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ABSTRACT

Nonparametric Methods for Point Processes and Geostatistical Data. (August 2010)

Elizabeth Young Kolodziej, B.S., The University of Georgia;

M.S., The University of Georgia

Chair of Advisory Committee: Dr. Michael Sherman

In this dissertation, we explore the properties of correlation structure for spatio-

temporal point processes and a quantitative spatial process. Spatio-temporal point

processes are often assumed to be separable; we propose a formal approach for testing

whether a particular data set is indeed separable. Because of the resampling method-

ology, the approach requires minimal conditions on the underlying spatio-temporal

process to perform the hypothesis test, and thus is appropriate for a wide class of

models.

Africanized Honey Bees (AHBs, Apis mellifera scutellata) abscond more fre-

quently and defend more quickly than colonies of European origin. That they also

utilize smaller cavities for building colonies expands their range of suitable hive lo-

cations to common objects in urban environments. The aim of the AHB study is

to create a model of this quantitative spatial process to predict where AHBs were

more likely to build a colony, and to explore what variables might be related to the

occurrences of colonies. We constructed two generalized linear models to predict

the habitation of water meter boxes, based on surrounding landscape classifications,

whether there were colonies in surrounding areas, and other variables. The presence

of colonies in the area was a strong predictor of whether AHBs occupied a water

meter box, suggesting that AHBs tend to form aggregations, and that the removal of

a colony from a water meter box may make other nearby boxes less attractive to the

bees.
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CHAPTER I

INTRODUCTION

Spatial statistics concerns data collected on a two-dimensional plane or on a higher

dimensional space. While some models mathematically make use of multiple dimen-

sions, spatial statistics is a set of methodologies designed specifically for answering

questions about where the data is located, and how much of the data is in what

locations. Spatial statistics is also concerned with measuring particular attributes,

estimating parameters summarizing those attributes spatially, and interpolating val-

ues for them. We see, then, that there are two main branches of spatial statistics:

point processes, which focus on the locations of the data, and quantitative spatial

processes, which measure attributes variables in varying locations.

One major difference between spatially generated data and some other types of

data is the often present correlation structure. Many models are built around the

assumption that data has been sampled randomly from a population, making the

observations independent of one another. Time series data, on the other hand, is cor-

related, but time has a natural ordering to it, making the orderless quality of spatial

correlation unique. Spatial data also is more often unequally spaced than time series

data, prompting the common assumption of some continuous function for correlation

at distance d. These unique challenges prompt the necessity of using spatial statis-

tics. In this dissertation, we explore the properties of correlation structure for point

processes and a quantitative spatial process.

The journal model is IEEE Transactions on Automatic Control.
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A. Spatio-temporal Processes

Many processes are measured in both space and time. Many times the data is thus

analyzed in one of several ways: separate spatial analyses for each time point or

a single spatial analysis averaging values over time; separate temporal analyses for

each spatial location or a single temporal analysis averaging values over space; or

spatio-temporal analysis allowing for both the spatial and temporal structure. The

last option is of course preferable, as the first two involve the loss of information, and

Chapter II introduces one new method of many being developed [e.g., 1] to make it

more feasible.

Spatio-temporal methodologies are distinctly different from, although usually

mathematically identical to, methods developed for k+ 1 dimensional space. Time is

not modeled as the next spatial dimension because time is ordered and space is not.

While it is appropriate to use all surrounding spatial data to interpolate temperatures

at a given location, for example, users of the statistical methodologies would not be

interested in using tomorrow’s temperature to predict today’s. Another reason the

methods for spatio-temporal data may be different is that units in space and time are

not comparable. For example, if one is interested in developing a kernel estimator, as

in Chapter II, separate bandwidths are used for space and time.

B. Spatial Point Processes

The origin of spatial point processes is in counting illustrations, modeling the number

of events within a length of pipe, region of forest, or interval of time. Spatial point

processes primarily measure location, as opposed to quantitative spatial processes. A

spatial point process is completely spatially random if the number of events in any

subregion is Poisson distributed, thus popularizing the Poisson process [2]. Examples
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of Poisson processes include locations of lightning strikes, woodpeckers, or pine trees,

and point processes have found applications in many fields, including ecology, forestry,

and epidemiology.

First- and second-order intensities in space are defined by the following functions.

The first-order intensity function denotes the average number of points at a given

location, while the second-order intensity function denotes the correlation between

the number of points at two locations. Let us consider an infinitesimal region D in

Rd, centered at (s): D = ds. Then a process N is first-order stationary if

λ(s) = lim
|D|→0

E[N(D)]

|D|
= ν,

where N(D) measures the number of events in the Borel set D, and |ds| denotes the

area of ds. Similarly, the process is second-order stationary if

λ2(s1, s2) = lim
|D1|,|D2|→0

E[N(D1)N(D2)]

|D1||D2|
= Ψ(s1 − s2), ∀ s1, s2 ∈ Rd,

for some function Ψ(·), where D1 and D2 are infinitesimal regions centered at (s1)

and (s2). In Chapter II, we investigate testing whether a spatio-temporal point pro-

cess is separable, meaning its second-order intensity can be separated into spatial

and temporal components. Because of the resampling methodology, the approach re-

quires minimal conditions on the underlying spatio-temporal process to perform the

hypothesis test.

C. Quantitative Spatial Processes

Quantitative spatial processes primarily measure some attribute such as concentra-

tion, temperature, or ore reserves. Measurements of a quantitative spatial process

may or may not be made in random locations. In this dissertation, we focus on
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a data set collected by the city of Tucson, Arizona. The city checks water meters

monthly for billing purposes. Each time a colony of Africanized honey bees was found

in a water meter, the city recorded the address and date of the finding, creating a

rich data set to analyze. We did not consider the locations of the colonies to be a

point process because the locations of the water meters were not random; rather, they

were constrained to the requirement of one per lot. Lot sizes varied widely in size,

so apparent clustering of the colonies in water meters could be due to the fact that

the water meters themselves were clustered in some areas. Therefore, we treated the

data as quantitative, measuring at each location whether or not a colony had been

formed during the 12 year study period, and measuring the number of times colonies

had been formed. For the former, we used a logistic regression model, and for the

latter, a Poisson model.

D. Overview

Chapter II develops a test for spatio-temporal separability for point processes. Chap-

ter III applies two generalized linear models to a set of locations of Africanized honey

bees in the Tucson metropolitan area, using a resampling method to account for cor-

relation between observations. Lemmas and proofs of the theorems in Chapter II

are described in the first appendix. Tables and figures for the Africanized honey bee

application in Chapter III are in the second appendix.
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CHAPTER II

SEPARABILITY FOR SPATIO-TEMPORAL POINT PROCESSES

A. Introduction

Spatial point processes began with counting illustrations, modeling the number of

events within a length of pipe, region of forest, or interval of time. The student’s first

exposure to these types of problems almost certainly begins with the Poisson process

[2]. Spatial analysis has expanded to include geostatistical data, lattice data, point

processes, and spatio-temporal processes, and applications in the spatial field now

include weather patterns, disease spread, crime waves, locations of promising oil wells,

and mineral concentrations in soil. For more illustrations, see, e.g., Schabenberger

and Gotway [3]. To determine whether a spatio-temporal point process is separable,

we will use the second-order intensity function. The first-order intensity function

gives information about the number of events that occur per region; the second-order

intensity function gives information about the probability that there is one observed

point in each of two infinitesimal regions. That is, second-order intensity functions

measure covariance. If the covariance between space and time is zero, we call it

separable, and it is appropriate to model the space and time correlations separately.

For example, if we were modeling the locations of bee colonies using a point process,

we would want to know whether we should model their spatial behavior differently

at distinct time points; if not, it is permissible to create a single spatial model using

all of the data, rather than creating separate models at different times.

To test the separability of time and space, we will need to construct a test

statistic. We propose a test statistic that has a limiting Gaussian distribution based

on a version of the Central Limit Theorem. We begin with some definitions, and then
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propose a test statistic.

B. Definitions

The first order intensity λ(s, t) of a spatial point process gives the average number

of events per unit volume at a spatial location s and time t [3]. Let us consider an

infinitesimal cylinder in Rd+1, centered at (s, t): A = ds × dt; we will also write in

general |A| = |D| × T , |D| being the size of the spatial domain of interest and T the

time domain of interest. Then the first order intensity function is defined as:

λ(s, t) = lim
|A|→0

E[N(A)]

|A|
,

where N(A) is measuring the number of events in the Borel set A. Similarly, the

second order intensity is defined as:

λ2(s1, s2, t1, t2) = lim
|A1|,|A2|→0

E[N(A1)N(A2)]

|A1||A2|
,

where A1 and A2 are infinitesimal cylinders centered at (s1, t1) and (s2, t2). We

now consider processes that are both second-order stationary and isotropic. A pro-

cess is said to be second-order stationary if λ(s, t) is constant for all (s, t), and

λ2(s1, s2, t1, t2) ≡ Ψ(s1 − s2, t1 − t2) for some function Ψ(·). Assuming second-order

stationarity, only the distance between two points and direction will be important in

the second order intensity, so we can define s = s1 − s2, and t = t1 − t2. A process

is said to be isotropic if whenever ||(s, t)|| = ||(s, t)′||, Ψ(s, t) = Ψ(s, t)′. If a pro-

cess is isotropic, only distance between two points is important. Under second-order

stationarity and isotropy, we can write

Ψ(s, t) = lim
|A1|,|A2|→0

E[N(A1)N(A2)]

|A1||A2|
,
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where A1 and A2 are any two infinitesimal cylinders separated by the vector (s, t).

Next we define a kernel estimator of the second order intensity function, and

then we can create a test statistic based on that estimator. Our kernel estimator is:

Ψ̂(s, t)

=

∫
x1∈D

∫
x2∈D

∫
t1∈T

∫
t2∈T

K[(s− x1 + x2)/h1, (t− q1 + q2)/h2]

|A ∩B| × h2
1 × h2

dN (2),

where we define the following: 1.) B = {y, k : y = z− x1 + x2, z ∈ D, k = l − q1 +

q2, l ∈ T}, 2.) dN (2) = N (2)((dx1, dq1), (dx2, dq2)) = N(dx1, dq1)N(dx2, dq2)I(x1 6=

x2)I(q1 6= q2), where I is the indicator function, 3.) K(x, l) is a kernel density, and

4.) h1 and h2 are spatial and temporal bandwidths, respectively. The asymptotic

mean and variance of our kernel estimator are found in Theorem 1, and asymptotic

normality is shown in Theorem 2 in the next section.

The covariance of a spatio-temporal point process is said to be separable if it can

be decomposed into spatial and temporal components. An example of a separable

second-order intensity is given below.

Ψ(s, t) = C Ψ(s, 0) Ψ(0, t),

where C is some constant. A non-separable covariance function is interpreted in

a similar manner to interactions in linear models: we may have different spatial

covariances for each time instance and different temporal covariances for each spatial

location. Using a separable covariance function simplifies interpretation of the model.

