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ABSTRACT

Storage Techniques in Flash Memories

and Phase-change Memories. (August 2010)

Hao Li, B.S., Tsinghua University;

M.S., Chinese Academy of Sciences

Chair of Advisory Committee: Dr. Anxiao Jiang

Non-volatile memories are an emerging storage technology with wide applica-

tions in many important areas. This study focuses on new storage techniques for

flash memories and phase-change memories. Flash memories are currently the most

widely used type of non-volatile memory, and phase-change memories (PCMs) are

the most promising candidate for the next-generation non-volatile memories. Like

magnetic recording and optical recording, flash memories and PCMs have their own

distinct properties, which introduce very interesting data storage problems. They

include error correction, cell programming and other coding problems that affect the

reliability and efficiency of data storage. Solutions to these problems can signifi-

cantly improve the longevity and performance of the storage systems based on flash

memories and PCMs.

In this work, we study several new techniques for data storage in flash memories

and PCMs. First, we study new types of error-correcting codes for flash memories –

called error scrubbing codes –that correct errors by only increasing cell levels. Error

scrubbing codes can correct errors without the costly block erasure operations, and we

show how they can outperform conventional error-correcting codes. Next, we study

the programming strategies for flash memory cells, and present an adaptive algorithm

that optimizes the expected precision of cell programming. We then study data
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storage in PCMs, where thermal interference is a major challenge for data reliability.

We present two new coding techniques that reduce thermal interference, and study

their storage capacities and code constructions.
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CHAPTER I

INTRODUCTION

The work in this thesis focuses on new storage techniques for flash memories and

phase-change memories (PCMs). They are two key members in the family of non-

volatile memories (NVMs). In this chapter, we first introduce flash memories and

phase-change memories, and point out their challenges. We then introduce the con-

tribution of our work. We also present an overview of the related areas.

A. Two Key Non-volatile Memory Technologies

Non-volatile memories (NVMs) are computer memories that can retain the stored

information even when they are not powered. Examples of non-volatile memories

include hard disks, floppy disks, magnetic tapes, CMOS chips, CDs, DVDs, read-

only memories, flash memories and phase-change memories. Conventionally, non-

volatile memories are typically used for long-term persistent storage. For example, in

computers, non-volatile memories are used to store essential system information and

data (BIOS), and as secondary storage devices (hard disks, CDs, etc.). In addition,

non-volatile memories have also been widely used in mobile devices, such as cell

phones, digit cameras, palms, CD/DVD players, etc.

Non-volatile memories can be categorized by electrically addressed systems (e.g.,

read-only memories, flash memories and phase-chase memories) and mechanically ad-

dressed systems (e.g., hard disks, optical disc, and magnetic tapes). Traditionally,

electrically addressed systems are expensive but fast, whereas mechanically addressed

systems have lower prices per bit and larger storage capacities but are slow. How-

The journal model is IEEE Transactions on Automatic Control.
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ever, the recent technology development has made some new electrically addressed

memories – such as flash memories and phase-change memories – to have both low

prices and high capacities, while still maintaining their fast reading/writing speed.

Flash memories were first invented by Dr. Fujio Masuoka at Toshiba in 1980. In

recent years, flash memories have become the most widely used type of non-volatile

memories. Flash memories are close to an ”ideal” memory in the sense that they

can be electrically erased and programmed in-system, offer high storage density and

low cost-per-bit, and have the random access capability, bit alterability, short read

time and excellent reliability. Because of these advantages, flash memories have been

widely used in numerous applications, including PDAs (personal digital assistants),

laptop computers, digital audio players, digital cameras and mobile phones. In 2008,

flash memories accounted for over $23 billion in sales, which was about 8 percent of

the total $277 billion sales of the semiconductor industry. And they are expected to

increase at 21 percent annually, higher than average growth rate of 18 percent of the

semiconductor industry [6].

A flash memory cell has q ≥ 2 levels – level 0, 1, · · · , q−1 – which can be increased

or decreased by charge injection or removal based on the Fowler-Nordheim tunnelling

mechanism or the hot-electron injection mechanism [4]. To increase data density,

multi-level cells (MLCs) with greater values of q are actively developed. Flash cells

are organized as blocks, each containing about 105 cells. Although it is comparatively

simple to increase a cell level, it is very difficult to decrease one. To decrease any

cell level, the whole block of cells must be erased and then reprogrammed. Block

erasures significantly reduce the longevity, reliability and speed of flash memories [4].

To minimize the number of block erasure operations, many techniques in conventional

storage systems need to adapt when we apply them to flash memories. A basic rule

for adaptation is to realize the change of data by only increasing the cell levels, thus
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avoiding block erasures. In this thesis, we study how to use this rule while addressing

various problems in flash memories.

Phase-change memories (PCMs) are one of the most promising candidates for

the next-generation NVMs. Compared to the widely used flash memories, PCMs

can potentially scale to much smaller cell sizes and achieve higher storage capacities.

They can also have substantially better endurance, data retention and read/write

speed [3]. However, scaling down cell sizes can also bring significant challenges, and

solving them will be key to the PCM development [3].

The basic storage unit of a phase-change memory – a PCM cell – has at least

two states: the amorphous state and the crystalline state. To achieve higher storage

capacity, multi-level cells (MLCs) are being developed, where additional partially

crystalline states are used [3]. We model the q ≥ 2 states of a PCM cell by q levels –

levels 0, 1, . . . , q − 1 – where level 0 is the amorphous state, level 1, . . . , q − 2 are the

partially crystalline states, and level q − 1 is the crystalline state. As a cell becomes

more crystallized, its level increases.

The level of a PCM cell is switched using high temperatures. A cell can be

heated by a high cell-melting temperature (about 600oC ∼ 700oC) to change to level

0 (amorphous state), or be heated by a more moderate temperature to increase its

level (i.e., to a more crystallized state). To model the direct switching of states, we

use the diagram in Fig. 1 (for q = 4 as an example) [16]. We see that the cell can

be changed from any level i ∈ {1, 2, . . . , q − 1} directly to level 0 (called a RESET

operation), and from any level i directly to level j for 0 ≤ i < j ≤ q − 1 (called a

SET operation). However, for 0 < j < i ≤ q − 1, to change it from level i to level j,

both the RESET and SET operations are needed.

A major and widely acknowledged challenge for PCM is the thermal issue, be-

cause the amorphous and partially-crystalline states are only semi-stable states, and
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0 1 2 3

Fig. 1. The transitions among q cell levels of a phase-change memory (PCM) cell.

(Here q = 4.) The forward and backward edges represent the SET and RESET

operations, respectively.

high environmental temperatures can further crystalize the cell, i.e., unintentionally

increase the cell level [3, 19]. In this thesis, we study two types of codes for addressing

this problem.

The rest of the chapter is organized as follows. In sections B and C, we introduce

the main challenges facing flash memories and phase-change memories. In section D,

we introduce the topics of our work and its contributions. In section E, we survey

some related areas.

B. Challenges for Flash Memories

In this section, we first introduce the principles and operations in flash memories,

and then discuss the resulting challenges. To meet these challenges, we will study

two important storage technologies for flash memories, namely error correction and

cell programming.

1. Principles and Operations in Flash Memories

Flash memories are a type of EEPROM (Electrically Erasable Programmable Read-

Only Memory). A flash memory cell resembles a standard MOSFET (metal-oxide-

semiconductor field-effect transistor), except that the transistor has two gates instead

of one [4]. On the top is the control gate (CG) (as in other MOS transistors), but



5

below it there is a floating gate (FG) insulated all around by an oxide layer. The

electrons that the floating gate picks up will be trapped there for many years under

normal conditions. The trapped electrons can significantly affect the threshold voltage

needed to turn on the transistor (i.e., for the conducting state). With no electron in

the floating gate, the threshold voltage will be low, and the transistor will be turned

on easily, whereas with electrons injected into the floating gate, the threshold voltage

will become higher.

Suppose that the transistor’s being on corresponds to the state ”0”, and the

transistor’s being off corresponds to the state ”1”. By checking if the transistor is

on or off, the amount of charge trapped in the floating gate, called the cell level,

can represent one bit of information (per cell). When reading a multi-level cell,

the amount of current flowing through the transistor is sensed (rather than simply

checking its presence or absence), which can be used to determine more precisely the

amount of charge in the floating gate. The level of a multiple-level cell can represent

more than one bit.

a. Read Operation

In order to determine a cell’s level, a certain reading voltage is applied to the transis-

tor, and the amount of current flowing through the transistor is sensed. In NOR flash

memories, a cell’s level can be read individually, whereas in NAND flash memories,

the cells in the same page must be read together. The reading procedure is relatively

simple and fast in both types of flash memories.

b. Programming Operation

A flash cell can be programmed (i.e., setting to a higher level) by applying a high

voltage on the control gate to inject electrons into the floating gate. The cells of both
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NOR and NAND flash memories can be programmed relatively fast.

c. Erase Operation

To erase a flash cell (i.e., resetting it to the ”0” state), a high voltage of the opposite

polarity is applied to the control gate, pulling the electrons off the floating gate

through quantum tunneling [4]. The erase operation can only be performed on a

block-wise basis, i.e., all the cells in a block must be erased together. A cell block

usually consists of 1,000 to 1,000,000 cells.

Note that the block erasure is a fairly strenuous process, which leads to the flash

memory’s most debilitating limitation: the limited number of erasure operations the

cells can endure. Every time the system erases a cell, it slightly damages the insulating

barrier. Eventually, the cell becomes useless. The typical lifetime of a flash memory

block is about 104 ∼ 105 program-erasure cycles.

d. Decreasing Cell Levels

Decreasing a cell level is implemented by the combination of erasing and program-

ming. As a toy example, suppose we want to decrease the first cell’s level from “2”

to “1” in a block of 4 multi-level cells, whose current cell levels are “2101”. We first

need to erase the block to “0000”, and then program each cell until their levels reach

“1101”. A typical block consists of many cells. So the speed of decreasing a cell level

can be much slower than increasing cell levels. Also, decreasing cell levels leads to

block erasures, which shorten the longevity of flash memories. So it will be beneficial

to avoid it if possible. In our work we will realize the change of data by only increasing

cell levels, not decreasing them, and thus achieving better performance.
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2. Data Reliability in Flash Memories

After cells are programmed, the stored data can be affected by various noise mech-

anisms, including charge leakage, read disturbance, write disturbance, etc. [4]. So it

can be important to store data with a strong error-correcting code. In addition, a

common technique in store systems called memory scrubbing [23] actively and peri-

odically removes errors: When the errors occur in codewords, the memory-scrubbing

procedure decodes the codewords and writes their correct values back into the mem-

ory. However, for flash memories, since the cell levels often have to be decreased

when writing back the error-free codewords, the conventional memory scrubbing pro-

cedure can be very costly. The challenge will be addressed by the error-scrubbing

code technique in our research.

3. Cell Programming in Flash Memories

When programming a cell, the charge (e.g., electrons) is injected into the cell, and

the injected charge becomes trapped. The amount of charge in a cell determines its

level. Overshooting is very costly for programming because once the injected charge

overshoots the target level, the block needs to be erased and then reprogrammed.

In the industry, when a cell is being programmed, the cell level is only allowed to

increase [4]. The charge-injection process is noisy, so usually multiple rounds of

charge injection are used to shift the cell level monotonically and cautiously toward

the target level [1].

It is interesting to study how to program cells accurately, since the precision of cell

programming determines the storage capacity of flash memories [11]. We will study

cell programming strategies for two data representation schemes in flash memories,

namely, the multi-level cell technology and the rank modulation technology.
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C. Challenges for Phase-change Memories

The PCM is a non-volatile memory that can switch between at least two phases, the

amorphous phase and crystalline phase. A cell in the amorphous phase has high

electrical resistivity, whereas a cell in the crystalline phase exhibits a lower resistivity,

generally with a ratio of 1000 times. Because of the significant contrast between the

amorphous and crystalline phases, a PCM cell can easily store one bit of information.

Recently, cells with two partially crystalline phases have been invented for storing two

bits per cell. To SET the cell into the crystalline phase, an electrical pulse is applied

to heat the cell above the crystallization temperature. In the RESET operation, a

larger and shorter electrical current is applied to melt the cell. Then molten cell will

quench into the amorphous phase. Note that the melt temperature in the RESET

operation is much higher than the crystalline temperature in the SET operation.

We consider two potential thermal-based challenges when the PCM’s cell density

scales toward its limit. The first one is the thermal crosstalk problem, namely, when

a cell is RESET (to level 0) by the high melting temperature, the heat affects its

adjacent cell and makes it further crystalized [3, 19]. Note that this may happen

both when the adjacent cell is not being programmed and when it is being SET,

unless it is already in the fully crystalized state (level q − 1). It is because in both

cases, the semi-stable cell state is sensitive to high temperatures.

The second problem is the local thermal accumulation problem. When cells are

repeatedly programmed, the heat can accumulate in the area [19]. This residual heat

can be a major factor that limits the writing bandwidth of PCMs, because the writing

accuracy is sensitive to temperature [3, 19]. When the cell density scales toward

its limit, relative to the high I/O speed, it can take nontrivial time for the locally

generated heat to spread out uniformly in the memory chip. So if an application
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repeatedly writes a cluster of adjacent cells at very high speed, the accumulated heat

may appear localized [19]. In that case, it is worth considering whether there exist

schemes that can make the thermal accumulation more balanced.

The above problems have been considered in [3, 19] from the device and sys-

tem perspectives. In this thesis, we consider coding techniques for these potential

challenges. For the thermal crosstalk problem, we use a scheme that removes the

crosstalk interference, and then study coding techniques that reduce the program-

ming cost (measured by the number of RESET operations). For the local thermal

accumulation problem, we study coding techniques that impose time and space con-

straints on writing, to help the heat generated by programming be more balanced

spatially.

