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ABSTRACT 

Studies of Optically Induced Magnetization Dynamics in Colloidal Iron Oxide 

Nanocrystals. 

  

(August 2010) 

Chih-Hao Hsia, B.S.; M.S., National Chiao Tung University, Taiwan 

Chair of Advisory Committee: Dr. Dong Hee Son 

 

 Studying dynamics of magnetization relaxation in excited magnetic materials is 

important both for understanding the rates and pathways of magnetization relaxation and 

for the potential use in spin-based electronics and data storage devices in the future. 

Previous studies have demonstrated that the size of nanocrystals is an important factor 

for energy relaxation in quantum dots and metal nanoparticles. Since magnetization 

relaxation is one of energy relaxation pathways, the size of nanocrystals may be also an 

important factor for magnetization relaxation in nanoscale magnetic materials. The goal 

of this study is to have a better understanding of magnetization relaxation in nanoscale 

magnetic materials. In particular, we focused on the correlation between the nanocrystal 

size and the rates of spin-lattice relaxation (SLR), a magnetization relaxation pathway, in 

magnetic nanocrystals. 

The size-dependent magnetization relaxation rate after optically induced 

demagnetization in colloidal Fe3O4 nanocrystals was measured by using time-resolved 

Faraday rotation (FR). Fe3O4 nanocrystals were chosen as the model system to study the 
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correlation between the size of nanocrystals and the rates of SLR due to the well-

established synthetic procedure of making nanocrystals with various sizes and narrow 

size dispersion. Faster SLR rates were observed in smaller Fe3O4 nanocrystals. The 

results suggested the surface of nanocrystals have higher efficiency of SLR than the 

interior region by using a simple model to analyze the SLR rates of Fe3O4 nanocrystals 

with various sizes. Higher efficiency of SLR at the surface may be due to the stronger 

spin-orbit coupling at the surface relative to the interior region. In addition to 

magnetization dynamics studies, the effect of oxidation on static FR in iron oxide 

nanocrystals (between Fe3O4 and -Fe2O3) was studied. The results indicated FR signal 

is linearly correlated to the strength of optical transition between Fe2+ and Fe3+ in Fe3O4 

for a given size of nanocrystals. 
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CHAPTER I 

INTRODUCTION 

 

 Studying dynamics of spin relaxation in excited magnetic materials is important 

for understanding the rates and pathways of spin relaxation. An understanding of spin 

relaxation is essential for the potential use in spin-based electronics and data storage 

devices in the future.1-5 The process of energy relaxation from spin to lattice degrees of 

freedom, i.e. spin-lattice relaxation, is one of the spin relaxation pathways.6, 7 A better 

understanding of spin-lattice relaxation in magnetic nanocrystals is the goal of this study. 

The energy relaxation in nanoscale materials is an important issue. The 

importance of energy relaxation in quantum dots and gold nanoparticles has been 

demonstrated in earlier studies.8-11 For quantum dots, the dynamics of electrons and 

holes relaxation in excited semiconductor quantum dots are important for the potential 

use in light emitting diodes (LED) and solar cells.10 A high yield quantum dot LED can 

be achieved by blocking non-radiactive relaxation pathways and only allowing energy 

relaxation in terms of light emission. On the other hand, light emitting pathways need to 

be eliminated to achieve more efficient solar energy conversion in solar cells. For gold 

nanoparticles, it is also important to understand the energy dissipation from electrons to 

lattice vibrations after photoexcitation.11 The energy in lattice degrees of freedom can 

cause melting of gold nanocrystals because the melting point of gold in nanometer scale 

____________ 
This dissertation follows the style and format of the Journal of the American Chemical 
Society. 
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 is much lower than in bulk.12 The understanding of laser-induced photothermal melting 

mechanism will be helpful for photothermal reshaping of metal nanoparticles. It was 

reported that photothermal reshaping of gold nanoparticles has potential applications in 

optical recording data storage devices.13 In contrast to the well-studied dynamics of 

energy relaxation in quantum dots and gold nanoparticles, studies of spin relaxation in 

magnetic nanocrystals are still rare.14, 15 Studying the dynamics of spin relaxation in 

excited magnetic nanocrystals may lead to a better understanding of the correlation 

between the size of nanocrystals and the spin relaxation in nanoscale magnetic materials. 

This study may be important for making high-density spin-based electronics. 

The size of nanocrystals is an important factor of energy relaxation in nanoscale 

materials. For example, the rates of electron relaxation via Auger processes in excited 

quantum dots are size-dependent.9, 10, 16 Faster electron relaxation occurs in smaller 

quantum dots. The size of magnetic nanocrystals is also considered as an effective factor 

of spin relaxation because the rates of energy flow from lattice to spin degrees of 

freedom were affected by the thickness of Fe3O4 films after optical excitation.17  

It was reported that the magnetic anisotropy constant (Kaniso) in partially oxidized 

Fe3O4 nanocrystals increased by decreasing the volume of nanocrystals.18 Loosely 

speaking, the magnetic anisotropy constant (Kaniso) indicates the strength of the spin-

orbit coupling and the spin-orbit coupling strength is a key factor determining the rate of 

spin-lattice relaxation. The rates of spin-lattice relaxation are roughly linear to the 

magnetic anisotropy constants (Kaniso) of ferromagnetic and ferrimagnetic thin films.19 In 

Ref. 19, faster spin-lattice relaxation was observed in materials with higher magnetic 
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anisotropy constants (Kaniso). The results imply the rates of spin-lattice relaxation in 

magnetic nanocrystals may be influenced by the volume of nanocrystals because the 

spin-orbit coupling strength may be varied with nanocrystal size. 

Fe3O4 nanocrystals were chosen as the model system to study the correlation 

between nanocrystal size and spin-lattice relaxation due to its well-established synthesis 

procedures.18, 20-22 Fe3O4 nanocrystals with good size dispersion can be synthesized  

from 4 nm to larger than 100 nm in diameter.23 It is essential to have nanocrystals with 

good size dispersion (dispersion < 10 %) for size dependent properties studies. Another 

advantage of choosing Fe3O4 nanocrystals is that many physical properties of Fe3O4 

nanocrystals have been well-studied. Fe3O4 nanocrystals have been intensively studied 

because of their potential biomedical applications, such as drug delivery, contrast agent 

for magnetic resonance imaging (MRI) and heating mediator for cancer.22 

Fe3O4 nanocrystals with diameter smaller than 30 nm have only a single 

magnetic domain but are superparamagnetic, showing no net magnetic moment without 

an external magnetic field. Magnetization direction in superparamagnetic nanocrystals 

randomly fluctuates because the thermal energy exceeds the magnetic anisotropy energy 

of the nanocrystal, shown in Figure 1.1.24 The magnetic moment of a nanocrystal is the 

sum of the magnetic moments in the nanocrystal.  The magnetic anisotropy energy 

provides an energy barrier that tends to fix magnetic moment direction of an individual 

nanocrystal. The height of energy barrier, magnetic anisotropy of nanocrystal, is linearly 

correlated to the volume of the nanocrystal according to the Stoner-Wohlfarth theory.6 

This superparamagnetic behavior results in well-suspended colloidal Fe3O4 nanocrystals.  
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Figure 1.1. Magnetic anisotropy (Ea) is an energy barrier that tends to fix the magnetic 

moment direction of an individual nanocrystal. The height of energy barrier is linearly 

proportional to the volume of the nanocrystal (<V>) according to the Stoner-Wohlfarth 

theory. When thermal energy exceeds the energy barrier, the magnetic moment direction 

of an individual nanocrystal is randomly flipped, resulting in superparamagnetic 

nanocrystals. 
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A suspension of Fe3O4 nanocrystals is useful for optical based measurements, such as 

absorption spectroscopy and Faraday rotation measurment.25 For example, the surface of 

Fe3O4 is more readily oxidized into -Fe2O3 than the interior. The degree of oxidation in 

iron oxide nanocrsytsals can be easily determined by the absorption intensity in the near-

infrared region, which is only due to intervalence charge transfer transition between Fe2+ 

and Fe3+ in Fe3O4. 

The magnetic ordering in Fe3O4 nanocrystals is believed to be ferrimagnetic, like 

bulk Fe3O4. The magnetic moment of a nanocrystal is due to unpaired spin of electrons 

in Fe cations. In a free Fe3+ cation, the magnetic moment is due to 5 unpaired spins at 5 

degenerate energy levels. In the Fe3O4 lattice, the energy levels split into two groups via 

ligand field splitting, due to the symmetry of the orbitals.6 The ferromagnetic order is a 

result of the crystal structure, shown in Figure 1.2. The crystal structure of Fe3O4 is 

called spinel. The oxygen ions lie on a face-center cubic packed structure, and iron 

cations fill some of the tetrahedral and octahedral sites. In the formula of Fe3O4, one Fe 

sits on tetrahedral site (A site) and two Fe cations sit on octahedral sites (B site). The 

magnetic structure is composed of the two magnetic sublattices, A and B, separated by 

oxygen. The exchange interaction between two sublattices, mediated by oxygen anions, 

results in an antiparallel alignment of the magnetic moments of the A and B sublattices. 

The magnetic moments of the A and B sublattices are not equal and result in a net 

magnetic moment. The magnetic contributions from the two Fe3+ cations on different 

sublattice, A and B, cancel. Therefore, the net magnetic moment of Fe3O4 is due to the 

magnetic moment of Fe2+ on B sublattices. 
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Figure 1.2. (a) The energy levels for unpaired electrons in free Fe3+ are degenerate. (b) 

The energy levels for unpaired electrons split when Fe3+ is in the Fe3O4 lattice. Fe3+ in 

octahedral site (B site) is shown as example. (c) Crystal structure of Fe3O4. (d) Top view 

of Fe3O4 crystal structure. The directions of magnetic moment of each Fe cations in 

Fe3O4 are shown as arrows.  
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The dynamics of magnetization relaxation after optical excitation in magnetic 

materials have been studied by time-resolved magneto-optic effects, such as Faraday 

rotation (FR) and magneto-optic Kerr effect (MOKE).26-29 With the advancement of 

femtosecond laser techniques, one can selectively excite the electrons in the material and 

then monitor the energy relaxation in real time. A three heat reservoir model, namely 

electrons, spins, and lattice, was widely used to describe laser-induced demagnetization 

and the following magnetization relaxation in magnetic materials, shown in Figure 1.3.29 

The electrons absorb the photon energy, leading to a non-equilibrium temperature 

difference among three heat reservoirs. Energy flow from electrons to spins cause 

demagnetization, decrease of the magnitude of magnetic moments, with the time scales 

as fast as sub-picoseconds (ps). One explanation for the demagnetization is that the 

energy in the spin reservoir randomizes the direction of the spins, resulting in a decrease 

of magnetization. One pathway for spins to relax energy is spin-lattice relaxation, an 

energy flow from the spin to the lattice, and the time scales of the relaxation are in the 

order of 100 ps. 

 In this dissertation, time-resolved Faraday rotation measurements were 

performed in Fe3O4 nanocrystals with various sizes to understand the correlation 

between the nanocrystal size and the spin-lattice relaxation rate after optical excitation. 

The synthetic procedures to produce spherical Fe3O4 nanocrystals of different sizes will 

be discussed in Chapter II. Faraday rotation measures the rotation of linear polarization 

of light transmitted through magnetic materials. Due to the essentially optical nature of 

the technique, Faraday rotation signal can be contributed from the strength of optical 
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Figure 1.3. The three heat reservoir (electrons, spin, and lattice) model is used to explain 

the magnetization dynamics after optical excitation. 
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 transition and the magnetization of material. Chapter III demonstrates that time-resolved 

Faraday rotation data reflects the change of magnetization as a function of time. The 

correlation between the size of nanocrystals and spin-lattice relaxation in photoexcited 

Fe3O4 nanocrystals will be discussed in Chapter IV. It was found that the rate of spin-

lattice relaxation in smaller Fe3O4 nanocrystals is faster due to the higher efficiency of 

spin-lattice relaxation at the surface relative to the interior region. The higher efficiency 

of spin-lattice relaxation at the surface is due to the discontinuous lattice at the surface 

leading to a stronger spin-orbit interaction. The oxidation layer at the surface in oxidized 

Fe3O4 nanocrsytals is not a factor for spin-lattice relaxation, although different dynamics 

of magnetization relaxation in iron oxide nanocrystals with different degrees of 

oxidation were obtained. The effect of oxidation on the static Faraday rotation signal in 

iron oxide nanocrystals will be discussed in Chapter V. Finally, some concluding 

remarks and future directions for the dynamics of magnetization relaxation in magnetic 

nanomaterials will be discussed in Chapter VI. 
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CHAPTER II 

SAMPLE PREPARATION AND CHARACTERIZATION 

 

2.1 Introduction 

 Magnetite (Fe3O4) nanocrystals were chosen as the model system to study the 

correlation between the size of nanocrystals and the rate of magnetization relaxation due 

to their well-established synthetic procedures.20, 21 In addition, many properties in Fe3O4 

have been well-studied since Fe3O4 is one of the oldest magnetic materials. Thermal 

decomposition of iron precursor in high boiling point solvent with long hydrocarbon 

chained surfactants is a promising way to prepare Fe3O4 nanocrystals with ~ 10 % 

dispersion of the size.  The diameter of monodisperse Fe3O4 nanocrystal can be prepared 

from 5 nm up to 100 nm by varying synthetic conditions.23 The range of nanocrystal size 

for this study is from 5 to 15 nm in diameter. The synthetic process developed by Sun et 

al. was chosen because it is the most reproducible method to prepared Fe3O4 

nanocrystals with the desired sizes.20 Larger Fe3O4 nanocrystals with good size 

dispersion (~ 10%) can be prepared by using seeded growth method. In seeded growth, 

the same chemical reaction was repeated with previously prepared Fe3O4 nanocrystals as 

a seed. In addition, the size of nanocrystals in this method can be also controlled by 

reaction temperature, concentration, and surfactant to iron precursor ratio.22 High 

reaction temperature, high concentration and lower surfactant to Fe ratio can lead to 

form larger Fe3O4 nanocrystals, but size dispersion would become worse. 
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The size of nanocrystals was suggested as a factor for magnetization relaxation 

based on size-dependent energy dissipation processes in semiconductor quantum dots in 

earlier studies. For example, exciton relaxation in CdSe nanocrystals after 

photoexcitation were size dependent.8-10 In addition, it has been reported that the rates of 

energy flow from lattice to spin were influenced by the thickness of Fe3O4 films after 

optical excitation.17  The studies of size-dependent energy relaxation provide the 

information for tuning the rates and pathways of energy relaxation in nanoscle materials 

by varying the size of nanocrystals. 