A hypothesis test for testing separability is formulated in section E.
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C. Asymptotic Features of the Sample Second-order Spatio-temporal Intensity Func-

tion

First we discuss the asymptotic bias and covariance of our kernel estimator, and then

we show that it is asymptotically normally distributed. To measure covariance, we use

cumulants. Cumulants are comparable to a measurement of the spatial and temporal

dependence of the process. Define the kth-order cumulant function as

C
(k)
N (x2 − x1, . . . ,xk − x1, q2 − q1, . . . , qk − q1)

≡ lim
|dx1|,··· ,|dxk|,|dq1|,··· ,|dqk|→0

[
Cum[N(dx1, dq1), . . . , N(dxk, dqk)]

|dx1| × · · · × |dxk| × |dq1| × · · · × |dqk|

]
where Cum(Y1, . . . , Yk) is given by the coefficient of (it1, · · · , iktk) in the Taylor series

expansion of log{E[exp(i
∑k

j=1 Yjtj)]} about the origin [see 4]. For example, if N

is Poisson, then all C
(k)
N (x2 − x1, . . . ,xk − x1, q2 − q1, . . . , qk − q1) will be equal to

zero if any of xj − x1 6= 0 and qj − q1 6= 0, j = 2, . . . , k. We consisder a sequence of

random fields An = Dn×Tn, and let Ψ̂n(s, t) be the estimator of Ψ(s, t) over An. We

investigate the large sample properties of this estimator, beginning with the following

theorem.

Theorem 1: Assume that:

1. C
(2)
N (·, ·) and C

(3)
N (·, ·, ·, ·) are bounded and C

(2)
N (·, ·) is continuous and integrable.

2.
∫
R2

∫
T
|C(3)

N (u1,u2, r1, r2)|du1 dr1 <∞ for finite u2, r2,∫
R2

∫
T
|C(3)

N (u1,u1 + u2, r1, r1 + r2)|du1 dr1 <∞ for finite u2, r2, and∫
R2

∫
T
|C(4)

N (u1,u2,u2 + u3, r1, r2, r2 + r3)|du2dr2 <∞ for finite u1,u3, r1, r3.

3. |An| = O(n2), |∂An| = O(n), where ∂An denotes the boundary of An, and |∂A|

denotes the length of ∂A. This accounts for the shape of the random field from

which we sample data.
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4. The bandwidths, h1n and h2n, have the condition that hin = O(n−β) for some

β ∈ (0, 1), for i = 1, 2.

5. The kernel function K(·, ·) is a bounded, nonnegative, isotropic density function

which takes positive values only on a finite support, C.

Let N be a time-space stationary point process observed on domain An. Then:

E[Ψ̂(s, t)] =

∫
C

K(s, t) Ψ(s− h1nx, t− h2nq) dq dx→ Ψ(s, t)

and:

lim
n→∞
|An| × h2

1n × h2n × Cov{Ψ̂n(si, ti), Ψ̂n(sj, tj)} → σij,

where:

σij =


∫
K2(x, q) dx dq ×Ψ(si, ti) , si = ±sj, ti = ±tj

0 , o.w.

Proof: See Appendix A.

To evaluate separability, we will measure the second-order intensity function at

a set of user-chosen lags Λ. Define Gn ≡ {Ψn(s, t) : (s, t) ∈ Λ} to be the vector of

second-order intensity functions at lags in Λ. Then Ĝn ≡ {Ψ̂n(s, t) : (s, t) ∈ Λ} are

the estimators of G. To show that Ĝn is asymptotically normal, we must quantify

the strength of the dependence between locations on the spatio-temporal field using

the following mixing coefficient [5].

αN(p; k; j) ≡ sup{|P (A1 ∩ A2)− P (A1)P (A2)| : A1 ∈ FN(E1), A2 ∈ FN(E2),

E2 = E1 + (s, t), |E1| = |E2| ≤ p, d(E1, E2) ≥ k, t(E1, E2) ≥ j}

where the supremum is taken over all compact, convex subsets E1 ⊂ <2, and over

all E2 such that the distance d(E1, E2) ≥ k and t(E1, E2) ≥ j. Here we define the
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following: FN(E) denotes the σ−algebra generated by the events {(x, q) : (x, q) ∈ E},

d(·, ·) denotes the maximal Euclidean distance between disjoint sets of points, and

t(·, ·) denotes the maximal distance in time between disjoint sets of points. If, for

example, N is Poisson, αN(p; k; j) = 0 for all k > 0 or j > 0. Our mixing condition

is thus

sup
p

αN (p;k;j)
p

= O(k−εj−δ) for some ε > 2, δ > 1 (2.1)

The mixing condition says that as disjoint groups of points are separated by larger

distances in space or time, dependence decreases at some rate depending on the

volume p. That is, we require αn(p; k; j) to approach 0 for large k or j at some rate,

depending on p. Put another way, at a fixed distance in space k, dependence may

increase as the volume increases at a rate controlled by p.

In addition to the mixing condition, we also require the following mild moment

condition.

sup
n
E

{∣∣∣√|An| × h1n ×
√
h2n ×

[
Ψ̂n(s, t)−Ψ(s, t)

]∣∣∣2+δ
}
≤ Cδ, (2.2)

for some δ > 0 and Cδ <∞.

Theorem 2: In addition to the conditions in Theorem 1, assume that our

mixing condition (2.1) holds and our moment condition (2.2) holds. Denote the size

of the spatio-temporal random field as r2
n × n, so that the size of Dn is rn, and

An = Dn × Tn, as before. The temporal domain, then, expands at rate n, while the

spatial domain expands at a rate which is some function of n. We assume this function

to be a monotone, increasing, unbounded function in n such that lim
n→∞

rn = ∞. Let

N be a stationary spatio-temporal point process observed on domain An. Then√
|An| × h1n ×

√
h2n × {Ĝn − E(Ĝn)} is asymptotically normal with mean 0 and

covariance matrix Σ, where the elements are given in Theorem 1.
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Proof: See Appendix A.

D. Covariance Estimation

To form our test statistic, we need to know the covariance of Ĝn, denoted Σ. As Σ is

generally unknown, we find an estimator based on the data. While the off-diagonal

elements in the covariance matrix are shown to be asymptotically zero in Theorem

1, they may be non negligible in finite samples, so a plug-in method may be overly

simplistic. We therefore apply a subsampling technique to estimate covariance.

Resampling methods began with U-statistics [6], the Jackknife [7, 8], and the

bootstrap [9]. Since then, resampling methods have been extended to many different

types of parameter estimation situations, including that of data correlated in space

and time. Carlstein introduced the idea of using subseries, or “windows” to compute

asymptotic standard errors [10]. These windows are contiguous regions, sections of

time or subshapes of space, that represent smaller portions of the original larger

process. Künsch [11] suggested the use of overlapping windows, and Hall and Jing

[12] introduced the idea of an overlapping, non-independent window for dependent

(temporal or spatial) data. Kaiser et al. explored inference on the spatial cumulative

distribution function using subsampling [13]. Sherman extended the subseries method

to linear models, and in 1996 showed for lattice data, the optimal subshape size

is proportional to n1/2 [14, 15]. Nordman and Lahiri further explored the issue,

showing that the optimal block size depends on the shape of the sampling region

and characteristics of the random field [16]. Guan et al. considers subsampling to

estimate covariance for spatial point processes; we extend the idea here to spatio-

temporal point processes [16].

Let Dm(rn)×Tl(n) be a subshape congruent to Dn×Tn in shape and orientation,
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rescaled such that m(rn) = c1 r
α
n is the length of one side of |Dn|, l(n) = c2 n

β = |Tn|,

α ∈ (0, 1), β ∈ (0, 1), and c1 and c2 positive constants. We need to allow Dm(rn)×Tl(n)

to become large for our asymptotic considerations, but we also need many subshapes.

Thus we assume that c1 → 0, c2 → 0, c1 r
α
n → ∞, and c2 n

β → ∞ as n → ∞. For

example, we could use c1 = r−2α
n and c2 = n−2β. Then a displaced copy ofDm(rn)×Tl(n)

is Dm(rn)×Tl(n)+(x, q) ≡ {(s, t)+(x, q) : (s, t) ∈ Dm(rn)×Tl(n)}, where (x, q) ∈ D1−c
n ×

T 1−c
n and D1−c

n × T 1−c
n ≡ {(x, q) ∈ Dn× Tn : Dm(rn)× Tl(n) + (x, q) ⊂ Dn× Tn}. Then

we define Ĝm(rn),l(n)(x, q) as the sample second-order intensity function estimated at

lags Λ on the displaced subshape, and we define h1,m(rn) and h2,l(n) as the spatial

and temporal bandwidths, respectively, used to obtain Ĝm(rn),l(n)(x, q). Then our

subsampling estimator denoted by Σ̂n is as follows:

1

|D1−c
n | × |T 1−c

n |
×

∫
T 1−c
n

∫
D1−c
n

|Dm(rn)| |Tl(n)|h2
1,m(rn) h2,l(n)

×
(
Ĝm(rn),l(n)(x, q)− Ḡm(rn),l(n)(x, q)

)
×

(
Ĝm(rn),l(n)(x, q)− Ḡm(rn),l(n)(x, q)

)′
dx dq,

where Ḡm(rn),l(n) ≡ 1/ {|D1−c
n | × |T 1−c

n |}
∫
T 1−c
n

∫
D1−c
n

Ĝm(rn),l(n)(x, q) dx dq In practice,

this integral must be approximated by a finite sum. Then we find that every element

of the subsampling estimator is L2 consistent for the appropriate element of Σ.

Theorem 3: Assume that the conditions for Theorems 1 and 2 hold, along with

condition 2.2 for δ > 2. Then Σ̂n is an L2 consistent estimator for Σ.

Proof: See Appendix A.
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E. Assessment of Separability

Analogous to Li et al., we can create our test statistic [17]. We can write our null

hypothesis that the covariance function is separable as

H0 : Af(G) = 0,

where A is a contrast matrix of row rank q and f = (f1, . . . , fr) are real-valued

functions differentiable at G. Then we choose lags:

Λ = {(si, tj), (si, 0), (0, tj)} , i = 1, . . . , k, j = 1, . . . , l.

One function, for example, might be:

f(G) =

(
Ψ(s1, t1)

Ψ(s1, 0)Ψ(0, t1)
,

Ψ(s2, t2)

Ψ(s2, 0)Ψ(0, t2)

)T
.

Then where A = [1− 1], we can see that Af(G) = Ψ(s1,t1)
Ψ(s1,0)Ψ(0,t1)

− Ψ(s2,t2)
Ψ(s2,0)Ψ(0,t2)

, which

is equal to zero under our null hypothesis.

Then by the multivariate delta theorem [18], we can see that:

√
|An| × h1n ×

√
h2n ×

{
f(Ĝn)− f

(
E
[
Ĝn

])}
d−→ Nr(0,B

TΣB),

where Bij = ∂fj/∂Gi, i = 1, . . . ,m, j = 1, . . . , r. Thus because it is L2-consistent, we

simply use our subsampling estimate of Σ, defined in the previous section, to obtain

our test statistic:

TS = |An| × h2
1n × h2n ×

{
Af(Ĝn)

}T (
ABTΣ̂nBAT

)−1 {
Af(Ĝn)

}
.

Finally, we know that TS
d−→ χ2

q as n→∞ by the multivariate Slutsky’s theorem [19].

An approximate α-level hypothesis test for separability rejects the null hypothesis if

the test statistic is greater than the upper α percentage point of a χ2 distribution
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with q degrees of freedom.
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CHAPTER III

SPATIAL DISTRIBUTION OF AFRICANIZED HONEY BEES IN TUCSON,

ARIZONA

A. Introduction

Africanized honey bees (Apis mellifera scutellata)have received media attention due

to their highly defensive characteristics, including a much shorter reaction time (8-

10 s compared to the European 55-62 s), and a larger intensity of nest defense [20].