D. Contributions of This Work

In this work, we address the challenges facing flash memories and phase-change memo-

ries by three techniques: error-scrubbing codes for repeatedly and efficiently removing

errors from flash memories, optimized cell programming for accurately programming

flash memory cells, and constrained codes for the reliable programming and storage

of PCM cells. In the following, we introduce the three topics.

1. Error Scrubbing Codes for Flash Memories

A prominent property of flash memories is that although it is easy to increase a

cell level, to decrease any cell level, a whole block of cells have to be erased and

reprogrammed. To minimize the number of expensive block erasure operations and to

maintain the data integrity, the data needs to be stored with a strong error-correcting

code that can correct enough errors between two erasure operations.
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We develop the concept of error scrubbing codes to adaptively scrub the memory

(i.e., decode codewords and write the correct values back into the memory). With this

new type of error-correcting codes, the cell levels are actively increased when errors

appear, even if the errors increase cell levels as well. The implementation is simple:

the memory constantly reads the cells of a codeword; if a new error is detected, the

memory increases the cell levels to a new state. No block erasure is needed unless

the cell levels have reached the top. The key idea of error-scrubbing codes is that

through the active adjustment of cell levels, which we call scrubbing, we can reduce the

number of states that a given number of errors can turn the cells into, thus allowing

the packing of more codewords for a higher rate. We show that the performance of

error-scrubbing codes can exceed that of conventional codes. We present two families

of code constructions based on the L1 metric and a modular technique, respectively,

and show their asymptotic optimality.

2. Optimized Cell Programming for Flash Memories

Cell programming is the process of increasing a cell’s level to the target value via

charge injection, and the storage capacity of flash memories is limited by the preci-

sion of cell programming. To optimize the precision of the final cell level, a cell is

programmed adaptively with multiple rounds of charge injection. Due to the high

cost of block erasure, when cells are programmed, their levels are only allowed to

increase. It is interesting to study how well such storage media can be programmed.

We focus on the programming strategy that optimizes the expected precision.

The performance criteria considered here include two metrics that are suitable for

the multi-level cell technology and the rank modulation technology, respectively. As-

suming that the charge-injection noise has a uniform random distribution, we present

an effective algorithm for finding the optimal programming strategy. The optimal
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strategy can be used to program cells efficiently.

3. Constrained Codes for Phase-change Memories

A PCM’s cell states are switched using high temperatures. As the semi-stable states

of PCM cells are sensitive to temperatures, scaling down cell sizes can bring signifi-

cant challenges. We consider two potential thermal-based interference problems, the

thermal crosstalk problem and the local thermal accumulation problem, and propose

new constrained codes for solving them.

To address the thermal crosstalk problem, we present the symbol-constrained

codes. In a symbol-constrained code, when a codeword is written, the cells that

go through the RESET process have a limited run-length. We show that symbol-

constrained codes can reduce the number of resets for rewriting data and extend the

longevity of the PCM.

To address the local thermal accumulation problem, we present space-time con-

strained codes. A space-time constrained code limits the number of times a cell can

be programmed consecutively, and limits adjacent cells from being programmed to-

gether. The goal is to reduce the heat accumulated in the local areas of the PCM. We

study the capacity of the constrained codes, and present novel code constructions.

E. Related Work

The work in this thesis relates to a number of important research areas. They include

error-correcting codes, the memory scrubbing technology, constrained codes, and in-

formation representation and coding for flash memories. We briefly survey these areas

in this section.
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1. Error-correcting Codes and Memory Scrubbing

The general definition of error correction is to detect errors and reconstruct the orig-

inal error-free data. An error-correcting code (ECC) is a system of adding redundant

data (parity data) to a message such that it can be recovered by a receiver even

when a number of errors (up to the capability of the code) are introduced. ECCs are

usually categorized into convolutional codes and block codes. Convolutional codes

work on bit or symbol streams of arbitrary length, while block codes are processed on

fixed-size blocks. Examples of block codes include repetition codes, Hamming codes,

Reed-Solomon codes, etc. An ECC contains two processes, encoding and decoding.

A good ECC should correct as many errors as possible and has as many codewords

as possible. However, there is a tradeoff between them. There has been lots of work

on error-correcting codes, and the error correction technology has been pivotal to the

development of storage systems [17, 20, 21].

Memory scrubbing is the process of detecting and correcting errors in memories

by using error-correcting codes [23]. Systems using memory scrubbing check the

memories periodically, correct errors and write the correct data back into the memory

immediately after errors are detected. If the memory is checked frequently enough,

memory scrubbing can effectively prevent the accumulation of errors in the codewords,

and thus ensure data reliability.

It is very costly to use conventional error-correcting codes for memory scrubbing

in flash memories because of the block erasures they would trigger. This has motivated

our study of error-scrubbing codes, which balance the error-correction capability of

the codes and the cost of block erasures.
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2. Constrained Codes

Constrained coding has been a critical technology for the development of magnetic

recording and optimal recording. A well known type of constrained codes is the run-

length-limited (RLL) code, where the run-length of consecutive zeros in the codeword

is constrained to help synchronization during reading and reduce inter-symbol inter-

ference. Generally speaking, a constrained code refers to a constrained encoder and

a constrained decoder. The encoder transforms arbitrary input data sequences into

sequences (codewords) that satisfy the given constraint. The decoder recovers the

input data from codewords. The purpose of adding the constraints is to improve the

system’s performance by constraining the codewords in such a way as to reduce the

likelihood of errors. Different from conventional error-correcting codes, where the dis-

tance between codewords is the major criterion for the error-correction performance,

in constrained codes the performance is measured by properties of the individual

codewords. The constraint can often be described by a labelled graph (called its

graph representation), and the labels of a path in the graph form a valid codeword.

There has been lots of study on the capacity of constrained codes and code con-

structions [18]. The new constrained codes we study for PCMs have different forms

compared to all the existing constrained codes.

3. Information Representation for Flash Memories

Based on the unique properties of flash memories, new data representation schemes

have been developed in recent years. Notably, they include codes for rewriting data

and the rank modulation scheme [14].

Rewriting codes are schemes that allow data in a flash memory to be rewritten

many times without block erasures. The flash-memory model commonly used for
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rewriting codes is the Write Asymmetric Memory (WAM) model [9],in which each

cell’s level can only increase, not decrease. WAM is a special case of the generalized

write-once memory (WOM) model, which allows the state transitions of cells to be

any acyclic directed graph [7, 8, 22]. Examples of rewriting codes include floating

codes [9, 10, 12], trajectory codes [12], buffer codes [2], etc. A floating code jointly

stores multiple variables in flash memory cells, and generalizes the definition of WOM

codes [22]. A number of floating code constructions have been presented, some of

which are proved to be optimal or asymptotically optimal [9]. Furthermore, the

model in floating codes has been generalized by using directed graphs to represent how

rewrites may change the stored data [12]. For this generalized rewriting model, the

trajectory codes have been presented, and proved to be asymptotically optimal [12].

Different from floating codes and trajectory codes, buffer codes record the most recent

values of a variable, and some code constructions have been presented [2].

Rank modulation is a scheme that uses the relative order of the cell levels, in-

stead their absolute values, to represent data [13, 15]. The n cells in a group can

introduce n! possible rank permutations, and store up to log2 n! bits of information.

To write a permutation, we program the cells from the lowest level to the highest

level. This writing procedure removes the risk of charge overshooting and makes cell

programming reliable. Rewriting codes and error-correcting codes for rank modula-

tion have been presented [13, 15]. In our research on cell programming, we study the

programming strategy for rank modulation, and present an optimal algorithm.

The rest of the thesis is organized as follows. In Chapter II, we present two

families of error-scrubbing codes for flash memories. In Chapter III, we study an

optimized cell programming scheme for flash memories. In Chapter IV, we present two

types of constrained codes for phase-change memories. In Chapter V, we summarize

the results, and discuss some open problems.
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CHAPTER II

ERROR SCRUBBING CODES

The motivation for error scrubbing codes arises from the fact that the data stored

in flash memories is not always reliable. The stored data can be lost due to charge

leakage, a long-term factor that causes the data retention problem. The data can also

be affected by other mechanisms, including read disturbance, write disturbance [4],

etc. All these mechanisms change cell levels and can cause errors in flash memories.

To maintain the data integrity, the data needs to be stored with a strong error-

correcting code that can correct enough errors between two erasure operations. While

errors may accumulate in the codewords, with the next block erasure, the codewords

can be decoded and the original error-free codewords can be written back into the

block. This is called memory scrubbing, a commonly used operation in storage sys-

tems [23]. However, although memory scrubbing works very successfully for previous

storage systems, it faces a significant challenge for flash memories: the block erasures

triggered by memory scrubbing can substantially reduce the longevity, speed and ef-

ficiency of the flash memories. As flash memories scale toward higher data densities,

the cost of block erasures will become even higher. Therefore, a new coding scheme

is need for flash memories that can balance well the error correction capability of the

codes and the block-erasure cost caused by memory scrubbing.

For this purpose, we introduce the concept of error scrubbing codes. With this

new type of error-correcting codes, the cell levels are actively increased when errors

appear, even if the errors increase cell levels as well. The implementation is simple:

the memory constantly reads the cells of a codeword; if a new error is detected, the

memory increases the cell levels to a new state. No block erasure is needed unless

the cell levels have reached the top. The key idea of error-scrubbing codes is that
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through the active adjustment of cell levels, which we call scrubbing, we can reduce

the number of states that a given number of errors can turn the cells into, thus

allowing the packing of more codewords for a higher rate. In this report, we show

that the performance of error-scrubbing codes can exceed that of conventional codes

by presenting two families of code constructions based on the L1 metric and a modular

technique, respectively, and show their asymptotic optimality.

A. Notations

Let c1, c2, · · · , cn denote the levels of n cells of q levels. Here ci ∈ {0, 1, · · · , q − 1}

denotes the i-th cell’s level, for i = 1, 2, · · · , n. The vector ~c = (c1, c2, · · · , cn) is

called the cell state. Let Sn,q denote the set of all qn cell states. Given two cell states

~cA = (c1, c2, · · · , cn) and ~cB = (c′1, c
′
2, · · · , c′n), if ∀ i we have ci ≥ c′i, we denote it by

~cA ≥ ~cB and say that ~cA is above ~cB . If ~cA ≥ ~cB and there exists some i such that

ci > c′i, we denote it by ~cA > ~cB and say that ~cA is strictly above ~cB . Here we consider

codes that correct errors between two block erasures, so the memory controller can

only increase cell levels, not decrease them [9]. However, the errors (i.e., noise) may

both increase and decrease cell levels, unless they are asymmetric errors.

An error set ε is a set of integral vectors of length n. An error is a vector

in the set ε. For convenience, we always assume that (0, 0, · · · , 0) ∈ ε. Give an

error ~e = (e1, e2, · · · , en) ∈ ε, it can change a cell state ~c = (c1, c2, · · · , cn) to ~c + ~e =

(c1+e1, c2+e2, · · · , cn+en). For example, if ε consists of those errors that can increase

some cell level by one, then ε = {(e1, e2, · · · , en) |
∑n

i=1 ei ≤ 1, ei = 0 or 1 for all i}.

A scrubbing function is a mapping f : Sn,q → Sn,q such that ∀ ~c ∈ Sn,q , f(~c) ≥ ~c.

The idea of the error-scrubbing code is that when the cell state is ~c, the memory will

update it to f(~c) by charge injection.
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Let t ≥ 1 be an integer. Let ~c ∈ Sn,q be a cell state, and let ~e1, ~e2, · · · , ~et ∈ ε be t

errors. When the first error ~e1 changes the cell state from ~c to ~c+~e1, the memory will

update the cell state to f(~c +~e1). When the second error ~e2 changes the cell state to

f(~c +~e1) +~e2, the memory will update the cell state to f(f(~c +~e1) +~e2). And so on.

In general, for i = 1, 2, · · · , t, define a function g(~c;~e1, · · · , ~ei) as follows: g(~c;~e1) =

~c + ~e1; for i = 2, · · · , t, g(~c;~e1, · · · , ~ei) = f(g(~c;~e1, · · · , ~ei−1)) + ~ei. Then, when the

initial cell state is ~c and t errors ~e1, ~e2, · · · , ~et sequentially appear, the memory will

sequentially change the cell state to f(g(~c;~e1)), f(g(~c;~e1, ~e2)), · · · , f(g(~c;~e1, · · · , ~et)).

(By default, we assume that g(~c;~e1), g(~c;~e1, ~e2), · · · , g(~c;~e1, · · · , ~et) all belong to Sn,q.)

The set of cell states trace(~c;~e1, · · · , ~et) = {~c} ∪ {g(~c;~e1, · · · , ~ei) | i = 1, 2, · · · , t} ∪

{f(g(~c;~e1, · · · , ~ei)) | i = 1, 2, · · · , t} are called the trace caused by the initial cell state

~c and the t errors ~e1, ~e2, · · · , ~et.

We are now in a position to define error-scrubbing codes.

Definition 1. Error-Scrubbing Code. Let C ⊆ Sn,q be a subset of cell states.

Let t ≥ 1 be an integer. Every vector in C is called a codeword. For every codeword

~c ∈ C, the set of cell states B~c =
⋃

~e1,··· ,~et∈ε trace(~c;~e1, · · · , ~et) is called the “decoding

sphere” of ~c. Every vector in B~c is decoded as the data represented by the codeword

~c. Then, C is called a t-error-scrubbing code if ∀ ~c1 and ~c2 in C, B~c1 ∩ B~c2 = ∅.

