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ABSTRACT 

 

Study of CO2 Mobility Control Using Cross-linked Gel Conformance Control and CO2 

Viscosifiers in Heterogeneous Media. (August 2010) 

Shuzong Cai, B.S., Peking University; M.S., New York University 

Chair of Advisory Committee: Dr. David S. Schechter 

 

    CO2 has been widely used as a displacement fluid in both immiscible and miscible 

displacement processes to obtain tertiary recovery from the field. There are several 

problems associated with the application of CO2 flooding, especially when there is a 

significant presence of heterogeneous elements, such as fractures, channels and high 

permeability streaks within the reservoir. With flooding, CO2 will finger through the 

target zone while leaving most of the residual/trapped oil untouched. As a result, early 

gas breakthrough has been a very common problem in CO2-related projects, reducing the 

overall sweep efficiency of CO2 flooding. This research aims at improving the CO2 flood 

efficiency using cross-linked gel conformance control and CO2 viscosifier technique. A 

series of coreflood experiment studies have been performed to investigate the possibility 

of applying CO2 mobility control techniques. Corresponding simulation works have also 

been carried out to predict the benefits of applying CO2 mobility control techniques in 

the field. 

    In the laboratory study, the CO2 coreflood system was integrated with the CT 

(Computed Tomography)-scanner and obtained real-time coreflood images of the CO2 

saturation distributions in the core. This system was applied to the research of both 
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cross-linked polymer gel treatment and CO2 viscosifier study and produced images with 

sharp phase contrasts. For the gel conformance study, promising results were obtained 

by applying cross-linked gel to eliminate permeability contrast and diverting CO2 into 

low permeability regions to obtain incremental oil recovery; also studied were the gel 

strength in terms of leak-off extent with the aid of CT (Computed Tomography) images. 

For the CO2 viscosifier research, we tested several potential viscosifier chemicals and 

found out PVAc (Polyvinylacetate)/toluene combination to be the most promising. The 

follow-up study clearly demonstrates the superiority of viscosified CO2 over neat CO2 in 

terms of sweep efficiency. This research serves as a preliminary study in understanding 

advanced CO2 mobility control techniques and will provide insights to future studies on 

this topic. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1    Introduction  

    CO2 has been widely used as a displacement fluid in both immiscible and miscible 

displacement process to obtain tertiary recovery from the field. The high solubility of 

CO2 in crude oil makes it ideal to “swell” the net volume of oil, thereby reducing oil 

viscosity. The importance of utilizing CO2 can be attributed to two factors: First, CO2 is 

readily available from industrial emission. Second, it is one of the most promising ways 

to reduce greenhouse gas emission. A study by the U.S. Office of Technology 

Assessment has indicated that the total CO2 required as an Enhanced Oil Recovery 

(EOR) fluid could ultimately reach 50×1012 SCF.1 

    There are several problems associated with the application of CO2 flooding, especially 

when there is a significant presence of heterogeneous elements such as fractures, 

channels and high permeability streaks within the reservoir; CO2 will finger through the 

target zone while leaving most of the residual/trapped oil untouched. As a result, early 

gas breakthrough has been a very common problem in CO2-related projects, reducing the 

overall sweep efficiency of CO2 flooding. The CO2 “Utilization Factor” which is the 

number of thousands of cubic feet (Mcf) of CO2 injected per barrel of oil recovered will 

be greatly increased and will eventually cause the production to become uneconomical.  

 

____________ 
This thesis follows the style of Journal of Petroleum Technology. 
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Thus, it is essential to develop novel CO2 mobility control techniques in order to apply 

CO2 flood in highly heterogeneous reservoirs. 

    Three major techniques have been proposed to increase the CO2 flood efficiency: 

Cross-linked gel conformance control, CO2 viscosifier and CO2 foams. Conformance 

control is the process of injecting cross-linked-gel into the reservoirs to modify the 

permeability profile. It usually targets high permeability regions such as fractures or high 

permeability streaks; its purpose is to direct CO2 fluid into low permeability regions after 

gel treatment to the high permeability regions. 

    CO2 viscosifier is the most direct way to increase the viscosity of CO2, hence 

improving the overall sweep efficiency; high molecular weight polymer and cosolvent 

are blended and pressurized together with CO2 so that the fluid viscosity can be greatly 

increased before CO2 is injected for oil recovery. Unforunately, this is the most 

underdeveloped method compared to other CO2 flooding improvement techniques. The 

most significant problem in the research towards perfect CO2 viscosifier is balancing the 

solubility and viscosity properties of polymer materials.  

    CO2 foam is the simultaneous injection of CO2 fluid and surfactant fluid into the 

reservoir. This technique has not drawn as much attention due to the lack of 

understanding in the foaming mechanism and it is not as promising as two previously 

mentioned techniques and we decided to leave it out of this research project.  

    Our laboratory work employs a novel design which integrates the fourth generation X-

Ray CT scanner with a specially fabricated aluminum coreflood cell. Experiments were 

carried out at various pressure and flow rate conditions. With the integrated system we 

were able to obtain real-time fluid distribution images in the cores. We could also obtain 
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quantitative phase saturation information from the CT data measured in different stages 

of coreflood experiments. The laboratory research includes the preliminary study of 

immiscible/miscible CO2 flood, testing of gel performances in heterogeneous 

carbonate/sandstone cores, and screening the performances of novel CO2 viscosifier 

chemicals. All of these results were obtained from a series of distinctively designed 

coreflood experiments. We also confirmed our laboratory research results by simulating 

gel conformance control and CO2 viscosifier performance using CMG reservoir 

simulation software. 

1.2    Objectives  

    Our research work aims at improving CO2 flood efficiency using novel CO2 mobility 

control techniques. For the initial stage of the research, the coreflood system combining 

CT scanner is examined to prepare for more complicated studies. Then, factors affecting 

the Minimum Miscibility Pressure are investigated. To study the cross-linked gel 

conformance control technique, such factors as pressure, temperature, gel/cross-linker 

concentration are investigated with the eventual goal of comparing different gel 

strengths with the aid of CT-scan technique. To study the CO2 viscosifier technique, the 

available industrial/laboratory chemicals from the market are surveyed and promising 

formulation of CO2 viscosifiers are tested to observe the contribution from applying CO2 

viscosifier; the CT images are used to provide robust supportive information when 

comparing the overall sweep efficiencies between different CO2 flooding experiments.   
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1.3    Background  

In this section CO2 flood theories and mechanisms are reviewed. A literature review is 

followed to provide an up-to-date summary on various CO2 mobility control methods. 

The focus, however, will be on gel conformance control and CO2 viscosifiers. 

1.3.1    CO2 Flood Theoretical Background 

 

 

Fig. 1.1 – CO2 Phase Diagram2 

 

    Understanding of the characteristics of CO2 is helpful in developing new effective 

CO2 mobility control methods to improve CO2 flooding performance. Fig. 1.1 shows a 

typical CO2 phase diagram and it can be observed that CO2 can easily be in a 

supercritical fluid state at relatively low temperature and pressure conditions (Critical 
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point at 1070 psi and 89 °F). At this supercritical fluid state, CO2 exhibits significant 

changes in solubility, interfacial tension and density. 

1.3.2    CO2 Displacement Mechanisms 

    The mechanisms by which CO2 displaces oil can be classified as following3: 

1. Solution gas drive: Solution gas drive usually occurs at low pressure conditions. 

It involves dissolution of CO2 into oil at initial pressure and release of CO2 at a 

later time after the depletion of pressure. Very few field cases have utilized this 

technique. 

2. Immiscible CO2 drive: This mechanism is characterized by liquid-liquid 

immiscible CO2 flooding. This drive mechanism can be applied at relatively low 

reservoir pressure. Industrial applications of this mechanism include Water 

Alternating Gas (WAG) injections. 

3. Hydrocarbon-CO2 miscible drive: Light hydrocarbons such as methane, ethane 

and propane can be completely miscible with CO2 at relatively low temperature. 

Therefore, low molecular weight hydrocarbon and CO2 slug can be formed in the 

front of a CO2 drive. However this has not been utilized much in the field and 

very few successful cases have been reported.  

4. Hydrocarbon vaporization: For light oil, CO2 has the ability to extract and 

vaporize hydrocarbons and transfer those hydrocarbons from the reservoir. 

However, only low molecular weight hydrocarbons can satisfy the requirements 

for this application. 

5. First Contact Miscible process (FCM) (direct miscible CO2 drive): This 

mechanism requires immediate and complete miscibility between CO2 and 



 6 

hydrocarbon in the reservoir. Relatively high pressure and temperature are 

required for this application. At practical reservoir conditions, direct miscibility 

is hard to achieve. 

6. Multiple-Contact Miscible process (MCM): In this mechanism, multiple-contact 

between oil and CO2 is necessary compared to the direct contact miscible 

mechanism. The depth of vaporization and extraction of hydrocarbons from 

crude oil is not as significant. However, miscible front breaks down when it 

comes in contact with new crude oil, and new miscible front must be constantly 

formed by vaporization or extraction mechanism so that miscibility can be 

maintained.4 So far, required pressure for multiple-contact miscible displacement 

with CO2 has not been properly determined because of the wide range of possible 

pressure at which extraction of hydrocarbons for CO2 begins. Different 

correlations to predict miscibility pressure will be discussed. 

1.3.3    Prediction of CO2 MMP 

    In order to successfully design and implement a CO2 injection EOR project, it is 

essential to predict the minimum miscibility pressure (MMP) in combination with the 

actual reservoir conditions. To determine MMP by experimental methods (slim tube test) 

is both expensive and time consuming.5 

    Preliminary analytical correlations can be used to estimate MMP; this gives us 

information regarding whether our displacement mechanism in the reservoir is miscible 

or immiscible. 

    Miscible Displacement can be classified as First Contact Miscible (FCM) process or 

Multiple-Contact Miscible (MCM) process. In the FCM process injected CO2 and oil in 
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the reservoir will form a single phase mixture. In MCM process heavier components of 

the reservoir oil are not miscible with CO2 upon first contact but miscibility develops 

after multiple contacts. MCM is characterized by repeating vaporizing and condensing 

drive mechanisms. Because FCM usually requires high pressure to take place, MCM 

CO2 floods are the most effective EOR methods available in actual field production 

cases. 

    Glasø6
 has proposed a correlation based on earlier work of Benham7 et al. . The MMP 

is predicted by reservoir temperature, molecular weight of C7+, mole percent ethane in 

the injected gas and the molecular weight of the intermediates (C2 through C6) in the gas. 

TeyzyyMMP zy

x 


 )10127.1()185.0475.46(410.25329,6)(
703.18.319258.512

34
 

………………………………………………………………………………………..(1.1) 

TeyzyyMMP zy

x 


 )107.1()273.0913.80(238.19503,5)(
508.1567.13730.39

44
 

………………………………………………………………………………………..(1.2) 

TeyzyyMMP zy

x 


 )10920.4()214.0515.73(703.25437,7)(
109.1706.21520.514

54
 

………………………………………………………………………………………..(1.3) 

x= the molecular weight of C2 through C6 components in injection gas in lbm/mol 

y= corrected molecular weight of C7+ in the stock-tank oil in lbm/mol 
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γC7+= specific gravity of heptane-plus fraction 
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    Firoozabadi et al.
8 has proposed another simple correlation to predict MMP for lean 

natural gas or N2 injection. Correlating parameters include the concentration of 

intermediates, the volatility, and the temperature. C6 is excluded from the intermediate to 

improve the correlation of MMP. 
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    Eakin et al. 9 have presented another MMP correlation method using Rising Bubble 

Apparatus (RBA). Correlating parameters are solvent composition, C7+ molecular weight 

and the pseudo-reduced temperature of the reservoir fluid. To calculate pseudo-critical 

temperature Tpc and pseudo-critical pressure Ppc, Kay’s rules were used. 
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y= mole fraction of certain molecular weight range hydrocarbon in the reservoir fluid 

Tpr= pseudo reduced temperature of the reservoir fluid 

Tpc= pseudo critical temperature of the reservoir fluid 

Ppr= pseudo reduced pressure of the reservoir fluid 

Ppc= pseudo critical pressure of the reservoir fluid 
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    Since most of these correlations do not account for the fluid composition properly, 

Firoozabadi et al. and Eakin et al. correlations are considered to be relatively more 

reliable. 

    For our coreflood experiments we decided to use the Cronquist correlation10 from 

DOE reports because of our limited fluid data: 

                                    ………………………………………….(1.7) 

T: Temperature in Fahrenheit  

Mw C5+: The molecular weight of pentanes and heavier fractions in the reservoir oil  

1.3.4    CO2 Mobility Control 

There are several problems associated with the application of CO2 flooding, especially 

when there is a significant presence of heterogeneous elements such as fractures, 

channels and high permeability streaks within the reservoir; CO2 will finger through the 

target zone while leaving most of the residual/trapped oil untouched. As a result, early 

gas breakthrough has been a very common problem in CO2-related projects, reducing the 

overall sweep efficiency of CO2 flooding. The CO2 “Utilization Factor” which is the 

number of thousands of cubic feet (Mcf) of CO2 injected per barrel of oil recovered will 

be greatly increased and will eventually cause the production to become uneconomical. 

In order to address these problems of mobility control during CO2 flooding, different 

methods have been employed. The most studied three approaches are: (1) cross-linked 

polymer gel conformance control; (2) CO2 viscosifier / thickener; (3) CO2 foam. In the 

following sections three major CO2 mobility control methods will be reviewed; with 

emphasis on the first two methods since these two methods have been adopted in our 

research. 
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1.3.4.1    Cross-linked Polymer Gel Conformance Control 

    Developments in conformance control technique are in relatively mature stage in 

enhanced oil recovery operations. The basic idea of conformance control technique is to 

inject cross-linked polymer into the reservoir to modify the permeability profile so that 

CO2 does follow fractures or high permeability streaks/channels. Thus, this method 

improves the overall sweep efficiency.  

    Polyacrylamide polymer gels with chromium (III) cross-linkers have been widely 

used in fracture system treatment, casing-leaks, water shut-off, and permeability 

reduction operations in the fields. Recently, it has been tested for CO2 flooding 

conformance control by in-depth placement of the cross-linked gel into a reservoir. In 

comparison with another common gel system Guar/Borate, Polyacrylamide gel system is 

more resistant to acidic conditions caused by CO2 treatment compared to another 

common gel system, Guar/Borate, that can only survive relatively basic pH 

environments. As shown in Fig. 1.2, Boron (III) center cation is very susceptible to 

acidic conditions and the cross-linked gel will dissociate into separate polymer chains. 
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Fig. 1.2 – Guar/Borate Gel System and HPAM/Cr/Acetate Gel System11 

 

    HPAM (Partly Hydrolyzed Polyacrylamide) Cr(OAc)3 (Chromium (III) Acetate) 

Polymer Gel is one of the most commonly used Polyacrylamide type polymer gels in the 

field. HPAM / Cr(OAc)3 Polymer gels have been used in polymer floods. In other 

applications, these gels have been used in water shut-off to reduce water production and 

in zone abandonment. 

    There are two commonly used approaches to apply the HPAM / Cr(OAc)3 polymer gel 

system depending on the conditions of the reservoir; pre-formed gel and in-situ formed 

gel: 

    In the former approach, a pre-formed cross-linked gel is prepared before injection. 

Then, the HPAM polymer beads are dissolved and hydrated first in brine, and cross-

linker Cr(OAc)3 will be added next. The whole mixture is left to cure overnight or even 

for days, depending on the actual gelation time of the gel system. The pre-formed cross-

linked gel prepared this way has a very high viscosity and low permeability in the 
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matrix. The cross-linked gel is expected to extrude through fractures without invading 

and damaging the reservoir matrix. 

    In the latter approach, HPAM polymer solution and Cr(OAc)3 solution are mixed and 

immediately, the mixture is injected in the reservoir before the gelation process is 

completed. The injected reaction mixture is not in cross-linked state yet; without the 

cross-linked polymer gel structure, the mixture still contains uncross-linked polymer 

strands and it can enter the reservoir matrix. This mixture solution is expected to go into 

high permeability regions of the reservoir to eliminate permeability distribution 

heterogeneities. The mixture then turns into polymer aggregates in the reservoir matrix 

and starts to form cross-linked gel in reservoir conditions. CO2 injection should not start 

until the cross-linking reaction is completed in the reservoir. Previous studies suggest 

that a longer time is needed for gel cross-linking process if it takes place in the 

reservoir.12 This approach is suitable for CO2 flood in heterogeneous yet unfractured 

carbonate reservoirs with varying permeability. 

    Some examples of previous studies on conformance control technique are discussed in 

the following section in terms of experimental conditions and procedures along with the 

significance of these studies. 

    Kovarik et al. studied the effects of commercial gelants to reduce CO2 permeability as 

early as 1987.13 The experimental conditions for the core tests were 1500 psi and 105 °F, 

which was set in reference to reservoir conditions in some west Texas/southeast New 

Mexico reservoirs. The MMP was claimed to be around 1200 psi. The permeability tests 

provided information on gel stability and polymer-gel interactions. Three types of gels 

were used in this study: PAM Cyanagel 100 with Cr (VI) cross-linkeder, Pfizer 
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FLOCON 4800P with Pfizer X-LINK 1000 cross-linkeder, and in-situ cross-linkeder 

PAM/OCL. The cores used were Berea cores (sandstone). Some improvements on 

brine/CO2 WAG (Water Alternating Gas) injection performances have been observed 

after gel treatment. Although matrix was not affected by gel infiltration, some gel 

became mobile after WAG injection. This result showed the necessity to evaluate the 

long-term stability of different gel systems. The researchers attempted to visualize fluid 

flow scenarios in 2-D, but the end product was not very satisfactory. Fortunately, this 

visualization is much clearer today with our updated CT-scan visualization technique. 

