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ABSTRACT 

 

fitting It All Together: How Courtship- And Mating-Responsive Genes Affect 

Drosophila melanogaster Male Behavior. (August 2010) 

Lisa Lynn Ellis, B.S. with Honors, Sam Houston State University 

Chair of Advisory Committee: Dr. Ginger E. Carney 

 

 Behavior is a complex process resulting from the integration of genetic and 

environmental information. Thus, the genetically tractable Drosophila melanogaster was 

utilized to better understand the interplay between these factors since Drosophila males 

and females exhibit sex-specific courtship behaviors that are innate yet modifiable. 

These sex-specific behaviors, as well as sexually dimorphic development, are regulated, 

in part, by the somatic sex-determination hierarchy.  

Since reproductive behaviors rely on the rapid integration of multiple sensory 

cues, it is likely that the perception and integration of such cues and mating-induced 

physiological changes are mediated in part by changes in gene expression. Therefore, it 

was hypothesized that assaying gene expression changes in response to courtship or 

mating in Drosophila males would uncover new targets of the sex-determination 

hierarchy and other behaviorally important loci. We took a novel approach to find these 

behaviorally-responsive loci by utilizing microarray technology to assess courtship- or 

mating-induced gene expression changes in Drosophila male whole bodies or heads.  

 Mutations in candidate loci were tested for effects on reproductive behaviors and  
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present the first data showing that egghead (egh) and female-specific independent of 

transformer (fit) affect male reproductive behavior. egh is up regulated in male heads 20 

min after courting and is required post-developmentally in a subset of neurons for robust 

male courtship behavior. fit, a fat body-expressed sex-determination hierarchy target 

gene, is up regulated in male whole bodies after 5 min of courtship. fit is also up 

regulated in male heads after 20 min of courtship or 2 hrs after mating. Mutations in fit 

result in male-male courtship; more specifically, fit mutants direct courtship towards 

males and also elicit courtship from wild-type males. By analyzing fit's role in courtship 

behavior, we also shed light on the role the fat body plays in modulating behavior. 

 These studies provide the first pieces of evidence that gene expression changes 

occur in Drosophila males performing reproductive behaviors. This novel approach 

identified behaviorally important loci that are expressed in the nervous system and the 

fat body, indicating that both tissues modulate behavior. Also identified were sex-

determination hierarchy target genes and it is likely that further analysis of the remaining 

candidates will reveal more members of this genetic cascade. 
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ap apterous, subset of central nervous system neurons 

CI Courtship Index; time in courtship/observation time 
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CNS Central nervous system 

CS Canton-S, a wild-type D. melanogaster strain 

egh egghead 

fit female-specific independent of transformer 

Gal4 yeast transcription factor that binds to UAS sites 

GCOS GeneChip® Operating System, microarray extraction algorithm 

GCRMA Guanine Cytosine Robust Multi-Array Analysis, microarray 

 extraction algorithm 
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PM Perfect-Match, microarray extraction algorithm 
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qPCR quantitative polymerase chain reaction 
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CHAPTER I 

INTRODUCTION 

 

Understanding the genetic regulation of behavior 

 The proper integration, processing and transmission of sensory information is 

vital for an appropriate behavioral response. Since genetic and environmental 

components affect these processes, we were interested in assaying courtship- or mating-

induced gene expression changes in Drosophila melanogaster males. By studying these 

tissue-specific behaviorally-responsive loci, we can better understand the genetic 

regulation of behavior. 

 

Behavior and gene expression can be modified by social interactions 

As we work to understand how behaviors are regulated, we must consider both 

the genetic and environmental influences on behavior. In addition to how behavioral 

output is affected, we should also consider how the performance of a behavior affects 

the organism, including affecting subsequent behaviors and modifying gene expression. 

 The social context of an organism's environment is known to affect behavior and 

gene expression and examples of this phenomenon are found across taxa. For example, 

tadpoles in the presence of predators increase expression of body morphology-related 

genes that are linked to the tadpoles' morphological change to the bulgy phenotype 

(Mori et al. 2005). Similarly, as cichlid males usurp the dominant role within a  

____________ 
This dissertation follows the style of Genetics. 



2 

 

2 

2 

population early growth response (egr-1) is rapidly (within 20 min) up regulated and 

males transition to the dominant color pattern and behavior (Burmeister et al. 2005). 

Courtship behavior is also affected by social cues. Zebra finch female mate 

choice, also known as sexual partner preference, is influenced by estrogen levels and 

group dynamics (male to female ratio and tactile contact) (Adkins-Regan 2005). Also, 

differential expression of the egr-1 homolog, ZENK, correlates with group dynamics 

(presence of females, males or isolation) and courtship behavior (singing and dancing 

towards females or singing when around males or alone) (Jarvis et al. 1998).  

 As with other organisms, Drosophila behaviors and neural connections are 

influenced by social interactions. A fly‟s circadian rhythm changed depending on which 

flies he was interacting with. Wild-type flies housed together showed robust 

synchronization but this rhythm was disrupted when clock mutants were added to the 

group (Levine et al. 2002). Group dynamics also affected aggressive behavior of both 

sexes. Females raised in isolation showed increased aggressiveness compared to females 

housed in groups (Ueda and Kidokoro 2002). The number of aggressive bouts and 

success in those bouts altered male fighting repertoires (Yurkovic et al. 2006). As larval 

population density increased, the number of boutons at the neuromuscular junction 

decreased (Stewart and McLean 2004). 

Social interactions also affect Drosophila courtship behaviors. As males 

interacted with other males, they learned to avoid courting males (Gailey et al. 1982; 

Mehren and Griffith 2004); older males show decreased male-male courtship (Svetec et 

al. 2005; Svetec and Ferveur 2005). Males also decreased courtship towards females 
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after courting unreceptive females (Siegel and Hall 1979; Gailey et al. 1984; Joiner and 

Griffith 1997; Joiner and Griffith 1999; Kamyshev et al. 1999; Joiner and Griffith 2000; 

Mehren and Griffith 2004).  

Although we know social environment affects behavior, little is known about 

how it impacts fly gene expression patterns. Our microarray and subsequent behavioral 

analyses provide the first evidence that courtship alone or courtship followed by mating 

affects male gene expression and that responsive loci impact behavior. 

  

Drosophila melanogaster as a tool for understanding behavior 

 We can utilize the model organism Drosophila melanogaster, which has proven 

to be a valuable research tool, to better understand the genetic regulation of behavior. 

Several Nobel laureates have utilized this model organism to study genetics (Thomas H. 

Morgan, 1933), mutagenesis (Hermann Muller, 1946), development (Edward B. Lewis, 

Christiane Nüsslein-Volhard and Eric Wieschaus, 1995), or olfaction (Richard Axel and 

Linda Buck, 2004).  

 In addition to the plethora of research questions one can address using 

Drosophila, fruit fly husbandry is a relatively simple process compared to that of mice 

and other multi-cellular organisms. The generation time from embryo to adult is 10 days 

at 25oC, and one mating can produce hundreds of offspring. In addition to the ease of 

caretaking, fruit flies are a powerful genetic tool. With a sequenced and annotated 

genome, forward and reverse genetic techniques are possible. One can conduct the 

typical forward genetic screens by exposing flies to the ethanemethylsulfonate (EMS) 
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mutagen or utilizing P-element transposition. There are many reverse genetic 

approaches available to fly geneticists, including analyzing P-element insertions, RNA 

interference (RNAi), and homologous recombination. 

 The Gal4-UAS system is also utilized by fly geneticists. This yeast paradigm 

allows targeted expression of gene constructs for reduced or increased expression 

(Brand and Perrimon 1993). Expression of the Gal4 transcription factor is under control 

of a promoter sequence. This construct is usually referred to as the "driver". Depending 

on the promoter sequence, one can control the timing or cell-specific activation of Gal4. 

The transcription factor recognizes and binds to the Upstream Activating Sequence 

(UAS), which facilitates transcription of the gene sequence fused downstream of the 

UAS (Figure 1). Often this construct is referred to as the "reporter" or the "responder" 

depending on what is being expressed under control of the UAS. The temperature 

sensitive Gal80 (Gal80ts) allele can be added to the system to further control when Gal4 

is activated and when the responder is activated. At the permissive temperature of 20oC, 

Gal4 is bound to the UAS, but Gal80ts is bound to Gal4, preventing transcription. Thus 

the responder is not expressed. However, shifting to the restrictive temperature of 29oC 

dissociates Gal80ts from Gal4, activating the responder (McGuire et al. 2004). 

 

Reproductive behaviors of Drosophila males 

 Drosophila melanogaster exhibit complex sex-specific stereotypical 

reproductive behaviors that are mediated by multiple sensory modalities. Mating success 

relies on the perception and interpretation of olfactory, gustatory, auditory, tactile and 
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visual cues. Courtship is initiated when the male orients toward the female. He will then 

follow the female as she runs away. As the male taps the female's back legs with his 

 

 

Figure 1. The binary Gal4/UAS system. Modified from Wimmer 2003. 

 

forelegs he receives chemosensory cues regarding the female's mating status. Virgin 

females exhibit different pheromonal profiles compared to recently mated females, and 

newly eclosed females reject courtship advances the first day after eclosion (Manning 

1966; Manning 1967). The male vibrates his wings to produce a species-specific song 

for the female and she in turn receives auditory cues to determine if he is a suitable 

mate. Chemosensory information is received as the male licks the female's genitals and 

curls his abdomen for attempted copulation. If the female finds the male to be a suitable 

mate, she will open her vaginal plates and allow the male to copulate with her (Hall 

1994; Greenspan 1995) (Figure 2). 

  During mating, the male transfers Sex peptide and other accessory gland 

proteins in his ejaculate to the female. These proteins cause behavioral and physiological 

changes in the female to benefit the male's reproductive fitness. Mated females increase 

ovulation and egg laying and are unattractive to males (Chen et al. 1988; Aigaki et al. 
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1991; Kubli 1992; Wolfner 1997; Tram and Wolfner 1998; Heifetz et al. 2000; 

Fleischmann et al. 2001; Chapman et al. 2003; Liu and Kubli 2003; Heifetz et al. 2005; 

Peng et al. 2005; Soller et al. 2006). 

 

 
Figure 2. Drosophila melanogaster courtship ritual. Sokolowski 2001 

 

The Drosophila somatic sex-determination hierarchy and its regulation of 

morphology and behavior 

 The somatic sex-determination hierarchy (SDH) is the major genetic pathway 

regulating sexually dimorphic development and behavior (Figure 3) (reviewed in Cline 

and Meyer 1996). Atop this hierarchy is the splicing factor Sex-lethal (Sxl) which only 

functions in females (Cline 1984). Therefore, in females Sxl binds to transformer (tra) 

pre-mRNA and blocks the 3' non-specific splice site resulting in production of functional 

Tra. Males lack functional Sex-lethal and Tra (Boggs et al. 1987; McKeown et al. 1987; 

Bell et al. 1988; McKeown et al. 1988; Nagoshi et al. 1988; Sosnowski et al. 1989). Tra 

is also a splicing factor that works in conjuction with the sex non-specific constitutively 

expressed Transformer-2 (Tra-2) (Goralski et al. 1989; Hedley and Maniatis 1991; Tian 
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and Maniatis 1993; Amrein et al. 1994; Lynch and Maniatis 1995). In females, Tra/Tra-

2 splicing activity leads to a truncated fruitless (fru) transcript (and presumably non-

functional Fru protein), and the female-specific doublesex (dsx) transcript which leads to 

the female-specific DsxF protein. Since males lack Tra, the default splicing of fru and 

dsx result in the male-specific isoforms FruM and DsxM, respectively (Burtis and Baker 

1989; Ito et al. 1996; Heinrichs et al. 1998). DsxF, DsxM, and FruM are transcription 

factors (Burtis et al. 1991; Erdman and Burtis 1993; Ito et al. 1996; Ryner et al. 1996). 

We know some of their downstream targets (Arbeitman et al. 2004; Dalton et al. 2009; 

Goldman and Arbeitman 2007; Lebo et al. 2009) though the functions of these targets 

are poorly characterized.  

 

 

Figure 3. The Drosophila somatic sex-determination hierarchy regulates somatic tissue 

development and courtship behavior. Sxl is the upstream regulator of this pathway; it is 
expressed in females (A) and absent in males (B). Males lack Tra and thus default splicing of fru 

and dsx occurs, yielding male-specific isoforms of Fru and Dsx. Modified from Shirangi and 
McKeown 2007. 

 

 One of the best characterized SDH genes is fru. FruM is necessary and sufficient 

yp1, yp2,yp3                                     sxe1, Obp99b 

to 
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for male courtship behavior and directs development of the sexually dimorphic central 

and peripheral nervous systems (Demir and Dickson 2005; Kimura et al. 2005; 

Stockinger et al. 2005; Billeter et al. 2006; Mellert et al. 2010). Decreased expression of 

fruM results in female-like nervous systems (Kimura et al. 2005) and multiple courtship-

related phenotypes including loss of courtship towards females (Ito et al. 1996; Ryner et 

al. 1996; Villella et al. 1997), reduced male-female courtship (Ryner et al. 1996; Villella 

et al. 1997; Demir and Dickson 2005; Stockinger et al. 2005; Manoli et al. 2005; 

Billeter et al. 2006), increased male-male courtship (Gailey and Hall 1989; Ryner et al. 

1996; Villella et al. 1997; Demir and Dickson 2005; Stockinger et al. 2005; Billeter et 

al. 2006), and courtship chaining (Villella et al. 1997; Demir and Dickson 2005; 

Stockinger et al. 2005; Billeter et al. 2006). Mutations in fru also affect wing extensions,  

(Wheeler et al. 1989; Villella et al. 1997; Billeter et al. 2006; Koganezawa et al. 2010), 

male-male habituation (Manoli et al. 2005), courtship conditioning (Manoli et al. 2005), 

and partner preference. fru mutant partner preference can be female- or male-biased, and 

some mutant males court each sex equally (Villella et al. 1997). Certain fru mutant 

males have changes in pheromone profiles resulting in male-male courtship. As 

expected, females expressing FruM exhibit male-like courtship and rejection behaviors 

(Demir and Dickson 2005; Manoli et al. 2005). In addition to affecting courtship 

behaviors, fru mutant males exhibit increased aggression (Lee and Hall 2000; Vrontou et 

al. 2006).  

 Not all members of the SDH are sex-specifically expressed. tra, but not fru, 

regulates dissatisfaction (dsf) expression. dsf is expressed and functional in both sexes 
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and mutations in dsf affect male and female behaviors. Mutant dsf males are bisexual 

and form courtship chains similarly to fru mutants. Males also have problems bending 

their abdomens during courtship resulting in increased mating latencies. In females, dsf 

is needed for female receptivity and oviposition (Finley et al. 1997; Finley et al. 1998; 

Yamamoto et al. 1998). 

 SDH target genes with characterized function include yolk proteins (yp1, yp2,and 

yp3), sex-enzyme 1 (sxe1) and Odorant binding protein 99b (Obp99b). yp1, yp2, and yp3 

are involved in egg development and are regulated by DsxF and Hermaphrodite (Her). 

DsxM blocks yolk protein expression in males (Bownes et al. 1983; Belote et al. 1985; 

Burtis et al. 1991; Li and Baker 1998; Garrett-Engele et al. 2002). DsxM activates sxe1, 

a fatty-acid -hydroxylase needed for male courtship and mating (Fujii and Amrein 

2002; Fujii et al. 2008). Obp99b is also regulated by DsxM. Overexpressing Obp99b in 

females results in decreased mating success most likely because these transgenic 

females run away from the males (Fujii and Amrein 2002).  

 The Dsx and Fru branches of the SDH converge to regulate takeout (to) and 

retained (retn). DsxM and FruM promote to expression in males while DsxF represses 

to. There is a greater reduction of male courtship in to-
;fru/+ males compared to to- 

males (Dauwalder et al. 2002). retn regulates neural development (Shandala et al. 2003; 

Ditch et al. 2005) and interacts with fru and dsx to modulate male and female behavior. 

retn suppresses male courtship by antagonizing fruM. Females with reduced retn and 

dsxF have increased mating latencies and exhibit bisexual courtship (Shirangi et al. 

2006).  
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 Similarly to dsf, the SDH target gene female-specific independent of transformer 

(fit) is expressed in both sexes. Though the name implies that fit is expressed only in 

females, this is not the case. fit is expressed in males but may be expressed at higher 

levels in females. Another ambiguity regarding fit is its placement within the SDH. Sxl 

seems to regulate fit, though as the name implies, tra does not (Fujii and Amrein 2002). 

However, there is conflicting evidence showing that fit is dependent on tra expression 

(Evans and Cline 2005; Goldman and Arbeitman 2007).  

 

The Drosophila nervous system 

 Behavior requires the proper perception and integration of environmental cues. 

With regard to courtship, multiple sensory cues need to be processed for proper 

courtship. The perception of these cues occurs mostly in the peripheral nervous system 

(PNS) and the information is processed in the central nervous system (CNS).  

 The Drosophila CNS is comprised of the brain and ventral nerve cord. The brain 

is segregated into the optic lobe, the subesophageal ganglion (SOG), and the central 

brain. The optic lobe receives and processes visual stimuli while gustatory cues are 

interpreted by SOG neurons. Within the central brain, the antennal lobes receive 

olfactory neuron projections from the antennae and maxillary palps (Amrein 2004). The 

mushroom bodies, also part of the central brain, are involved in integrating the 

information, and their function is imperative for memory and learning (reviewed in 

Davis 1993). Signaling within the pedunculus of the mushroom body has been 

implicated in functioning in female-directed courtship behavior (Sakai and Kitamoto 
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2006). Within the central brain, the central complex is made up of the protocerebral 

bridge, fan-shaped body and ellipsoid body. Fan-shaped body neurons seem to regulate 

male courtship behavior regardless of the courtship object (Sakai and Kitamoto 2006). 

Disruption of central complex neurons result in abnormal courtship songs and thus 

decreased courtship levels (Popov et al. 2003; Popov et al. 2005).  

 

Non-neuronal tissue modulates behavior 

 The nervous system is not the only tissue that governs reproductive behavior. 

The Drosophila adipose tissue known as the fat body is a secretory tissue that modulates 

metabolic processes (reviewed in Schlegel and Stainier 2007) and has recently been 

implicated in modulating behavior (Dauwalder et al. 2002; Fujii and Amrein 2002; 

Lazareva et al. 2007; Fujii et al. 2008; Benito et al. 2010; reviewed in Dauwalder 2008). 

The SDH target genes sxe1 and to are expressed in the fat body; however, the 

mechanisms by which these genes regulate courtship behavior are unclear. It is likely 

that signaling from the fat body (either directly or by secretion into the hemolymph) 

affects nervous system or genital tract function to modulate behavior. 

 Oenocytes are also non-neuronal cells implicated in modulating behavior, 

including sex and species recognition. These cells line the abdominal cuticle and are the 

presumptive site of hydrocarbon biosynthesis. Some hydrocarbons act as sex 

pheromones, and the numbers of carbon atoms and double bonds and the position of 

these double bonds encode sex- and species-specific information (Jallon 1984; Coyne et 

al. 1994; Ferveur 1997; Ferveur et al. 1997; Savarit et al. 1999; Ferveur 2005). For 
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example, Drosophila melanogaster profiles differ from those of other Drosophilid 

species. D. melanogaster males generally express higher levels of monoalkenes, notably 

7-tricosene (7-T); 7-T inhibits courtship from males and promotes female receptivity of 

male mating advances (Grillet et al. 2006; Lacaille et al. 2007). D. melanogaster 

females predominantly express dialkenes, notably 7,11-heptacosadiene (7,11-HD) and 

7,11-nonacosadiene (7,11-ND); 7,11-HD and 7,11-ND stimulate courtship from males 

(Antony et al. 1985). 

 The synthesis and maturation of these hydrocarbons are carried out by enzymes 

such as desaturase 1 (desat1). It is unclear whether or not expression of desat1 and other 

hydrocarbon biosynthetic enzymes is required in oenocytes to regulate pheromone 

production. Decreased expression of desat1 results in pheromone profile changes but 

this reduced expression is not restricted to oenocytes (Dellerac et al. 2000; Marcillac et 

al. 2005; Ueyama et al. 2005; Chertemps et al. 2006; Krupp et al. 2008). The ablation of 

oenocytes usually includes the disruption of fat body signaling and thus it has been 

difficult to separate fat body and oenocyte functions in pheromone synthesis (Billeter et 

al. 2009). 

 

Dissertation objectives 

 The objective of this dissertation is to elucidate the genetic underpinnings of 

male Drosophila behavior by identifying courtship- and mating-induced gene expression 

changes and characterizing the roles of candidate genes in male courtship behavior. 
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 Chapter II addresses the species-specific changes occurring in male whole bodies 

after 5 min of courtship. Chapter III focuses on gene expression changes in the heads of 

males after 20 min of courtship. I also show that the courtship-responsive gene egghead 

(egh) is required post-developmentally in a subset of neurons for male courtship 

behavior. The role of the fat body-expressed courtship- and mating-responsive gene 

female-specific independent of transformer (fit) in repressing male-male courtship 

behavior is detailed in Chapter IV. In Chapter V, I discuss the post-mating gene 

expression changes that occur in male Drosophila heads and the functions of Juvenile 

hormone esterase (Jhe) in male reproductive behavior. A discussion of the data and 

future implications are dealt with in Chapter VI. 
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CHAPTER II 

Drosophila melanogaster MALES RESPOND DIFFERENTLY AT THE 

BEHAVIORAL AND GENOME-WIDE LEVELS TO Drosophila melanogaster  

AND Drosophila simulans FEMALES* 

 

Introduction 

 
 In order to pass their genetic material to the next generation, it is imperative to 

organisms that they choose an appropriate individual with which to mate. Sometimes 

choosing a mate is not a simple task, particularly when different species with 

overlapping ecological distributions have similar phenotypic characteristics, possibly 

making it difficult to discern different species. Animals have developed sensory systems 

that allow them to distinguish conspecific individuals and heterospecifics that are 

morphologically similar. For instance, humans rely primarily on visual signals to 

distinguish individuals, whereas mice rely more heavily on olfactory cues to choose 

mates. Members of the genus Drosophila, which use a variety of sensory systems to 

select mates, have served as an excellent model for defining the molecules and neural 

mechanisms that are used to make such determinations. 

 Drosophila males perform elegant, species-specific courtship rituals in order to 

entice conspecific females to mate and reproduce. The courtship of Drosophila  

 ____________ 
*Reprinted with permission from "Drosophila melanogaster males respond differently 
at the behavioral and genome-wide levels to Drosophila melanogaster and Drosophila 

simulans females" by L. L. Ellis and G. E. Carney, 2009. Journal of Evolutionary 

Biology, 22, 2183-2191, Copyright 2009 by Wiley-Blackwell. 
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melanogaster is the best characterized of the Drosophila species in terms of the 

behaviours performed as well as the genetic mechanisms that underlie sex-specific 

behaviours. Drosophila melanogaster use all of their sensory modalities (visual,  

olfactory, gustatory, auditory and tactile) during courtship. In laboratory courtship 

assays, the male performs a stereotypical suite of behaviours towards his female that 

begins with identification and orientation towards the female courtship object. He 

follows his chosen female, taps her abdomen with his front legs, extends and vibrates a 

wing to produce a species-specific courtship „song‟, licks the female‟s genitalia, bends 

his abdomen, and mounts the female for copulation (reviewed by Greenspan and 

Ferveur 2000). 

 Sexually mature Drosophila are genetically programmed to perform reproductive 

behaviours, but these behaviours are modifiable by experience. Flies raised in isolation 

until adulthood perform the standard reproductive behaviours, indicating that genes play 

an important role in behavioural specification. However, it is clear for males that social 

experience with both male and female courtship objects affects innate behaviour 

(reviewed by Ewing 1983; Tompkins 1984; Greenspan and Ferveur 2000; Siwicki and 

Ladewski 2003; Mehren et al. 2004). Inexperienced males initially show robust 

courtship towards immature males, but this response decreases over time (Gailey et al. 

1982). A male that encounters an unreceptive female decreases later courtship towards 

any female, even those that are receptive (Siegel and Hall 1979; Gailey et al. 1982; 

Kamyshev et al. 1999), and D. melanogaster males have the ability to learn to avoid 

heterospecific females (Dukas 2004).  
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 Although female behaviours are subtler, females are not passive participants in 

the courtship process. Initially, females run away from courting males, but if they are  

receptive they slow down, lift their abdomens, open their vaginal plates and allow the 

male to copulate (reviewed by Greenspan and Ferveur 2000). 

 In the wild, D. melanogaster coexist with the closely related species Drosophila 

simulans. This overlap in species distributions can in principle lead to heterospecific 

mating opportunities. To the human eye, females of the two species are virtually 

indistinguishable, whereas males differ in the shape of their genitalia. However, other 

differences exist between these two species that may reduce the probability of 

heterospecific matings. For instance, there are species-specific and, in the case of D. 

melanogaster, sex-specific differences in the predominant cuticular hydrocarbon (Jallon 

1984; Jallon and David 1987). Drosophila melanogaster cuticular hydrocarbon profiles 

are used by males of this species to distinguish mature males, receptive females and 

mated females from one another (Scott 1986; Vaias et al. 1993; Siwicki et al. 2005). 