The size range of our study was chosen from 5 nm to 15 nm because the static 

size-dependent magnetic properties are more prominent at this size range.30 Some static 

magnetic properties (such as Curie temperature, saturated magnetization, and magnetic 

anisotropy energy) have been reported as size dependent properties.24, 30, 31 Most of the 

size dependent magnetic properties in ferromagnetic and ferromagnetic materials is due 

to the total amount of magnetic moments, which is correlated to the volume of 

nanocrystals. Curie temperature is the temperature that spontaneous magnetic materials 

start losing their magnetic ordering. The magnetic ordering in spontaneous magnetic 

materials is due to the exchange interaction between magnetic moments. The total 

exchange interaction energy is linearly correlated to the total amount of magnetic 

moments. The size-dependent magnetic anisotropy is linearly correlated to the volume of 

magnetic nanocrystals, which was discussed in Chapter I. The size-dependent saturation 

magnetization can be explained by a core/shell model. The first model suggested the 

magnetic moments at the surface of the magnetic nanocrystals are more disorder than the 
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magnetic moments in the interior. The decrease of magnitude of saturation 

magnetization is due to smaller contribution from the surface layers of the nanocrystals. 

The study of size dependent magnetization dynamics in photoexcited Fe3O4 nanocrystals 

will be discussed in Chapter IV in detail. 

Nanocrystals have high surface-to-volume ratio and the surface of Fe3O4 is more 

readily oxidized. Thus, the effect of oxidation should be also considered in the study. 

The partially oxidized Fe3O4 nanocrystals can be treated as Fe3O4/-Fe2O3 core/shell 

nanostructures, which may also affect magnetization relaxation. Before studying the 

magnetization dynamics, the effect of oxidation on static Faraday rotation in iron oxide 

nanocrystals (between Fe3O4 and -Fe2O3) should be studied first. The effect of 

oxidation on the signal of magneto-optic Kerr effect (MOKE) in Fe3O4 films was 

observed, but the effect is not quantitatively understood because it is difficult to obtain 

the exact degree of oxidation in bulk.32 However, the degree of oxidation in iron oxide 

nanocrystals can be easily achieved by using UV-Vis-NIR spectroscopy.25 The effect of 

oxidation on static Faraday rotation will be discussed in detail in Chapter V, and the 

preliminary result of magnetization dynamics in partially oxidized Fe3O4 nancorystals 

will also be discussed in Chapter V. To have a better understanding of the effect of 

oxidation on static Faraday rotation in magnetic nanocrystals, Co nanocrystals were 

prepared. Co nanocrsytals are metal magnetic materials, and the oxidation layer (CoO) is 

an antiferromagnetic material, which does not contribute to the magnetization of 

nanocrystals. The synthetic procedure of Co nanocrystals will be discussed in this 

chapter. 
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 Nanocrystals have versatile structural parameters, such as size, sharp, core/shell 

nanostructure …etc. The structural parameters play important roles on exciton relaxation 

in quantum dots. For example, Auger relaxation, one of the exciton relaxation processes, 

in excited quantum dots can be suppressed by coating certain semiconductor shells. 

Cobalt substituted ferrite (CoxFe3-xO4) nanocrystals was prepared to study the correlation 

between cobalt content and the rates of spin-lattice relaxation. Cobalt substituted ferrite 

(CoxFe3-xO4) nanocrystals was chosen because the cobalt content in ferrites can increase 

the magnetocrystalline anisotropy constant (Kmca) of the material. The magnetocrystal 

anisotropy is associated with the strength of spin-orbit coupling, and spin-orbit coupling 

is one key parameter to determine the rates of spin-lattice relaxation. Therefore, cobalt 

content is suggested as a factor for varying the rates of spin-lattice relaxation. The 

preliminary result of dynamics of magnetization relaxation in cobalt substituted ferrite 

(CoxFe3-xO4) nanocrystals will also be discussed in Chapter IV. The synthetic procedure 

of making CoxFe3-xO4 nanocrystals is very similar to the synthetic procedure of making 

Fe3O4 nanocrystals. The cobalt content (x) in the nanocrystals is controlled by the initial 

molar ratio between Co and Fe precursors, and the details will be discussed in this 

chapter. 
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2.2 Synthetic details 

 Figure 2.1 shows the reaction schemes of making magnetic nanocrytals, such as 

Fe3O4, CoxFe3-xO4, Co nanocrystals. In addition, the phase conversion reactions between 

Fe3O4 and -Fe2O3 were also included. 

 

2.2.1 Chemicals 

 The following chemicals were purchased from Aldrich and used without further 

purification. Iron (III) acetylacetonate (Fe(acac)3, 97%), cobalt (II) acetylacetonate 

(Co(acac)2, 97%), oleic acid (technical grade, 90% and 99%), oleylamine (technical 

grade, 70%), 1,2-dodecanediol (90%), phenyl ether (99%), benzyl ether (99%), 1-

octadecene (ODE, technical grade, 90%), 1,2-dichlorobenzene (99%), tetradecane (99%). 

The following chemicals were purchased from Strem and used without further 

purification. Cobalt carbonyl (Co2(CO)8, stabilized in 1-5 % of hexane) and 

trioctylphosphine oxide (TOPO, 99%). 

 

2.2.2 One pot synthesis of 5nm Fe3O4 nanocrystals 

5 nm of spherical Fe3O4 nanocrystals were synthesized following the previously 

reported procedure.20 2 mmol of iron(actylacetonate)3 (Fe(acac)3, 97%) was placed in a 

100 ml 3-neck round flask with the mixture of 10 mmol of 1,2-dodecanediol (90%), 6 

mmol of oleic acid (technical grade, 90%) and 6 mmol oleylamine (technical grade, 70%) 

in 20 ml of phenyl ether (99%). The experiment setup of the synthesis was shown in 

Figure 2.2. A magnetic stirring bar was placed in the flask, and the mixture was under  
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Figure 2.1 Reaction schemes of making magnetic nanocrystals. (a) Fe3O4 nanocrystals, 

(b) -Fe2O3 nanocrystals, (c) Fe3O4--Fe2O3 binary nanostructure from oxidation reaction, 

(d) Fe3O4--Fe2O3 binary nanostructure from reduction reaction, (e) CoxFe3-xO4 

nanocrystals, (f) Co nanocrystals. 
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Figure 2.2 Experimental setup for synthesis of Fe3O4 nanocrystals. 
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stiring during whole reaction period. A Liebig condenser was set at the middle neck of 

the flask and two side necks were capped with septa. A heating mantle was place under 

the flask. The reaction flask was connected to a Schlenk line system (vacuum/gas 

manifold). The reaction was performed under nitrogen (N2) environment. The N2 filled 

environment was achieved by evacuating and refilling N2 back to the environment for 

three times. The reaction temperature was controlled by a temperature controller 

associated with a thermocouple and a heating mantle. The mixture was first heated to 

200 oC, and the temperature was held at 200 oC for 1 hr. The color of mixture was turned 

from red to black, implying Fe(acac)3 was decomposed and the monomer for Fe3O4 

nanocrystals was formed. 5 nm Fe3O4 nanocrystals was made after increasing the 

temperature to 250 oC and holding at this temperature for 30 min. 7 nm of Fe3O4 

nanocrystals were prepared by the same procedure described above at 290 oC for 1 hr in 

benzyl ether, instead of phenyl ether.  After cooled to room temperature, the result 

product was treated with ethanol under air, and product was precipitated from the 

solution. The product nanocrystals were cleaned by the repeated precipitation with 

ethanol and resuspension in hexane. Because the cleaning was performed under the 

ambient condition, the surface of Fe3O4 nanocrystals was slightly oxidized and turned 

into -Fe2O3. 

 

2.2.3 Seeded growth synthesis of Fe3O4 nanocrystals 

Fe3O4 nanocrystals with the sizes larger than 7 nm were prepared by the seeded 

growth method. In this method, the smaller nanocrystals were used as the seed under the 
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similar reaction condition described above. After cooled to room temperature, the result 

product was treated with ethanol under air, and product was precipitated from the 

solution. The product nanocrystals were cleaned by the repeated precipitation with 

ethanol and resuspension in hexane. Because the cleaning was performed under the 

ambient condition, the surface of Fe3O4 nanocrystals was slightly oxidized and turned 

into -Fe2O3, resulting in the reduction of the charge-transfer absorption intensity in near 

IR region. In addition to seeded growth, larger nanocrystals can also be prepared by 

increasing the reaction temperature. 

 

2.2.4 Reduction of oxidized Fe3O4 nanocrystals 

The partially oxidized Fe3O4 nanocrystals could be reduced back to 'pure' Fe3O4 

phase by heating the nanocrystals in 1-octadecene under N2 atmosphere at the reaction 

temperature higher than 200 oC in the presence of small amount of oleylamine (5% v/v). 

Even -Fe2O3 nanocrystals can be reduced back to 'pure' Fe3O4 phase. The reaction 

kinetics was monitored by UV-Vis spectroscopy, which will be discussed in sample 

characterization part. The reduction reaction can also occur under oxygen-free 

environment without adding extra oleylamine at the temperature higher than 210 oC. In 

addition, the reduction reaction can even occur under the ambient condition with excess 

amount of oleylamine because oleyalmine is a reducing agent for -Fe2O3. 
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2.2.5 Synthesis of -Fe3O4 nanocrystals 

Spherical colloidal -Fe2O3 nanocrystals were prepared by oxidizing Fe3O4 

nanocrystals under oxygen (O2) at 150 oC for >1 hr. For instance, 5 nm of Fe3O4 

nanocrystals in hexane were added into benzyl ether (~ 20 ml) with small amount of 

oleic acid (~ 1 ml) to prevent aggregation of nanocrytals. The mixture was heated at 90 

oC under air for 30 min to remove hexane and then heated to 150 oC under O2 until the 

oxidation is completed. The completion of oxidation was ascertained by checking the 

disappearance of the intervalence charge-transfer (IVCT) absorption in the near-IR 

region. The absorption in the near-IR region is only contributed from the IVCT 

transition between Fe2+ and Fe3+ in Fe3O4. 

 

2.2.6 Synthesis of iron oxide nanocrystals with different degrees of oxidation 

Iron oxide nanocrystals with a varying degree of oxidation between Fe3O4 and -

Fe2O3 were prepared in two different ways: (i) oxidation of Fe3O4 and (ii) reduction of -

Fe2O3 nanocrystals. The oxidation of Fe3O4 nanocrystals was performed in tetradecane 

by heating the sample solution at 90 oC in the open air with the presence of a small 

amount of oleic acid to keep the nanocrystals from precipitation. The reduction of -

Fe2O3 nanocrystals was performed in the mixture of 1-octadecene and oleylamine (20:1 

volume ratio) under N2 atmosphere at >200 oC. The degree of oxidation was varied 

simply by changing the reaction time. The partially oxidized Fe3O4 and partially reduced 

-Fe2O3 nanocrystals were kept under N2 atmosphere at -15 oC to prevent additional 

oxidation of the sample before the measurements are made. The degree of oxidation in 
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iron oxide nanocrystals was determined from the intensity of the charge-transfer 

absorption in near-IR region, which decreases linearly with the degree of oxidation from 

Fe3O4 to -Fe2O3 phase.  

 

2.2.7 Synthesis of CoxFe3-xO4 nanocrystals  

Spherical CoxFe3-xO4 nanocrystals passivated with oleic acid with varying cobalt 

content (x) in the range of 0 < x < 0.9 were synthesized by following the previously 

reported procedure.21 For instance, 7 nm CoxFe3-xO4 nanocrystals were synthesized by 

thermally decomposing iron acetylacetonate (Fe(acac)3) and cobalt acetylacetonate 

(Co(acac)2) with a mixture of oleic acid, oleylamine and 1,2-dodecanediol at 290 ºC in 

benzyl ether. Tuning of cobalt content was achieved by varying the molar ratio of 

Fe(acac)3 and Co(acac)2. After cooled to room temperature, the result product was 

treated with ethanol under air, and product was precipitated from the solution. The 

product nanocrystals were cleaned by the repeated precipitation with ethanol and 

resuspension in hexane. 

 

2.2.8 Synthesis of Co nanocrystals  

Spherical Co nanocrystals passivated with oleic acid were synthesized by 

following the previously reported procedure. For instance, 8 nm Co nanocrystals were 

synthesized by thermally decomposing cobalt carbonyl (Co2(CO)8) with a mixture of 

oleic acid (99%) at 180 ºC in 1,2-dichlorobenzene. Tuning of the size of nanocrystals 

was achieved by varying the molar ratio of Co2(CO)8 and oleic acid. To present 
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oxidation, the sealed flask was transferred into nitrogen filled glovebox after cooled 

down to room temperature. The product nanocrystals were precipitated by adding 

methanol. The supernatant solution was discarded and the Co nanocrystals were re-

suspended in nonpolar solvent, such as hexane, cyclohexane, and toluene. 

 

2.2.9 Sample preparation for characterization 

Iron oxide nanocrystals were suspended in non-polar solvent (such as hexane, 

toluene, and cyclohexane) for UV-Vis-NIR absorption measurement. The size and 

crystal structure of the nanocrystals were examined by transmission electron microscopy 

(TEM) and X-ray diffraction (XRD). The TEM sample was prepared by adding a drop of 

dilute iron oxide nanocrystals solution on carbon film coated copper grid. For XRD 

measurements, the predicated samples were used.  The surfactants capped on 

nanocrystals were studied by Fourier transform infrared (FT-IR) spectroscopy. The 

concentration of colloidal iron oxide and cobalt substituted ferrite nanocrystals were 

calculated from total metal ion concentration measured from elemental analysis 

employing induced coupled plasma-atomic emission spectroscopy (ICP-AES) and the 

size of the particle measured from TEM images. The samples for ICP-AES measurement 

were prepared by digesting the dried nanocrystal samples in 1 ml of aqueous HCl (12 M) 

solution and diluting it to several ppm level with aqueous HNO3 (1M) solution. 