Therefore the bees’ arrival in Tucson, Arizona was cause for concern about residents’

safety. The purpose of this study is twofold: First, it investigates explanatory vari-

ables such as the influences of the age of buildings, whether a residence with a pool

was located within half a mile, acreage, distance from each land class, whether a

location was zoned as residential or commercial, and the proportion of the locations

within a half-mile radius that had ever been occupied by a colony on the locations

of Africanized honey bee colonies. The resulting models can also be used to predict

which locations are most likely to be inhabited by an Africanized honey bee colony,

thereby giving any employees who check the water meters some warning about the

possible presence of a colony.

African honey bees had been known to produce more honey in tropical climates

than European honey bees; thus scientists attempted in 1956 to produce a honey bee

better suited to the tropical climates by importing African queens and breeding them.

Unfortunately, in 1957, 26 colonies established from the imported queens swarmed in

Brazil and established feral populations. Beekeepers in southern Brazil also acquired

African queens, whose progeny also contributed to the feral population. Queens from

beekeepers’ managed European colonies have mated with the feral African drones,
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creating Africanized honey bees, hybrids of the African honey bee and European

honey bees like A. m. ligustica and A. m. iberiensis. The tremendous success of these

feral populations has resulted in a rapid spread of the population of these Africanized

Honey Bees up through Central America and Mexico to the United States in 1990,

and to Arizona in 1993. Hunter et al.; Rubink et al.; Guzman-Novoa and Page, Jr;

and Loper discuss this migration of the Africanized honey bee [21, 22, 23, 24].

Temperature, degree of insolation, humidity, and rainfall are correlated with

requests for colony removal [25]. Mistro et al. suggest that factors which may influence

the bees’ absconding include fires; heavy rain; predators; excessive heat, cold, or

humidity; scarcity of resources; and human manipulation [26]. Similarly, this study

explores whether land class types and other variables are related to colony building

in water meter boxes in Tucson.

B. Data Collection

While European honey bees are more selective when choosing nest sites, Africanized

honey bees do not need to store as much honey, and so build nests in smaller locations,

giving them a wider range of choices in location. Baum et al. and Winston discuss

that colonies may therefore be found in sewer manholes, flower pots, garbage cans,

and water meter boxes [27, 28]. The Tucson Water Department began recording the

removal of the Africanized honey bee colonies from water meter boxes in April of

1996 while they were checking the meters monthly for billing purposes, and the most

recent record obtained of their removal is from May 2008. The data set Tucson Water

Department provided contains the date a colony was found in a water meter and the

address of the location. This study is part of ongoing research using the same data

set at the Knowledge Engineering Laboratory in the Department of Entomology at
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Texas A&M University. This data set is the main data set of interest; other data

collected were obtained for the purpose of explaining why the bees were choosing

certain water meter boxes over others.

An important part of learning why the bees choose to build colonies where they

do is to find out where the bees are not building colonies. To that end, a large

set of records was acquired from the Pima County Tax Assessor’s Office, denoting

the year the building was built, the square footage of the house, whether or not

the house had a pool, and a few other details not of interest or too incomplete to

be useful to this study. The records were divided into commercial and residential

buildings, the source of the corresponding indicator variable. Individual buildings

were identified by their parcel number, and so could be matched in a commercial GIS

(Geographic Information System) product to the correct locations by using a data

set containing the land parceling divisions as polygons. This parcel data came from

the Pima County Department of Transportation, Geographic Information Services

Division, and contained the acreage of each parcel of land. The water meter data

set was also mapped to parcels of land, this time by the address given by the water

meter company. Not every parcel of land in Tucson had a matching building in the

Tax Assessor data; the main reason for that is that some parcels of land were not yet

developed and so had no buildings. If a parcel of land has no building, it also has no

water meter, and so those parcels were removed from our data.

It was also of interest to determine whether vegetative land classes influenced

the bees’ colony home choices. Shaw used aerial photographs to classify areas of

Tucson into categories such as residential land, natural land, and watercourses [29].

Parameter estimates must be well-defined on each subspace (a small section of Tucson,

as described in Section F), so every variable must be found at more than one level in

every subspace. Therefore rather than treating the land class variables as categorical,
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it was decided to use the distance from each land class as a continuous variable.

C. Data Cleaning

The study was focused on the metropolitan area close to the middle of town in Tucson,

rather than using the data from the entirety of Pima County, thus eliminating 581 of

the colony occupation records. Data from the water meter boxes, data from the Tax

Assessor’s Office, the parcel polygons, and the vegetation data were combined using

a commercial GIS product. Not every building was in the Tax Assessor data. Among

the commercial properties, only those properties that had been improved were posted

online. Because over 90% of the buildings in Tucson were in the Tax Assessor data set,

any bias incurred due to any pattern of missing data, if it exists, should be minimal.

Therefore we assume the data is missing completely at random, an assumption that

is at least approximately appropriate.

The data from the water meter boxes presented more of a challenge; about 10% of

the addresses did not match the land parcels. Sometimes this was due to a difference

in spelling of the address or the addition of an apartment number in one data set that

wasn’t in the other; those differences were easily remedied. At other times, the parcel

data was missing an address. Sometimes parcels in the vicinity had addresses and

one could note the pattern of street numbering in order to match the address to the

parcel, while at other times Google MapsTM mapping service and Google EarthTM

mapping service were employed to find addresses.

R was used to find the proportion of water meters within a half mile radius that

had been occupied by a colony at any point during the 12-year study period. Land

classes were stored as polygons in Arc GIS R© software, and distances from each land

class were calculated by finding the Euclidean distance between the centroid of the
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land parcel on which the water meter was located and the nearest edge of the land

class polygon. If the centroid was inside a land class, distance from that class was

calculated to be zero.

D. Data Analysis

The goal of this study is to create a model predicting the locations of Africanized

honey bees using explanatory variables such as the age of the building corresponding

to the water meter, whether a residence with a pool was located within half a mile,

acreage, distance from each land class, and the proportion of the locations within a

half-mile radius that had ever been occupied by a colony. An important point to be

made is that each month, the water meter company not only records the location

of the colony infestation; they also remove the colony from the water meter box in

order to read the meter. Therefore the model is not predicting the growth of the

Africanized honey bee population, but rather it predicts the recovery or rebuilding of

the population after the colonies found in the boxes were eliminated. Of the 275,877

locations, only 5,640 had colonies in their water meter boxes during the 12 year study.

Thus the prediction for most buildings is that a colony is quite unlikely to be found

there; however, it is of interest to learn why some houses are predicted to be more

likely to have colonies in the water meter boxes than others.

The usual logistic and Poisson regression models assume independence of the

observations. An important aspect of this data set is that the presence of colonies is

spatially correlated; therefore methods developed by Heagerty and Lumley are used

to subsample from the data in order to obtain variance parameter estimators that do

not assume independence [30]. The approach involves estimating functions, and does

not require that parameter estimates be computed on each subseries. Therefore if a
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subspace has no records of colonies, this method does not have the usual problem in

logistic regression of leading to estimates of ±∞.

In order to use the logistic and Poisson models described in section E, certain

assumptions must be made. First, it is assumed that the data from the water meters

is complete: that is, no individual removed a colony from a water meter box before the

water meter company found it when they made their rounds for the month, nor did

the person in charge of checking the meter fail to record it. If there is a socioeconomic

pattern to the failures to record colony removal, some social bias is incurred. Social

bias is a smaller problem for this data set, however, than for others that have been

collected from pest removal companies e.g., Baum et al. [27]: every building has a

water meter box that is checked by the city, while not every family has the financial

resources to pay for pest removal. The assumption is that every month there is no

record of the bees’ presence, they are absent. Second, it is assumed that when records

are at most 30 days apart, those are multiple records concerning the same colony that

has not yet been removed or that was found on the first date but cleared out on the

second. If, however, the records are more than 30 days apart, it is assumed that there

were two separate colonies: one swarm made their colony in the water meter box,

then they were cleared out, and another colony came in the very next month. Thirty

days was chosen in part because the Africanized honey bees require that amount of

time to build a new colony [31] and in part because the water meter company comes

to check the water meters once a month.

Third, while records of the years the buildings were built have been obtained,

records for when the water meters were turned on or off were not. If the water

meter company were to turn off a meter for non-payment or a vacation, and then

not check the water meter for three months, they would not be checking for bees in

that water meter for that time. Similarly, the newer houses are recorded in the data
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set as not having bees from the year they were built onward. However, it may take

some houses in a new neighborhood longer to sell than others, and so there might

be a water meter that is again not being checked every month, as the water has not

been turned on yet. Because data on the water meter status changes has not been

obtained, this model might again incur some patterns of social bias by assuming there

were no bees in the water meters during the time the company wasn’t checking the

meters. As stated earlier, any social bias incurred is smaller than for data collected

from pest removal companies. Finally, it is assumed that there is a linear relationship

between the explanatory variables and the log odds of a colony occupying a water

meter for the logistic regression model, and that there is a linear relationship between

the log of the mean number of times colonies have been built in a water meter and the

explanatory variables for the Poisson regression model. There is not an assumption of

the independence of the observations; instead Heagerty and Lumley’s [30] resampling

method is used to find variance estimates for the parameters.

E. Parameter Estimation

Two models are implemented for the data: the logistic model, which models the odds

of a colony occupying a particular location, and the Poisson model, which models

the number of times a colony has been occupied. The data is quite sparse, yet some

locations have been inhabited by colonies over ten times, meaning the Poisson model

requires the additional dispersion parameter. Also, the logistic model does not require

the assumption that records more than 30 days apart are necessarily separate colonies.

Both models are used in part to ascertain whether results are similar.
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1. Parameter Estimation: Logistic Model

The logistic regression model predicts the presence or absence of bees in water meters

over the course of the entire 12 year study. In this case, the response variable ys is a

Bernoulli random variable denoting the presence or absence of a colony at any time

during the study period at location s. The log odds of the presence of a colony in a

particular location are modeled:

log

(
πs

1− πs

)
=

k∑
j=1

βjxs,j,

where πs is the probability of observing a colony during the study period at location

s. The first explanatory variable, x1, is simply the 1-vector, yielding an intercept

for the model, β1. Other potential explanatory variables, x2, . . . ,xk, (suppose that

the parameter vector is of dimension k) include the age of the building corresponding

to the water meter, whether a residence with a pool was located within half a mile,

acreage, distance from each land class, whether a building was residential, and the

proportion of the locations within a half-mile radius that had ever been occupied

by a colony. The β’s are the corresponding parameters. If x2 denotes acreage, for

example, a positive estimate for β2 would indicate that buildings with larger lot sizes

are predicted to have a higher probability of occupancy.

To find parameter estimates for the logistic model, the default method of Itera-

tive Reweighted Least Squares [32] for generalized linear models can be implemented

in R. With such a large sample size, concerns about power to detect significance are

not large. The main question, rather, is whether the statistically significant parame-

ters are meaningful in the context of the problem. We must find variance estimates

for the parameters before testing their significance; variance estimation is described

in more detail in section F.
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2. Parameter Estimation: Poisson Model

To account for different numbers of occupancies in different water meters, the over-

dispersed Poisson regression model is implemented: log(µs) =
∑k

j=1 βjxsj. The re-

sponse variable, ys, denotes the number of times a colony had been built at location

s. The same explanatory variables x1, . . . ,xk as in the Poisson model are used. For

the Poisson model, a positive estimate for the parameter β2 corresponding to acreage

would indicate that buildings with larger lot sizes are expected to be occupied more

often during the 12 year study period. Because of the natural high zero count of the

data (that is, there were many locations that had never had bees at all), an overdis-

persion parameter that accounts for the mean and variance not being equal in the

Poisson model is included.