 Hydrocarbon cues may be less important for female choice, which appears to be 

partially dictated by the male‟s song (Tomaru et al. 2000). Species differences exist in 

the two elements comprising the courtship song: the sine song and the interpulse interval 

(reviewed by Greenspan and Ferveur 2000; Tauber and Eberl 2003). Females‟ ability to 

differentiate conspecific and heterospecific courtship songs can lead to sexual isolation 

for sympatric Drosophila species (Doi et al. 2001; Yamada et al. 2002). Females 

generally prefer the courtship songs of conspecific males (Ritchie et al. 1999), although 

there is overlap in courtship song frequencies among particular species (Ewing and 
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Bennet-Clark 1968; Kyriacou and Hall 1980; Cowling and Burnet 1981; Cobb et al. 

1989). Female D. melanogaster use the pulse song to identify conspecific males as well 

as to choose among particular males (Talyn and Dowse 2004). 

 Matings do occur between D. melanogaster and D. simulans, although laboratory 

studies have shown that few progeny are produced and that the hybrid offspring are 

infertile. Interestingly, D. simulans females rarely mate with D. melanogaster males, 

whereas D. melanogaster females mate much more readily with D. simulans males (Das 

et al. 1995; Moulin et al. 2004). This difference between the reciprocal crosses has been 

attributed partly to male and partly to female effects. Differences in cuticular 

hydrocarbon profiles and aspects of the male courtship song between these species seem 

to be likely candidates contributing to premating isolation (Moulin et al. 2004). 

Regardless, D. melanogaster males actively court D. simulans females, and D. 

melanogaster males recently rebuffed by a heterospecific female are less likely to court 

another such female, although they court conspecific females (Dukas 2004). This work 

suggests that D. melanogaster males learn to recognize the heterospecific females and 

avoid them (Dukas 2004). The learning process likely occurs via a rapid nervous system 

mediated response to pheromonal and behavioural cues from the female. 

 We investigated this process of choosing or learning to avoid potential mates in 

greater detail by examining the kinetics of D. melanogaster male courtship towards D. 

melanogaster or D. simulans females. The earlier observation by Dukas (2004) led us to 

ask how rapidly a D. melanogaster male learns to reduce courtship towards a 

heterospecific female, so we developed an assay that allowed us to determine the 
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timescale on which the learning process occurs. We found that sexually inexperienced 

D. melanogaster males rapidly decrease courtship towards D. simulans females within 

20 min of an initial courtship exposure. Males show high levels of courtship towards 

heterospecifics for the first few minutes after encountering a female, but rapidly curtail 

courtship within 5 min. 

 Our lab previously showed that social interactions that occur when D. 

melanogaster males court conspecific females lead to measurable changes in transcript 

levels (Carney 2007). In this study, we asked if courtship interactions between a D. 

melanogaster male and a D. simulans female similarly lead to altered gene expression 

patterns. We found that nine genes have decreased expression in males that court 

heterospecific females. Of these nine genes, eight are also down regulated when males 

court conspecific females. The number of genes with altered expression solely in 

response to conspecific courtship is much higher (27 genes) than the number affected by 

both conspecific and heterospecific courtship (eight genes). Together, our behavioural 

and genomewide expression data indicate that the social interactions that occur during 

conspecific, but not heterospecific, courtship may affect reproductively important 

genetic cascades that are potentially involved in species recognition, premating 

reproductive isolation and speciation. 

 

Materials and Methods 

Courtship protocol 

 The laboratory strain, D. melanogaster Canton-S (CS) and the wild-caught D. 
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simulans Sim2 strain (established from flies collected in Marietta, GA, USA in 2003)  

were maintained at 25oC on a 12 hr light ⁄ dark cycle on a standard cornmeal, sugar and 

agar medium. CS virgin males and females and Sim2 virgin females were collected 

within 1–2 hr of the initiation of the lighted phase of the light ⁄ dark cycle and were kept 

in yeasted vials in groups of 20 or fewer flies. On day 4, males were aspirated into 

individual vials. CS and Sim2 female genitals were cauterized on day 4 to prevent 

mating, and groups of 20 females were placed in vials until the behavioural assays were 

performed the next day. On day 5, a single CS or Sim2 female was aspirated into a 

male‟s vial within 2–4 hr of the beginning of the lighted phase of the cycle. All virgin 

collections and behavioural assays were performed during the same time window each 

day to control for circadian effects on gene expression patterns. Pairs of flies were 

watched for 20 min, and the presence or absence of courtship activity (following, wing 

extensions and attempted copulation) was assessed for each minute of the observation 

period to calculate the time each male spent performing courtship. Average total 

courtship time and average courtship per minute values were determined for males that 

courted conspecific or heterospecific females. Males courted CS females an average of 

15.0 min (n=379, SE=4.62), whereas they courted Sim2 females 5.7 min on average 

(n=347, SE=5); this courtship towards D. simulans occurred mostly within the first 5 

min of exposure. 

 

Statistical analysis 

 Each male was scored at aech minute of the 20-min observation time for the 
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presence or absence of courtship towards either a conspecific D. melanogaster female or 

a heterospecific D. simulans female. A two-tailed t-test comparison identified a 

significant (t724=3.9, p<0.0001) increase in total courtship towards conspecific females 

compared with heterospecific females. Male courtship is dependent on the species of the 

female, the time throughout the observation, and the interaction between time and 

female [binary logistic regression, time (Wald1=2913.3, SE=0.039, p<0.0001), female 

(Wald1=522.2, SE=0.003, p<0.0001), interaction (Wald1=2790.3, SE=0.077, p<0.0001). 

 

Affymetrix microarrays 

 Sample collection, RNA extractions, cDNA preparation and microarray 

experiments discussed in this study were carried out concurrently with those described 

in a previously published study assessing the male D. melanogaster genome-wide 

response to conspecific courtship interactions (Carney 2007). This experimental 

designed allowed us to compare genome-wide responses to heterospecific and 

conspecific courtship interactions using a common set of control samples. 

 We collected virgin CS males and females and virgin Sim2 females, aged them 

and performed courtship exposures as described previously (Carney 2007). Briefly, 

stock vials were maintained at 25oC, and virgin flies were collected and aged at 25oC in 

groups of 20 or fewer flies. On day 3, individual males were aspirated into new food 

vials. On day 4, a single female (either CS or Sim2) was aspirated into the experimental 

vials. Mock-exposed males served as the control flies for baseline levels of gene 

expression in our comparisons. These control males were treated the same way as males 
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that were placed with a female (aging, transfer), except that we used the aspirator to 

blow into the vial but did not transfer a female. After a 5-min courtship (or 

mock) exposure to either a CS or a Sim2 female, male flies were quick-frozen and stored 

at -80oC until RNA extractions were performed using Trizol reagent (Invitrogen, 

Carlsbad, CA, USA). All virgin collections, treatments and behavioural assays were 

performed at the same time of day to control for circadian effects on expression patterns. 

 Whole-animal total RNA was extracted from control males or those that courted 

CS or Sim2 females. As described previously (Carney 2007), we made five RNA 

preparations, each from control or courtship-exposed males for a total of 15 sets of 

RNA, approximately 12 males per RNA preparation. The RNA preparations for all three 

treatment groups were labelled and hybridized to Affymetrix Drosophila Genome 

Arrays (Affymetrix version 1, based upon Berkeley Drosophila Genome Project v4.0; 

Santa Clara, CA, USA). Sample labelling and microarray hybridizations were carried 

out at the University of Kentucky MicroArray Core Facility using the standard 

Affymetrix protocols. Therefore, all samples were collected and hybridized using the 

same experimental conditions. 

 For microarray data analysis, we used the Mixed procedure (SAS Institute Inc., 

Cary, NC, USA), taking into account both the fixed treatment (mock, conspecific or 

heterospecific) variable and the random chip (1–5) variable, on expression values 

derived using three different methods: GCOS (GeneChip® Operating Software) 

(Affymetrix) and the PM-only and PM-MM methods from dChip (Li and Wong 2001). 

PM refers to a perfect match between the probe and Drosophila reference sequences, 
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whereas MM refers to a single nucleotide difference in the probe compared with the 

reference sequence that should prevent hybridization. In our analyses, we only 

considered probe sets with expression values greater than 50 for the dChip algorithms 

and greater than 100 for the GCOS algorithm. 

 The data set presented here showed significant (p<0.05) changes in expression 

for at least two of the three algorithms and had a false discovery rate less than 0.05 

(Storey and Tibshirani 2003). Post-hoc analysis (Tukey‟s) identified genes differentially 

(p<0.05) expressed between treatments. Analyses of results comparing males that 

courted conspecific females to mock exposed males were previously published (Carney 

2007). This earlier data set was reanalysed in the current study in order to incorporate 

the D. simulans data set and make comparisons among the three treatment groups. 

 

qPCR 

 We designed primers specific to two down-regulated genes (CG4757 and IM23) 

to use for independent validation of the microarray results. Both genes are down 

regulated in males that court conspecific females (Carney 2007) as well as in males that 

court heterospecific females (Table 1). Using the protocol described above for 

microarray experiments, we generated RNA preparations for courting and control males 

and used these samples to prepare cDNA for qPCR. Behavioural tests were performed 

and RNA was extracted for qPCR analysis at the same time as the samples that were 

used for array hybridization. Genes responsive to conspecific courtship were validated 

previously (Carney 2007). We no longer have samples appropriate for additional qPCR 
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validation, as the RNA preparations were exhausted during the qPCR analyses described 

in this study and in Carney (2007).  

 RNAextractions were performed with the Trizol reagent (Invitrogen) and cDNA  

was prepared following the standard protocol from the Superscript First-Strand 

Synthesis Kit (Invitrogen). cDNAs were diluted 1 : 10 for qPCR reactions and were 

amplified using the SYBR green mastermix for qPCR (Applied Biosystems, Foster City, 

CA, USA). PCR reactions were performed in the ABI7700 using default run parameters. 

Positive and negative control reactions were included on each plate and melting curve 

analyses were performed at the end of each run to test for primer specificity. 

 Control amplification reactions with rp49 primers allowed us to normalize the 

amount of cDNA in each reaction. We used the Relative Standard Curve method 

(Applied Biosystems) which compares control (rp49) and experimental primer 

amplifications to determine relative mRNA concentrations for each sample. 

 

Results 

Courtship behaviour towards conspecific and heterospecific females 

 The work of Dukas (2004) indicated that D. melanogaster males learn to avoid 

heterospecific D. simulans females after unsuccessful attempts at mating. In this earlier 

study, males were placed with heterospecific females for 1 hr and then given an 

opportunity to court either a conspecific or heterospecific female. Males significantly 

reduced courtship towards the heterospecific but not the conspecific female (Dukas 

2004). Given the 1 hr interaction period, it was unclear how rapidly learning can take 
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place. We investigated the kinetics of this response in greater detail using a 20 min 

courtship assay. 

 Since a sexually mature D. melanogaster male typically mates within 5–10 min 

of being placed with a mature D. melanogaster virgin female, we cauterized the genitals 

of both types of test females to prevent mating; this enabled us to evaluate courtship 

levels for a longer period of time. We paired sexually inexperienced D. melanogaster 

males with either a conspecific (CS) or heterospecific (Sim2) female for 20 min and 

assessed levels of courtship towards each type of female. 

 When a D. melanogaster male was paired with either a D. melanogaster or a D. 

simulans virgin female, the males initially exhibited strong courtship towards each type 

of female (Figure 4). However, over time the males decreased courtship towards the 

heterospecific female, whereas they maintained high levels of courtship towards the 

conspecific female. Indeed, after 20 min with the female, approximately 70% of the 

males paired with a D. melanogaster female were still courting, whereas only 13% of 

the males paired with a D. simulans female continued to court (Figure 4). 

 The majority (84.96%) of males presented with a D. melanogaster female spent 

more than 10 min courting the female, and greater than 12% of the males showed 

sustained courtship for the 20-min duration of the experiment. In contrast, few (19.88%) 

males provided with a D. simulans female spent more than 10 min performing courtship 

behaviours (Figure 5; average total courtship time towards D. melanogaster 

females=15.04 min; D. simulans females=5.73 min, t724=3.9, p<0.0001). Together, these 

results indicate that D. melanogaster males exhibited sustained courtship towards 
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conspecific females, whereas their courtship towards heterospecific females decreased 

over time.  

 

 
Figure 4. Males rapidly decrease courtship towards heterospecific females. Courtship 

interactions between Drosophila melanogaster males and either conspecific or heterospecific 
females were assayed. The presence of courtship behavior was assessed each minute of the 20 

min observation window for each male tested. Males rapidly decreased courtship towards 
heterospecific females within 5 min of exposure. 

 

Genome-wide response to courtship interactions 

 Our previous work showed that D. melanogaster males that court conspecific 

females have altered levels of gene expression compared with males that are mock-

exposed to courtship (Carney 2007). There are a small number of genes whose 

transcripts levels are increased in D. melanogaster males that court D. melanogaster 

females, and at least two of these genes are downstream targets of the genetic hierarchy 

that regulates reproductive behaviours in both sexes. Interestingly, many of the 
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transcripts with decreased abundance in courting males encode products that function in 

the immune response (Carney 2007). 

 

 
Figure 5. Total courtship towards heterospecific females is decreased. Overall courtship 
levels were decreased in Drosophila melanogaster males that courted Drosophila simulans 

females (grey bars) compared with D. melanogaster males that courted conspecific females 
(black bars). The majority of males spent less than 10 min courting heterospecific females but 

more than 10 min courtship conspecific females. 
 

 We expected that a genome-wide response to courtship would also occur in 

males that court heterospecific females, but that it would differ from the response to 

conspecifics. To test this hypothesis, we collected total RNA from D. melanogaster 

males that had either courted a D. simulans female or had been mock-exposed to 

courtship. These RNA preparations were labelled and hybridized to Affymetrix 

Drosophila genome arrays (see Materials and Methods). The experiments were carried 

out concurrently with earlier experiments that evaluated the genome-wide response to 

conspecific courtship (Carney 2007). 
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 By analysing the expression values for the three treatments – males that courted 

D. melanogaster females, males that courted D. simulans females and males that were 

mock-exposed to courtship – we found that eight transcripts are affected by conspecific 

as well as heterospecific courtship interactions (Table 1), a number that is much smaller 

than those whose abundance changes specifically because of conspecific courtship 

(Table 2); all eight transcripts have reduced expression in courting males compared with 

control males. Interestingly, expression of a single gene, CG1857, is specifically 

decreased during heterospecific courtship. CG1857 is predicted to encode a serine-type 

endopeptidase inhibitor that likely functions in the immune response. 

 

Table 1. Genes down regulated in males that court either a conspecific or heterospecific female. 

 

 

 In our original assessment of conspecific courtship interactions, we identified 43  
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transcripts whose levels are courtship responsive (Carney 2007). We reanalysed this 

earlier data in the current study and identified 35 genes that are down-regulated; 27 of 

these genes are down regulated specifically in males that court conspecific females 

(Tables 1 and 2). Therefore, conspecific courtship causes expression level changes in a  

much larger set of gene products than heterospecific courtship. 

 Similarly to our earlier study characterizing the genome-wide response to 

conspecific females, we found that the eight genes that are common to males that court 

both types of female have been implicated as functioning in the immune response (Table 

1). Eight of the 27 genes down regulated because of conspecific courtship are predicted 

to function in immune signalling as well (Table 2). In contrast to our earlier work, we 

did not identify any gene products with significantly increased levels in males that court 

either type of female. 

 

qPCR validation of microarrays 

 We used qPCR to assess the transcript levels for CG4757 and IM23 in males 

who courted heterospecific females relative to control males. Both genes were 

downregulated during conspecific courtship (Carney 2007). We found in each case that 

message levels are decreased in D. melanogaster males that courted D. simulans females 

(Table 1), and the differences were statistically significant (t8=2.7, p<0.05) for CG4757. 

Conspecific courtship responsive genes were validated previously (Carney 2007). 

 

 



 

 

29 

Table 2. Genes down regulated only in males that court a conspecific female 
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Table 2. Continued 
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Discussion 

 
 When fruit flies encounter one another in the wild, they need to make rapid 

determination of the appropriateness of the second individual as a mate, because 

valuable energetic resources will be wasted on heterospecific matings. Flies use a 

variety of sensory cues to aid them in making this choice. The sensory information must 

be received and evaluated by the nervous system to indicate to the animal whether or not 

the interaction is likely to be fruitful. In most cases, this process probably relies upon 

rapid nervous system function. However, our genome-wide analysis of Drosophila 

conspecific and heterospecific courtship interactions suggests that a second slightly 

delayed mechanism may also come into play. 

 In a 10-min courtship test, sexually inexperienced D. melanogaster males court 

D. melanogaster and D. simulans females to a similar extent (Dukas 2004). However, 

when males who previously were placed with D. simulans females for 1 hr were then 

immediately presented with a new D. melanogaster or D. simulans female, the males 

decreased courtship towards the heterospecific female. Sexual experience with a 

heterospecific female did not reduce conspecific courtship levels. This result suggests 

that the D. melanogaster males learned to avoid heterospecific females (Dukas 2004). 

 Matings between these species produce infertile hybrids and are disadvantageous 

to both species, so we wondered how quickly the learning process takes place. Our 

results indicate that sexually naïve male D. melanogaster males initially court both 

conspecific and heterospecific females at high levels (Figure 4). However, they reduce 

courtship towards heterospecifics over time (Figure 4), and only 19.88% of males spent 



32 

 

32 

more than 10-min courting a heterospecific female (Figure 5). In contrast, 84.96% of 

males court a conspecific female for more than 10 min (Figure 5). These results show 

that the males learn extremely rapidly (within a matter of minutes) to reduce courtship 

towards a heterospecific female. Interestingly, they continue to court conspecific 

females at a very high level. Therefore, the reduced courtship towards the heterospecific 

female is likely a male response to a pheromonal or behavioural cue from this female  

that is different from the cue relayed by a conspecific female. 

 An earlier study from our lab showed that D. melanogaster males have a rapid 

genome-wide response to courtship directed towards conspecific females (Carney 2007). 

In whole animals, a small number of genes, including downstream components of the 

genetic hierarchy that establishes the potential for reproductive behaviour, have 

increased message levels in males that court conspecific females. These expression 

changes are unlikely to be due solely to movement of the fly as mock-exposed and 

courtship-exposed flies have similar motility in our assays (L. L. Ellis & G. E. Carney, 

unpublished results) and these same genes do not have increased expression in males 

that actively court heterospecific females. 

 An interesting result from our new comparison of gene expression profiles in 

control males vs. those that have courted a D. simulans female is that there are no 

transcripts with increased expression in males that court heterospecific females; there are 

also fewer transcripts with decreased levels in males that court heterospecifics (9 

transcripts) compared with those that court conspecifics (35 transcripts). These results  

suggest that there is a signalling mechanism responsive to conspecific courtship that in  
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turn leads to changes in message levels. 

 We did not identify any genes that are up regulated by courtship in this study 

using a significance cutoff of p<0.05. However, one gene, bubblegum (bgm), is 

significantly up regulated because of conspecific courtship at p=0.05. This result is 

intriguing because other studies in our lab indicate that bgm is up regulated in mated  

bgm levels may begin to rise during courtship and are either maintained or are 

augmented by mating. 

 In the current study, we reanalysed data from our previous work (Carney 2007) 

to allow us to compare across the three treatment groups. Although we see the same 

trends in the conspecific courtship results (i.e. more transcripts have decreased levels 

and many function in the immune response), the identity of the genes from the new 

analysis differs somewhat (10 ⁄ 35 genes overlap). This discrepancy is likely because of 

differences in the data analysis techniques employed in the two studies. In our new 

study, we took a conservative approach to identifying responsive genes by incorporating 

a false discovery rate parameter (Storey and Tibshirani 2003), using a Mixed model 

ANOVA, and requiring significance in at least two of the analyses of expression values. 

If we relax these criteria to allow genes to be placed in the list that only are identified by 

one analysis, the majority of genes up regulated in response to conspecific courtship and 

qPCR validated in Carney (2007) are also found to be responsive to conspecific (but not 

heterospecific) courtship in this study. Additional down-regulated genes from the earlier 

study are also present using this less conservative treatment of the data. 

 Work in our lab indicates that at least some of the genes that are identified 
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through this type of genomic profiling approach have important functions in 

reproductive behaviour. For example, mutations in egghead (egh), a gene whose 

expression increases in male brains during conspecific courtship, significantly reduce 

male-to-female courtship levels (L. L. Ellis & G. E. Carney, unpublished data). A 

second courtship responsive gene, female-specific independent of transformer (fit), is a 

downstream component of the genetic hierarchy that regulates fly reproductive 

behaviours. Therefore, this gene is also likely to have important functions in behaviour 

(Carney 2007). 

 In addition to the rapid assessment that occurs via the nervous system when 

organisms interact, there also appears to be a secondary response that occurs. Genes are 

either up or down regulated in response to the social environment of the animal, and 

these gene products possibly modify behaviours. Positive pheromonal or behavioural 

cues from conspecific females may activate this signalling response, whereas negative 

cues or a failure to respond to cues from heterospecific females may not allow full 

activation of the response. 

 Gene expression changes because of social interactions have been examined in 

birds and mammals to the greatest extent (Hughes and Dragunow 1995; Ball and 

Balthazart 2001; Mello 2004; Mello et al. 2004; Pinaud 2004; Bradley et al. 2005), 

although other species are being examined (Ben-Shahar et al. 2002; Burmeister et al. 

2005). In vertebrates, immediate early genes are induced when animal cells encounter 

hormones, growth factors or other stimuli in their environment (Hughes and Dragunow 

1995). Birds rapidly induce ZENK expression in response to a song stimulus (Mello et 
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al. 1992; Mello and Clayton 1994) or by engaging in a behaviour (Jarvis and Nottebohm 

1997). Mammals also respond genetically to their environment (Hughes and Dragunow 

1995; Pinaud 2004), and alternative bee social behaviours correlate with gene expression 

changes (Ben-Shahar et al. 2002; Sinha et al. 2006). Many immediate early genes 

encode transcription factors predicted to regulate expression of a second set of genes 

that, in turn, modulate plasticity (Hughes and Dragunow 1995). Changes in DNA 

methylation (Champagne and Curley 2005) and neuronal components likely lead to 

long-term changes in central nervous system gene expression, function and connectivity 

(Kozorovitskiy et al. 2006). 

 Our work shows that gene expression patterns rapidly change because of social 

cues in D. melanogaster as well. This work suggests that these rapid changes may serve 

as a secondary mechanism for activating genes that function in reproduction. We 

anticipate that some loci identified by these types of studies encode gene products that 

have modulatory function in the nervous system. Microarray analysis alone is not 

sufficient to completely characterize the full suite of genes involved in these responses, 

however, as some genes may be expressed at low levels or in small numbers of cells. In 

addition, these studies do not allow one to identify mechanisms that function 

independently of transcriptional activation or message stability. The gene expression 

results from this type of study do provide a starting point for further characterization of 

pathways, but ultimately molecular biological and genetic approaches will be necessary. 

 Our results may be especially interesting with respect to reproductive isolation 

and speciation. If there are genetic cascades that must be activated for mating to be 
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successful, then genes in these pathways could be involved in generating reproductive 

barriers among distinct gene pools. In geographically isolated populations, for example, 

divergence of these loci, as a consequence of genetic drift or sexual selection, could 

conceivably contribute to allopatric speciation. In sympatric populations, such loci could 

be the targets of reinforcement resulting from selection against genetically unfavourable 

hybridization events. Regardless, future characterization of the genetic pathways 

activated during courtship and mating should generate insights into a number of key 

evolutionary processes such as species recognition, sexual selection, reinforcement and 

speciation. 
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CHAPTER III 

THE COURTSHIP-RESPONSIVE GENE egghead IS REQUIRED IN apterous 

NEURONS FOR Drosophila melanogaster MALE COURTSHIP BEHAVIOR 

 

Introduction 

 Behaviors are complex processes resulting from an organism's ability to integrate 

sensory cues into physiological and motor outputs. Adding to the complexity of this 

process are the effects from the organism's genetics and environment, including social 

interactions, on behavior, brain morphology, and gene expression (Siegel and Hall 1979; 

Levine et al. 2002; Shen et al. 2004; Stewart and McLean 2004; Burmeister et al. 2005; 

Kozorovitskiy et al. 2006; Yurkovic et al. 2006; Carney 2007; Technau 2007; Ellis and 

Carney 2009).  

It is possible to use microarray technology to assess changes in mRNA 

expression occurring during or in response to behavior as a means to gain insight into 

physiological changes that also occur. Several studies, particularly in songbirds, bees 

and fruit flies, have examined transcript level changes in freely behaving animals. In 

songbirds, 33 genes are regulated by singing behavior, including loci involved in signal 

transduction and synaptic signaling (Wada et al. 2006), and a variety of social 

environments and stimuli impact honey bee brain gene expression (Grozinger et al. 

2003; Whitfield et al. 2003; Whitfield et al. 2006; Sen Sarma et al. 2009). Similarly, 

male Drosophila melanogaster show rapid changes in transcript levels due to courtship 

interactions with females (Carney 2007; Ellis and Carney 2009). Though the signaling 



38 

 

38 

cascades mediating changes in mRNA levels due to behavior and social interactions are 

unclear, by studying these changes we can clarify the intracellular processes affecting 

nervous system function, physiology and behavior. An advantage of such studies in 

Drosophila is that mutant strategies can be employed to characterize behavioral 

requirements for responsive loci. 