In addition, static mass magnetization and blocking temperature measurement of 

CoxFe3-xO4 nanocrystals were performed. The static mass magnetization of CoxFe3-xO4 

nanocrystal samples was measured by using a superconducting quantum interference 
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device (SQUID) magnetometer (MPMS-XL, Quantum Design).  Saturation 

magnetization of CoxFe3-xO4 nanocrystal samples was obtained from the field-dependent 

magnetization measurement at the temperature of 5K. Similar to the results from 

previous study, the saturation magnetization exhibited only a very weak dependence on 

cobalt content (< 4%).33 In order to estimate the magnetic anisotropy constant (Kaniso) of 

the nanocrystals, blocking temperature (TB) was also obtained from the zero-field-cooled 

(ZFC) magnetization measurement within the temperature range of 10-300 K. In the 

ZFC curve, the temperature at which the magnetization reaches the maximum value was 

taken as TB. The magnetic anisotropy constant (Kaniso), partially reflecting the strength of 

spin-orbit coupling was obtained from Kaniso = 25kBTB/V, where kB is Boltzmann 

constant and V is the volume of the nanocrystal.34 For all the SQUID measurements, the 

nanocrystal samples were dispersed in liquid eicosane to avoid the aggregation and 

subsequently solidified to prevent the agitation of the nanocrystals in the matrix during 

the measurements. 
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2.3 Characterization of iron oxide nanocrystals 

2.3.1 Size of nanocrystals 

 Figure 2.3 shows the TEM images of Fe3O4 nanocrystals in different sizes 

(diameter of nanocrystals: 5, 7, 10, and 15 nm) by one pot synthesis and seeded growth. 

From the TEM images, all of the nanocrystals have nearly spherical shape, and the 

particle size dispersion is less than 10 % in diameter. The result indicates the size of 

nanocrystals can be controlled by seeded growth. In addition to seeded growth, larger 

nanocrystals can be prepared by increasing the reaction temperature. A plot of result 

particle size versus reaction temperature was shown in Figure 2.4. Larger nanocrystals 

can also be prepared by decreasing the solvent amount, namely increase the 

concentration. The reduction of solvent leads to the saturation of nuclei at early stage, 

and more reactant can contribute to the growth of nanocrystals, giving larger particles. A 

plot of result particle versus solvent amount was shown in Figure 2.5. Reducing the 

surfactant to Fe ratio is another approach to synthesize larger Fe3O4 nanocrystals. The 

reduction of surfactants leads the particles with less surfactant coverage, and the growth 

of particle can continue on the uncovered area, giving larger particles. A plot of result 

particle versus surfactant to iron ratio was shown in Figure 2.6. The later approaches 

were not chosen for this study, because the dispersion of particle size became much 

worse than original procedure. 
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Figure 2.3 TEM images of Fe3O4 nanocrystals with different sizes (a-d). 
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Figure 2.4 This plot illustrates that larger nanocrystals can be prepared by increasing the 

reaction temperature. For 320 oC reaction, the solvent is 1-octadecene. The black straight 

line is guide of eye. 
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Figure 2.5 This plot illustrates that larger nanocrystals can be prepared by reducing the 

amount of solvent in the reaction. The reaction conditions were modified from 7 nm 

Fe3O4 synthesis, and all quantities were doubled. The reaction temperatures were set at 

290 oC. The black straight line is guide of eye. 
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Figure 2.6 This plot illustrates that larger nanocrystals can be prepared by reducing the 

surfactant to iron ratio. The reaction conditions were modified from the synthesis with 

reduction of solvent amount, and the solvent amount were 12 and 15 ml in double scale 

synthesis. The reaction temperatures were set at 290 oC. The black straight line is guide 

of eye. 
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2.3.2 Crystal structure of nanocrystals 

The crystal structure of Fe3O4 nanocrystals was confirmed by XRD patterns, 

shown in Figure 2.7. All the major peaks in XRD patterns of all the nanocrystals fit the 

XRD pattern of Fe3O4 database. The peaks at 2 of 35.5, 43.2, 53.6, 56.9, and 62.6 

degree were assigned as the X-ray diffraction from (311), (400), (422), (511), and (440) 

planes, respectively.  The crystal structure of Fe3O4 is spinel, and general composition of 

spinel is AB2O4. A represents cations occupied in tetrahedral site and B represents 

cations occupied in octahedral sites of O2- ion face center cubic (fcc) lattice. In typical 

spinel structure (Fe3O4), 1/8 of tetrahedral sites are occupied and 1/2 octahedral sites are 

occupied. As mentioned before, nanocrystals are easily oxidized due to their high 

surface-to-volume ratio. Thus, the surface of Fe3O4 nanocrystals can be oxidized into -

Fe2O3 during the cleaning processes in the ambient condition. It is difficult to distinguish 

Fe3O4 and -Fe2O3 by using XRD because the crystal structures of Fe3O4 and -Fe2O3 are 

very similar. The only difference between Fe3O4 and -Fe2O3 in crystal structure is the 

number of vacancy sites, so the lattice parameters of Fe3O4 (0.8396 nm) and -Fe2O3 

(0.8346 nm) are closed, based on JCPDS files 19-629 and 39-1346. This is supported by 

comparison of XRD patterns of Fe3O4 and -Fe2O3 nanocrystals, shown in Figure 2.8.  
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Figure 2.7 XRD patterns of Fe3O4 nanocrystals with different sizes. X-ray source: Cu. 
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Figure 2.8 XRD patterns of Fe3O4 and -Fe2O3 nanocrystals. X-ray source: Mo. 
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2.3.3 Absorption spectra of iron oxide nanocrystals. 

UV-Vis spectroscopy is an easy method to distinguish Fe3O4 and -Fe2O3 

nanocrystals by comparing the absorption intensity in the near-infrared region, which is 

assigned to the inter-valence charge transfer (IVCT) transition between Fe2+ and Fe3+ in 

Fe3O4. The IVCT absorption in Fe3O4 phase disappears as the oxidation converts Fe2+ 

into Fe3+, shown in Figure 2.9. The spectra were normalized at 385 nm, which is an 

isobestic point between Fe3O4 and -Fe2O3. The isobestic point was found based on 

results of UV-Vis-NIR spectra and ICP-OES. Absorption of -Fe2O3 in the near-infrared 

region is absent because the electronic transitions between Fe3+ cations are forbidden 

transitions. The IVCT absorption was considered to be a good linear measure of the 

oxidation in -Fe2O3-Fe3O4 binary system and has been previously utilized to monitor 

the oxidation kinetics of Fe3O4 nanocrystals.22 The absorption spectra of oxidized Fe3O4 

nanocrsystals was well represented as the linear combination of the spectra of -Fe2O3 

and Fe3O4 nanocrystals. (See Figure 2.9c and 2.9d) A common linear scale of IVCT 

absorption intensity was used to determine the degree of oxidation for iron oxide for a 

given particle size. Zero intensity of IVCT absorption was taken to represent 100% -

Fe2O3 phase. To obtain the reference absorption spectrum of 'pure' Fe3O4 phase, the 

spectrum was obtained under oxygen-free atmosphere using the reduced Fe3O4 

nanocrystals dispersed in N2-bubbled solvent to avoid oxidation. The reduction kinetics 

was monitored by UV-Vis spectroscopy, shown in Figure 2.10. The absorption intensity 

at 635 nm was used to indicate the degree of oxidation, because the major contribution  
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Figure 2.9 UV-Vis-NIR spectra of 7 nm iron oxide nanocrystals with different degree of 

oxidation. (a) Fe3O4, (b) -Fe2O3, (c) oxidized Fe3O4 90 oC for 5hrs, (d) superposition of 

Fe3O4 and -Fe2O3 with corresponding degree of oxidation with (c). 
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Figure 2.10 Reduction kinetics of 5 nm iron oxide nanocrystals was represented by 

absorption intensities at 635 nm as a function of time. (a) extra olelyamine was added in 

the reaction (b) no extra oleylamina was added in the reaction. The start of reduction 

reaction was set the time while temperature reach 200 oC.  
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of the absorption at 635 nm in Fe3O4 nanocrystals is from the IVCT transition between 

Fe2+ and Fe3+, shown in Figure 2.9. Figure 2.10a shows the reduction kinetics with 

adding extra olelyamine, and Figure 2.10b shows the reduction kinetic without adding 

extra olelyamine in the reaction. The results indicate oleylamine help the reduction of -

Fe2O3, because the reduction reaction seems to be stopped after 10 min in the reaction 

without adding extra olelyamine. In addition, the reaction temperature is another 

important factor for reduction of -Fe2O3, because the reduction reaction restarted while 

increasing the temperature to 210 oC. -Fe2O3 nanocrystals can be reduced by 

olelayamine even in the ambient condition. (data is not shown) The results suggests 

oleylamine is a reducing agent for -Fe2O3 nanocrystals. Therefore, olelyamine, reaction 

temperature, and reducing atmosphere are all important factors for the reduction of -

Fe2O3. Among these factors, the reaction temperature is essential because no reduction 

reaction was observed at the reaction temperature lower than 200 oC. 

Figure 2.11a shows the oxidation kinetics of Fe3O4 nanocrystals in non-polar 

solvent. Oxidation of Fe3O4 nanocrystals was studied in water, and our oxidation 

kinetics data is consistent with theirs. The oxidation of Fe3O4 has been well-studied in 

films, and the mechanism of oxidation was suggested as diffusion of Fe2+ from interior 

to surface. Our data can fit this diffusion model, Sidhu model, shown in Figure 2.11. The 

Sidhu diffusion is written as follows: 

2

21

2
21 36

a
Dt

a
Dt

M
M t 






 



   

where Mt is the amount of Fe2+ that has diffused out after time t and M∞ is the total 
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amount Fe2+. D is diffusion coefficient and a is the radius of spherical nanocrystal. 

Dividing each side by t, we get 
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Therefore, a straight line should be obtained when we plot (Mt/M∞)/t versus 1/t1/2. Figure 

2.11b shows a straight plot and the data fit Sidhu’s model very well. The result indicates 

the oxidation mechanism is outward diffusion of Fe2+. So, partial oxidized Fe3O4 should 

have a Fe3O4/-Fe2O3 core/shell nanoctructure, and there is no sharp interface between 

two species. 

 For  Fe3O4 nanocrystals of different sizes, the reference absorption spectra of 

'pure' Fe3O4 phase normalized to the total Fe ion concentration in the sample solution 

was very similar with only a small variation of the IVCT absorption intensity as shown 

in Figure 2.12. Slightly weaker IVCT absorption in smaller nanocrystals may arise from 

a number of sources. The discontinuity at the surface, which reduces the number of Fe2+-

Fe3+ pairs that gives rise to the IVCT absorption, may contribute to the weak size-

dependent IVCT absorption intensity. The presence of carboxylate group of oleic acid 

binding the surface may also prefer Fe3+ over Fe2+ also reducing the IVCT absorption 

intensity.   

UV-Vis-NIR spectra of Fe3O4 nanocrystals can be easily measured because the 

nanocrystals can suspend in non-polar solvents and the Fe concentration can be obtained. 

Superparamagnetic nanocrystals cannot attract each other throught magnetic dipole 

moments. While bulk Fe3O4 is ferrimagnetic, nanocrystals in these size ranges are  
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Figure 2.11 (a) Degree of oxidation as a function of time. Reaction temperature is 90 oC. 

Open circus represents real data, and red curve is fitting curve from Sidhu’s diffusion 

model. (b) a plot (Mt/M∞)/t versus 1/t1/2 based on Sidhu’s diffusion model. Open circus 

represents real data, and red straight line is fitting data from Sidhu’s diffusion model. 
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Figure 2.12 UV-Vis-NIR spectra of 5 nm and 15 nm ’pure’ Fe3O4 nancorystals. 
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superparamagnetic at room temperature, meaning thermal energy overcomes the energy 

barrier of magnetic anisotropy of nanocrystals and flips the magnetization in the 

nanocrystals.  

 

2.3.4 FT-IR spectra of iron oxide nanocrystals. 

The surface of Fe3O4 nanocrystals was considered passivated with oleic acid. 

Figure 2.13a shows the FT-IR spectrum of Fe3O4 nanocrystals. The absorption in the 

range of 2850 to 3000 cm-1, assigned as C-H stretching, indicates nanocrystals coated 

with long hydrocarbon chain surfactants. The disappearance of absorption around 1700 

cm-1
, associated with vibration of COOH group, indicates no free oleic acid around 

nanocrystals. The absorption peaks appearing around 1500 cm-1 are associated with 

vibration of COO- in Figure 2.13a and 2.13b. The results suggest the surface was coated 

with oleic acid. However, the absorption of function group of oleylamine (-NH2), around 

1600 cm-1, is much weaker than COO- group, so the existence of oleylamine cannot be 

ruled out by using FT-IR spectroscopy, shown in Figure 2.13c. The assignment of FT-IR 

peaks is summarized in Table 2.1. 
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Figure 2.13 FTIR spectra of 5 nm Fe3O4 nancorystals (a), Fe(oleate)3 (b), free 

olelyamine (c), and free oleic acid (d). 
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Table 2.1 Assignment of FT-IR peaks in Figure 2.13. 

 

wavenumber (cm-1) Assignment 

2956 CH3 (asymmetric) 

2923 CH2 (asymmetric) 

2853 CH2 (symmetric) 

1707 COOH 

1590 COO- (asymmetric) 

1527 COO- (asymmetric) 

1430 COO- (symmetric) 

The FT-IR assignment is consistent with the assignment in the reference.35  
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2.4 Characterization of CoxFe3-xO4 nanocrystals 

 Figure 2.14 shows the TEM images of CoxFe3-xO4 nanocrystals (x = 0.09 - 0.9). 