The Iterative Reweighted Least Squares method is implemented in the Poisson

model as in the logistic model to estimate the regression parameters. After estimating

them, the final parameter to be estimated is the over-dispersion parameter; as in

McCullagh and Nelder [33], it is estimated as:

φ̂ =
1

n− p

n∑
s=1

(Ys − µ̂s)2

µ̂s
,

where p is the length of β, µ̂s is defined as exp
{∑

j β̂jxjs

}
, and xjs is the value of

covariate j corresponding to location s. The overdispersion parameter is essentially

a ratio of the variance estimate to the estimate of the mean. When this parameter

is equal to 1, we say there is no over-dispersion. For our data set, the parameter is

estimated to be 1.52. To test for significance of the β parameters, variance estimates

of the parameter estimates are obtained in section F.
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F. Variance Estimation

Estimating the variances of the parameter estimates in order to find significance levels

is more complex when the observations are correlated in space or time. Schabenberger

and Gotway discuss the challenges in fitting generalized linear models in the case of

spatial models for non-Gaussian data [3]. In the Gaussian case, the joint distribution

is multivariate Gaussian, but for other distributions, the joint distributions may be

unknown. Thus methods like maximum likelihood or the method of moments may

be difficult or impossible, so a non-parametric approach to covariance estimation is

sought.

Resampling methods began with U-statistics [6], the Jackknife [7, 8], and the

bootstrap [9]. Since then, resampling methods have been extended to many different

types of parameter estimation situations, including that of data correlated in space

and time. Carlstein introduced the idea of using subseries, or “windows” to compute

asymptotic standard errors [10]. These windows are contiguous regions, sections of

time or subshapes of space, that represent smaller portions of the original larger

process. Künsch [11] suggested the use of overlapping windows, and Hall and Jing

[12] introduced the idea of an overlapping, non-independent window for dependent

(temporal or spatial) data. Kaiser et al. explored inference on the spatial cumulative

distribution function using subsampling [13]. Sherman extended the subseries method

to linear models, and in 1996 showed for spatial data, the optimal subshape size

is proportional to n1/2 [14, 15]. Nordman and Lahiri further explored the issue,

showing that the optimal block size depends on the shape of the sampling region and

characteristics of the random field [16].

Extending the idea of subseries to the generalized linear model introduces new

challenges. Our logistic regression model is most challenged by the fact that it is
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possible to have well-defined parameter estimates on the entire data set, while on

certain windows, the binary response variable Yi only takes on the value 0, necessi-

tating a different approach. Heagerty and Lumley have introduced a method that

utilizes estimating functions, functions which have as their root the parameter [30].

The estimating functions are suggested by Heyde to unify the theory behind least

squares and maximum likelihood under the larger umbrella of quasi-likelihood [34].

Heagerty and Lumley’s method is implemented, as shown here.

Accordingly, suppose the function Us(Ys,xs, β) ∈ Rp is a general vector-valued

estimating function of the data, where Ys denotes the response variables, covariates

are denoted xs for s ∈ Dn, and parameter β ∈ Rp. Dn is a subset of Zd. It is required

that the estimating functions be unbiased; that is, Eβ[Us(Ys,xs, β)] = 0 for all β.

Denoting the cardinality of Dn as |Dn|, our estimating function is

Ūn(β) =
1

|Dn|
∑
s∈Dn

Us(Ys,xs, β).

When evaluation at Ys and xs is implicit, the notation Ūn(β) = |Dn|−1
∑

s Us(β) is

used, and when evaluation at β is implicit, the notation Un(β) = Un is used.

By a theorem in Heagerty and Lumley’s (2000) paper, letting Σn = Cov(Ūn),

convergence in distribution is obtained Σ
−1/2
n Ūn → N(0, Ip×p), I being the iden-

tity matrix. So where Hn is denoted Hn = Hn(β) = (∂/∂β)Ūn, convergence in

distribution of the parameter estimates is obtained to find p-values for testing hy-

potheses about the parameters β: Σ
−1/2
n Hn(β̂n − β)→ N(0, Ip×p). As Hn is directly

estimable, all that is necessary is to find an estimator for Σn, and then an esti-

mator of the asymptotic covariance of the parameter estimates will be obtained:

V (β̂n) ≈ În = H−1
n (β̂)Σ̂nH

−1
n (β̂). The matrix Hn is directly estimable because it

involves only the original data and parameter estimates of the original model, which
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Heagerty and Lumley argue are easily calculated from readily available software.

Here Heagerty and Lumley [30] use a window subsampling estimator, as Garcia-

Soidan and Hall [35] and Sherman [15] have used in other situations. Notation used

is similar to that of Sherman’s paper: S ⊂ (−1, 1]d ⊂ Rd “represents the interior

of a simple closed curve with finite boundary and positive volume that is used as

a template for Dn.” For any positive m ∈ R, let Sm be the expansion of S over

(−d(m/2)1/de, d(m/2)1/de]d; then assume Dn = {i : i ∈ Sn ∩ Zd}. The contraction

Diln , where ln = dγnδ/ded for some scalar γ > 0 and 0 < δ < 1, is defined as the

translated subshape centered at i ∈ Zd containing {j : j ∈ i+Sln ∩Zd}. The domain

Dn contains the subregions Diln ; let mn denote the number of subregions contained

entirely in Dn. Hall et al. showed that the use of nonoverlapping subregions often

results in a less efficient estimator, although it is permissible to use nonoverlapping

subregions [36]. Thus overlapping subregions are used.

Finally, the window subsampling empirical variance estimator is defined as:

Σ̂(0)
∞ =

1

mn

mn∑
i

hβ̂n(Diln),

where:

hβ̂n(Diln) = |Diln|(Ū
i
ln)(Ūi

ln)T

=
1

|Diln|
∑

j,k∈Diln

Uj(β̂n)Uk(β̂n)T

and

Ūi
ln =

∑
j∈Diln

Uj(β̂n)/|Diln|.

Then to estimate the asymptotic covariance of β̂n, Heagerty and Lumley (2000) use

În = H−1
n (β̂)Σ̂

(0)
n H−1

n (β̂), where Σ̂
(0)
n = Σ̂

(0)
∞ /|Dn|.
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1. Variance Estimation: Logistic Model

To find the estimating equations for the logistic model, the Maximum Likelihood

method can be implemented. Defining `(β) to be the log likelihood function for the

logistic model, the first derivative is found:

`(β) =
∑
i

(
∑
j

βjxs,j)ys −
∑
s

log

[
1 + exp

{∑
j

βjxs,j

}]
∂`(β)

∂βj
=
∑
s

ysxs,j −
∑
s

xs,j
exp {

∑
l βlxs,l}

1 + exp {
∑

l βlxs,l}
.

For simplicity, the mean is defined:

πs =
exp {

∑
l βlxs,l}

1 + exp {
∑

l βlxs,l}
,

and πs = µs. Then the estimating equation vector is:

Us =


xs,1(ys − µs)

...

xs,k(ys − µs)


It is necessary to insert parameter estimates into the U function to be able to calculate

covariance estimates, so parameter estimates based on the entire data are used. Thus

the estimate for the mean is µ̂s = exp{
∑

k β̂kxs,k}/(1 + exp{
∑

k β̂kxs,k}).

Next the Hn(β) matrix is found; differentiating, the (a, b) element is denoted

1

n

∑
s

xs,a xs,b

 exp
{∑

l β̂lxs,l

}
(

1 + exp
{∑

l β̂lxs,l

})2

 ,

where parameter estimates β̂ from the original data set are used (rather than, say,

averaging the window subsamples) as described in the parameter estimation section

to get the Hn(β̂) matrix. Then after finding the Hn(β̂) matrix, the next step is to
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find an estimate Σ̂n of the covariance matrix Σn. U-functions are thus calculated on

each of the subsamples to get the window subsampling estimator of the covariance

matrix. After finding Σ̂n, since Σ
−1/2
n Hn(β̂n − β)

d−→ N(0, Ip×p), finally the variance

matrix is calculated V (β̂n) ≈ În = Ĥ−1
n Σ̂nĤ

−1
n . P-values are then calculated from

2P (T > |tobs|), where tobs = β̂/se(β̂), and se(β̂) =

√
Var(β̂). The test statistic

tobs has a large sample standard normal distribution by the Multivariate Slutsky’s

Theorem [19] since Σ̂n is L2-convergent.

2. Variance Estimation: Poisson Model

To estimate the variances of the parameters, first the estimating equations are found,

then calculate the Hn matrix (this time also denoted Hn(β, φ) because of the extra

parameter being estimated), and finally the covariance matrix can be calculated as

for the logistic model. McCullagh, P. and Nelder state that the estimating equations

for the Poisson model are [33]:

U(β) = DTV−1(Y − µ)σ2,

where the diagonal elements in the covariance matrix Vss = V ar(Ys) = φµs, φ is the

over-dispersion parameter, Dsr = δµs/δβr, and µs is the expected number of times

bee colonies are built at location s. Recall that the mean is µs = exp{
∑k

j=1 xsjβj}.

Then if V (µ) = diag(µs) and σ2 = φ, note that:

Dsr =
δµs
δβr

=
δ

δβr
exp

{
k∑
j=1

xsjβj

}

= exp

{
k∑
j=1

xsjβj

}
xsr

= µsxsr
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and thus because the µs’s cancel, the sth entry in the U vector is:

Us(β) =
n∑
k=1

xks(yk − µk)/φ.

This matches the estimating equations given by Fleiss et al. [37]. The overdispersion

parameter is estimated as described in the parameter estimation section. Then Hn,

the matrix of partials, is found by differentiating: the (a, b) entry in the matrix is

defined by:

Hn(a,b)(β, φ) =
1

n

n∑
m=1

xma xmb
φ

exp

{∑
j

xmj βj

}
.

In both of the above equations, again the estimating equations depend on β and φ.

Thus Hn(β, φ) is approximated by Hn(β̂, φ̂), using the parameter estimates from the

original data set, as for the logistic model.

Finally, having obtained the Hn(β̂, φ̂) matrix, all that is left is to find the estimate

of Σn. Then Heagerty and Lumley’s subsampling method is implemented as for the

logistic model, computing the U-functions on each of the subsamples. Variances of

the parameter estimates and test statistics are also computed as for the logistic model

to obtain p-values.

G. Results

Table I in Appendix B displays the mean and standard deviation for all of the ex-

planatory variables in the model. While the average percentage of neighbors with

bees seems quite small, it is one of the most influential predictor variables. Few lo-

cations had been infested by an AHB colony, but the percentage of neighbors that

had been infested was an important predictor in the model. The mean of indicator

variables is a proportion: for example, for the pool indicator variable, 0.742 indicates

that there was a pool within half a mile of 74.2% of the locations in Tucson. The
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variable distance from “water” is in quotation marks because most of the land parcels

classified as the water land class do not actually hold water for much of the year; some

are washes which fill with water only during the monsoon season [29]. On average,

bees had access to almost all the land classes in under a mile; agricultural land was

on average more than 2 miles from a given location. The average construction year

for the buildings was 1979, and the oldest house in the data set was built in 1875.

The results from the logistic model are shown in Table II in Appendix B, and

the results from the Poisson model are shown in Table III. The p-values for the

two models are similar; in both models, the proportion of neighbors with colonies,

construction year, acreage, distance from vacant land, and the indicator of whether

there is a pool in the neighborhood are significant. Distance from natural land is also

significant for only the logistic model at the 0.05 level.