The courtship behaviors of male Drosophila are influenced by genetics (Billeter 

et al. 2002) and social interactions (Ewing 1983; reviewed in Greenspan and Ferveur 

2000; Mehren et al. 2004). The somatic sex-determination pathway regulates these 

behaviors (Cline 2005; Shirangi and McKeown 2007) and the sexually dimorphic 

development of Drosophila, including that of the nervous system (Finley et al. 1997; 

Kimura et al. 2005; Manoli et al. 2005; Stockinger et al. 2005; Rideout et al. 2007; 

Sanders and Arbeitman 2008; Mellert et al. 2010; Rideout et al. 2010; reviewed in 

Billeter et al. 2006). Though target loci of the transcriptional regulatory members of this 

pathway are known (Burtis et al. 1991; Cann et al. 2000; Kopp et al. 2000; Dauwalder 

et al. 2002; Drapeau et al. 2003; Fujii and Amrein 2002; Arbeitman et al. 2004; 

Goldman and Arbeitman 2007; Lazareva et al. 2007; Fujii et al. 2008; Dalton et al. 

2009), few have clearly defined functions in behavior and neural development. Several 

elegant Drosophila microarray studies were key to identifying most of these downstream 

targets (Arbeitman et al. 2004; Goldman and Arbeitman 2007; Dalton et al. 2009), but 

the strategies used do not allow us to distinguish target genes that affect development of 

the nervous system from those that impact physiology and behavior post-development. 

During courtship, males are exposed to sensory information that must be rapidly  
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interpreted to create the appropriate behavioral response (e.g., continue courtship 

directed toward that fly or seek a new mate). In males, courtship causes rapid expression 

level changes detectable in whole animals (Carney 2007; Ellis and Carney 2009). These 

rapid responses are likely mediated by signaling in the nervous system, sensory organs 

and other tissues that affect neural physiology. Our approach has the advantage of using 

wild-type animals performing behaviors to identify adult-expressed gene products that 

are impacted by behavior, including target genes of the somatic sex-determination 

hierarchy. 

In our current study we focused on gene expression changes occurring in the 

male head (rather than whole body) during courtship toward a female. We also expanded 

on our earlier studies by showing that courtship-responsive loci can function in 

behavior. Our data indicate that courtship causes gene expression changes in loci 

expressed in neuronal as well as non-neuronal tissues that may modulate neural 

signaling and behavior. At least 3 identified genes are downstream components of the 

sex-determination hierarchy. Using available mutations in the courtship-responsive gene 

egh, we found that adult egh expression is important for robust male-to-female 

courtship. egh expression in Ap neurons is sufficient to restore proper courtship 

behavior, indicating that egh expression in the Ap circuit is important for male 

reproductive behavior.  
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Materials and Methods 

Microarray analysis 

 We used an isogenized wild-type Canton-S (CS) strain and handled flies 

similarly to Carney (2007) except that the females' genitals were electrically cauterized 

to prevent mating (non-mateable females). Twenty or fewer virgin isogenic CS males 

were aged collectively for 3 days, and 20 or fewer virgin isogenic CS females were aged 

collectively for 3 days. On day 4, males were aspirated into individual vials, and females 

had their genitals cauterized by passing a 4 mA current over 2 fine tungsten wires on the 

external genitalia of the female to prevent mating. Females were placed in a new vial 

and given one day to recover. All flies were kept on a 12-hr light/dark cycle at 25oC, and 

we performed all procedures within 2 hrs of lights on to control for circadian effects on 

gene expression and behavior.  

 Analysis of courtship behavior on day five included equally dividing males into 

two groups: (1) Control and (2) Courting males. For the courting male treatment, one 

cauterized female was aspirated into a male's vial. Control males were treated the same 

except that a female was not transferred during the aspiration process. Courtship 

exposure lasted for 20 min and the presence of courtship was assessed at 1 min intervals. 

Only males that courted at least 70% of the time were collected for analysis. After 20 

min, the males were removed from the vials, quick frozen in liquid Nitrogen, and stored 

at -80oC for future RNA extraction. 

By vortexing quick-frozen flies, we separated heads from the rest of the bodies. 

For each treatment, 20 male heads were randomly assigned to one of 10 groups, giving 
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us 10 RNA preparations each for control and courting males. Total head RNA was 

extracted using Trizol (Invitrogen, Carlsbad, CA, USA) following standard protocols. 

The University of Kentucky MicroArray Core Facility labeled and hybridized 5 control 

and 5 courting male head RNA preparations to Affymetrix Drosophila 2.0 Genome 

Arrays following standard Affymetrix (Santa Clara, CA, USA) protocols. 

 We extracted expression values from the microarrays and conducted Bayesian t-

test (CyberT, Baldi and Long 2001) and false discovery rate analyses (q<0.05, Storey 

and Tibshirani 2003) as described previously (Ellis and Carney 2009). Five algorithms, 

GeneChip® Operating Software (GCOS) (MAS 5.0, Affymetrix, Santa Clara, CA, 

USA), Gene Spring (Agilent, Santa Clara, CA, USA), PM and PM-MM (dChip, Li and 

Wong 2001) , and GCRMA (R, R Development Core Team)  were used. We used the 

same statistical cut-off values from our previous work (Ellis and Carney 2009) to 

determine significantly (p<0.001 in 3 of 5 algorithms) up- and down-regulated 

courtship-responsive genes. Over-representation of gene ontology molecular functions 

or biological processes was determined using Fisher‟s exact test as stated previously 

(Carney 2007; Ellis and Carney 2009). 

 

q PCR 

 We confirmed the microarray results by qPCR analysis on 5 control and 5 

courting male RNA preparations that were not used for microarray hybridization. cDNA 

was synthesized from poly+A purified (Oligotex mRNA mini kit, Qiagen, Netherlands) 

RNA using the SuperScript First-Strand Synthesis System (Invitrogen, Carlsbad, CA, 
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USA). Primers were designed for a randomly chosen set of 6 up-regulated (CG9377, 

CG10621, egh, HLHm, Lsp2, sug) and 3 down-regulated (CG31181, Rim, Sh) 

candidate genes predicted to be enriched in the brain, fat body or both tissues. Genes 

with low predicted transcript levels in the head were not tested (Chintapalli et al. 2007). 

To control for amplification specificity primer pairs were designed across introns when 

possible. No template controls as well as controls with template but without Reverse 

Transcriptase were included in the analysis.  

 Using the ABI7500 and its default parameters (Applied Biosystems, Foster City, 

CA, USA), each template was run in triplicate, using 2 L of a 1:4 cDNA dilution and 

the SYBR Green PCR Mastermix (Applied Biosystems, Foster City, CA, USA). We 

used dissociation curve analysis to determine primer-specific amplification and the 

Relative Standard Curve Method (Applied Biosystems, Foster City, CA, USA) to 

determine transcript levels. Normalization to rp49 levels generated relative transcript 

abundance values for control or courting male samples. The relative fold change for 

each gene was measured as the ratio of courting male relative abundance to control male 

relative abundance, and significance was determined by a two-tailed t-test. Up 

regulation of egh and HLHm and down regulation of CG31181 were confirmed by 

secondary qPCR analysis. 

 

In situ hybridization 

 We performed in situ hybridization for a subset of courtship-responsive genes.  

Genes and their corresponding cDNA clones were CG9377 (GH08193), CG10621 
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(RE64786), cwo (LD15411), egh (GH01085), and sug (LD36528). Antisense and sense 

probes were made from the above clones using the Digoxigenin (DIG)-labeling kit's 

standard protocol (Roche, Nutley, NJ, USA). Probes were hydrolyzed into 200 bp 

fragments and hybridized to dissected male tissues, including the brain, head carcass, or 

abdominal cuticle as previously described (Arbeitman et al. 2004). 

 

Courtship behavior analysis 

 Flies were maintained on a 12-hr light/dark cycle at 25oC, except when noted 

otherwise. The Bloomington Stock Center supplied P-element insertion mutants 

(egh
EP804, egh

EY03917). Both insertions are located within the first egh exon. egh is located 

on the X chromosome, so males are hemizygous for egh alleles. For both X-linked P-

element insertions, we crossed P-element females to isogenic CS males, and we crossed 

P-element males to isogenic CS females, generating experimental and control males, 

respectively, in genetically similar backgrounds. For behavioral analysis, P-element and 

control males were aged at 25oC in individual vials for 4 to 5 days and CS virgin females 

(20 or fewer) were aged collectively for 3 to 5 days. All courtship tests with egh mutants 

were performed in dim, red light conditions because mutations in egh affect neuron 

pathfinding in the visual system (Fan et al. 2005) and are therefore likely to impact eye 

function. In red light conditions, flies rely more heavily upon sensory systems other than 

the eye for courtship. 

We analyzed courtship behavior under red light at 22oC and recorded the 

interactions with a digital camcorder. To analyze courtship behavior, a male was 
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aspirated into a mating chamber (diameter=1 cm) and a virgin CS female was introduced 

2 min later. The pair was video recorded for 10 min. The courtship index (CI; percent of 

time the male spent performing courtship during the initial 10 min of observation) was 

calculated. CI values were arcsine transformed and two-tailed t-test comparisons 

between mutants and controls were calculated to determine significance (p<0.05).  

 To reduce egh specifically in the adult nervous system we utilized two egh-RNA 

interference (RNAi) alleles, egh
v45160 and egh

v45161, from the Vienna Drosophila RNAi 

Center (VDRC) (Dietzl et al. 2007).  We used in situ hybridization to verify reduced egh 

expression upon activation of each RNAi allele. 

We targeted egh reduction pan-neuronally with elav
c155

-Gal4 (Lin and Goodman 

1994) and more specifically with ap
md544

-Gal4 (Calleja et al. 1996) , which is expressed 

in ap-expressing neurons in larval and adult nervous systems. We increased the 

efficiency of the RNAi process by adding one copy of UAS-Dicer-2 (VDRC). To reduce 

egh specifically in adults, the RNAi alleles were under the control of UAS-tubulin-

Gal80
ts
 (McGuire et al. 2004). Crosses were maintained at the permissive temperature of 

20oC. Control males had UAS-Dicer-2 and UAS-tubulin-Gal80
ts and either the RNAi 

allele or the Gal4 driver. We collected virgin males and stored them in individual vials at 

either 20oC or 29oC. The courtship objects, CS virgin females, were collected and stored 

collectively at 25oC. Behavioral analysis was conducted under red light at the 

aforementioned temperatures. We used ANOVA and Tukey's post-hoc analysis to 

determine significant changes in CI due to temperature and genotype. 

 To restore egh expression, we crossed a genomic rescue construct (eghP2)  
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 (Soller et al. 2006) to egh
EY03917

. We used the above courtship assay (22oC; red light) to 

compare CIs of egh
EY03917

; eghP2
 males to egh

EY03917
 males collected during the same 

time frame. To narrow down which cells require egh expression for proper courtship 

behavior we utilized the rescue construct, UAS-eghHA (Soller et al. 2006). We crossed 

UAS-eghHA to the ap
md544

-Gal4 driver in the egh
EY03917 background and tested courtship 

activity at 22oC under red light. egh
EY03917 males with either component of the Gal4/UAS 

system served as controls. 

 

Antibody staining 

  ap
md544

-Gal4 flies were crossed to flies containing a UAS-GFPnls allele. Adult 

males and females carrying both the Gal4 and UAS alleles were collected. Brains and 

VNCs were dissected in PBS, fixed in 4% paraformaldehyde and washed in PBS and 

PBST. We used a 1:50 concentration of anti-GFP in an overnight incubation. After more 

PBST washes, a 1:1200 concentration of secondary antibody was used. 

 

Results 

Male gene expression changes during courtship interactions 

 Within 5 min of male-to-female courtship, whole-animal transcript profiles are 

altered in courting males (Carney 2007; Ellis and Carney 2009). Next, we focused solely 

on male head gene expression in response to courtship since the head contains the brain 

as well as other tissues and sensory organs that impact behavioral and physiological 

responses to sensory inputs. We extended the courtship interaction period to 20 min to 
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ensure a robust response and used Affymetrix Drosophila 2.0 Genome Arrays to 

examine approximately 18,500 transcripts for expression level changes in males 

performing courtship toward non-mateable females (referred to as “courting males”) 

compared to males that were not given a female courtship object (“control males”) (See 

Materials and Methods). 

 Bayesian CyberT analysis comparing expression values from heads of courting 

males to those from controls identified 35 courtship-responsive loci (See Materials and 

Methods). Sixteen transcripts were up regulated (Table 3) and 19 were down regulated 

(Table 4) after 20 min of courtship. These changes are not likely due to locomotor 

differences since courting and control males have similar activity levels during the assay 

period (two-tailed t-test; p>0.05). Analysis by Fisher‟s exact test showed that several 

Gene Ontology annotations (molecular functions and biological processes) were over- 

represented in our data set compared to the Drosophila genome (Tables 3 and 4; 

p<0.05). 

 To verify our microarray results, we used qPCR to analyze transcript levels of 

candidate courtship-responsive genes in control and courting male head RNA 

preparations not used in the microarray study. The 6 up-regulated and 3 down-regulated 

courtship-responsive genes tested showed the expected trends in expression (Table 5). 

 

Courtship-responsive genes are expressed in the brain and other head tissues 

 Because we assayed head tissue, identified loci may be expressed in the brain, 

sensory structures, the fat body, or a combination of these tissues. Expression of the 
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majority of courtship-responsive genes is enriched in the head relative to the brain, 

indicating higher expression in tissues outside of the brain (Chintapalli et al. 2007). 

Though some courtship-responsive genes are enriched in the eye, others are enriched in 

head tissues other than the brain or eye, including the adipose tissue lining the brain 

(Table 6). 

 

Table 3. Candidate genes up regulated after 20 min of courtship 

 



48 

 

48 

Table 3. Continued 

 

 
Comparing control male heads to courting male heads revealed that 16 genes are significantly 
(p<0.001) up regulated in male heads after 20 min of courtship. Over-represented molecular 

functions and biological processes (*p<0.05) were determined by Fisher's exact test. 
 
 

Table 4. Candidate genes down regulated after 20 min of courtship 
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Table 4. Continued 

 

 
 

Average fold changes, molecular functions and biological processes are shown for 19 genes that 
are signficantly (p<0.001) down regulated in male heads after 20 min of courtship. *p<0.05, 

Fisher's exact test. 
 

 

Table 5. qPCR confirmation of the microarray results 

 
 

Indicates a significant (p<0.05) difference in the average relative expression level in control 
male heads compared to courting male heads. SEM=Standard error of the mean. 

 

Table 6. Courtship-responsive genes are enriched in head tissues including the brain and fat 
body 

 
Data was compiled from FlyAtlas (Chintapalli et al. 2007). 
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 Two courtship-responsive genes, Larval serum protein 2 (Lsp2) and fit are 

expressed in adipose tissue, also known as the fat body, surrounding the brain in both 

sexes (Benes et al. 1990; Fujii and Amrein 2002). fit was named due to its high level of 

expression in females compared to males and because its expression is regulated by the 

somatic sex-determination hierarchy gene Sex-lethal (Fujii and Amrein 2002). Though 

expression is low in virgin males, fit expression increases in response to courtship (Table 

3) (Carney 2007). In situ hybridization confirmed that other courtship-responsive genes 

are expressed in the male fat body (CG10621, sugarbabe (sug)), the male brain 

(CG9377, egh), or both tissues (clockwork orange (cwo)) (Figures 6 and 7). 

 

 

Figure 6. Courtship-responsive genes CG9377, cwo, and egh are expressed in the male 

brain. Antisense (A,C,E) or sense (B,D,F) RNA probes were designed to cDNA clones for 
CG9377 (A,B), cwo (C,D), and egh (E,F). In situ hybridization to whole-mounted male CS 

tissue reveals that courtship-responsive genes are expressed in male brains. 
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egghead is required in the adult male brain for robust courtship 

 We hypothesized that courtship-responsive genes likely modulate courtship 

behavior, either by regulating the performance of courtship steps or by making the male 

a more efficient courter by increasing the efficiency of stimulus processing. This 

efficiency could affect the current courtship interaction or, more likely, subsequent 

courtship encounters. We predicted that we could identify behavioral functions for these 

loci by testing mutations in the genes for effects on male courtship behavior. 

 

 
Figure 7. Courtship-responsive genes CG10621, sug, and cwo are expressed in male adipose 

tissue. Antisense (A,C,E,G,I,K,M,O) or sense (B,D,F,H,J,L,N,P) RNA probes were designed to 
cDNA clones for CG9377 (A-D), CG10621 (E-H), sug (I-L), cwo (M-N), and egh (O-P). In situ 

hybridization to whole-mounted male CS tissue shows candidate gene expression in the fat body 
tissue (arrows) on abdominal (A,B,E,F,I,J,M-P) or head (C,D,G,H,K,L) cuticle. 

 

 Therefore, we tested P-element insertions in courtship-responsive genes for  



52 

 

52 

effects on male courtship activity (measured as the courtship index, CI). Males with 

either of 2 independent insertions in egh (egh
EP804 and egh

EY03917) performed all of the 

standard courtship behaviors but had significantly reduced CI values compared to 

genetically similar controls (Figure 8) (two-tailed t-test, p<0.001). Therefore, reduced 

egh expression led to an overall reduction in time spent courting a female. 

 Reintroduction of a genomic copy of egh in the egh
EY03917 background restored 

courtship activity to wild-type levels (Figure 9) verifying that the courtship phenotype is 

due to disruption of the egh locus. We selectively reduced egh in the adult nervous  

 

 
Figure 8. egh is required for robust male courtship behavior. Under red light, males with 

either X-linked egh insertion (egh
EP804 or egh

EY03917) show significant (***p<0.001) decreases in 
CI values compared to control males in a similar genetic background (CS(egh

EP804) or 
CS(egh

EY03917)) under similar conditions. Error bars reflect the SEM. N=10 for each genotype. 
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system with UAS-egh-RNAi under the control of UAS-tubulin-Gal80
ts
 and neural-

expressed elav
c155

-Gal4. This adult-specific decrease in egh resulted in significantly 

reduced CI values for experimental males at the restrictive temperature (29oC) compared 

to all controls (Figure  10).  

 

 
Figure 9. egh expression rescues male courtship behavior. Restoring egh expression in egh-

expressing cells (eghP2) in the egh
EY03917

 mutant background significantly (***p<0.001) rescued 
the courtship defect in egh

EY03917
 mutant males. N=10 for both genotypes. 

 

 Larval egh expression is required in ap-expressing ventral nerve cord (VNC) 

neurons for the female Sex-peptide response during adulthood (Soller et al. 2006). 

Though Soller et al. (2006) attributed modulation of the Sex-peptide response to 
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Figure 10. Male courtship requires egh expression in the adult nervous system. Expressing UAS-egh-RNAi alleles, egh

v45160 or 
egh

v45161, in the adult nervous system using elav
c155

-Gal4, UAS-Dicer-2, and UAS-tubulin-Gal80
ts, at the restrictive temperature (29oC, 

black bars) significantly (**p<0.01;*p<0.05) reduced male courtship activity compared to controls lacking elav
c155

-Gal4 or UAS-egh-
RNAi compared to males at the permissive temperature (20oC, gray bars). 
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 developmental expression of egh, ap
md544

-Gal4 expresses in the male and female adult 

nervous system (Figure 11). Therefore, we asked whether this same circuit functioned in 

male reproductive behavior. Expressing egh (via UAS-eghHA) under control of ap
md544

-

Gal4 in egh
EY03917 mutant males was sufficient to restore male courtship behavior 

(Figure 12), indicating that Ap neurons function to modulate reproductive behaviors in 

both sexes. We expressed egh-RNAi via ap
md544

-Gal4 to specifically reduce egh 

expression in adult males (Figure 13) and this targeted egh reduction resulted in 

decreased courtship activity. This indicates that egh is needed in Ap neurons during 

adulthood for proper courtship behavior. 

 

 
Figure 11. ap

md544
-Gal4 drives expression of GFP in the adult nervous system. Using ap

md544
-

Gal4 to drive expression of GFP reveals ap
md544

-Gal4 activity in the adult brain (A, C) and VNC 
(B, D) of males (A, B) and females (C, D). 

 

Discussion 

Courtship interactions change male gene expression profiles 

 Drosophila perform stereotypical sex-specific courtship behaviors that are  
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influenced by genetics, including the somatic sex-determination pathway, and 

environmental cues, including social interactions. Previous studies have shown that 

courtship causes rapid (within 5 min) changes in whole-male transcript abundance 

(Carney 2007). These gene expression patterns may be altered directly or indirectly as a  

 

 
Figure 12. egh expression in ap-expressing neurons restores male courtship behavior. 

Narrowing egh expression to ap neurons by expressing UAS-eghHA under the control of ap
md544

-

Gal4 in the egh
EY03917

 background significantly (***p<0.001) restored male courtship activity 
compared to control egh

EY03917males lacking either component of the Gal4/UAS system. Ten 
males of each genotype were tested. 

 

consequence of courtship. In this study we focused on male head tissue, showing that 

expression profiles of 35 (16 up-regulated and 19 down-regulated) genes differ after 20  

min of courtship. Similarly to genes identified in array studies on songbirds and honey 
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Figure 13. Adult expression of egh in ap-expressing neurons is necessary for robust courtship behavior. Expressing the UAS-egh-

RNAi allele, egh
v45160 or egh

v45161, in a subset of neurons during adulthood using ap
md544

-Gal4, UAS-Dicer-2, and UAS-tubulin-Gal80
ts, 

under the restrictive (29oC, black bars) temperature significantly (***p<0.001) reduced male courtship activity compared to controls 
lacking the Gal4 or UAS-egh-RNAi component or compared to males at the permissive temperature (20oC, gray bars).
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bees responding to behavioral cues (Grozinger et al. 2003; Whitfield et al. 2003; Wada 

et al. 2006; Whitfield et al. 2006; Sen Sarma et al. 2009), Drosophila courtship- 

responsive genes have known or predicted functions in a variety of important cellular 

processes, including transcription and neuronal development and signaling (Tables 7 and 

8). 

We predicted that some courtship-responsive loci would function as downstream 

targets of the somatic sex-determination pathway that regulates male courtship behavior. 

Indeed, 3 courtship-responsive genes are regulated by this pathway. fit is regulated by 

transformer (tra), CG9377 is downstream of fruitless (fru), and CG9837 is regulated by 

doublesex (dsx) (Goldman and Arbeitman 2007).  

  Due to several differences in experimental design between our earlier studies 

and the study described here (different time points and tissues examined, use of a newer 

version of the Drosophila genome array, use of different data analysis methods), there 

was little overlap between the courtship-responsive gene lists. However, one gene, fit, 

was up regulated after 5 min and 20 min of courtship. CG2217 was up regulated in 

whole males after 5 min of courtship, but after 20 min of courtship it was down 

regulated in the head. The decreased expression of CG2217 may be specific to the male 

head, while its increase during 5 min of courtship occurs elsewhere in the body. 

 

Gene expression in the male brain 

 Since brain gene expression has a clear function in behavior, we expected that  
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some courtship-responsive genes would be expressed in the brain. Therefore, we 

examined brain tissue for expression of a subset of the courtship-responsive genes. 

CG9377 and egh, which increase in abundance due to courtship, were expressed in the 

male brain but not detected in adipose tissue (Figures 6 and 7). Two of the down-

regulated courtship-responsive genes are known to function in behavior and are 

expressed in the brain. cacophony encodes a calcium voltage-gated channel needed for 

proper pulse frequency and amplitude during courtship song production (Billeter et al. 

2002; reviewed in Greenspan and Ferveur 2000); Shaker (Sh) encodes a potassium 

channel that functions in olfactory memory and learning (reviewed in Greenspan and 

Ferveur 2000). 

 Several courtship-responsive genes (Drop, egh, hairy, lola, and Sh) regulate 

nervous system development and function (Giniger et al. 1994; Heng et al. 2003; Zhong 

and Wu 2004; Fan et al. 2005; Ueda and Wu 2006; Urbach et al. 2006) and could act to 

modulate adult neural signaling and courtship. Changes in brain gene expression 

patterns due to courtship interactions are likely a result of signaling pathways, including 

G-protein couple receptor signaling, functioning within the brain to mediate the 

perception and integration of sensory cues. Such signaling pathways may coordinate 

motor output pathways necessary for courtship and relay information to the brain to 

establish a male brain that is more readily perceptive to courtship cues than a naïve male 

brain.  
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Gene expression in male adipose tissue 

 Signals mediating courtship cues are not likely restricted to the brain, however. 

Adipose tissue, or the fat body, surrounding the brain and in the thoracic and abdominal 

cavities is a secretory tissue (reviewed in Schlegel and Stainier 2007) that could 

influence neuronal signaling or transmit signals to other reproductively important 

tissues. Indeed, there is a growing body of evidence that fat body-expressed genes 

modulate reproductive behaviors (reviewed in Dauwalder 2008). 

 fit and Lsp2 are expressed in the female and male fat body (Benes et al. 1990; 

Fujii and Amrein 2002), and in situ hybridization confirmed the fat body expression of 3 

additional courtship-responsive genes (CG10621,cwo, and sug) (Figure  7). cwo is also 

expressed in the male brain, but we could not detect CG10621 or sug transcripts in the 

male brain. Many courtship-responsive genes are enriched in head tissue, including the 

fat body but not including the brain (Figures 6 and 7; Table 6). This suggests that the 

circuitry responding to and governing courtship behavior likely is modulated by both 

neuronal and non-neuronal signals. The response to courtship involves complex and 

specific changes that may mediate various downstream effects including neural 

plasticity.   

