables (LUTs). The Block RAM is available only in fixed block sizes

and is typically used for storing large amount of data. The number of BRAM blocks

available are not sufficient for implementing all the fifos of a 2D-Mesh network with

dimensions greater than 3x3. The distributed RAM, on the other hand, is used for

implementing smaller sized memories. Since the memory requirements for VC fifos is

small, distributed RAM is used.

This chapter describes in detail the implementation of the NoC router, the net-

work and its integration in the AcENoCs emulation framework. The next chapter

provides details on the FPGA implementation flow for this hardware framework and

the flow for NoC design space exploration using AcENoCs.
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CHAPTER VI

AcENoCs FPGA IMPLEMENTATION AND EMULATION FLOW

A. AcENoCs FPGA Implementation Tool Flow

In this section, we present, step-by-step, the processes involved in the integration

of the AcENoCs hardware and software components into a bitstream which can be

downloaded onto an FPGA to form a robust and complete Hardware-Software NoC

emulation framework. The inputs to each process and the outputs of each process in

the tool flow are also discussed.

AcENoCs emulation framework is realized on an XUPV5 board containing a

Virtex-5 FPGA. The FPGA implementation is done using the Xilinx Embedded De-

velopment Kit (EDK) tool chain. EDK facilitates the development of a complete

standalone embedded processor system using Xilinx MicroBlaze soft core processor

IP. The AcENoCs hardware and software library components are integrated into the

embedded system using EDK. The entire FPGA implementation flow is indicated

in the Figure 12. This has been adapted from the Xilinx embedded systems tools

reference guide [29].

As a part of the system building process, all the necessary IP cores are provided

as input to the tool in EDK format. At this point, we also specify the number of

microblaze processors to be instantiated in the system and amount of on-chip BRAM

memory to be allocated to each processor and the associated peripherals. Several

user-defined registers are also instantiated for interaction between the hardware and

software components. The interconnection of the various system components using

the PLB system bus is also specified as a part of this process. This entire system

building process is accomplished using the Xilinx Base System Builder (BSB) provided
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Figure 12. FPGA Implementation Flow

with the EDK tool chain.

Once the base system is built, the next step is the inclusion of NoC hardware

library components in the base system. The NoC hardware library consists of NoC

routers and its components, links and the network configuration file. The NoC hard-

ware library components are described using verilog HDL and can be imported di-

rectly as one of the peripherals connected in the system, the interconnection of NoC

components being specified through the network configuration file. The network con-

figuration also enables the user to configure other network parameters like network
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dimensions, number of VCs, depth of the VC fifos, router pipeline depth, arbitration

schemes, flit width etc. At this point we have completely specified the hardware

system and the interconnection among its components.

Once the NoC hardware library components are integrated into the base system,

the entire system is synthesized using Xilinx XST synthesis tool. The synthesis results

in the generation of gate level netlist of each system components in the form of NGC

files. The generated netlist are then mapped to the FPGA technology and subjected

to a place and route (PAR) process. The PAR process generates a placed and routed

netlist which describes the placement of various components of the FPGA and the

routing of the wires between these components. The PAR netlist is then subjected to a

static timing analysis (STA) to verify that the netlist meets all the timing constraints

and does not have any timing violations. A bitstream generator is then invoked to

generate a BIT file which is the downloadable image of the hardware framework for

the FPGA. The total time required for each of these steps is directly proportional to

the size of the NoC being emulated.

The next step is to combine the NoC software library components along with

the hardware image to generate a combined executable for the entire embedded sys-

tem. The software library components consist of TGs along with the associated

source queues, TRs and the user defined emulation configuration file. The emulation

configuration file enables configuration of parameters such as flit injection rate, traf-

fic pattern selection, packet size and the number of packets to be injected, random

number generation scheme, size of the software source queues, etc. A linker script

describing the mapping of the software program onto the code and data sections of

the processor memory is generated. In addition to the code and data sections, the

linker script also describes the amount of memory allocated to the statically allocated

stack and dynamically allocated heap structures. The software is compiled and linked
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with the Xilinx software libraries using the GCC cross-compiler provided by the EDK

tool chain. This results in the creation of an ELF software image file. In the final

step, this ELF file is merged with the BIT file produced in the previous step to form

a final FPGA image download.bit. This BIT file is downloaded to the FPGA using

the Xilinx iMPACT tool and the JTAG interface on the FPGA board. With this the

AcENoCs platform is ready for the emulation process.