    R. S. Seright extensively studied the mechanism for Polyacrylamide/Chromium 

acetate gel propagation through fractures.14 During large volumes of gel injection, a 

special experimental set-up was devised to measure the pressure drops of different 

intervals of fractures. Pressure gradients were monitored and effluents from fractures 

were also analyzed. It was found out that the concentrated gel completely filled the 

width of the fracture but the thickness of the filter cake was not affected by the amount 

of gel injected; the extra amount of gel injected only changed the dehydrated gel filter 

cake concentration. A simple model was developed in their study to account for the 

relationship between pressure gradient and gel extrusion possibility:  

2)/(02.0/ fwdldp     ………………………………………………………………..(1.8) 

wf : fracture width 

    Other similar correlations were also proposed by Seright et al.; their equations predict 

in-depth gel placement extent during gel conformance control coreflood experimental 

study. 
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    Most of the studies on gel conformance control have focused on sandstone reservoirs 

more than carbonate reservoirs. Taabbodi et al. investigated the application of gel 

placement onto carbonate porous medium to reduce its permeability to water and 

supercritical CO2.15 The gel systems used were high and low molecular weigh 

polyacrylamide polymer with chromium (III) as cross-linker. Sodium lactate was added 

to some of the experiments to extend the gelation time. In some of their experiments, 

residual oil was present inside the core t its effect on gel performance. It was found out 

that permeability reduction decreased when there was residual oil saturation present 

inside the core. Gelation time, permeability tests were carried out to show the 

effectiveness of different gel systems for conformance control. However, their 

experimental condition of 1200 psi and 100 °F is still very close to CO2 critical point and 

it might not be enough to guarantee the claimed supercritical CO2 fluid state. 

    G. P. Hild and R. K. Wackowski reported the application of polyacrylamide/ chromic-

acetate polymer gel system to improve CO2 flood performance at Rangely Weber Sand 

Unit in northwestern Colorado.16 Significant amount of gel (10,000 bbl) have been 

pumped in this unit for 44 injection well treatments. Previously only small volumes of 

gel were injected by near-wellbore methods. In more recent projects, significant volumes 

of diverting agents were injected to correct the poor vertical and areal sweep in the 

reservoir. Since this gel system requires a minimum permeability of several hundred mD 

for matrix placement, it ensures that the injected gel will not invade deep into the matrix 

and low permeability wells will not be damaged after the injection of gel. An average 

incremental oil of 21 bbls/day was achieved for the unit and water production was 

reduced by 98 bbls/day. 
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    Another successful pilot field application of conformance control for CO2 flooding 

using gel treatment was reported by Celebioglu et al.17 The CO2 injection project is at 

Bati Raman heavy-oil filed in Southeastern Turkey. This reservoir is a naturally 

fractured carbonate reservoir which has problems of poor sweep efficiency of CO2. 

Chromium acetate-cross-linked polyacrylamide gels were used and a flowing gel 

condition was applied to plug the vuggy and fractured zones. Large volumes, sometimes 

as much as 10,000 bbls, of gel were injected to each well. This attempt tuned out to be 

both technically and economically successful; the incremental oil after the gel treatment 

can be 330, 000 bbls for 10 years. 

    Although polyacrylamide/chromium gel system has settled down as the rule of thumb 

for CO2 conformance control, some novel gel systems were also tested in different 

research labs. However, considering the cost of these synthetic chemicals, these 

materials are still far from being applied in the large scale field production.  

    Willhite et al. reported a laboratory study on some novel in-situ gel systems including 

KUSP1 biopolymers and SMRF (sulfomethylated resorcinol/formaldehyde gel).18 

Effective permeabilities of brine and CO2 before and after gel treatments were measured 

and compared. For KUSP1, in-situ polymerization has been initiated by injecting 

supercritical CO2 and permeability reduction as much as 80% has been observed. Other 

methods to initiate polymerization were also tested for KUSP1 such as using an ester to 

promote reaction. For SMRF system, the reaction between two components promoted an 

in-situ polymerization and permeability reduction was as high as 99%. Since these were 

only permeability tests, no oil recovery coreflood tests were attempted. 
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    Dong et al. investigated a more novel approach to control CO2 permeability.19 In their 

study, enzyme bovine carbonic anhydrase was used to facilitate the precipitation of 

calcium carbonate in the presence of both CO2 and calcium ions. This precipitation 

caused reduction in permeability of the flooded region of the reservoir, thus improving 

the subsequently injected CO2 sweep efficiency. The enzymatic hydration reaction 

mechanisms were studied under different temperature and concentration conditions. It 

was shown that the enzymatic precipitation of CaCO3 was not dependent on the 

concentration of bovine enzyme. Two flow experiments were carried out with different 

injection sequences. Reduction of CO2 permeability was higher when the CaCl2/Enzyme 

fluid and CO2 fluid were injected simultaneously (permeability reduction from 9.81 mD 

to 2.49 mD). However, the coreflood experiments had only small pressure drops (~40 

psi) thus they were not proper indications of the actual reservoir pressure and 

temperature conditions. However, their research serves to provide an alternative for 

conformance control by using enzymes instead of large quantities of polymer gels. 

1.3.4.2    CO2 Viscosifier / Thickener 

    CO2 viscosifier is the most direct way to control the mobility of CO2. (Note: the term 

“viscosifier” has the same meaning as “thickener” throughout the thesis.) However, this 

is also the technique that is most underdeveloped comparing to other CO2 flooding 

improvement techniques. The most significant problem in the research towards perfect 

CO2 viscosifier is balancing the solubility and viscosity properties of polymer materials.  

    During multiple contact miscibility, which commonly occurs at pressures above the 

minimum miscibility pressure, CO2 obtains a relatively high density (above 0.45 g/cm3) 

at reservoir conditions. However, owing to the low viscosity of dense CO2 (in the range 
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of 0.03 to 0.08 cp), it is not as effective in displacing oil. This leads to a high mobility 

ratio for the CO2 and in turn significantly decreases the macroscopic efficiency of CO2.  

    Heller et al. (1985) provided the first reports on viscosity increasing polymers for 

reducing mobility of CO2 in EOR applications.20 In their work, they attempted to find 

viscosity increasing chemicals that were soluble in supercritical or dense CO2. However, 

none of their soluble polymers yielded significant increase in viscosity for CO2 fluids.  

    Terry et al. also conducted similar polymerization reactions in supercritical CO2 in an 

attempt to increase CO2 viscosity.21 They used olefin monomers (about 10-50 vol %) 

and benzoyl peroxide as an initiator (1.2-3.0 wt % of monomer) for the polymerization 

reaction. Even though they were successful in performing the polymerization reaction 

and dissolving polymers in supercritical CO2, no apparent viscosity increase was 

observed.  

    An applicable CO2 viscosifier is expected to increase the CO2 viscosity by 1 to 2 

orders of magnitude while keeping the CO2 viscosifier concentration under 5 wt %. The 

diluted viscosifier chemical concentration will minimize the process cost and formation 

damage caused by viscosifier chemical deposition. More ideally, 10-100 fold increase is 

expected from 0.1-2.0 wt % viscosifier CO2 solution. Previously, conventional 

hydrocarbon-based polymers, telechelic ionomers, organometallic compounds, 

surfactants, hydroxystearic acid and ammounium carbamates have all been tried as CO2 

thickener. However, large amounts of these materials are needed to increase the CO2 

viscosity.  

    DeSimone et al. conducted polymerization in liquid and supercritical CO2 using 

poly(1,1-dihydro perfluoro octyl acrylate) with a high molecular weight. 6.7 wt / vol % 
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polymer was blended in CO2 and viscosity increased from 0.08 mPa s to 0.2-0.6 mPa.s at 

23-35 Mpa.22 

    The most feasible research on CO2 thickener for CO2 flooding was conducted by Bae 

et al..23 Most of the CO2 viscosifiers tested were commercial siloxane polymers. 

Different solubility issues regarding the viscous CO2 process had emerged and a 

polymer screening process was conducted. When a commercial polydimethyl siloxane 

polymer from General Electric (GE) was used as CO2 thickener with toluene used as 

cosolvent, corefloods experiments showed that supercritical CO2 was viscosified by two 

orders of magnitude, forming a single-phase admixture. The use of cosolvent also helped 

in reducing minimum solubility pressure (MSP) which rendered this method viable for 

field use. The viscous phase of CO2 consisted of 4 wt % polymer and 20 wt % toluene 

and had a viscosity of 1.2 cp at experimental conditions of 130 °F and 2500 psi. Using a 

cosolvent was necessary because of the low solubility of the test chemicals in 

supercritical CO2 and a screening for the cosolvent was conducted. Some coreflood 

experiments were conducted and oil recovery was shown as a function of cumulative 

fluid injection. A significant delay in gas breakthrough was observed with viscosified 

CO2. Oil production was increased and accelerated. Through infrared spectrophotometer 

analysis, partition of the injected polymer between CO2 and crude oil phase was studied; 

the analysis showed that only a small amount of the injected polymer blended in with the 

produced oil. For most of the experiments, oil viscosity was not significantly altered 

(“significant” defined as 10 to 100 fold increase). However, an economic analysis on this 

approach also concluded that the costs of polymer and the cosolvent (toluene) made the 

viscous CO2 economically unfeasible with the concurrent market prices of oil and 



 19 

chemicals. No further work was done in continuation to this approach. This method will 

be the basis for our viscosified CO2 EOR approach. Especially, it will be worthwhile to 

see if current crude oil prices and chemical costs make the process economical now.  

    Enick et al. did an extensive study on the development of a novel CO2 thickener 

without cosolvent.24 Their research work between 2001 and 2004 provided some 

guidance for the structural design of possible CO2 thickener. However, this research 

funded by Department of Energy did not yield any industrially applicable polymer 

materials for CO2 EOR projects.  Polymers, surfactants, dispersants and chelating agents 

with high solubility in CO2 were synthesized with CO2-philic fluoroether functionality. 

One fluoroacrylate-styrene random copolymer reported by them is credited as the first 

associative thickener for CO2.25 
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Fig. 1.3 – Chemical Structure of One Copolymer as CO2 Thickener 

 

    The structure of the copolymer in Fig. 1.3 demonstrates the guideline for designing 

CO2 thickeners. The fluoroacrylate unit serves as CO2-philic component while the 

styrene unit serves as the intermolecular associating component to enhance viscosity. 



 20 

This polymer was able to increase the viscosity of CO2 by a factor of 8-6 at superficial 

velocity of 0.00035 to 0.0035 cm/s for a 1 wt % solution of the copolymer in CO2. 

    However, fluoropolymers are not ideal for large quantity commercial production; the 

undegradable characteristics render this polymer an environmentally unfriendly one. To 

search for alternatives, Enick et al. identified poly(vinyl acetate) PVAc as the most CO2 

soluble, inexpensive, commodity polymer to viscosify CO2. But the pressure required to 

dissolve an effective amount of PVAc in CO2 was 6000-9000 psia, making it impractical 

for field application.  

    The frontier in CO2 thickener research now is to screen for technologically and 

economically viable polymer basic structures and develop better cosolvent to enhance 

polymer solubility in CO2 at lower pressure and temperature. 

1.3.4.3    CO2 Foam 

    CO2 foam technology uses foam to reduce gas mobility in the reservoir. However, the 

control of foam generation and propagation in the field is the major challenge. CO2 foam 

is not the focus of our research project because of its economic and technological issues. 

However, a brief review of this technology will be provided in this part. 

    Conventional foam generation with the surfactant injected with water was studied 

extensively. Usually, foam generation can be done using surfactant solution-alternating-

gas injection (SAG) or co-injection. However, both have their limitations with respect to 

the placement of surfactant into theft zones and severe surfactant adsorption, particularly 

in carbonate reservoirs.   

    It is worth mentioning that conventional surfactants show very poor solubility in CO2. 

To address this issue, CO2-philic surfactants such as non-fluorinated AOT (sodium 
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bis(2-ethylhexyl)-sulfosuccinate) and non-ionic surfactants have been chosen for 

extensive testings.  

    Viet Q. Le et al. proposed a novel foam generation concept in which they dissolved 

surfactant directly in CO2.26 Foam generation occurred in-situ on combining with 

reservoir water. This can be particularly effective in blocking thief zones if they are 

sufficiently saturated with water to allow foaming process. The authors compared 

conventional SAG (surfactant in water alternated with CO2), novel WAGS (water 

alternated with surfactant in CO2) and novel CO2 (continuous CO2 dissolved surfactant 

injection). To utilize the benefit of miscible CO2 displacement and improve injectivity, 

the novel CO2 injection approach was developed without any water injection. 

Experimental results showed a surprisingly large pressure drop at the onset of CO2 

injection due to strong foam propagation in the core. Oil recovery with the novel CO2 

injection method (surfactant dissolved in CO2 without any water) was as much as 60 % 

OOIP as compared to 51 % OOIP with novel WAGS and similar recovery with 

conventional SAG. 

    Huh et al. studied the mixing and flow behavior of a CO2/surfactant-solution/oil 

system.27 2D flow-visualization experiments were conducted. To study the gas 

permeability reduction mechanism, different factors such as microscopic heterogeneity, 

presence of oil phase, surfactant concentration, and flow rate in secondary and tertiary 

miscible CO2 floods were considered. When high pressure CO2-foam was used as a 

blocking agent, factors such as CO2 fluid diversion increased CO2 sweep efficiency. 

Then the mobilization of bypassed oil was investigated. It was observed that foam 

subdivision and emulsification of the oil particles immobilized parts of the oil region and 
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flow blockage. However, the CO2-foam performances were not evaluated at reservoir 

conditions.  

    Under more realistic temperature and pressure conditions, Wang reported that foams 

could only propagate for a short distance from inlet after the foam was in contact with 

oil.28 CO2-foam flood would be more effective for heterogeneous reservoirs with 

channels and highly conductive streaks. Better sweep efficiency was obtained with 

higher surfactant concentration and higher flow rates. 

    Liu et al. studied the influence of parameters on CO2-foam stability and surfactant 

adsorption at reservoir conditions.29 Different salinity, pH and surfactant concentrations 

were tested on the CO2 foam. 

    Duyilemi et al. studied the CO2-foam flooding of fractured carbonate oil reservoirs.30 

It was shown that CO2-foam helped transportation of CO2 from fracture to matrix and 

the macroscopic sweep efficiency of the CO2 floods increased. A waterflood was 

conducted on the oil-saturated core prior to CO2-foam flooding. The CO2-foam flooding 

was intended as a tertiary oil recovery. It was suggested that foaming agent did not 

interfere with CO2 diffusion to the matrix at reservoir condition, meaning that the foam 

might only affect the process of oil production from matrix to fracture to increase oil 

recovery. 

1.3.5    CO2 Flooding Visualization by CT-Scan 

    The first X-ray CT imaging technique was developed by Hounsfield in 1972.31 CT-

scanners can generate cross-sectional image slices through one object by revolving the 

X-ray tube around the object and obtain projections at different angles. CT images are 

displayed by assigning each pixel unit a value in Hounsfield unit. 3-D images can be 
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generated by taking small intervals of 2-D images around a constant axis. Details of CT 

imaging basic principles and the theories for CT image data processing are included in 

Chapter III. 

    Since then, CT-scanner has developed to the fourth-generation with fan-beam 

geometry with source rotating within a fix ring (gantry) of high efficiency detectors. For 

petroleum engineering applications, CT-scanner are often used to monitor acidizing 

wormholes, fluid saturation distribution. The resolution of CT-scan images can be 2 mm 

or less by detecting 0.1 % of attenuation differences. 

The major advantage of using CT-scanner in CO2 flooding experiments is that it has 

the ability to reconstruct the real-time cross-section and slab images. This dynamic 

feature can be applied to monitor CO2 flood and the imaging results give us detailed 

information on viscous fingering, gravity segregation, miscibility, and mobility control.     

Wellington and Vinegar32 developed some pioneering work for the application of the 

CT-scan technique in petrophysics and reservoir engineering. Research topics such as 

three-dimensional (3D) measurement of density and porosity; rock mechanics; 

correlation of core logs with well logs; characterization of mud invasion, fractures, and 

disturbed cores were discussed in combination with the X-Ray computerized 

tomography technique. Fundamental studies of CO2 displacement in cores were also 

discussed. A total of six tertiary CO2 corefloods were carried out to study both 

immiscible and miscible displacements; capillary forces, viscous forces and gravitational 

forces were investigated together in control experiments. Iodododecane/Sotrol oil 

mixture were used as the oil phase. Iodododecane was used as a dopant for CT imaging 

while maintaining the same wettability property.  
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Fig. 1.4 – Comparison of WAG Front (Left) and CO2 Foam Front (Right) 

 

    One Water Alternating Gas injection coreflood suggested that WAG could provide 

better horizontal sweep but could not prevent gravity segregation. A viscous-dominated 

miscible CO2 flood was also tested and the results showed that viscosity increase by 

foam could diminish the gravity force segregation. It can be seen clearly by comparing 

the blue displacing fluid front in Fig. 1.4. 

    Uijttenhout et al. recently used CT scan to study the CO2 foam rheology in sandstone 

cores.33 Their goal was to observe CO2 foam propagation in Bentheim sandstone cores. 

The injection sequence was described as Water Alternating Foam (WAF) with 

surfactants in aqueous phase. This was the first example of imaging post-foam liquid 

injection in CO2 foam study. Dynamic foam and liquid displacement behavior inside the 

sandstone cores were analyzed by studying the CT-images. Since water was used as an 

alternating phase during the coreflood, variations of the CO2 solubility in the liquid 

phase under different system pressures were observed; the foam flows under lower 

systems pressures tended to exhibit higher pressure drop across the core. The researchers 

also demonstrated that CO2 foam effectively removed more residual oil from the 

reservoir comparing with normal CO2 flood. The spiral CT-scan mode was used in their 

coreflood study. However, the coreflood cell temperature was not specifically controlled, 

which might cause some deviation of the CO2 phase behavior from the real situation.   
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Schechter et al. utilized the CT-scan technique to study CO2 flooding in fractured 

cores using WAG and polymer gel injection.34 It is generally believed that fractured 

reservoirs are not very good candidates for CO2 flooding because the fracture can 

conduct the injected CO2 directly through the reservoir without sweeping the trapped oil. 

During the WAG coreflood experiments, water was viscosified using polymers so that 

CO2 flow could be diverted into the matrix. A Guar gum and borate cross-linker gel was 

also used to counter the “leak-off” problem. All the coreflood fluid flows were 

visualized under CT-scan as shown in Fig. 1.5.  

 

 

Fig. 1.5 – Visualization of CO2 Fluid Flow in Fractured Core after Gel Treatment 

 

    During all the experiments, CO2 was injected below MMP in the WAG process, 

simulating the immiscible flood process. These works provided the base for our 

continuing research on CO2 flooding mobility control under different conditions. 