 

egghead and courtship behavior 

 To determine if mutations in courtship-responsive genes affect courtship, we 

measured CI values in P-element insertion mutants. Our analysis showed that a specific 

courtship-responsive locus, egh, is needed in a particular subset of neurons during 
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adulthood for robust male courtship behavior. egh is up regulated 20 min after courtship, 

and mutations in egh disrupt courtship activity (Figures 8, 10, and 13); restoring 

genomic egh expression rescues this phenotype (Figure 9). We expressed RNAi alleles 

that target egh via elav
c155

-Gal4 under control of the temperature-sensitive Gal80 and 

determined that egh expression is required in adult male neurons for proper courtship 

behavior (Figure 10). 

 egh encodes a 1,4-mannosyltransferase which regulates glycosphingolipid 

biosynthesis (Wandall et al. 2003) and affects Drosophila neural development and 

behavior. This mannosyltransferase is needed in optic lobe development (Fan et al. 

2005) and is required for female Sex-peptide response (Soller et al. 2006). Males 

transfer sperm, accessory gland proteins, and Sex-peptide to females during mating. 

Sex-peptide causes post-mating responses in females, including increased ovulation and 

egg laying and decreased receptivity (Wolfner 2009). Soller et al. (2006) showed that 

egh is needed in ap-expressing ventral cord neurons of female larvae for the Sex-peptide 

induced post-mating response in adulthood. Since ap
md544

-Gal4 is expressed in the adult 

nervous system of both sexes (Figure 11) we examined whether this same neural circuit 

functioned in males to regulate courtship behavior. In egh
EY03917 mutant males, egh 

expression in Ap neurons was sufficient to rescue the courtship defect (Figure 12). We 

decreased egh expression (via RNAi) in ap-expressing neurons during adulthood and 

found that this adult-specific egh reduction resulted in decreased courtship (Figure 13). 

Similarly to males with reduced adult egh expression, ap mutant males have decreased 

levels of male-to-female courtship (Ringo et al. 1992). Ap is a transcription factor that 
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regulates developmental as well as post-developmental neural gene expression 

(Benveniste et al. 1998). Given the similarity between the ap and egh mutant 

phenotypes and the requirement for egh expression in ap neurons for male courtship, it 

is possible that ap regulates egh expression. 

 Male and female Drosophila perform sex-specific behaviors. At the heart of 

these differences lies the fru circuit. Sex-specific differences in behaviors may be due to 

dimorphisms in neural architecture, including the number or morphology of neurons, 

such as those present in the fruP1 circuit that modulates male courtship behavior 

(Kimura et al. 2005; Stockinger et al. 2005; Rideout et al. 2007; Clyne and Miesenböck 

2008; Datta et al. 2008). On the other hand, the same circuit could be co-opted by each 

sex for different behaviors. We hypothesize this is the case for the egh circuit. egh is 

required in Ap neurons in both males and females but modulates sex-specific 

reproductive behaviors. This may occur because of changes in neural physiology 

resulting from the perception of sex-specific cues that trigger different signaling 

cascades between the sexes. However, it is possible that different subsets of Ap neurons 

regulate sex-specific behavior. The egh circuit important for male behavior does not 

appear to rely directly upon fru neurons since expressing egh in fru neurons did not 

rescue the behavioral defects observed in egh mutant males. Therefore, egh neurons may 

interact indirectly with fru neurons to modulate Drosophila reproductive behaviors. 

 Our study strengthens the growing body of work demonstrating that animals 

respond to social interactions by altering transcript abundance. By investigating the 

function of these courtship-responsive loci, we can clarify the relationship between 
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genetics and the intracellular processes governing behavior. In Drosophila, courtship-

responsive loci include known sex-determination hierarchy target genes, and further 

characterization of courtship-responsive genes will likely reveal more genes functioning 

within this pathway. 
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CHAPTER IV 

fitTING IT ALL TOGETHER: HOW THE COURTSHIP- AND MATING-

RESPONSIVE GENE fit AFFECTS MALE Drosophila melanogaster COURTSHIP 

BEHAVIOR 

 

Introduction 

 Reproductive success requires that an organism be able to properly perceive and 

interpret sensory cues in order to discern suitable from non-suitable mates. The ability to 

attract proper mates is also key to reproductive success. We utilize the genetically 

tractable Drosophila melanogaster to further understand these processes. 

 Drosophila melanogaster perform stereotypical sex-specific behaviors (reviewed 

in Greenspan 1995; Greenspan and Ferveur 2000) that are modulated by genetics 

(reviewed in Tompkins 1984; Billeter et al. 2002) and social interactions (Siegel and 

Hall 1979; Dukas and Mooers 2003; Siwicki and Ladewski 2003; Ellis and Carney 

2009; reviewed in Ewing 1983; Greenspan and Ferveur 2000; Mehren et al. 2004) and 

which are governed largely by the somatic sex-determination hierarchy (reviewed in 

Cline 2005; Shirangi and McKeown 2007). This genetic pathway also regulates sexually 

dimorphic development (Finley et al. 1997; Demir and Dickson 2005; Kimura et al. 

2005; Manoli et al. 2005; Stockinger et al. 2005; Billeter et al. 2006; Rideout et al. 

2007; Sanders and Arbeitman 2008; Mellert et al. 2010; Rideout et al. 2010). Few of the 

known transcriptional targets of this pathway (Burtis et al. 1991; Cann et al. 2000; Kopp 

et al. 2000; Dauwalder et al. 2002; Fujii and Amrein 2002; Drapeau et al. 2003; 
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Arbeitman et al. 2004; Goldman and Arbeitman 2007; Lazareva et al. 2007; Fujii et al. 

2008; Dalton et al. 2009) have known roles in nervous system function or behavior. 

 One sex-determination target gene of interest is female-specific independent of 

transformer (fit). Although named for its higher level of expression in females compared 

to males and the Sex-lethal (Sxl)-dependent regulation of its expression (Fujii and 

Amrein 2002), its expression is also dependent on transformer (tra) (Goldman and 

Arbeitman 2007). fit is enriched in adipose tissue known as the fat body (Fujii and 

Amrein 20020), a secretory tissue (reviewed in Schlegel and Stainier 2007) that has 

recently been implicated in modulating behavior (Dauwalder et al. 2002; Fujii and 

Amrein 2002; Lazareva et al. 2007; Fujii et al. 2008; reviewed in Dauwalder 2008). Our 

previous work has shown that fit is increased in courting males compared to control 

males (Ellis and Carney 2009). Here we provide the first evidence of fit's role in 

behavior. Examining fit knock-out or UAS-fit strains as well as available UAS-fit-RNAi 

alleles revealed fit's role in the adult fat body for repressing male-male courtship. Mutant 

fit males court control males and are also courted by control males. 

 

Materials and Methods 

In situ hybridization 

 Antisense and sense RNA probes were designed to fit using the cDNA clone 

RH40291 and the digoxigenin (DIG)-labeling kit following the manufacturer's protocol 

(Roche, Nutley, NJ, USA). Probes were hydrolyzed into 200 bp fragments as previously 

described (Arbeitman et al. 2004). We verified the increased expression of fit in male 
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head tissue after courtship or after courtship followed by mating. One group of virgin CS 

males courted a cauterized female for 20 min, while a control group of virgin CS males 

were not given a female courtship object. We also tested fit expression in virgin CS 

males 2 hrs after mating compared to control males that did not mate with a female. 

After treatment, males were cryo-sectioned in OCT compound and in situ hybridization 

was performed on the sections (Dauwalder et al. 2002). We qualitatively assessed fit 

expression in adipose tissue lining the head, thoracic or abdominal cuticle from non-

existent (-) to highly expressed (+++). 

 

Generating the fit knock-out mutant 

 Following Maggert et al. (2008) we designed primers to sequences 3968bp 

upstream and 4219bp downstream of the fit locus. We sequentially cloned in these 

flanking sequences into the pCR-BluntII-TOPO cloning vector (Invitrogen, Carlsbad, 

CA, USA) for subsequent cloning into the pW25.2 vector. We cloned 4000 bp upstream 

of the fit locus between the BsiWI and AscI restrictions sites and 4200 bp downstream 

of the fit locus between the NheI and MluI sites. The construct was injected into w 

embryos by Genetic Services (Cambridge, MA) following standard protocols. 

Transgenic lines were crossed to FLPase, I-SceI flies for recombination between the 

donor and endogenous chromosomes. Two independent strains (fitNNN1 and fitT15) with 

properly targeted recombination events, as determined both phenotypically and by PCR 

amplification, were then crossed to CreRec flies for removal of the w+ marker. We 

sequenced across the fit locus to verify the deletion of fit in both strains. 
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pUASp-fit cloning 

 We cloned the fit cDNA sequence from the RH40291 downstream of the UAS 

sequence in the pUASp vector at the NotI and BamHI sites. The construct was 

sequenced and then injected into w embryos by Duke University Model System 

Genomics (Durham, NC). 

 

Immunostaining 

 A peptide antibody was generated against the Fit peptide sequence 

(PHSVNWPCDVGHFPE) downstream of the predicted signal sequence. The peptide 

was injected into rabbits by Sigma Genosys following their standard protocol. The 

serum from the final bleed was affinity purified. Dissected female spermathecae and the 

surrounding fat from homozygous knock-out and heterozygous control animals were 

stained with a 1:1 concentration of anti-Fit antiserum and 1:1500 of Alexa Fluor goat 

anti-rabbit 594 secondary antibody (Molecular Probes) following Boltz et al. (2007). A 

Zeiss Axio Imager Z1 fluorescent microscope was used for imaging. 

 

Courtship behavior analysis 

 Flies were maintained on a 12-hr light/dark cycle at 25oC. All flies were 

collected as virgins within 2 hrs of lights on. The two deletion strains (fitNNN1 or fitT15) 

have a balancer chromosome floating in the stock to generate the heterozygous control 

genotypes. fitNNN1 and fitT15 were crossed to each other to generate transheterozygous 

mutants for behavioral analysis. Since knock-out flies are white eyed we conducted all 
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behavioral assays under dim, red light to offset the effects vision has on courtship.  

 

Male-female courtship behavior 

 fit mutant or heterozygous males were aged individually for 4 to 5 days and CS 

virgin females were aged collectively for 3 to 5 days at 25oC. Behavioral assays took 

place at 22oC in courtship chambers (1cm diameter). On day 5, a male was aspirated into 

a chamber and then a female was aspirated in. The pair was video recorded for 10 min 

and the courtship index (CI; ratio of time spent in courtship compared to the total 

observation window) was calculated. CI values were arcsine transformed for statistical 

analyses (ANOVA and Tukey's). 

 

Male-male courtship behavior 

 Virgin fit knock-out, fit/+, or CS males that served as courters were aged 

individually and those that were the courtship objects were aged collectively for 4 to 5 

days at 25oC. Courtship object males were decapitated, to prevent courtship rejection 

behaviors, 10 min before testing. The CI for various pairings of control and mutant 

males was measured by aspirating a courter male into the courtship chamber, followed 

by the decapitated courtship object, at 22oC, and the pairs were  video recorded for 10 

min.  

 Using two UAS-fit-RNAi alleles (fitv14433 or fitv14434
) from the Vienna Drosophila 

RNAi Center (Dietzl et al. 2007) we were able to reduce fit expression in the fat body 
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(with 3.1Lsp(2)-Gal4 (Lazareva et al. 2007) or Cg-Gal4 (Hennig et al. 2006)) or 

nervous system (with elav
c155

-Gal4 (Lin and Goodman 1994)). Crosses were maintained 

at 25oC and courtship assays were performed, as previously mentioned, at 29oC. In situ 

hybridization confirmed reduced levels of fit. 

 For adult-specific reduction of fit, we introduced the temperature-sensitive UAS-

tubulin-Gal80
ts
 (McGuire et al. 2004). Crosses were maintained at the permissive 20oC 

and virgin males were collected and housed at either 20oC or 29oC for testing at their  

respective temperatures. 

 

Male courtship preference 

 To determine if fit males preferred to court CS males or females, we collected 

virgin fit mutant or control males and aged them individually for 4 to 5 days. Virgin CS 

males or females were collected and aged collectively for 5 days. CS flies were 

decapitated 2-10 min before behavioral assays. The decapitated courtship objects were 

aspirated into the courtship chamber and then the fit mutant or control male was 

aspirated into the chamber and the trio was recorded for 10 min. CI values for courtship 

towards male or female courtship objects were measured. 

 

Fertility assays 

  A fit mutant or control male was paired with a virgin CS female, or a CS male 

was paired with a fit mutant or control female, in a vial with food to measure fecundity 

(number of adult offspring sired). The pairs were transferred to a new vial for 5 
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consecutive days and for each vial the number of eggs in each vial was counted. After 

18 days, the number of adults was also counted and the ratio of adult offspring to eggs 

laid was calculated. ANOVA and Tukey's analyses determined significance (p<0.05). 

 

Results 

Courtship or mating up regulate fit expression in adipose tissue 

 Previous work in our lab has shown that fit is up regulated after courtship in 

whole bodies or heads (Carney 2007; Ellis and Carney 2009) and 2 hrs after mating (L. 

L. Ellis & G. E. Carney, unpublished results). fit is expressed the fat body of males and 

females (Fujii and Amrein 2002). In situ hybridization revealed that fit expression 

increased in the adipose tissue surrounding the male brain after courtship (Figure 14) or 

courtship followed by mating. 

 

Fit expression in the fat body 

 Using anti-Fit antiserum we show that Fit localized to the adipose tissue in 

control females (fitNNN1
/+ or fit

T15
/+) but was absent in knock-out females (fitNNN1or 

fit
T15) (Figure 15). 

 

Reduced fit expression results in increased male-male courtship 

Since fit is responsive to courtship and mating encounters and is regulated by the 

somatic sex-determination hierarchy, we hypothesized that fit would likely function in 

reproductive behavior. To examine this, we tested fit deletion males for changes in 
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courtship activity (courtship index, CI), courtship latency, mating latency, mating 

duration, fertility and fecundity. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Courting males show increased fit expression in the fat body. DIG-labeled fit 

RNA antisense and sense probes were made from the RH40291 cDNA clone. In situ 

hybridization was performed on cryo-sectioned male heads and confirmed that fit transcript 
levels are up regulated in the adipose tissue (arrows) of courting males (A. top) compared to 

control males (A. bottom), as seen by the (B) qualitative assessment of signal intensity in both 
treatment groups. 

 

 
Figure 15. Fit is expressed in adipose tissue. Using anti-Fit antiserum, Fit is absent in knock-

out mutants (fitNNN1 or fitT15) but localizes to adipose tissue in (fitNNN1
/+ or fitT15

/+) females. 
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Deletion of fit did not affect mating latency, mating duration, fertility or 

fecundity. fit null and control males courted CS females at a similar level (Figure 16). 

Since mutations in some sex-determination genes cause male-male courtship, we tested 

whether or not fit mutant males courted males. Deletion of fit increased courtship 

towards a male of the same genotype, but fit heterozygous mutants did not court each 

other (Figure 17). The increased male-male courtship could be due to the inability of fit 

homozygotes to properly identify males as inappropriate courtship objects (referred to as 

the bisexual phenotype since fit mutant males also court females; see Figure 16) or 

because these mutants are eliciting courtship from other males (referred to as the 

elicitation phenotype). To address which of these, or if both, scenarios are the reason for 

this increased male-male courtship we tested various combinations of mutant and 

control male-male pairings. fit-null males court control (fit/+ or CS) males but are also 

courted by control males (Figure 17). The increased courtship activity is not due to 

increased locomotion since mutants and controls showed similar locomotory activity (t-

test; p>0.05). Since fit mutant males show no male-female courtship defects but show 

increased male-male courtship, we asked whether fit mutant males preferred to court CS 

males or CS females. fit mutant males courted females for significantly more time than 

they courted males (Figure 18), suggesting that fit males can detect female cues but 

cannot respond properly to male inhibitory cues. 

Restoring fit expression by expressing UAS-fit with actin-Gal4 reduces both the 

bisexual and elicitation phenotypes of male-male courtship indicating that these 

phenotypes are due to loss of fit (Figure 19).
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Figure 16. Deletion of fit does not affect male-female courtship activity. Homozygous knock-out or transheterozygous mutant males 

show similar courtship levels (as measured by CI values) compared to heterozygous controls.p>0.05 (N=sample size). 
 



 

 

74 

 
Figure 17. fit is necessary to repress male-male courtship. We tested various combinations of mutant and control males to determine if 
male-male courtship exists. Since fit males court fit males (checkered bars), we asked if they are unable to identify proper mates (dark gray 

bars) or if fit mutants elicit courtship (light gray bars) compared to controls (white bars). A & B denote statistical groups such that A is 
significantly different than B at p<0.05. (N=sample size).
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Figure 18. fit mutant males prefer female courtship objects. When given both courtship objects (a decapitated female and a decapitated 

male), fitNNN1
/fit

T15
 males, as well as control males (fitNNN1

/+ or fitT15
/+) court females (light gray bars) more often than males (dark gray 

bars). *p<0.05; **p<0.01 (N=sample size).
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Figure 19. Expression of fit decreases male-male courtship. Over-expressing fit with actin-Gal4 in the transheterozygous mutant 

background reduces the courtship activity of (A) fit males toward control males or (B) control males toward fit males (*p<0.05; 
**p<0.01). (N=sample size).

B 
A 
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 Since fit is expressed in adipose tissue, which modulates reproductive behaviors 

(Dauwalder et al. 2002; Fujii and Amrein 2002; Lazareva et al. 2007; Fujii et al. 2008; 

reviewed in Dauwalder 2008), we reduced fit expression in the fat body with fit-targeted 

RNAi (fitv14433
 or fitv14434) using either 3.1Lsp(2)-Gal4 (Lazareva et al. 2007) or Cg-Gal4 

(Hennig et al. 2006). Reduced fit expression in the fat body resulted in both the bisexual 

and elicitation male-male courtship phentoypes (Figure 20). 

 We asked if fit's role in repressing male-male courtship was due to 

developmental or adult-specific requirements. Combining UAS-tubulin-Gal80
ts, UAS-fit-

RNAi and fat body drivers, we were able to decrease fit in the adult fat body. Our results 

show that fit expression was required in the adult fat body to repress male-male 

courtship (Figure 21).  

We are currently testing whether or not fit expression in the fat body is sufficient 

to repress the bisexual and elicitation phenotypes. Also, we are examining if fit 

expression in the nervous system modulates male-male courtship. 

 

Discussion 

Identifying a courtship- and mating-responsive gene 

 The sex-specific courtship behaviors performed by Drosophila involve the 

perception and interpretation of sensory information. These processes are modulated by 

genetics and experience; therefore, we examined the gene expression changes in 

Drosophila males after courtship (for 5 min or 20 min) or 2 hrs after courtship 

culminating in copulation. We found that one gene, fit, is up regulated in each of the 
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Figure 20. Reduced fit expression in the fat body results in male-male courtship. Expressing UAS-fit-RNAi (fitv14433 or fitv14434) with 
3.1Lsp(2)-Gal4 resulted in fit males that increased courtship towards CS males (A) and from CS males (B) (p<0.05). (N=sample size).

A 
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Figure 20. Continued

B 
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Figure 21. Repression of male-male courtship requires fit expression post-developmentally in the fat body. Expressing the UAS-fit-

RNAi allele, fitv14433 or fitv14434, in the adult fat body using 3.1Lsp(2)-Gal4 and UAS-tubulinGal80
ts, under the restrictive (29oC, black bars) 

temperature significantly (*p<0.05) increased the courtship activity of CS males toward fit mutant males compared to control courtship 
objects lacking the driver or UAS-fit-RNAi component or compared to males at the permissive temperature (20oC, gray bars).
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three treatments (Tables 3 and 7). Because of this courtship- and mating-responsiveness 

and because fit is a SDH target (Fujii & Amrein 2002; Goldman and Arbeitman 2007) 

that is expressed in adipose tissue (Figures 14 and 15), we evaluated fit's role in 

modulating behavior. 

 

Mutations for fit change a male‟s perception of sensory cues and his attractiveness 

 We generated two independent knock-out alleles for fit. Deletion of fit did not 

affect male courtship activity towards CS females (Figure 16). A fit mutant male paired 

with a decapitated fit mutant male showed increased courtship activity compared to a 

control male paired with a decapitated control male (Figure 17). However, when given a 

choice, fit mutant males spent more time directing courtship toward CS females than CS 

males (Figure 18). Therefore, fit males properly perceive female cues. Male-directed 

courtship is likely due to the fit male‟s inability to process male inhibitory cues. 

 Male-male courtship can be caused by the improper identification of courtship 

objects or elicitation by the male courtship object. Males might choose to court another 

male if (1) he cannot recognize that the courtship object is a male or (2) if the courtship 

object is attractive. Therefore we tested different combinations of courters and courtees 

to parse the two phenotypes. Pairing fit mutant male courters with control courtees 

addressed the bisexual phenotype. The elicitation phenotype was assessed by pairing 

control male courters with fit mutant courtees. Our data show that fit is required to 

repress the bisexual and elicitation phenotypes (Figure 17) and that restoring fit 

expression rescues both phenotypes (Figure 19). Examining the literature on Drosophila 
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courtship defective mutants revealed that the only other genes known to affect both 

aspects of male-male courtship are fru and dsx (Appendix A). The small number of 

known genes modulating the bisexual and elicitation phenotypes may be due to the fact 

that most male-male courtship behavioral analyses do not separate the two phenotypes; 

analyses are usually conducted by examining mutant-mutant pairs. 

  

Fat body expression of fit modulates male-male courtship 

 To understand how fit modulates both aspects of male-male courtship, we 

wanted to address which tissues required fit expression to repress these behaviors. One 

tissue of interest is adipose tissue, known as the fat body. fit is expressed in the fat body 

(Figures 14 and 15) and recent experiments have shown that fat body-expressed genes 

modulate behavior (Dauwalder et al. 2002; Fujii and Amrein 2002; Lazareva et al. 2007; 

Fujii et al. 2008; Benito et al. 2010; reviewed in Dauwalder 2008). Decreasing fit 

expression in the male fat body resulted in increased male-male courtship (Figures 20 

and 21) and reducing fit in the adult male fat body caused increased courtship elicitation 

(Figure 21). We are currently examining how reduced post-developmental fat body 

expression of fit affects the bisexual phenotype. Whether or not fat body expression of 

fit is sufficient to repress male-male courtship is also being tested. 

 Since the fat body is a secretory tissue (reviewed in Schlegel and Stainier 2007), 

secretion from the fat body likely affects neuronal signaling. Thus fat body-expressed 

genes may impact courtship behavior, particularly the ability to process sensory cues. 

Fat body signaling is also tied to oenocyte signaling and its role in pheromone synthesis 
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(Dellerac et al. 2000; Marcillac et al. 2005; Ueyama et al. 2005; Chertemps et al. 2006; 

Krupp et al. 2008; Billeter et al. 2009). Therefore, fit signaling may function in 

maintaining the appropriate pheromonal profile.  

 The role of fit in properly recognizing courtship objects or regulating the 

appropriate hydrocarbon profiles could be attributed to the ability of fat-body expressed 

factors to interact with multiple tissues. We are also evaluating fit's direct involvement 

in the nervous system in modulating male-male courtship. As we determine if and where 

Fit is secreted and what proteins Fit interacts with, we can better understand these tissue-

specific requirements for modulating behavior. 
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CHAPTER V 

GENOME-WIDE EXPRESSION CHANGES OCCUR IN MATED 

Drosophila melanogaster MALE HEADS 

 

Introduction 

 Behavior involves the perception and processing of sensory information into a 

signaling cascade that mediates physiological and motor outputs. This complex process 

is influenced by an organism‟s environment, genetic make-up and nervous system 

function. Social interactions influence an organism's behavior (Siegel and Hall 1979; 

Gailey et al. 1985; Ueda and Kidokoro 2002; Dukas and Mooers 2003; Yurkovic et al. 

2006), and these behavioral changes are associated with alterations in morphology 

(Stewart and McLean 2004; Mori et al. 2005; Kozorovitskiy et al. 2006; Technau 2007) 

and gene expression (Reiser et al. 1999; Levine et al. 2002; Mehren and Griffith 2004; 

Shen et al. 2004; Anseloni et al. 2005; Burmeister et al. 2005; Murata et al. 2005; 

Kozorovitskiy et al. 2006; Carney 2007). However, the mechanisms mediating the 

changes are unclear. As we work to understand the genome-wide transcriptional 

responses to behavior, we can clarify the regulatory and intracellular processes 

governing nervous system function and behavior.  

 Therefore, we are studying reproductive behaviors in the genetically tractable 

Drosophila melanogaster, which exhibit stereotypical mating behaviors (reviewed in 

Greenspan 1995; Greenspan and Ferveur 2000) regulated by genetics (reviewed in 

Tompkins 1984; Billeter et al. 2002) and social interactions (Dukas and Mooers 2003; 



85 

 

85 

Siwicki and Ladewski 2003; Ellis and Carney 2009; reviewed in Ewing 1983; 

Greenspan and Ferveur 2000; Mehren et al. 2004). The sex-determination gene 

hierarchy is the major regulator of Drosophila reproduction (reviewed in Cline 2005; 

Shirangi and McKeown 2007). Components of this pathway affect sexually dimorphic 

development, including the neural circuitries necessary for sex-specific courtship 

behaviors (Finley et al. 1997; Demir and Dickson 2005; Kimura et al. 2005; Manoli et 

al. 2005; Stockinger et al. 2005). However, the behavioral functions of only a few of the 

downstream target genes of the hierarchy are known (Burtis et al. 1991; Cann et al. 