It is simple to see that when data are stored as codewords of a t-error-scrubbing

code, any sequence of t or fewer errors can be corrected. For a t-error-scrubbing code

C, we define its density as |C|
qn . Naturally, the higher the density is, the higher the rate

of the code is.
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B. Linear Error Scrubbing Codes

In this section, we consider symmetric errors, and assume that the memory scrubs

the codeword as soon as a new error appears. That is, the error set

ε = {(e1, e2, · · · , en) |
n

∑

i=1

|ei| ≤ 1, ei ∈ Z for all i}.

For simplicity, we also assume that q → ∞. We will discuss the case of finite q later

in the section.

We first present a new linear code construction of its general form, for n ≥ 4.

We will show later how to set its parameters to achieve optimal performance. Note

that given two vectors ~a = (a1, a2, · · · , an) and ~b = (b1, b2, · · · , bn), ~a ·~b =
∑n

i=1 aibi.

Given an integer i, i · ~a = (ia1, ia2, · · · , ian).

Construction2. Linear Error-Scrubbing Code. Build a t-error-scrubbing code

C for n ≥ 4 cells as follows. Let t ≥ 1 be an integer. Let ~a = (a1, a2, · · · , an) and

~b = (b1, b2, · · · , bn) be two vectors, where ai, bi are positive integers for all i. Let

V = max
~e∈ε

~e ·~b − min
~e∈ε

~e ·~b + 1 = 1 + 2max
i

bi.

For i = 0, 1, · · · , b~a·~b
V
c−1, let Ci = {(c1, c2, · · · , cn) | ∑n

j=1 bjcj ≡ iV mod (t ·~a ·~b)}.

Let C =
⋃b~a·~b

V
c−1

i=0 Ci.

The scrubbing function f : Sn,∞ → Sn,∞ is defined as follows. Let ~s ∈ Sn,∞ be

any cell state. If there exists a codeword ~c ∈ C, an integer i ∈ {0, 1, · · · , t − 1} and

an error ~e ∈ ε such that ~s = ~c + i~a + ~e and ~c + i~a > ~s, then f(~s) = ~c + i~a. If there

exists a codeword ~c ∈ C, an integer i ∈ {0, 1, · · · , t − 2} and an error ~e ∈ ε such that

~s = ~c + i~a + ~e and ~s > ~c + i~a, then f(~s) = ~c + (i + 1)~a. If ~s belongs to neither of the

above two cases, then f(~s) = ~s.

Lemma 3. Let C be the code of Construction 2. Let ~c ∈ C be a codeword. Then, the
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decoding sphere of ~c is B~c = {~c + i · ~a + ~e | i ∈ {0, 1, · · · , t − 1}; ~e ∈ ε}.

The following theorem shows that the code C of Construction 2 is a t-error-

scrubbing code.

Theorem 4. Let C be the code of Construction 2. Then, for any two codewords ~c1

and ~c2 of C, we have B~c1 ∩ B~c2 = ∅.

Proof. For any cell state ~s ∈ Sn,∞, let us define its signature as sig(~s) = (~b ·~s mod t ·

(~a ·~b)). For any codeword ~c ∈ C, let G(~c) denote the set of signatures of the cell states

in the decoding sphere of ~c. That is, G(~c) = {sig(~s) | ~s ∈ B~c}. Let bmax = maxi bi.

Construction 2 shows that C =
⋃

i=0,1,··· ,b~a·~b
V

c−1
Ci, where each Ci contains a set of

codewords. Then, it is simple to verify that if ~c ∈ Ci, then G(~c) ⊆ {iV + j · ~a ·~b +

k mod t · ~a ·~b | j ∈ {0, 1, · · · , t − 1}; k ∈ {−bmax,−bmax + 1, · · · , bmax}}.

Let ~c1 and ~c2 be two different codewords in C. If ~c1 ∈ Ci and ~c2 ∈ Cj for some

i 6= j, then it is simple to see that G(~c1) ∩ G(~c2) = ∅, so B~c1 ∩ B~c2 = ∅. Now

suppose that ~c1 ∈ Ci and ~c2 ∈ Ci for some i. We will prove B~c1 ∩ B~c2 = ∅ by

contradiction. Assume there exists a cell state ~s ∈ B~c1 ∩ B~c2 . It is simple to verify

that for any codeword ~c ∈ C and any cell state ~s0 ∈ B~c, sig(~s0) − sig(~c) mod t · ~a ·~b

is a function of ~s0 − ~c, and no two cell states in B~c have the same signature. Since

sig(~c1) = iV = sig(~c2), we get ~s − ~c1 = ~s − ~c2. So ~c1 = ~c2, which is not true. So

B~c1 ∩ B~c2 = ∅.

We now present a specific code construction.

Construction 5. Let ~a = (1, 1, · · · , 1) and ~b = (1, 2, · · · , n). Then, use Construc-

tion 2 to build a t-error-scrubbing code C.

Theorem 6. Let C be the t-error-scrubbing code of Construction 5. Its density is

2b n(n+1)
2(2n+1)

c
tn(n + 1)

= Θ(
1

tn
),
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which is asymptotically optimal.

Proof. Let V and Ci be as defined in Construction 2. Then for the code C of

Construction 5, V = 2n + 1. A cell state (c1, c2, · · · , cn) is in Ci if and only if
∑n

j=1 jcj ≡ i(2n+1) mod tn(n+1)
2

. Whatever values c2, c3, · · · , cn take, the above equa-

tion produces c1 ≡ i(2n +1)−∑n
j=2 jcj mod tn(n+1)

2
. So limq→∞

|Ci|
qn = 2

tn(n+1)
. So the

density of C is limq→∞
|C|
qn = limq→∞

|
Sb

n(n+1)
2 /(2n+1)c−1

i=0 Ci|

qn = b n(n+1)
2(2n+1)

c · 2
tn(n+1)

= Θ( 1
tn

).

To prove that the density of C is asymptotically optimal (up to a constant ratio),

it is sufficient to show that for any t-error-scrubbing code C′, |B~c| = Ω(tn) for any

codeword ~c ∈ C′. For i = 1, 2, · · · , n, let ~ei ∈ ε be the vector where the i-th element is

1 and all other elements are 0. Let ~s0 = ~c; for i = 1, 2, · · · , t−1, let ~si = f(~si−1 +~e1).

For i = 0, 1, · · · , t − 1, let Si = {~si + ~ej | 1 ≤ j ≤ n}. It is simple to see that ∀ i,

Si ⊆ B~c; also, ∀ i 6= j, Si ∩Sj = ∅ (because the cell states in Si and Sj have different

values in terms of the summation of cell levels). So |B~c| ≥
∑t−1

i=0 |Si| = tn = Ω(tn).

We can choose different values for the vector ~a = (a1, a2, · · · , an) to further

increase the code’s density. The density shown in the above theorem is upper bounded

by 1/t(2n + 1). The following theorem shows that the code density can reach this

value through a different set of parameters. The tradeoff is to increase some cell

levels by more than one in a scrubbing operation. We skip the proof of the following

theorem due to its similarity to the previous analysis.

Theorem7. Let W be the smallest integer such that W ≥ n(n+1)
2

and W is a multiple

of 2n + 1. There exists an integer vector ~a = (a1, a2, · · · , an) such that
∑n

i=1 iai = W

and ∀ i, ai = 1 or 2. Let ~b = (1, 2, · · · , n). With the above parameter vectors ~a and

~b, we can use Construction 2 to build a t-error-scrubbing code C. The density of C is

1
t(2n+1)

.
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The above codes are for n ≥ 4. When n = 1, 2, 3, we can build t-error-scrubbing

codes of density 1
t+2

, 1
3t+2

and 1
7t

, respectively. We summarize them with the following

theorem.

Theorem8. When n = 1, 2, 3, there exist t-error-scrubbing codes of density 1
t+2

, 1
3t+2

and 1
7t

, respectively.

Proof. The proof is constructive. We skip the analysis for n = 1 due to its simplicity.

(Its codewords are cell levels that are multiples of t+2.) When n = 2, let the code C =

{(c1, c2) | c1+2c2 ≡ 0 mod (3t+2)}. When n = 3, let the code C = {(c1, c2, c3) | c1+

2c2 + 4c3 ≡ 0 mod 7t}. For both codes, given a codeword (c1, c2) or (c1, c2, c3) in C,

for i = 0, 1, · · · , t − 1, call the cell state (c1 + i, c2 + i) or (c1 + i, c2 + i, c3 + i) the

“i-shift” of the codeword. The decoding sphere of every codeword consists of the cell

states within L1 distance one from one of the t shifts of the codeword. The scrubbing

function f : Sn,∞ → Sn,∞ is defined as follows. If a cell state ~s is at L1 distance one

from the i-shift of a codeword for some i ∈ {0, 1, · · · , t− 1} and that i-shift is above

~s, then f(~s) equals the i-shift of that codeword. If ~s is at L1 distance one from the

i-shift of a codeword for some i ∈ {0, 1, · · · , t − 2} and ~s is above that i-shift, then

f(~s) equals the (i+1)-shift of that codeword. If neither of the above two cases is true,

then f(~s) = ~s. It is not difficult to verify that the decoding spheres of codewords do

not intersect. In fact, for both codes, the decoding spheres form a perfect packing in

the L1-metric space of dimension n. It is not difficult to see that the densities of the

two codes are 1/(3t + 2) and 1/7t, respectively.

Construction 2 can be generalized to correct other types of errors, including

asymmetric errors, errors of large L1-metric sizes, etc., by adjusting the parameters.

The t-error-scrubbing codes can correct errors whose total size (in the L1 metric)

is up to t. Let us compare them to conventional error-correcting codes that can correct
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errors of the same size. For a conventional code, the decoding sphere for a codeword

(c1, c2, · · · , cn) is B = {(s1, s2, · · · , sn) | ∑n

i=1 |si−ci| ≤ t}. Since |B| = Ω(tn), by the

sphere-packing bound, the density of a conventional error-correcting code is O( 1
tn

).

The density of a t-error-scrubbing code, Θ( 1
tn

), can be substantially better.

When q is finite, some codewords may not be able to scrub t errors because their

cell levels are too close to the maximum value q−1. In practice, the memory can read

cells to see how close they are to the limit of decodability, and adaptively schedule

block erasures for refreshing codewords.

C. Modular Error Scrubbing Codes

In flash memories, errors in cell levels can be caused by several mechanisms, including

read disturbs, write disturbs, charge leakage, etc. [4] They often change the cell levels

in one direction more significantly than the other. In this section, we consider a more

general form of errors, where at most x ≤ n cell levels can have errors between two

scrubbing operations, and the errors make every cell level decrease by at most dmin

and increase by at most dmax. That is, the error set is ε = {(e1, e2, · · · , en) | ei ∈

{−dmin,−dmin + 1, · · · , dmax} for all i; |{i|ei 6= 0}| ≤ x}. The error set studied in

the previous section is a special case with x = 1 and dmin = dmax = 1. For simplicity,

we assume q → ∞. The case of finite q can be processed the same way as before.

We first present a t-error-scrubbing code construction of its general form based

on the modular technique. The modular technique has been proposed in [5], where

strong codes for correcting asymmetric limited-magnitude errors have been presented.

In this section, we use the modular technique for error-scrubbing coding.

Construction 9. Modular Error-Scrubbing Code.

Build a t-error-scrubbing code C as follows. Let ` = dmin + dmax + 1. Let D ⊆
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{0, 1, · · · , ` − 1}n be an error-correcting code of alphabet {0, 1, · · · , ` − 1} and length

n, which can correct x errors. (For code D, an error is the distortion of one of its

n symbols.) Then, a cell state ~c is a codeword in C if and only if there exists ~s ∈ D

and non-negative integers a1, a2, · · · , an and b such that min{a1, a2, · · · , an} = 0 and

~c = ~s + ` · (a1, a2, · · · , an) + b · (t`, t`, · · · , t`).

The scrubbing function f : Sn,∞ → Sn,∞ is defined as follows. Let

~s = (s1, s2, · · · , sn) ∈ Sn,∞

be any cell state. If there exists a codeword ~c ∈ C, an integer i ∈ {0, 1, · · · , t − 1}

and an error ~e ∈ ε such that ~s = ~c + i · (`, `, · · · , `) + ~e and ~c + i · (`, `, · · · , `) > ~s,

then f(~s) = ~c + i · (`, `, · · · , `). If there exists a codeword ~c = (c1, c2, · · · , cn) ∈ C, an

integer i ∈ {0, 1, · · · , t − 2} and an error ~e ∈ ε such that ~s = ~c + i · (`, `, · · · , `) + ~e

and sj > cj + i` for some j ∈ {1, 2, · · · , n}, then f(~s) = ~c + (i + 1) · (`, `, · · · , `). If ~s

belongs to neither of the above two case, then f(~s) = ~s.

We now show that the code built by Construction 9 is a t-error-scrubbing code.

Theorem 10. Let C be the code of Construction 9. Then, for any two codewords ~c1

and ~c2 of C, we have B~c1 ∩ B~c2 = ∅.

Proof. Let ~c1 = ~s1+`·(a1, a2, · · · , an)+b·(t`, t`, · · · , t`) and ~c2 = ~s2+`·(a′
1, a

′
2, · · · , a′

n)+

b′ · (t`, t`, · · · , t`). Here ~s1, ~s2, ai, a
′
i, b, b

′ are defined the way as in Construction 9.

Without loss of generality (WLOG), assume that aj1 = a′
j2

= 0. For every cell state

~v = (v1, v2, · · · , vn), define its “signature” as sig(~v) = (v1 mod `, v2 mod `, · · · , vn

mod `). Then sig(~c1) = ~s1 and sig(~c2) = ~s2. To prove B~c1 ∩ B~c2 = ∅, consider three

cases.