1.4    Methodology 

    In our research of investigating CO2 mobility control methods, the major technology 

we employed was the CT-scan imaging device. We designed and arranged a proper 

setup to combine the CT-scanner with our coreflood system. The integrated 

experimental system enabled us to visualize the fluid distribution and phase saturation 
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within the core at any specific injection intervals. Through the processing of the real 

time CT-data, we were also able to obtain both qualitative and quantitative experimental 

results such as CO2 flood images and CO2 saturation distribution curves.  

The whole research project basically followed three major stages. During the first 

stage, the validity and accuracy of our integrated system were tested and some basic CO2 

flood experiments were carried out under both immiscible and miscible conditions. In 

the second stage of research, conformance control technique was applied to both 

sandstone and carbonate core samples. The effectiveness of conformance control was 

verified and the stability of cross-linked polymer gel was studied. In the third stage of 

research, a search for CO2 viscosifier chemical was conducted and several chemicals 

were purchased to carry out viscosified CO2 flood study. Pressure drop tests were used 

to compare the viscosity increase extents with different chemicals. CT-imaging for 

viscosified CO2 flood experiments was utilized to confirm the difference between neat 

CO2 flood and viscosified CO2 flood. 
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CHAPTER II 

 

EXPERIMENTAL SETUP 

 

    The two biggest components of the main experimental instrument setup are the CT-

scanner and the coreflood system as will be explained in more detail in this section. 

Descriptions of core samples and chemicals used in the research are also included. 

2.1    Instrument Setup 

    The coreflood experiments in this project are expected to represent both immiscible 

and miscible CO2 flood scenarios. Temperature and pressure control of both the CO2 

fluid and coreflood cell is essential. Fig.2.1 shows the schematic of our experimental 

instrument setup. Tubings and fitting are all made of stainless steel ordered from 

Swagelok to withstand high temperature and pressure. Only the Production System uses 

plastic tubing from Nylaflow. Because this tubing is transparent, it helps us visualize and 

identify the effluent produced from the coreflood cell. 
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    The experimental instrument setup consists of five main components – the injection 

system, the coreflood cell, HD 200 X-Ray CT scanner, the production system and the 

data acquisition system. A brief description of each of the components is given below.  

2.1.1    Injection System 

    The injection system consists of two accumulators and two pumps: Accumulator 1 is 

used to pressurize CO2 and accumulator 2 is for brine or polymer gel during waterflood 

or gel placement experiments; pump 2 in Fig. 2.1 is used to saturated the core with 

Soltrol oil before any oil recovery experiment. Accumulator 1 is also used as a mixing 

cell for the preparation of viscosified CO2. Both accumulator 1 and 2 are connected to an 

ISCO 5000 D syringe pump (Pump 1 in Fig. 2.1). Pump 1 is equipped with a 

programmable controller which is capable of running at a constant flow rate or at a 

constant pressure. Water is injected below the piston in the accumulator, increasing the 

pressure of the fluid above the piston to the desired level.  A flow switching valve is 

used to inject either CO2 or brine/gel into the coreflood cell.  

2.1.2    Coreflood Cell 

    A 21-inches-long core holder made up of aluminum was used for use with the CT 

scanner. It is capable of holding cores up to 1 ft. in length and 1 in. in diameter. A viton 

Hassler sleeve surrounds the core and is secured to plungers at the ends of the core 

holder. The coreflood cell has an inlet for hydraulic oil that is used to apply overburden 

pressure. Hydraulic pump (Pump 3 in Fig. 2.1) is used to pressurize the cell by injecting 

hydraulic oil into the Hassler sleeve – an inner wall annulus pressure up to 7000 psi can 

be obtained in this manner. A waterbath tub is installed on the CT couch to heat the 

coreflood cell up to 130 °F. 
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2.1.3    X-Ray CT Scanner 

    The X-Ray CT scanner is a fourth generation Universal systems HD 200 system with 

a resolution of 0.3 mm x 0.3 mm. This scanner can be used to scan a maximum diameter 

of 48 cm with a maximum scan time of 4 sec per scan. Cross sectional images of the 

core sample are scanned at regular intervals during the experiment. The data obtained 

from the CT scanner is transferred and processed using VoxelCalc software. The cross 

sectional images can then be used for porosity and saturation determination or 

reconstructed for flow visualization.  

2.1.4    Production System 

    The outlet end of the core holder is connected to a back pressure regulator which is 

used to increase pressure in the system. The produced fluid is collected in a graduated 

cylinder. 

2.1.5    Data Acquisition System 

    Two pressure transducers one each at the inlet and the outlet are used in conjunction 

with an Omega OMB 55 data acquisition system. The pressures are read in real time 

from the PC connected to the DAQ.  During the later stage of our research, the pressure 

transducers are upgraded to Omega digital pressure gauges which display the fluid 

pressure in real time. 

2.2    Core Samples 

    Berea sandstone cores are used for coreflood experiments for the initial studies. 

Carbonate cores are drilled from outcrop rocks or field core samples for coreflood 

experiments. Generally, the core sample size is 1 inch in diameter and 5 inch in length. 

    The core samples can be classified as: 
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(1) Unfractured Berea Sandstone 

(2) Horizontally and Vertically Fractured Berea Sandstone 

(3) Horizontally Fractured Berea Sandstone 

(4) Carbonate Sample I from Outcrop Limestone (Low porosity around 10%) 

(5) Carbonate Sample II from Chevron Field Core Sample (High porosity around 

20%) 

2.3    Chemicals 

    The oil used in all experiments is Soltrol oil from Chevron Phillips. For conformance 

control experiments, polyacrylamide/chromium acetate gel chemical is used. 

To enhance CT-image contrasts between phases, dopants were used in some cases. The 

dopant used for oil phase is 1-iodohexadecane from Acros Organic Chemical (10% by 

weight). The dopant used for polymer gel is KI (Sigma Aldrich) which was used in 6% 

aqueous solution. 
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CHAPTER III 

 

EXPERIMENTAL CONDITIONS AND PROCEDURE 

 

3.1    Background 

    The coreflood experiments were organized to focus on the study of CO2 conformance 

control using both cross-linked polymer gels and CO2 viscosifiers. Considering typical 

reservoir permeability heterogeneity in various field data, we carried out different 

coreflood runs in sandstones and carbonate to investigate possible scenarios of CO2 fluid 

flow in reservoir conditions.  The experiments are designed to address mainly the 

following issues: (1) eliminating heterogeneity of permeability in carbonate cores; (2) 

eliminating negative effect of fractures on CO2 flood; (3) improving cross-linked gel 

stability at different reservoir conditions. (4) Testing the effectiveness of different CO2 

viscosifier chemicals. 

3.2    Conformance Control Study on Gel Properties 

    Two key factors are vital for evaluation of the polymer gel properties: gelation time 

and gel strength. 

    Gelation time is usually defined as the time required for the viscosity of the gel system 

to reach twice the value before adding cross-linker. HPAM are partially hydrolyzed 

during commercial production so that there could be effective coordinate bonding 

between the carboxylate functional groups on the polymer chains and the Cr (III) 

cations. This coordinate bonding reaction is the base of cross-linking mechanism: 
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Fig. 3.1 – Cross-linking Reaction of the HPAM Polymer Gel 

 

    It has been suggested that the reaction is first order in polymer and first order for the 

cross-linker; making the overall reaction second order. The reaction mechanisms are 

shown in Fig. 3.1. 

    Several factors affect the gelation time. The acetate anion in the Cr(OAc)3 cross-linker 

usually makes the gelation time longer compared to inorganic Chromium salts such as 

CrCl3. Increasing polymer concentration accelerates gelation process while increasing 

polymer to cross-linker ratio slows down gelation process. Because Cr(OAc)3 is used for 

many on-site application, we have chosen Cr(OAc)3 as the cross-linker to test in 

coreflood experiments. 

    Because salinity of the solution is known to have no apparent influences on the gel 

properties, we added KI as an dopant in HPAM/Cr(III) acetate polymer gel to produce 

more distinguishable CAT-scan images. 

    Gel strength can be quantitatively measured from viscoelastic properties, but these 

methodologies usually cannot predict the performance of gel system in the actual oil 

field. Generally, for pre-formed cross-linked gels, the gel strength decreases as the gel 
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moves further into the reservoir while for in-situ formed gels, the gel strength increases 

as the gel moves further into the reservoir. 

    Other issues might also affect the gelation time and gel strength such as the presence 

of divalent cations (Ca2+, Mg2+) or the reservoir temperature. These issues should be 

analyzed according to the actual reservoir conditions. 

    So far there is no widely applicable methodology to predict the performance of gels in 

the reservoir. In our research project, CAT-Scan technique is employed to visualize the 

distribution of gel in the cores during the CO2 flooding process. 

In our research on the application of HPAM/Cr(OAc)3 polymer gel in CO2 flooding, 

some of the concentration ranges  in Table 3.1 were tested on carbonate and sandstone 

cores to simulate reservoir conditions. 

 

Table 3.1 – Typical Concentrations HPAM/Cr(OAc)3 Polymer Gel System 

Polymer Active Weight 
Loading/ppm 

Chrome Acetate Polymer 
wt/Cr(OAc)3 wt 

Active Chromium Polymer 
wt/Cr(III) wt 

3000-4500 10 44 
4500-7000 12.5 55 
7000-8500 15 66 
8500-17000 17.5 77 

 

 

3.3    Study of Viscosifier Application in CO2 Flooding 

    A market survey was conducted to select among potential CO2 viscosifier chemicals. 

Some of the industrial siloxane polymers used in the early research from Chevron are no 

longer available; these polymers were only tested for research purposes and no field 

application was carried out. However, we managed to find other possible substitute 
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industrial polymers in supply. The details of the viscosifier chemicals are provided in 

this section. 

Research Lab Chemicals: 

    Two major potential candidates for CO2 viscosifier were Polyvinylacetate (PVAc) and 

Polydimethylsiloxane. These two compounds are high molecular weight chemicals 

which can increase CO2 viscosity significantly. These two commercially available 

research lab chemicals were purchased from Acros Organic and Alfa Aesar, 

respectively. Their properties are specified as following. 

(1) Dodecamethylpentasiloxane 

 

 

Fig. 3.2 – Chemical Structure of Dodecamethylpentasiloxane 

 

    Dodecamethylpentasiloxane (CAS Number: 141-63-9) has the molecular formula 

C12H36O4Si5 and a molecular weight of 384.84. The chemical structure is shown in Fig. 

3.2. This chemical contains a repetition of dimethylsiloxane unit which is an effective 

functional unit to viscosify CO2 fluid. Although the structure only contains a limited 

number of dimethylsiloxane units; experiments with this basic structure should yield 

information on the effectiveness of adding CO2 viscosifying functionalities to the 

backbone of the viscosifier chemical. 
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(2) PVAc (Poly (vinyl acetate))  

 

 
Fig. 3.3 – Repeating Unit of PVAc 

 

     Poly (vinyl acetate) (CAS Number: 9003-20-7) used in our research has the 

molecular formula (C4H6O2)n and a molecular weight of 170,000 (average). The 

chemical structure is shown in Fig. 3.3. PVAc is a readily available, cheap commercial 

polymer. We carried out a literature survey on different commercial polymers and PVAc 

was recommended as the most practical CO2 viscosifying chemical. Although a 

relatively high miscibility pressure is required for PVAc polymer to dissolve in the CO2 

fluid, most of the potential CO2 flooding fields  have high reservoir pressure which can 

aid in increasing the solubility of viscosifiers in CO2 fluids. Also, previous viscosity tests 

on PVAc polymer were based on only PVAc and CO2 mixture; we added a 10% 

cosolvent toluene in our coreflood experiment which, we expected, would greatly 

enhance the solubility of PVAc in CO2.  
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(3) Polydimethylsiloxane, trimethylsiloxy terminated. 

 

Si
Si

O
Si

n  

Fig. 3.4 – Repeating Unit of Polydimethylsiloxane, Trimethylsiloxy Terminated 

 

   Polydimethylsiloxane (CAS Number:  9016-00-6) used in our research has the 

molecular formula (C2H6SiO)n  and a molecular weight of 139,000 (average). The 

chemical structure is shown in Fig. 3.4. Polydimethylsiloxane itself is already a pretty 

viscous material even before adding to toluene cosolvent and CO2. Its viscosity is around 

100,000 centistokes. However, the market price of this chemical prohibits its actual use 

in field applications. In our research we purchased 4 kg of polydimethylsiloxane for $ 

417.00. It is important to note that industrial siloxane polymers with similar structures 

are marketed at a much lower price. 

Industrial Chemical: 

    We carried out an extensive market search of proper CO2 viscosifiers to be purchased 

in large quantities. One brand of polymer product from Dow-Corning was the most 

promising chemical: XIAMETER(R) PMX-200 SILICONE FLUID 600000CS. 

    Dow-Corning products are mainly silicone polymers and the major composition of the 

chemical is polydimethylsiloxane; the structural feature of repeating dimethylsiloxane 

follows the guideline of choosing effective CO2 viscosifier.  A series of the 

XIAMETER® product can be obtained with a range of different viscosities with very 

high range from 100,000 c St to 600,000 c St. This polymer has great potential when 
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used in conjunction with toluene cosolvent to enhance the solubility of the polymer 

materials and increase CO2 viscosity. We tried to contact the industrial chemical 

companies requesting samples for our study but were not successful in obtaining them. 

However, the above information is worth looking into for possible large scale 

application in future. 

    To carry out viscosified CO2 flooding, we followed a fixed routine to prepare the 

polymer / CO2 fluid mixture. The viscosified CO2 mixture fluid used in our coreflood 

experiments were composed of 5% viscosifier, 10% cosolvent, and 85% CO2 by weight. 

In the following section, typical procedures for the preparation of PVAc viscosified CO2 

in the lab are described. Preparations with other viscosifiers followed similar procedures.  

(1) Preparation of chemical solution: 

    10 g of solid PVAc beads were mixed with 20 g of Toluene cosolvent; the mixture 

was stirred overnight to get a homogeneous solution. All PVAc polymer beads were 

dissolved in the cosolvent to form a viscous solution. 

(2) Introduction of viscosifiers: 

    The viscous solution was poured into the accumulator; then the accumulator was 

sealed and 500 psi CO2 was injected into the accumulator. The weight of CO2 was 

calculated to ensure that the PVAc polymer was 5% of the total weight and the toluene  

cosolvent was 10% of the total weight. 

(3) Dissolution of viscosifiers: 

The accumulator was pressurized by pump to reach 2000 psi pressure. As CO2 shrinks 

in volume, significant heat was generated from the dissolution of viscosifier in CO2. The 

mixture was left to equilibrize before injecting into the core. 
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3.4    Data Processing 

    X-ray linear attenuation coefficient μ can be expressed as: 











2.3

8.3

)(
E

Z
bE e ………………………………………………………………...(3.1) 

ρ= electron density 

σ (E)= Klein-Nishina coefficient 

b= constant(= 9.8 2410 ) 

Z= the atomic number of the chemical species 

E= the X-ray photon energy in kEV 

    As can be seen from equation 3.1, the coefficient magnitude is affected by the atomic 

number and that is the base for X-ray imaging dopant addition. 

    The above μ value is measured in Hounsfield units (HU): 






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

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 11000

w

HU



……………………………………………………………….(3.2) 

μw=X-ray linear attenuation coefficient for water 

    During most of X-ray imaging processing applications, a simplified linear basic 

assumption is derived from the definition to correlate the density of the material at a 

pixel with the average CT number at the same pixel. 

    For each pixel in a CT image: 

              ……………………………………………………………….(3.3) 

Density= density at the selected pixel 

CT= CT number of the selected pixel 

A,B= constants 
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    Each pixel of reconstructed CT-image has a corresponding CT-number. By 

approximation this number is in a linear relationship with the average density of the 

substances in the pixel. The linear relationship enables the average CT number to be a 

weighed mean from the CT numbers and percentages of pure substances present in the 

pixel.  

    CT data can be widely applied to find out porosity and phase saturation quantitatively.  

3.4.1     Porosity Calculation 

    In this section, we will take a typical dry sandstone core exposed in air as an example 

to derive porosity step by step: In order to do so, the following equation is established 

first according to mass conservation: 

                                   ........................................................(3.4) 

ρaverage= the average density at the pixel 

ρair = the density of air 

ρmatrix = the density of the sandstone matrix (Assuming sandstone matrix has a uniform 

distribution of density.) 

V0= volume of the pixel region 

a% = the percentage of air content in the pixel by volume 

b% =  the percentage of solid matrix content in the pixel by volume 

Here we assume the sandstone is completely dry and only air is present in the pore 

space. (a% + b% = 1) An illustration is provided in Fig. 3.5. 
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Fig. 3.5 – Illustration of CT Image Pixel Content Analysis 

 

    Assuming a dry sandstone core sample is scanned, we can plug in the linear 

relationship from equation 3.3 to obtain the following equation: 

                  

                                            

……………………………………………………………………….………………..(3.5) 

CT(pixel) = average CT number obtained from CT image 

CT(air) = CT number of air (-1000) 

CT(matrix) = CT number of the matrix content (Assuming sandstone matrix has a 

uniform distribution of density.) 

 

    Simplifying Equation 3.5, we have the following equation for any pixel within the 

sandstone core CT image: 

                                  ……………………………………..(3.6) 
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    Ideally, a% should be equal to the porosity of this pixel. However, to find out porosity 

from equation 3.5, the matrix CT number is necessary. It is usually unrealistic to 

measure the average matrix CT number because of the heterogeneity of the matrix and 

variations between different cores. In order to obtain porosity, we assume this same 

sandstone core is further processed and saturated with water (brine) displacing all the air 

in the pore space. We can obtain another linear relationship as: 

                                     …………………...…...………..(3.7) 

CT(brine) = CT number of brine (0) 

    Here we assume all the pore space is filled with water and the presence of air is 

neglected. 