2000; Kopp et al. 2000; Dauwalder et al. 2002; Fujii and Amrein 2002; Drapeau et al. 

2003; Arbeitman et al. 2004; Goldman and Arbeitman 2007; Lazareva et al. 2007Fujii et 

al. 2008; Dalton et al. 2009). 

 By combining behavioral assays with microarray technology, it is possible to 

assess behaviorally-induced gene expression changes on a genome-wide scale (Ceriani 

et al. 2002; Toma et al. 2002; Anholt et al. 2003; Dubnau et al. 2003; Lawniczak and 

Begun 2004; Mackay et al. 2005; Carney 2007; Ellis and Carney 2009) to find loci 

regulating or regulated by behavior, including sex-determination hierarchy target genes. 

Expression profiles of females differ as a consequence of courtship and mating 

experience, and these changes can be detected for several hours after mating (Lawniczak 

and Begun 2004; McGraw et al. 2004; Mack et al. 2006; McGraw et al. 2008). 

 During courtship and mating, the male is inundated with sensory information that 

must be interpreted so that the appropriate signals are sent throughout the body for a 

successful mating. Prior work in our lab demonstrated that males rapidly alter gene 
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expression at the whole-animal level during courtship (Carney 2007; Ellis and Carney 

2009). Next, we focused on changes occurring in the male head as a result of mating 

since these changes likely affect function of the nervous system and other reproductively 

important tissues to promote reproductive success. Our study demonstrates that 

courtship culminating in mating affects gene expression patterns in male heads and that 

many of the gene products are expressed in non-neural tissues that may play important 

modulatory roles in neural function and behavior. 

 

Materials and Methods  

Microarray Analysis 

 The wild-type Canton-S (CS) strain was isogenized to reduce genetic variation 

and the isoline was kept at 25oC on a 12-hr light/dark cycle. Twenty or fewer virgin CS 

males were aged collectively for 3 days at 25oC. On day 4, individual males were 

aspirated into vials. Virgin females were collected and aged in groups of 20 or fewer 

flies for 4 days at 25oC.  

On day 5, males were equally divided into two treatment groups. One group, 

referred to as "mated males", consisted of individual males that were placed with a 

female for courtship and mating, while the second group of males ("control males") was 

mock exposed to a female. For the first group, a single, aged virgin female was aspirated 

into each male‟s vial. Control males were treated identically except that no female was 

transmitted during the aspiration process. One male from each group was tested at the 

same time to allow for statistical comparisons. 
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Upon completion of mating, females were removed from the vials. Males from 

both treatment groups were quick frozen 2 hrs later and stored at -80oC for future RNA 

extraction; only pairs for which the mated male had a mating latency less than 30 min 

and mating duration of 18-30 min were collected for RNA extraction. Seventy-four 

percent of mated males tested met this requirement. All procedures were conducted at 

the same time each day to control for circadian effects. 

Head tissue was separated from the remaining body by vortexing quick-frozen 

flies. Male heads were assigned to one of ten groups (30 heads in each group; 5 mated 

and 5 control RNA preparations) so that control and mated samples collected together 

could be analyzed by paired statistical comparisons. Following standard protocols, total 

RNA from head tissue was extracted in Trizol (Invitrogen, Carlsbad, CA, USA) and 

RNA preparations from 10 groups (5 control and their corresponding mated groups) 

were sent to the University of Kentucky MicroArray Core Facility for labeling and 

hybridization to Affymetrix Drosophila 2.0 Genome Arrays following standard 

Affymetrix (Santa Clara, CA, USA) protocols.  

 Expression values were generated similarly to previous experiments (Carney 

2007; Ellis and Carney 2009). We used dChip‟s PM (perfect match between the probe 

and target sequence) and PM-MM (one nucleotide between the probe and target 

sequence is mismatched) algorithms (Li and Wong 2001), as well as those implemented 

by GCOS (MAS 5.0, Affymetrix), R (GCRMA, R Development Core Team 2006), and 

GeneSpring (Agilent, Santa Clara, CA, USA). For the dChip algorithms, expression 

values were only considered if greater than 50; for the other 3 methods, expression 
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values were required to be greater than 100. To test for significance, we used Cyber-T‟s 

Bayesian t-test analysis (Baldi and Long 2001). Candidate mating-responsive genes 

included those whose expression differed significantly (p<0.001) between control male 

heads and mated male heads for at least 3 expression value data sets and had a false 

discovery rate less than 0.05 (Storey and Tibshirani 2003). With such stringent criteria, 

we did not specify a particular fold change cut-off value. 

 In order to determine if particular GO terms (molecular functions and biological 

processes) were overrepresented in our up-regulated and down-regulated data sets, we 

utilized the Fisher‟s exact test. The up- and down-regulated lists were compared to all 

genes represented in the Drosophila 2.0 Genome Array. Significance was determined at 

the standard p-value<0.05. 

 

Real-time PCR 

 To confirm the microarray results, Real-time PCR was performed on 

independent samples that were collected as described above but were not used in the 

microarray analysis. polyA+ RNA was isolated using the Oligotex mRNA mini kit 

(Qiagen, Netherlands) from 5 mated male RNA samples and their corresponding control 

male RNA samples (30 heads per RNA preparation). cDNA was synthesized using the 

SuperScript First-Strand Synthesis System (Invitrogen, Carlsbad, CA, USA). We 

designed primers to amplify 10 up-regulated and 3 down-regulated genes, choosing 

genes that are predicted to be enriched in brain, fat body or both tissues based upon 

FlyAtlas expression data (Chintapalli et al. 2007). When possible, primer pairs were 
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designed across introns to control for amplification specificity. Genes that are expressed 

at low levels in the head (Chintapalli et al. 2007) were not tested. 

Using the SYBR Green PCR Mastermix (Applied Biosystems, Foster City, CA, 

USA), 2L of a 1:4 dilution of each template was run in triplicate in the ABI7500 

(Applied Biosystems, Foster City, CA, USA) using default parameters. Control reactions 

lacking template and controls with template but without Reverse Transcriptase were 

used. Primer-specific amplification was determined by analyzing dissociation curves for 

each primer pair.  

mRNA levels were determined by the Relative Standard Curve Method (Applied 

Biosystems, Foster City, CA, USA), and candidate gene transcript levels were 

normalized to rp49 transcript levels. Normalizing the mated male transcript levels to the 

control male transcript levels generated a relative fold change. We also analyzed trends 

in the average relative transcript levels of each treatment (control & mated) using the 

two-tailed t-test. Secondary RT-PCR analysis confirmed increased expression of 

CG6188 and decreased expression of alpha Esterase-2. 

 

In situ hybridization 

 Digoxigenin (DIG)-labeled RNA probes were made from cDNA clones for five 

candidate genes with predicted fat body expression following the manufacturer‟s 

standard protocol (Roche, Nutley, NJ, USA). The genes and their corresponding cDNA 

clones were CG4825 (LD10327), CG8449 (GH10459), CG13360 (LP09811), 

bubblegum (bgm) (GM14009) and Prx2540-2 (RH69586). Expression of Prx2540-2 is 
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regulated by fruitless (fru) (Goldman and Arbeitman 2007), a regulatory component of 

the sex-determination hierarchy.  

Antisense and sense probes were hydrolyzed into 200bp fragments and in situ 

hybridization to male brains, head carcass and abdominal cuticle was performed as 

described in Arbeitman et al. (2004). 

 

Courtship assays 

All flies were kept on a 12-hr light/dark cycle at 25oC. P-element insertion 

mutations in Jhe and cricklet (clt) were obtained from the Bloomington Drosophila 

Stock Center (clt
BG01317) and the Exelixis Collection at Harvard Medical School 

(Jhe
e01859). Each P-element was crossed into the CS background to generate a genetically 

similar control that had one wild-type copy of Jhe or clt. To test for a genetic interaction 

between Jhe and clt, the two insertion strains, Jhe
e01859 and clt

BG01317
, were crossed to 

generate transheterozygous flies containing a single P-element insertion in each gene 

(Jhe
e01859

 +/+ clt
BG01317

). Virgin P-insertion or control males were collected and stored 

individually for 4 to 5 days; virgin CS females were aged collectively for 3 to 5 days.  

Behavioral assays were conducted at 22oC under dim red light conditions 

(forcing the males to rely on other sensory modalities besides vision) and recorded with 

a digital camcorder so that subsequent analyses could be performed. To analyze 

courtship behavior, a male was aspirated into a mating chamber (diameter=1 cm) and a 

virgin CS female was introduced 2 min later. The pair was video recorded for 10 min. 

The courtship index (CI; percent of time the male spent performing courtship during the 
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initial 10 min of observation) and courtship latency (time until courtship occurs) were 

calculated. CI values were arcsine transformed for statistical analysis. Two-tailed t-test 

comparisons between homozygous mutants and controls were calculated to determine 

significance (p<0.05). Jhe
e01859

 +/+ clt
BG01317

 males were compared to both controls. 

  

Fertility assays  

 The ability of a male to mate with multiple CS females and the fecundity of these 

matings was also assessed. Jhe and clt mutants and heterozygous controls, as well as CS 

virgin females, were collected and aged as described for the courtship assay. Under red 

light, a male was aspirated into a mating chamber, followed by a CS virgin female. The 

male was given 2 hrs to mate with the female. If mating occurred, the female was placed 

in a vial with food to measure fecundity (number of eggs laid and number of adult 

offspring) and the male was placed in a new mating chamber. A second CS virgin 

female was aspirated into the new chamber and the pair was given 2 hrs to mate. If the 

second mating occurred, the female was placed in a vial for later progeny counts, and the 

male was moved to another chamber for mating with a third and final female. The third 

mated female was also kept for further analysis. 

For the first mating bout, all 10 clt
BG01317

 males mated, while only 3 of the 10 

males mated with the second female and none of the 3 males mated with the third 

female. Eight out of 13 clt
BG01317/+

 males mated with the first female, 5 of those 8 males 

mated with the second female and 4 of the remaining 5 males mated with the third 

female. Jhe
e01859

 males only mated with the first female (6 out of 9 males). However, 9 
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of 10 Jhe
e01859

/+ males mated with the first female, 7 of those 9 males mated with the 

second female and 4 of the 7 males mated with the third female. For the 

transheterozygous clt
BG01317

/Jhe
e01859

 males, 7 of 12 mated with the first female, 4 of 7 

males mated with the second female and 2 of the 4 males mated with the third female. 

The mating latencies and durations for each of the 3 possible matings were 

measured and significance was determined by Univariate ANOVA analysis using 

genotype and mating trial as fixed variables with Tukey's post-hoc analysis (SPSS). 

Males that did not mate within the 2 hr window were scored as being unsuccessful. 

Using linear regression, we assessed the significance (p<0.05) of genotype and mating 

bout on mating success. 

 For 6 days following the assay, each mated female was transferred to a new vial 

and the number of eggs laid in each vial was determined. Vials were maintained at 25oC 

for 18 days to allow for a count of the total number of adult progeny. Significant effects 

of genotype and trial on mating latency or duration were measured by the Univariate 

ANOVA and Tukey's analysis. We also measured the significance of genotype, mating 

bout and day of egg laying on the male's fecundity (Univariate ANOVA and Tukey's 

post-hoc analysis). Fecundity was measured by the total number of eggs laid and by the 

arcsine transformed ratio of adult offspring to eggs laid. 

 

Results 

Mating causes expression changes in male heads 

 Gene expression levels change rapidly as males court females (Carney 2007). To 
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determine the effects of courtship culminating in mating on male gene expression, we 

compared transcriptional profiles of males that mated with a female (mated males) to 

those that were not presented with a female (control males). Labeled samples from 

control and treatment groups were hybridized to Drosophila Genome 2.0 Arrays 

(Affymetrix, Santa Clara, CA, USA), which are based on the Flybase 3.1 annotation, 

targeting nearly 18,500 transcripts. 

In the current study we focused on head expression, rather than whole body 

expression (Carney 2007; Ellis and Carney 2009), to identify gene expression changes in 

the nervous system and other tissues within the head (such as sensory systems and fat 

body) that likely modulate reproduction. We isolated male heads (rather than dissecting 

out the brains) since accumulating evidence from our lab (Carney 2007; Ellis and 

Carney 2009) as well as from other published studies (Dauwalder et al. 2002; Fujii and 

Amrein 2002; Lazareva et al. 2007; Fujii et al. 2008; reviewed in Dauwalder 2008) 

indicate that head tissues, such as the fat body, likely also have important modulatory 

functions in behavior. To have the potential to identify gene expression changes in these 

tissues as well, we elected to assay the entire male head for alterations in gene 

expression patterns in response to mating.  

 We used five algorithms to extract expression values from each array and 

performed paired t-test comparisons between mated male heads and control male heads. 

Using this strategy we identified 47 mating-responsive genes (See Materials and 

Methods). Two hrs after mating with a female, males significantly up regulated 25 genes 

(Table 7) and down regulated 22 genes (Table 8). Such changes are not likely to be 
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activity-dependent since control males had locomotor levels similar to males that 

courted females (t-test; p>0.05). Genes representing a variety of molecular functions and 

biological processes, determined by Gene Ontology (GO) annotations, were present in 

our data set. Several molecular functions and biological processes are over-represented 

in the up-regulated or down-regulated data sets compared to the Drosophila genome 

(Tables 7 and 8; Fisher‟s exact test, p<0.05).  

 

Table 7. Candidate genes up regulated 2 hrs after mating 
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Table 7. Continued

 

 
Twenty-five genes are significantly (p<0.001) up regulated in male heads 2 hrs after mating 
when compared to control male heads. Over-represented (*p<0.05) molecular functions and 

biological processes were determined by Fisher's exact test. 
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Table 8. Candidate genes down regulated 2 hrs after mating 
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Table 8. Continued 

 
Average fold changes, molecular functions and biological processes are shown for 22 genes that 
are significantly (p<0.001) down regulated in male heads 2 hrs after mating. *p<0.05, Fisher's 

exact test. 
 

Verification of microarray results by independent Real-time PCR (RT-PCR)  

 To confirm the microarray results, we performed RT-PCR analysis on 

independently collected mated and control male head RNA samples. We tested a subset 

of genes whose expression levels changed significantly in mated male heads compared 

to control male heads. Eight out of 10 up-regulated genes and 2 out of 3 down-regulated 

genes had the expected directional change (Table 9).  

 

Expression of candidate genes is not restricted to the brain 

 We hypothesized that examining gene expression in head tissue instead of whole 

bodies would uncover genes that function in reproduction by regulating nervous system 

signaling. This could be via direct effects on neural gene expression or by effects on 

other tissues in the head that receive or respond to courtship and mating signals. We 
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found that expression of many mating-responsive genes is enriched in the head but not 

the brain (Table 10) (Chintapalli et al. 2007), indicating expression occurs outside of the 

brain. While some of the genes are expressed in the eye, others appear enriched in 

tissues other than the brain and eye. 

 

Table 9. Confirmation of microarray results by RT-PCR 

 
*Indicates a significant (p<0.05) difference between the average relative expression level in 

control male heads and mated male heads. SEM=Standard error of the mean. 
 

One possibility is that they are expressed in an adipose tissue called the fat body 

that surrounds the brain and is implicated in modulating courtship behavior (Dauwalder 

et al. 2002; Fujii and Amrein 2002; Lazareva et al. 2007; Fujii et al. 2008; reviewed in 

Dauwalder 2008). Data showing that mating-responsive genes enriched in the head are 

also enriched in the adult fat body (Table 10) (Chintapalli et al. 2007) support this 

hypothesis. In situ hybridization confirmed that several mating-responsive loci are 

expressed in male fat body tissue (Figure 22). 
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FlyAtlas data indicate that the fat-expressed genes CG13360, bubblegum (bgm)  

and Prx2540-2 are expressed at very low levels in brains, while CG8449 and CG4825 

are expressed at low to moderate levels in the brain (Chintapalli et al. 2007). By in situ 

we did not detect brain expression of the five assayed transcripts (Figure 22 & data not 

shown), although we cannot rule out the possibility that low levels of message are 

present. 

 

Table 10. Candidate genes are enriched in head tissue other than the brain, including adult 
adipose tissue 

 
Data was compiled from FlyAtlas (Chintapalli et al. 2007). 

 

Juvenile hormone esterases are important for male reproductive behaviors 

 We hypothesized that if a gene is up regulated after mating, that gene likely 

affects some aspect of reproductive behavior. Therefore, we assayed the percent of time 

a male spent courting a female in a given interval, known as the courtship index (CI), of 

candidate gene mutants. A Jhe P-element insertion, Jhe
e01859

,   resulted in significantly 

reduced CI values (Figure 23). Though Jhe males court females less vigorously, they 

perform standard courtship steps, culminating in copulation. 

In addition to Jhe there are three other candidate juvenile hormone esterase genes 

in the Drosophila genome (Campbell et al. 2001). One of the genes, cricklet (clt), also 

had an available P-element insertion, so we tested clt
BG01317 mutants to see if they had a 

similar phenotype to Jhe mutants. We found that clt mutants also have decreased CIs 
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relative to controls (Figure 23). There is also a strong genetic interaction between Jhe 

and clt. Transheterozygous mutant males had significantly reduced courtship compared 

to single insertion controls (Figure 23).  

 

 
Figure 22: Candidate genes are expressed in fat tissue. Antisense (A-D,I,K,M-Q) or sense (E-

H,J,L,R-V) RNA probes were designed to cDNA clones for CG4825 (A,E,M,R), CG8449 
(B,F,I,J,N,S), bgm (C,G,O,T), Prx2540-2 (D,H,K,L,P,U), and CG13360 (Q,V),. In situ 

hybridization to whole-mount tissue shows candidate gene expression in male CS fat body tissue  
(arrows) on head (A-H) and abdominal (M-V) cuticle. 

 
 

 We further examined the mating kinetics of Jhe and clt mutants, expecting that 

the genes might function in regulating mating latency and duration as well as priming 

the male for subsequent mating encounters. Though Jhe and clt males mate with 

females, they had a significant (p<0.05) increase in mating latency (Figure 24) 

(ANOVA, genotype p<0.05, trial p>0.05), while mating duration was unaffected. The 

increased mating latency was not dependent on the mating trial (1st, 2nd or 3rd). However,  

as we increased the number of mating attempts, the mating success (as measured by the  
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Figure 23. Jhe and clt mutants reduce courtship toward females. Mutant males homozygous for P-element insertions in Jhe or clt 

show reduced courtship (***p<0.001) under red light compared to sibling heterozygous controls under the same condition. Jhe
e01859

 +/+ 

clt
BG01317 mutant males showed significant reductions in courtship compared to either heterozygous control.(N)=sample size. Error bars are 

SEM. 
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Figure 24. Mating latency is increased in Jhe and clt mutants. Homozygous and transheterozygous mutant males had significantly 

(ANOVA p<0.01, Tukey's *p<0.05) increased mating latencies toward CS virgin females regardless of the mating bout (1st, 2nd, or 3rd); 
therefore, overall average mating latencies are shown.
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Figure 25. Mating success decreases in Jhe and clt mutants. Jhe/+ and clt/+ control males mated with 3 females in succession, while 
experimental Jhe and clt mutant males significantly (Binary Logistic Regression, genotype p<0.01, trial p<0.0001, interaction p<0.0001) 

decreased their mating success with the 2nd and 3rd females.
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act of copulation) of Jhe and clt mutant males was significantly reduced (Figure 25) 

(Binary Logistic Regression, genotype p< 0.01, trial p<0.0001, interaction p<0.0001). 

Females mated to Jhe or clt mutant males lay equivalent numbers of eggs regardless of 

the mating trial and day of egg laying (ANOVA, genotype p>0.05, trial p>0.05, day 

p>0.05), and neither Jhe nor clt mutant females had detectable fertility defects.  

 

Discussion 

Genome-wide response to mating 

 The complex reproductive behaviors exhibited by Drosophila require the 

interaction between genetics and environment. Courtship is an innate and stereotypical 

process under control of the somatic sex-determination hierarchy and is influenced by 

social interactions. Courtship and mating elicit gene expression changes in females 

(Lawniczak and Begun 2004; McGraw et al. 2004; Mack et al. 2006; McGraw et al. 

2008), and courtship affects transcript profiles in males (Carney 2007; Ellis and Carney 

2009). The female post-mating effects occur rapidly (within minutes) or can be detected 

several hours after mating (Lawniczak and Begun 2004; McGraw et al. 2004; Mack et 

al. 2006; McGraw et al. 2008). Within 5 min of courtship, whole-animal gene 

expression profiles also change rapidly in males (Carney 2007; Ellis and Carney 2009). 

In this study we expand on our earlier studies in males to show that courtship 

culminating in mating causes changes in gene expression in the male head as well. 

Expression levels likely change rapidly in response to sensory cues received during  

courtship, while the physiological changes from mating (DiBenedetto et al.1990) may  
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mediate long-term expression level changes in the nervous system or elsewhere in the 

fly that can feed back to the nervous system. 

 The expression profile of a 5 min courting male differs from that of a 2 hr post-

mating male. This is not surprising since we expected that the process of mating would 

have major effects on male physiology that would be reflected in altered transcriptional 

profiles. Of the 47 genes with altered expression 2 hrs after mating, only 1 gene, fit, is 

also up regulated in males after 5 min of courtship (Carney 2007). CG16772 is up 

regulated 2 hrs after mating but is down regulated during 5 min of courtship (Carney 

2007). CG16772 is one of several fat body-expressed immune response genes down 

regulated during courtship, possibly to allow energetic resources to be directed toward 

offspring production rather than immunity (Carney 2007; Ellis and Carney 2009). After 

mating, expression of CG16772 may increase because contact with a female increases 

the likelihood of encountering a pathogen. 

The fact that few genes overlap between these data sets is not surprising since we 

assayed different time points (5 min or 2 hrs), different tissues (whole bodies in previous 

studies versus heads in this study) and different behaviors (courtship alone versus 

courtship culminating in mating). We also used different approaches for analyzing the 

data due to the differences in experimental design for each test. The analysis strategies 

provide us a conservative estimate of the transcripts affected by courtship and mating.  

 

Gene expression in adipose tissue 

 The fat body is secretory tissue (reviewed in Schlegel and Stainier 2007) whose 
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effects on fly reproductive behavior have previously been described (Dauwalder et al. 

2002; Fujii and Amrein 2002; Lazareva et al. 2007; Fujii et al. 2008; reviewed in 

Dauwalder 2008).  The majority of mating-responsive genes are expressed in adult 

adipose tissue (fat body) (Table 10), and we analyzed a subset of the genes to show that 

they are expressed in adipose tissue surrounding the brain (Figure 22). Of the 25 genes 

up regulated by courtship and mating, 14 are detectable (signal strength greater than 20) 

in brain and 21 genes are detectable in fat body based upon a microarray analysis of 

adult mRNA expression levels (Chintapalli et al. 2007). Of these 25 up regulated genes, 

16 are enriched in the fat body relative to other adult tissues (Table 10).  

Other studies also indicated that several mating-responsive genes identified in 

our study are expressed in the fat body surrounding the brain. Larval serum protein 2 

(Lsp2) is expressed in the head fat of both sexes (Benes et al. 1990). fit is expressed in 

the head fat of females and originally was named based upon its high expression in 

females under the control of Sex-lethal (Fujii and Amrein 2002), which is the initial 

regulatory gene in the somatic sex-determination hierarchy. fit also is expressed in virgin 

male fat body at low levels (Figure 14), and fit expression increases in response to 

courtship as well as mating (Carney 2007; Ellis and Carney 2009) (Figure 14).  

A third mating-responsive gene, Juvenile hormone esterase (Jhe), is also 

expressed in adipose tissue (Klages & Emmerich 1979; Renucci 1986; Wroblewski et al. 

1990; Shanmugavelu et al. 2000; Hinton & Hammock 2003; Bai et al. 2007; Kamimura 

et al. 2007; Munyiri and Ishikawa 2007; Anand et al. 2008; Liu et al. 2008). We have 

shown that Jhe is required for male reproductive behaviors. Jhe and three closely related 
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esterase genes (clt, Jhedup, and CG7529) have juvenile hormone esterase activity in 

vitro, although Jhe was predicted to be the physiologically active enzyme (Crone et al. 

2007). Juvenile hormone esterases (JHEs) together with juvenile hormone epoxide 

hydrolases (JHEHs) hydrolyze Juvenile hormone (JH) to regulate JH levels (Campbell et 

al. 1992; Campbell et al. 1998). Since homozygous Jhe and clt mutants as well as 

transheterozygous mutants have similar negative effects on male reproductive behavior 

(Figures 23-25), it appears likely that both JHE and CLT have juvenile hormone 

regulatory function in vivo. 

Much of our understanding of physiological functions of JH comes from studies 

investigating its function during development (reviewed by Flatt et al. 2005). However, 

JH also has important post-developmental functions such as promoting accessory gland 

protein (Acp) synthesis (Wolfner et al. 1997b). During mating Acps are transferred 

along with sperm, to the female (Wolfner, 1997), and the transfer of Acps triggers male 

synthesis of new Acps (DiBenedetto et al. 1990). Males also transfer Sex-peptide to the 

female during mating (Kubli 1992; Chen 1996; Wolfner et al. 1997a). Sex-peptide 

increases JH levels in females (Moshitzky et al. 1996), which stimulates egg 

development (Soller et al. 1999). However, possible mating-induced changes in male JH 

levels have not been evaluated.  