With such a large sample size, power was less of a concern than finding statis-

tically significant but meaningless results. The column “Change” is used to discern

whether significant effects were meaningful in context of the data. That column rep-

resents an increase in the explanatory variable by the amount specified, an amount

within the range of available data. The column “Factor” shows what the odds of oc-

cupancy, in the case of the logistic model, or the average number of occupations, for

the Poisson model, should be multiplied by when the explanatory variable increases

by the amount indicated by “Change.” All significant variables seemed to have a

meaningful effect on the response. That is, the odds or expected number of occupan-

cies for all significant variables except the residential indicator should be multiplied

by a factor at least 1.3 or at most 0.7 when the explanatory variable is increased by

an amount within the range of observed values for that variable. When a location is

changed from commercial to residential, its odds of occupancy should be multiplied

by 1.17, and the expected number of occupancies should be multiplied by 1.13, factors
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closer to 1 and thus somewhat less important.

In order to make appropriate conclusions, careful interpretations must be made.

Because observational rather than experimental data was collected, the possibility of

lurking variables means it cannot be concluded that the presence of colonies in the

neighborhood, or any other explanatory variable, causes an increase or decrease in

the predicted odds of a colony being present or number of expected colonies built.

All the significant variables are also associated with distance from the center of town,

and indeed both models predict that locations in the center of town to have more

colony occupations. There may be another variable not measured that is associated

with distance from the center of town that causes the explanatory variables to be

significant. As aforementioned, bias is a possibility, though perhaps less of a problem

with the logistic model, which does not account for repeated visits. The logistic

model may still have some social bias if there is a failure to record a colony removal,

however, it does not have mistakes from repeated records of visits that did not actually

represent new colonies.

Some variables were likely surrogates for other, more influential, variables. For

example, construction year may be a surrogate for whether a building had available

openings providing opportunities for nest sites. Lot size may indicate the availability

and variety of vegetation accessible to the colonies. The indicator variable for whether

a pool is in the neighborhood may also indicate vegetation availability; or it may

indicate that water is more readily available, perhaps from water hoses or pumps used

to fill the pools. Whether a location is residential may be indicative of a difference

in vegetation. The fact that the percent of neighbors with colonies was significant

may indicate that the bees tend to form aggregations, perhaps because of increased

mating efficiency or increased colony defense [38, 39]. It may also be true that a

nearby established colony in another type of cavity regularly produced swarms with
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colonized water meter boxes. This explanation would indicate the importance of

removing established colonies to control the population of Africanized honey bees.
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CHAPTER IV

CONCLUSIONS

A. Summary

A method for testing spatiotemporal separability for point processes has been pre-

sented in this dissertation. The testing approach can be used in many settings because

it requires only mild moment and weak dependence assumptions about the underly-

ing process. To develop our test statistic, we established the asymptotic distribution

of the second-order intensity estimators along with an L2 consistent subsampling

estimator for the covariance of our estimators, allowing us to show the asymptotic

distribution of our test statistic to be χ2 assuming separability.

Our Africanized honey bee study has identified several variables significantly

associated with the occupation of colonies in a water meter box. The Poisson and

logistic regression models that have been developed can be used to identify water me-

ter boxes that are more likely to contain colonies, thus potentially protecting workers

who read the meters. Identification of higher risk water meters can also lead to dis-

covery of established colonies in nearby areas. Removal of these established colonies

will prevent their forming new swarms.

B. Future Research

Because our test statistic has a χ2 distribution only asymptotically, we should run

simulations to find out what sample sizes are necessary under given conditions. We

will want to know how much power we have to detect particular deviations from

the assumption of separability. In addition, subspace size, bandwidth for the kernel

estimator, and lags at which to calculate the second-order intensity must be chosen
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by the user. Some simulations under different covariance structures would help the

user decide which choices are optimal for a particular data set.

Several aspects of the Africanized honey bee study warrant further investigation.

Exploration of the land class variables may identify particular types of vegetation

hospitable to Africanized honey bees. Measuring aspects of the buildings in Tucson

may help explain why older homes are more likely to be occupied by colonies. The

subspaces used to form the sample covariances of the parameter estimates have been

user chosen; simulation may help decide the optimal subspace size for this data set.

The temporal aspect of the data has also been ignored. Further analysis develops

a spatiotemporal model for the data modeling the log odds of the presence of a colony

in a particular location on a particular month:

log

(
π(s,t)

1− π(s,t)

)
=

k∑
j=1

βjx(s,t),j,

where π(s,t) is the probability of observing a colony during the study period at location

s and time t and the explanatory variables may include those mentioned for the spatial

model, along with temporal variables such as season, temperature, rainfall, and pollen

levels. Variance estimates may be found in a way similar to our spatial logistic model.

The further sparsity of the data using the temporal aspect (8,211 colonies removed

from 275,877 parcels in 145 months means only 0.02% of the locations were occupied

during any given month) reemphasizes the need for a method like Heagerty and

Lumley’s [30] method which does not require all the subspaces to have occupied

water meters.
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APPENDIX A

LEMMAS AND PROOFS OF THEOREMS IN CHAPTER II

Lemmas

Lemma A.1: Assume the intensity functions of the point process exist up to

order four. Then for x1 6= x2, y1 6= y2, q1 6= q2, p1 6= p2,

E{N (2)[(dx1, dq1), (dx2, dq2)]×N (2)[(dy1, dp1), (dy2, dp2)]}

= λ4(x2 − x1, y1 − x1, y2 − x1, q2 − q1, p1 − q1, p2 − q1)

dx1 dx2 dy1 dy2 dq1 dq2 dp1 dp2

+ λ3(x2 − x1, y2 − x1, q2 − q1, p2 − q1) dx1 dx2 dy2 dq1 dq2 dp2 εx1,q1(dy1, dp1)

+ λ3(x2 − x1, y1 − x1, q2 − q1, p1 − q1) dx1 dx2 dy1 dq1 dq2 dp1 εx1,q1(dy2, dp2)

+ λ3(x2 − x1, y2 − x1, q2 − q1, p2 − q1) dx1 dx2 dy2 dq1 dq2 dp2 εx2,q2(dy1, dp1)

+ λ3(x2 − x1, y1 − x1, q2 − q1, p1 − q1) dx1 dx2 dy1 dq1 dq2 dp1 εx2,q2(dy2, dp2)

+ λ(x2 − x1, q2 − q1) dx1 dx2 dq1 dq2 εx1,q1(dy1, dp1) εx2,q2(dy2, dp2)

+ λ(x2 − x1, q2 − q1) dx1 dx2 dq1 dq2 εx1,q1(dy2, dp2) εx2,q2(dy1, dp1),

where εx,q(·, ·) is a point measure and λk denotes the kth order intensity function,

k = 3, 4.

Proof of Lemma A.1: Let IB(s, t) =

 1 , (s, t) ∈ B

0 , otherwise
. Define the kth facto-
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rial moment measure as

α(k)(B1, B2, . . . , Bk) =

E

[ ∑
. . .
∑

(s1,t1)6=(s2,t2)6=... 6=(sk,tk)∈N
IB1(s1, t1) · IB2(s2, t2) · · · IBk(sk, tk)

]
.

Because

E[N(dx1, dq1), N(dx2, dq2), N(dy1, dp1), N(dy2, dp2)]

= E

[ ∑∑∑∑
(s1,t1),(s2,t2),(s3,t3),(s4,t4)∈N

Idx1dq1(s1, t1)

Idx2dq2(s2, t2)Idy1dp1(s3, t3)Idy2dp2(s4, t4)

]

and

{(s1, t1), (s2, t2), (s3, t3), (s4, t4) ∈ N}

= {(s1, t1) 6= (s2, t2) 6= (s3, t3) 6= (s4, t4)} ∪ {(s1, t1) = (s2, t2) 6= (s3, t3) 6= (s4, t4)}

∪ {(s1, t1) = (s3, t3) 6= (s2, t2) 6= (s4, t4)} ∪ {(s1, t1) = (s4, t4) 6= (s2, t2) 6= (s3, t3)}

∪ {(s2, t2) = (s3, t3) 6= (s1, t1) 6= (s4, t4)} ∪ {(s2, t2) = (s4, t4) 6= (s1, t1) 6= (s3, t3)}

∪ {(s3, t3) = (s4, t4) 6= (s1, t1) 6= (s2, t2)} ∪ {(s1, t1) = (s2, t2) = (s3, t3) 6= (s4, t4)}

∪ {(s1, t1) = (s2, t2) = (s4, t4) 6= (s3, t3)} ∪ {(s1, t1) = (s3, t3) = (s4, t4) 6= (s2, t2)}

∪ {(s2, t2) = (s3, t3) = (s4, t4) 6= (s1, t1)} ∪ {(s1, t1) = (s2, t2) 6= (s3, t3) = (s4, t4)}

∪ {(s1, t1) = (s3, t3) 6= (s2t2) = (s4, t4)} ∪ {(s1, t1) = (s4, t4) 6= (s2t2) = (s3, t3)}

∪ {(s1, t1) = (s2, t2) = (s3t3) = (s4, t4)} ,

so we observe that E [N(dx1, dq1)×N(dx2, dq2)×N(dy1, dp1)×N(dy2, dp2)] can be
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written as fifteen terms. By definition, the first term

E

[ ∑∑∑∑
(s1,t1) 6=(s2,t2)6=(s3,t3) 6=(s4,t4)

Idx1dq1(s1, t1)Idx2dq2(s2, t2)Idy1dp1(s3, t3)Idy2dp2(s4, t4)

]
= α(4)((dx1, dq1), (dx2, dq2), (dy1, dp1), (dy2, dp2)).

Consider the second term:

E

[ ∑∑∑∑
(s1,t1)=(s2,t2)6=(s3,t3)6=(s4,t4)

Idx1dq1(s1, t1)

Idx2dq2(s2, t2)Idy1dp1(s3, t3)Idy2dp2(s4, t4)

]

= E

 ∑∑∑
(s1,t1)6=(s3,t3)6=(s4,t4)

I(dx1dq1)∩(dx2dq2)(s1, t1)Idy1dp1(s3, t3)Idy2dp2(s4, t4)


= α(3)((dx1, dq1), (dy1, dp1), (dy2, dp2))εx1(dx2)

We find the second equality from the fact that (dx1, dq1)∩ (dx2, dq2) is empty unless

(x1, q1) = (x2, q2) (i.e. two infinitesimally small discs centered at (x1, q1) and (x2, q2)

are disjoint if (x1, q1) 6= (x2, q2)) and the definition of α(3)(·, ·).
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Continuing in this way, we obtain

E[N(dx1, dq1), N(dx2, dq2), N(dy1, dp1), N(dy2, dp2)]

= α(4)((dx1, dq1), (dx2, dq2), (dy1, dp1), (dy2, dp2))

+ α(3)((dx1, dq1), (dy1, dp1), (dy2, dp2))εx1q1(dx2, dq2)

+ α(3)((dx1, dq1), (dx2, dq2), (dy2, dp2))εx1q1(dy1, dp1)

+ α(3)((dx1, dq1), (dx2, dq2), (dy1, dp1))εx1q1(dy2, dp2)

+ α(3)((dx1, dq1), (dx2, dq2), (dy2, dp2))εx2q2(dy1, dp1)

+ α(3)((dx1, dq1), (dx2, dq2), (dy1, dp1))εx2q2(dy2, dp2)

+ α(3)((dx1, dq1), (dx2, dq2), (dy1, dp1))εy1p1(dy2, dp2)