    If there are n pixels in one CT slice image, for one slice of core image we have:        

                     
     ………………………………………...……………. (3.8) 

CT(slice) = average CT number of the slice image 

    If we integrate and add up every pixel within one single slice for equation 3.6 and 

equation 3.7, we can obtain the following: 

           
        

 
                

 
              ………….………..(3.9) 

            
        

 
                  

 
              ……...…..…..(3.10) 

Substracting Eq.3.9 from Eq.3.10 and dividing by n, we have: 

             
               

       

                          
      ....................................................................(3.11) 

    Naturally the average porosity of the slice will be calculated as: 

      
 
     ....………………………………………………………………….(3.12) 
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    Combining 3.8, 3.11 and 3.12, we will have the final equation to calculate the porosity 

of one slice of CT image: 

                                            ……………………………(3.13) 

 

3.4.2    Phase Saturation Calculation 

    In the following section, we discuss two ways to calculate phase saturation using CO2 

displacing oil as an example.  

    In the case of CO2 displacing oil, if only CO2 and oil phases occupy effective pore 

spaces, we can quantitatively calculate CO2 and oil phase saturations from a series of CT 

data. 

    Before CO2 flood, suppose the core plug is fully saturated by CO2, then for one pixel 

of CT image we will have: 

                                 ………………...…………………...(3.14) 

a% = the percentage of CO2 content in the pixel by volume 

b% =  the percentage of solid matrix content in the pixel by volume 

CT(pixel)1 = average CT number obtained from CT image 

CT(CO2) = CT number of CO2 

CT(matrix) = CT number of the matrix content  

    Assuming that the same pixel is fully saturated with oil, we have: 

                                 …………………………………….....(3.15) 

CT(pixel)2 = average CT number obtained from CT image 

CT(oil) = CT number of oil 
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     After CO2 flood started, the pore space is occupied by both CO2 and oil. Then we can 

establish the following equation: 

                                           …………...……….....(3.16) 

CT(pixel)3 = average CT number obtained from CT image 

c% =  the percentage of oil content in the pixel by volume during CO2 flood 

d% =  the percentage of CO2 content in the pixel by volume during CO2 flood 

a% = c% + d% 

    Again, we take the sum of the pixels and use average slice CT number of each slice 

from the data generated from CT-scanner. 

    We then substract Eq.3.16 from Eq.3.15:: 

            
                

              
 
           

    
 
          ……..………………………………………………...……….....(3.17) 

    Since di = ai - ci,  

                     
     …………………………………...………...………. (3.8) 

    We can rearrange 3.17 to get: 

     
 
       

                                         ………………………..…….....(3.18) 

    The average CO2 saturation for one slice can be expressed as: 

         
 
       

 
         

 
        ……………………………...…….(3.19) 

  =  the average porosity of the slice 

    Combining 3.18 and 3.19, we arrive at the final equation for CO2 saturation: 

                                                 …………………….(3.20) 
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    One problem with equation 3.20 is that it is difficult to obtain a good average CT 

number for oil and CO2. To circumvent this problem we can use equation 3.14. Assume 

average slice CT number for fully CO2 saturated image is CT(slice)1, then we have: 

                                                      ………….(3.21) 

    Combining 3.20 and 3.21, we have: 

                                                    ….……………….(3.22) 

    Equation 3.22 is more suitable for phase saturation calculation since it avoids the use 

of average CT number for pure substances. One extra step of saturating the whole core 

with CO2 is necessary to set up a standard CT(slice)1. It is worth mentioning that adding 

dopant to oil is necessary to increase the accuracy of calculation. The more dopant is 

added, the bigger the difference is between CT(slice)2 and CT(slice)1, resulting in a 

bigger denominator that allows for more accuracy in the final calculation. 

3.5    Typical Experimental Procedures 

    General experimental procedures for CO2 coreflood experiments are provided as 

following. 

1) Core is heated in an oven and then weighed.  

2) The dry core is placed into the coreholder with confining pressure and scanned. 

3) CO2 is flooded through the dry core to achieve 100 % CO2 saturation. (at the 

experimental pressure and temperature condition) Then the CO2 saturated core is 

CT-scanned. 

4) The dry core is flooded with oil. At least 15 PV (approximately 150 ml for 

sandstone cores) oil is used to flush the core. The oil saturated core is then CT-

scanned. 
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5) CO2 injection is started at 0.5 ml/min using the injection pump while recovery 

data and pressure data are collected. CT-scans are performed at different time 

intervals during the CO2 flood. 

6) For gel placement, gel is injected into the front part of the core. CT-scans are 

performed before and after gel injection. 

7) For CO2flooding after gel placement, the core is finally CO2 flooded one day 

after the gel is injected. CT-Scans are taken at different time intervals. 

8) For viscosified CO2, viscosified CO2 solution is prepared in the accumulator 

beforehand and is used for CO2 flood. 
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CHAPTER IV 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

    Laboratory study results from all coreflood experiments in the project are specified in 

the following sections. The major technique we use is CT-scanning imaging. This 

technology enables us to visualize the real-time fluid flow in a coreflood experiment. We 

can also process CT-imaging data quantitatively with designed sequences of fluid 

injection. 

    Most of the experimental procedures are similar to the protocols described above. 

However, for clarifications, specific experimental conditions are mentioned for each 

case of coreflood experiment in the following sections. 

4.1    Porosity Measurement 

    To prepare for the coreflood experiment, 10 Berea sandstone cores (sample bs-01 to 

bs-11) were tested for their porosity distribution. The purpose of this test was to verify 

the quantitative feature of CT image data. We were also interested in comparing the two 

porosity measurement techniques: CT scan and weight difference. 

    The two techniques for the porosity measurement can be summarized as:  

(1) CT number difference between dry core and brine saturated core 

(2) Weight difference between dry core and brine saturated core 

    Before experiment, all core sizes were measured (diameter and length). The dry cores 

were prepared by heating Berea sandstone cores in the oven overnight. After the dry 

cores were scanned and weighed, they were immersed into a brine solution and a 
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vacuum was applied over the brine solution. The vacuum condition was kept overnight 

to ensure that almost all air in the core is displaced by brine. The brine saturated core 

was then scanned and weighed. 

The images were processed using a color spectrum from 1500 to 2200 as shown 

below; different CT numbers on the image were assigned different colors according to 

the spectrum in Fig. 4.1. 

 

 

Fig. 4.1 – Color Spectrum (CT number 1500~2200) for CT Images in Section 4.1 

 

 

Fig. 4.2 – Dry Sandstone Core CT Image (The upper slab is the horizontal cross-section 

image and the lower slab is the vertical cross-section image)  
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Fig. 4.3 – Brine Saturated Sandstone Core CT Image (The upper slab is the horizontal 

cross-section image and the lower slab is the vertical cross-section image) 

 

Fig. 4.2 and Fig. 4.3 are presented to show a CT image comparison of dry sandstone 

core and brine saturated sandstone core (sample bs-01).  

    It can be seen that after brine (CT number=0) has displaced air (CT number=-1000) in 

the pore space, the average CT-numbers increased significantly. It is reflected by the 

color shift of blue in dry core towards green in brine saturated core. 

    The porosity measurement results are listed in the Table 4.1 below: 

 

Table 4.1 – Porosity Measurement Result for Berea Sandstone 

Core 

Sample 

Name 

Effective Porosity CT Number Calculated Porosity 

bs-1 0.183964166 0.248586087 
bs-3 0.183987622 0.185196222 
bs-4 0.185802187 0.161658 
bs-5 0.183796027 0.211015641 
bs-6 0.184276731 0.210974222 
bs-7 0.184930461 0.239951333 
bs-8 0.184514152 0.187720455 
bs-9 0.184719038 0.170536 
bs-10 0.184292036 0.165232667 
bs-11 0.182840792 0.191072273 
Average 0.184312321 0.185425685 
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    Effective Porosity is calculated from the weight difference between dry core and brine 

saturated core. CT number calculated porosity is obtained from equation 3.13. 

The porosity values obtained from CT measurement can be used to construct a 

Normal Probability Plot in Fig. 4.4: 

 

 

Fig.4.4 – Normal Probability Plot Examination for CT Measured Porosity 

 

    The porosity measurement results show that CT measured porosity of the Berea 

sandstone cores follows an approximate normal distribution. The average porosity values 

obtained from two different methods are very close to each other (0.1843 and 0.1854). 

The validity of using CT for quantitative calculation could be confirmed by these 
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experimental results. We can determine pore volume (PV) of fluid injected into the 

sandstone cores using the average porosity of 0.185 in our future coreflood experiments. 

4.2    Experiments in Unfractured Sandstone 

    CO2 flooding in unfractured sandstone was studied first to obtain preliminary 

understanding of ideal conditions. We have accomplished CO2 flooding both above and 

below MMP.  

    CO2 flooding below MMP experiment details can be summarized as following. Before 

coreflood experiment, the core was prepared according to the standard procedures 

provided in the last section: The core was first oven heated and weighed and then the 

sandstone core was saturated with brine under vacuum and was left over night. The 

brine-saturated core was placed in the core holder with a confining pressure of 2000 psi 

and under temperature of 70 °F. Then oil was injected into the brine-saturated core to 

perform a water drainage process in order to establish irreducible water saturation and 

OOIP (original oil in place) oil saturation. The CO2 fluid was injected into the oil-

saturated core at 800 psi. Injection rate was kept at 2 ml/min (CO2 is predicted to be in 

liquid state at 800 psi and 70 °F ). 

    CO2 flooding above MMP experiment details can be summarized as following. 

Experimental conditions were designed to ensure that the CO2 fluid would be at 

supercritical state. MMP (minimal miscible pressure) was calculated beforehand and the 

experimental CO2 injection pressure was set at well above the predicted MMP value. 

    MMP calculation was carried out according to the Cronquist correlation (Equation 

1.7), the MMP was determined to be 1333 psi at 120   F with our light oil (Mw 122). 
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The experimental conditions were set to be 1500 psi for CO2 injection pressure and 

120 °F for water bath temperature. Before coreflood experiment, the core was first oven 

heated and weighed. Then, the sandstone core was saturated with brine in vacuum and 

was left over night. The brine-saturated core was placed in the core holder with a 

confining pressure of 4000 psi and under temperature of 170 °F. Then oil was injected 

into the brine-saturated core to perform a water drainage process in order to establish 

irreducible water saturation and OOIP (original oil in place) oil saturation. The 

supercritical CO2 fluid was injected into the oil-saturated core at 1500 psi. Injection rate 

was kept at 2 ml/min. (CO2 is predicted to be in supercritical state at 1500 psi and 120 

°F.) The recovery data is shown in Fig. 4.5: 

 

 

Fig. 4.5 – Below and Above MMP CO2 Flood Recovery Curve 
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    Original Oil in Place (OOIP) for the cores in both experiments is estimated to be 8.95 

ml. The two sandstone cores have the same pore volume thus we can compare the 

volume of oil produced as it is in a linear relationship with the oil recovery factor (RF). 

It is shown from the recovery data that above MMP CO2 flood shows a higher oil 

production rate with time compared to the below MMP CO2 flood; it can also be seen 

that above MMP CO2 flood gives a higher overall oil recovery. The CT-scan images 

were also obtained at different times of the coreflood experiment. They have provide 

details on the fluid distribution in the sandstone cores; we observed that in the above 

MMP CO2 flood case greater miscibility between CO2 phase and oil phase have been 

achieved. 

4.3    Experiment in Fractured Sandstone 

    The frequent presence of fractures in reservoirs usually brings in complication for the 

CO2 flooding project design. We decided to study the effects of fractures on CO2 

flooding in sandstones to provide practical information for the further mobility control 

study.  

    To give a negative example of CO2 flooding in untreated fractured reservoir; we 

carried out the corresponding coreflood experiment. The experimental results show that 

relatively low CO2 saturation was established at the end of the coreflood and oil 

recovery is significantly lower compared to CO2 flooding in unfractured sandstone.  

Before coreflood experiment, the core was prepared according to the standard 

procedures provided: The core was first oven heated and weighed. Then, the sandstone 

core was saturated with brine in vacuum and was left over night. The brine-saturated 

core was placed in the core holder with a confining pressure of 2000 psi and under 
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temperature of 70 °F. Then oil was injected into the brine-saturated core to perform a 

water drainage process in order to establish irreducible water saturation and OOIP 

(original oil in place) oil saturation. The CO2 fluid was injected into the oil-saturated 

core at 800 psi. Injection rate was kept at 2 ml/min (CO2 is predicted to be in liquid state 

at 800 psi and 70 °F ).  

The CT image color spectrum is shown in Fig. 4.6. 

 

 

Fig. 4.6 – Color Spectrum (CT number 1400~1750) for CT Images in Section 4.3 

 

    In Fig. 4.7 below, the upper slab is the horizontal cross section of the core while the 

lower slab is the vertical cross section of the core. These images are reconstructed from 

2 mm interval multiple cross scans of the core. The fluid flow direction is always from 

right to left. The description above applies to all the cross section images shown in the 

thesis. 

 

 

Fig. 4.7 – Scan of 100% CO2 Saturated Fractured Sandstone Core 
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    CO2 has relatively low CT number and the overall color tone is blue. Dark blue color 

close to fractures suggests higher concentration of CO2. The completely dark regions are 

filled with CO2 fluid; the CT number of these regions is not within our color spectrum 

range thus no color is assigned. 

 

 

Fig. 4.8 – Scan of 100% Brine Saturated Fractured Sandstone Core 

 

    Brine also has very low CT number and the overall color tone is again blue in Fig. 4.8. 

Dark blue color close to fractures suggests higher concentration of brine. The completely 

dark regions are filled with brine; the CT number of these regions is again not within our 

spectrum range. 

 

 

Fig. 4.9 – Scan at OOIP Oil Saturation after Oil Injection/Water Drainage Process 

 

    When oil was replacing brine the whole color tone in Fig. 4.9 shifted to the red end of 

the spectrum. The oil used here had an approximate CT number of 650 compared to the 
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low CT number of brine (CT = 0). This significant CT difference caused the average CT 

number resulting in the color shift. 

 

 

Fig. 4.10 – Scan 1 after the Start of the CO2 Flooding 

 

    As shown in Fig. 4.10, at 5 min CO2 already had a breakthrough from the core. In 

fractured reservoirs CO2 fluid flowed through the fracture pathway almost 

instantaneously. There are more completely dark regions in the slab image, indicating 

aggregation of liqueous CO2 fluid. 

 

 

Fig. 4.11 – Scan 2 after the Start of the CO2 Flooding 

 

    After 15 min, the matrix regions containing oil changed in color slightly as can be 

seen in Fig. 4.11. In the dashed red line rectangle region specified within the core image, 

the red color spots have decreased, suggesting displacement of oil by CO2. 
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Fig. 4.12 – Scan 3 after the Start of the CO2 Flooding 

 

    CT image at 50 min (Fig. 4.12) indicates that the whole core has a darker color 

compared to the 5 min image and 15 min image. However, the color change is still not 

very significant because most of the CO2 is just flowing along the fractures without 

entering and affecting the matrix. 

    The average slice CT numbers of each scan were processed quantitatively and a CO2 

saturation profile was constructed and shown in Fig. 4.13; the CO2 flow direction is 

shown by the arrow in the plot: 
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Fig. 4.13 – CO2 Saturation Distribution in Highly Fractured Sandstone Core 

 

The saturation profile shows that very low CO2 saturation builds up in the sandstone 

core with an average saturation of approximately 30%. It can also be observed that 

relatively higher CO2 saturation is obtained near the inlet of CO2. These observations 

can be attributed to the fact that most of injected CO2 is flowing through the fracture 

pathways instead of sweeping the sandstone matrix. To reduce CO2 mopbility and 

improve sweep efficiency, we then tried on applying HPAM / Cr(OAc)3 cross-linked gel 

in our next set of experiments. 
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4.4    Experiments in Fractured Sandstone Using Cross-linked Polymer Gels for 

Conformance Control 

    We reviewed various techniques to improve CO2 flooding efficiency in sandstone 

reservoirs and decided to use HPAM / Cr(OAc)3 cross-linked gel system to treat the 

fracture regions. 

    A highly fractured sandstone core model was then designed for CO2 coreflood 

experiment and cross-linked gel was used this time to investigate the effects of 

conformance control on CO2 flow in the heterogeneous media. The experimental results 

confirmed the positive contribution of gel application to the fractured sandstone.  

The following fractured sandstone pattern was designed and applied for coreflood 

experiments. Fractured sandstone blocks were put together so that both horizontal and 

vertical fracture planes are present in the sandstone core.  

 

 
Fig. 4.14 – Designed Fractured Sandstone Pattern for Gel Conformance Control Study 

 

    In Fig. 4.14, the fractures are shown in black color; the fractured core was assembled 

by small blocks. The small blocks were fractured right in the center and were aligned 

during the assembly to produce a longer core with both horizontal and vertical fractures. 

High oil recovery is expected for CO2 flooding in this constructed core pattern because 

of CO2 gravity segregation in the horizontal fracture plane and CO2 fluid redistribution 
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in the vertical fracture plane. If the CT images followed, the horizontal and vertical 

fracture intersections would appear as dark spots because the density at the intersection 

of fractures would be the lowest, corresponding to small CT number. The small CT 

numbers of these fracture intersections would fall out of the CT image color spectrum. 

Thus, black color will be assigned for all these small CT number regions. 

4.4.1    3000 ppm Gel Application 

    Before coreflood experiment, the core was first oven heated and weighed. Then, the 

dry core was placed in the core holder with a confining pressure of 2000 psi and under 

temperature of 70 °F. Then CO2 fluid was injected into the dry core to achieve 100% 

CO2 saturation at 800 psi. (CO2 is predicted to be in liquid state at 800psi and 70 °F.) 

Then, the core was scanned. Next, the core was flushed with 50 ml of oil. The core was 

left under 800 psi pressure overnight to achieve 100% oil saturation. The fractured 

sandstone core was scanned for a total of 5 times at different intervals during the whole 

CO2 flooding process. 

    After CO2 flood, pre-formed gel injection was performed to the sandstone core. Low 

concentration 3000 ppm gel solution (with 6% KI dopant) and Cr(OAc)3 cross-linker 

solutions were mixed and left to cure for 24 hrs at room temperature. Then preformed 

cross-linked gel was transferred to the accumulator and 10 ml of gel was injected into 

the core. The sandstone core was scanned 2 times during the gel placement stage. 