• Case one: sig(~c1) 6= sig(~c2). Let ~v be a cell state in B~c1 . Then, ~v = ~c1 + i ·

(`, `, · · · , `) +~e for some i ∈ {0, 1, · · · , t− 1} and ~e ∈ ε. So sig(~v) = sig(~s1 +~e)
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is a vector in {0, 1, · · · , ` − 1}n that is within Hamming distance x from ~s1.

Since D is an error-correcting code that corrects any x errors, sig(~v) cannot be

any vector within Hamming distance x from ~s2. So ~v /∈ B~c2 . So B~c1 ∩ B~c2 = ∅.

• Case two: sig(~c1) = sig(~c2), and b 6= b′. WLOG, assume that b < b′. In

this case, let ~s1 = ~s2 = (s1, s2, · · · , sn). Then for any cell state in B~c1 , its j1-th

element is at most sj1 + bt` +(t− 1)` + dmax < sj1 + b′t`− dmin, while the j1-th

element of a cell state in B~c2 is at least sj1 +a′
j1
`+ b′t`−dmin. So B~c1 ∩B~c2 = ∅.

• Case three: sig(~c1) = sig(~c2), b = b′, and there exists some j3 such that aj3 6=

a′
j3

. WLOG, assume that aj3 < a′
j3

. In this case, let ~s1 = ~s2 = (s1, s2, · · · , sn).

Let (d1, d2, · · · , dn) = ~s1+`·(a1, a2, · · · , an)+b ·(t`, t`, · · · , t`)+α·(`, `, · · · , `)+

~e1 be a cell state in B~c1, and let (d′
1, d

′
2, · · · , d′

n) = ~s1 + ` · (a′
1, a

′
2, · · · , a′

n) +

b · (t`, t`, · · · , t`) + α′ · (`, `, · · · , `) + ~e2 be a cell state in B~c2 . Here α, α′ ∈

{0, 1, · · · , t− 1}, and ~e1 = (β1, β2, · · · , βn), ~e2 = (β ′
1, β

′
2, · · · , β ′

n) are two errors

in ε. Consider two subcases.

– Subcase one: aj3 +α 6= a′
j3

+α′. WLOG, assume that aj3 +α < a′
j3

+α′.

Then, dj3 = sj3 + bt`+(aj3 +α)`+βj3 ≤ sj3 + bt`+(a′
j3

+α′−1)`+dmax <

sj3 + bt` + (a′
j3

+ α′)` − dmin ≤ d′
j3

.

– Subcase two: aj3 + α = a′
j3

+ α′. Since aj3 < a′
j3

, we get α > α′.

Then, dj2 = sj2 + bt` + (aj2 + α)` + βj2 ≥ sj2 + bt` + (α′ + 1)` − dmin >

sj2 + bt` + α′` + dmax ≥ d′
j2

.

So in both subcases, (d1, d2, · · · , dn) 6= (d′
1, d

′
2, · · · , d′

n). Therefore, B~c1 ∩B~c2 = ∅.

The theorem is proved.

Theorem 11. Let C be the t-error-scrubbing code of Construction 9. Let D be the

x-error-correcting code used in Construction 9. Let ` = dmin + dmax + 1. Then, the
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density of C is |D|
t`n .

Proof. For every cell state ~v = (v1, v2, · · · , vn), define its “signature” as sig(~v) = (v1

mod `, v2 mod `, · · · , vn mod `). For every codeword ~c ∈ C, we call ~c+i ·(`, `, · · · , `)

the i-shift of ~c. Then the 0-shift, 1-shift, · · · , (t − 1)-shift of ~c are all in B~c. Let

~d = (d1, d2, · · · , dn) be a codeword of D. The density of cell states of signature ~d

– defined as the number of such cell states divided by qn – is 1/`n. We now show

that every cell state of signature ~d must be the i-shift of a codeword of C for some

i ∈ {0, 1, · · · , t − 1}.

Let ~s = (d1 + k1`, d2 + k2`, · · · , dn + kn`) be a general cell state of signature

~d. Let j be the integer in {1, 2, · · · , n} such that kj = min{k1, k2, · · · , kn}. So

~s = (d1 + (k1 − kj)` + kj`, d2 + (k2 − kj)` + kj`, · · · , dn + (kn − kj)` + kj`) = (d1 +

(k1 − kj)` + bkj

t
ct` + (kj mod t)`, d2 + (k2 − kj)` + bkj

t
ct` + (kj mod t)`, · · · , dn +

(kn − kj)` + bkj

t
ct` + (kj mod t)`). So ~s is the (kj mod t)-shift of the codeword

(d1 + (k1 − kj)` + bkj

t
ct`, d2 + (k2 − kj)` + bkj

t
ct`, · · · , dn + (kn − kj)` + bkj

t
ct`) ∈ C.

Since every codeword of C has exactly t shifts in its decoding sphere, the density

of C is |D|/t`n.

Let ` = dmin + dmax + 1. By the sphere-packing bound, the density of a conven-

tional error-correcting code that can correct t errors in the error set ε is O( 1
ntx(`−1)tx ).

So when |D|
`n = Ω( 1

nx(`−1)x ), the t-error-scrubbing code can significantly outperform the

conventional code. For example, assume n = 2m−1, dmax = 1, dmin = 0, x = 1 and D

is the (2m − 1, 2m −m− 1) Hamming code. Then the density of the t-error-scrubbing

code is |D|
t`n = 1

t·2m = 1
t(n+1)

, which is asymptotically optimal in t and can be much

higher than the density of a conventional code, O( 1
nt ).
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CHAPTER III

OPTIMIZED CELL PROGRAMMING FOR FLASH

MEMORIES

Flash memory cells are a unique storage medium in the sense that when they are

programmed with multiple rounds of charge injection, their charge levels can only

monotonically increase. It is interesting to study how to program the cells accurately,

as the precision of cell programming determines the storage capacity of flash memo-

ries [11]. In this chapter, we focus on the cell programming strategy that optimizes

the expected performance. The performance criteria considered here include two

metrics that are suitable for the multi-level cell technology and the rank modulation

technology, respectively. Knowing how well cells can be programmed on average is

useful for studying the storage capacity of cell ensembles. We present an effective

algorithm for finding the optimal programming strategy, which can in turn be used

to program cells efficiently.

A. The Cell Programming Problem

Without loss of generality (w.l.o.g.), we assume that initially, the cell level is 0. A

cell can be programmed using at most t rounds of charge injection. The objective is

to make the final cell level be close to a target value θ ∈ [0,L], where L is an upper

bound determined by the physics of flash memories. There is a cost C(x) associated

with the final cell level x, and the function C(x) monotonically increases with |x− θ|.

Two forms of C(x) will be introduced later.

We assume that in each round of charge injection, the flash memory can choose

the aimed increment of the cell level to be i∆ for some i ∈ {0, 1, 2, 3, · · · }. Here ∆

models the minimum resolution of the programming circuit. Let ε ∈ (0, 1) and δ > 0
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be two parameters. To model the noisy charge-injection process, we assume that if

the aimed increment of the cell level is i∆, the actual increment of the cell level is

randomly distributed in the range [i∆(1− ε), i∆(1 + δ)).1 For simplicity, we assume

the distribution is a uniform random distribution. More practical noise models can

be studied in the future.

In this section, we consider two families of cost functions.

Definition 12.. (Cost function C(x) for MLC and Rank Modulation) In

the multi-level cell (MLC) technology, the final cell level should be close to one of a

set of discrete levels. It is appropriate to define C(x) as

C(x) = |x − θ|p

for some positive integer p.

In the rank modulation technology [13, 14, 15], the objective is usually to shift

the cell level above a certain value θ. It is appropriate to define C(x) as

C(x) =















∞ , if x < θ

(x − θ)p , if x ≥ θ

for some positive integer p.

Let i1∆, i2∆, · · · , it∆ denote the aimed increment of the cell level in the t rounds

of charge injection, and let x1, x2, · · · , xt denote the the actual cell level after each

round. After the j-th round, the flash memory can measure xj and adaptively choose

the aimed level increment ij+1∆ for the next round. The objective of the cell pro-

gramming problem is to find the adaptive strategy of selecting i1, i2, · · · , it such that

1The inclusion and exclusion of the boundary values are chosen for mathematical
convenience, and are easy to deal with in practice.
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the expected cost of the final cell level, E(C(xt)), is minimized. (Here E(x) is the

expectation of the random variable x.)

B. Adaptive Cell Programming

Given that the cell level is xj after j < t rounds of charge injection, how to choose

the aimed level increment ij+1∆ of the next round? We define two functions, A(x; i)

and α(x; i; j), for the computation.

Definition 13.. (Functions A(x; i) and α(x; i; j))

A(x; i) is the minimum achievable expected cost of the final cell level given that

(1) the current cell level is θ + x, and (2) we can program the cell with i more rounds

of charge injection.

α(x; i; j) is the minimum achievable expected cost of the final cell level given that

(1) the current cell level is θ + x, (2) we can program the cell with i more rounds

of charge injection, and (3) in the first round of the i rounds of charge injection, we

choose the aimed level increment to be j∆.

It is simple to see that A(x; i) = minj=0,1,2··· α(x; i; j). For the cell programming

problem, since the initial cell level is 0 = θ+(−θ) and t rounds of charge injection can

be used, the objective is to find a strategy that makes the final cell level’s expected

cost be A(−θ; t). During the programming process, given that the cell level is xj after

j < t rounds of charge injection, the flash memory should adaptively choose ij+1∆ as

the aimed level increment of the (j + 1)-th round such that ij+1 minimizes the value

of α(xj − θ; t − j; ij+1).

The cost function we consider is for MLC or rank modulation, which is shown in

Definition 12. Let us compute some initial values of A(x; i) – particularly, A(x; 1) –

for them.
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1. When the Cost Function Is for MLC

The cost function for MLC is C(x) = |x−θ|p. For simplicity, we show how to compute

A(x; 1) when p = 2. The other values of p can be dealt with similarly.

When p = 2, we have

A(x; 1)

= minj=0,1,2··· α(x; 1; j)

= min{ α(x; 1; 0),

minj=1,2,3···

∫ θ+x+j∆(1+δ)

θ+x+j∆(1−ε)
1

j∆(ε+δ)
· |y − θ|2dy}

= min{ x2,

minj=1,2,3···
1

j∆(ε+δ)

∫ x+j∆(1+δ)

x+j∆(1−ε)
y2dy}

= minj=0,1,2··· x2 + j∆(2 + δ − ε)x + 1
3
j2∆2(3+

3δ − 3ε + δ2 − δε + ε2)

To see which value of j minimizes the above equation, define f(j) = x2 + j∆(2+

δ − ε)x + 1
3
j2∆2(3 + 3δ − 3ε + δ2 − δε + ε2). Since 0 < ε < 1 and δ > 0, 3 + 3δ −

3ε + δ2 − δε + ε2 > 0, so f(j) is convex. By setting df(j)
dj

= 0, we find that f(j) is

minimized when j = −3x(2+δ−ε)
2∆(3+3δ−3ε+δ2−δε+ε2)

(assuming that j does not have to be an

integer). We can see that the above value for j is positive if and only if x is negative.

Since j actually needs to be a non-negative integer, we find that to minimize f(j), j

should take the following value j∗:

j∗ =















d −3(2+δ−ε)x
2∆(3+3δ−3ε+δ2−δε+ε2)

− 0.5e , if x < 0

0 , if x ≥ 0

Let γ = 2∆(3+3δ−3ε+δ2−δε+ε2)
3(2+δ−ε)

. Then when x < 0, j∗ = d−x
γ

− 0.5e. So for i =
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1, 2, · · · , d θ
γ
− 1.5e, when x ∈ [−(i + 0.5)γ,−(i− 0.5)γ), we have j∗ = i and

A(x; 1) = x2 + i∆(2 + δ − ε)x

+1
3
i2∆2(3 + 3δ − 3ε + δ2 − δε + ε2).

Similarly, when x ∈ [−0.5γ, 0), we have j∗ = 0 and A(x; 1) = x2. When x ∈

[−θ,−(d θ
γ
− 0.5e − 0.5)γ), we have j∗ = d θ

γ
− 0.5e and A(x; 1) = x2 + d θ

γ
− 0.5e∆(2 +

δ − ε)x + 1
3
d θ

γ
− 0.5e2∆2(3 + 3δ − 3ε + δ2 − δε + ε2). When x ≥ 0, we have j∗ = 0 and

A(x; 1) = x2. Therefore, we can partition the domain of x, [−θ,∞), into d θ
γ

+ 0.5e

regions, while in each region A(x; 1) is a degree-2 polynomial. So A(x; 1) is piecewise

polynomial.

It is not hard to see that when p 6= 2, A(x; 1) is also piecewise polynomial. For

simplicity we skip the details.

2. When the Cost Function Is for Rank Modulation

The cost function for rank modulation is C(x) = ∞ if x < θ and C(x) = (x − θ)p if

x ≥ θ. For simplicity, we show how to compute A(x; 1) when p = 1. The other values

of p can be dealt with similarly.

We have A(x; 1) = minj=0,1,2··· α(x; 1; j). The value of j that minimizes α(x; 1; j)

is the minimum integer that satisfies the constraint θ + x + j∆(1 − ε) ≥ θ, which is

j = d −x
∆(1−ε)

e. So if x < 0, we have

A(x; 1) =
∫ θ+x+d −x

∆(1−ε)
e∆(1+δ)

θ+x+d −x
∆(1−ε)

e∆(1−ε)
1

d −x
∆(1−ε)

e∆(ε+δ)
· (y − θ)dy

= x + d −x
∆(1−ε)

e∆(1 + δ−ε
2

)

If x ≥ 0, clearly A(x; 1) = x.