The size of nanoparticles is 7 nm, and the size dispersion is less than 10 %. The results 

indicate the same size of CoxFe3-xO4 nanocrystals can be prepared by using similar 

reaction conditions. Figure 2.15 shows the XRD patterns of CoxFe3-xO4 nanocrystals (x = 

0.09 - 0.9). The XRD patterns of all the samples are very similar, indicating CoxFe3-xO4 

nanocrystals have the same crystal structures. Figure 2.16 shows the blocking 

temperature (TB) of CoxFe3-xO4 nanocrystals (x = 0.09 - 0.9). The results indicates the 

magnetic anisotropy energy, Ea =25KBTB, increases with increasing the cobalt content in 

the nanocrystals. 
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Figure 2.14 TEM images of CoxFe3-xO4 nanocrystals. (a) x= 0.09, (b) x=0.18, (c) x= 0.3, 

(d) x=0.9. 
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Figure 2.15 XRD patterns of CoxFe3-xO4 nanocrystals. (a) x= 0.09, (b) x=0.18, (c) x= 

0.3, (d) x=0.9. 
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Figure 2.16 Blocking temperatures of CoxFe3-xO4 nanocrystals (x = 0.09 - 0.9). 
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CHAPTER III 

EXPERIMENTAL METHOD: TIME-RESOLVED FARADAY ROTATION* 

 

3.1 Introduction 

 Time-resolved Faraday rotation is a useful tool to monitor ultrafast dynamics of 

magnetism in magnetic materials taking the merits of optical nature of this technique.15, 

36, 37 Faraday rotation measures the rotation of linear polarization of light transmitted 

through the magnetic materials, and whose magnitude is proportional to the 

magnetization for a given material. Due to the essentially optical nature of technique, the 

magnetization information is indirectly obtained from the optical response. Beside the 

magnetization of materials, Faraday rotation is also affected by the strength of optical 

transition since it is originated from the splitting of energy levels caused by magnetic 

field, so-called Zeeman effect. For example, the static Faraday rotation signal in iron 

oxide nanocrystals is linearly correlated with the strength of optical transition between 

Fe2+ and Fe3+ caions. (see Chapter V) In this chapter, I demonstrated that time-resolved 

Faraday rotation is a useful tool to measure the ultrafast dynamics of the magnetization 

in photoexcited Fe3O4 nanocrsytals, and the signal from time-resolved Faraday roation 

of this measurement reflects the change of magnetization. 

 
____________ 
* Reprinted in part with permission from Nano Lett., 8 Hsia, C.-H.; Chen, T.-Y.; Son, D. 
H.; "Size-dependent Ultrafast Magnetization Dynamic in Iron Oxide Nanocrystals," 571, 
Copyright 2008 by the American Chemical Society. 
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Ultrafast dynamics of the magnetization in magnetic materials attracted a great 

deal of attention in recent years.4, 38 In particular, modification of the magnetization on 

sub-picosecond (ps) time scales using femtosecond optical pulses in ferro- and antiferro-

magnetic materials has been the subject of heated debates and active investigations.26, 39-

43 Because the ultrashort optical excitation could manipulate the magnetization on the 

time scales much faster than the typical spin-lattice relaxation time (>100 ps), a 

significant effort has been made to understand the microscopic mechanism. During the 

past decade, various mechanisms including both thermal and non-thermal pathways were 

proposed to explain the optically induced ultrafast demagnetization, magnetization, and 

spin switching.28, 44, 45 From a practical point of view, the ability to control the ultrafast 

magnetization is very important in applications such as spintronics and magnetic data 

storage devices.2, 3 Due to the continuing demand for higher-speed and larger-capacity 

devices, ultrafast magnetization dynamics in nanometer scale magnetic structures also 

gained much attention.46 Earlier efforts to investigate the ultrafast dynamics of the 

magnetization in magnetic nanostructures mainly focused on thin film structures with 

one-dimensional spatial confinement or mesoscopic structures. On the other hand, 

magnetic structures with three-dimensional spatial confinement received much less 

attention,37, 47 while the finite-size effect in nanometer length scale could be more 

systematically investigated. In this respect, colloidal magnetic nanocrystals are very 

useful for investigating the ultrafast dynamics of the magnetization in three-

dimensionally confined magnetic structures. The merits of colloidal nanocrystals in the 

study of finite-size effect on various ultrafast dynamic processes were previously well 
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demonstrated in semiconductors nanocrystals,48, 49 where the methods of size and shape 

control are highly developed. In this chapter, we report the femtosecond time-resolved 

studies on the optically induced ultrafast magnetization dynamics in size-controlled 

superparamagnetic Fe3O4 nanocrystals as a model system for the three-dimensionally 

confined magnetic nanostructures. Linearly polarized femtosecond optical pulses at 780 

nm excited the weak absorption originating from the inter-valence charge transfer (IVCT) 

transition between Fe3+ and Fe2+ ions. The excitation resulted in an instantaneous 

decrease of Faraday rotation, indicating ultrafast photoinduced demagnetization. The 

Faraday rotation recovered on multiple time scales ranging from a few to hundreds of 

picoseconds. Here, we investigated how the dynamics of the ultrafast demagnetization 

and its recovery are affected by the density of the optical excitation and the size of the 

nanocrystals. 

 

3.2 Experimental method 

3.2.1 Static Faraday rotation 

Faraday rotation (FR) is the change in polarization angle of the linearly polarized 

light passing through the magnetic materials and essentially reflects the magnetic 

circular birefringence of the materials.50 For a given magnetic material, the magnitude of 

FR reflects the magnitude of magnetization. Faraday rotation is proportional to ktM

)( , 

where )(tM


 and k


 are the magnetization vector of the nanocrystal and wavevector of 

the probe light, respectively.51 In order to have maximum Faraday rotation signal the 

magnetization vector of the nanocrystal and wavevector should be parallel or anti-
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parallel. The external field parallel to wavevector can be created by a pair of permanent 

magnets, shown in Figure 3.1. The magnetic field line is a straight line in the middle area 

between two magnets, but the region having straight magnetic field line is very small. 

Incorrect measurement could be done if the sample position is slight off from the center 

point. In order to overcome this situation, two iron plates were placed on two ends of 

magnets, shown in Figure 3.2. It is very clear that the introduction of iron plates on two 

ends of magnets will create more straight magnetic lines between two magnets. However, 

when magnets were place in this geometry, they would repel each other. In order to fix 

the position of magnets, a magnet holder was designed, shown in Figure 3.3. The 

magnets were placed into the holder and they were forced to close to each other by 

turning screw bolts. There were brass plates placed between crew bolts and magnets to 

protect the potential damage caused by the screw bolts. There were two small holes on 

both size of magnet holder, and the position of holes for probing light was set in the 

middle of two magnets. Sample cuvette was place in the middle of two iron plates. The 

material of the holder is aluminum, so the magnetic field lines would not influenced by 

the holder. 

The experimental set up for the measurement of Faraday rotation of colloidal 

solution of nanocrystals is shown in Figure 3.4. The linearly polarized cw laser beam 

from a diode laser passing through a linear polarizer, whose axis is set at 45° with 

respect to the vertical direction, was used to measure FR. A Wollaston prism was placed 

before the detector to split the beam into two orthogonal polarization components with  
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Figure 3.1 Simulation result of magnetic field lines created by two permanent magnets 

by freeware Vizmag. The green squares represent magnets. The magnetic field lines in 

the middle of two magnets are straight lines.  
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Figure 3.2 Simulation result of magnetic field lines created by two permanent magnets 

and two iron plate by freeware Vizmag. The green squares represent magnets, and 

yellow shades represent iron plates. The iron plates have a small hole in the center to let 

light passing through for Faraday rotation measurement. The magnetic field lines in the 

middle of two magnets are straight lines.  
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Figure 3.3 Schematic diagram of real design for Faraday rotation measurement. The 

crew bolts are used to push magnets. 
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Figure 3.4 Experimental setup for static Faraday rotation measurement. 
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equal intensities. A pair of balanced photodiodes measures the difference between the 

intensities of the two beams. The iron oxide nanocrystal solution in 1 mm-thick quartz 

cuvette was placed between the polarizer and Wollaston prism under 0.32 T of external 

magnetic field applied parallel to the direction of the laser beam. Wollaston prism is a 

beamsplitter, and it would split the beam into two orthogonal polarization components 

(vertical and horizontal). When the polarization of light before Wollaston prism was set 

45o from vertical direction, the intensities of two orthogonal polarization components 

would be the sample. Without sample, the output from balanced photodiode should be 

zero. After placing sample inside, FR angle () was obtained from the difference in 

intensities of the two orthogonal polarization components (Iv and Ih) normalized to the 

total intensity of the laser beam,  |Iv-Ih|/(Iv+Ih) for a small rotation angle, shown in 

Figure 3.5. The actual rotation angle can be obtained by a simple mathematical 

calculation |Iv-Ih|/(Iv+Ih) = |cos(45+)-sin(45+)|/ (cos(45+)+sin(45+)). The 

correlation between FR angle () and 2|Iv-Ih|/(Iv+Ih) was shown in Figure 3.6. 

Faraday rotation data of Fe3O4 and -Fe2O3 as a function of sample concentration 

was shown in Figure 3.7. Faraday rotation was obtained from blank sample (solvent in 

cuvette), and it may be contributed from the cuvette and solvent. In order to remove the 

background signal from quartz cuvette and solvent, FR of the nanocrystals was measured 

by taking the slope of  vs. concentration of the nanocrystal solution. FR signal of iron 

oxide nanocrystals increased linearly to the sample concentration indicating that 

interparticle interaction are negligible within the concentration range of our study. 
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Figure 3.5 Schematic diagram illustrated the intensities of vertical and horizontal 

component after passing through Wollaston prism. 
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Figure 3.6 A plot of FR angle () versus 2|Iv-Ih|/(Iv+Ih). The actual Faraday rotation 

angle can be calculated by using this correlation. 
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Figure 3.7 Faraday rotation data of Fe3O4 and -Fe2O3 as function of sample 

concentration. 
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3.2.2 Time-resolved Faraday rotation for magnetization dynamics measurement 

Time-dependent magnetization of the photoexcited Fe3O4 nanocrystals was 

monitored by time-resolved Faraday rotation measurements. Faraday rotation is 

proportional to ktM

)( , where )(tM


 and k


 are the magnetization vector of the 

nanocrystal and wavevector of the probe light, respectively.51 Due to the high temporal 

resolution, time-resolved Faraday rotation and the related technique of magneto-optic 

Kerr effect have been widely utilized in the study of the ultrafast magnetic responses.26, 

45, 52-54 A schematic diagram of the experimental setup is shown in Figure 3.8. Linearly 

polarized pump pulses (780 nm, 60 fs, 3 kHz) excited the free-streaming jet (400 m 

thick) of nanocrystals at room temperature and under the external magnetic field of 0.32 

T. The sample solution was circulated as a jet form to prevent potential sample damage 

and accumulated thermal effects due to the repeated exposure of the same sample area to 

the pump pulses, shown in Figure 3.9. The linearly polarized probe pulses at 620 or 900 

nm, derived from white light continuum, were used to monitor the time-dependent 

Faraday rotation of the photoexcited samples. The excitation fluence was varied in the 

range of 15-61 mJ/cm2 resulting in the corresponding average excitation density in the 

range of 3-12 %. The approximate average excitation density was estimated from the 

concentration of the nanocrystals and the absorbed excitation pulse energy. The 

concentration of nanocrystals was kept low to maintain the average inter-particle 

distance much larger than the size of the nanocrystal (e.g., factor of ~ 10).  
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Figure 3.8 Schematic diagram of the time-resolved Faraday rotation measurement. The 

external magnetic field (B) was provided by a pair of permanent magnets, whose polarity 

was set either parallel or perpendicular to the direction of the probe light. 
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Figure 3.9 Schematic diagram of sample circulation system. 
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Magnetic dipolar interaction between the nanocrystals is insignificant at these 

concentrations and should not affect the dynamics of the magnetization.55 Combination 

of a Wollastonprism and a balanced photodiode pair was used to measure the Faraday 

rotation, which is proportional to the output signal from the balanced photodiode 

normalized to the transmitted probe intensity, S/R, for a small rotation angle. Fractional 

changes of magnetization induced by the optical excitation was obtained by measuring 

S/S0, where S = [S(pump on) – S(pump off)]/R and S0 = S(pump off)/R, respectively. The 

measured signal S/S0 in this study reflects in principle the complex Faraday rotation 

with contributions of circular birefringence and dichroism, both of which are linear to 

the magnetization.50  

 

3.2.2 Pump-probe transient absorption measurement 

Pump-probe transient absorption measurement was made on an amplified 

Ti:sapphire laser, which produced pulses of 60 fs centered at 780 nm at 3 kHz repetition 

rate. Figure 3.10 shows the schematic diagram of experimental setup. For the probe 

beam, a white light continuum generated by focusing 780 nm beam on a 2 mm thick 

sapphire crystal was used. The probe beam passed through a prism dispersion 

compensator, which was also used to preselect the wavelength of the probe light before 

the sample. Pre-selection of the probe wavelength greatly diminished the artifact near 

zero time delay arising from the cross-phase modulation under intense excitation. 

Typical pump-probe cross correlation and step size were 70 and 10 fs, respectively. 

Pump and probe beam diameters were 150 and 30 m, respectively. 
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Figure 3.10 Schematic diagram of the transient absorption measurement. Is represents 

the intensity of light after passing through the sample, and Ir represent the reference 

intensity, namely the intensity of light without passing through the sample. The sample 

was circulated prevent potential damage or heat circulation under continuous exposure to 

intense laser beam. 
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3.3 Analysis of time-resolved Faraday rotation data 

Figure 3.11 shows the representative pump-probe Faraday rotation data of 7.5 nm 

Fe3O4 nanocrystals under Voigt and Faraday geometries. The probe light propagates in 

the direction perpendicular and parallel to the external magnetic field for Voigt and 

Faraday geometry, respectively. Under the Voigt geometry, Faraday rotation exhibits 

essentially no dynamic response except a spike near zero time delay originating from 

optical Kerr effect. Under the Faraday geometry, an immediate decrease of Faraday 

rotation was observed with the subsequent recovery of the signal on two distinct time 

scales. The opposite polarity of the external magnetic field yielded signals with the 

opposite sign (S1 and S2), because the Faraday effect is odd with respect to the 

magnetic field.50 To remove any potential nonmagnetic feature in the dynamics, the 

difference between S1 and S2 were taken to obtain the time-dependent magnetization 

throughout the measurements.  

No signature of a precession of the magnetization vector was observed up to 3 ns 

of delay time for both Faraday and Voigt geometries. The lack of precessional signature 

may be due to negligible photoinduced reorientation of the magnetization or critical 

damping of the precession.47, 56 If the reorientation of the magnetization can be ignored, 

the fractional Faraday rotation (S/S0) can be interpreted as the fractional changes in the 

amplitude of the magnetization (M/M0) in the nanocrystals. 