(Injection pressure for the gel around 100 psi) 

    The core was left for 24 hours at room temperature after gel placement. Then CO2 

flood was resumed. The sandstone core was scanned 2 times during CO2 flooding stage 

(Below MMP 800 psi). 
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Fig. 4.15 – Color Spectrum (CT Number 1200~1800) for CT Images in Section 4.4.1 

 

    Fig. 4.15 shows the color spectrum for CT images. In the images below, the upper 

slab is the horizontal cross section of the core while the lower slab is the vertical cross 

section of the core. These images are reconstructed from 2 mm interval multiple cross 

scans of the core. The fluid flow direction is always from right to left. The description 

above applies to all the cross section images shown in the thesis. 

 

 

Fig. 4.16 – Scan of 100% CO2 Saturated Fractured Sandstone Core 

 

 

Fig. 4.17 – Scan of 100% Oil Saturated Fractured Sandstone Core 
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    Two saturation images were shown in Fig 4.16 and Fig. 4.17. The horizontal and 

vertical fracture intersections are shown as dark spots in the images and there is clear 

difference between the horizontal slab and the vertical slab. In the 100% CO2 saturated 

image, the upper slab is where the horizontal fracture is located, more CO2 will 

aggregate in this fracture region and it can be seen that the color is dark blue compared 

to the vertical slab image, indicating a lower CT number and higher CO2 saturation in 

the fracture plane. Vertical fractures can also be observed in form of vertical dotted lines 

composed of dark blue dots, but not as significant as horizontal fractures. Some 

horizontal and vertical fracture direction are marked using red lines in Fig. 4.16. 

 

 

 

Fig. 4.18 – Scan at 2 Min of the CO2 Flooding (Arrow shows the direction of CO2 flow 

and it applies to all the coreflood images throughout the thesis.) 

 

 

Fig. 4.19 – Scan at 6 Min of the CO2 Flooding 
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Fig. 4.20 – Scan at 12 Min of the CO2 Flooding 

 

 

Fig. 4.21 – Scan at 25 Min of the CO2 Flooding 

 

    CT images at different stages are shown in Fig. 4.18, Fig. 4.19, Fig. 4.20 and Fig. 4.21. 

In the coreflood experiment, the breakthrough of CO2 was almost instantaneous. In the 2 

min scan image (Fig. 4.18), a bright blue stripe of CO2 fluid path can be observed in the 

horizontal fracture. The CO2 flow did not sweep the other parts of the matrix. As time 

progressed, CO2 gradually diffused into the matrix region of the fractured sandstone 

cores and CO2 saturation increased accordingly. There always exists a color difference 

between the upper horizontal cross section and the lower vertical cross section because 

CO2 preferably aggregates in the fracture plane which appears as dark blue regions in the 

image. 
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Fig. 4.22 – Scan before Gel Injection at 100 psi Gel Injection Pressure 

 

 

Fig. 4.23 – Scan after Gel Injection at 100 psi Gel Injection Pressure 

 

    The core was scanned before and after gel placement and CT images are shown in Fig. 

4.22 and Fig. 4.23. It was expected that the preformed cross-linked gel will not enter the 

matrix region. However, the reconstructed images suggest otherwise. After the gel 

placement, it can be seen that the gel invaded the first fractured sandstone block almost 

completely. Ideally gel placement should only place cross-linked gel in the fractures 

instead of making the gel seep into the reservoir matrix. This unexpected behavior may 

be due to the low concentration of gel selected (3000 ppm); another reason may be a 

leak from the cross-linked gel entering the matrix. 
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Fig. 4.24 – Scan at 2 Min of CO2 Flooding in Core with Gel Placement 

 

 

Fig. 4.25 – Scan at 30 Min of CO2 Flooding in Core with Gel Placement 

 

    CT images of CO2 flooding after gel placement are presented in Fig. 4.24 and Fig. 

4.25. The instability of the low concentration gel was demonstrated during the CO2 

flooding process. Initially during the CO2 flooding process, gel only occupies the first 

block of the fracture sandstone core. At 2 min, the red colored gel region seems to 

spread out to the left half of the core; the gel color changes from red to yellow due to 

diluted concentration of KI dopant caused by gel expansion. While at 2 min of the CO2 

flooding we can still see a gel front (shown by red highlighted area in Fig. 4.24), at the 

end of the 30 min CO2 flooding, the gel front is completely destroyed and the gel 

fragments even reach the left end/outlet of the core. During the CO2 flooding process 

after the gel treatment, incremental oil production was observed. Processed CO2 

saturation plots and recovery curves were obtained in Fig. 4.26. 
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Fig. 4.26 – CO2 Saturation Distribution in Fractured Sandstone Core 

 

    The CO2 saturation profile along the core was computed and plotted as shown above. 

The vertical axis is CO2 saturation and the horizontal axis is the slice image number 

which is 2 mm distance in between. The CO2 flow direction is shown by the arrow above 

the plot. 

    The distribution of CO2 saturation is relatively uniform throughout the core; initially 

the CO2 saturation is lower at the left outlet end. As time elapses, CO2 saturation 

increases almost simultaneously to 90% across the whole core. This is also a good 

demonstration of applicability of CO2 flooding in highly fractured sandstone reservoir. 
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Fig. 4.27 – CO2 Flood Recovery Curve for Fractured Sandstone 

 

    The recovery data is processed and shown in Fig. 4.27. 

    Average porosity of the sandstone is measured to be 19 % and the OOIP is estimated 

to be 8.95 ml. The initial oil recovery after CO2 flood is 87% OOIP and incremental oil 

recovery after gel placement is 6% OOIP. 

    The pressure drop p from pressure transducer reading was around 8 psi before gel 

placement and around 54 psi after gel placement; this demonstrates the effectiveness of 

applying cross-linked gel to reduce CO2 permeability in the core.  

    Our next step of research will be the application of higher concentration of cross-

linked HPAM/Cr(OAc)3 polymer gel to avoid gel breakdown and leak-off during CO2 

flooding.  
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    The gel strength is a function of both concentration and composition. Observations 

made during the coreflood lead to our next step investigation of gel stability in fractured 

sandstone. To avoid the breakdown of gel structure and to reduce the water content 

leaking from the cross-linked polymer gel system to the sandstone matrix (Leak-off) will 

be our primary study topics. The final goal is to reduce gel leak-off, maintain gel 

stability and keep CO2 permeability reduction. 

4.4.2    10000 ppm Gel Application 

    In the previous laboratory study to control CO2 mobility, we tested the diversion 

effect of relatively low concentration cross-linked gel system (3000 ppm concentration) 

and we observed incremental recovery due to the application of the cross-linked gel. 

However, the gel strength became our concern since at the end of the CO2 flood 

experiment; significant gel front break down was observed. To complete the study we 

have tested another gel system of higher polymer concentration (10000 ppm 

concentration) so that we could compare the gel strength differences through direct CT 

image analysis. 

    Before coreflood experiment, the core was first oven heated and weighed; the dry core 

was placed in the core holder with a confining pressure of 2000 psi and under 

temperature of 70 °F. Then CO2 fluid was injected into the dry core to achieve 100% 

CO2 saturation at 800 psi; the core was scanned at this stage. Then the core was flushed 

with 50 ml of oil. The core was left under 800 psi pressure overnight to achieve 100% 

oil saturation (CO2 is predicted to be in liquid state at 800 psi and 70 °F). 

    The fractured sandstone core was scanned for a total of 4 times at different intervals 

during the whole CO2 flooding process. 
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    After CO2 flood, pre-formed gel-injection was performed to the sandstone core. High 

concentration 10000 ppm gel solution (with 6% KI dopant) and Cr(OAc)3 cross-linker 

solution were mixed and left to cure for 24 hrs at room temperature. It was observed that 

this gel was much more elastic than the previous low concentration gel; the high 

concentration 10000 ppm cross-linked gel could not flow easily as did the low 

concentration 3000 ppm cross-linked gel. Preformed cross-linked gel was transferred to 

the accumulator and 10 ml of gel was injected into the core. The sandstone core was 

scanned 2 times during the gel placement stage. (Gel injection pressure around 1500 psi) 

The core was left for 24 hours at room temperature after gel placement. Then CO2 flood 

resumed. The sandstone core was scanned 2 times during CO2 flooding stage.  

    The color spectrum for this study is shown in Fig. 4.28. 

 

 

Fig. 4.28 – Color Spectrum (CT Number 1200~1800) for CT Images in Section 4.4.2 

 

 

Fig. 4.29 – Scan of 100% CO2 Saturated Fractured Sandstone Core 
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Fig. 4.30 – Scan of 100% Oil Saturated Fractured Sandstone Core 

 

    The same image features were observed as the coreflood experiment in section 4.4.1 

on low concentration cross-linked polymer gel. In Fig. 4.29, higher concentration of CO2 

is observed on the horizontal fracture plane in dark blue color. There is sharp color 

contrast between the 100% CO2 saturated core image (Fig. 4.29) and 100% doped oil 

saturated core image (Fig. 4.30). 

 

 

Fig. 4.31 – Scan at 4 Min of the CO2 Flooding (Arrow shows the direction of CO2 flow 

and it applies to all the coreflood images throughout the thesis.) 

 

 

Fig. 4.32 – Scan at 9 Min of the CO2 Flooding 
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Fig. 4.33 – Scan at 25 Min of the CO2 Flooding 

 

    CT images at different stages of CO2 flooding were shown in Fig. 4.31, Fig. 4.32 and 

Fig. 4.33. Again, fast breakthrough of CO2 was observed in the coreflood experiment. A 

bright blue stripe of CO2 fluid path can be observed in the horizontal fracture in Fig. 

4.31. The overall color of the whole core region shifts gradually from red to blue during 

the flooding process. Most of the observations correspond with our previous coreflood 

experiment. Again, there always exists a color difference between the upper horizontal 

cross section and the lower vertical cross section because CO2 preferably aggregates in 

the horizontal fracture plane. 

    The CO2 saturation profile was plotted after processing CT data in Fig. 4.34 and it 

resembles the CO2 saturation profile we had in Fig. 4.26.  CO2 saturation is relatively 

uniform throughout the core and a slight decrease trend from right (inlet) to left (outlet) 

can be observed. At the end of the CO2 flooding, the overall CO2 saturation increases to 

almost 85%, demonstrating, again, the applicability of CO2 flooding in highly fractured 

sandstone reservoir. 
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Fig. 4.34 – CO2 Saturation Distribution in Fractured Sandstone Core 

 

 

Fig. 4.35 – Scan before Gel Injection at 100 psi Gel Injection Pressure 

 

 

Fig. 4.36 – Scan after Gel Injection at 100 psi Gel Injection Pressure 
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    CT images taken before and after gel placement are shown in Fig. 4.35 and Fig. 4.36. 

The most significant difference this time is the cross-linked gel injection pressure. 

Previously only 100 psi pressure was needed to inject 3000 ppm polymer gel into the 

core. In this experiment, before reaching 1500 psi injection pressure the pump was only 

compressing the gel volume. 10000 ppm gel only started to enter the core at 1500 psi. 

After the gel placement, it can be seen that the gel invades the first and second sandstone 

blocks. Again we injected 10 ml of gel same as with the 3000 ppm gel treatment. The 

color contrast between the gel front and the sandstone matrix is very obvious; some 

fingering behaviors can be observed at the gel front. The gel front in Fig. 4.36 is very 

difference from Fig. 4.23, possibly due to less leak-off from the 10000 ppm gel. 

  

 

Fig. 4.37 – Scan at 2 Min of CO2 Flooding in Core with Gel Placement 

 

 

Fig. 4.38 – Scan at 30 Min of CO2 Flooding in Core with Gel Placement 
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    CT images taken during the CO2 flooding after gel placement are shown in Fig. 4.37 

and Fig. 4.38. The high concentration gel (10000 ppm) proved to be more stable during 

the CO2 flooding process. Although after 30 min the gel invades further into the core, the 

invasion is confined relatively within the first half of the fractured sandstone core as 

shown by the red bars in Fig. 4.38.  A comparison between the final gel distributions is 

provided in Fig. 4.39. 

 

 

 

Fig. 4.39 – Comparison between the CT Images from the End of Coreflood for 3000 

ppm (Above) Gel and 10000 ppm (Below) Gel 

 

    The high concentration gel stays at the injection end of the core throughout the 

coreflood process more than in the low concentration gel. We can conclude that there is 

less leak-off associated with the higher concentration gel by comparing the spreading 

areas of the gel. This causes less reservoir damage in the real production scenario. More 

importantly, this result suggests the possibility of studying gel stability using CT scan 

technique which visualizes the gel distribution in a very straightforward fashion.  

    Incremental oil production was also observed in this coreflood run with 10000 ppm 

gel treatment. Recovery curve obtained this time is similar to the last study. 
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Fig. 4.40 – Oil Recovery Curve for CO2 Flooding in Fractured Sandstone 

 

    The recovery data is processed and the recovery curve is shown in Fig. 4.40. Porosity 

of the sandstone is measured to be 19% and the OOIP is estimated to be 8.95ml. The 

original oil recovery after CO2 flood is 85% OOIP and incremental oil recovery after gel 

placement is 5.6% OOIP. 

    The pressure drop p across the core from pressure transducer reading was around 8 

psi before gel placement and around 850 psi after gel placement. The pressure drop of 

10000 ppm gel (850 psi) is much higher than the pressure drop of 3000 ppm gel (54 psi); 

demonstrating the effectiveness of CO2 permeability reduction by the higher 

concentration cross-linked polymer gel. 
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4.5    Experiment in Heterogeneous Carbonate Using Cross-linked Polymer Gels for 

Conformance Control 

The carbonate reservoirs are typically characterized by high heterogeneity and this 

feature is specifically emphasized in our coreflood design. One of the challenges with 

carbonate coreflood is the selection of proper core sample. It is very common to 

encounter heterogeneities in the carbonate outcrop samples and our first run of CO2 

flood in carbonate core showed that significant heterogeneity could even lead to the 

blockage of CO2 flow. We did not observe any CO2 fluid breakthrough in some 

coreflood experiment when using certain impermeable yet heterogeneous carbonate 

cores. Fig. 4.42 is the CT image of one impermeable heterogeneous carbonate sample 

with a color spectrum shown in Fig. 4.41. 

 

 
Fig. 4.41 – Color Spectrum (CT Number 1800~2400) for CT Images in Fig. 4.37 

 

 
Fig. 4.42 - Scan of Impermeable Carbonate Core during Attempted CO2 flooding 
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    It is expected that the carbonate core sample will show some extent of permeability 

from the frequent presence of large pores. However during the oil injection/water 

drainage step, oil never broke through the whole core. During the CO2 injection, CO2 

breakthrough did not occur either. It can be seen that a flow barrier exists at the end of 

the core; the region is enclosed by red dashed lines in Fig. 4.42. The left side of the 

barrier shows a general greenish color and the right side of the barrier shows a general 

reddish color. The fluid content difference between the left side (brine with low CT 

number) and the right side (doped oil with high CT number) causes this color contrast. 

Because of this barrier, oil does not seem able to get through the barrier to the left side. 

    Different carbonate core samples were drilled during our research. Some 

heterogeneous carbonate cores were obtained from carbonate cores provided by Chevron 

and we successfully conducted CO2 flooding in those carbonate cores with 

heterogeneous permeability distribution and applied gel treatment as CO2 mobility 

control method. This carbonate core has a relatively low permeability region in the 

injecting end and CO2 can preferably follow the high permeability region during the CO2 

flood process. By applying the polymer gel at the entrance of the core, the permeability 

of the high permeability region can be adjusted so that the injecting fluid goes into the 

relatively low permeability regions which would have been left upswept during the 

initial stage of CO2 flood.  

    Before coreflood experiment, the core was first oven heated and weighed. The dry 

core was placed in the core holder with a confining pressure of 2000 psi and under 

temperature of 70 °F. Then CO2 fluid was injected into the dry core to achieve 100% 

CO2 saturation at 800 psi and finally, the core was scanned. After the scan, the core was 
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flushed with 50 ml of oil. The core was left under 800 psi pressure overnight to achieve 

100% oil saturation. (CO2 is predicted to be in liquid state at 800 psi and 70 °F) 

    The carbonate core was scanned for a total of 5 times at different intervals during the 

whole CO2 Flooding Process. 

    After CO2 flood, in-situ gel injection was performed to the carbonate core. Low 

concentration 3000 ppm gel solution with Cr(OAc)3 cross-linker was injected into the 

core immediately after mixing, injecting gel volume was 10 ml. The carbonate core was 

scanned twice during the gel placement stage. (Gel injection pressure around 100 psi) 

The core was left for 24 hours at room temperature after gel placement. Then CO2 

flood resumed. The carbonate core was scanned twice during CO2 flooding stage. 

 

 

Fig. 4.43 – Color Spectrum (CT Number 1700~2400) for CT Images in Section 4.5 

except Fig.4.37) 

 

 

Fig. 4.44 – Scan of 100% CO2 Saturated Heterogeneous Carbonate Core 

 



 79 

 

Fig. 4.45 – Scan of 100% Oil Saturated Heterogeneous Carbonate Core 

 

    The color spectrum for the study is shown in Fig. 4.43. The heterogeneity of the 

carbonate is very obvious from the CT images. The region on the right towards the CO2 

injection inlet has shown a different color compared to the rest of the core. In the 100% 

CO2 saturated core (Fig. 4.44), low permeability region takes on the color of green. In 

the oil saturated core (Fig. 4.45), low permeability region takes on the color of red. This 

region has relatively lower permeability and higher matrix density; the high density 

corresponds to high CT numbers, distinguishing this region from the rest of the core. 

This low permeability/high density region is relatively hard to access by CO2 during the 

CO2 flooding. 

 

 

 

Fig. 4.46 – Scan at 5 Min of the CO2 Flooding (Arrow shows the direction of CO2 flow 

and it applies to all the coreflood images throughout the thesis.) 

 



 80 

 

Fig. 4.47 – Scan at 8 Min of the CO2 Flooding 

 

 

Fig. 4.48 – Scan at 15 Min of the CO2 Flooding 

 

 

Fig. 4.49 – Scan at 40 Min of the CO2 Flooding 

 

    CT images taken during different stages of CO2 flooding are shown in Fig. 4.46, Fig. 