So for i = 1, 2, · · · , d θ
∆(1−ε)

e − 1, when x ∈ [−i∆(1 − ε),−(i − 1)∆(1 − ε)),

A(x; 1) = x + i∆(1 + δ−ε
2

). When x ∈ [−θ,−(d θ
∆(1−ε)

e − 1)∆(1 − ε)), A(x; 1) =
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x + d θ
∆(1−ε)

e∆(1+ δ−ε
2

). When x ≥ 0, A(x; 1) = x. So we can partition the domain of

x, [−θ,∞), into d θ
∆(1−ε)

e+1 regions, while in each region, A(x; 1) is a linear function.

So A(x; 1) is piecewise polynomial.

It is not hard to see that when p 6= 1, A(x; 1) is also piecewise polynomial. For

simplicity we skip the details.

C. Computing A(x; i) and α(x; i; j)

When i ≥ 2, we have

A(x; i) = min
j=0,1,2···

α(x; i; j)

and

α(x; i; j) =

∫ x+j∆(1+δ)

x+j∆(1−ε)

A(y; i− 1)

j∆(δ + ε)
dy

for j ≥ 1. (We have α(x; i; 0) = A(x; i− 1).)

It will be interesting to find an effective approach to compute the general func-

tions A(x; i) and α(x; i; j) using the above recursion. In this paper, we present an

efficient algorithm using the property that they are both piecewise polynomials. (Note

that this property of being piecewise polynomial has been proved for A(x; 1). It will

be shown that it holds for A(x; i) and α(x; i; j) with i ≥ 2, too.)

Let us define some notations. Given integers i, j, let pi,j and

bi,j(−1) , bi,j(0) , bi,j(1) , · · · , bi,j(pi,j)

be the numbers with the following properties: (1) bi,j(−1) > bi,j(0) > bi,j(1) >

bi,j(2) > · · · > bi,j(pi,j); (2) bi,j(−1) = ∞, bi,j(0) = 0, bi,j(pi,j) = −θ; (3) for k =

0, 1, · · · , pi,j, the function α(x; i; j) is a polynomial of x when x ∈ [bi,j(k), bi,j(k− 1)).
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Given an integer i ≥ 1, let qi and

Bi(−1) , Bi(0) , Bi(1) , · · · , Bi(qi)

be the numbers with the following properties: (1) Bi(−1) > Bi(0) > Bi(1) > · · · >

Bi(qi); (2) Bi(−1) = ∞, Bi(0) = 0, Bi(qi) = −θ; (3) for k = 0, 1, · · · , qi, the function

A(x; i) is a polynomial of x when x ∈ [Bi(k), Bi(k − 1)).

1. Computing α(x; i; j) with i ≥ 2

We first show how to compute α(x; i; j) with i ≥ 2.

Given a real number x ∈ [−θ,∞) and an integer i ≥ 1, we call the unique integer

j ∈ {0, 1, · · · , qi} such that

x ∈ [Bi(j) , Bi(j − 1))

the “ (i)-index of x”, and denote it by

index(i; x).

Note that index(i; x) decreases as x increases. Let us use I(i; x; j) to denote the set

of (i)-indices of the real numbers in the interval

[x + j∆(1 − ε) , x + j∆(1 + δ)).

We get

I(i; x; j) = { index(i; x + j∆(1 − ε));

index(i; x + j∆(1 − ε)) − 1;

index(i; x + j∆(1 − ε)) − 2;

· · ·

limν→0+ index(i; x + j∆(1 + δ) − ν) }
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The last element in the above set is a limit, because the interval [x + j∆(1− ε) , x +

j∆(1 + δ)) does not contain the boundary value x + j∆(1 + δ).

Let us define the set Si,j (for i ≥ 2) as

Si,j = { s ∈ (−θ, 0)| either s = Bi−1(k) − j∆(1 − ε)

for some 0 ≤ k ≤ qi−1 − 1, or

s = Bi−1(k) − j∆(1 + δ)

for some 0 ≤ k ≤ qi−1 − 1}.

Then we have the following lemma.

Lemma 14.. We denote the |Si,j| numbers in the set Si,j by

s1, s2, · · · , s|Si,j |

such that s1 > s2 > · · · > s|Si,j |. Also, let s0 = 0 and s|Si,j |+1 = −θ. Then, for

k = 1, 2, · · · , |Si,j| + 1, for any two numbers x1, x2 in the interval (sk, sk−1),

I(i − 1; x1; j) = I(i− 1; x2; j).

Proof. W.l.o.g., assume that x1 < x2. We just need to prove that (1)

index(i− 1; x1 + j∆(1 − ε)) = index(i− 1; x2 + j∆(1 − ε))

and (2)

limν→0+ index(i− 1; x1 + j∆(1 + δ) − ν)

= limν→0+ index(i− 1; x2 + j∆(1 + δ) − ν).

Let us prove condition (1) by contradiction. Assume that index(i−1; x1+j∆(1−
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ε)) 6= index(i− 1; x2 + j∆(1 − ε)). Then there must be some Bi−1(k
′) such that

x1 + j∆(1 − ε) < Bi−1(k
′) ≤ x2 + j∆(1 − ε).

So

x1 < Bi−1(k
′) − j∆(1 − ε) ≤ x2.

Since

Bi−1(k
′) − j∆(1 − ε) ∈ Si,j = {s1, s2, · · · , s|Si,j |},

x1 and x2 cannot be in the same interval (sk, sk−1). That is a contradiction. So

index(i − 1; x1 + j∆(1 − ε)) = index(i− 1; x2 + j∆(1 − ε)).

Condition (2) can be proved similarly. For simplicity, we skip the details.

Theorem 15.. We denote the |Si,j| numbers in the set Si,j by

s1, s2, · · · , s|Si,j |

such that s1 > s2 > · · · > s|Si,j |. Also, let s0 = 0 and s|Si,j |+1 = −θ. Then, for

k = 1, 2, · · · , |Si,j| + 1, the function α(x; i; j) is a polynomial of x for x ∈ (sk, sk−1).

Furthermore, it can be computed as follows. Let

u = lim
ν→0+

index(i− 1; sk + j∆(1 − ε) + ν),

and let

v = lim
ν→0+

index(i− 1; sk−1 + j∆(1 + δ)− ν).

Then,

α(x; i; j) =
∫ Bi−1(u−1)

x+j∆(1−ε)
A(y;i−1)
j∆(ε+δ)

dy+

∑u−1
k=v+1

∫ Bi−1(k−1)

Bi−1(k)
A(y;i−1)
j∆(ε+δ)

dy+
∫ x+j∆(1+δ)

Bi−1(v)
A(y;i−1)
j∆(ε+δ)

dy
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Proof. We know that

α(x; i; j) =

∫ x+j∆(1+δ)

x+j∆(1−ε)

A(y; i− 1)

j∆(ε + δ)
dy.

Since x ∈ (sk, sk−1), by Lemma 14, index(i−1; x+j∆(1−ε)) = limν→0+ index(i−

1; sk+j∆(1−ε)+ν) = u and limν→0+ index(i−1; x+j∆(1+δ)−ν) = limν→0+ index(i−

1; sk−1 +j∆(1+δ)−ν) = v. So in the above integration, we can partition the domain

for y into smaller intervals, in each of which the function A(y; i− 1) is a polynomial

of y. So the way to compute α(x; i; j) in this theorem is correct.

A(y; i − 1) is a polynomial of y for y ∈ [Bi−1(u), Bi−1(u − 1)) ⊇ [x + j∆(1 −

ε), Bi−1(u − 1)) and for y ∈ [Bi−1(v), Bi−1(v − 1)) ⊇ [Bi−1(v), x + j∆(1 + δ)). Also

note that the value of
∑u−1

k=v+1

∫ Bi−1(k−1)

Bi−1(k)
A(y;i−1)
j∆(ε+δ)

dy is independent of x ∈ (sk, sk−1).

Since polynomials are closed under integration and summation, we get that α(x; i; j)

is a polynomial of x for x ∈ (sk, sk−1).

The above theorem shows that α(x; i; j) is an integration of A(x; i − 1). It is

easy to see that if A(x; i − 1) is a piecewise polynomial of degree d, then α(x; i; j)

is a piecewise polynomial of degree at most d + 1. As we will see, A(x; i) is also a

piecewise polynomial of degree at most d + 1.

Corollary 16.. We denote the |Si,j| numbers in the set Si,j by s1, s2, · · · , s|Si,j | such

that s1 > s2 > · · · > s|Si,j |. Also, let s−1 = ∞, s0 = 0 and s|Si,j |+1 = −θ. Then, for

k = 0, 1, 2, · · · , |Si,j|+1, the function α(x; i; j) is a polynomial of x for x ∈ [sk, sk−1).

Proof. Since the integration of a finite function is a continuous function, we get

α(sk; i; j) = limν→0+ α(sk + ν; i; j). With Theorem 15, it is not hard to see that

the conclusion holds.

With the algorithm in Theorem 15, we can partition the domain of x, [−θ,∞),
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into the intervals

[−θ, s|Si,j |), [s|Si,j |, s|Si,j |−1), · · · , [s1, 0), [0,∞)

and compute the polynomial α(x; i; j) for each interval. To simplify the future com-

putation, if the polynomials in adjacent intervals happen to be the same, we merge

them into one interval.

2. Computing A(x; i) with i ≥ 2

In Section B, we have shown how to compute A(x; 1). We now show how to compute

A(x; i) for i ≥ 2.

It is easy to see that when j ≥ d −x
∆(1−ε)

e, α(x; i; j) ≥ α(x; i; d −x
∆(1−ε)

e) (because

setting the aimed level increment too high only increases the expected cost of the

final cell level). So when i ≥ 2, we have

A(x; i) =
d −x
∆(1−ε)

e

min
j=0

α(x; i; j) (3.1)

We first use the algorithm in Theorem 15 to compute the functions

α(x; i; 0) , α(x; i; 1), · · · , α(x; i; d θ

∆(1 − ε)
e).

(Note that when x ∈ [−θ, 0), d −x
∆(1−ε)

e ≤ d θ
∆(1−ε)

e.) Let Si,j be as defined before. And

denote the |Si,j| numbers in the set Si,j by

si,j
1 , si,j

2 , · · · , si,j

|Si,j |

such that 0 > si,j
1 > si,j

2 > · · · > si,j

|Si,j |
> −θ. We know that α(x; i; j) is a polynomial

of x for x in each of the following intervals

[−θ, si,j

|Si,j |
) , [si,j

|Si,j |
, si,j

|Si,j |−1) , · · · , [si,j
1 , 0) , [0,∞)
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Given the integer i ≥ 2, let us define the set P as

P =

d θ
∆(1−ε)

e
⋃

j=0

{si,j
1 , si,j

2 , · · · , si,j

|Si,j |
}

Let us alternatively denote the elements in P by

p1, p2, · · · , p|P |

such that

p1 > p2 > · · · > p|P |.

Also let p−1 = ∞, p0 = 0 and p|P |+1 = −θ. We naturally have the following conclusion.

Lemma 17.. For k = 0, 1, 2, · · · , |P | + 1, the function α(x; i; j) is a polynomial of x

for x ∈ [pk, pk−1). (Here i ≥ 2 and 0 ≤ j ≤ d θ
∆(1−ε)

e.)

With the above observation, we can easily compute the function A(x; i) for x in

each interval [pk, pk−1), where k = 0, 1, · · · , |P |+1. That is because by Equation 3.1,

A(x; i) is the minimum of at most d θ
∆(1−ε)

e + 1 known polynomials. The method of

computation should be clear, so we skip its details. The only thing to note is that

if these polynomials intersect, the interval [pk, pk−1) may need to be partitioned into

more smaller intervals, such that in each smaller interval, A(x; i) is still a polynomial

of x.

As before, after the above computation, if the polynomials for A(x; i) in adjacent

intervals happen to be the same, we merge them into one interval for a more succinct

representation.
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D. Optimal Cell Programming Strategy

In this section, we describe the cell-programming strategy that minimizes the expected

cost of the final cell level. Recall that at most t rounds of charge injection can be

used for programming a cell. We use the algorithm described before to compute

the functions A(x; i) for i = 1, 2, · · · , t, and compute the functions α(x; i; j) for

i = 1, 2, · · · , t and j = 0, 1, 2, . . . , d θ
∆(1−ε)

e. These functions are then stored in the

storage system, to be looked up during the actual cell-programming process.2

For i = 1, 2, · · · , t, let xi denote the actual cell level after the i-th round of charge

injection. Let x0 = 0 denote the initial cell level. The objective of cell programming

is to minimize the expectation of C(xt). The optimal cell-programming strategy is as

follows:

For i = 0, 1, · · · , t − 1, set the aimed level increment in the (i + 1)-th round of

charge injection to be j∗∆ such that

α(xi − θ; t − i; j∗) = A(xi − θ; t − i).

It should be noted that once the functions A(x; i) and α(x; i; j) are stored, it

is very efficient to look them up for the actual programming of cells. Let us now

analyze the time complexity of computing these functions. For simplicity, we use the

cost function C(x) = (x − θ)2 for the multi-level cell technology as an example, but

the results can be easily extended for both general cost functions in Definition 12.