B. AcENoCs Emulation Flow

A user configures the AcENoCs emulator using two configuration files, the emulation

configuration file for the software framework and the network configuration file for

the hardware framework. The complete emulation process is governed by the param-

eters specified in the emulation configuration file. These two files are provided as

inputs to the implementation flow which synthesizes the hardware framework, com-

piles and links the software framework and downloads the bitstream to the FPGA.

The emulation process is triggered by the downloading of the BIT image onto the

FPGA.

During each emulation cycle, the TGs generate a new packet based on the spec-

ified injection rate and the traffic pattern and inject it into the source queues. De-

pending upon the status of the VC fifos on the local port, a flit may also be injected

from the source queues into the network. If a flit is ejected from the network, the

TRs receive the flit, validate the data and update the bookkeeping structures based

on the type of the flit received.

The emulation stops once the ejected packet count becomes equal to the injected

packet count or an error is encountered. At the end of the emulation, statistics like

number of emulation cycles, latency and throughput are displayed using the UART
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serial communication interface. For NoC design space exploration, various param-

eters described in emulation configuration file and network configuration file could

be varied and the entire emulation process repeated until the desired results are ob-

tained. A change in only the emulation parameters requires a software recompilation,

re-synthesis of the hardware framework is not necessary. This allows fast exploration

of the vast design space offered by NoCs.

The next chapter describes the results of validating and evaluating the designed

hardware framework and the complete emulation platform using the FPGA imple-

mentation and emulation flows.
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CHAPTER VII

VALIDATION AND EVALUATION

In this chapter, we evaluate the performance of the AcENoCs emulator and validate its

hardware framework by comparing the results to other standard network simulators.

We present the results of network validation, AcENoCs performance evaluation and

hardware evaluation under varying workloads, network sizes and packet sizes.

A. Evaluation Methodology

The AcENoCs baseline network configuration consists of a 5x5 2D-Mesh network with

XY-dimension order routing, VC flow control with two VCs and eight flit buffers per

VC. The NoC router is single stage pipelined. Except where otherwise noted, the

AcENoCs baseline emulation network configuration was used for all results. Baseline

results were obtained for the bit-complement traffic pattern for one million pack-

ets. Packets were configured to be 5 flits in size with flit size being fixed to 32 bits.

The AcENoCs emulation flow described in Chapter VI was used to vary the emu-

lation parameters. The interconnection network and the emulator performance are

also compared against the Ocin tsim software simulator [19] and the ABC network’s

verilog HDL simulator [30]. Any deviation from the baseline configuration has been

described appropriately.

B. Network Validation

This section provides details on validation tests carried out for evaluating the designed

2D-Mesh NoC using AcENoCs. Two of the most commonly used metrics in NoC

validation are network latency and throughput under a given traffic pattern and
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injection rate. Latency is the number of cycles required for a packet to travel from a

source node to a destination node and can vary across traffic patterns and injection

rates. Throughput is the rate at which packets are ejected from the network. These

metrics were measured for several traffic patterns, including bit-complement, bit-

reversal, matrix transpose, shuffle, uniform random and were compared against the

results obtained using other network simulators to validate their accuracy [19].

Figure 13 shows the variation of throughput with flit injection rate for some of

the test workloads using AcENoCs and Ocin tsim. Flit injection rate is the rate at

which flits are injected into the network. Both, flit injection rate and throughput are

shown as a percentage of the peak injection rate. AcENoCs results show that the

throughput follows the injection rate very closely till 45% and 55% for bit-complement

and uniform random traffic patterns respectively. Thereafter, the throughput levels

off with further increase in injection rate due to network saturation. The leveling of

the throughput graph occurs at a lower injection rate in Ocin tsim as compared to

AcENoCs. This is due to the the variation in the throttling characteristics of the two

simulators. The total number of outstanding flits that could be present in the system

at any instant of time is much lower in Ocin tsim as compared to AcENoCs. Hence,

the throttling of packets starts much earlier in Ocin tsim than in AcENoCs. Thus,

AcENoCs results are more accurate as compared to Ocin tsim.