4.47, Fig. 4.48 and Fig. 4.49. From the images shown above we can clearly see the color 

changes with time. CO2 with low density shown in blue color is occupying the matrix 

gradually, and it can be observed at 5 min and 8 min that CO2 aggregates in the matrix in 

the forms of blue streaks, indicating the preferable path for CO2 flow. It is clear that 
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even at the end of the coreflood experiment, there is still oil trapped in the low 

permeability region in red color. It is reasonable to apply in-situ gel in this situation to 

improve the sweep efficiency. This time the gel is used in the in-situ application 

approach, because we are not treating fractures. For the heterogeneous yet unfractured 

carbonate core we inject polymer and cross-linker before gel formation so that the 

injected fluid enters the target matrix region and reduces the permeability of the earlier 

preferred CO2 pathway; the goal is to direct the CO2 away from the high-permeability 

pathway and get CO2 into contact with oil in the low permeability region. 

 

 

Fig. 4.50 – Scan before Gel Injection at 100 psi Gel Injection Pressure 

 

 

Fig. 4.51 – Scan after Gel Injection at 100 psi Gel Injection Pressure 

 

CT images taken before and after gel placement are shown in Fig. 4.50 and Fig. 4.51. 

In-situ gel fluid is invading the front part of the core during this process. Considering the 

possible damage to the matrix, dopant KI was not added to the injected fluid. Thus no 
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clear distinction can be observed before and after gel injection (Fig. 4.50 and Fig. 4.51, 

respectively). However, by analyzing the CT number distribution across the core, the 

presence of gel in the matrix after the gel injection can be confirmed. The data 

processing result is shown below in Fig. 4.52: 

 

 

Fig. 4.52 – CT Nnumber Increase Before and After Gel Placement 

 

    It can be seen that CT number increases generally throughout the core after the gel 

placement. The increase is more significant towards the injection side and gradually 

diminishes towards the other end of the core. This confirms that the injected gel fluid is 

entering higher permeability regions of the core and raising the overall average CT 

number of the core. 
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Fig. 4.53 – Scan at 2 Min of CO2 Flooding after Gel Placement 

 

 

Fig. 4.54 – Scan at 30 Min of CO2 Flooding after Gel Placement 

 

    The in-situ gel fluid had been left in the core for 24 hours after injection to complete 

the cross-linking reaction process. It can be observed in Fig. 4.53 that the gel formed a 

uniform front which is marked with red bars. 

    During the CO2 flood after gel treatment, more oil is produced and collected as will be 

shown later in the recovery data. The incremental oil recovery is also confirmed by 

looking at the color change in the right region from red to almost yellow, indicating that 

oil has been driven out of this region. 

    It is important to note that after 30 min of CO2 flooding there was no more oil 

production because the gel front was destroyed from Fig. 4.54. Although seems to 

scatter along the left half of the core due to CO2 fluid flow, the breakdown of gel front 
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could not be clearly observed because KI dopant was not used to enhance the color 

contrast. In our sandstone coreflood experiments (Section 4.4), the gel presence was 

observed more clearly with KI dopant in the gel. 

 

 

Fig. 4.55 – Inspection of the Actual Core Images 

(Left: Injecting End/ Right: Producing End) 

 

    The core was examined after the coreflood experiment as shown in Fig. 4.55. It can be 

seen that a significant layer of gel was placed at the injection end which reduces the 

permeability of the relatively more permeable region. Although the gel front was 

destroyed within the core, no gel extruded out of the whole core as the producing end 

looks clean. However if we are to scale this operation up to the actual field production, 

the stability of gel can cause a big problem; it is important to ensure that the injected gel 

stay within high permeability regions even with CO2 injection. 
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Fig. 4.56 – CO2 Saturation Profile Distribution in Heterogeneous Carbonate Core 

 

    Fig 4.56 shows the plot of CO2 saturation profile along the core. It can be observed 

that CO2 saturation increases rapidly at the injection end while at the other end the CO2 

saturation does not go above 80% even by the end of the experiment. Significant 

heterogeneity pattern is shown in the CO2 saturation profile, a common characteristic of 

the carbonate core. 

The recovery data is processed and shown in Fig. 4.57. 
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Fig. 4.57 – CO2 Flood Recovery Curve for Heterogeneous Carbonate Core 

 

    Porosity of the carbonate is measured to be 22% and the OOIP is estimated to be 

10.48 ml. The original oil recovery after CO2 flood is 86% OOIP and incremental oil 

recovery after gel placement is 9% OOIP. 

    The pressure drop p from pressure transducer reading across the core region was 

around 50 psi before gel placement and around 660 psi after gel placement; this 

demonstrates the effectiveness of reducing CO2 mobility in the core. 

    In the previous CO2 mobility control laboratory studies (Section 4.4 and Section 4.5), 

conformance control HPAM/Cr(OAc)3 polymer gel was used in both fractured sandstone 

and heterogeneous carbonate. Our experimental data show that the application of gel 

after initial CO2 flooding yields incremental oil recovery. It is reasonable to conclude 
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that using HPAM/Cr(OAc)3 polymer gel in CO2 flooding operations yields additional oil 

recovery compared to the case where no gel treatment is applied. 

4.6    Experiments in Fractured Sandstone Using Viscosified CO2 

    We plan to test the efficiencies of several chemicals with promising viscosifier 

structural features. Using the technology of CT-imaging, we are able to monitor CO2 

fluid distribution and obtain direct measurement of residual oil saturation at different 

stages of the CO2 flooding. 

    We designed a series of coreflood experiments to analyze the effectiveness of 

viscosified CO2. Berea sandstone cores were used for the experiments. The fractured 

sandstone core was prepared from Berea sandstone cores with high permeability. We 

produced the fracture from the drilling lab and a total of 5 samples were prepared for the 

CO2 flooding experiments.  Each sandstone core all had a saw-cut fracture in the center 

throughout the core as shown in Fig. 4.58. 

 

 
Fig. 4.58 – Sandstone Core with a Single Fracture in the Center 

 

    During the coreflood process, neat CO2 were injected into oil saturated fractured 

sandstone core first as will be detailed in section 4.6.1. After the control study is 

established, viscosified supercritical CO2 prepared by mixing viscosifier chemical with 
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CO2 was used for CO2 flooding and the overall efficiency was compared between each 

of the different viscosifiers and the neat CO2 control experiment. 

4.6.1    Neat CO2 Flooding in Single Fracture Sandstone 

    Before coreflood experiment, the core was first oven heated and weighed. The dry 

core was placed in the core holder with a confining pressure of 3000 psi and under 

temperature of 130 °F. Then, CO2 fluid was injected into the dry core to achieve 100% 

CO2 saturation at 1800 psi and the core was scanned at this stage. Then, the core was 

flushed with 50 ml of oil. The core was left under 1800 psi pressure overnight to achieve 

100% oil saturation (CO2 is predicted to be in supercritical state at 1800 psi and 130 °F). 

    For neat CO2 control experiment, CO2 was injected directly for CO2 flooding after the 

CO2 fluid was compressed to 2000 psi in the accumulator (The CO2 pressure in the 

accumulator is built up to 2000 psi to guarantee that when the CO2 fluid reaches the inlet 

of the coreflood cell the CO2 fluid pressure can still maintain around 1800 psi). 

The fractured sandstone core was scanned for a total of 3 times at different intervals 

during the whole CO2 Flooding Process (1800 psi injection pressure). The core was 

scanned after different pore volumes (PV) of CO2 or CO2/viscosifier mixture was 

injected, oil recovery was recorded also for different pore volumes of CO2 or 

CO2/viscosifier mixture injected. The color spectrum for this study is shown in Fig. 4.59. 

 

 

Fig. 4.59 – Color Spectrum (CT Number 1400~1800) for CT Images in Section 4.6.1 
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Fig. 4.60 – Scan of 100% CO2 Saturated Single Fractured Sandstone Core 

 

 

Fig. 4.61 – Scan of 100% Oil Saturated Single Fractured Sandstone Core 

 

    The CO2 saturated core image (Fig. 4.60) and oil saturated core image (Fig. 4.61) are 

consistant with previous observations. It can seen clearly that the single fracture as a 

blue streak in the center of each core slab image. Differences between the upper slab 

image and the lower slab image in each figure are present as expected; the upper slab 

represents horizontal crosssection and the lower slab represents vertical crosssection. For 

the CO2 saturated core image, we can see that the lower slab image shows more dark 

bule regions compared to the upper slab image. This is because the lower slab image is 

the vertical crosssection and it is in close proximity to the fracture plane.  

    In this coreflood experiment, the lower slab image shows more concentrated fluid 

presence; the fluid is either dark blue for CO2 aggregation or dark red for oil 

aggregation.  
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Fig. 4.62 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 1 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 

 

 

 

Fig. 4.63 – Scan 1 during the CO2 Flooding in Single Fractured Sandstone (Arrow shows 

the direction of CO2 flow and it applies to all the coreflood images throughout the 

thesis.) 
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    Scan 1 was taken after 0.59 PV of CO2 had been injected into the core. In comparison 

with the intial oil saturation image Fig. 4.61, it is very clear that CO2 found its path 

along the fracture. In Fig. 4.62, we see the emerging green color spots in the first three 

slices at the entrance (circled out by the red rectangle), representing the accumulation of 

CO2 saturation. In the reconstruction core image from Fig. 4.63, CO2 flow preference 

could also be observed; in the lower slab image, the green color stays mostly at the 

bottom which might be caused by the higher density of viscosifier chemicals. 

 

 

Fig. 4.64 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 2 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 
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Fig. 4.65 – Scan 2 during the CO2 Flooding in Single Fractured Sandstone 

 

    Scan 2 was taken after 1.54 PV of CO2 had been injected. We can see clearly from the 

slice images that most of the fracture region has CO2 saturation in the form of blue color 

compared with the surrounding yellow/red color. In Fig. 4.64, the first few slices close to 

the CO2 entrance now have been almost completely saturated by CO2. This improved 

swept efficiency near the injection end is expected in actually production. From Fig. 

4.65, it is obvious that the CO2 broke through the whole core (from the recovery end we 

observed CO2 breakthrough around 0.8 PV.). The lower slab image in Fig. 4.65 is 

closer/parallel to the fracture plane. Thus, it is reasonable to see more CO2 presence in 

the lower slab image. From the upper slab image in Fig. 4.65, we can conclude that the 

CO2 is not forming a steady and uniform front. Instead, a sharp transition to the highly 

conductive fracture can be seen. This observation will likely contribute to very low CO2 

utilization in the actual production scenario. 
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Fig. 4.66 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 3 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 

 

 

Fig. 4.67 – Scan 3 during the CO2 Flooding in Single Fractured Sandstone 

 

    Scan 3 was take after 3.23 PV of CO2 had been injected. The amount of CO2 injected 

is already three times more than the pore volume. However, we can still observe large 
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streaks of red/yellow color which correspond to unrecovered oil. This color is especially 

obvious in the upper slab image in Fig. 4.67. CO2 was just following the fracture’s 

direction in the center. The sharp contrast between CO2 and oil can also be seen in the 

slice images towards the outlet in Fig. 4.66. 

 

 

Fig. 4.68 – CO2 Saturation Profile for Neat CO2 Flood (CO2 injected from right to left) 

 

    CT data was processed and CO2 saturations at different intervals of the CO2 flooding 

is plotted in Fig. 4.68. CO2 saturation is around 20% in the injection end for scan 1 and 

stays uniformly low throughout the rest of the core. The CO2 saturation close to the 

injection end can be increased up to 90% in scan 3. But as CO2 progresses towards the 

outlet, CO2 fluid seems to be just flowing through the fracture. Even after 3 PV of CO2 
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has been injected in scan 3, most of the CO2 saturation towards the outlet remains 

around 50%.  

The oil recovery in terms of pore volumes is recorded in Table 4.2. The recovery data 

from volume measurement shows that the final oil recovery is around 67% OOIP, which 

is relatively low considering the high permeability of the sandstone core and large 

volume of CO2 injected. 

 

Table 4.2 – Oil Recovery Table for Neat CO2 Flooding (CO2 Breakthrough around 0.8 

PV CO2 injected.) 

PV CO2 Injected 0.59 1.54 3.23 

OOIP% oil produced 21% 56% 67% 

 

 

    The recovery data in Table 4.2 agrees with the CO2 saturation data in Fig. 4.68; both 

suggest a low overall recovery of the neat CO2 flooding. CO2 saturation was not built up 

effectively across the core and the overall sweep efficiency was low, thus resulting in 

low overall oil recovery. This will serve as a control study for our following viscosified 

CO2 flooding experiments. The pressure drop for the neat CO2 flooding process is 

around 8 psi, which is almost negligible. This low pressure drop is caused by the high 

conductivity of the fracture feature in the sandstone core. 
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4.6.2    Viscosified CO2 Flooding in Single Fracture Sandstone 

(Dodecamethylpentasiloxane) 

    Dodecamethylpentasiloxane was tested as the first chemical for CO2 viscosifier study. 

The structure of this chemical is shown in Fig. 3.2. The structure of this chemical 

contains repetitions of dimethylsiloxane unit which has been shown to be effective in 

viscosifying CO2 fluid in earlier research23. Although the structure only contains a 

limited number of dimethylsiloxane units; coreflood experiments with this basic 

structure will yield information on the effectiveness of adding CO2 viscosifying 

functionalities to the backbone of other viscosifier chemical. 

Dodecamethylpentasiloxane stays in liquid form at room temperature and pressure. It 

was used directly from reagent bottle to mix with CO2 fluid.  

    Experimental conditions were same as described in section 4.6.1.  

    For the preparation of viscosified CO2, the viscosifier chemical and cosolvent were 

placed into the accumulator first. 580 psi CO2 was injected into the accumulator from a 

CO2 gas cylinder to fill up the accumulator. The CO2 and chemical mixture was then 

compressed to 2000 psi, during which time heat was generated from the mixing process. 

The mixture was left to reach equilibrium for 1 hour and then the mixture was used for 

CO2 flooding.  

    5% wt of dodecamethylpentasiloxane chemical is used for the viscosified CO2 fluid. 

CO2 Weight was determined from the following method. 

    CO2 gas from the gas cylinder has the properties as: 

Accumulator pressure: 600 psi = 41.4 bar = 40.8 atm 

Accumulator temperature: 70 °F = 294.1 K 
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    Van Der Waals Equation was used for calculating the weight of the CO2 used; 

      
  

  
             ………………………………………………...(4.1) 

    p = the pressure of the fluid 

    V = the total volume of the container containing the fluid 

    a = a measure of the attraction between the particles (from Table 4.3) 

    b = the volume excluded by a mole of particles (from Table 4.3) 

    n = the number of moles 

    R = the universal gas constant 

    T = the absolute temperature 

 

Table 4.3 – Van Der Waals Coefficients of Selected Gases 

Gas         a             b            

Unit       atm dm6 / mol   dm3 / mol 

ideal       0.0           0.0 

He          0.034         0.0237 

Ar          1.345         0.0322 

O2          1.360         0.0318 

N2          1.390         0.0391 

CO2         3.592         0.0427 

CH4         2.253         0.0428 

H2          0.244         0.0266 
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    Table 4.3 is used for constants. Solving the above equation we can get the CO2 

amount inside the accumulator (1000 ml) at 580 psi which is 2.1699 mol.  The 

corresponding CO2 weight is 95.48 grams. 

We can then get the viscosifier weight as 4.77 gram for 5 wt% viscosifier/CO2 

mixture. 

The color spectrum for this study is shown in Fig. 4.69. 

 

 

Fig. 4.69 – Color Spectrum (CT Number 1400~1800) for CT Images in Section 4.6.2 

 

 

Fig. 4.70 – Scan of 100% CO2 Saturated Single Fractured Sandstone Core 

 

 

Fig. 4.71 – Scan of 100% Oil Saturated Single Fractured Sandstone Core 
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    The above two scans are similar with the control study in section 4.6.1. Fig. 4.70 is the 

CO2 saturated image and Fig. 4.71 is the oil saturated image. The vertical cross section 

(lower image) is closer to the fracture plane; in Fig. 4.70 more CO2 concentration can be 

observed in the vertical cross section (lower image) as blue stripes compared with the 

horizontal cross section (upper image).  

 

 

Fig. 4.72 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 1 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 
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Fig. 4.73 – Scan 1 during the CO2 Flooding in Single Fractured Sandstone (Arrow shows 

the direction of CO2 flow and it applies to all the coreflood images throughout the 

thesis.) 

 

The above scan was carried out after 0.47 PV of CO2 had been injected. The CO2 

breakthrough did not occur yet at this time. In the slice images in Fig. 4.72, we can see a 

clear color distinction between the regions swept by CO2 and the rest of the core which 

remains unswept. It can be concluded that the CO2 mobility significantly reduced 

compared to the neat CO2 case. In the vertical cross section (lower image) in Fig. 4.73 

more CO2 presence can be observed as a bright blue streak. 
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Fig. 4.74 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 2 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 

 

 

Fig. 4.75 – Scan 2 during the CO2 Flooding in Single Fractured Sandstone 

 

    CO2 breakthrough was observed after 1.26 PV of CO2 injected. The CO2 fluid coming 

out of the producing end solidified as dry ice form at atmosphere pressure. From both 
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the vertical slice images in Fig. 4.74 and the reconstructed slab images in Fig. 4.75 we 

can see the contrast between CO2 invaded core regions and unswept regions. This is very 

different from all the previous neat CO2 flooding cases; CO2 mobility significantly 

decreased in the viscosified case here, allowing us to clearly to see the CO2 flood front 

with high contrast. However, as expected, CO2 flows through the fracture plane 

preferably. The increasing dark blue regions in the lower slab image in Fig. 4.75 suggest 

that CO2 is concentrated in the fracture plane.  

 

 

Fig. 4.76 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 3 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 
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Fig. 4.77 – Scan 3 during the CO2 Flooding in Single Fractured Sandstone 

 

 

Fig. 4.78 – CO2 Saturation Profile for Viscosified CO2 Study (CO2 injected from right to 

left) 

 

    CT images in Fig. 4.76 and Fig. 4.77 were taken at the end of CO2 flooding after 

almost 6 PV of CO2 was injected. As shown in the slab image, CO2 reached most of the 

core regions as shown in bright blue color. It can still be seen that some parts of the core 

near the outlet remained red/yellow color, suggesting the presence of unswept oil. 
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    CT data was processed and CO2 saturations at different intervals of the CO2 flooding 

is plotted in Fig. 4.78. We can see clearly that CO2 saturation was distributed unevenly 

across the fractured core. From scan 1 to scan 3 the CO2 saturation gradually increases 

towards the outlet side and we can see a sharp CO2 saturation front progressing towards 

the left in the plot.  The final CO2 saturation was above 90% for most parts of the core; 

this is a much higher CO2 saturation compared with the neat CO2 control case in section 

4.6.1. The following conclusion can be drawn by comparing the neat CO2 and 

viscosified CO2 coreflood experiments: 

(1) Viscosified CO2 breakthrough was slower than the control case and clear CO2 flood 

front was observed. As a result, we can see significant CO2 saturation distribution 

difference across the core. 