Jhe expression is responsive to fluctuating JH  levels (Kethidi et al. 2005), so the 

mating induced increase in Jhe expression identified in our study may be JH dependent. 

Since ejaculate components must be replenished after mating, we hypothesize that JH 

levels increase after mating to stimulate Acp synthesis. The increase in JH would 
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increase Jhe expression which would, in turn, negatively regulate JH and JH-induced 

Acp production. 

In addition to its physiological role in regulating Acp synthesis, JH affects 

reproductive behaviors. JH is necessary for the post-mating response in females (Soller 

et al. 1999), and loss of JH results in decreased courtship activity in males (Wilson et al. 

2003). Overexpression of the JHE binding protein DmP29, which is expected to 

decrease JH titers, causes a variety of phenotypes, including increased male-to-male 

courtship and decreased female receptivity (Liu et al. 2008). Decreased expression of 

DmP29 (which should increase JH titers) causes increased female fecundity but has no 

obvious effect on male fecundity; male behavior was not examined in animals with 

decreased DmP29 (Liu et al. 2008).  

Though the loss of JH disrupts courtship behavior (Wilson et al. 2003), our data 

suggest that an increase in JH, caused by reduction of Jhe or clt, also disrupts courtship 

(Figures 23-25). Jhe and clt deficient males, which likely have increased levels of JH, 

court less vigorously (Figure 23), have increased mating latencies (Figure 24), and have 

reduced mating success (Figure 25). However, CS females mated to Jhe or clt males laid 

similar numbers of eggs compared to CS females mated to control males. This situation 

exemplifies the complex regulation governing behavior and implies that JH levels must 

be tightly regulated in order to ensure appropriate behavioral and physiological 

responses. 

 Together, these results imply that the brain is not the only tissue responding to or 

regulating post-mating behavior, but that adipose tissue plays a role in this process as  
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well. In response to mating, a signaling cascade initiated by neurosecretory cells may 

transmit the signal to the surrounding fat body. The fat body then could perpetuate the 

signal by secreting factors that influence neuronal or non-neuronal tissues. We 

hypothesize that expression level changes in the brain alter neuronal signaling either 

directly or indirectly, which impacts the processing of sensory cues and targets other 

reproductively important tissues. 

 We predict that some mating-responsive genes facilitate an increased male 

mating efficiency for future encounters. Little is known about how repeated matings 

affect male mating latency, duration or fecundity. Data from our lab indicate that male 

mating latency decreases due to experience (C. C. Schwedes & G. E. Carney, 

unpublished results). After his first mating, the male may perceive and process female 

stimuli more rapidly, may be more appealing to the female, or may be physiologically 

primed for subsequent matings by replenishment of Acps, sperm or other seminal 

proteins, resulting in decreased courtship or mating latencies. Alterations in gene 

expression, such as those described here and in our earlier work (Carney 2007; Ellis and 

Carney 2009), may contribute to these expected behavioral and physiological changes.  

 

Gene expression in the brain 

 Although we are particularly interested in the large number of fat-enriched or fat-

expressed genes that were identified in this and earlier screens (Carney 2007; Ellis and 

Carney 2009), we also note that many of the identified transcripts are expressed in 

brains. Thirteen of the 21 fat-expressed genes up regulated in mated males are also 
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expressed in brains at detectable levels (Chintapalli et al. 2007); a single transcript, 

CG4288 is detected in brains but not fat (Chintapalli et al. 2007).  

 Mutants for bgm, an enzyme involved in fatty acid metabolism that is expressed 

in both the brain and fat, have a neurodegeneration phenotype in response to 

accumulation of long chain fatty acids (Min and Benzer 1999). Another gene that 

potentially functions in a neurodegeneration pathway is CG4825, which responds to 

changes in polygluatmate (polyQ) levels (Nelson et al. 2005). polyQ diseases, including 

Huntington's Disease, are adult onset progressive neural degeneration diseases caused by 

the accumulation of glutamate repeats (Zoghbi and Orr 2000). 

 Cellular homeostasis is important in the maintenance and function of the 

Drosophila brain. One gene that helps maintain this homeostasis is Iron regulatory 

protein 1B (Irp-1B) which encodes a protein that binds to iron-responsive elements 

(IREs) to regulate iron metabolism (Muckenthaler et al. 1998). In addition to affecting 

cell survival and homeostasis, neural morphology might also be regulated by mating-

responsive candidates. Mutants of Pabp2 show pathfinding and targeting defects in the 

larval neuromuscular junction (Liebl et al. 2006).  

 Proper function of the nervous system relies on the appropriate cellular 

architecture, connections and signaling. Behavior requires the sensory systems to 

perceive the information accurately and transmit such information to the brain for 

processing. The brain can then transmit the signal to the appropriate output pathways 

which can modify signaling in tissues such as the fat body or the brain itself. Therefore 

the establishment and maintenance of the brain (and sensory systems) is vital to the 
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organism's ability to respond to its environment and experience. The mating-responsive 

gene Drop is involved in nervous system development (Skeath and Thor 2003; Urbach 

and Technau 2004), and it is possible that Drop and other mating-responsive genes act 

in the development or maintenance of a mated male brain as opposed to a naïve male 

brain. 

 

Mating-responsive genes and the sex-determination hierarchy 

This genome-wide analysis identified known sex-determination hierarchy target 

genes such as fit. Three other mating-responsive genes (CG16772, Prx2540-2 and 

CG16898) (Tables 3 and 4) are also regulated by the sex-determination hierarchy 

(Goldman and Arbeitman 2007). Transcriptional profiling of mutants for a variety of 

sex-determination hierarchy genes indicates that Prx2540-2 and CG16898 are regulated 

by fruitless (fru), while fit is downstream of transformer (tra). CG16772 may also 

function downstream of tra (Goldman and Arbeitman 2007).  

The splicing factor squid (sqd) is up regulated in mated male heads (Table 7). 

Interestingly, primary transcripts of the sqd locus are sex-specifically spliced in the head 

as well as the germline, although it is not known if sqd splicing is regulated by the sex-

determination hierarchy (Telonis-Scott et al. 2009). It is possible that sqd and other 

mating-responsive loci function as downstream targets of the sex-determination 

hierarchy to regulate morphological and behavioral differences between male and 

female Drosophila. Alternatively, there may be other pathways (such as those that 

regulate alternative splicing) that function together with the sex-determination hierarchy 
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to regulate reproductive behavior. We predict that mating-responsive genes also function 

in other aspects of reproduction; therefore, we propose this transcriptional profiling 

approach is a powerful strategy for determining the genetic pathways and intracellular 

processes regulating reproduction, both at the behavioral and physiological levels. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

Courtship or mating alter male gene expression profiles 

 We present the first pieces of evidence that the performance of reproductive 

behaviors alters gene expression profiles of male Drosophila. Not only do we show that 

freely behaving male Drosophila have altered gene expression, but we also show that 

variation in their environment (such as courtship cues from a conspecific versus 

heterospecific female) rapidly alters their behavior (Figure 4). 

These gene expression changes are tissue specific (head versus whole body) and 

occur rapidly (within 5 or 20 min). Head tissue includes the brain and peripheral nervous 

system structures (eyes and antennae) and since courtship involves nervous system 

function within these modalities, we hypothesized that focusing on head tissue would 

reveal behaviorally important loci. 

 

Insights into fat body modulation of courtship behavior through the first 

behavioral analysis of fit 

 Analysis of our courtship-responsive genes revealed that many loci are enriched 

in the head compared to the brain, implying that these candidate genes are enriched in 

tissues such as the eye, antennae or the fat body (Tables 6 and 10). Fat body expression 

of our candidate genes (Figures 7, 14, and 22) was particularly intriguing because there 

is a small body of work demonstrating that the fat body serves functions beyond 
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metabolism; the fat body also modulates reproductive behaiors (Dauwalder et al. 2002; 

Fujii and Amrein 2002; Lazareva et al. 2007; Fujii et al. 2008; reviewed in Dauwalder 

2008). For example, sexual identity of the fat body affects male courtship behavior; 

feminization of the adult male fat body results in decreased circulating levels of the 

male-specific Takeout and reduced male-female courtship activity (Lazareva et al. 

2007).  

 Since we have shown that courtship- or mating-responsive loci are expressed in 

the fat body (Figures 7, 14, and 22) the next step is to determine if their expression in the 

fat body is necessary for behavior. Also, since the fat body is a secretory tissue 

(reviewed in Schlegel and Stainier 2007), it is possible that these courtship-responsive 

gene products are secreted into the hemolymph, or mediate the secretion of other factors, 

and function in other reproductively important tissues such as the gonads or nervous 

system. If we can determine the localization of these behaviorally-responsive gene 

products we will gain insight into fat body signaling and its role in reproduction. 

 To better understand how adipose signaling affects behavior, we are studying 

female-specific independent of transformer (fit). Not only is fit expressed in the fat body 

(Figures 14 and 15), but it is up regulated by courtship or courtship followed by mating 

(Figure 14; Tables 3 and 7). This implies that fit expression is tied to both courtship 

sensory cues and mating-induced physiological changes; sensory cues result in rapid (5 

or 20 min) changes in fit levels but by themselves do not sustain these increases in fit (at 

least 2 hrs later), but post-mating changes result in pro-longed fit increases. 

 Though fit does not appear to regulate male-female courtship (Figure 16),  
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deletion of fit results in increased male-male courtship (Figure 17). Previous work 

studying male-male courtship has typically focused on mutant-mutant interactions 

without considering that male-male courtship is a binary event (Appendix A). Though 

mutant-mutant interactions will answer the over-arching question of whether or not a 

mutation regulates male-male courtship, it does not separate whether the presence of 

courtship is due to the inability to process sensory information correctly or the 

presentation of inappropriate courtship cues. These two problems are also not mutually 

exclusive. In theory, mutations in a gene could affect both processes, though only fru 

and dsx have been demonstrated to affect both processes (Appendix A). Examining 

combinations of fit mutant males and control (fit/+ or CS) males reveals that fit is 

involved in both the perception and presentation of sensory cues. We are also curious 

about the specificity of fit in interpreting sensory information. Is fit needed for 

processing the inhibitory cues emittted from mated females or heterospecific flies? 

 To start to understand how fit can affect both processes and whether these 

processes are linked, we can examine the tissues requiring fit to repress either aspect of 

male-male courtship. The perception or bisexual phenotype would most likely be a 

nervous system defect. However, reduced fat body expression of fit resulted in bisexual 

courtship. This implies that adipose signaling may alter neural processes. We have yet to 

confirm Fit's expression in the brain or peripheral sensory organs and are currently 

evaluating how decreased fit expression pan-neuronally affects male behavior. However, 

if we consider that adipose tissue is linked to the oenocytes in regulating cuticular 

hydrocarbon synthesis, it is likely that the fat body expression of Fit maintains the 
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proper pheromonal profiles in males and that reduced fit expression may result in males 

that have increased aphrodisiac hydrocarbons such as 7-pentacosene (7-P) (Antony et al. 

1985), smell like females, smell like immature males or females, or do not express the 

inhibitory male pheromones. Generating pheromonal profiles for fit mutant males 

compared to controls will offer more insight. 

 However, when fit expression is reduced in the fat body, including post-

developmental reduction, mutant males exhibit both male-male courtship phenotypes 

(Figures 20 and 21). This implies that adipose signaling is mediating multiple processes. 

fit is likely secreted, since Fit protein is expressed in eggs despite the transcript not being 

present (Nakahara et al. 2005), has a predicted signal sequence, and is expressed in the 

secretory adipose tissue (Figures 14 and 15). Testing fly hemolymph for the presence of 

Fit will better answer this question but is a technically challenging task. However, if Fit 

is secreted as we suspect, or at least involved in the secretion of other factors, it is 

possible for Fit to affect both the nervous system and the oenocytes or other tissues 

involved in male courtship behavior. 

 

Behavioral analysis of candidate genes reveal novel functions in male behavior  

 We hypothesized that courtship-responsive genes would likely regulate male 

behavior. Therefore, we tested P-element insertions located upstream or within many of 

the 20 min courtship-responsive genes or the 2 hr courtship and mating-responsive genes 

for behavioral defects. From this initial analysis, mutants for 2 candidate genes showed 

decreases in courtship activity.  
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The courtship-responsive egh was required for robust male courtship. Mutations 

in egh resulted in decreased CI values (Figure 8) and further analysis shows that egh was 

required post-developmentally in Apterous neurons for male courtship behavior (Figures 

12 and 13); however, we do not know if egh expression only in the adult is sufficient for 

male courtship. egh functions in female Apterous neurons comprise a large portion of 

the CNS, and it is possible that males are utilizing a different set of Ap neurons for 

courtship behavior from those used in females to regulate the Sex-peptide response. 

However, there are 2 likely possibilities for the same set of neurons regulating sex-

specific behaviors: (1) Egh is interacting with sex-specific factors in the Apterous 

neurons or (2) the Apterous neurons have sex-specific connections to other neurons 

creating sexually dimorphic circuitry to regulate two separate behaviors. fru establishes 

a sex-specific neural circuit required for male courtship behavior; however, decreased 

egh expression in fru neurons did not affect male courtship behavior. It is likely that egh 

may not be expressed in fru-expressing neurons but may affect fru neuron function 

indirectly. 

 Mutations in the mating-responsive Jhe and the functionally-related clt reduced 

CI values (Figure 23) and increased mating latencies (Figure 24) without affecting 

locomotor activity. Jhe levels are undetectable in the head or fat body and thus made 

further analyses difficult. We sought to reduce Jhe levels in the fat body and measure CI 

values but did not see a reduction in CIs. This may be because Jhe is not required in 

adipose tissue for courtship or because Jhe was not reduced by the RNAi mechanism. 

We cannot rule out the latter possibility. We anticipated that our behaviorally-responsive 
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genes would be involved in subsequent courtship or mating encounters to make the male 

a more efficient courter/mater. Indeed, mutations in Jhe or clt resulted in decreased 

mating success over 3 mating trials (Figure 25). Another avenue of study is the link 

between these Juvenile Hormone esterase phenotypes, Juvenile Hormone (JH), and 

reproduction.  

  

A novel approach to identifying sex-determination target genes 

 We hypothesized that we could identify other target genes of the somatic sex-

determination hierarchy by identifying courtship- and mating-responsive patterns of 

gene expression. This genetic pathway is the major regulator of Drosophila sexually 

dimorphic development and is required developmentally and post-developmentally to 

regulate behavior. We predicted that some candidate genes would be members of this 

regulatory pathway. Indeed, microarray analysis of sex-determination genes reveals that 

several of our candidate genes regulated by tra, fru or dsx. CG16772 and fit are 

downstream of tra; CG9377, CG16898, Prx2540-2 are regulated by fru, and dsx 

regulates CG9837 (Goldman and Arbeitman 2007). 

  

Impacts on behavioral genetics 

 The work presented here is the first to demonstrate that gene expression changes 

occur in Drosophila males during the performance of reproductive behaviors. We have 

identified candidate loci whose gene expression levels are modified by courtship or 

mating experience (Tables 1-4 and 7-8). Several of these behaviorally-responsive genes 
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are SDH target genes, verifying a novel approach to better understand the genetic 

components regulating sex-specific developmental and behavioral processes. 

 In analyzing mutations in these courtship- or courtship and mating-responsive 

loci, we identified 2 genes with novel functions in modulating behavior. The courtship-

responsive egh gene, already known to affect development and female behavior, is also 

required in adult male neurons to modulate male courtship behavior (Figures 10, 12, and 

13). Many candidate loci are enriched in the male fat body (Figures 7, 14, 15, and 22; 

Tables 6 and 10), a tissue recently discovered to affect behavior (Dauwalder et al. 2002; 

Fujii and Amrein 2002; Lazareva et al. 2007; Fujii et al. 2008; Benito et al. 2010; 

reviewed in Dauwalder 2008). One fat body-expressed gene, fit, is also a target gene of 

the SDH. We have provided the first behavioral analyses of fit, which indicate that fit 

modulates both aspects of male-male courtship (bisexual courtship and courtship 

elicitation) (Figures 17 and 18). fit is needed in adult adipose tissue to repress courtship 

of males and courtship from males (Figures 20-21). As we determine fit’s role in 

modulating both aspects of male-male courtship, we will better understand how 

signaling in the non-neuronal adipose tissue can impact neuronal signaling and behavior. 
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APPENDIX A 

RESULTS FROM A FlyBase QUERY OF COURTSHIP DEFECTIVE MUTANTS  

 

 As I uncovered the fit phenotypes (courtship towards or from males), I wanted to 

determine what other mutants show either phenotype. To generate this comprehensive 

list of Drosophila courtship defective mutants I first performed a literature search with 

keyword combinations with Drosophila, courtship, mutant, defective, or male-male 

courtship, but found this to be a rather tedious and time consuming approach. A more 

efficient method I took was to utilize the QueryBuilder program found through 

FlyBase‟s website at http://flybase.org.  

 QueryBuilder allows a user to select the query terms from all of FlyBase‟s 

variables (e.g. gene, allele, gene ontology) and to define the search parameters for that 

variable. I searched for alleles that were of the phenotypic class courtship defective. This 

criterion extracted all alleles (and the corresponding genes) that have been noted as 

defective in male-female or male-male courtship. The HTML table was exported with 

the Batch Download HitList Conversion algorithm to generate a tab-separated table of 

the query which includes the gene symbol, gene name, phenotype summary, and 

references for further analysis. 

 I supplemented the FlyBase table with literature searches focusing on male-male 

courtship mutants. One question to address was whether or not the bisexual or elicitation 

phenotypes were addressed separately. Unfortunately, most researchers did not parse 

these phenotypes; mutant males direct courtship towards mutant males (Table A1). 
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Table A1. Drosophila male-male courtship mutants. Results from a FlyBase query for courtship defective flies. Disruption of 
dopamine/pale, dsx, or fru result in both the bisexual & elicitation phenotypes. WT=wild type. 

Gene Symbol Phenotype Reference 

Male-male courtship mutants  
Dopamine  Increased dopamine causes males to court other males 

Decreased dopamine results in males eliciting courtship 
Liu et al. 2008 J 
Neurosci 21:5539-46 
Liu et al. 2009 PLoS 
One 4:e4574 

Octopamine  males w/ no OCT or w/ low OCT levels do not adapt to changing sensory cues & court both males & 
females. 

Certel et al. 2007 PNAS 
104:4706-11 

Oenocyte null 

males 

 WT males attempted to copulate w/ oe- males Billeter et al. 2009 
Nature 461:987-U250 

 CheB42 Males homozygous for CheB42aÎ”5-68 display normal levels of overall courtship. The typical climbing 
response to mechanosensory detection of gravity, stimulation of food intake by gustatory detection of 
sucrose is not affected in CheB42aÎ”5-68 homozygous males. CheB42aÎ”5-68 mutant males perform an 
average of eight attempted copulations in a 10 min observation period, whereas control males perform 
only three. This increased number results from a faster progression from initiation of courtship behavior 
to the first attempted copulation, as well as more frequent subsequent attempts. CheB42aÎ”5-68 males are 
not different from controls in the timing or frequency of earlier steps in the courtship sequence (lag to 
courtship initiation, tracking & following of the female, tapping, & wing vibration). CheB42aÎ”5-68 
homozygous males spend the same amount of time courting females as WT controls. CheB42aÎ”5-68 has 
no effect on several other behaviors unrelated to courtship; such behaviors include preening, walking, 
geotaxis, & gustatory response to sugars. 
The transgene CheB42a specifically targets male gustatory sensillae & alters the perception of male 
inhibitory pheromones which leads to frequent male–male interactions. 

Svetec et al. 2005 
Genetical Res 85:183-93 

defective in the 

avoidance of 

repellents 

dare Mutants also show male-male courtship behavior.                 
 No mention of elicitation 

Freeman et al. 1999 
Development 126: 4591-
-4602 

desaturase1 desat1 In red light, mutant males could not discriminate the sex of control flies, Under red light conditions, in 
which flies are effectively blind (Boll & Noll 2002), CS males indiscriminately courted male & female 
desatl mutants (Fig, 3a(C); p=n.s.), whereas they clearly preferred courting female flies when presented 
w/ male & female control flies (Fig. 3a(A); p<0.0001). 

Marcillac et al. 2005 P 
Royal Soc B-Biological 
Sciences 272:303-9 
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Table A1. Continued 
Gene Symbol Phenotype Reference 
dissatisfaction dsf Homozygous females fail to lay eggs voluntarily or under CO2 anaesthesia. Eggs mature normally in the 

ovary & pass through the oviducts into the uterus where they degenerate. Homozygous & hemizygous 
females show significantly longer times from the initiation of courtship until copulation relative to WT. 
This delay results from active resistance by the female, including running about the mating chamber, 
wing flicking & kicking the male. Females also show resistance during copulation, showing excess 
activity & actively trying to dislodge males by flicking their wings, bucking & kicking at the males. 
Homozygous & hemizygous males initiate courtship w/ mature WT virgin females as rapidly as WT 
males, & actively court females, but they show a substantially delayed time to copulation compared to 
WT. The males are defective in abdominal curling, making fewer bends that fall into the maximum 
degree category (180o) that is sufficient for copulation. This probably accounts for the increase in time to 
copulation seen for homozygous & hemizygous males. Homozygous & hemizygous males also actively 
court both mutant & WT mature males even w/ virgin females present. This includes all courtship 
behaviors up to & including attempted copulation. WT males do not court homozygous or hemizygous 
dsf1 males. Homozygous males are substantially delayed in the average time from initiation of courtship 
until copulation compared to WT flies. Homozygous males court males as well as females & males 
show pairwise & multiple male courtship. Young mutant males show minimal head-to-head interaction 
behavior & almost no homosexual courtship. Mutant males aged individually for approximately 2 wks & 
then grouped together show a high level of head-to-head interactions on the first day after being grouped 
together. By 5 days after being grouped together, the level of head-to-head interaction is barely above 
the WT level, & is significantly lower than the level of head-to-head interaction on the first day after 
being grouped together. "Swarming" behavior is seen on the first day that the mutant males are grouped 
together, w/ groups of males moving swiftly throughout the test chamber, seeming to chase other mutant 
males & be chased by them. When the group of moving males encounters an internal boundary (e.g. the 
surface of the food) the swarm typically does not break up but moves off in another direction. Swarming 
behavior persists to day 5 after being grouped together, although the behavior occurs less frequently than 
on the first day after being grouped together. Males can show head-to-head interactions during swarming 
behavior, although of shorter duration than head-to-head interactions between a pair of males.  
Haven't found any evidence that elicitation has been tested 

Finley et al. 1998 
Neuron 21:1363-74 
Finley et al. 1997 PNAS 
94:913-18 
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Table A1. Continued 

Gene Symbol Phenotype Reference 
doublesex dsx XX dsx1/dsx1 & dsx1/Df(3R)dsx15 flies do not show any male-specific courtship when paired w/ mature 

virgin females. 30% of XX & 56% of XY dsx1 tra1 double homozygous flies show male-specific 
courtship when paired w/ mature virgin females. 6% of XY dsx1/dsx1 flies & 27% of XY 
dsx1/Df(3R)dsx15 flies show male-specific courtship when paired w/ mature virgin females. XY 
dsx1/Df(3R)dsx15 flies have a reduced courtship index (compared to control males) when paired w/ 
immature male flies. XY males show courtship sluggishness when compared to WT siblings. Aging does 
not improve the courtship performance. Song pulses are similar to those of dsx+ males, though number 
& duration of song bouts are much reduced. No sine-song bouts whatsoever are generated by dsx 
mutants. In elicitation & rejection tests, dsx haplo-X mutants demonstrate an attractiveness that cannot 
be explained by general enfeeblement, such as inability to reject courtship advances. dsx1/dsx43 females 
have a pheromone profile that resembles, to a first approximation, that of WT males. These males court 
less frequently & less aggressively than dsx1/+ controls, & when they do court it is not sustained for long 
periods of time. These pseudofemales show little interest in females & perform only early mating 
behaviors (orientation, tapping, wing extension & vibration). Unlike WT females they continue to move 
around the chamber during copulation & flick their wings in an apparent attempt to dislodge the male.  
XY ; dsx1 males show "normal" levels of head-to-head interactions compared to WT males. 
Homozygous males form short inter-male chains on day 5 after being grouped together, w/ a maximum 
of 3 to 4 mutant flies being involved in each chain.  
 
Males expressing DsxF are courted by other males. 