In Figure 3.12, pump-probe transient absorption (OD) and magnetization data 

(M/M0) are shown together to compare the electronic and magnetic responses to the 

ultrafast optical excitation. For an easy comparison of the dynamics, the sign of the  
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Figure 3.11 Time-resolved Faraday rotation of Fe3O4 nanocrystals (7.5 nm). S1 and 

S2 were obtained under Faraday geometry with the two opposite polarities of the 

external magnetic field. For these two curves, the signal obtained without the external 

magnetic field was subtracted. The red curve is obtained under Voigt geometry. 
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Figure 3.12 Comparison of the transient absorption (-OD) and magnetization (M/M0). 

The left and right panels display the same data set in different time windows. 
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transient absorption data is reversed in the figure. The transient absorption data exhibit 

pump-induced absorption in the broad range of visible and near-infrared probe 

wavelengths, which decays on multiple time scales with exponential time constants of 

= ~ 20 and ~ 200 ps. The time scales of the dynamics were weakly dependent on the 

probe wavelengths within the range 550-900 nm, while the amplitude varied with the 

wavelength, shown in Figure 3.13. The oscillations at early delay times are due to the 

coherent acoustic phonon.57 On the other hand, dynamics of magnetization exhibits 

noticeable differences from the transient absorption at delay times earlier than 20 ps, 

while they exhibit comparable dynamics on much slower time scales. The initial 

recovery of the magnetization (M/M0) following the ultrafast demagnetization occurs 

on ~ 20 picoseconds time scale and carries a larger fraction of recovery amplitude. This 

component of the dynamics is absent in the transient absorption data. The oscillatory 

features are not observable unlike in transient absorption data indicating that the 

coherent lattice motion does not have a measurable effect on M/M0 in this study. The 

slower recovery component of the magnetization occurs with exponential time constants 

of  = ~ 200 ps, which are similar to the transient absorption data. The measured M/M0 

is independent of the probe wavelength exhibiting essentially identical dynamics at 620 

and 900 nm, shown in Figure 3.14. 
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Figure 3.13 Transient absorption (OD) probed at different wavelength (550-900nm). 
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Figure 3.14 Transient magnetization (M/M0) probed at two different wavelengths (620-

900 nm). 
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The immediate decrease of M/M0 following the optical excitation in ~ 100 fs is 

assigned to the ultrafast demagnetization by the destruction of the ferrimagnetic ordering 

upon the optical excitation. Optically induced demagnetization on subpicosecond time 

scale was previously observed on the surface of many ferro- and ferrimagnetic 

materials,19, 26 although the exact mechanism has been debated for many years. 

Demagnetization by the equilibration of the laser heated lattice and spin system via usual 

spin-lattice interaction is unlikely because the time scale for such process typically 

exceeds 100 ps. Various mechanisms of optically induced ultrafast demagnetization 

were proposed such as spin-flip electron scattering, femtosecond spin-lattice relaxation, 

spin-orbit coupling during coherent excitation, magnon excitation by fast relaxing 

electrons or carriers, etc.28, 43, 58, 59 Despite the recent progresses, understanding the 

microscopic mechanisms of ultrafast demagnetization continues to be a challenge 

because the pathways allowing the flow of both the energy and spin angular momentum 

on the relevant time scales need to be identified.60  

To obtain a deeper and more quantitative understanding of the dynamics of the 

demagnetization and its recovery, M/M0 was measured at various excitation fluences. 

Figure 3.15a shows the time-dependent M/M0 of 4.5 nm Fe3O4 nanocrystals as a 

function of the excitation fluence. The peak value of M/M0 negatively increases with 

the excitation density and saturates near -1, that is, almost complete demagnetization, at 

the excitation fluence of 46 mJ/cm2 corresponding to ~ 10% excitation density as shown 

in Figure 3.15b. This suggests that each absorbed photon initially destroyed the magnetic 

ordering in ~ 10 times larger number of metal ions for 4.5 nm Fe3O4 nanocrystals. A  
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Figure 3.15 (a) Excitation fluence dependence of M/M0 of 4.5 nm Fe3O4 nanocrystals. 

(b) Excitation fluence dependence of the amplitudes in M/M0. Triangle: peak amplitude 

of M/M0. Circle: amplitude of the exponential fit for  = 200 ps recovery component. 

Solid lines superimposed on the marks are guides to an eye. 
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similar degree of the destruction of the magnetic ordering by the optical excitation was 

observed earlier in ferromagnetic chalcogenide surfaces.19 

While their relative amplitudes vary as a function of the excitation fluence, the 

biphasic feature of the recovery, that is, fast (  < 20 ps) and slow ( =200 ps) phases, is 

maintained in the entire range of the excitation fluence of this study. For  =200 ps 

component, the amplitude increases slightly superlinearly to the excitation fluence; see 

Figure 3.15b. Slight superlinearity is due to an additional contribution of the multiphoton 

absorption, which was also observed in the transient absorption data, shown in Figure 

3.16. The fact that the slow magnetization recovery and transient absorption occur on 

comparable time scales and that they exhibit similar excitation fluence dependence 

suggest that slow magnetization recovery reflects the relaxation of the excited-state to 

the ground state. On the other hand, the fast recovery component of magnetization, 

carrying the larger fraction of the amplitude, does not have a corresponding feature in 

the transient absorption data. 

To obtain a further insight into the magnetization dynamics and their dependence 

on the size of the nanocrystals, M/M0 was measured for Fe3O4 nanocrystals of three 

different sizes. Figure 3.17a compares M/M0 of 4.5, 7.5, and 10 nm Fe3O4 nanocrystals. 

The excitation density and the optical density at the probe wavelength were kept nearly 

the same for all three samples for this comparison.�M/M0 exhibits a strong dependence 

on the size of the nanocrystal, especially for its amplitude, while the biphasic recovery is 

observed for all the sizes. 
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Figure 3.16. Excitation fluence dependence of OD of 4.5 nm Fe3O4 nanocrystals.  
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Figure 3.17 Size-dependent M/M0 (a) and OD (b) of Fe3O4 nanocrystals at the 

excitation fluence of 46 mJ/cm2. The amplitude of slower recovery component of M/M0 

increases with the size of the nanocrystal while OD exhibits no strong size-dependence. 
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This is in contrast to the transient absorption data shown in Figure 3.17b, which do not 

exhibit significant size-dependent dynamics except at very early delay times. For the fast 

recovery component of M/M0, its relative contribution to the overall recovery dynamics 

becomes smaller as the size of the nanocrystal increases. On the other hand, the 

amplitude of the slow recovery component increases significantly with the size. The time 

scales of the magnetization recovery exhibit a slight increase as the size of the 

nanocrystal increases. The detail of size dependent spin-lattice rate will be discussed in 

Chapter IV.  

The increase of the amplitude for the slow recovery component of M/M0 with 

the size of the nanocrystals indicates that photoexcitation has a stronger influence on the 

destruction and recovery of the magnetic ordering for the larger nanocrystals. Size-

dependent lattice temperature due to different cooling rate, which is in quasi-equilibrium 

with the spin degrees of freedom, cannot explain the above size dependence. The 

temperature increase in the lattice is estimated to be less than 100 K under the present 

experimental condition during the first several picoseconds from the temperature-

dependent coherent acoustic phonon frequency and temperature-dependent elastic 

moduli of typical ferrite materials.61, 62 Langevin function describing the temperature and 

field dependence of the magnetization of superparamagnetic particles predicts.63 M/M0 

should not be affected by more than a few percent for 7.5 and 10 nm nanocrystals.  
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3.4 Summary 

In this chapter, the experimental setups of static Faraday rotation and time-

resolved Faraday rotation were presented. Static Faraday rotation angle of Fe3O4 

nanocrystals is much larger than -Fe2O3 nanocrystals for a given size and concentration. 

The magnetization relaxation after optically induced demagnetization in 

superparamagnetic Fe3O4 nanocrystals was studied by using time-resolved Faraday 

rotation. The results indicate the change of Faraday rotation represent the change of 

magnetization. The dynamics of the slowly recovering component of M/M0 were well 

correlated with the dynamics of electronic relaxation, indicating electrons and spins 

reservoirs have reached their equilibrium. The size dependent amplitude M/M0 is not 

due to size dependent lattice heating based on size dependent lattice temperature 

measurement, which may be contributed from the surface oxidation (see Chapter V). 
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CHAPTER IV 

TIME-RESOLVED STUDY OF SURFACE SPIN EFFECT ON SPIN-LATTICE 

RELAXATION IN Fe3O4 NANOCRYSTALS* 

 

4.1 Introduction 

 Investigation of the flow of energy and momentum in spin degrees of freedom in 

magnetic materials is now an important field of research since the electron spin is 

actively exploited as a new information carrier in addition to the electron charge.2, 3 In 

ferromagnetic materials, the dynamics of spin excitation and relaxation has been actively 

investigated.46 The relaxation of the spins requires the exchange of energy and angular 

momentum between the spin and lattice degrees of freedom, which is mediated by spin-

orbit coupling. The effective strength of spin-orbit interaction in ferromagnetic solids is 

determined not only by the intrinsic atomic spin-orbit coupling strength but also by the 

ligand field that depends on the details of the local lattice structure and symmetry.6, 7 In 

nanoscale magnetic materials, there are many surface spins under different ligand fields 

from those of the interior spins due to the structural discontinuity on the surface. 

Therefore, one would expect that the rate of energy and momentum transfer in spin 

degrees of freedom in nanoscale magnetic materials be significantly influenced by the 

surface spins. 

____________ 
* Reprinted in part with permission from J. Am. Chem. Soc., 131 Hsia, C.-H.; Chen, T.-
Y.; Son, D. H.; “Time-Resolved Study of Surface Spin Effect on Spin−Lattice 
Relaxation in Fe3O4 Nanocrystals” 9146, Copyright 2009 by the American Chemical 
Society. 
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In this chapter, we report the real-time measurement of the rate of spin-lattice 

relaxation in photoexcited colloidal Fe3O4 nanocrystals to obtain insight into the role of 

the surface spins in the equilibration dynamics of the photoexcited spins. While the 

effect of surface spins on superparamagnetic relaxation dynamics involving the 

directional fluctuation of the magnetization was investigated in earlier studies,63-65 we 

address the dynamics of energy flow between the spin and lattice resulting in the time-

dependent magnitude of the magnetization. From the analysis of the spin-lattice 

relaxation rates of the nanocrystals of various sizes using a simple model, we estimated 

the relative efficiency of the spin-lattice relaxation on the surface with respect to the 

interior in Fe3O4 nanocrystals. 

To investigate the dynamics of spin relaxation in magnetic nanocrystals directly 

in the time domain, we employed a time-resolved Faraday rotation technique. Due to its 

high temporal resolution (<100 fs), time-resolved Faraday rotation is particularly useful 

for observing fast dynamics in spin degrees of freedom, although it probes only the 

relative change in magnetization via magnetooptic effect.29 A colloidal solution of 

organically passivated Fe3O4 nanocrystals was chosen as the model system for this 

study. Systematic variation of the size and surface coordination readily achievable in 

Fe3O4 nanocrystals makes it particularly suitable for investigating the role of surface 

spins on the energy flow in the spin degrees freedom.20 In our recent report,36 size-

dependent magnetization dynamics in photoexcited Fe3O4 nanocrystals were discussed 

with an emphasis on the magnitudes of the demagnetization and its recovery. In this 

study, we focus on the rate of equilibration of the magnetization following the 



 77

photoinduced demagnetization, which will be correlated with the average strength of 

spin-orbit interaction of the nanocrystals. 

 

4.2 Experimental section 

The synthesis and characterization of nanocrystals were covered in Chapter II. In 

this study, spherical Fe3O4 nanocrystals of five different sizes (5 ~ 15 nm in diameter) 

were used, and nanocrystals were suspended in cyclohexane for all the magnetization 

dynamics measurements. Time-resolved Faraday rotation was chosen to measure the 

magnetization dynamics, as described in Chapter III. The clean process and 

measurement were performed in the ambient condition, thus nanocrystals natural 

oxidation layers. The absorption spectra of Fe3O4 nanocrystals before and after exposure 

of laser were shown in Figure 4.1. Only very small change on absorption spectra was 

observed. The results suggest the identity of sample did not change during the period of 

time-resolved Faraday rotation measurement. 

 

4.3 Results and discussion 

Figure 4.1 shows the time-dependent Faraday rotation data obtained from the 

colloidal Fe3O4 nanocrystals 5-15 nm in diameter. The samples were photoexcited with 

780 nm, 60 fs pulses at a fluence of 20-40 mJ/cm2 while being continuously refreshed to 

avoid sample damage by the repeated excitation. In this measurement, the same 

excitation density was maintained for all the samples. Fractional change in Faraday 

rotation, Δθ(t)/θ, represents the time-dependent magnetization of the photoexcited  
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Figure 4.1 Absorption spectra of Fe3O4 nanocrystals with various sizes before and after 

time-resolved Faraday rotation measurement. 
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nanocrystals. Figure 4.2 shows time-dependent Faraday rotation data measured at two 

different wavelengths. The results indicate the time-dependent Faraday rotation data did 

not depend on the probing wavelength. General dynamic features of the data in Figure 

4.3 are (i) sub-ps demagnetization following the excitation, (ii) recovery on ∼10 ps 

scale, (iii) recovery on ∼102 ps scale. Time scales of the recovery of Δθ(t)/θ extracted 

from bi-exponential fitting of the data are summarized in Table 4.1. 

The feature (i) has been previously observed in many metallic ferromagnets.26, 28, 

43 Such ultrafast demagnetization has been a topic of active research recently, which 

resulted in the discovery of a number of ultrafast spin-orbit coupling pathways. We will 

not discuss this process since it is beyond the scope of our discussion. Here, we focus on 

the dynamic feature (iii), occurring on the time scale τb = 250-350 ps. Justifications for 

relating τb to the time scale of spin equilibration via usual spin-lattice relaxation pathway 

are the following. First, τb has the correct order of magnitude for the spin-lattice 

relaxation time of ∼102 ps expected for the ferromagnetic materials of transition metals.6 

In addition, τb in CoxFe3-xO4 nanocrystals decreased with increasing content of Co that 

has a stronger spin-orbit interaction than Fe in a separate experiment. The data was 

shown in Figure 4.4. This strongly indicates that τb reflects the spin-lattice relaxation 

determined ultimately by the strength of the spin-orbit interaction. The origin of the 

faster dynamics (ii), an order of magnitude faster than the slower dynamics, is not 

entirely clear, although it may still reflect part of spin relaxation. 
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Figure 4.2 Time-dependent Δθ(t)/θ of photoexcited Fe3O4 nanocrystals probed at two 

different wavelengths (600 and 900 nm). 
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Figure 4.3 Time-dependent Δθ(t)/θ of photoexcited Fe3O4 nanocrystals. Solid curves are 

the biexponential fit of the data. 