In the Figure 14, the variation of latency with flit injection rate is shown for bit-

complement and uniform random traffic patterns for the same 5x5 2D-Mesh network.

The graph indicates that there is only a small increase in latency until a particular in-

jection rate after which it increases drastically even for minor changes in injection rate

indicating network saturation. The drastic change in latency for bit-complement and

uniform random traffic occurs around 40% and 50% respectively using AcENoCs. The

differences in the latency values between AcENoCs and Ocin tsim at lower injection
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Figure 13. Throughput vs. Flit Injection Rate for (a) Bit-Complement and (b) Uni-

form Random Traffic

rates can be attributed to the slight differences in the packet generation (due to the

random nature of the packet generation) and bookkeeping processes, and the router

implementation for the two simulators. On the other hand, at higher injection rates,

the latency values differ primarily due to the variation in throttling characteristics of

the two simulators.
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Figure 14. Average Latency vs. Flit Injection Rate for (a) Bit-Complement and (b)

Uniform Random Traffic

To further validate the accuracy of the AcENoCs hardware framework, variation

of latency with flit injection rate for varying network sizes and packet sizes was studied

and the results obtained were compared against Ocin tsim. As seen from Figure 15
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both, AcENoCs and Ocin tsim show an increase in the average packet communication

latency with increase in network dimensions. Scaling of the network dimensions

results in addition of nodes to the network. Some of the packets now have to travel

over longer distances to reach the intended destination. This causes an increase in

the average packet communication latency.
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Figure 15. Average Latency vs. Flit Injection Rate across 2x2, 3x3, 4x4 and 5x5

2D-Mesh Networks for (a) AcENoCs and (b) Ocin tsim

Both, AcENoCs and Ocin tsim show an increase in the latency with increasing

packet size. This is illustrated in Figure 16. As the packet size is increased, more

cycles are required for the packet to traverse the network and be received at the

destination. Also, larger packets cause higher congestion in the network as compared

to smaller packets, for the same number of packets. Hence, network saturates at a

lower injection rate for larger packets as compared to smaller packets.

All the above results show that both, AceNoCs and Ocin tsim exhibit similar

behavior for varying traffic patterns, network sizes and packet sizes. All the curves

shown in this section are typical of 2D-Mesh networks.
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Figure 16. Average Latency vs. Flit Injection Rate for 5x5 2D-Mesh Networks under

Varying Packet Sizes for (a) AcENoCs and (b) Ocin tsim

C. Emulator Performance Evaluation

This section presents the results of AcENoCs emulator performance evaluation under

varying packet and network sizes. Emulation cycles achieved per second was used

as a measure to evaluate emulator performance. This parameter was calculated by

measuring the amount of time in seconds it takes to run a fixed number of emulation

cycles. The variation of the emulator performance with flit injection rate under

varying network sizes is shown in the Figure 17. We observe that the emulator

performance reduces with increasing network dimensions when holding the injection

rate constant. This can be attributed to the fact that a larger network size with the

same injection rate implies more processing in software in terms of traffic generations

and traffic receptions and therefore more processor cycles are consumed for increased

number of network nodes.

Figure 18 shows the variation of the emulator performance with flit injection rate

for varying packet sizes in a 5x5 2D-Mesh network. We observe that the emulator

performance improves with increase in the number of flits per packet. This can be

attributed to the fact that that the packet generation rate varies inversely with the
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number of flits per packet. For larger packets, the TGs will have to generate fewer

packets to maintain the same flit injection rate as compared to smaller packets. This

decreases the number of processor cycles per emulation cycle, thus improving emulator

performance. It is observed that the graph tends to flatten as the injection rate is

increased beyond 45%, i.e. when the network approaches saturation. At this point,

the source queues become full and the TGs initiate packet throttling.
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Figure 18. Emulation Speed vs. Flit Injection Rate for a 5x5 2D-Mesh Network under

Varying Flit Sizes

AcENoCs’ emulation speed was compared against Ocin tsim, a software network
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simulator [19], for synthetic and realistic workloads. The AcENoCs emulator was able

to achieve a speedup in the range of 5-15X over Ocin tsim for synthetic workloads.