(2)  CO2 saturation built up effectively in the CO2 swept regions. The overall sweep 

efficiency was higher for the viscosified CO2 than the neat CO2 control case resulting 

in higher oil recovery. 

The oil recovery in terms of pore volumes is represented in the Table 4.4.  

 

Table 4.4 – Oil Recovery Table for Viscosified CO2 Flooding (CO2 Breakthrough 

around 1.26 PV CO2 injected.) 

PV CO2 Injected 0.47 1.26 5.88 

OOIP% oil produced 29% 56% 79% 
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    The recovery data at different PV injected intervals shows a better recovery compared 

with the control case in Table 4.2; we can clearly see the recovery increases with time. 

Meanwhile, in the control, the recovery does not increase significantly after the CO2 

breakthrough occurred. Reading from the inlet and outlet pressure gauges, the pressure 

drop across the core for viscosified CO2 flooding process is around 48 psi (Pressure 

Drop: 1830 - 1782 = 48 psi), while the control case has a pressure drop of only 8 psi 

across the core. This shows the increase of CO2 viscosity after blending the CO2 fluid 

with dodecamethylpentasiloxane in the viscosified CO2 coreflood study. 

4.6.3    Viscosified CO2 Flooding Pressure Drop Test  

    In the previous lab studies, preliminary investigation on the formation of viscosified 

CO2 flood front using the most simple dimethylsiloxane compound 

dodecamethylpentasiloxane was carried out. We observed differences between the neat 

CO2 and viscosified CO2 front. However, dodecamethylpentasiloxane is not an ideal 

candidate for increasing the viscosity of CO2. Although its structural features make it 

highly soluble in CO2, the molecular weight of this compound is too small (Mw. 385) to 

serve as an effective viscosifier; the study on this compound is beneficial in the sense of 

verifying the viscosifier mechanism. 

    The most direct evidence to prove the effectiveness of the viscosifier is the increase in 

pressure drop across the coreflood cell with the flow of viscosified CO2 fluid. According 

to Darcy’s law; flow rate across a porous medium can be calculated as: 

                            …..……………………………………………...(4.2) 

Q: flow rate unit of volume per time 

K: permeability 
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A: cross-sectional area 

μ: viscosity of the fluid 

P: pressure (inlet/outlet) 

L: length of the porous medium 

    Equation 4.2 could be used as a measurement of viscosity in relation to pressure drop 

by the following format: 

 
   

  
     

                   ……………………………………………...(4.3) 

M: Mobility 

C: Constant related to the core size 

    The mobility related term C/M combines both viscosity and permeability regarding 

the specific fluid phase. If all other conditions remain the same, we can use the extent of 

increase in the  P/Q term to represent the proportional increase in the viscosity of the 

fluid phase. In our case the fluid is the viscosified CO2 phase. 

    Details of the pressure drop test experimental procedures are provided below. 

    For the preparation of viscosifier solution, in all the coreflood tests the viscosifier is 

used together with the toluene cosolvent. The viscosifier chemical is 5% by weight in the 

final CO2 fluid and the weight of the cosolvent is 10% by weight in the final CO2 fluid. 

Before the coreflood experiment, a solution of viscosifier chemical and toluene 

cosolvent is prepared; the solid PVAc beads or liquid Polydimethylsiloxane fluid were 

mixed with toluene (10 grams of viscosifier chemical and 20 grams of toluene); the 

mixture was stirred overnight to obtain a homogeneous solution. The homogeneous 

solution was placed in the accumulator before filling the accumulator with 580 psi CO2. 

After the accumulator was sealed and filled with 580 psi CO2, the accumulator was 
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pressurized to 2000 psi by pump. Significant heat generation could be felt around the 

accumulator indicating the dissolution of the chemical into the CO2 fluid. The mixture of 

viscosifier chemical, toluene cosolvent and CO2 was left to equilibrize for hours until the 

heat stopped generating.  

    For the pressure drop test, unfractured Berea sandstone cores were used to obtain 

more significant pressure drop differences for neat CO2 and viscosified CO2. The 

sandstone core was placed in the oven and heated overnight before placing into the 

coreholder. An overburden of 3000 psi was applied to the core to be tested. Typically the 

CO2 injection pressure was kept around 2000 psi. The CO2 was left to flow until 

relatively constant fluid flow rate could be read from the Digital Injection Pump. Then 

the pressure drop across the coreflood cell was read from the digital pressure gauges. 

The sandstone core used was 1 inch in diameter and the lengths of the cores were around 

4 inches. Each core was measured before the experiment to account for the differences in 

pressure drop. 

    Three pressure drop experiments were conducted to study the effectiveness of the 

viscosifiers. 

(1) Neat CO2 

(2) 5% wt PVAc + 10% wt Toluene + CO2 

(3) 5% wt Polydimethylsiloxane + 10% wt Toluene + CO2 

The experimental results are listed in Table 4.5 as following; data from repeated runs 

are also included: 
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Table 4.5 – Pressure Drop Test Results 

 Viscosifier Type Inlet 

Pressure 

(psi) 

Outlet 

Pressure 

(psi) 

Flow rate 

(ml/min) 

C/M 

Ratio* 

Run 1 None 1911 1864 8.0 5.88  

Run 2 PVAc 1899 1787 11.6 9.66  

Run 3 PVAc 1901 1780 11.8 10.25  

Run 4 Polydimethylsiloxane 1907 1881 4 6.50  

Run 5 Polydimethylsiloxane 1907 1878 4.2 6.90  

Run 6 Polydimethylsiloxane 1905 1867 8.38 4.53  

*The pressure data has been calibrated before calculating mobility ratio 

 

Values from Run 2 to Run 6 in Table 4.5 can be compared with the neat value of 5.88 

in Run 1; we can see from the data that PVAc is a more suitable candidate for CO2 

viscosifier. The increase from Run 2 or Run 3 is almost twice the original neat CO2 

value. The polydimethylsiloxane in Run 3 to Run 6 does not give significant increase 

compared with the neat CO2. To better understand the viscosifying mechanism,, we 

analyze further the behaviors of PVAc viscosified CO2 using the CT scan technique as a 

preferred viscosifier chemical. 
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4.6.4    Viscosified CO2 Flooding in Single Fracture Sandstone (PVAc) 

In section 4.6.2 we completed the first set of study on dodecamethylpentasiloxane 

viscosified CO2 flooding. The purpose was to observe the effect of viscosifier on the 

CO2 flood front. After the pressure drop test in section 4.6.3 we are now focusing on the 

PVAc polymer as a better candidate for viscosifying CO2. A different injection scheme 

was devised for PVAc viscosified CO2 flood to better account for the effectiveness of 

viscosified CO2. A total of 3 PV of CO2 was injected; the first 1.5 PV of CO2 was neat 

CO2; after the first 1.5 PV PVAc, another 1.5 PV PVAc viscosified CO2 was injected to 

obtain incremental oil recovery. The difference between this injection scheme and the 

neat CO2 control case in section 4.6.1 is that in the latter case, all 3 PV injected were 

neat CO2. The experimental scheme for section 4.6.1 and section 4.6.4 is summarized in 

Table 4.6; the scans represent the CT scans conducted to obtain the real time coreflood 

images: 

 

Table 4.6 – CT-Scan Scheme for PVAc Viscosifier Study 

 0.5 PV 1.0 PV 1.5 PV 2.0 PV 2.5 PV 3.0 PV 

Control Scan 1  Scan 2   Scan 3 

PVAc case Scan 1 Scan 2 Scan 3* Scan 4 Scan 5 Scan 6 
*After scan 3 viscosified CO2 will be injected. 

 

The PVAc viscosified CO2 was prepared by 5wt% PVAc polymer and 10wt% toluene 

cosolvent. The CO2 flood was conducted first using neat CO2 for 1.5 PV injection; three 

scans were carried out at approximately 0.5 PV, 1.0 PV and 1.5 PV. After neat CO2 

injection, PVAc viscosified CO2 was injected until 3.0 PV; another set of three scans was 
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carried out at approximately 2.0 PV, 2.5 PV and 3.0 PV. The total amount of CO2 

injected in this case is the same as the previous control case in section 4.6.1. Thus, it is 

reasonable to compare the final recoveries and CO2 saturation. 

 

 

Fig. 4.79 – Color Spectrum (CT Number 1400~1800) for CT Images in Section 4.6.4 

 

 

Fig. 4.80 – Scan of 100% CO2 Saturated Single Fractured Sandstone Core 

 

 

Fig. 4.81 – Scan of 100% Oil Saturated Single Fractured Sandstone Core 

 

The color spectrum for this study is shown in Fig. 4.79. The two saturation images 

from Fig. 4.80 and Fig. 4.81 are similar with the neat CO2 control study. This time the 

fracture orientation is more tilted towards the horizontal direction; it is less likely to 
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observe the oil and CO2 saturation aggregation in the fracture plane since neither of the 

horizontal and vertical slabs is aligned with the fracture plane.  

 

 

Fig. 4.82 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 1 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 

 

 

Fig. 4.83 – Scan 1 during the CO2 Flooding in Single Fractured Sandstone (Arrow shows 

the direction of CO2 flow and it applies to all the coreflood images throughout the 

thesis.) 
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    From the slab images in Fig. 4.83 it is obvious that CO2 has not broken through the 

core; the thin green streak of CO2 gradually disappears towards the outlet end of the 

core. The CO2 saturation contrast between two half cores in this case is also more 

significant; in the first three slices at the injection end in Fig. 4.82 (circled out by red 

rectangle), the CO2 saturation will congregate primarily at the lower half of the core. 

This is also partly due to the fact that the fracture orientation in this case is more towards 

the horizontal direction and viscosifier chemical with high density preferably flows in 

the lower half of the core.  

 

 

Fig. 4.84 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 2 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 
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Fig. 4.85 – Scan 2 during the CO2 Flooding in Single Fractured Sandstone 

 

    At 1.06 PV of neat CO2 injection, it can be seen that CO2 break through occurred in 

the form of green streaks towards the outlet in Fig.4.85. The neat CO2 fluid cannot form 

a uniform front. The CO2 fluid was mainly flowing through the fracture and a sharp 

transition of CO2 saturation from injection point to the outlet was observed. In Fig. 4.84, 

the CO2 saturation separation between two half cores is still obvious in the slices close to 

the injection point with the lower half of the core images green and the upper half image 

red/yellow. 
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Fig. 4.86 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 3 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 

 

 

Fig. 4.87 – Scan 3 during the CO2 Flooding in Single Fractured Sandstone 

 

    After 1.5 PV of CO2 has been injected; we see from both the slice images in Fig. 4.86 

and the slab images in Fig. 4.87 that the sweep effeciency is still not ideal espeically for 

the second half of the core which is close to the outlet. At this point the average CO2 

saturation is very close to the control case by processing the CT-data quantitatively; the 

average CO2 saturation of the whole core after 1.5 PV for the neat CO2 control case is 
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34% while the average CO2 saturation of the whole core after 1.5 PV for the case in Fig. 

4.87 is 38%; this shows that with or without PVAc visosifier, the CO2 flood effeciencies 

are approximately the same. 

    After the 1.5 PV injection of neat CO2, we changed the injection fluid to PVAc 

viscosified CO2. Another three scans were carried out until a total of 3 PV CO2 has been 

injected. 

    We scanned the core at normal pressure before resuming viscosified CO2 flood to find 

out the oil distribution within the core as shown below. 

  

 

Fig. 4.88 – CT Image of Single Fractured Sandstone Core before Injecting PVAc 

Viscosified CO2 

 

The scan in Fig. 4.88 was taken at normal pressure without CO2 presence. Therefore, 

the color tone shown was deviated from the other coreflood images in section 4.6.4. 

However, we can still see the trend of oil distribution in the fractured sandstone core. 

Towards the injection end, remaining oil saturation was low while towards the outlet end 

most of the oil still remained unswept.  
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Fig. 4.89 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 4 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 

 

 

Fig. 4.90 – Scan 4 during the CO2 Flooding in Single Fractured Sandstone 

 

    After resuming CO2 flood, scan 4 was taken at around 2.0 PV (an incremental of 0.5 

PV viscosified CO2 injected.). Now the slice images in Fig. 4.89 and the slab images in 

Fig. 4.90 show steady progress of the CO2 flood front and a very good sweep of the 

regions covered by CO2. For almost 4/5 of the core in Fig. 4.90, the sandstone matrix 

color changed into complete blue indicating predominant CO2 presence. 
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Fig. 4.91 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 5 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 

 

 

Fig. 4.92 – Scan 5 during the CO2 Flooding in Single Fractured Sandstone 

 

    As more CO2 was injected; the CO2 progressed towards the outlet. This can be seen 

better by carefully observing the color change of the slice core images in Fig. 4.91 close 

to the outlet end with green CO2 spot growing bigger in the center. We can also notice 

the rebuilding of CO2 flood front; the transition interface between CO2 (blue) and oil 
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occupied matrix (yellow/red) was not as sharp as the neat CO2 flooding images in Fig. 

4.92. 

 

 

Fig. 4.93 – Vertical Slice Images of the Single Fractured Sandstone Core From Scan 6 

(Images are tiled horizontally with the first image being the outlet and last image being 

the inlet.) 

 

 

Fig. 4.94 – Scan 6 during the CO2 Flooding in Single Fractured Sandstone 

 

Scan 6 was the last scan taken after 2.99 PV CO2 was injected (an incremental of 1.5 

viscosified CO2 injected). As shown in both slab images in Fig. 4.94 and slice images in 
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Fig. 4.93, most of the core regions were swept by CO2. The final saturation images in 

Fig. 4.94 clearly reveal the difference between applying PVAc viscosified CO2 and 

applying neat CO2 for the same amount of CO2 (3 PV) injected. 

  

Table 4.7 – Oil Recovery Table for Neat/Viscosified CO2 Flooding (CO2 Breakthrough 

around 0.8 PV CO2 injected) 

 

 

The recovery data is shown in Table 4.7. As the final recovery reveals, the 76% 

recovery is significantly higher than the 67% recovery for the neat CO2 injection case 

using the same amount of CO2 (3 PV). 

 

 Neat CO2 Injection Viscosified CO2 Injection 

PV CO2 Injected 0.49 1.06 1.56 2.06 2.55 2.99 

OOIP% oil produced 21% 46% 58% 68% 74% 76% 
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Fig. 4.95 – CO2 Saturation Profile for PVAc Viscosified CO2 

 

    The CO2 saturation distribution profile along the core was obtained by processing the 

CT data quantitatively as shown in Fig. 4.95. Scan 1-3 represent neat CO2 injection and 

scan 4-6 represent viscosified CO2 injection. There are several noticeable features in the 

saturation plot. First of all, after the transition from neat CO2 to viscosified CO2, the CO2 

saturation increases significantly. Also worth noticing is the shape of CO2 front; for scan 

1-3 the decline of CO2 saturation along the core is relatively slow with a tilted slope 

while for scan 4-6 the transition from CO2 saturated zone to unswept zone is relatively 

steeper with a more vertical slope compared with neat CO2.  
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Fig. 4.96 – Oil Recovery with Pore Volume of CO2 Injected Comparison 

 

 

Fig. 4.97 – CO2 Saturation with Pore Volume of CO2 Injected Comparison 
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    Finally, two plots in Fig. 4.96 and Fig. 4.97 summarize two CO2 coreflood studies in 

section 4.6.1 and section 4.6.4. The first plot of recovery curve comparison is obtained 

from the oil recovered with pore volumes of CO2 injected. CO2 saturation curve 

comparison in Fig. 4.91 is obtained by calculating quantitatively the average saturation 

of CO2 across the whole core region with different pore volumes of CO2 injected. 

In the recovery data plot in Fig. 4.96, the increasing trend before 1.5 PV for both cases is 

almost identical; the OOIP recoveries for both cases end up at around 55 % after the 1.5 

PV CO2 has been injected. Once PVAc viscosifier is applied to the viscosifier case, the 

two recovery curves begin to divert into different directions. The final recovery of 

viscosifier case is around 76 % while the neat CO2 case reaches 67 % recovery in the 

end. It is a solid proof that more oil was recovered from the PVAc viscosified case. 

In the CO2 saturation plot in Fig. 4.97, similarly before 1.5 PV the saturation curves 

stay almost the same for both cases; both curves reach around 35 % CO2 saturation after 

1.5 PV of neat CO2 has been injected. After 1.5 PV when the PVAc viscosifier is 

adopted, the viscosifier curve suddenly rises above the neat CO2 control curve. This is 

also very evident in the CO2 flood images from the different extent of color change. 

Finally after 3 PV of total CO2 is injected for both cases, the average CO2 saturation of 

the viscosifier case reaches 98% while the final average CO2 saturation for the control 

case only reaches 56%. The difference in the final CO2 saturation here is more 

significant compared with the final recovery data, possibly due the lag between the 

volume of the real oil recovered and volume of the oil collected at the outlet as caused 

by the dead oil volume within the coreflood system. 
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4.7    Simulation Study of Viscosified CO2 Flooding  

    We plan to carry out initial simulation research to anticipate the benefits of using 

viscosifier chemical in CO2 EOR production. A general CMG black oil simulation 

model using pseudo-miscible consideration is developed based on field data (Field P) 

provided by an oil company. Interpretations on the general model are provided when 

permeability heterogeneity and CO2 mobility differences are considered. Finally a CO2 

pattern flood model of Well A from data provide by the same oil company and the 

simulation results are presented to provide predictions on possible operation scenarios. 