+ α(2)((dx1, dq1), (dy2, dp2))εx1q1((dx2, dq2), (dy1, dp1))

+ α(2)((dx1, dq1), (dy1, dp1))εx1q1((dx2, dq2), (dy2, dp2))

+ α(2)((dx1, dq1), (dx2, dq2))εx1q1((dy1, dp1), (dy2, dp2))

+ α(2)((dx1, dq1), (dx2, dq2))εx2q2((dy1, dp1), (dy2, dp2))

+ α(2)((dx1, dq1), (dy1, dp1))εx1q1(dx2, dq2)εy1p1(dy2, dp2))

+ α(2)((dx1, dq1), (dx2, dq2))εx1q1(dy1, dp1)εx2q2(dy2, dp2))

+ α(2)((dx1, dq1), (dx2, dq2))εx1q1(dy2, dp2)εx2q2(dy1, dp1))

+ λ dx1 dq1 εx1q1((dx2, dq2), (dy1, dp1), (dy2, dp2)),

where λ is the first-order intensity of the process. Further imposing the condition

that x1 6= x2 and y1 6= y2, we obtain
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E
[
N (2)(dx1, dx2)×N (2)(dy1, dy2)

]
= α(4)((dx1, dq1), (dx2, dq2), (dy1, dp1), (dy2, dp2))

+ α(3)((dx1, dq1), (dx2, dq2), (dy2, dp2))εx1q1(dy1, dp1)

+ α(3)((dx1, dq1), (dx2, dq2), (dy1, dp1))εx1q1(dy2, dp2)

+ α(3)((dx1, dq1), (dx2, dq2), (dy2, dp2))εx2q2(dy1, dp1)

+ α(3)((dx1, dq1), (dx2, dq2), (dy1, dp1))εx2q2(dy2, dp2)

+ α(2)((dx1, dq1), (dx2, dq2))εx1q1(dy1, dp1)εx2q2(dy2, dp2))

+ α(2)((dx1, dq1), (dx2, dq2))εx1q1(dy2, dp2)εx2q2(dy1, dp1))

By the definition of α(k), then, we see that the above term is equal to:

λ4(x2 − x1, y1 − x1, y2 − x1, q2 − q1, p1 − q1, p2 − q1)

dx1 dx2 dy1 dy2 dq1 dq2 dp1 dp2

+ λ3(x2 − x1, y2 − x1, q2 − q1, p2 − q1) dx1 dx2 dy2 dq1 dq2 dp2 εx1,q1(dy1, dp1)

+ λ3(x2 − x1, y1 − x1, q2 − q1, p1 − q1) dx1 dx2 dy1 dq1 dq2 dp1 εx1,q1(dy2, dp2)

+ λ3(x2 − x1, y2 − x1, q2 − q1, p2 − q1) dx1 dx2 dy2 dq1 dq2 dp2 εx2,q2(dy1, dp1)

+ λ3(x2 − x1, y1 − x1, q2 − q1, p1 − q1) dx1 dx2 dy1 dq1 dq2 dp1 εx2,q2(dy2, dp2)

+ λ(x2 − x1, q2 − q1) dx1 dx2 dq1 dq2 εx1,q1(dy1, dp1) εx2,q2(dy2, dp2)

+ λ(x2 − x1, q2 − q1) dx1 dx2 dq1 dq2 εx1,q1(dy2, dp2) εx2,q2(dy1, dp1),

as desired. �

Lemma A.2: Assume the intensity functions of the point process exist up to
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order four. Then λ(x2 − x1, q2 − q1) = C
(2)
N (x2 − x1, q2 − q1) + λ2 and

λ4(x2 − x1, y1 − x1, y2 − x1, q2 − q1, p1 − q1, p2 − q1)

= C
(4)
N (x2 − x1, y1 − x1, y2 − x1, q2 − q1, p1 − q1, p2 − q1)

+ λC
(3)
N (x2 − x1, y1 − x1, q2 − q1, p1 − q1)

+ λC
(3)
N (x2 − x1, y2 − x1, q2 − q1, p2 − q1)

+ λC
(3)
N (y1 − x1, y2 − x1, p1 − q1, p2 − q1)

+ λC
(3)
N (y1 − x2, y2 − x2, p1 − q2, p2 − q2)

+ C
(2)
N (x2 − x1, q2 − q1)C

(2)
N (y2 − y1, p2 − p1)

+ C
(2)
N (y1 − x1, p1 − q1)C

(2)
N (y2 − x2, p2 − q2)

+ C
(2)
N (y2 − x1, p2 − q1)C

(2)
N (y1 − x2, p1 − q2)

+ λ2C
(2)
N (x2 − x1, q2 − q1) + λ2C

(2)
N (y1 − x1, p1 − p2)

+ λ2C
(2)
N (y2 − x1, p2 − q1) + λ2C

(2)
N (y1 − x2, p1 − q2)

+ λ2C
(2)
N (y2 − x2, p2 − q2) + λ2C

(2)
N (y2 − y1, p2 − p1) + λ2.

Proof of Lemma A.2: We repeatedly use the relationship between moments and

cumulants (e.g. McCullagh 1987).

E[N(dx1, dq1)N(dx2, dq2)]

= Cum(N(dx1, dq1), N(dx2, dq2)) + Cum(N(dx1, dq1))Cum(N(dx2, dq2))

= C
(2)
N (x2 − x1, q2 − q1)dx1dx2dq1dq2 + λ2dx1dx2dq1dq2
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E[N(dx1, dq1)N(dx2, dq2)N(dy1, dp1)N(dy2, dp2)]

=Cum(N(dx1, dq1), N(dx2, dq2), N(dy1, dp1), N(dy2, dp2))

+Cum(N(dx1, dq1), N(dx2, dq2), N(dy1, dp1))Cum(N(dy2, dp2))

+Cum(N(dx1, dq1), N(dx2, dq2), N(dy2, dp2))Cum(N(dy1, dp1))

+Cum(N(dx1, dq1), N(dy1, dp1), N(dy2, dp2))Cum(N(dx2, dq2))

+Cum(N(dx2, dq2), N(dy1, dp1), N(dy2, dp2))Cum(N(dx1, dq1))

+Cum(N(dx1, dq1), N(dx2, dq2))Cum(N(dy1, dp1), N(dy2, dp2)

+Cum(N(dx1, dq1), N(dy1, dp1))Cum(N(dx2, dq2), N(dy2, dp2)

+Cum(N(dx1, dq1), N(dy2, dp2))Cum(N(dx2, dq2), N(dy1, dp1)

+Cum(N(dx1, dq1), N(dx2, dq2))Cum(N(dy1, dp1))Cum(N(dy2, dp2)

+Cum(N(dx1, dq1), N(dy1, dp1))Cum(N(dx2, dq2))Cum(N(dy2, dp2)

+Cum(N(dx1, dq1), N(dy2, dp2))Cum(N(dx2, dq2))Cum(N(dy2, dp2)

+Cum(N(dx2, dq2), N(dy1, dp1))Cum(N(dx1, dq1))Cum(N(dy2, dp2)

+Cum(N(dx2, dq2), N(dy2, dp2))Cum(N(dx1, dq1))Cum(N(dy1, dp1)

+Cum(N(dy1, dp1), N(dy2, dp2))Cum(N(dx1, dq1))Cum(N(dx2, dq2)

+Cum(N(dx1, dq1))Cum(N(dx2, dq2))Cum(N(dy1, dp1))Cum(N(dy2, dp2).

The lemma is then proved by using the definition of cumulant functions. �

Proof of Theorems

Proof of Theorem 1: Let Kn(x, q) ≡ h−2
1nh

−1
2nK(x/h1n, q/h2n). For large n such that
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C ∈ An − An,

E[λ̂2n(s, t)] =

∫
x1∈Dn

∫
x2∈Dn

∫
q1∈Tn

∫
q2∈Tn

Kn[(s− x1 + x2), (t− q1 + q2)]

|An|
×λ2(x2 − x1) dq2 dq1 dx2 dx1

=

∫
Dn−Dn

∫
Tn−Tn

Kn((s + v), (t+ u))λ2(v, u) du dv

=

∫
C

K(z, y)λ2(s− h1nz, t− h2ny) dy dz

→ λ2(s, t),

where the last limit is found by Lebesgue’s Dominated Convergence theorem.

Now to derive the variance, consider two lags, (s, t) and (s′, t′), where (s, t) and (s′, t′)

are elements of Λ, and Λ is a user-chosen lag set of interest. Then Cov(λ̂n(s, t), λ̂n(s′, t′))
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can be written as:

E[λ̂2n(s, t)× λ̂2n(s′, t′)]− E[λ̂2n(s, t)]E[λ̂2n(s′, t′)]

=
1

|An| × |A′n|

∫∫∫∫
Dn

∫∫∫∫
Tn

Kn[(s− x1 + x2), (t− q1 + q2)]

×Kn[(s′ − y1 + y2), (t′ − p1 + p2)]

×E{N (2)[(dx1, dq1), (dx2, dq2)]N (2)[(dy1, dp1), (dy2, dp2)]}

− 1

|An| × |A′n|

∫∫∫∫
Dn

∫∫∫∫
Tn

Kn[(s− x1 + x2), (t− q1 + q2)]

×Kn[(s′ − y1 + y2), (t′ − p1 + p2)]

×E{N (2)[(dx1, dq1), (dx2, dq2)]}E{N (2)[(dy1, dp1), (dy2, dp2)]}

=
1

|An| × |A′n|

∫∫∫∫
Dn

∫∫∫∫
Tn

Kn[(s− x1 + x2), (t− q1 + q2)]

×Kn[(s′ − y1 + y2), (t′ − p1 + p2)]

×
(
E{N (2)[(dx1, dq1), (dx2, dq2)]N (2)[(dy1, dp1), (dy2, dp2)]}

− E{N (2)[(dx1, dq1), (dx2, dq2)]}E{N (2)[(dy1, dp1), (dy2, dp2)]}
)
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Then from the results of Lemma 1, we find that:

E{N (2)[(dx1, dq1), (dx2, dq2)]×N (2)[(dy1, dp1), (dy2, dp2)]}

= [λ4(x2 − x1, y1 − x1, y2 − x1, q2 − q1, p1 − q1, p2 − q1)

− λ(x2 − x1, q2 − q1)λ(y2 − y1, p2 − p1)] dx1 dx2 dy1 dy2 dq1 dq2 dp1 dp2

+ λ3(x2 − x1, y2 − x1, q2 − q1, p2 − q1) dx1 dx2 dy2 dq1 dq2 dp2 εx1,q1(dy1, dp1)

+ λ3(x2 − x1, y1 − x1, q2 − q1, p1 − q1) dx1 dx2 dy1 dq1 dq2 dp1 εx1,q1(dy2, dp2)

+ λ3(x2 − x1, y2 − x1, q2 − q1, p2 − q1) dx1 dx2 dy2 dq1 dq2 dp2 εx2,q2(dy1, dp1)

+ λ3(x2 − x1, y1 − x1, q2 − q1, p1 − q1) dx1 dx2 dy1 dq1 dq2 dp1 εx2,q2(dy2, dp2)

+ λ(x2 − x1, q2 − q1) dx1 dx2 dq1 dq2 εx1,q1(dy1, dp1) εx2,q2(dy2, dp2)

+ λ(x2 − x1, q2 − q1) dx1 dx2 dq1 dq2 εx1,q1(dy2, dp2) εx2,q2(dy1, dp1). (A.1)