When C(x) = (x − θ)2, the function A(x; 1) is a degree-2 polynomial of x in

O( θ
∆δ

) intervals. By induction (for simplicity we only present the conclusion and

skip the detailed analysis), for i = 2, 3, · · · , t and j = 0, 1, · · · , d θ
∆(1−ε)

e, the func-

2Since θ ≤ L, in the above computation, we let θ = L. Functions A(x; i) and
α(x; i; j) computed this way can be used for any θ ≤ L.
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tion α(x; i; j) is a degree-(i + 1) polynomial of x in O(1−ε
δ

( 2θ
∆(1−ε)

)i−1( θ
∆(1−ε)

)2(i−2)i!)

intervals; for i = 2, 3, · · · , t, the function A(x; i) is a degree-(i + 1) polynomial in

O( θ
∆δ

( 2θ
∆(1−ε)

)i−1( θ
∆(1−ε)

)2(i−1)(i+1)!) intervals. So the overall time complexity of com-

puting all the functions is O(1−ε
δ

( 2L3

∆3(1−ε)3
)t(t + 1)!). So when the number of rounds

of charge injection t is a constant, ∆ is not arbitrarily small and ε is not arbitrarily

close 1, the complexity is upper bounded by a polynomial of the parameters. We note

that the above complexity is derived based on a very pessimistic analysis. The actual

complexity is usually (significantly) lower.

E. Numerical Computation

We demonstrate the numerical computation of the functions A(x; i) and α(x; i; j).

We consider two cases for the cost function: for MLC, and for rank modulation (see

Definition 12).

1. Multi-level Cells

For MLC, we set the cost function as

C(x) = (x − θ)2

and set the parameters as ∆ = 1, ε = 0.4, δ = 0.6.

The function A(x; i) is shown in Fig. 2, for x ∈ [−6, 1) and i = 1, 2, · · · , 5. We

can see that A(x; i) is piecewise polynomial, and it monotonically decreases when i

increases (because more rounds of charge injection leads to more accurate program-

ming). We can also see that A(x; i) converges quickly as i increases.

As an example, we show the numerical functions of A(x; 3) and α(x; 3; 3) in

Fig. 3 and Fig. 4, respectively, for x ∈ [−6, 1). The left column of the table shows
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the domain for x, and the right column shows the polynomial (A(x; 3) or α(x; 3; 3))

in this domain.

2. Rank Modulation

For rank modulation, we set the cost function as

C(x) =















∞ , if x < θ

x − θ , if x ≥ θ

and set the parameters as ∆ = 1, ε = 0.4, δ = 0.6.

The function A(x; i) is shown in Fig. 5, for x ∈ [−6, 1) and i = 1, 2, · · · , 5. Again,

we see that A(x; i) is piecewise polynomial, it monotonically decreases with i, and

it converges quickly with i. For illustration, we also show the numerical functions of

A(x; 3) and α(x; 3; 3) in Fig. 6 and Fig. 7, respectively, for x ∈ [−6, 1).
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A(x;5)

Fig. 2. The functions A(x; 1), A(x; 2), A(x; 3), A(x; 4) and A(x; 5). Here the cost

function is for MLC, and ∆ = 1, ε = 0.4, δ = 0.6.
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A(x; 3)

[-6,-5.56) 23.9 + 11.2x + 1.76x2 + 0.0917x3

[-5.56,-5.49) 16.4 + 8.37x + 1.43x2 + 0.0815x3

[-5.49,-5.39) 24.9 + 12.7x + 2.16x2 + 0.122x3

[-5.39,-4.76) 14.3 + 8.76x + 1.8x2 + 0.122x3

[-4.76,-4.18) 7.66 + 4.6x + 0.924x2 + 0.0611x3

[-4.18,-4.16) 15.5 + 10.6x + 2.42x2 + 0.183x3

[-4.16,-3.79) 8.84 + 5.8x + 1.27x2 + 0.0917x3

[-3.79,-3.77) 0.948 + 1.63x + 0.722x2 + 0.0917x3

[-3.77,-3.56) 1.55 + 0.771x + 0.107x2

[-3.56,-3.42) −6.75 − 6.21x − 1.85x2 − 0.183x3

[-3.42,-3.39) −1.22 − 0.743x − 0.1x2 − 1.49e − 08x3

[-3.39,-2.59) 5.91 + 5.57x + 1.76x2 + 0.183x3

[-2.59,-2.19) 7.1 + 7.92x + 2.97x2 + 0.367x3

[-2.19,-1.82) 1.84 + 3.1x + 1.87x2 + 0.367x3

[-1.82,-1.19) −0.259 − 0.413x − 0.1x2

[-1.19,-0.588) 1.29 + 2.2x + x2

[-0.588,1) x2

Fig. 3. The function A(x; 3) for MLC.
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α(x; 3; 3)

[-6,-5.99) −9.86 − 4.78x − 0.761x2 − 0.0407x3

[-5.99,-5.49) 16.4 + 8.37x + 1.43x2 + 0.0815x3

[-5.49,-5.39) 24.9 + 12.7x + 2.16x2 + 0.122x3

[-5.39,-4.76) 14.3 + 8.76x + 1.8x2 + 0.122x3

[-4.76,-4.13) 7.66 + 4.6x + 0.924x2 + 0.0611x3

[-4.13,-3.99) 5.06 + 2.29x + 0.267x2 − 9.93e − 09x3

[-3.99,-2.99) 12.8 + 8.12x + 1.73x2 + 0.122x3

[-2.99,-2.39) 9.55 + 4.85x + 0.633x2

[-2.39,1) 11.6 + 6.6x + x2

Fig. 4. The function α(x; 3, 3) for MLC.
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Fig. 5. The functions A(x; 1), A(x; 2), A(x; 3), A(x; 4) and A(x; 5). Here the cost

function is for rank modulation, and ∆ = 1, ε = 0.4, δ = 0.6.
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A(x; 3)

[-6,-5.4) 4.76 + 1.5x + 0.138x2

[-5.4,-5.16) 3.42 + 1x + 0.0917x2

[-5.16,-4.8) 6.47 + 2.18x + 0.206x2

[-4.8,-4.77) 4.89 + 1.52x + 0.138x2

[-4.77,-4.56) 2.04 + 0.853x + 0.122x2

[-4.56,-4.2) 5.22 + 2.25x + 0.275x2

[-4.2,-3.6) 3.6 + 1.48x + 0.183x2

[-3.6,-3.5) 2.41 + 0.817x + 0.0917x2

[-3.5,-3.2) 4.08 + 1.94x + 0.275x2

[-3.2,-3) 2.32 + 1.38x + 0.275x2

[-3,-2.66) 1.08 + 0.56x + 0.138x2

[-2.66,-2.4) 4.02 + 2.76x + 0.55x2

[-2.4,-2.14) 2.43 + 1.44x + 0.275x2

[-2.14,-2.06) 1.25 + 0.89x + 0.275x2

[-2.06,-1.8) 4.77 + 4.3x + 1.1x2

[-1.8,-1.6) 2.99 + 2.32x + 0.55x2

[-1.6,-1.2) 1.23 + 1.22x + 0.55x2

[-1.2,-1.2) −0.88 − 1.2x

[-1.2,-0.6) 0.44 − 0.1x

[-0.6,0) 1.1 + x

[0,1) x

Fig. 6. The function A(x; 3) for rank modulation.
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α(x; 3; 3)

[-6,-5.82) −1.99 − 0.76x − 0.0458x2

[-5.82,-5.4) 1.64 + 0.487x + 0.0611x2

[-5.4,-4.8) 5.21 + 1.81x + 0.183x2

[-4.8,-4.56) 2.04 + 0.853x + 0.122x2

[-4.56,-4.2) 5.22 + 2.25x + 0.275x2

[-4.2,-3.6) 3.6 + 1.48x + 0.183x2

[-3.6,-3.26) 2.41 + 0.817x + 0.0917x2

[-3.26,-3) 5.35 + 2.61x + 0.367x2

[-3,-2.4) 3.7 + 1.51x + 0.183x2

[-2.4,-1.8) 2.64 + 0.633x

[-1.8,1) 3.3 + x

Fig. 7. The function α(x; 3, 3) for rank modulation.
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CHAPTER IV

CONSTRAINED CODES FOR PHASE-CHANGE MEMORIES

Phase-change memories (PCMs) are one of the most promising candidates for the

next-generation non-volatile memories. A PCM cell can have q ≥ 2 levels, where the

level 0 is the amorphous state, the levels 1, . . . , q−2 are the partially crystalline states,

and the level q−1 is the crystalline state. Among them, the levels 0, 1, . . . , q−2 can be

seen as semi-stable states, while the level q−1 can be seen as a stable state. The level

of a PCM cell is switched by high temperatures. In the Introduction section, we have

introduced two potential thermal issues for PCMs: the thermal crosstalk problem,

and the local thermal accumulation problem. In this chapter, we consider coding

techniques for these potential challenges. For the thermal crosstalk problem, we use

a scheme that removes the crosstalk interference, and then study coding techniques

that reduce the programming cost (measured by the number of RESET operations).

For the local thermal accumulation problem, we study coding techniques that impose

time and space constraints on writing, to help the heat generated by programming

be more balanced spatially.

A. Symbol-constrained Codes

In this section, we study coding techniques for the thermal crosstalk problem. Let

c1, c2, . . . , cn be n cells. For i ∈ {1, 2, . . . , n} , [n], let `i ∈ {0, 1, . . . , q − 1} denote

the level of ci. In this paper, we consider the cells as a one-dimensional array. (The

concepts can be extended to higher dimensions, too.) Two cells ci and cj are neighbors

if and only if |i− j| = 1. Let γ ∈ {1, 2, . . . , q − 1} be a parameter.

We consider the following simple model for thermal crosstalk: When a cell ci is

RESET to level 0, the thermal crosstalk from ci (at that moment) will increase its
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neighboring cell’ level `j (for j = i ± 1) by at most γ, unless the neighboring cell cj

is also being RESET at that moment. (However, a cell level cannot exceed q − 1, the

stable fully-crystalline state. And a SET operation does not affect the neighboring

cells due to its considerably lower temperature.)

Let C ⊆ {0, 1, . . . , q−1}n be a code, whose rate R(C) is defined as log2|C|

n
. (Clearly,

R(C) ≤ log2 q.) A rewrite is to change the cell levels from the current codeword

X = (x1, . . . , xn) ∈ C to a new codeword Y = (y1, . . . , yn) ∈ C. For i ∈ [n], if

xi > yi, then the rewrite needs to RESET ci (and then SET ci if yi > 0). For

j = i ± 1, if ci is RESET and yj < min{xj + γ, q − 1}, then the rewrite needs to

RESET cj as well, because otherwise the thermal crosstalk from ci may make `j

greater than yj. Therefore, a RESET operation applied to a cell can trigger the

RESET of its neighboring cell, and this effect can propagate to many cells. Let us

define a RESET segment in codeword Y as a maximum run of symbols yi, yi+1, . . . , yj

(where 1 ≤ i ≤ j ≤ n) such that: (1) ∀ i′ ∈ {i, . . . , j}, yi′ < min{xi′ + γ, q − 1}; (2) ∃

i′′ ∈ {i, . . . , j} such that xi′′ > yi′′. By our above analysis, the rewrite must RESET

all the cells in a RESET segment (before setting them).

To rewrite cells using parallel programming, it is natural to use the following

two-step procedure: First, RESET all the cells in RESET segments of the new code-

word; then, SET all the cells whose levels are still lower than their values in the new

codeword. (The second step has no crosstalk effect.)

Example18.. Let n = 11, q = 4 and γ = 3. Assume the cells need to change from an

old codeword (1, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1) to a new codeword (0, 3, 2, 2, 1, 2, 2, 2, 3, 1, 2).

First, we RESET the cells {c1, c3, c4, c5, c6, c7, c8}. (After this step, the cell lev-

els will be (0, 3, 0, 0, 0, 0, 0, 0, `9 , 1, 1), where `9 ∈ {1, 2, 3}. (Since cell c8 is RE-

SET, the thermal crosstalk from c8 may make `9 be greater than its original value



48

1.) Then, we SET the cells {c3, c4, c5, c6, c7, c8, c9, c11}, to increase the cell levels to

(0, 3, 2, 2, 1, 2, 2, 2, 3, 1, 2).

We define the cost of a rewrite operation as the number of cells that are RESET

during rewriting. (In Example 18, the cost is 7.) The number of RESETs is a very

important cost measurement because PCM cells have a limited longevity: PCM cells

can endure about 106 ∼ 108 RESETs (or SET-RESET cycles) before becoming non-

functional [3, 16]. Note that for the rewrite, for every cell that needs to decrease its

level, the whole RESET segment containing it is forced (triggered) to be RESET, too.

This motivates us to study constrained codes where RESET segments have limited

lengths. Given this constraint, we seek capacity-achieving codes.

In this paper, we focus on the case γ = q−1 (the worst-case scenario for thermal

crosstalk). We define an unstable segment in a codeword X = (x1, . . . , xn) as a

maximum run of symbols xi, xi+1, . . . , xj (where 1 ≤ i ≤ j ≤ n) such that for i′ ∈

{i, . . . , j}, xi′ < q − 1. The length of this unstable segment is j − i + 1. When the

memory writes X, an unstable segment in it will become a RESET segment if any

of the cells in that unstable segment needs to decrease its level (compared to the old

codeword). For a code C, if in all its codewords the unstable segments’ lengths are at

most k, then during rewriting, the length of every RESET segment is at most k.

Definition 19.. Symbol-constrained codes

Let k be a positive integer. A code C ⊆ {0, 1, . . . , q − 1}n is k-limited if in

every codeword of C, every unstable-segment’s length is at most k. (It is also called a

symbol-constrained code.)