Traces generated by SPEC CPU 2000 [31] suite of benchmarks running on TRIPS [32]

were used for evaluation of the AcENoCs baseline network under realistic workloads.

For these workloads, AcENoCs showed a performance of approximately 17500 emula-

tion cycles/sec, about 9X faster than Ocin tsim. Ocin tsim was run on an eight-core

Intel Xeon processor, with each core operating at 3.2GHz. We also found that the

AcENoCs emulator also shows a speedup of approximately 10000-12000X over HDL

simulators under a similar set of workloads [30].

D. Hardware Evaluation

The network under test, consisting of the routers and links, was implemented on a

Xilinx Virtex-5 VLX-110T FPGA. The synthesis was accomplished using the Xilinx

XST synthesizer. The total resource consumption of the network on the FPGA

varies with the dimensions of the network being implemented and the number of

ports present on each router in the network. A study of the resource consumption

of 3-Port, 4-Port and 5-port routers was done and the results obtained are indicated

in Table IV for these router configurations. The table also indicates the maximum

synthesizable frequency for each router configuration. It is clearly seen that the

resource consumption of a single router increases significantly as we increase the

number of ports on the router from 3 to 5.

The break-down of resource utilization by NoC router component is shown in

Figure 19 for a 5-Port router. The chart indicates that the single largest consumer of

hardware resources in a router is the VC allocator. As explained in Chapter V, the

VC allocation unit is made up of two levels of arbitration. In order to reduce resource
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Table IV. FPGA Resource Utilization for 3-Port, 4-Port and 5-Port Routers

ROUTER LUTs SLICE LUTRAM SYNTHESIS

REGISTERS FREQUENCY

3-Port 997 (1.44%) 477 (0.69%) 24 (0.0013%) 134.644 MHz

4-Port 1691 (2.45%) 667 (0.96%) 32 (0.0018%) 124.353 MHz

5-Port 3040 (4.40%) 875 (1.27%) 40 (0.0022%) 109.064 MHz

consumption of this unit, we split a large high complexity arbiters into hierarchically

connected smaller and low complexity arbiters. For example, in a 5-port router with

two VCs, an arbiter with 10 request lines can be realized using two arbiters with 5

request lines each and one arbiter with 2 request lines. The arbiters with 5 request

lines have much less resource utilization as compared to a single arbiter with 10

request lines. The size of the VC allocation unit grows with the number of router

ports and the number of VCs supported per port. The second largest consumer

of FPGA resources is the input unit. The input unit for all the five input ports

combined consumes around 29% of each router’s hardware resources, primarily due

to the control logic for interfacing with other router components.

input_units (28.98%)

vc_allocator (41.11%)

crossbar_switch (13.83%)

router_top (6.3%)

switch_allocator (7.72%)

output_units (2.06%)

Figure 19. LUT Utilization for a 5-Port Router
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A study of the router critical timing path was also done during router synthesis.

Table V shows the critical path for a 5-port router. The table shows both, logic delay

as well as wire delay components of the critical path. It is seen that the majority of

the delay is due to the routing of wires between various components of the router.

This behavior is typical of FPGA implementation tools. The input unit delay is high

because it includes the Clock-to-Q delay component of the launching flip flop. VC

allocator, switch allocator and crossbar switch, on the other hand, have a large delay

due to their complex network of arbiters or multiplexers.

Table V. 5-Port Router Critical Path

UNIT NAME LOGIC DELAY WIRE DELAY TOTAL DELAY

Input Unit 0.568ns 1.54ns 2.108ns

VC Allocator 0.430ns 2.987ns 3.417ns

Input Unit 0.086ns 0.380ns 0.466ns

Switch Allocator 0.258ns 1.455ns 1.713

Crossbar Switch 0.258ns 1.208ns 1.466ns

Total 1.6ns (17.5%) 7.57ns (82.5%) 9.17ns

In order to efficiently utilize the available FPGA resources and to fit a maximum

dimension network on the FPGA, the unused ports on the router connected in the

mesh network were removed. This reduces the complexity of the router components,

especially the VC allocator. This optimization results in considerable FPGA resource

savings. With this optimization, we were able to accommodate a 5x5 mesh network

on the Virtex-5 FPGA.