So we see the covariance can be written as seven terms; we label them as terms 1-7,
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respectively. First we focus on the first term. From the results of Lemma 2, we have:

λ4(x2 − x1, y1 − x1, y2 − x1, q2 − q1, p1 − q1, p2 − q1)

− λ(x2 − x1, q2 − q1)λ(y2 − y1, p2 − p1)

= C
(4)
N (x2 − x1,y1 − x1,y2 − x1, q2 − q1, p1 − q1, p2 − q1)

+ λC
(3)
N (x2 − x1,y2 − x1, q2 − q1, p1 − q1)

+ λC
(3)
N (x2 − x1,y2 − x1, q2 − q1, p2 − q1)

+ λC
(3)
N (y1 − x1,y2 − x1, p1 − q1, p2 − q1)

+ λC
(3)
N (y1 − x2,y2 − x2, p1 − q2, p2 − q2)

+ C
(2)
N (y1 − x1, p1 − q1)C

(2)
N (y2 − x2, p2 − q2)

+ C
(2)
N (y2 − x1, p2 − q1)C

(2)
N (y1 − x2, p1 − q2)

+ λ2C
(2)
N (y1 − x1, p1 − q1) + λ2C

(2)
N (y2 − x1, p2 − q1)

+ λ2C
(2)
N (y1 − x2, p1 − q2) + λ2C

(2)
N (y2 − x2, p2 − q2)

Above we have eleven terms; we denote them as (1.1) - (1.11). We need to show that

all eleven terms are of order 1
|An| . From here on, because we are interested only in the



51

speed of convergence, we will assume that λ = 1. First consider (1.1):∫∫∫∫
Dn

∫∫∫∫
Tn

Kn[(s− x1 + x2), (t− q1 + q2)]

|Dn × Tn ∩ (Dn − x1 + x2)× (Tn − q1 + q2)|

× Kn[(s′ − y1 + y2), (t′ − p1 + p2)]

|Dn × Tn ∩ (Dn − y1 + y2)× (Tn − p1 + p2)|
× C

(4)
N (x2 − x1,y1 − x1,y1 − x1, q2 − q1, p1 − q1, p2 − q1)

dq1 dq2 dp1 dp2 dx1 dx2 dy1 dy2

=

∫∫∫
Dn−Dn

∫∫∫
Tn−Tn

|Dn × Tn ∩ (Dn − u1)× (Tn − v1) ∩ (Dn − u2)× (Tn − v2)

∩(Dn − u3)× (Tn − v3)|/|Dn × Tn ∩ (Dn − x1 + x2)× (Tn − q1 + q2)|

× |Dn × Tn ∩ (Dn − y1 + y2)× (Tn − p1 + p2)|

× Kn(s + u1, t+ v1)×Kn(s′ + u3 − u2, t
′ + v3 − v2)

× C
(4)
N (u1,u2,u3, v1, v2, v3)

dv1 dv2 dv3 du1 du2 du3

≤
∫∫∫
Dn−Dn

∫∫∫
Tn−Tn

Kn(s + u1, t+ v1)×Kn(s′ + u3 − u2, t
′ + v3 − v2)

|Dn × Tn ∩ (Dn + u3 − u2)× (Tn + v3 − v2)|

× |C(4)
N (u1,u2,u3, v1, v2, v3)| dv1 dv2 dv3 du1 du2 du3

≤
∫∫∫
<2

∫∫∫
<

Kn(s + u1, t+ v1)×Kn(s′ + u4, t
′ + v4)

|Dn × Tn ∩ (Dn + u4)× (Tn + v4)|

× |C(4)
N (u1,u2,u2 + u4, v1, v2, v2 + v4)| dv1 dv2 dv4 du1 du2 du4

≤ C1 ×
∫∫
<2

∫∫
<

Kn(s + u1, t+ v1)×Kn(s′ + u4, t
′ + v4)

|Dn × Tn ∩ (Dn + u4)× (Tn + v4)|
dv1 dv4 du1 du4

=

(
1

|Dn × Tn|

)
.
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Next we look at (1.2):∫∫∫∫
Dn

∫∫∫∫
Tn

Kn[(s− x1 + x2), (t− q1 + q2)]

|Dn × Tn ∩ (Dn − x1 + x2)× (Tn − q1 + q2)|

× Kn[(s′ − y1 + y2), (t′ − p1 + p2)]

|Dn × Tn ∩ (Dn − y1 + y2)× (Tn − p1 + p2)|
×C(3)

N (x2 − x1,y1 − x1, q2 − q1, p1 − q1) dq1 dq2 dp1 dp2 dx1 dx2 dy1 dy2

=

∫∫∫
Dn−Dn

∫∫∫
Tn−Tn

|Dn × Tn ∩ (Dn − u1)× (Tn − v1) ∩ (Dn − u2)× (Tn − v2)

∩(Dn − u3)× (Tn − v3)|

/|Dn × Tn ∩ (Dn − x1 + x2)× (Tn − q1 + q2)|

×|Dn × Tn ∩ (Dn − y1 + y2)× (Tn − p1 + p2)|

×Kn(s + u1, t+ v1)×Kn(s′ + u3 − u2, t
′ + v3 − v2)

×C(3)
N (u1,u2, v1, v2) dv1 dv2 dv3 du1 du2 du3

≤
∫∫∫
Dn−Dn

∫∫∫
Tn−Tn

Kn(s + u1, t+ v1)×Kn(s′ + u3 − u2, t
′ + v3 − v2)

|Dn × Tn ∩ (Dn + u3 − u2)× (Tn + v3 − v2)|

×|C(3)
N (u1,u2, v1, v2)| dv1 dv2 dv3 du1 du2 du3

≤ C2 ×
∫∫
<2

∫∫
<

Kn(s + u1, t+ v1)×Kn(s′ + u4, t
′ + v4)

|Dn × Tn ∩ (Dn + u4)× (Tn + v4)|
dv1 dv4 du1 du4

= O

(
1

|Dn × Tn|

)
.

Similarly we can prove that terms (1.3) - (1.5) are all of order 1
|Dn| . Now let’s consider
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(1.6). ∫∫∫∫
Dn

∫∫∫∫
Tn

Kn[(s− x1 + x2), (t− q1 + q2)]

|Dn × Tn ∩ (Dn − x1 + x2)× (Tn − q1 + q2)|

× Kn[(s′ − y1 + y2), (t′ − p1 + p2)]

|Dn × Tn ∩ (Dn − y1 + y2)× (Tn − p1 + p2)|
×C(2)

N (x2 − x1, q2 − q1)× C(2)
N (y1 − x2, p1 − q2) dq1 dq2 dp1 dp2 dx1 dx2 dy1 dy2

≤
∫∫∫
Dn−Dn

∫∫∫
Tn−Tn

|Dn × Tn ∩ (Dn − u1)× (Tn − v1) ∩ (Dn − u2)× (Tn − v2)

∩(Dn − u3)× (Tn − v3)|

/|Dn × Tn ∩ (Dn − x1 + x2)× (Tn − q1 + q2)|

×|Dn × Tn ∩ (Dn − y1 + y2)× (Tn − p1 + p2)|

×Kn(s + u1, t+ v1)×Kn(s′ + u3 − u2, t
′ + v3 − v2)

×|C(2)
N (u2, v2)| dv1 dv2 dv3 du1 du2 du3

≤ C3 ×
∫∫
<2

∫∫
<

Kn(s + u1, t+ v1)×Kn(s′ + u4, t
′ + v4)

|Dn × Tn ∩ (Dn + u4)× (Tn + v4)|
dv1 dv4 du1 du4

= O

(
1

|Dn × Tn|

)
.

Similarly, terms (1.6) - (1.11) are all of order 1
|Dn| . Thus we conclude that all eleven

terms of the first term in (A.1) are all of order 1
|Dn| . Now we proceed to the other six

terms in (A.1). Terms 2-5 can be shown all of order 1
|Dn| due to the fact that λ3 is
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finite. Now we consider the sixth term.∫∫
Dn

∫∫
Tn

Kn(s− x1 + x2, t− q1 + q2)×Kn(s′ − x1 + x2, t
′ − q1 + q2)

|(Dn × Tn ∩ [(Dn − x1 + x2)× (Tn − q1 + q2)]|2

×λ2(x2 − x1, q2 − q1) dq1 dq2 dx1 dx2

=

∫
Dn−Dn

∫
Tn−Tn

Kn(s + u, t+ v)×Kn(s′ + u, t′ + v)

|(Dn × Tn) ∩ [(Dn − u)× (Tn − v)]|
× λ2(u, v) dv du

=

∫
Dn−Dn

∫
Tn−Tn

K(w, z)×K(w + (s′ − s)/h1n, z + (t′ − t)/h2n)

|(Dn × Tn) ∩ [(Dn + s− h1nw)× (Tn + t− h2nz)]| × h2
1n × h2n

×λ2(h1nw − s, h2nz − t) dz dw.

Thus limn→∞ |Dn|× |Tn|×h2
1n×h2n× (A.1.6) =

∫∫
C
K2(w, z) dz dw×λ2(s, t)× I(s =

s′, t = t′), where (A.1.6) denotes the sixth term of Equation (A.1). Similarly we can

show limn→∞ |Dn| × |Tn| × h2
1n × h2n × (7) =

∫∫
C
K2(w, z) dz dw × λ2(s, t) × I(s =

s′, t = −t′). Hence we find that

lim
n→∞

|An| × h2
1n × h2n × Cov[λ̂2n(si, ti), λ̂2n(sj, tj)]

=


∫
K2(x, q) dx dq × λ2(si, ti) , si = ±sj, ti = ±tj

0 , o.w.

�

Proof of Theorem 2: Our statistic of interest is Sn ≡
√
|An|×h1n×

√
h2n×{λ̂2n(s, t)−

E[λ̂2n(s, t)]}; we shall prove that Sn
D−→ N(0, σ2), where σ2 ≡∫

C
K2(u, v) du dv × λ2(s, t). We use a blocking technique (e.g. Ibragimov & Linnik,

1971) to do this.

Take d = 2, for the spatial domain. Divide the original domain An = Dn × Tn into

nonoverlapping partitions of size m(rn) × m(rn) × l(n), where m(rn) = rαn is the

length of one side of Dn and l(n) = nβ = |Tn|. Call the partitioned square cuboids

Aim(rn), l(n), i = 1, . . . , kn. Within each partition further obtain subcuboids Aim(rn)′, l(n)′ ,



55

where m(rn)′ = rαn − rηn and l(n)′ = nβ − nθ, for some 4/(2 + ε) < η < α < 1 and

2/(1 + δ) < θ < β < 1. The subcubes Aim(rn)′, l(n)′ should have the same centers as

the original Aim(rn), l(n). Thus for i 6= j, d(Aim(rn)′, l(n)′ , A
j
m(rn)′, l(n)′) ≥ min(rηn, n

θ).

Now we’ll use the following statistics in addition to our Sn from above:

sn ≡
∑kn

i=1 s
i
n/
√
kn

s′n ≡
∑kn

i=1(sin)′/
√
kn

where:

sin ≡ m(rn)×
√
l(n)× h1n ×

√
h2n

×{λ̂i2,m(rn), l(n)(s, t)− E[λ̂i2,m(rn), l(n)(s, t)]}

(sin)′ ≡ m(rn)′ ×
√
l(n)′ × h1n ×

√
h2n

×{λ̂i2,m(rn)′, l(n)′(s, t)− E[λ̂i2,m(rn)′, l(n)′(s, t)]}.