The k-limited codes are a constrained system S over alphabet Σ , {0, 1, . . . , q−

1}. An example for q = 4, k = 3 is shown in Fig. 8. We see that it generalizes the

(d = 0, k)-run-length-limited (RLL) codes [18] from the binary alphabet to the q-ary
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0 1 2 3

2 2 2

1 1 1

0 0 0

3
3 3

3

Fig. 8. Shannon cover of the 3-limited codes (constrained system), for q = 4.

alphabet. Its Shannon capacity is cap(S) = limn→∞ sup 1
n

log N(n;S), where N(n;S)

is the number of words of length n in S. We have constructed a k-limited code for

q = 4 and k = 1, which has a rate 6 : 5 finite-state encoder. Its rate is 1.2 bits/cell,

close to the Shannon capacity (which can be shown to be 1.203). When the code is

used for storing data, assuming that the input information bits have a uniform i.i.d.

distribution, for every rewrite, the ratio of the average number of RESET operations

to the number of information bits is 0.228. This compares favorably with the no-

coding method (i.e., storing 2 bits per cell), which has a higher ratio of 0.345. So

symbol-constrained codes can reduce RESETs.

We note that rewriting codes for reducing the RESET operations for PCMs have

been studied in [16], where interesting WOM-like codes have been used. However,

the study in [16] did not consider any thermal interference problem. We also stress

that the codes in [16] and the codes we study are two drastically different approaches.

While the codes in [16] always RESET all cells at the same time (to get a fresh start for

rewriting), we use constrained codes that are based on local constraints, and cells are

most likely RESET in different rewrites. And with our constrained-coding approach,

slide-block decoders can be built to locally decode information bits efficiently.

The following theorem presents the Shannon capacity of the symbol-constrained

codes, for arbitrary q and k.
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Theorem 20.. Let q ≥ 2 and k ≥ 1 be integers. Let

f(λ) = λk+2 − qλk+1 + (q − 1)k+1.

The equation f(λ) = 0 has at most three real-valued solutions, one of which is q − 1.

Among those real-valued solutions, if q = k+2, let λ∗ be the solution with the greatest

absolute value; otherwise, among the (at most two) real-valued solutions unequal to

q−1, let λ∗ be the solution with the greater absolute value. Then the Shannon capacity

of k-limited codes is

log2 |λ∗|

bits per cell.

Proof. Let Aq,k denote the adjacency matrix of the Shannon cover of the k-limited

codes in cells of q levels. (See Fig. 8 for an example.) We have

Aq,k =

























1 q − 1 0 · · · 0

1 0 q − 1 · · · 0

...
...

...
. . .

...

1 0 0 · · · q − 1

1 0 0 · · · 0

























=







1k×1 (q − 1)Ek

1 01×k







Here 1k×1 denotes the all-one column-vector of length k, Ek denotes the k×k identity

matrix, and 01×k denotes the all-zero row vector of length k. Aq,k is a (k+1)× (k+1)

matrix.



51

Define Bq,k (for k ≥ 2) as a k × k matrix as follows:

Bq,k = Aq,k−1 − λEk +



















λ 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0



















k×k

Let us show by induction that |Bq,k| = (−1)k+1
∑k−1

i=0 (q − 1)k−1−iλi. When k = 2, we

have |Bq,2| =

∣

∣

∣

∣

∣

∣

∣

1 q − 1

1 −λ

∣

∣

∣

∣

∣

∣

∣

= −λ− (q− 1). This serves as the base case. Now consider

k ≥ 3. We have |Bq,k| = (−λ)k−1 − (q − 1) |Bq,k−1|. By the induction assumption, we

get |Bq,k| = (−1)k+1
∑k−1

i=0 (q − 1)k−1−iλi.

Let S denote the constrained system (the k-limited codes), and let λ∗ denote the

eigenvalue of the greatest absolute value of the matrix Aq,k. The capacity of S equals

log2 |λ∗| bits per cell. To find λ∗, we need to compute |Aq,k − λEk+1|. (Ek+1 is the

(k + 1) × (k + 1) identity matrix.) First, consider k = 1. We get

|Aq,1 − λE2| =

∣

∣

∣

∣

∣

∣

∣

1 − λ q − 1

1 −λ

∣

∣

∣

∣

∣

∣

∣

= λ2 − λ − (q − 1)

By solving |Aq,1 − λE2| = 0, we get λ∗ =
1+
√

1+4(q−1)

2
. Since when k = 1, we have

f(λ) = λ3−qλ2+(q−1)2 = (λ−(q−1))(λ2−λ−(q−1)) = (λ−(q−1)) |Aq,1 − λE2| =

(λ − (q − 1))(λ − 1+
√

1+4(q−1)

2
)(λ − 1−

√
1+4(q−1)

2
), it is not difficult to verify that the

theorem holds for k = 1.
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Let us show that the theorem holds for k ≥ 2, too. When k ≥ 2, we get

|Aq,k − λEk+1|

= (1 − λ)(−λ)k − (q − 1) |Bq,k|

=
(−1)k+1(λk+2−qλk+1+(q−1)k+1)

λ−(q−1)

= (−1)k+1

λ−(q−1)
· f(λ)

So the equation f(λ) = 0 has at most one more real solution compared to the equation

|Aq,k − λEk+1| = 0 (which would be the solution λ = q − 1).

To see that f(λ) = 0 has at most three real-valued solutions, consider f ′(λ) =

(k+2)λk+1−q(k+1)λk. Since f ′(λ) = 0 has only two solutions (λ = 0 and λ = q(k+1)
k+2

),

f(λ) is (strictly) monotonic in the three ranges for λ: (−∞, 0], [0, q(k+1)
k+2

], [ q(k+1)
k+2

,∞).

Therefore f(λ) = 0 has at most three real-valued solutions.

We now show that λ = q − 1 is a solution to |Aq,k − λEk+1| = 0 if and only if

q = k + 2. By replacing λ with q − 1 in |Aq,k − λEk+1|, we get

|Aq,k − λEk+1| = (−1)k+1(q − 1)k(q − k − 2),

which equals 0 if and only if q = k + 2.

So we can see that the solution λ∗ defined in the theorem is the solution of the

greatest absolute value to the equation |Aq,k − λEk+1| = 0. Therefore |λ∗| is the

largest of the absolute values of the eigenvalues of Aq,k. So the theorem holds for

k ≥ 2, too.

Based on Theorem 20, the Shannon capacity of symbol-constrained codes for

different q and k are shown in Table I.
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Table I. Shannon capacity (bits per cell) of k-limited codes

q\k 1 2 3 4 5 6

2 0.694 0.879 0.947 0.975 0.988 0.994

3 1.000 1.303 1.432 1.496 1.531 1.552

4 1.203 1.585 1.756 1.846 1.899 1.931

5 1.357 1.797 2.000 2.110 2.176 2.218

6 1.481 1.968 2.196 2.322 2.399 2.449

7 1.585 2.111 2.360 2.499 2.585 2.642

8 1.675 2.234 2.501 2.651 2.745 2.807

9 1.754 2.342 2.624 2.785 2.885 2.953

10 1.824 2.438 2.734 2.904 3.010 3.082

11 1.888 2.525 2.834 3.011 3.123 3.199

12 1.946 2.604 2.924 3.108 3.225 3.305

13 2.000 2.677 3.008 3.198 3.319 3.402

14 2.050 2.745 3.084 3.281 3.406 3.492

15 2.096 2.807 3.156 3.358 3.487 3.576

16 2.139 2.866 3.223 3.430 3.563 3.654
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B. Space-time Constrained Codes

In this section, we study coding techniques for a different interference problem: the

local thermal accumulation problem. It is known that when cells are repeatedly

programmed, adjacent cells can be crystallized/disturbed [19]. We seek codes for

rewriting data that can balance heat better. This motivates us to study the space-

time constrained codes defined below.

Let c1, . . . , cn be n PCM cells, whose levels are denoted by `1, . . . , `n ∈ {0, . . . , q−

1}. Let V = {0, 1, . . . , v − 1} be an alphabet of size v. The data stored in the

n cells takes its value from the alphabet V . A code C is a mapping from the cell

levels L , (`1, . . . , `n) ∈ {0, . . . , q − 1}n to the data values V . We allow it to be

a many-to-one mapping (instead of a one-to-one mapping). The code C has two

associated functions: a decoding function Fd and an update function Fu. The decoding

function Fd : {0, . . . , q − 1}n → V tells us that the cell levels L represent the data

Fd(L) ∈ V . The update function Fu : {0, . . . , q − 1}n × V → {0, . . . , q − 1}n

tells us that if the old cell levels are L and we want to write the new data s ∈ V

into the cells, we will change the cell levels to Fu(L, s). (Clearly, we should have

Fd (Fu (L, s)) = s.) A rewrite can change the data to any value in V . Here we do not

consider the thermal crosstalk problem. So when a rewrite changes an old codeword

X = (x1, . . . , xn) ∈ {0, . . . , q − 1}n to a new codeword Y = (y1, . . . , yn), for i ∈ [n],

a cell ci needs to be programmed only if xi 6= yi. We define the rewrite cost as the

number of cells that are programmed, |{i ∈ [n] | xi 6= yi}|, which is the Hamming

distance between X and Y . To balance programming-generated heat, we study the

following code.1

1The model can be generalized by differentiating the cost of RESET and SET
operations. In PCMs, the RESET operation uses a higher temperature that the SET
operation, but has a shorter duration of time.
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Definition 21.. Space-time constrained codes

Let α, β, p be positive integers. A code is (α, β, p)-constrained if for any α con-

secutive rewrites and for any segment of β cells – namely, ci, ci+1, . . . , ci+β−1 for some

i ∈ [n] – the total rewrite cost of those β cells (over those α rewrites) is at most p.

(It is also called a space-time constrained code.)

We note that the space-time constrained codes are interesting because although

the system can keep moving data that are frequently rewritten to balance heat, such

an approach may cause substantial overhead for file-system/compiler design and their

optimization. And for content-addressable systems, where the address of data is

determined by the content of the data (e.g., by using a hash function) for fast data

retrieval, relocating data can also be very challenging. In this work, as the starting

point of understanding space-time constrained codes, we study the time and space

constraints separately.

1. Time-constrained Codes

We first study time-constrained codes with α ≥ 1, β = 1, p = 1. This is the simple

case where every cell can be programmed at most once in every α consecutive rewrites.

Note that the rate of the code C is defined as log2 v

n
bits per cell. It is easy to see that

a simple idea based on time division can give us a code of rate log2 q

α
bits per cell, as

follows: Let n = αdlogq ve, and divide the n cells evenly into α groups (call them the

0th, 1st, 2nd, . . . , (α − 1)-th cell groups); for i = 1, 2, 3 · · · , for the i-th rewrite we

write the data into the (i mod α)-th cell group. When n → ∞ (which also means

v → ∞), the code rate approaches log2 q

α
bits per cell. So the question is if there exist

codes of higher rates.

Note that the challenge for designing time-constrained codes is that we cannot
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Table II. WOM code D with t=2

L′ 000 100 010 001 110 101 011 111

Fd(D)(L
′) 0 1 2 3 3 2 1 0

afford to remember for every cell how long ago the cell was programmed for the

last time (up to α past rewrites), because that alone will cost log2 α bits of storage

space for every cell. (Consider the case q = 2.) So the programming of cells needs

to be synchronized in some way so that this information cost can be reduced. We

now present a general time-constrained code construction for q = 2 that uses the

write-once memory (WOM) codes [22] as sub-codes.

Let D be a WOM code that stores data of alphabet size w in m cells of q = 2

levels. Denote the alphabet of the stored data by W = {0, 1, . . . , w − 1}. The

code D also has a decoding function Fd(D) : {0, 1}m → W and an update function

Fu(D) : {0, 1}m × W → {0, 1}m. WOM codes have a unique property: with every

rewrite, the cell levels can only increase, not decrease [22]. Let t denote the number

of rewrites the code D can guarantee to support. (Let the initial cell levels all be

zero.) Clearly, due to the unique property of WOM codes, t is a finite number.

Example 22.. Let w = 4, m = 3, q = 2. Let L′ , (`′1, `
′
2, `

′
3) ∈ {0, 1}3 denote the

three cell levels. The following WOM code D was presented by Rivest and Shamir [22]

with t = 2 in Table II.

If the t = 2 rewrites first write the data as 2, the rewrite it as 1, the code will

first let L′ be (0, 1, 0), the change it to (0, 1, 1).

Let E be an “elevator code” that mimics D but allows the cell levels to increase

and decrease in a synchronized way, described as follows. E also stores data of al-

phabet size w in m cells of q = 2 levels. Plainly speaking, for the first α rewrites, E

rewrites data in the same way as D; then it pushes all the m cell levels to q − 1 = 1;
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for the next α rewrites, E rewrites data by decreasing cell levels, in exactly the op-

posite way of D; then it pushes all the m cell levels to 0; then the third batch of α

rewrites are implemented in the same way as D again; and so on. We now formally

define the decoding function Fd(E) and the update function Fu(E) of E. Let us call a

sequence of rewrites the 0th, 1st, 2nd, 3rd · · · rewrites. For i = 0, 1, 2 . . . , let L′
i

denote the cell levels after the i-th rewrite, and let ei ∈ W denote the data that the

i-th rewrite writes into the cells. (Clearly, we should have Fd(E) (L
′
i) = ei.) Then if

0 ≤ (i mod 2α) ≤ α − 1,

Fd(E) (L
′
i) = Fd(D) (L′

i) ;

otherwise,

Fd(E) (L′
i) = Fd(D) ((q − 1, · · · , q − 1) − L′

i) .

If i ≡ 0 mod 2α,

Fu(E)

(

L′
i−1, ei

)

= Fu(D) ((0, · · · , 0) , ei) .

If 1 ≤ (i mod 2α) ≤ α − 1,

Fu(E)

(

L′
i−1, ei

)

= Fu(D)

(

L′
i−1, ei

)

.