 

 

 

Table 4.1 Time constants obtained from biexponential fit of Δθ(t)/θ. 

Size (nm) 5 7 9 10 15 
a (ps) 22 29 32 24 12 
b (ps) 255±10 275±10 295±10 325±10 345±10 
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The feature (i) has been previously observed in many metallic ferromagnets.26, 28, 

43 Such ultrafast demagnetization has been a topic of active research recently, which 

resulted in the discovery of a number of ultrafast spin-orbit coupling pathways. We will 

not discuss this process since it is beyond the scope of our discussion. Here, we focus on 

the dynamic feature (iii), occurring on the time scale τb = 250-350 ps. Justifications for 

relating τb to the time scale of spin equilibration via usual spin-lattice relaxation pathway 

are the following. First, τb has the correct order of magnitude for the spin-lattice 

relaxation time of ∼102 ps expected for the ferromagnetic materials of transition metals.6 

In addition, τb in CoxFe3-xO4 nanocrystals decreased with increasing content of Co that 

has a stronger spin-orbit interaction than Fe in a separate experiment. The data was 

shown in Figure 4.4. This strongly indicates that τb reflects the spin-lattice relaxation 

determined ultimately by the strength of the spin-orbit interaction. The origin of the 

faster dynamics (ii), an order of magnitude faster than the slower dynamics, is not 

entirely clear, although it may still reflect part of spin relaxation. 

τb obtained from the fitting of data was not sensitive to the wavelength of the 

probe light, unlike in transient absorption, as expected for Δθ(t)/θ representing the 

magnetization dynamics.29 At sufficiently low excitation intensities, τb was also 

independent of the excitation intensity, shown in Figure 4.5. On the other hand, τb 

increased from 250 to 350 ps as the size of the nanocrystal increased from 5 to 15 nm. 

We attribute the size dependence of τb mainly to the weaker average spin-orbit 

interaction in the larger nanocrystals as will be discussed below. 
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Figure 4.4. Cobalt content-dependent (t) data of 7 nm CoxFe3-xO4 nanocrystals, x = 0, 

0.09, 0.18, 0.3, and 0.9 for (a) to (e) respectively. 
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Figure 4.5. Pump fluence dependent / data of 7 nm Fe3O4 nanocrystals. (a) raw data, 

(b) normalized data. The data was normalized at time delay 200 ps. This normalized data 

demonstrate the spin-lattice relaxation in Fe3O4 nanocrystals is not depended on the 

excitation power when the power is still low. 
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According to Fermi’s golden rule, spin-lattice relaxation rate (1/τb) is 

proportional to the square of the coupling Hamiltonian term (|V|2) between the spin-

orbit perturbed ligand field states, where the Hamiltonian V is the fluctuating electric 

potential of the ligand.66 Here, we assume |V|2 of nanocrystals has contributions from 

the interior (|Vi|2) and the surface (|Vs|2) proportionally to the fraction of the interior 

(fi) and surface (fs) spins. A similar model incorporating the surface contribution in the 

energy relaxation has been used to explain exciton relaxation dynamics in quantum 

dots.67 
222

1 ssiib VfVfV     (1) 

Using this model, we estimated the relative efficiency of the surface in spin-

lattice relaxation with respect to the interior. The values of fi and fs depend on the 

thickness (t) of the surface region, which is somewhat arbitrary. In our analysis, we 

chose the values of t between 3 and 5 Å that contain the outermost atomic layer. By 

comparing the variation of 1/τb with the variation of |V|2 on the nanocrystal size, we 

obtained |Vs|2/|Vi|2 ≈ 3 for t =4 Å. Comparison of the relative values of 1/τb and 

|V|2 as a function of the nanocrystal diameter is shown in Figure 4.6. 

This result indicates that the surface of the Fe3O4 nanocrystal is 3 times more 

efficient than the interior for spin-lattice relaxation. Considering that spin-orbit 

interaction is a major factor determining the spin-lattice relaxation rate, the observed 

size-dependence of τb can be interpreted as the stronger spin-orbit interaction on the  
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Figure 4.6 Relative values of 1/τb (circle) and |<V>|2 (line) as a function of the diameter 

of nanocrystal. All the values are normalized to those of 15 nm sample. The error bar 

represents a typical margin of error. 
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surface. While the unequal vibrational baths of the surface and interior may contribute to 

the size dependence of τb, we believe it plays a less significant role in our study. 

Stronger spin-orbit coupling at the surface can be justified as follows. In 

magnetic crystals, the effective spin-orbit energy (Eso), representing the strength of spin-

orbit coupling, is on the order of ξ2/ΔE, where ξ is the atomic spin-orbit coupling 

parameter and ΔE is the ligand field splitting energy.46 In Fe3O4 nanocrystals, Fe ions 

have a smaller number of oxygen ligand on the surface than in the interior. The lacking 

oxygen ligand is replaced with weakly bound carboxylic group of oleic acid used as the 

surfactant. Therefore, the ligand field acting on the surface spins is smaller than that of 

the interior spins. Consequently, Eso of the surface spins can be larger than that of the 

interior spins, resulting in a decreasing average Eso with increasing nanocrystal size. 

A stronger spin-orbit interaction of the surface spin is also corroborated by the 

earlier study on surface coercivity of the magnetic nanocrystals by Vestal et al.24 They 

observed that surface coercivity of MnFe2O4 nanocrystals increased as the ligand field of 

the coordinating molecules decreased. This indicates that the effective spin-orbit 

interaction of the surface spin increases with the weaker ligand field, consistent with our 

results. It would be desirable to correlate the size-dependence of 1/τb to the 

experimentally determined variation of Eso to further support our conclusion more 

quantitatively. However, we did not pursue such an analysis in this study. In the bulk 

phase, information on the variation of Eso is indirectly obtained from magnetocrystalline 

anisotropy energy Emca, which is more readily measurable. For this reason, earlier studies 

often correlated the spin relaxation rate with magnetic anisotropy.19, 34 We did not make 
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a similar analysis in our study, since the size-dependent Emca of the nanocrystals does not 

correctly reflect the size-dependent Eso, due to the heavily weighted contribution of the 

surface anisotropy to the experimentally measured total Emca.68 

 

4.4 Summary 

In summary, we have investigated the relaxation rate of the spins in colloidal 

Fe3O4 nanocrystals following the optically induced demagnetization. From the analysis 

of spin relaxation times of nanocrystals of different size using a simple model, we 

estimated the efficiency of spin-lattice relaxation at the surface relative to the interior 

region. This result will also be a starting point for the investigations on the effect of 

surface modifications on the spin-lattice relaxation in nanocrystals. 
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 CHAPTER V 

EFFECT OF OXIDATION ON FARADAY ROTATION SIGNAL IN OXIDIZED 

Fe3O4 NANOCRYSTALS 

 

5.1 Introduction 

Magneto-optic effects, such as Faraday rotation (FR) and magneto-optic Kerr 

effect (MOKE), whose magnitudes are proportional to the magnetization for a given 

material, have been used as a useful tool to investigate the magnetic properties of the 

materials.26, 41, 53 Both FR and MOKE measure the rotation of the linear polarization of 

the light transmitted through (FR) or reflected from (MOKE) the magnetic materials.50 

Due to the essentially optical nature of the technique, the measurements of 

magnetization via FR and MOKE could be made with a much higher spatial and time 

resolution than other magnetometric methods. For this reason, many studies on the static 

and dynamic magnetism of various ferromagnetic materials utilized MOKE or FR 

despite their limited capability to measure the absolute magnitude of magnetization.19, 26, 

69, 70  For instance, optically induced dynamic magnetism in ferromagnetic materials and 

carrier spin-dynamics in semiconductor quantum dots have been investigated employing  

time-resolved FR or MOKE.15, 36, 71   

On the other hand, indirect measurement of the magnetization with FR and 

MOKE via coupled optical and magnetic degrees of freedom also can presents a 

challenge in some cases. Since the magneto-optic signal originates from the Zeeman 

effect on the electronic states by the magnetic field, MO signal can be modified by the 
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changes of both electronic and magnetic properties of the material.50 For instance, partial 

oxidation of magnetic metals and metal oxides exposed to the ambient condition can 

modify the optical and magnetic properties the materials and FR signal can be affected 

by both in principle. Therefore, the interpretation of FR as a measure of magnetization 

can become more complicated when the change of magnetization is accompanied by the 

change of the optical transitions relevant to MO response. 

For many metallic ferromagnets, such as Co and Ni, the decrease of 

magnetooptic signal upon oxidation to CoO and NiO is considered to reflect the 

decreasing magnetization of the material,72, 73 since antiferromagnetic oxide component 

has little contribution to the magnetization and magnetooptic signal. On the other hand, 

spinel ferrites, such as Fe3O4, present a very different situation. For instance, oxidation 

of Fe3O4 to -F2O3 results in little change in magnetization, while Fe2+-Fe3+ intervalence 

charge-transfer absorption, responsible for magneto-optic signal of Fe3O4, decreases 

with increasing oxidation. Therefore, the variation of magneto-optic signal in ferrites 

does not necessarily represent the variation of magnetization unless the degree of 

oxidation is well controlled. This is particularly an important issue in the nanocrystals, 

where the partial oxidation or reduction can occur readily than in bulk phase. In fact, 

earlier studies on γ-F2O3 thin films and nanocrystals reported widely scattered FR and 

MOKE data possibly due to the contamination by Fe3O4 during the sample preparation 

that has stronger magnetooptic response.74-76  

In this chapter, systematic measurements of FR as a function of the degree of 

oxidation in iron oxide nanocrystals between Fe3O4 and -F2O3 phases were performed 
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to obtain a quantitative understanding of the effect of oxidation on the magnitude of FR 

signal. In order to obtain a detailed understanding of the correlation between FR and 

structure of partial oxidation, we compared FR of three different groups of partially 

oxidized iron oxide nanocrystals, i.e. -F2O3-Fe3O4 binary structure prepared by 

oxidizing Fe3O4, reducing -F2O3, and simple mixing Fe3O4 and -F2O3. All three 

nanocrystal samples exhibited a highly linear correlation between the amplitude of FR 

and the degree of oxidation and the correlation was independent of the interfacial 

structure between Fe3O4 and -F2O3. 

 

5.2 Experimental section 

 The synthesis and characterization of nanocrystals were covered in Chapter II. In 

this study, spherical Fe3O4 nanocrystals with different sizes (5 ~ 15 nm in diameter) 

were used, and nanocrystals were suspended in hexanes for all the static Faraday rotation 

measurements. The reaction conditions of oxidation and reduction of iron oxide 

nanocrystals were described in Chapter II. The experimental setup for static Faraday 

rotation measurement was described in Chapter III. 

 

5.3 Results and discussion 

In order to investigate the effect of oxidation on FR signal, we prepared spherical 

iron oxide nanocrystals of varying degree of oxidation between Fe3O4 and -Fe2O3 

phases in the diameter range of 5-15 nm. For a given diameter, the degree of oxidation in 

nanocrystal samples was varied in two different ways that result in two different 
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structures. One was prepared by oxidizing Fe3O4 nanocrystals resulting in nominally 

Fe3O4/-Fe2O3 core/shell structure (Sample A). The other was prepared by reducing -

Fe2O3 nanocrystals resulting in nominally -Fe2O3/Fe3O4 core/shell structure (Sample B). 

While the core/shell structure cannot be visually resolved in TEM image of the iron 

oxide nanocrystals due to the very similar lattice structures of Fe3O4 and -Fe2O3, it can 

be inferred from the kinetics of oxidation and observations of shell formation in the 

oxidation of nanocrystals of other materials.77 

The degree of oxidation in the nanocrystals was determined from the intensity of 

the broad absorption covering visible and near-IR region attributed to intervalence 

charge transfer (IVCT) transition between Fe2+ and Fe3+ ions.25 The IVCT absorption 

present in Fe3O4 phase disappears as the oxidation converts Fe2+ into Fe3+. The IVCT 

absorption was considered to be a good linear measure of the oxidation in -Fe2O3-Fe3O4 

binary system and has been previously utilized to monitor the oxidation kinetics of 

Fe3O4 nanocrystals to -Fe2O3 nanocrystals.25 The absorption spectra of both Sample A 

and Sample B were well represented as the linear combination of the spectra of -Fe2O3 

and Fe3O4 nanocrystals. (See Chapter II) A common linear scale of IVCT absorption 

intensity was used to determine the degree of oxidation for both Sample A and Sample B 

of the same particle size. Zero intensity of IVCT absorption was taken to represent 100% 

-Fe2O3 phase. To obtain the reference absorption spectrum of 'pure' Fe3O4 phase, the 

spectrum was obtained under oxygen-free atmosphere using the freshly reduced Fe3O4 

nanocrystals dispersed in N2-bubbled solvent to avoid oxidation. 
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In addition to the two set of partially oxidized Fe3O4 nanocrystals with different 

core/shell structures, a composite mixture of -Fe2O3 and Fe3O4 nanocrystals (Sample C) 

was also prepared to examine the potential influence of the -Fe2O3/Fe3O4 interface on 

FR. Sample C corresponding to the degree of oxidation in partially oxidized nanocrystals 

was prepared simply by adjusting the ratio of -Fe2O3 and Fe3O4 nanocrystals that results 

in the same absorption spectrum of the partially oxidized samples.  

Figure 5.1a shows FR of all three nanocrystal samples of the same diameter (7 

nm) measured at 904 nm as a function of the degree of oxidation. All three samples 

exhibit very similar dependence of FR on the degree of oxidation, where the amplitude 

of FR is linearly correlated to the degree of oxidation. The value of FR at a given degree 

of oxidation is a simple linear combination of FR of the constituents weighted by their 

relative amount only. In our measurements, Fe3O4 nanocrystals exhibited an order of 

magnitude stronger magneto-optic response than -Fe2O3 nanocrystals. Since the 

saturation magnetization of -Fe2O3 and Fe3O4 nanocrystals are very similar, oxidation 

of Fe3O4 to -Fe2O3 phase does not affect the overall magnetization of the partially 

oxidized Fe3O4 nanocrystals. Therefore, the magnitude of FR of the nanocrystals of a 

given size represents primarily the degree of oxidation.   