Note that the (sin)′ have the same marginal distributions as the sin, but the (sin)′ are

independent of one another. Letting φn(x) and φ′n(x) be the characteristic functions

of sn and s′n, respectively, the proof continues with the following steps:

1. Sn − sn
p−→ 0

2. φ′n(x)− φn(x)→ 0

3. s′n
D−→ N(0, σ2).

Proof of 1: We need only to show that Var(Sn − sn)→ 0. We do this by noting that

Var(Sn − sn) = Var(Sn) + Var(sn)− 2×Cov(Sn, sn). First, observe Var(Sn)→ σ2 as

n→∞.

Second, let Dm(rn)′, l(n)′ denote the union of all the Di
m(rn)′, l(n)′ ; let Tm(rn)′, l(n)′ de-

note the union of all the T im(rn)′, l(n)′ ; and let Am(rn)′, l(n)′ = Dm(rn)′, l(n)′ × Tm(rn)′, l(n)′ .
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Observe that:

sn =
1√
kn

kn∑
i=1

m(rn)×
√
l(n)× h1n ×

√
h2n

×{λ̂i2,m(rn),l(n)(s, t)− E[λ̂i2,m(rn),l(n)(s, t)]}

=

√
m(rn)×m(rn)× l(n)

kn

kn∑
i=1

h1n ×
√
h2n

×{λ̂i2,m(rn),l(n)(s, t)− E[λ̂i2,m(rn),l(n)(s, t)]}

=
√
|Am(rn)′, l(n)′| × h1n ×

√
h2n

×{λ̂Am(rn)′, l(n)′ (s, t)− E[λ̂Am(rn)′, l(n)′ (s, t)]}

Then if we see that that Am(rn)′,l(n)′ is the union of a set of disjoint cuboids whose

sizes tend to infinity, we notice that it satisfies the third condition of Theorem 1.

Assuming again the first two conditions of Theorem 1, then, we see that Var(sn)→ σ2

by Theorem 1.

Finally, notice that Dm(rn)′, l(n) ⊂ Dn and Tm(rn)′, l(n) ⊂ Tn, and that |Dm(rn)′, l(n)′|

/|Dn| → 1 and |Tm(rn)′, l(n)′ |/Tn| → 1 by Lemma 3; therefore from the proof of

Theorem 1, we conclude that Cov(Sn, sn) → σ2. Hence Var(Sn − sn) → 0, implying

that Sn − sn
p−→ 0 as n→∞.

Proof of 2: By an extension of Ibragimov and Linnik’s (1971) telescoping argument

and because O(kn) = O( r
2
n×n
r2αn nβ

) = O(r2−2α
n × n1−β) and since α(r2

n × n; rηn;nθ) ≤

r2
nnO(r−ηεn n−θδ), we see

|φ′n(x)− φn(x)| ≤ 16knO(r−εηn n−δθ) = O(r4−2α−εη
n n2−β−δθ).

Because by assumption 4/(2 + ε) < η < α < 1 and 2/(1 + δ) < θ < β < 1, we know

4− 2α− εη < 0 and 2− β − θδ < 0, so as both exponents are negative, we conclude
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|φ′n(x)− φn(x)| → 0.

Proof of 3: Recall that the (sin)′ are independent and have the same distribution as the

sin. Because of this, Var[
∑kn

i=1(sin)′] = knVar[(sin)′]. Also, if we define σ2
n = Var[(sin)′],

we note σ2
n → σ2 from the proof of 1, and from the fact that the (sin)′ have the same

distribution as the sin. Then because of assumption 2, we have:

lim
n→∞

kn∑
i=1

E[|(sin)′|2+δ]√
{Var[

∑kn
i=1(sin)′]}2+δ

≤ lim
n→∞

∑
i=1

kn
Cδ

(knσ2
n)(2+δ)/2

= lim
n→∞

Cγ
kn

(knσ2
n)(2+δ)/2

= 0.

Therefore, by Lyapounov’s theorem, we conclude that

1√
kn

kn∑
i=1

(sin)′
d−→ N(0, σ2).

Finally, notice that the Cramér-Wold device proves the joint normality. �

Proof of Theorem 3: First we consider the univariate case; then G and Ĝn are Ψ(s, t)

and Ψ̂(s, t), respectively. Then the subsampling estimator becomes

σ̂2 =
1

|D1−c
n | × |T 1−c

n |

∫
T 1−c
n

∫
D1−c
n

|Dm(rn)| × |Tl(n)|h2
1,m(rn) h2,l(n)(

Ψ̂m(rn),l(n)(x, q)− Ψ̄m(rn),l(n)

)2

dx dq.

We propose to show that σ̂2
n

L2−→ σ2, where σ2 ≡ limn→∞ |An| × h2
1,n × h2,n ×

Var(Ψ̂n(s, t)) and the sample second-order intesity function at lag (s, t) on Dm(rn) ×
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Tl(n) + (x, q) is denoted by Ψ̂m(rn),l(n)(x, q). Also define

Sn ≡
1

|D1−c
n | × |T 1−c

n |

∫
T 1−c
n

∫
Dl−cn

|Dm(rn)| × |Tl(n)|h2
1,m(rn) h2,l(n)(

Ψ̂m(rn),l(n)(x, q)− E(Ψ̂m(rn),l(n)(x, q))
)2

dx dq

and

S ′n ≡
1

|D1−c
n | × |T 1−c

n |

∫
T 1−c
n

∫
D1−c
n

√
|Dm(rn)| × |Tl(n)|h1,m(rn)

√
h2,l(n)(

Ψ̂m(rn),l(n)(x, q)− E(Ψ̂m(rn),l(n)(x, q))
)

dx dq

Then σ̂2 = Sn − (S ′n)2. Therefore it is sufficient to show that (1) Sn
L2−→ σ2 and (2)

(S ′n)2 L2−→ 0 to see that σ̂2
n

L2−→ σ2.

We first consider Sn: since E(Sn)→ σ2, we only need to show that Var(Sn)→ 0.

Var(Sn) =
1

|D1−c
n |2 × |T 1−c

n |2

∫∫
T 1−c
n

∫∫
D1−c
n

Cov
{
|Dm(rn)||Tl(n)|h2

1,m(rn)h2,l(n)Ψ̂m(rn),l(n)(x1, q1),

|Dm(rn)||Tl(n)|h2
1,m(rn)h2,l(n)Ψ̂m(rn),l(n)(x2, q2)

}
dx1 dx2 dq1 dq2

We define Un and Vn as follows, where Un + Vn = Var(Sn).

Un ≡
1

|D1−c
n |2 × |T 1−c

n |2
×

∫∫
T 1−c
n , t(q1,q2)≤ l(n)

∫∫
D1−c
n , d(x1,x2)≤m(rn)

Cov
{
|Dm(rn)| |Tl(n)|h2

1,m(rn) h2,l(n)Ψ̂m(rn),l(n)(x1, q1),

|Dm(rn)| |Tl(n)|h2
1,m(rn) h2,l(n)Ψ̂m(rn),l(n)(x2, q2)

}
dx1 dx2 dq1 dq2,

Vn ≡
1

|D1−c
n |2 × |T 1−c

n |2
×

∫∫
T 1−c
n , t(q1,q2)> l(n)

∫∫
D1−c
n , d(x1,x2)>m(rn)

Cov
{
|Dm(rn)| |Tl(n)|h2

1,m(rn) h2,l(n)Ψ̂m(rn),l(n)(x1, q1),

|Dm(rn)| |Tl(n)|h2
1,m(rn) h2,l(n)Ψ̂m(rn),l(n)(x2, q2)

}
dx1 dx2 dq1 dq2.
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Un → 0 follows from the proof of Theorem 1 in Politis and Sherman (2001): Because

t(q1, q2) ≤ l(n) and d(x1,x2) ≤ m(rn), for each (x2, q2), for subshapes of length c1r
α
n

of distance m(rn) apart in space and of length c2n
β and distance l(n) apart in time,

we have that ∫∫
t(q1,q2)≤ l(n), d(x1,x2)≤m(rn)

dx1 dq1 ≤

[2m(rn) + 3c1r
α
n ]d
[
2l(n) + 3c2n

β
]
.

Therefore,

Un ≤
Var(Ψ̂(x, q))

|D1−c
n |2|T 1−c

n |2

∫∫
|D1−c
n ||T 1−c

n |

∫∫
t(q1,q2)≤ l(n), d(x1,x2)≤m(rn)

dx1 dq1 dx2 dq2

≤ Var(Ψ̂(x, q))

|D1−c
n |2|T 1−c

n |2
5d+1 cd1 c2 r

dα
n nβ |D1−c

n | |T 1−c
n |

≤ Var(Ψ̂(x, q))

|D1−c
n |2|T 1−c

n |2
5d+1 |Dn| |Tn| cd1 c2 → 0.

To see that Bn → 0, note that for any (x1, q1) and (x2, q2) in the integral defining Bn,

we can see an upper bound

Cov
{
|Al(n)| × h2

1,m(rn) × h2,l(n) × Ψ̂m(rn),l(n)(x1, q1),

|Al(n)| × h2
1,m(rn) × h2,l(n) × Ψ̂m(rn),l(n)(x2, q2)

}
≤ Cδα

δ/(2+δ)(|Al(n)|;m(rn); l(n))

by Minkowski’s inequality and condition (2.2). Thus we see that by the third as-

sumption for Theorem 1 and our mixing condition (2.1), Bn → 0. Using the same

rationale, S ′n
L2−→ 0, and (S ′n)2 L2−→ 0 follows. Therefore σ̂2

n
L2−→ σ2.

For the multivariate case, we follow the proof of Theorem 3 in Guan’s dissertation

[40]. Let b ≡ {bt, t ∈ Λ} be a nonzero vector. Also let S(An,b) ≡ b′ × (Ĝn −G).
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By Minkowski’s inequality and condition (2.1), it can be seen that

sup
n
E
[
|
√
|An| × {S(An,b)− E[S(An,b)]} |2+δ

]
≤ Cδ

for some δ > 0, Cδ <∞. Then define

θb ≡ lim
n→∞

|An| × Var(S(An,b))

= b′
[

lim
n→∞

|An|Cov(Ĝn, Ĝn)
]

b = b′Σb.

Then the subsampling estimator for θb is

θ̂b,n =
kn∑
i=1

|Di
m(rn)||T il(n)|

[
S(Di

m(rn) × T il(n),b)− S̄n
]2
/kn = b′ Σ̂ b.

By Politis and Sherman [41], θ̂b,n
L2−→ θb. Thus b′ Σ̂ b→ b

L2−→ b′Σ b for all nonzero

b. The L2 consistency of Σ̂n follows directly. �
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APPENDIX B

TABLES IN CHAPTER III

Table I. Summaries of Explanatory Variables. Explanatory variables used in the lo-

gistic and Poisson models. Most of the land parcels classified as water did

not hold water for most of the year; some were washes which fill with water

only during the monsoon season [29].

Parameter Mean Standard Deviation

Percentage Neighbors with bees 2.02% 0.0242

Construction year 1979 18.59

Acreage 0.498 2.59

Distance from “water” 0.270 miles 0.243

Distance from recreational land 0.801 miles 0.875

Distance from natural land 0.397 miles 0.456

Distance from vacant land 0.297 miles 0.396

Distance from agricultural land 2.013 miles 1.319

Distance from transportation land 0.298 miles 0.358

Indicator of pool within 0.5 mile 0.742 0.438

Indicator of residential location 0.828 0.377
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