If i ≡ α mod 2α,

Fu(E)

(

L′
i−1, ei

)

= (q − 1, . . . , q − 1) − Fu(D) ((0, · · · , 0) , ei) .

If α + 1 ≤ (i mod 2α) ≤ 2α − 1,

Fu(E)

(

L′
i−1, ei

)

= (q − 1, . . . , q − 1) − Fu(D)

(

(q − 1, · · · , q − 1) − L′
i−1, ei

)

.

Example 23.. Let D be the WOM code in Example 22, and let E be the “elevator

code” defined as above. Then when the rewrites change the data as 1 → 2 → 3 → 2 →

3 → 1 → · · · , the code E changes the cell levels as (0, 0, 0) → (1, 0, 0) → (1, 0, 1) →
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(1, 1, 1) → (1, 1, 0) → (0, 1, 0) → (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1) → · · ·

We now construct the code C that stores data of alphabet size v in n cells of q = 2

levels. Let v = w
t

gcd(t,α) , where gcd (t, α) is the greatest common divisor of t and α.

Let n = m(t+α)
gcd(t,α)

. We see the stored data as a vector X =
(

x1, x2, . . . , x t
gcd(t,α)

)

∈

{0, 1, . . . , w − 1} t
gcd(t,α) . For i = 0, 1, 2 · · · , let Xi denote the data (vector) that

the i-th rewrite writes into the n cells. We divide the n cells evenly into t+α
gcd(t,α)

groups, and call them the 0th, 1st, · · · , (gcd (t, α) − 1)-th groups. (Every cell group

has m cells.) We implement a sequence rewrites as follows. For i = 0, 1, 2 . . . ,

let g(i) = b i
gcd(t,α)

c. Then for the i-th rewrite, the t
gcd(t,α)

elements of Xi are, re-

spectively, written into the
(

g(i) mod t+α
gcd(t,α)

)

-th,
(

g(i) + 1 mod t+α
gcd(t,α)

)

-th, · · · ,
(

g(i) + t
gcd(t,α)

− 1 mod t+α
gcd(t,α)

)

-th cell groups. (After the rewrite, the data can be

decoded from those cell groups as well.) Every cell group uses the “elevator code” E

to rewrite data. (For a cell group, after it is used for t consecutive rewrites, all its

cell levels will be pushed to zero or q − 1 when the next rewrite comes. The it will

rest for α − 1 rewrites.)

It is not hard to see that every cell group will be programmed in t+1 consecutive

rewrites, then not programmed for another α−1 consecutive rewrites, and then repeat

this process. In such a period of t +α rewrites, the cell levels are either all increasing

or all decreasing; since q = 2, every cell can be programmed only once. So every cell is

programmed at most once for every α consecutive rewrites. So C is a time-constrained

code.

The only detail left to specify is how to know the value of i mod 2(t + α) when

the i-th rewrite happens, which is needed in the above coding process. (It is used

to compute g(i) and to implement the “elevator code.”) This value can be obtained

by using a simple “counter” of 2(t + α) cells of q = 2 levels. Let `′1, `
′
2, . . . , `

′
2(t+α)
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Table III. Rates of the time-constrained codes

α 4 5 6 7 8

1/α 0.250 0.200 0.167 0.143 0.125

rate t = 2 0.258 0.221 0.193 0.172 0.155

of t = 3 0.277 0.242 0.215 0.194 0.176

C t = 4 0.280 0.249 0.224 0.204 0.187

t = 5 0.277 0.250 0.227 0.208 0.192

denote their levels. We cyclically program the cells; for every rewrite, we change the

level of one cell. We see
∑2(t+α)−1

j=1

∣

∣

∣
`′j − `′2(t+α)

∣

∣

∣
equals i mod 2(t+α). So we can get

the wanted value, and every cell in the counter is programmed exact once for every

2(t + α) > α rewrites.

Let w → ∞, fix t as a constant, and we choose the smallest m such the WOM code

D exists. By the known results on WOM codes [22], when t = 2, m ≈ 1.294 log2 w;

when t = 3, m ≈ 1.549 log2 w; · · · ; for sufficiently large t, m ≈ t
log2 t

· log2 w. The rate

of the time-constrained code C is limw→∞
log2 v

n+2(t+α)
= limw→∞

t
gcd(t,α)

log2 w

m(t+α)
gcd(t,α)

= t
t+α

· log2 w

m
.

By the known values of log2 w

m
[22], we show the rate of C in the following table, and

compare it with 1
α

(the rate of the code using time sharing). We see that the code C

can achieve a higher rate in Table III.

The following theorem presents an upper bound to the rate of time-constrained

codes.

Theorem 24.. Define vmax as

vmax , max
∆=1,2,...,bn

α
c

∆
∑

i=0

(

n − (α − 1)∆

i

)

(q − 1)i.

Then the rate of (α, 1, 1)-constrained codes that use n cells of q levels is upper bounded

by (log2 vmax) /n bits per cell.
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Proof. Let C be a time-constrained code that stores the data of alphabet size v in the

n cells of q levels. Let X , (x1, x2, x3, · · ·) represent the data stored by a sequence of

rewrites; that is, for i = 1, 2, 3 · · · , the i-th rewrite writes the data xi ∈ {0, 1, . . . , v−1}

into the n cells. For i = 1, 2, 3 · · · , let δi denote the number of cells programmed by

the i-th rewrite. We choose X in the following greedy way: Choose x1, x2, x3 · · · one

by one, and each time – say we are choosing for the i-th rewrite – we choose xi from

the alphabet {0, 1, . . . , v − 1} greedily such that δi is locally maximized.

We construct a sequence of positive integers ∆1, ∆2, ∆3, · · · in the following way.

First, for convenience, let ∆0 = ∆−1 = ∆−2 = · · · = ∆−α+2 = 0. Then, for i =

1, 2, 3, · · · , let ∆i be the smallest positive integer such that

v ≤
∆i
∑

k=0

(

n − ∑i−1
j=i−α+1 ∆j

k

)

(q − 1)k .

For convenience, let δ0 = δ−1 = · · · = δ−α+2 = 0. We now show by induction that

δi ≥ ∆i for i ≥ −α + 2. As the base case, we have δi = ∆i = 0 for i = −α + 2, · · · , 0.

Now consider i ≥ 1. For the i-th rewrite, the number of cells that can be programmed

are those cells that were not programmed in the previous α − 1 rewrites. For the i-

th rewrite, there are n − ∑i−1
j=i−α+1 δj cells that can be programmed. Let y be the

smallest integer such that

v ≤
y

∑

k=0

(

n − ∑i−1
j=i−α+1 δj

k

)

(q − 1)k .

There are
∑y

k=0

(

n−
Pi−1

j=i−α+1 δj

k

)

(q − 1)k ways to program up to y cells for the i-th

rewrite (even if we do not consider how the code C maps the cell levels to the data);

so for the i-th rewrite, there is a choice for the new data value xi that will require

the rewrite to program at least y cells. By the way the rewriting sequence X is

chosen, clearly we have y ≤ δi. By the induction assumption, we have δj ≥ ∆j for
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j = i − 1, i − 2, · · · , i − α + 1. So n − ∑i−1
j=i−α+1 δj ≤ n − ∑i−1

j=i−α+1 ∆j. By the way

∆i and y are defined, it is easy to see that ∆i ≤ y. So ∆i ≤ δi, which completes the

induction.

It is not hard to see that since ∆i ≤ δi for all i, the infinite sequence ∆1, ∆2, ∆3, · · ·

indeed exists.

We now show by induction that ∆i ≤ ∆j for all −α + 2 ≤ i < j; that is,

the sequence ∆−α+2, · · · , ∆0, ∆1, ∆2, · · · monotonically increases. Trivially, ∆−α+2 =

· · · = ∆0 = 0 < ∆1. Now consider i ≥ 2, and let us compare ∆i−1 with ∆i. Since

∆i−α ≤ ∆i−1, we have n − ∑(i−1)−1

j=(i−1)−α+1 ∆j ≥ n − ∑i−1
j=i−α+1 ∆j; then it is simple to

see that ∆i−1 ≤ ∆i.

Since ∆i ≤ n for all i, the monotonic sequence ∆1, ∆2, ∆3, · · · must converge to

a certain value. That is, there exist integers j and ∆ such that for all i ≥ j, we have

∆i = ∆. By the way ∆i is defined, we get

v ≤
∆

∑

k=0

(

n − (α − 1)∆

k

)

(q − 1)k .

That leads to the final conclusion.

2. Space-constrained Codes

We now study space-constrained codes with α = 1, β ≥ 1 and p = 1. This is the

simple case where for every segment of β cells – namely, ci, ci+1, ci+β−1 for some i ∈ [n]

– a rewrite will program at most one cell in the segment. Note that the code uses n

cells of q levels to store data of alphabet size v.

We derive an upper bound for the rate of space-constrained codes. Let ~x =

(x1, x2, . . . , xn) ∈ {0, 1, . . . , q − 1}n be a vector that is not equal to (0, 0, . . . , 0). We

call ~x a β-constrained vector if for any two non-zero entries xi and xj in ~x, we have

|i − j| ≥ β. Let Mn,β be the set of all β-constrained vectors. We see that with a
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space-constrained code, if the current cell levels are L′ = (`′1, `
′
2, . . . , `

′
n), a rewrite

can change it only to the cell-level states in the set {L′ + ~x | ~x ∈ Mn,β}. (For all the

entries in the vector L′ + ~x, take modulo q.) Since the stored data have v distinct

values, and a rewrite can change the data from any value to any other value, we have

v ≤ |Mn,β | + 1.

So for space-constrained codes that use n cells of q levels, the code rate is upper

bounded by
log2(|Mn,β|+1)

n
bits per cell.

We now compute the value of |Mn,β |. When n ≤ β, |Mn,β | = n(q − 1) because

only one entry in a vector ~x ∈ Mn,β can be non-zero. Now consider the case n ≥ β+1.

Let ~x = (x1, . . . , xn) be a generic vector in Mn,β . If xn−1 = xn−2 = · · · = xn−β+1 = 0,

then there are |Mn−β,β | ·q+(q−1) ways to choose the values of x1, . . . , xn−β and xn. If

one of the elements in {xn−1, xn−2, . . . , xn−β+1} is not zero, then xn must be zero; and

it is not hard to see that in this case, the number of choices for ~x is |Mn−1,β |−|Mn−β,β |.

So we have the recursion

|Mn,β |

= |Mn−β,β | · q + (q − 1) + (|Mn−1,β | − |Mn−β,β |)

= |Mn−1,β | + (q − 1) |Mn−β,β | + q − 1

Along with the β initial values |Mn,β | = n(q − 1) for n = 1, 2, . . . , β, we can use the

above recursion to solve for |Mn,β |.

Note that when q = 2, the vectors in Mn,β correspond to the codewords of length

n in the (d = β − 1, k = ∞)-RLL constrained system [18], except that Mn,β does

not contain the all-zero codeword. Therefore, when q = 2 and n → ∞, the rate of

the space-constrained code is upper bounded by the capacity of the (β − 1,∞)-RLL

constrained system.
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Fig. 9. Sn,β with q = 2, β = 2. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4.

Let Sn,β be an undirected graph with qn vertices representing the qn possible cell

states, where there is an edge between two vertices (`1, `2, . . . , `n), (`′1, `
′
2, . . . , `

′
n) ∈

{0, . . . , q − 1}n if and only if (|`1 − `′1| , |`2 − `′2| , . . . , |`n − `′n|) ∈ Mn,β . Examples of

Sn,β for n = 1, 2, 3, 4 are shown in Fig. 9. The space-constrained code is a mapping

from the vertices of Sn,β to data values {0, 1, . . . , v − 1}, and the edges show the

allowed cell-state transitions via a rewrite. We can see that the degree of the graph

|Mn,β | gives an upper bound for v − 1, while the size of the maximum clique in Sn,β

gives a lower bound for the maximum value of v.



64

CHAPTER V

CONCLUSION

In this work, we study coding techniques for flash memories and PCMs based on

their unique properties. The topics we have studied include error scrubbing codes,

optimized cell programming schemes for flash memories, and constrained codes for

recording data in PCMs. For systems using flash memories or PCMs, our solutions

to these problems can extend their longevity, and improve their reliability and per-

formance.

We have introduced the concept of error scrubbing codes for memory scrubbing

in multi-level flash memories without using block erasures. We have presented two

code constructions, i.e., the linear error scrubbing codes and modular error scrubbing

codes. It is shown that error-scrubbing codes can outperform conventional error-

correcting codes because through the actively adjustment of cell levels, the decoding

sphere size can be minimized. In this area, an open problem is how to design efficient

error scrubbing codes of high rates and with the capability to correct numerous errors.

We have studied methods to program flash-memory cells accurately. Based on

the iterative and monotonic cell-programming method, a cell-programming strategy

is presented for two performance metrics, which are suitable for the multi-level cell

technology and the rank modulation technology, respectively. We have presented an

effective algorithm for finding the optimal programming strategy. There are many

ways to extend the results, including considering more general programming noise

models, studying the joint programming of flash memory cells, and designing coding

schemes that approach the storage capacity.

We have considered thermal interference problems for PCMs, which can be chal-

lenging when the cell density scales toward its limit. We have considered the thermal
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crosstalk problem and the local thermal accumulation problem, and proposed new

constrained codes for solving them. We have studied the capacity of the constrained

codes and some code constructions. For the symbol-constrained codes, the capacity

and code construction for small γ (corresponding to less serious crosstalk between

cells) still need to be studied. For space-time constrained codes, the capacity and

construction of codes with both space and time constraints still need to be under-

stood. How to combine constrained codes and error-correcting codes for PCMs is still

a very interesting unsolved problem. They all remain as open questions.
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