Waterbury et al. 1999 
Genetics 152:1653-67 
Villella & Hall 1996 
Genetics 143:331-344 

Ecdysone 

Receptor 

EcR Reduction of EcR-A levels in fru P1-expressing neurons of males caused a significant increase in male-
male courtship activity 
Ganter et al. - EcR males do not elicit courtship from WT males but do court WT males 

Ganter et al. 2007 Behav 
Gen 37:507-12 
Dalton et al. 2009 Curr 
Biol 19:1447-52 
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Table A1. Continued 
Gene Symbol Phenotype Reference 
fruitless fru Homozygous males show chain behavior. fru1/fru0-1 males show chain behavior, although not as 

intensely as either fru1 or fru0-1 homozygotes, but are essentially normal in fertility. Failure to curl 
abdomen in attempted copulation. Male heterozygotes w/ In(3R)fru formed courtship chains but were 
fully fertile & had an abnormal MOL. Males are more stimulated to court females than fru3 or fru4. All 
males that exhibit any courtship do exhibit tapping behavior (tapping of the female w/ the forelegs). 
Males, when presented w/ both sexes simultaneously, will show a courtship bias toward females. Mutant 
females are courted by WT males at normal levels. Male-female courtship as measured by wing 
extension index (WEI) is almost completely abolished in fru0-1/fruw9, fru0-1/fru w12, fru0-1/Df(3R)fruw24 or 
fru0-1/fru w27 males. fru0-1/fru w9, fru0-1/fru w12 or fru0-1/fru4-40 males show substantial chaining. fru0-1/fru0-1 
& fru0-1/fru1 males show longer than normal mating-initiation latencies compared to heterozygous 
controls when mated to a single virgin WT female. The mating duration is not significantly different 
from WT. The density of varicosities of the sAbg neurons which are associated w/ the reproductive 
organs is nearly normal in fru0-1 males. 

Villella et al. 2005 
PNAS 102:16550-57 
Demir and Dickson 
2005 Cell 121:785-94 
Manoli et al. 2005 
Nature 436:395-400 
Kimura et al. 2005 
Nature 438:229-33 
Ito et al. 1996 PNAS 
93:9687-92 
Ryner et al. 1996 Cell 
87:1079-89 

fruitless 

stimulation 

factor 

fsf Homozygous males stimulate WT males to court them even when the mutant males are ether 
anaesthetised or have their head & thoraces removed. The level of courtship elicited by homozygous 
males is significantly higher than that elicited by WT males. Heterozygous males stimulate an 
intermediate level of courtship by WT males. 
Haven't found data for male discernment 

Gailey & Hall 1989 
Genetics 121:773-85 

garnet g Mutant flies show disturbed orientation behavior & walking speed in a behavioral assay. g1 mutant male 
flies show a greater degree of male-male courtship than WT flies.  
Elicitation was not measured 

Lloyd et al. 2002 
Genome 45:296-312 

genderblind gb Males expressing gbdsRNA.Scer\UAS under the control of Scer\GAL4Tub84B.PL show a significant amount of 
homosexual behavior. Male flies carrying gbKG07905 show frequent homosexual interactions, including 
singing to other males, genital licking & attempted copulation. gbKG07905 males presented simultaneously 
w/ a WT passive (decapitated) male & a WT passive (decapitated) virgin female choose to court the 
male & female w/ equal intensity & probability (in contrast to WT males which always choose to court 
females). This phenotype is seen both when group & single-pair courtship assays are carried out. 
gbKG07905 males show much higher homosexual courtship under dim red light conditions (in which the 
flies are virtually blind) than control males under the same conditions. gbKG07905 males show abnormally 
high courtship levels to mated WT females. Grosjean et al. does not deal w/ any elicitation by gb males 

Grosjean et al. 2008 Nat 
Neuro 11:54-61 

Gustatory 

Receptor 32a 

Gr32a Males w/ a mutated Gustatory receptor 32a gene (Gr32a) show high courtship toward males & mated 
females. 
Does not address elicitation 

Miyamoto & Amrein 
2008 Nat Neuro 11:847-
6 
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Table A1. Continued 
Gene Symbol Phenotype Reference 
Gustatory 

Receptor 33a 

Gr33a We found that the Gr33a1 male flies displayed increased courtship toward passive, decapitated males 
(Figure 4A). This phenotype was rescued by the Gr33a+ transgene (Figure 4A). In contrast, courtship of 
Gr33a1 males to decapitated or normal females was not different significantly from the Gr33a+ males 
(Figures 4B–4D). 
Did not address elicitation 

Moon et al. 2009 Curr 
Biol 19:1623-7 

Juvenile 

hormone 

esterase binding 

protein 

DmP29 Overexpression resulted in male-male courtship behavior. 
Doesn't look at elicitation 

Liu et al. 2008 Gen & 
Comp Endocrin 
156:164-72 

Odorant 

receptor 67d 

Or67d Mutant males that lack Or67d inappropriately court other males, whereas mutant females are less 
receptive to courting males.  
Or67dGAL4-1 males paired w/ WT males show a significantly higher male-male courtship index than that 
of control males paired w/ WT males. Or67dGAL4-1 females mated to WT males show a higher copulation 
latency than control females mated to WT males. The male pheromone cVA (Z-11-octadecenyl acetate) 
elicits a rapid & robust firing response in the T1 trichoid sensilla of control Or67d+1 flies but not in those 
of Or67dGAL4-1 flies. Male & female Or67dGAL4-1 flies do not produce a detectable electroretinogram 
response to cVA (in contrast to controls), but they show a normal electroretinogram response to ethanol. 
When paired w/ virgin females, Or67dGAL4-1 males court at levels comparable to those of control males. 
However, when Or67dGAL4-1 males are paired w/ WT males, they show a roughly threefold higher 
courtship activity than control males paired w/ WT males. Or67dGAL4-1 females mated to WT males 
show a higher latency to copulation than control females mated to WT males. Virgin Or67dGAL4-1 
females are courted as vigorously as control females when paired w/ WT males. Application of the male 
pheromone cVA (Z-11-octadecenyl acetate) to the abdomens of virgin females suppresses courtship by 
control males but not by Or67dGAL4-1 males in a single-pair courtship assay. 
Reference does not address elicitation 

Kurtovic et al. 2007 
Nature 446:542-6 

pale ple plets1 males raised at 31°C have significant lower level of dopamine as compared w/ sibling males raised 
at 25°C. Homozygous plets1 males raised at the restrictive temperature (31oC) induce homosexual 
courtship behavior in plets1 mutant as well as WT males. 

Pendleton et al. 2002 
Behav Genet 32:89-94 
Liu et al. 2009 PLoS 
ONE 4:e4574 

prospero pros Heterozygous males show abnormal courtship behavior; they actively court both virgin females & 
mature males, courting both intact & decapitated flies. The courtship index & attempts at copulation are 
higher towards females than males. Heterozygous females do not differ for sexual receptivity or 
locomotor activity when compared to control flies. The courtship index of heterozygous males towards 
decapitated Canton-S males is significantly higher than that of WT males towards decapitated Canton-S 
males.  
No test of elicitation 

Grosjean et al. 2007 
Behavior Genet 37:575-
84 
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Table A1. Continued 
Gene Symbol Phenotype Reference 
quick-to-court qtc Sexually mature qtc1 males perform much more courtship in response to each other than do control 

Canton-S-5 (CS) males; mature qtc1 males have a male-male courtship index (CI) of 42 +/- 5 (indicating 
that courtship behaviors are observed on average during 42% of a 10 min observation period), whereas 
CS males have a CI of only 4 +/- 1. qtc1 males' courtship of each other is qualitatively different from that 
of CS controls. In all pairs of CS males observed, one or both males perform at least one of the "early" 
behaviors (orientation, tapping & following), but in only half of the pairs observed do one or both males 
vibrate their wings to produce a courtship song & none of the males lick or attempt copulation. In 
contrast, in all pairs of qtc1 males observed, one or both males lick the other male's genitalia & one male 
attempts to copulate w/ the other male. qtc1 males do not show chaining behavior, & like CS males, all 
of the qtc1 males run away from the males that court them (indicating that the response to male courtship 
is normal in qtc1 males). qtc1 males perform high levels of male-male courtship in response to CS males, 
while CS males perform little or no courtship in response to qtc1 males. In qtc1/CS pairs in which both 
males perform at least some courtship, the qtc1 male initiates courtship first. qtc1 males initiate courtship 
of CS virgin females quicker than do control CS males. They perform normal levels of courtship 
towards the females during the observation period: CI is 75 +/- 3 for qtc1 males paired w/ CS females 
compared to 78 +/- 3 for CS males paired w/ CS females. The mutant males perform "advanced" 
courtship behaviors towards the females; all show wing vibration & most show licking of the females' 
genitalia & curling of the abdomen to attempt copulation. The copulation latencies of qtc1 males are not 
significantly different from those of CS males. qtc1 females elicit as much courtship from CS males as 
do CS females. Immature qtc1 males elicit the same level of courtship from CS males as do immature CS 
males. qtc1 females are as likely to mate w/ CS males as are CS females, & the mutant females' 
copulation latencies are normal. Sensory function of qtc1 flies appears normal (in limited testing of 
visual & olfactory physiology by electroretinogram & electroantennogram recordings & tests of adult & 
larval olfactory behavior). No general behavioral defects in activities such as walking or grooming are 
seen. 

Gaines et al. 2000 
Genetics 154:1627-37 

sluggish B slgB Isolated w/ regard to poor response to light in fast phototaxis tests; both sexes are sluggish in this regard. 
Males in this strain do not mate w/ females in darkness; in the light, males court & mate w/ females (40-
50%, w/in 10 m) & other males w/ equal vigor; the latter behavior includes formations of chains & rings 
of intermale courters, as well as pseudo-copulation attempts; courtees in these circumstances do not 
exhibit wing-flick repelling responses characteristic of WT males. Spectral sensitivity studies of the 
light-elicited courtship activities showed 420-515 nm to be effective (thus orange/red range ineffective); 
yellow light was perhaps the most stimulatory; quick turn-ons & turn-offs of intermale courtships could 
be effected by intermittent exposures to yellow & red light, respectively. 

Sharma 1977 Experentia 
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Table A1. Continued 
Gene Symbol Phenotype Reference 
transformer tra 100% of XX & 86% of XY tra4/Df(3L)st-j7 flies show male-specific courtship when paired w/ mature 

virgin females. Pseudofemales are placed in individual chambers w/ another male or female they show 
little interest in courting. When they do court they do not discriminate between males & females & only 
very early courtship routines, such as orientation, tapping & brief wing vibration are seen. These 
pseudofemales elicit high levels of courtship from WT males & allow themselves to be mated. The 
pheromone profile of XY flies carrying traF.Hsp83 resembles that of WT females.  
Males expressing traScer\UAS.cFa under the control of Scer\GAL4pros-V1 show very little courtship towards 
females & males, for both intact & decapitated target flies. These males rarely attempt to copulate w/ 
target flies of either sex. Females expressing traScer\UAS.cFa under the control of Scer\GAL4pros-V1 are not 
significantly different from control females w/ respect to sexual receptivity. Transformed males carrying 
Scer\GAL47B, Scer\GAL430B or Scer\GAL453B show a homosexual or bisexual attraction to WT males. 
Expression of tra in Scer\GAL4c123a, Scer\GAL4Tab2-201Y & Scer\GAL4c739 males causes 
nondiscriminatory courtship. Male courtship can vary from male heterosexual behavior to some bisexual 
behavior. traScer\UAS.cFa; Scer\GAL4oeA, traScer\UAS.cFa; Scer\GAL4oeB & traScer\UAS.cFa; Scer\GAL4oeC males 
secrete a mix of sex pheromones more similar to WT females than males & induce similar levels of 
courtship behavior in WT males as WT females do. traScer\UAS.cFa; Scer\GAL4oeD or traScer\UAS.cFa; 
Scer\GAL4oeE males also secrete a feminised mix of sex pheromones & induce significantly higher 
levels of courtship behavior in WT males than other WT males, but not as much as WT females do. In 
contrast, the mix of sex pheromones secreted by traScer\UAS.cFa; Scer\GAL4noeF or traScer\UAS.cFa; 
Scer\GAL4noe.G males is similar to that secreted by WT males. These males do not induce significantly 
higher levels of courtship behavior in WT males than other WT males do. Expression of traScer\UAS.cFa 
driven by Scer\GAL4hs.PB reduces the amount of cuticular hydrocarbons by about 93% & renders both 
known & suspected sex pheromones undetectable in female flies. Over 95% of control males court 
decapitated traScer\UAS.cFa,Scer\ GAL4hs.PB females, showing the full range of courtship, though the 
Courtship Index (CI) of these females is less than 2/3 of that of WT females. No reduction of CI is seen 
w/ intact living females of the same genotype. In heterospecific courtship tests w/ heatshocked 
traScer\UAS.cFa,Scer\ GAL4hs.PB D.melanogaster females & D.sechellia, D.simulans, & D.mauritiana males, 
relatively high levels of courtship are seen - the CIs observed are consistently significantly higher than 
w/ non-heatshocked females. When heatshocked traScer\UAS.cFa,Scer\ GAL4hs.PB D.melanogaster females 
are treated w/ D.melanogaster cuticular hydrocarbons, CIs are reduced to WT levels. When heatshocked 
traScer\UAS.cFa,Scer\ GAL4hs.PB D.melanogaster females are treated w/ D.simulans cuticular hydrocarbons, 
CIs w/ WT D.melanogaster & D.sechellia males are reduced, CIs w/ WT D.simulans, & D.mauritiana 
males are increased. In single-pair cross interspecific mating tests between traScer\UAS.cFa,Scer\ GAL4hs.PB 
D.melanogaster females & WT D.sechellia, D.simulans, & D.mauritiana males, mating frequencies are 
significantly increased from the 0% seen w/ WT females. The courtship index of Canton-S male flies in 
response to XY flies expressing traScer\UAS.cFa under the control of a number of Scer\GAL4 lines 
(Scer\GAL453B, Scer\GAL410B, Scer\GAL432B, Scer\GAL430B or Scer\GAL46J3) is higher than that of 
Canton S male flies in response to control XY males.   

Taylor et al. 1994 Dev 
Genet 15:275-96 
Waterbury et al. 1999 
Genetics 152:1653-67 
 
Ferveur et al. 1997 
Science 
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Table A1. Continued 
Gene Symbol Phenotype Reference 
Vesicular 

glutamate 

transporter 

VGlut Males expressing VGlutScer\UAS.cDa under the control of Scer\GAL4Î±Tub84B.PL show high levels of 
homosexual courtship, which includes all aspects of sexual behavior (including singing, genital licking 
& attempted copulation). Occasionally, the males attempt copulation w/ inappropriate body regions, 
such as the head. Males expressing VGlutScer\UAS.cDa under the control of Scer\GAL4NP0225 show a 
significant amount of homosexual behavior, although less than seen when the Scer\GAL4Î±Tub84B.PL 
driver is used. 
No test of elicitation 

Grosjean et al. 2008 Nat 
Neurosci 11:54-61 

white w Transformant heat shocked males exhibit homosexual courtship behavior. Male-male courtship occurs 
between flies following ectopic expression of w+mC. Male-male courtship behavior increases w/ age, 
flies 1 wk old or older show high levels of courtship compared to one day posteclosion males. Olfactory, 
visual & gustatory responses are not affected by heat shock. Surgical ablation of the antenna &/or 
maxillary palps, or the wings has no effect on male-male courtship. Under red light male-male courtship 
is substantially reduced, restoration of white light increases courtship. For all classes of surgically 
treated flies red light diminishes courting activity. Male-male courtship is not due simply to an absence 
of rejection behavior (wing flicking) as heat shocked males will court a non-w+mC male exhibiting 
rejection behavior. Also the courting is not due to increased sexual attractance as non-w+mC males will 
not court heat shocked w+mC males. 

Hing et al. 1996 J 
Neurobio 30:454-64 
Zhang & Odenwald 
1995 92:5525-9 
Anaka et al. 2008 J 
Neurogen 22:243-76 
An et al. 2000 J 
Neurogen 14:227 

Male-female courtship mutants  
amnesiac amn Unlike WT males, amn28A homozygous males that have undergone courtship conditioning (kept in the 

presence of a female for 7 hrs) do not spend significantly less time engaged in courtship behavior when 
placed w/ a female 5 days after conditioning than non-conditioned males of the same genotype. Unlike 
WT males amn28A homozygous males conditioned to the presence of a female for 30 min do not spend 
significantly less time engaged in courtship behavior when returned to the presence of a female 1 hour 
later than non-conditioned males. Mutant males learn courtship suppression normally if tested 
immediately after training w/ a mature decapitated virgin & do not avoid mature virgins after training w/ 
an immature female. Introducing a delay between training & w/ a mature virgin & testing uncovers a 
more rapid decay of memory in these mutants. 

 

apterous ap Female sterile w/ underdeveloped ovaries; 6nurse cell nuclei become pycnotic after stage 7 & stage-8 
oocytes are the most advanced. Males show immature sexual behavior & are sterile, but testes appear 
normal w/ motile sperm. Mutant males spend less time courting & are less likely to perform some of the 
courtship behaviors than age-matched controls. Abnormalities are an indirect effect of the mutation 
which causes partial paralysis, lack of coordination & sluggishness. Only 13% female receptivity to 
mature male ap+ flies. Female flies have a high courtship intensity, but low percentage mating: this is 
due to low receptivity not low 'sex appeal'. Homozygous ap4 males are behaviorally sterile but have 
fertile gametes. Homozygous females are sterile; the ovaries are poorly developed, fragile & contain no 
vitellogenic egg chambers. 

Ringo et al. 1992 
22:469-87 
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ADP 

ribosylation 

factor 51F 

Arf51F Mutant females show reduced fertility. Mutant males are completely sterile. Mutant spermatids have a 
"four-wheel-drive" phenotype, indicating a cytokinesis defect during spermatocyte meiosis; more than 
90% of spermatids have more than one nucleus. 

 

ariadne ari-1 They also fail to perform any of the sexual routines (wing song, dance, licking & mounting) in front of 
WT females. 

 

 ato Oenocytes do not form in homozygous embryos, where the formation of the primary sensory organ 
precursors (SOPs) is compromised in most segments. In segments where remnant SOPs do develop, 
oenocytes can develop. Mutant males demonstrate vigorous courtship including courtship songs. 66% of 
mutant males use both of their wings simultaneously during courtship song production (in contrast to 
WT males which vibrate only one wing at a time). Relative amplitude of the sine song & pulse number 
is higher than normal in mutant males. Pulse duration is significantly longer than WT. 

 

bab2 bab2 Expression driven by Scer\GAL4pnr-MD237 in males causes loss of both male specific & non-sex-specific 
striped abdominal pigmentation. 

 

Btk family 

kinase at 29A 

Btk29A The apodeme at the base of the penis apparatus is split distally into 2. Flies exhibit a highly variable 
copulatory span & repetitive copulation in mated pairs often occurs soon after separation. Copulation 
involving mutant Btk29Afic-P males often terminates shortly after initiation. Mating behavior of 
Btk29Afic-P females is normal. Mutant males exhibit prominent atrophy of the posterior ejaculatory duct. 

 

beethoven btv Audiograms demonstrate mutants show a reduced response at all sound intensity. Mutants respond 
abnormally in an olfactory behavior test. 6/20 males successfully copulate w/ females w/in 30 min. 
Males are fertile w/ WT sperm motility. Mutants show reduction in sound-evoked courtship behavior. 
Mutant males demonstrate vigorous courtship including courtship songs. 50% of mutant males use both 
of their wings simultaneously during courtship song production (in contrast to WT males which vibrate 
only one wing at a time). Mutant males fully twist the vibrating wing so that the ventral surface is 
directed forward (90o angle of attack), whereas WT males only twist the vibrating wing so the trailing 
edge is slightly lower. Pulse duration is significantly longer than WT in mutant male songs & the carrier 
frequency of the sine song is significantly higher than normal. Relative amplitude of the sine song is 
higher than normal in mutant males. 

 

c601 c601 c601 virgin females show elevated ovulation; 20% of the virgin females show ovulation (compared to 
0% of virgin Oregon-R females). The flies show no obvious defects in viability, fertility, morphology or 
locomotor activity. The courtship index observed when c601 virgin females are mated to WT males is 
lower than that seen when WT virgin females are mated to WT males, but is higher than that seen when 
WT mated females are mated to WT males. c601 mutant virgin females show ovipositor extrusion 
towards courting WT males (this extrusion behavior is normally observed in mated WT females but not 
in virgin WT females). 
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c625 c625 c625 virgin females show elevated ovulation; 46% of the virgin females show ovulation (compared to 

0% of virgin Oregon-R females). The flies show no obvious defects in viability, fertility, morphology or 
locomotor activity. The courtship index observed when c625 virgin females are mated to WT males is 
lower than that seen when WT virgin females are mated to WT males, but is higher than that seen when 
WT mated females are mated to WT males. c625 mutant virgin females show ovipositor extrusion 
towards courting WT males (this extrusion behavior is normally observed in mated WT females but not 
in virgin WT females). 

 

cacophony cac Males court abnormally w/ poor mating success & aberrant courtship song, which includes pulses of 
tone that are polycyclic, rather than monocyclic or tricyclic, w/in WT pulses & have increased 
amplitude. Mating success of wingless mutant males is still worse than that of wingless WT males, 
which is correlated w/ genetic separability of song abnormalities from deficit in mating performance. 
Female courtship appears to be unaffected by cac; but general locomotor activity of males or females is 
subnormal. 

 

Calcium/calmo

dulin-

dependent 

protein kinase 

Caki Walking speed & path length of CakiX-307/CakiX-313 transheterozygotes is considerably reduced, as 
studied in Buridan's paradigm. Vision seems not to be dramatically altered. CakiX-307/CakiX-313 double 
mutants fail to suppress courtship w/ mated females as normal & are defective for courtship habituation. 
Associative memory, is normal in mutants. 

 

Calmodulin Cam The initial stages of male courtship are normal, but the rescued males cannot bend their abdomens 
sufficiently to achieve penetration. 

 

Calcium/calmo

dulin-

dependent 

protein kinase 

II 

CamKII Males expressing CaMKIIT287A.Scer\UAS under the control of either Scer\GAL4MJ85b or Scer\GAL430Y 
show the same level of courtship training following 1 hour w/ mated females as WT flies. 

 

celibate cel Males court females vigorously but rarely attempt to copulate & even less frequently achieve genital 
contact; females apparently unaffected by the mutation. 

 

coitus 

interruptus 

coi Males court females w/ slightly reduced vigor & mating success but mate frequently; duration of such 
copulations average 60% of normal 20 min; high proportion of mutant males also have abnormal sperm, 
e.g., nonmotile; females apparently unaffected by the mutation. 

 

courtless col Very early steps of courtship behavior are disrupted. Spermatogenesis is abnormal. 78% of homozygous 
males do not court WT virgin females at all & 17% perform only some of the courtship steps. Most of 
the mutant males that do court (13%) perform only early steps of courtship (orienting, following & wing 
extension). Only 5% of homozygous males eventually copulate, & these matings give no progeny. The 
courtship index is 12% for homozygous males, compared to 72% for WT males (breaking down this 
value for courting & noncourting mutant males gives a C.I. value of 0 & 23% respectively). 
Homozygous females are fertile when mated to WT males, behave normally & are as receptive to males 
as are WT females. 

Orgad et al. 2000 
Genetics 155:1267-80 
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croaker cro Male courtship pulse song is clearly different from WT, it is polycyclic. Also the interpulse intervals are 

statistically longer than WT. The courtship sine song begins w/ a lower amplitude & does not maintain 
the level of loudness. Mating success of males w/ WT females is low, male courtship is not as vigorous 
as that of WT males. Mating success of females w/ WT males is also low. 

 

Cysteine string 

protein 

Csp Homozygous males seem too feeble to show any sign of courtship behavior. The courtship song 
parameter interpulse interval is normal in heterozygous males at 25oC, but the number of cycles per 
pulse & amplitude of sound are significantly higher than in WT males at 25oC, & the interpulse 
frequency is significantly lower than in WT males at 25oC. 

 

cycle cyc The pronounced circadian rhythm of close-proximity encounters seen in WT male:female pairs is lost 
when the male is homozygous for cyc01. cyc01 mutant females mated to cyc01 mutant males lay 
significantly less eggs & produce significantly less progeny than WT flies. The percentage of 
unfertilised eggs from this mating is not significantly greater than for WT. There is no significant 
increase in the time spent copulating by pairs of cyc01 homozygous flies compared to WT pairs. Long 
term memory of courtship conditioning (reduction in time spent in courtship behavior 5 days after a 7 
hour conditioning) is normal in cyc0 homozygous males. 

 

Cyp4d21 Cyp4d21 Homozygous mutant males have a normal courtship index, but there is a significant increase in the 
fraction of homozygous males that do not mate compared to control males. Males expressing 
Cyp4d21dsRNA.Scer\UAS under the control of Scer\ GAL4Cyp4d21.PF show a significantly reduced courtship 
index & a significantly reduced mating success compared to control males. 

 

don giovanni dg Males not conditioned by courtship of fertilized females, apparently because they fail to elicit the 
appropriate cues from them; this means, further, that after a dg1 male courts a fertilized female, a WT 
male will not show the usual depressed courtship of this female; yet if the fertilized female is first 
courted by a WT male, a dg1 male will exhibit depressed courtship of her; females fertilized by dg1 
males do not effectively modify subsequent courtships directed at them by any male type. 

 

dunce dnc Unlike WT males, dnc1 homozygous males that have undergone courtship conditioning (kept in the 
presence of a female for 7 hrs) do not spend significantly less time engaged in courtship behavior when 
placed w/ a female 5 days after conditioning than non-conditioned males of the same genotype. Mutant 
males fail to show trainer-specific suppression of courtship, decreasing courtship toward a mature virgin 
after training w/ either mature or immature females. the ability to discriminate between mated & virgin 
females remain intact. 