4.7.1    Simulation of Viscosified CO2 Flooding by CMG  

    Since the CO2 viscosifier technology has not been widely used in the actual field 

production, there have been very few reports on the simulation of viscosified CO2 

flooding. Our research on possible methods for the simulation of viscosified CO2 

flooding process leads to the following three major approaches:  

(1) Compositional Simulation (GEM): Using the specific key word *VISCOSITY, the 

component viscosities of the reservoir oil and CO2 can be specified and the fluid 

viscosities during the simulation calculations can be computed using the direct mixing-

rule.  Viscosities depend on fluid composition. 

(2) Black Oil Simulation (IMEX):  The pseudo-miscible consideration in the black-oil 

IMEX module of CMG software allows us to define CO2 as a solvent slug which is 

miscible with the oil. In this model we can modify the phase behaviors of the solvent 

phase (CO2) directly, especially for the CO2 viscosity change with pressure. We can also 

define the miscibility pressure from solvent phase data. Viscosities depend on fluid 

composition and pressure. 
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(3) Composition Simulation (GEM):  Viscosities can be computed from the Jossi, Stiel 

and Thodos correlation.35  This approach utilizes a low-pressure viscosity evaluation by 

Herning-Zipperer and Yoon-Thodos formulas. To modify and demonstrate the viscosifer 

effect on the CO2 fluid, we can modify the CO2 fluid pseudo-critical volume parameters 

used for computing the mixture critical volume in the Jossi, Stiel and Thodos correlation. 

Viscosities depend on fluid composition, temperature and pressure. 

 

 

Fig. 4.98 – Three-Component Miscible Displacement in a Grid Block (Todd and 

Longstaff 1972)36 

 

Fig. 4.98 depicts a typical fluid distribution within a grid block for pseudo-miscible 

consideration. The solvent phase is displacing oil under miscible condition and a 

possible gas phase will be following the solvent phase to drive the displacement forward. 

However, it is possible that the oil/solvent and solvent/gas dispersion zones will merge; 
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in this case the solvent saturation will drop due to gas presence and miscibility will 

probably be lost. We have eliminated the factor of gas here, and only use CO2 as the 

solvent phase, so the displacement will occur under miscible conditions. 

 

 

Fig. 4.99 – Mixing Parameter vs. Pressure 

 

Fig.4.99 shows the mixing of solvent and oil. The mixing extent is controlled by a 

pressure-dependent mixing parameter, PThis parameter specifies the ratio of 

solvent mixing with oil. We can read from the figure that when pressure reaches the 

minimum miscibility presure (MMP), the mixing parameter reaches maximum. On the 

other hand, when the pressure is well below MMP, the mixing parameter is close to 0 

and the solvent displacing oil process is immiscible displacement. This mixing 

parameter curve can be adjusted in history-matching study to match the field 

performance. 
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4.7.2    General Reservoir Model 

    Sensitivity study comparing different extents of CO2 viscosity increase was performed 

on the general reservoir model. A 1/8 of a 5 spot CO2 pattern flood was set up as shown 

in Fig. 4.100. 

 

 

 

Fig. 4.100 – 1/8 of a 5-Spot CO2 Pattern Flood Model 
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Reservoir data: reservoir data was extracted from company provided data. Cartesian 

grid 24×24×10 was used with 30 ft horizontal spacing and 10 ft vertical spacing. 10 

layers, divided into two regions verticals, were set up; from top to bottom the first 1-5 

layers have a permeability of 1 mD while the 6-10 layers have a permeability of 10 mD. 

Grid top (1,1,1) was set to 9400 ft in reference to the Field P data and WOC (Water Oil 

Contact) was set to 9500 ft to satisfy a 30% water saturation from the Field P data. 

Reference pressure was set to be 4300 psia according the average of Units in Field P. 3D 

representation of the reservoir model with the permeability distribution is provided in 

Fig. 4.101: 

 

 

Fig. 4.101 – 3-D Representation of the CO2 Pattern Flood Model 

 



 128 

Viscosity Data: In our simulation study, we assumed the same mixing paramter-

pressure relationship for both viscosified CO2 and neat CO2. The major difference 

between different simulation runs is the viscosity increase of CO2 fluid phase under the 

same pressure. The plot in Fig. 4.102 below shows the data we use for the neat CO2 

flooding case. The red curve is the mixing parameter  P) changing with pressure. We 

can see from the plot that above MMP (1500 psi) the mixing parameter becomes almost 

constant. The blue curve is the viscosity of neat CO2 changing with pressure. We see that 

at reservoir pressure conditon (around 4300 psi), the CO2 viscosity is still relatively low 

(0.05 cp). 

 

 

Fig. 4.102 – Mixing Parameter and CO2 Viscosity Changing with Pressure 
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To illustrate the possible CO2 viscosifier effects, we plotted a series of curves as 

shown in Fig. 4.103 to represent the new viscosity-pressure relationship. We set the 

maximum viscosity increase as 20 fold according to literature and then put in two other 

less significant viscosity increasement in between the neat CO2 case and the 20 fold 

viscosity increasement case as 5 fold and 10 fold separately. 

 

 

Fig. 4.103 – Different Viscosity Curves Changing with Pressure 

 

    Simulation Results Discussion: Since high permeability contrast exists between the 1-

5 layers and 6-10 layers in our model (1 mD vs 10 mD),  we expected that this contrast 

would cause early breakthrough of CO2 in the higher permeability layers thus resulting 

in low overall recovery. We decided to perform a sensitivity study on the extent of CO2 
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viscosity increase. The following three runs were conducted for the same reservoir 

model with different viscosity of the CO2 injected:   

Case 1: Neat CO2 flooding 

Case 2: 10 fold viscosity increase CO2 flooding 

Case 3: 20 fold viscosity increase CO2 flooding 

    Simulation was conducted for the time period of 4 years starting from 2001-1-1 to 

2004-1-1. For the injection well, CO2 was injected at 500,000 SCF/d rate. For the 

production well, the oil production was set to 200 bbl/d (constraint) from the beginning. 

We first looked at the solvent saturation distribution in the cross section of the 1/8 5-spot 

CO2 pattern flood: 

 

 

Saturation Color Scal

 

Neat CO2 flooding 

Fig. 4.104 – Solvent Saturatoin Distribution for Three Different Simulation Runs 
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10 fold viscosity CO2 viscosity increase CO2 flooding 

 

20 fold viscosity CO2 viscosity increase CO2 flooding 

Fig. 4.104 – Continued 

 

    CO2 saturation final distributions in the model are shown in Fig. 4.104. For the neat 

CO2 flooding Case 1, most of the CO2 injected flows through the high permeability 

layers 6-10 and we can see that almost no solvent (CO2) is  present in layer 1-5 even at 

the end of the simulation. For 10 fold viscosity increase Case 2, the sweep effeciency 

increases for the first 5 layers but still there is a great preference for CO2 to flow through 

the high permeability layers 6-10. The 20 fold viscosity increase Case 3 has a slightly 

better sweep effeciency compared to that in Case 2, but the major advanatage is that in 

Case 3 the solvent front progress is delayed in layer 6-10 compared with Case 2. 

Therefore, we can conclude that Case 3 has the latest CO2 breakthrough time. 
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The oil rate and cumulative oil production rate curves for the 4 years’ simulation are 

plotted for each case in Fig. 4.105 and Fig. 4.106, respectively. As can be read from the 

oil rate plot, the constant 100 bbl/d production rate starts to decline as time goes by. For 

Case 1 with neat CO2, oil rate starts to decline around 2002-1. For Case 2 with 10 fold 

viscosity increase, oil rate starts to decline around 2002-6. For Case 3 with 20 fold 

viscosity increase, oil rate starts to decline around 2002-9. In other words, viscosifier 

delays the time at which oil rate starts to decline. The same trend is reflected in the 

cumulative oil production case, more oil is produced in the long run after the application 

of viscosified CO2; the time at which cumulative oil production curves divert from each 

other corresponds to the oil rate decline time in the oil rate curve. 

 

 

Fig. 4.105 – Simulation Results: Oil Rate for Case 1 to Case 3 
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Fig. 4.106 – Simulation Results: Cumulative Oil Rate for Case 1 to Case 3 

 

 

Fig. 4.107 – Solvent Production Rate for Case 1-3 
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The solvent production rate curves are also plotted for each case in Fig. 4.107. 

(solvent here equals CO2, solvent production means CO2 production.) For Case 1 with 

neat CO2, the CO2 breakthrough time is as early as 2000-8; for Case 2 with 10 fold 

viscosity increase, the CO2 breakthrough occurrs around 2001-7; for Case 3 with 20 fold 

viscosity increase, the CO2 breakthrough occurrs around 2002-1. When no viscosifier is 

added for CO2 flooding, Case 1 curve reaches the peak around 2002-1 at which the CO2 

production rate is around 1400,000 SCF/d. This rate is is much higher than the CO2 

injection rate of 500,000 SCF/d; this discrepency causes rapid reservoir pressure 

depletion. For Case 1 and Case 2, the CO2 production rate stabalizes around 500,000 

SCF/d after 2002-9, an indication that most of the CO2 is flowing through the high 

permeability layer without sweeping the low permeabilty zones. This case presents very 

low utilization of CO2 injected. For Case 3, at the end of our simulation time the CO2 

production rate is around 400,000 SCF/d, which, is still below the CO2 injection rate 

500,000 SCF/d. Thus, Case 3 definitely outperforms Case 1and Case 2 in terms of 

efficient CO2 utilization. 

 

 

 

 

 

 

 

 



 135 

Case 1 well-bottom hole pressure and well block pressure 

 

Case 2 well-bottom hole pressure and well block pressure 

 

Fig. 4.108 – Well Block Pressure vesus Well Bottom-hole Pressure for Case 1-3 
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Case 3 well-bottom hole pressure and well block pressure 

 

Fig. 4.108 – Continued 

 

    Finally, a comparison between well bottom-hole pressure and well block pressure is 

made for each case in Fig. 4.108. Note that the peak of the well block pressure occurrs at 

almost the same time of CO2 breakthrough in Fig. 4.107, because reservoir pressure 

starts to decline sigfinicantly after CO2 breakthrough occurrs at the production well. The 

well bottom hole pressure constraint is set to be 1000 psi, so when the well block 

pressure drops below or equal to 1000 psi, no oil is produced. From Case 1 to Case 3, it 

is obvious that the neat CO2 Case 1 has a very rapid well block pressure drop and 

towards the end of production the two curve almost overlaps, resulting in a very low oil 

production rate. For Case 2 and Case 3, the application of viscosifiers delays the drop of 
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well block pressure below 1000 psi with the same CO2 injection rate. It can be 

concluded CO2 viscosifier application also helps maintain the reservoir pressure. 

4.7.3    Simulation of Viscosified CO2 Flooding for Well A 

Based on all the previous simulation study results we combined the basic pseudo-

miscible simulation model with data from the company and applied to the Well A in 

Field P. Using well-testing data and log data, we can get a more realistic representation 

of a CO2 pattern flood case. Reservoir performance characteristics will be evaluated 

through this well model. The basic simulation data are listed in Table 4.8.  

 

Table 4.8 – Well A Model Properties and Injection Details 

Reservoir Description 

Length (ft) 24 × 30 

Width(ft) 24 × 30 

Number of Pay Zones 4 

Number of Layers 10 

Depth of Top of the Reservoir (ft) 9150 

Pay Zones (ft) 

9149.6 – 9173.2 

9293.0 – 9314.3 

9455.4 – 9460.3 

9521.0 – 9527.6   

Reference Pressure (Psi) 4000 

Temperature (oF) 90 
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Table 4.8 – Continued 

Reservoir Description 

Porosity (Variable) 0.18, 0.15, 0.18, 0.18 

Permeability (md) 0.92, 0.0704, 16.7, 33  

Kz/Kx 0.1 

Dip , degree  0 

Operation Details 

Number of Producing Wells 1 

Number of Injecting Wells 1 

Maximum Production Rate (STB/D) 100 

Minimum Production BHP (psi) 1000  

Maximum Injection Rate (million SCF/D) 0.5 (2 Years) 

Injection Well Skin 0 

Injection Gas Composition 100% ,CO2 

Simulation Period  2 years  
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The 3-D representation of the pattern flood model is presented in Fig. 4.109. 

 

 

Fig. 4.109 – 3-D Representation of Well A Model 

 

    The simulation study starts from 2000-1 and ended at 2002-1 for two years. Two cases 

are considered in this simulation study.  

Case 4: Neat CO2 flood 

Case 5:  20 fold viscosity increase CO2 flood  

    The simulation ran for 2 years and various parameters are compared at the end of 2 

years for the two cases. Results from the following reservoir performance parameters are 

presented: Oil Production Rate, Cumulative Oil Production Rate, CO2 Production Rate 

and CO2 Saturation. 
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Fig. 4.110 – Oil Rate for Case 4 and Case 5 
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Fig. 4.111 – Cumulative Oil Rate for Case 4 and Case 5 

 

    Significant difference can be observed between Case 4 with neat CO2 and Case 5 with 

20 fold viscosified CO2 in terms of oil production. In Fig. 4.110 the oil rate for Case 4 

starts to decline round 2001-3 and the oil rate for Case 5 starts to delince around 2001-6; 

the application of viscosifers delays the oil rate decline. The high permeability contrast 

between layered pay zones contributes to the early oil rate decline. For the cumulative 

production rate in Fig. 4.111, viscosified Case 5 gives more cumulative production in the 

long run in comparison with neat CO2 flooding Case 4 as expected. 
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Fig. 4.112 – Solvent Production Rate for Case 4 and Case 5 

 

    In Fig. 4.112 of solvent rate plot, solvent means CO2 fluid. The CO2 breakthrough for 

case 4 of neat CO2 occurrs around 2000-4, while the CO2 breakthrough for Case 5 of 20 

fold CO2 viscosity increase occurrs around 2000-8. For the neat CO2 flooding case, the 

CO2 production reaches a peak rate of 1400,000 SCF/d which is much higher than the 

CO2 injection rate of 500,000 SCF/d. Such high production rate can cause reservoir 

pressure depletion problems. The time when CO2 production rate equals to CO2 injection 

rate (500,000 SCF/d) for both cases is towards the end of simulation time after 2001-7. 

This indicates the presence of highly permeable layers which conducts CO2 flow directly 

from injection well to production well. 
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Fig. 4.113 – Solvent Saturation Distribution in the 3D Reservoir Model at the End of 

Simulation (Above: Case 4, Below: Case 5) 
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    As revealed by the solvent saturation 3D representation in Fig. 4.113, most of the 

production in the two cases is from the lower two production intervals.  This is caused 

by the high permeability of these two thin intervals. In Case 4, the problem is worsened 

with neat CO2, as we can see that in the lowest layer CO2 flows straight towards the 

production well. As a result, most of the upper three layers are not even swept by the 

CO2 fluid. When CO2 viscosity is increased 20 fold in Case 5, we see that the oil sweep 

efficiency in the third layer from top is improved and most of oil is recovered. However, 

in Case 5 the solvent saturation in the two upper layers increases very little compared 

with the neat CO2 Case 4, with the first layer from top almost remaining untouched. The 

best way to address this problem is to use gel treatment to reduce the permeability of two 

high permeability intervals in the bottom (16.7 mD and 33 mD). This method will direct 

CO2 to sweep the relatively lower permeability intervals (0.929 mD and 0.0704 mD). 
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CHAPTER V 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1    Conclusions 

    In the laboratory study, we completed the crosslinked polymer gel conformance 

control study and the direct CO2 mobility control study using viscosifiers.  

1. For the study of gel performance control, we tested 10,000 ppm high 

concentration gel and found out it was more stable compared with the 3,000 ppm 

gel. The 10,000 ppm gel gave a higher pressure drop in CO2 flooding,leading to a 

better permeability reduction. We also proved the effectiveness of applying in-

situ conformance control gel in carbonate reservoirs by carrying out CO2 flood in 

heterogeneous carbonate core. In all the gel treatment experiments, we obtained 

incremental oil recovery during the resumed CO2 flooding. Cross-linked 

HPAM/Cr(OAc)3 gels could improve sweep efficiency and overall oil recovery 

2.  For the study of CO2 viscosifiers, the control CO2 flooding experiment using 

neat CO2 was conducted twice; in both trials we obtained expected low recovery 

due to higher conductivity of the fracture. The first low molecular weight 

viscosifier of dodecamethylpentasiloxane was studied and we noticed significant 

differences in the CO2 flooding images; a better CO2 flood front was formed, 

suggesting the reduction in CO2 mobility. We tested the high molecular weight 

compound PVAc and Polydimethylsiloxane with toluene as cosolvent. During 

the pressure drop tests, we determined PVAc to be a better compound for the 
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CO2 mobility reduction. The PVAc viscosified CO2 flooding process was then 

studied using the CT-scan technique. In comparison with the neat CO2, 

significant differences for PVAc viscosified CO2 were discovered in terms of 

CO2 flood front, CO2 saturation and oil recovery. CT images also showed that 

viscosified CO2 provided better sweep efficiency. CO2 flow preference in the 

lower half core was also observed in several coreflood experiments which could 

account for part of the oil recovered. 

3. In our simulation work we looked at different cases which were modeled based 

on Geological Differences, Injection Well Position and Production Scheme. A 

black-oil pseudo-miscible model for Field P was developed using data from Well 

A. The basic assumptions from pseudo-miscible model were specified and then a 

general model was constructed to illustrate the simulation methodology. In the 

Well A Model, a neat CO2 injection case and a viscosified CO2 injection case 

were studied. Higher cumulative oil recovery and better sweep efficiency were 

observed for viscosified CO2 case and CO2 breakthrough was delayed using the 

viscosified CO2. However, the heterogeneity of the permeability in the reservoir 

suggests that a gel treatment for high permeability layers might be necessary 

before conducting any CO2 flooding. 

5.2    Recommendations 

1. Considering the limitations of setting up coreflood system under the CT 

scanner; the CT images are already sufficient for our analysis. However, 

better temperature control device during the CT scan and more complex and 
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accurate coreflood system is desirable which will yield more accurate and 

reliable quantitative results.  

2. Larger core samples from other outcrop or drilling sources can further expand 

the scope of our research. Larger cores are especially useful in observing 

gravity drainage of the injected fluid. Alumina or titanium CT scan core 

holders with bigger diameter fittings are required for larger cores. 

3. A survey on the industrial supply of siloxane or vinyl acetate polymers will 

certainly help to identify promising CO2 viscosifier chemicals for field 

applications.  
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