The 5x5 mesh network represents the largest NoC which the Virtex-5 FPGA can

accommodate due to its 76% LUT utilization. Around 10% of the LUT resources
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Table VI. Percentage FPGA Resource Utilization under Varying Network Sizes

NETWORK LUTs SLICE REGISTERS LUTRAM

2x2 4958 (7.17%) 2816 (4.07%) 96 (0.005%)

3x3 14637 (21.18%) 6372 (9.22%) 264 (1.47%)

4x4 29980 (43.37%) 11414 (16.51%) 512 (2.86%)

5x5 52520 (75.98%) 19569 (28.31%) 840 (4.69%)

are consumed by other components like MicroBlaze processor, RS-232 controller,

clock generators, memory controllers and so on. Despite an apparent 14% remaining

LUTs, larger network designs would not converge during the network synthesis step.

Table VI shows the resource consumption for networks of different dimensions.

This chapter presents the results of all the experiments conducted using AcENoCs

emulator and their comparison with other standard network simulators. The next

chapter will present the concluding remarks and future improvements that can be

incorporated in the AcENoCs emulator.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

A. Conclusions

Advancements in VLSI technology have resulted in a tremendous increase in the com-

putational power of processing elements and the number of processing cores integrated

on a single chip. The inability of the communication infrastructure to keep pace with

the increased computational power has caused a shift in focus from computation-

centric design to a communication-centric design. Traditional bus based designs

are not scalable and cannot efficiently handle the communication in large designs.

Network-on-Chip is an effective replacement for buses in systems with large number

of processing cores. An exploration of the vast design space provided by NoC in

terms of router architecture, network topology, routing and flow control algorithms

requires extremely fast and cycle accurate simulations to arrive at an optimum net-

work architecture in a short time frame. Several software and HDL simulators have

been developed to meet this objective, but they are either very slow or non-cycle

accurate. FPGA based emulators reduce the validation time without compromising

cycle accuracy and hence can be used as an alternative to software simulators.

This thesis presents AcENoCs, a novel FPGA based NoC emulator capable of fast

and cycle accurate emulations. Specific focus is on the design and evaluation of the

hardware framework for AcENoCs. A highly configurable library of NoC components

like NoC router and links was designed using verilog HDL. Configurability is provided

in terms of the number of router ports, number of virtual channels, depth and width

of the virtual channel fifos, arbitration schemes and link widths. Additionally, the

router could be configured to have variable number of pipeline stages ranging from
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one to five stages. The design also supports link pipelining. The AcENoCs software

framework adds additional flexibility by allowing easy control of parameters like the

number of packets to be injected, packet size, traffic patterns and the flit injection

rates. This efficient and well defined hardware-software framework makes AcENoCs

an ideal platform for researchers wanting to validate their designs early in the design

cycle.

Emulation tests performed to validate the accuracy of the AcENoCs hardware

framework for 2D-Mesh network under several traffic patterns showed results similar

to Ocin tsim software simulator [19]. The latency and throughput plots, thus ob-

tained, demonstrated characteristics typical of a standard 2D-Mesh network. With

all the hardware optimizations, synthesis using Xilinx XST synthesizer indicated a

86% overall utilization of the FPGA resources for a 5x5 2D-Mesh network, the maxi-

mum that can be fitted on a Virtex-5 (VLX110T) FPGA. Finally, AcENoCs indicated

speedups improvements of 10000-12000X over ABC network’s HDL simulator [30] and

5-15X over Ocin tsim software simulator running on a 3.2GHz processor.

B. Future Work

Currently, AceNoCs hardware framework supports emulation of 2D-Mesh and 2D-

Torus networks with X-Y dimension order routing and credit based flow control.

AcENoCs hardware framework can be extended to support additional network topolo-

gies including F-butterfly [33], Multidrop Express Channels (MECS) [34], as well as

different routing schemes, and flow control schemes. To emulate networks larger than

5x5 on a Virtex-5 FPGA, our approach can be combined with the technique presented

by Wolkotte et al. [24], with network of smaller dimensions being treated as a single

block.
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