 

ether a go-go eag When expression is driven by Scer\GAL4MJ286 or Scer\ GAL4MJ286  the mean courstship latency is 
decreased, when driven by Scer\ GAL4MJ286 the mean courstship latency is increased. Scer\ GAL4MJ286 
causes increase in mean duration of courtship. When expression is driven by Scer\GAL47B, 
Scer\GAL46J3, Scer\GAL453B, Scer\GAL440B, Scer\GAL428A, Scer\GAL4c309, Scer\GAL4c747, 
Scer\GAL4OK348, Scer\GAL429B, Scer\GAL4MJ63 or Scer\GAL4MJ146 wing extension & vibration duration 
during courtship are increased. 
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elongase F eloF Females expressing eloFdsRNA.Scer\UAS under the control of Scer\GAL4OK72 show no overall quantitative 

change in hydrocarbon levels compared to control females, but the hydrocarbon profile is greatly 
altered; there is a 554% increase in 7,11-dienes of 25 carbons & a 73% decrease in 7,11-dienes of 29 
carbons. There is also a small but significant decrease in C27 monoenic & saturated hydrocarbons at the 
expense of C23. Expression of eloFdsRNA.Scer\UAS under the control of Scer\GAL4OK72 in males have no 
significant effect on hydrocarbon profiles. WT males show a decrease in both the number of copulation 
attempts & the courtship index & an increase in the copulation latency when mated to females 
expressing eloFdsRNA.Scer\UAS under the control of Scer\GAL4OK72 compared to when WT males are mated 
to control females. WT males given the choice of mating w/ WT females or females expressing 
eloFdsRNA.Scer\UAS under the control of Scer\GAL4OK72 exclusively mate w/ the WT females. 

 

Fad2 Fad2 Male & female flies expressing Fad2dsRNA.Scer\UAS under the control of Scer\GAL4OK72, Scer\GAL4shn-

NP5250 or Scer\GAL4Lsp2.PH show no difference in the total amount of hydrocarbons compared to controls. 
Females expressing Fad2dsRNA.Scer\UAS under the control of Scer\GAL4OK72 show a large decrease in 7,11-
HD (-83%) & 7,11-ND (-85%) & an increase in 7-monoenes compared to controls. Females expressing 
Fad2dsRNA.Scer\UAS under the control of Scer\GAL4shn-NP5250 show a significant decrease in diene 
percentages in favour of monoenes compared to controls. Expression of Fad2dsRNA.Scer\UAS under the 
control of Scer\GAL4Lsp2.PH has no significant effect on the hydrocarbon profile of female flies. 
Expression of Fad2dsRNA.Scer\UAS under the control of Scer\GAL4OK72, Scer\GAL4shn-NP5250 or 
Scer\GAL4Lsp2.PH has no significant effect on the hydrocarbon profile of male flies. WT males mated to 
females expressing Fad2dsRNA.Scer\UAS under the control of Scer\GAL4OK72 show a decrease in the number 
of copulation attempts & the courtship index & an increase in copulation latency compared to when WT 
males are mated to control females. Females expressing Fad2dsRNA.Scer\UAS under the control of 
Scer\GAL41407 show a 27% increase in linear saturated hydrocarbons compared to controls. The amount 
of dienes & pheromones is decreased by 98%, while that of monoenes is doubled. WT males show 
altered courtship behavior towards females expressing Fad2dsRNA.Scer\UAS under the control of 
Scer\GAL41407 compared towards WT females; there are 12% fewer copulation attempts & 15% less 
copulation. Courtship, the first copulation attempt & copulation latencies are increased by 65%, 115% & 
55% respectively. 

 

freeze fez Males do not show any courtship behavior.  
flamenco flam Mutant males show decreased mating activity. The males show changes in courtship compared to WT; 

there is a delay in the transition from the orientation stage to the vibration stage. 
Suotcheva et al. 2003 
Russ J Genetics 39:553-
8 
Romanova et al. 2000 
Russ J Genetics 36:400-
3 

flight reduced 

393 

flrd393 Usage of wings by courting males abnormal.  
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flight reduced 

397 

flrd397 Usage of wings by courting males abnormal.  

flight reduced 

C 

flrdC Flight weak; adults seem generally feeble, including poor jumping ability; 10-30% of adults fail to 
inflate wings normally; even when wings inflated, males seldom extend them fully when courting. 

 

flight reduced 

H 

flrdH Weak to very weak flight; small amplitude of wing beats in flight; weak jumping ability; decreased 
viability, flying ability, or both when raised at higher temperatures. Causes abnormalities of wing 
movements in courtship after rearing at 29oC. 

 

Fmr1 Fmr1 Mutant males spend significantly less time than WT engaged in courtship, & fail to engage in advanced 
courtship behavior - progressing no further than following/tapping. Animals carrying Fmr1I244N or 
Fmr1I307N in a homozygous Fmr13 background show a reduced courtship index towards virgin females 
than that seen in WT males. 

 

gate gat Fluctuations of male's courtship song interpulse intervals define a sloppy rhythm or are arrhythmic.  
Gustatory 

Receptor 68a 

Gr68a 40% of mutant males did not mate w/ control females; those that did had increased mating latencies Bray & Amrein 2003 
39L1019-29 

homer homer Mutant males show behavioral plasticity deficits & fail to form &/or retain conditioning by the non-
receptive mated female in courtship conditioning assays. Mutants do suppress courtship behavior during 
conditioning but show higher levels of courtship than WT both before & after conditioning. 

 

 Hsap Male flies expressing Hsap\PQBP1Scer\UAS.cYa under the control of Scer\GAL4elav.PLu exhibit abnormal 
courtship behavior approximately 80% of the time, compared to never in control flies. 

 

 hypo When homozygous in females, causes reduced mating propensity & extended courtship durations.  
inactive iav For each age mutant flies are more attractive than WT flies, the attractiveness does decrease w/ age. iav1 

adults are extremely inactive. Intermediate experience-dependent courtship modification (EDCM) 
phenotype. In tests of homozygous iav1 females (w/ normal males), mating propensity reduced & 
courtship durations extended, though such females showed normal compositions of cuticular 
hydrocarbons & were highly attractive to courting males. Mutant males w/ normal females exhibited 
slightly reduced mating success; mutant males crossed w/ mutant females had very low mating success 
rate. 
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icebox ibx Lays eggs. No sperm is stored in hemizygous females. Homozygous & hemizygous mutant flies are 

fertile except for a few never-mating females. The mating frequency of homozygous females is reduced 
about 4-fold compared to WT levels, for virgins aged between 1 to 12 days. The largest difference from 
WT occurs at 3 days of age, when the mating frequency of homozygous females averages 21% versus 
88% of WT controls. The changes in receptivity w/ age are similar in homozygous & WT females. The 
mutation does not appear to be temperature sensitive (in terms of temperature of development). The sex 
appeal of homozygous females (measured as min of wing vibration directed towards the female by a 
male in a 5 min test) is indistinguishable from that of WT females. Homozygous females show rejection 
behavior (such as decamping, wing flicking, kicking, fending & ovipositor extrusion) in response to 
male courtship more frequently than control females. General locomotor activity of homozygous 
females, during courtship w/ WT males, is not different from WT. Mutant males do not differ 
significantly in any component of courtship, except that mutant males give significantly more bouts of 
abdomen bending than WT males. The mating success of mutant males is not significantly different 
from that of WT males. The egg-to-adult viability of homozygotes & the progeny of a cross between 
homozygotes & WT is normal. Ovarian development of homozygous females is normal. Attraction to 
ethanol & avoidance of 3-octanol is normal in mutant males & females, & photobehavior is normal. 
Treatment w/ methoprene results in more mating in homozygous females. 

O'Dell 1993 Heredity 
70:393-9 

infertile 

crescent 

ifc Heterozygotes w/ ifc1 show male sterility & abnormal spermatids. 
 

 

inactivation no 

afterpotential C 

inaC Heat shocked males are tested for courtship conditioning. They are placed in the same chamber w/ an 
unreceptive mated female, males fail to exhibit the effects of conditioning, courtship to the mated 
females is not suppressed. Despite the failure to show immediate suppression of courtship they do 
develop normal memory of it. When placed w/ a virgin female they exhibit reduced courtship. Retention 
of conditioning is seen over 10 min or 2 hrs. This result is comparable to non-heat shocked siblings. 
Males appear to be forming normal memory retention despite their failure to show any sign of 
associative learning while it is occurring. 

 

intersex ix XY, ix5/ix5 males elicit much less courtship than their control siblings. XX, ix5/ix5 are almost female-
like in courtship behavior. 

Acharyya & Chatterjee 
2002 Genetical Res 
80:7-14 
McRobert & Tompkins 
1985 

Lesbian Les Females exhibit male-like courtship, including unilateral wing display, directed at other females. 
Courtship bouts are relatively short. Not all females of the strain show the anomalous behavior. 
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lingerer lig Homozygous males do not show any generalised behavioral abnormality (such as inactivity, 

sluggishness or uncoordinated walking). Homozygous males initiate copulation w/ WT females just as 
often as WT males do, but are frequently unable to release the female's genitalia while mounted on the 
female's back. The mutant males tend to dismount the females w/out w/drawing their genitalia, & as a 
result, the male & female often tug at each other, pulling in opposite directions. In many cases, the 
mutant male & WT female remain stuck for several seconds to tens of min after copulation, until finally 
managing to separate from each other. 75% of mutant males mated to WT females show this "stuck" 
phenotype. Mutant females do not show any abnormalities in courtship behavior, although they show 
only approximately 25% of the fertility of WT females. The mutant males are as active as WT males in 
performing the early steps of mating behavior (chasing, tapping, singing & licking). After these steps, 
73% of the ligP1/ligPP1 males attempt copulation w/ WT females, but only 24% of these succeed in 
copulation. ligP1/Df(2R)ligX4, ligP1/Df(2R)ligX13 & ligP1/Df(2R)ligX18 males show reduced mating success 
compared to WT. 

 

Methoprene-

tolerant 

Met Mutant males court & mate WT females less avidly than controls Wilson et al. 2003 Insect 
Biochem Mol Biol 
33:1167-75 

Myb-

interacting 

protein 40 

mip40 Most homozygous females are completely sterile, while a few give rise to one or two larvae after 7 days 
of egg laying. Homozygous males are sterile. The mutant testes completely lack mature sperm & 
development appears to be arrested at the primary spermatocyte stage, prior to the G2-M transition. 

 

maleless mle P{HA-DQIH} males have low viability & fertility. Many males hold their wings out from their body.  
Monoplane Mpe Homozygotes are sterile & heterozygotes are partially sterile. Wings are held out horizontally & at 90o 

to the body, in a position very similar to that of tx mutants. The wings appear normal in all other aspects, 
although the flies are unable to perform certain courtship wing movements & are flightless. 

 

no extended 

memory 

nemy Mutant males show distinct memory deficiency in two courtship conditioning assays. These defects are 
apparent 0.5 hrs after training. The mutant males show an increased level of locomotor activity unrelated 
to courtship & spend more time in such an element of courtship as pursuit. 

 

nerd nerd Defective sexual behavior in males. Homozygotes exhibit low levels of copulation w/ WT females. 
Males are affected in their production of predominant cuticular hydrocarbons. 

Ferveur & Jallon 1993 
Naturwissenschaften 
80:474-5 

no on or off 

transient A 

nonA Isolated as song mutant. In general short pulse trains (5 pulses or less) of the courtship song are normal 
in males, but although pulse trains containing more than 5 pulses begin normally, they break into 
polycyclic, high amplitude pulses. These polycyclic pulses have an amplitude 50-100% higher than WT. 
Males exhibit longer than normal mating latencies in their courtship of females. Females may be 
subnormally receptive to males. 

Rendahl et al. 1992 J 
Neurosci 12: 
390-407 
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ovarian tumor otu Oncogenic allele; 91% of homozygous ovarioles contain tumorous chambers consisting of a mass of 

small, undifferentiated, mitotically active cells. 85% of hemizygous ovarioles are quiescent. The lifespan 
of mated homozygous females is significantly shorter than that of unmated homozygous females. 
Spermatogenesis normal but mating behavior fails because WT females refuse to react to the courtship 
attempts of mutant males. Effect is not absolute, & depends on allele (there is a strong correlation 
between male sterility & severity of impairment in the female phenotype) & varies between affecting 
6.7% (otu14) & 86.6% (otu12) of mutant males. 

 

parkin park Both male & female parkunspecified homozygotes are sterile, & males do not exhibit many courtship 
behaviors. 

 

period per Spectral analysis of tone pulse production demonstrated that pers male courtship song is not strongly 
rhythmic. Females have a preference for WT courtship song over the mutant short song rhythm. Single 
per01 mutant females mated once to single per01 mutant males lay significantly less eggs & produce 
significantly less progeny than WT flies. The percentage of unfertilised eggs from this mating is not 
significantly greater than for WT. These effects on fertility are significantly reduced if pairs of per01 
mutant flies are allowed to mate over a period of 4 days. The time spent copulating is significantly 
increased for per01 mutant males mated to WT females, compared to WT males. This effect is seen in 
both 2 day old & 4 day old males. This increased time in copulation does not appear to be due to 
difficulty of males disengaging from females. Unlike WT males, per01 homozygous males that have 
undergone courtship conditioning (kept in the presence of a female for 7 or 9 hrs) do not spend 
significantly less time engaged in courtship behavior when placed w/ a female 5 days after conditioning 
than non-conditioned males of the same genotype. This phenotype is unaffected if the 7 hour 
conditioning is performed during nighttime (Zeitgeber time, 12-19). However, 11 hrs courtship 
conditioning is sufficient to reduce courtship behavior 5 days later in these flies. Courtship conditioning 
of 30 min is also sufficient to significantly reduce courtship behavior 1 hour after conditioning in per01 
males. 

Roche et al. 1998 
Behavior Genetics 
28:391-4 

Pox neuro Poxn Under daylight conditions, 2/3 of PoxnÎ”M22-B5 males do not initiate courtship in single choice 
experiments w/in 15 min under st&ard conditions, while the remaining 1/3 court females very weakly, 
but do proceed through the entire courting sequence. Although these males do attempt to copulate by 
bending their abdomen, no copulation has been observed. PoxnÎ”M22-B5 males show no courtship behavior 
under red light. PoxnÎ”M22-B5 males have no penis, although the penis apodeme & protractor muscle are 
still present. 

Boll & Noll 2002 
Development 129:5667-
81 

pickpocket 25 ppk25 Mutations in the ppk25 gene reduce or even abolish male courtship response to females in the dark, 
conditions under which detection of female pheromones is an essential courtship-activating sensory 
input. ppk25 mutant males that show no response to females in the dark execute all of the normal steps 
of courtship behavior in the presence of visible light, suggesting that ppk25 is required for activation of 
courtship behavior by chemosensory perception of female pheromones 

Lin et al. 2005 PNAS 
102:12831-6 
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P-element 

somatic 

inhibitor 

Psi Psiv16 males partially rescued by PsiÎ”AB show courtship defects. The courtship index of these males is 
60% (compared to 75% in controls). Also only 30% of mutant males copulate over a 30-min period & 
these matings yield no progeny. 

 

phosphatidylser

ine receptor 

PSR Expression of PSRScer\UAS.cKa under the control of either Scer\GAL4Act5C or Scer\GAL4tub results in 
males w/ a rotated genitalia defect. 

 

retained retn retnz2-428/retn05096 females exhibit male like courtship behaviors. Mutant females follow, tap & appear to 
sing. Although not as robust as male courtship - following is not as sustained, full wing extension & 
vibration is not seen, & copulatory bending is weak or absent - these behaviors resemble courtship. The 
peak penetrance of these phenotypes is 3-4 wks post eclosion, averaging 42 courtship events per 5 min 
observation period (compared to <3 in controls). male-male & male-female courtship in retnz2-

428/retn05096 mutant males is comparable to WT. 

 

rickets rk rk4 male mates w/ WT female only if wings removed from female.  
raised rsd Viability & fertility normal. Wings are held upright. Males cannot vibrate their wings to produce the 

courtship song, as expected males are less successful when courting WT females. 
 

shaking A ShakA males show abnormal wing usage in courtship.  
shibire shi Males containing shits.Scer\UAS; Scer\GAL4fru-GAL4/+ somatic clones induced using Scer\FLP1ey.PN paired 

w/ WT virgin females have low courtship index scores at the non-permissive temperature (30oC) 
compared to Scer\GAL4fru-GAL4/+; Scer\FLP1ey.PN controls. 

 

 sim2 Of flies w/out external defects, simJ1-47/sim2 males do not perform normal courtship behavior & simJ1-

47/sim2  females ignore WT males. Most simJ1-47/sim2  adults only walk in circles & they show abnormal 
responses in Buridan's paradigm; they show a markedly reduced walking speed, the activity period is 
usually shorter & they show no measurable influence from visual l&marks on their orientation behavior. 

 

slowpoke slo Homozygous males produce very low amplitude courtship songs w/ long interpulse intervals, & low 
interpulse frequency & cycles per pulse values compared to WT males. Isolated putative pulses, usually 
monocyclic signals, often occur. Males show many courtship wing extensions w/out actually producing 
audible sound. The interpulse frequency of heterozygous males is significantly lower than in WT males 
at 25oC, although other courtship song parameters of heterozygous males are normal. 
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spinster spin Low mating success: virgin females perform repeated repelling movements that cause abortive mating. 

Low mating success, females exhibit strong mate-refusal. Receptivity reaches maximum on day 2 
(12.5% of WT levels) & declines rapidly thereafter. Only 4% of mutant females that are paired w/ WT 
males copulate during an assay period of 1 hour (70% of WT females copulate w/ WT males under the 
same assay conditions).  The time spent by the WT male performing unilateral wing vibration during a 
10 min observation (the SAPI - sex appeal parameter index) is almost identical for males paired w/ 
mutant or WT females, indicating that the low mating success of mutant females is not due to reduced 
attractiveness. Mutant females consistently display a number of rejection responses when paired w/ WT 
males, including fending, kicking, flicking, curling, punching & decamping, although extrusion is rarely 
seen. In response to approaching males, the mutant females tend to raise their abdomens while spreading 
their vaginal plates (this spreading behavior is not seen in either WT virgin or fertilised females & is 
distinct from extrusion, in which the ovipositor protrudes from the female terminalia). The mutant 
females often rush towards the courting male, pushing the male's head w/ their forelegs (this aggressive 
"punching" behavior is rare amongst WT females). spin1/spin10403 females show a number of rejection 
behaviors when paired w/ WT males, including fending, kicking, flicking, curling, punching & 
decamping, although extrusion is rarely seen. Mutant male flies show no obvious abnormality in their 
courtship behavior. Homozygous females rarely lay eggs. 

Nakano et al. 2001 Mol 
Cell Biol 21:3775-88 

sarah sra Expression of sraGS3080 under the control of Scer\GAL4elav-C155 or Scer\GAL4sca-537.4 results in increased 
ovulation in virgin females compared to control virgin females (the effect is stronger w/ Scer\GAL4elav-

C155). W/in 30 min in a mating assay, only 20% of virgin females expressing sra[GS3080] under the 
control of Scer\GAL4elav-C155 have mated, compared to 82% of WT virgin females. Virgin females 
expressing sra[GS3080] under the control of Scer\GAL4elav-C155 elicit intermediate courtship index (CI) 
levels (CI is the period of time w/in the observation period that a male displays any element of courtship 
behavior), that are between the level elicited by virgin WT females & mated WT females. Virgin 
females expressing sra[GS3080] under the control of Scer\GAL4elav-C155 have a high extrusion index (EI, 
the percentage of a time a female shows extrusion behavior when being courted by a male) which is 
nearly comparable to that of WT mated females. Homozygous females lay fewer eggs than WT & most 
of the eggs are arrested at metaphase I of meiosis. Spontaneous ovulation occurs in 3% of mutant virgin 
females (virtually no ovulation occurs in WT virgin females). The level of ovulation of mutant mated 
females is not as high as that of WT mated females. The mutant females show reduced receptivity after 
mating (as occurs in WT females), but their remating rate 24 hrs after mating is significantly higher than 
that of WT females. Receptivity of mutant females is restored earlier than for WT females; the remating 
rate is significantly higher for mutant females compared to WT females 10 days after mating. 

 

suppressor of 

forked 

su(f) Males do not appear sufficiently energetic to mate.  

Cyp4d21 sxe1 Decreased male courtship & mating success Fujii et al. 2008 
Genetics 180:179-90 
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Table A1. Continued 
Gene Symbol Phenotype Reference 
Sex-lethal Sxl SxlM1,f3/Sxlf7,M1 males behave like normal males. SxlM1,f3/Sxlf7,M1 females elicit less courtship than 

normal females & produce large quantities of the inhibitory pheromones that normal males synthesize. 
Mutant females also produce very little or none of the female-predominant aphrodisiac pheromone. 

 

takeout to When cells that normally express takeout are feminized by expression of the Transformer-F protein, 
male courtship behavior is dramatically reduced, suggesting that male identity in these cells is necessary 
for behavior. A loss-of-function mutation in the takeout gene reduces male courtship & synergizes w/ 
fruitless mutations, suggesting that takeout plays a redundant role w/ other fru-dependent factors 
involved in male mating behavior. 

Dauwalder et al. 2002 
Genes & Development 
22:2879-92 

touch 

insensitive 

larva B 

tilB Mutants show complete absence of sound-evoked courtship behavior. The sound evoked response 
(measured via the antennal nerve) is eliminated. In mutant alleles the spermatid axonemes are defective. 
Mutant males demonstrate vigorous courtship including courtship songs. Relative amplitude of the sine 
song is higher than normal in mutant male songs. 

 

timeless tim If either male or females are mutant, this abolition of mating rhythm is seen, even if they are mated to 
WT flies. Single tim01 mutant females mated once to single tim01 mutant males lay significantly less 
eggs & produce significantly less progeny than WT flies. The percentage of unfertilised eggs from this 
mating is significantly greater than for WT. These effects on fertility are significantly reduced if pairs of 
per01 mutant flies are allowed to mate over a period of 4 days. Single WT females mated once to single 
tim01 mutant males lay significantly less eggs & produce significantly less progeny than those mated to 
WT males. The numbers of sperm released to the seminal vesicles by tim01 males over the 2 days 
following eclosion is significantly less than that seen in WT males. Single tim01/tim03 females mated 
once to single tim01/tim03 males produce significantly less progeny than do WT flies, even though the 
number of eggs laid & the percentage of fertilised eggs is not significantly different to WT. tim01/tim03 

males have significantly less sperm in their seminal vesicles 42 hrs after eclosion than WT males. The 
time spent copulating is significantly increased in tim01 mutant males mated to WT females, compared to 
WT males. This effect is seen in both 2 day old & 4 day old males. This increased time in copulation 
does not appear to be due to difficulty of males disengaging from females. The time spent copulating by 
tim01/tim03 males mated w/ WT females is significantly extended compared to WT. Long term memory 
of courtship conditioning (reduction in time spent in courtship behavior 5 days after a 7 hour 
conditioning) is normal in tim01 homozygous males. 

 

temperature-

induced 

paralytic E 

tipE The courtship song parameters interpulse interval & cycles per pulse are normal in homozygous males at 
25oC, but the interpulse frequency & amplitude of sound are significantly lower than in WT males at 
25oC. 

 

technical 

knockout 

tko Mutant males are rejected by WT females. They are moderately successful in courting mutant females, 
but show a substantially prolonged courtship & reduced mating time compared to WT. WT males are 
equally successful at courting either mutant or WT females. Mutant males show only a very slight 
response to courtship song at 100dB, whereas WT males show a clear response at 70-90dB, suggesting a 
hearing defect in mutant males. 

Toivonen et al. 2001 
Genetics 159:241-54 
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Table A1. Continued 
Gene Symbol Phenotype Reference 
transformer2 tra2 The genital discs tra2dsRNA.Scer\UAS; Scer\GAL4ptc-559.1 females raised at 29oC resemble male genital discs, 

& are often indistinguishable from those of their male siblings. However, this phenotype is not 
completely penetrant: some growth of the female primordia is seen in a minority of cases. When 
tra2dsRNA.Scer\UAS  is driven by Scer\GAL4fru.P1 in females, the initial stages of courtship behavior - 
orientation & tapping - are seen when paired w/ a WT virgin female, but wing & proboscis extension & 
attempted copulation are not seen. When paired w/ a WT male these masculinized females are always 
courted, but show male-like rejection behaviors, including wing flicking & kicking, & never show the 
female rejection response of ovipositor extrusion. When a single WT male is placed w/ multiple 
masculinized tra2dsRNA.Scer\UAS, Scer\GAL4fru.P1 females, male singing is sufficient to elicit wing 
extension & vibration as well as occasional proboscis extension in a mutant female not being courted. 

 

Vesicular 

monoamine 

transporter 

Vmat Homozygous females are essentially infertile & do not appear to lay any eggs as virgins or after mating. 
Only 21% of homozygous males produce adult progeny when mated w/ WT females. The ovaries of 3 
day old, mated homozygous females contain 3.5 fold more mature oocytes than control ovaries. The 
mutant ovaries are similar in length & only slightly larger than control ovaries despite the dramatic 
increase in oocyte content. The ovaries of 3 day old, virgin homozygous females contain fewer mature 
oocytes than control ovaries from WT virgin females (which retain mature oocytes in their ovaries) & 
the mutant virgins show a modest decrease in ovary size compared to controls. 

 

Voila V Heterospecific effect Grosjean et al. 2001 
Genetical Res 77:239-50 

yellow y Males have a reduced wing extension index (the percentage of each courtship ritual during which a 
male's wing is extended & vibrating) compared to WT. y1 males have significantly reduced mating 
success compared to control males. 
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