The fact that FR correlates linearly to the degree of oxidation and is insensitive to 

the structure of Fe3O4/-Fe2O3 interface indicates that magneto-optic response of 

Fe3O4/-Fe2O3 system is local in nature and the core/shell structure is relatively 

homogeneous magnetically. This is a distinctly different situation from the oxidation of  
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Figure 5.1 FR of 7 nm iron oxide nanocrystals as a function of degree of oxidation. (a) 

Comparison of FR of all three nanocrystal samples (Sample A-C). (b) Comparison of FR 

probed at two different wavelengths (635 and 904 nm). 
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many metallic nanocrystals, where the oxidized component is often antiferromagnetic 

resulting in magnetically heterogeneous interface. For instance, oxidation of Co 

nanocrystals results in Co/CoO core/shell structure with ferromagnetic core and 

antiferromagnetic shell,72 where both the magnetization and magneto-optic signal arise 

mostly from the core. The Co/CoO core/shell structures with various degrees of 

oxidation were prepared by varying the ratio of N2 bubbled and O2 bubbled solvent the 

solvent, shown in Figure 5.2. The degree of oxidation can be regulated because the total 

amount of O2 in the solvent is controlled. Figure 5.3 shows the FR signal and 

magnetization measured from SQUID together. In this case, FR signal of the partially 

oxidized Co nanocrystal should follow that of unoxidized core more closely, which 

varies as a function of volume following Langevin function.72 In the case of iron oxide 

nanocrystals, similar ferrimagnetic order and volume magnetization of Fe3O4 and -

Fe2O3 make the core/shell heterostructure less magnetically distinguishable. Therefore, 

the variation of FR with oxidation mainly reflects the local changes in optical properties 

independent of the detailed structure of   Fe3O4/-Fe2O3 interface unless the particle size 

changes.   

This observation was independent of the wavelength of the probe light as long as 

they belong to the same inter-valence charge-transfer transition as shown in Figure 5.1b. 

Essentially the same behavior was observed for 5 nm nanocrystals although the 

magnitude of FR was smaller than in 7 nm nanocrystals as predicted from Langevin 

function describing the magnetization of superparamagnetic nanocrystals, shown in 

Figure 5.4. 
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Figure 5.2 The scheme demonstrates the method to prepared Co/CoO with various 

degrees of oxidation. 
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Figure 5.3 Normalized intensities of magnetization measured by SQUID, FR signal and 

the strength of optical transition at probing wavelength. 
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Figure 5.4 FR of cleaned (in the ambient condition) and ‘pure’ Fe3O4 nanocrystals. 

Langevin function was normalized to FR of 15 nm Fe3O4 nanocrystals. 
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Smaller nanocrystals show larger deviation on FR between cleaned and ‘pure’ 

Fe3O4 nanocrystals, suggesting surface oxidation has stronger effect on smaller 

nanocrystals. The result can be explained by smaller fraction of Fe3O4 in the smaller 

nanocrystal after oxidation during cleaning procedure. The thicknesses of oxidation layer 

are about 0.18±0.1 nm for all six size nanocrystals calculated from the decrease of 

absorption in the near-IR region. Even FR signal in 5 nm cleaned Fe3O4 deceased about 

1/3 of FR signal in ‘pure’ Fe3O4, the FR signal is mainly contributed from Fe3O4, 

considering the intensity of FR in ‘pure’ Fe3O4 is one order larger than that in -Fe2O3. 

The static FR and UV-Vis-NIR measurements in oxidized Fe3O4 provide some 

useful information for magnetization dynamics measurements, discussed in Chapter III 

and 4. The samples for previous magnetization dynamics were cleaned Fe3O4, nominally 

Fe3O4/-Fe2O3 core/shell nanocrystals. Thus, 780 nm optical pump pulses only excited 

Fe3O4 via IVCT of Fe2+ and Fe3+, and the FR signals were mainly coming from Fe3O4, 

which dominates the FR signal in the range of 600-900 nm. Previously, the size 

dependent spin-lattice relaxation (SLR) rate in Fe3O4 nanocrystals was explained by the 

different SLR rate of surface and interior, originated from different ligand field. In the 

study, the different oxidation status on surface and interior of nanocrystals was not 

considered, and it can be an effective structural parameter for magnetization dynamics. 

In order to confirm the effect of surface oxidation on magnetization dynamics, the time-

resolved Faraday rotation was performed to study cleaned and further oxidized Fe3O4 

nanocrystals. Figure 5.5a shows the comparison of time-resolved FR data of both 

samples, and the signal amplitudes of both samples in the magnetization recoveries are  
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Figure 5.5 Time-resolved Faraday rotation data of cleaned and further oxidized Fe3O4 

nanocrystals (5 nm). (a) Comparison of raw data. (b) Comparison of normalized data, in 

which the intensities at 200 ps. 
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very different, indicating surface oxidation is an effective structural parameter. However, 

the SLR rates of both samples are very similar based on almost perfect overlap of 

normalized data after 50 ps, shown in see Figure 5.5b. 

 

5.4 Summary 

The effect of oxidation on static Faraday rotation in iron oxide nanocrystals 

(between Fe3O4 and -Fe2O3) has been investigated by varying the degree of oxidation of 

nanocrystals. From the results, Faraday rotation (FR) signal of iron oxide nanocrystals is 

linearly correlated to the strength of optical transition between Fe2+ and Fe3+ in Fe3O4, 

not the change of magnetization. The Fe3O4 and -Fe2O3 binary system is a good system 

for this study because other physical properties of two species are very similar, such as 

saturation magnetizations and crystal structures. Fe3O4/-Fe2O3 binary structures 

prepared by different methods show the same effect of oxidation on FR signal. The 

result indicates the FR signal is affected by the distribution of Fe3O4 in the nanocrystal.  

The effect of oxidation on magnetization dynamics was also evaluated by time-resolved 

Faraday rotation measurement. The preliminary result indicates that the spin-lattice 

relaxation rates of iron oxide nanocrystals are not affected by the surface oxidation, but 

the surface oxidation still plays important role on magnetization dynamics. However, the 

effect of surface oxidation on magnetization dynamics cannot be resolved based the 

preliminary results. 
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CHAPTER VI 

GENERAL CONCLUSIONS 

 

6.1 Concluding remarks 

This dissertation has described the studies of magnetization relaxation after 

optically induced demagnetization in superparamagnetic Fe3O4 nanocrystals by time-

resolved Faraday rotation. The focus of this study is to understand the correlation 

between the size of nanocrystals and the rates of spin-lattice relaxation (SLR) in 

nanoscale magnetic materials. The results indicate that the size of Fe3O4 nanocrystals 

plays an important role on the spin-lattice relaxation process. Optically induced 

magnetization dynamics in magnetic materials were intensively studied because optical 

manipulation of magnetism was suggested as a possible route to achieve faster spin-

based electronics or data storage devices. Our study may provide useful information for 

marking the spin-based electronics in nanometer scales in the future. 

Fe3O4 nanocrystals were chosen as the model system to study the correlation 

between the size of nanocrystals and the SLR rates due to the well-established synthetic 

procedure. Fe3O4 nanocrystals in the size range of 5 nm to 15 nm with narrow size 

dispersion (~ 10 %) were prepared by thermal decomposition of Fe(acac)3 with 

surfactants in high boiling point solvent. Larger Fe3O4 nanocrystals with narrow size 

dispersion can be prepared by performing seeded growth reactions. In seeded growth 

reaction, the same reaction condition was repeated with addition of small Fe3O4 

nanocrystals as the seed. In addition, larger Fe3O4 nanocrystals can also be prepared by 
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increasing the reaction temperature, reducing the amount of solvent, or decreasing 

surfactant to Fe ratio.  But the size dispersion of Fe3O4 nanocrystals became worse by 

using the latter methods. The phase conversion between two iron oxide phases (Fe3O4 

and -Fe2O3) can be easily achieved by performing oxidation and reduction reactions. 

Partially oxidized Fe3O4 nanocrystals were simply prepared by heating sample to 90 oC 

in the air. Partially oxidized Fe3O4 nanocrystals should have a Fe3O4/-Fe2O3 core/shell 

nanostructure based on the oxidation kinetics data. The oxidation reaction follow 

Sidhu’s diffusion model, meaning the oxidation rate was determined by the rate of 

outward diffusion of Fe2+ cations. -Fe2O3 nanocrystals can be prepared by oxidizing 

Fe3O4 ncnoarystals under O2 at 150 oC, and size and crystal structure parameter do not 

change much after oxidation (< 1%). Partially oxidized Fe3O4 and -Fe2O3 nanocrystals 

can be reduced back to Fe3O4 phase with olelyamine under N2 at the temperature higher 

than 200 oC. The reduction reaction can still occur without either olelyamine or N2 

atomsphere at the temperatrure higher than 200 oC. 

Time-resolved Faraday rotation was the method to measure the magnetization 

dynamics after optically induced demagnetization in Fe3O4 nanocrystals in real time 

domain. Faraday rotation is an optical method to measure magnetic information, so the 

signal can be affected by both the strength of optical transition and the magnetization of 

materials. The signals of time-resolved Faraday rotation are symmetric under opposite 

magnetic fields, namely the magnitude of the FR signals are the same but in different 

directions at certain time delay. The results indicate the signal of time-resolved Faraday 

rotation in Fe3O4 nanocrystals is magnetic origin. In addition, the transient FR data and 
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transient absorption data were compared to further confirm the transient FR data is not 

reflecting the transient absorption data. Three heat reservoirs model was often used to 

explain the optically induced magnetization dynamics, although this model is a simple 

phenomenological model, meaning no microscopic mechanisms are included. The 

exchange processes of energy and angular momentum among three heat reservoirs are 

electron-spin, spin-lattice, and electron-lattice interactions. Some of the recent studies 

are eager to understand the electron-spin interaction after optical excitation, because the 

process is not well-understood compared to the other two processes. This process is 

important because optically induced change of magnetization was suggested as an 

optical trigger in spin-based electronics or data storage data in the future. The focus of 

our study is to understand spin-lattice relaxation after optical excitation in nanoscale 

magnetic materials. 

The rates of spin relaxation following the optically induced demagnetization in 

colloidal Fe3O4 nanocrystals were investigated by time-resolved Faraday rotation. A 

simple model was utilized to analyze the spin relaxation times, and it was found that the 

size of Fe3O4 nanocrystals plays an important role on spin-lattice relaxation. Faster spin-

lattice relaxation rate was obtained in smaller Fe3O4 nanocrystals due to higher 

efficiency of spin-lattice relaxation at the surface relative to the interior region. The 

efficiency of spin-lattice relaxation was correlated to the strength of spin-orbit 

interaction, which is affected by the atomic spin-orbit coupling parameter (ξ) and the 

ligand field splitting energy (E). In Fe3O4 nanocrystals, the lattice is not continuous on 

the surface and Fe ions have a smaller number of oxygen ligand on the surface than in 
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the interior. Therefore, the ligand field acting on the surface spins is smaller than that of 

the interior spins. In that study of CoxFe3-xO4 nanocrystals, the atomic spin-orbit 

coupling parameter (ξ) of nanocrystal was varied by changing the cobalt content in 

CoxFe3-xO4 nanocrystals because the strength of spin-orbit coupling increases with cobalt 

content in CoxFe3-xO4. The spin-lattice relaxation is faster in the nanocrystals with higher 

cobalt content for a given size of nanocrystal, which is consistent with the previous 

argument.  

The effect of oxidation on static Faraday rotation in iron oxide nanocrystals was 

investigated by varying the degree of oxidation of the nanocrystals. Previously, the effect 

of oxidation on static Faraday rotation cannot be quantitatively understood because the 

exact degree of oxidation can be obtained easily in Fe3O4 thin films. The degree of 

oxidation can be easily estimated by using UV-Vis-NIR spectroscopy because 

superparamagnetic Fe3O4 nanocrystals can well-suspend in the solution. 

The effect of oxidation on static Faraday rotation in iron oxide nanocrystals was 

investigated by systematically varying the degree of oxidation, which is determined by 

the intensity of optical transition in near-infrared region in the UV-Vis-NIR spectra. The 

results indicate the signal of Faraday rotation is linearly correlated to the strength of 

optical transition between Fe2+ and Fe3+ in Fe3O4, not the magnetization of materials. 

The same results are observed in samples with corresponding degree of oxidation 

prepared by three different methods: (i) oxidation of Fe3O4, (ii) reduction of -Fe2O3, and 

(iii) mixture of Fe3O4 and -Fe2O3. The results suggested the FR signal is not affected by 

the distribution of Fe3O4 in the nanocrystals. In addition, the signal of Faraday rotation 
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of ‘pure’ Fe3O4 nanocrystals depends on the size of nanocrystal and is proportional to 

the magnetization of materials. Therefore, the signal of Faraday rotation is affected by 

both the magnetization of materials and the strength of optical transition. Nanocrystals 

have high surface-to-volume ratio, and the surface is more readily oxidized than the 

interior. The surface oxidation of Fe3O4 nanocrystals seems not like a factor for  spin-

lattice relaxation by comparing the time-resolved Faraday rotation data of nanocrystals 

with different degree of oxidation. 

 

6.2 Future directions 

Nanocrystals have versatile structural parameters (see Figure 6.1), which allow 

us to study the correlation between the structural parameters and the magnetization 

relaxation after optically induced demagnetization. This studies in this dissertation show 

that the size of Fe3O4 nanocrytal plays an important role on spin-lattice relaxation, one of 

the magnetization relaxation pathways. In addition, the cobalt content in CoxFe3-xO4 

nanocrystals is also a factor for spin-lattice relaxation. The results suggested the 

magnetization relaxation may be strongly correlated to the structural parameters. It 

implies the magnetization relaxation may be controlled by varying the structural 

parameter. The exciton relaxation pathways in quantum dots can be regulated by the 

structural parameters in quantum dots. For example, core/shell nanostructure in quantum 

dots can block some non-radiative relaxation pathway, resulting in high efficiency of 

light emitting. Using the analogy of excition relaxation in quantum dots, other structural 

parameters in nanocrystals may also play important roles on magnetization relaxation. 
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Systematically studying the correlation between structural parameters and magnetization 

dynamics could be the future directions before making spin-based devices in nanometer 

scales. 
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Figure 6.1 This schematic diagram shows that nanocrystals have versatile structural 

parameters. Some of these structural parameters may also affect magnetization dynamics. 



 109

REFERENCES 

 

1. Chappert, C.; Fert, A.; Van Dau, F. N., Nat. Mater. 2007, 6, 813. 

2. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnar, 

S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M., Science 2001, 294, 1488. 

3. Prinz, G. A., Science 1998, 282, 1660. 

4. Wang, J.; Sun, C.; Hashimoto, Y.; Kono, J.; Khodaparast, G. A.; Cywinski, L.; 

Sanders, G. D.; Stanton, C. J.; Munekata, H., J. Phys.: Condens. Matter 2006, 18, 

R501. 

5. Kimel, A., V. ; Kirilyuk, A.; Hansteen, F.; Pisarev, R. V.; Rasing, T., J. Phys.: 

Condens. Matter 2007, 19, 043201. 

6. Stöhr, J.; Siegmann, H. C., Magnetism: From Fundamentals to Nanoscale 

Dynamics. Springer: Berlin, 2006. 

7. Hübner, W.; Bennemann, K. H., Phys. Rev. B 1996, 53, 3422. 

8. Klimov, V. I.; McBranch, D. W., Phys. Rev. Lett. 1998, 80, 4028. 

9. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A., Chem. Rev. 2005, 105, 

1025. 

10. Cooney, R. R.; Sewall, S. L.; Dias, E. A.; Sagar, D. M.; Anderson, K. E. H.; 

Kambhampati, P., Phys. Rev. B 2007, 75, 245311. 

11. El-Sayed, M. A., Acc. Chem. Res. 2004, 37, 326. 

12. El-Sayed, M. A., Acc. Chem. Res. 2001, 34, 257. 

13. Zijlstra, P.; Chon, J. W. M.; Gu, M., Nature 2009, 459, 410. 



 110

14. Krivorotov, I. N.; Emley, N. C.; Sankey, J. C.; Kiselev, S. I.; Ralph, D. C.; 

Buhrman, R. A., Science 2005, 307, 228. 

15. Hsia, C.-H.; Chen, T.-Y.; Son, D. H., J. Am. Chem. Soc. 2009, 131, 9146. 

16. Klimov, V. I., The Journal of Physical Chemistry B 2000, 104, 6112. 

17. Müller, G. M.; Walowski, J.; Djordjevic, M.; Miao, G.-X.; Gupta, A.; Ramos, A. 

V.; Gehrke, K.; Moshnyaga, V.; Samwer, K.; Schmalhorst, J.; Thomas, A.; 

Hutten, A.; Reiss, G.; Moodera, J. S.; Münzenberg, M., Nat. Mater. 2009, 8, 56. 

18. Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; 

Hwang, N.-M.; Hyeon, T., Nat. Mater. 2004, 3, 891. 

19. Ogasawara, T.; Ohgushi, K.; Tomioka, Y.; Takahashi, K. S.; Okamoto, H.; 

Kawasaki, M.; Tokura, Y., Phys. Rev. Lett. 2005, 94, 087202. 

20. Sun, S.; Zeng, H., J. Am. Chem. Soc. 2002, 124, 8204. 

21. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G., J. 

Am. Chem. Soc. 2003, 126, 273. 

22. Xie, J.; Peng, S.; Brower, N.; Pourmand, N.; Wang, S. X.; Sun, S., Pure Appl. 

Chem. 2006, 78, 1003. 

23. Hou, Y.; Xu, Z.; Sun, S., Angewandte Chemie International Edition 2007, 46, 

6329. 

24. Vestal, C. R.; Song, Q.; Zhang, Z. J., J. Phys. Chem. B 2004, 108, 18222. 

25. Tang, J.; Myers, M.; Bosnick, K. A.; Brus, L. E., J. Phys. Chem. B 2003, 107, 

7501. 



 111

26. Beaurepaire, E.; Merle, J. C.; Daunois, A.; Bigot, J. Y., Phys. Rev. Lett. 1996, 76, 

4250. 

27. Djordjevic, M.; Lüttich, M.; Moschkau, P.; Guderian, P.; Kampfrath, T.; Ulbrich, 

R. G.; Münzenberg, M.; Felsch, W.; Moodera, J. S., Phys. Status Solidi C 2006, 3, 

1347. 

28. Zhang, G. P.; Hübner, W., Phys. Rev. Lett. 2000, 85, 3025. 

29. Bigot, J. Y.; Guidoni, L.; Beaurepaire, E.; Saeta, P. N., Phys. Rev. Lett. 2004, 93, 

077401. 

30. Lang, X. Y.; Zheng, W. T.; Jiang, Q., Phys. Rev. B 2006, 73, 224444. 

31. Liu, C.; Zhang, Z. J., Chem. Mater. 2001, 13, 2092. 

32. Fontijn, W. F. J.; Wolf, R. M.; Metselaar, R.; van der Zaag, P. J., Thin Solid 

Films 1997, 292, 270. 

33. Song, Q.; Zhang, Z. J., J. Phys. Chem. B 2006, 110, 11205. 

34. Cullity, B. D., Introduction to Magnetic Materials. Addison-Wesley Pub. Co.: 

Reading, Mass., 1972; p 190. 

35. Klokkenburg, M.; Hilhorst, J.; Ern, B. H., Vib. Spectrosc. 2007, 43, 243. 

36. Hsia, C.-H.; Chen, T.-Y.; Son, D. H., Nano Lett. 2008, 8, 571. 

37. Buchanan, K. S.; Zhu, X.; Meldrum, A.; Freeman, M. R., Nano Lett. 2005, 5, 383. 

38. Zhang, G.; Hübner, W.; Beaurepaire, E.; Bigot, J.-Y., Top. Appl. Phys. 2002, 83, 

245. 

39. Rhie, H. S.; Durr, H. A.; Eberhardt, W., Phys. Rev. Lett. 2003, 90, 247201. 



 112

40. Melnikov, A.; Radu, I.; Bovensiepen, U.; Krupin, O.; Starke, K.; Matthias, E.; 

Wolf, M., Phys. Rev. Lett. 2003, 91, 227403. 

41. Ju, G.; Hohlfeld, J.; Bergman, B.; van de Veerdonk, R. J. M.; Mryasov, O. N.; 

Kim, J.-Y.; Wu, X.; Weller, D.; Koopmans, B., Phys. Rev. Lett. 2004, 93, 197403. 

42. Wang, J.; Sun, C.; Kono, J.; Oiwa, A.; Munekata, H.; Cywinski; Sham, L. J., 

Phys. Rev. Lett. 2005, 95, 167401. 

43. Stamm, C.; Kachel, T.; Pontius, N.; Mitzner, R.; Quast, T.; Holldack, K.; Khan, 

S.; Lupulescu, C.; Aziz, E. F.; Wietstruk, M.; Durr, H. A.; Eberhardt, W., Nat. 

Mater. 2007, 6, 740. 

44. Koopmans, B.; Ruigrok, J. J. M.; Longa, F. D.; de Jonge, W. J. M., Phys. Rev. 

Lett. 2005, 95, 267207. 

45. Kimel, A. V.; Kirilyuk, A.; Usachev, P. A.; Pisarev, R. V.; Balbashov, A. M.; 

Rasing, T., Nature 2005, 435, 655. 

46. Hillebrands, B.; Ounadjela, K., Spin Dynamics in Confined Magnetic Structures 

II. Springer: Berlin, 2003; Vol. 87. 

47. Andrade, L. H. F.; Laraoui, A.; Vomir, M.; Muller, D.; Stoquert, J. P.; Estournes, 

C.; Beaurepaire, E.; Bigot, J. Y., Phys. Rev. Lett. 2006, 97, 127401. 

48. Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; 

Bawendi, M. G., Science 2000, 287, 1011. 

49. Scholes, G. D.; Kim, J.; Wong, C. Y.; Huxter, V. M.; Nair, P. S.; Fritz, K. P.; 

Kumar, S., Nano Lett. 2006, 6, 1765. 



 113

50. Zvezdin, A. K.; Kotov, V. A., Modern Magnetooptics and Magnetooptical 

Materials. Taylor & Francis: New York, 1997. 

51. Lifshitz, E. M.; Landau, L. D.; Pitaevskii, L. P., Electrodynamics of Continuous 

Media. Pergamon Press: New York, 1984. 

52. Baumberg, J. J.; Awschalom, D. D.; Samarth, N., J. Appl. Phys. 1994, 75, 6199. 

53. Gupta, J. A.; Knobel, R.; Samarth, N.; Awschalom, D. D., Science 2001, 292, 

2458. 

54. Kise, T.; Ogasawara, T.; Ashida, M.; Tomioka, Y.; Tokura, Y.; Kuwata-

Gonokami, M., Phys. Rev. Lett. 2000, 85, 1986. 

55. Dormann, J. L.; Spinu, L.; Tronc, E.; Jolivet, J. P.; Lucari, F.; D'Orazio, F.; 

Fiorani, D., J. Magn. Magn. Mater. 1998, 183, L255. 

56. Hansteen, F.; Kimel, A.; Kirilyuk, A.; Rasing, T., Phys. Rev. Lett. 2005, 95, 

047402. 

57. Chen, T.-Y.; Hsia, C.-H.; Son, H. S.; Son, D. H., J. Am. Chem. Soc. 2007, 129, 

10829. 

58. Scholl, A.; Baumgarten, L.; Jacquemin, R.; Eberhardt, W., Phys. Rev. Lett. 1997, 

79, 5146. 

59. Koopmans, B.; van Kampen, M.; Kohlhepp, J. T.; de Jonge, W. J. M., Phys. Rev. 

Lett. 2000, 85, 844. 

60. Kubo, R., Rep. Progr. Phys. 1966, 29, 255. 

61. Chen, T.-Y.; Hsia, C.-H.; Son, D. H., J. Phys. Chem. C 2008, 112, 10125. 



 114

62. Antao, S.; Jackson, I.; Li, B.; Kung, J.; Chen, J.; Hassan, I.; Liebermann, R.; 

Parise, J., Phys. Chem. Miner. 2007, 34, 345. 

63. Batlle, X.; Labarta, A., J. Phys. D: Appl. Phys. 2002, 35, R15. 

64. Goya, G. F.; Berquó, T. S.; Fonseca, F. C.; Morales, M. P., J. Appl. Phys. 2003, 

94, 3520. 

65. Bødker, F.; Mørup, S.; Linderoth, S., Phys. Rev. Lett. 1994, 72, 282. 

66. Shrivastava, K. N., Phys. Status Solidi B 1983, 117, 437. 

67. Sewall, S. L.; Cooney, R. R.; Anderson, K. E. H.; Dias, E. A.; Kambhampati, P., 

Phys. Rev. B 2006, 74, 235328. 

68. Garanin, D. A.; Kachkachi, H., Phys. Rev. Lett. 2003, 90, 065504. 

69. Peeters, W. L.; Martens, J. W. D., J. Appl. Phys. 1982, 53, 8178. 

70. Fontijn, W. F. J.; van der Zaag, P. J.; Devillers, M. A. C.; Brabers, V. A. M.; 

Metselaar, R., Phys. Rev. B 1997, 56, 5432. 

71. Gupta, J. A.; Awschalom, D. D.; Peng, X.; Alivisatos, A. P., Phys. Rev. B 1999, 

59, R10421. 

72. Tracy, J. B.; Weiss, D. N.; Dinega, D. P.; Bawendi, M. G., Phys. Rev. B 2005, 72, 

064404. 

73. Johnston-Peck, A. C.; Wang, J.; Tracy, J. B., ACS Nano 2009, 3, 1077. 

74. Wang, H. Y.; Shen, J. X.; Qian, J. F., J. Magn. Magn. Mater. 1988, 73, 103. 

75. Bentivegna, F.; Nyvlt, M.; Ferre, J.; Jamet, J. P.; Brun, A.; Visnovsky, S.; Urban, 

R., J. Appl. Phys. 1999, 85, 2270. 



 115

76. Tepper, T.; Ilievski, F.; Ross, C. A.; Zaman, T. R.; Ram, R. J.; Sung, S. Y.; 

Stadler, B. J. H., J. Appl. Phys. 2003, 93, 6948. 

77. Sidhu, P. S.; Gilkes, R. J.; Posner, A. M., Journal of Inorganic & Nuclear 

Chemistry 1977, 39, 1953. 

 
 



 116

VITA 

Name: Chih-Hao Hsia 

Address: Department of Chemistry 
 Texas A&M University 
 PO Box 30012 
 College Station, TX 77843-3012 
 c/o Dong Hee Son 

Email Address: kenthsia@gmail.com 

Education: 
2005-2010 Ph.D., Chemistry 

   Texas A&M University, College Station, TX 
2001-2003 M.S., Applied Chemistry 

National Chiao Tung University, Hsinchu, Taiwan 
1997-2001 B.S., Applied Chemistry 

National Chiao Tung University, Hsinchu, Taiwan 

Publications:  
1. Tai-Yen Chen, Chih-Hao Hsia and Dong Hee Son; J. Phys. Chem. C, 2010, 114, 

9713. 
2. Chih-Hao Hsia, Tai-Yen Chen and Dong Hee Son; J. Am. Chem. Soc., 2009, 131, 

9146. 
3. Stacey E. Wark, Chih-Hao Hsia and Dong Hee Son; J. Am. Chem. Soc., 2008, 130, 

9550. 
4. Tai-Yen Chen, Chih-Hao Hsia and Dong Hee Son; J. Phys. Chem. C, 2008, 112, 

10125. 
5. Chih-Hao Hsia, Tai-Yen Chen, and Dong Hee Son; Nano Lett., 2008, 8, 571. 
6. Tai-Yen Chen, Chih-Hao Hsia, Hyung Su Son, and Dong Hee Son; J. Am. Chem. 

Soc., 2007, 129, 10829. 
7. Chih-Hao Hsia, Ming-Yu Yen, Hsin-Tien Chiu and Chi-Young Lee; J. Chin. Chem. 

Soc., 2004, 51, 271.  
8. Chih-Hao Hsia, Ming-Yu Yen, Chu-Chun Lin, Hsin-Tien Chiu, and Chi-Young Lee; 

J. Am. Chem. Soc., 2003, 125, 9940. 
9. Ming-Yu Yen, Chin-Wen Chiu, Chih-Hao Hsia, Fu-Rong Chen, Ji-Jung Kai, Chi-

Young Lee and Hsin-Tien Chiu; Adv. Mater., 2003, 15, 235. 
 
 


