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ABSTRACT

Second Level Cluster Dependencies:

A Comparison of Modeling Software and Missing Data Techniques. (August 2010)

Ross Allen Andrew Larsen, B.S., Brigham Young University;

M.S., Brigham Young University

Co–Chairs of Advisory Committee: Dr. Victor Willson
Dr. Bob Hall

Dependencies in multilevel models at the second level have never been thoroughly

examined. For certain designs first-level subjects are independent over time, but the

second level subjects may exhibit nonzero covariances over time. Following a review

of revelant literature the first study investigated which widely used computer pro-

grams adequately take into account these dependencies in their analysis. This was

accomplished through a simulation study with SAS, and examples of analyses with

Mplus and LISREL. The second study investigated the impact of two different miss-

ing data techniques for such designs in the case where data is missing at the first level

with a simulation study in SAS.

The first study simulated data produced in a multiyear study varying the num-

bers of subjects in the first and second levels, the number of data waves, the magnitude

of effects at both the first and second level, and the magnitude of the second level

covariance. Results showed that SAS and the MULTILEV component in LISREL

analyze such data well while Mplus does not.

The second study compared two missing data techniques in the presence of a

second level dependency, multiple imputation (MI) and full information maximum

likelihood (FIML). They were compared in a SAS simulation study in which the data

was simulated with all the factors of the first study and the addition of missing data
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varied in amounts and patterns (missing completely at random or missing at ran-

dom). Results showed that FIML is superior to MI because it produces lower bias

and correctly estimates standard errors.
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CHAPTER I

INTRODUCTION

In education questions are asked such as “does intervention X improve students’

performances?” Despite the deceptive simplicity of the question, it can be complicated

and difficult to answer. To evaluate large-scale educational experiments it is necessary

to consider the hierarchical nature of the data. Pupils are nested within classrooms,

classrooms are nested within schools, schools are nested within districts, and districts

are nested within counties, etc. Different information is available at the different

levels. On the first level, which describes the individual students, there might be

information on student quality, their previous work and their family background or

SES. On the level describing teachers, there might be information on teacher quality,

degree they earned, or whether the teacher has had specialized training. At the

school level, information typically might be available about percent free-and-reduced

lunch of the student body, whether a school is in a specialized program, or how much

money the schools receive. Unfortunately, to analyze these variables on any of these

levels separately can cause misleading results (Burstein, Kim, & Delandshere, 1989;

Kreft, 1987). Thus, models that take all levels (student, classroom, school, district,

county, etc) into account simultaneously are superior statistically. To deal with this

problem researchers have attempted to handle these issues using hierarchical linear

modeling (HLM), random coefficient modeling, or Bayesian linear modeling (Aitkin &

Longford, 1986; Bryk & Raudenbush, 1992; Leeuw & Kreft, 1986; Fahrmeir, Tutz, &

Hennevogl, 2001; Goldstein, 1987, 1993; Hox, 1995; Mason, Wong, & Entwisle, 1983).

The approach that incorporates random coefficients is detailed below.

This dissertation follows the style of Structural Equation Modeling.
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A. The Model

A typical multilevel model at the student level (Littell, Milliken, Stroup, &

Wolfinger, 1996) is

(Score)ijt = β0jt + β1jt(Pretest)ijt + εijt (1.1)

where i is the student, j is the teacher, and t is the year. Score is the result of an

outcome test and Pretest is an antecedent covariate that may or may not be a parallel

form to the outcome. The covariate is not required for the analysis; it merely reflects

a common situation.

Next, we assume that the regression coefficients β0jt and β1jt arise from a model

with nesting at the teacher level. Assuming initially that there are no teacher-level

exogenous variables, the basic model is

β0jt = γ00t + δ0jt and (1.2)

β1jt = γ10t + δ1jt, (1.3)

where the class level disturbance terms (δ0jt, δ1j.) are assumed to be independent and

identically distributed Gaussian variables with a zero mean and nonzero variance-

covariance matrix.

Including a teacher-level covariate here termed Quality, a reasonable class level

model then becomes

β0jt = γ00t + γ01(Quality)jt + δ0jt and (1.4)

β1jt = γ10t + γ11(Quality)jt + δ1jt. (1.5)
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Substituting these expressions for β0jt and β1jt into the student level model

produces the following:

(Score)ijt = γ00k + γ01(Quality)jt + γ10(Pretest)ijt + δ0jt + εijt (1.6)

where Quality is a teacher level exogenous variable for teacher j in year t. This model

can written in general as

Y = Xβ + Zµ+ ε, (1.7)

where Y is a vector of the outcome; X and Z are known design matrices, both of

which can include dummy variables and continuous covariates; β is the vector of fixed

effects; µ is a vector of the random effects; and ε is the random error component. Then

V ar(Y ) = ZGZ ′ +R, where (1.8)

COV

µ
ε

 =

G 0

0 R

 . (1.9)

1. The Independence Model

In the scenario where all the teachers’ measurements are independent of each

other and across the years, and thus there is no second level dependency (SLD). In

this ‘independence’ model the G matrix in (1.8) and (1.9) can be written simply. For

example, assume that there are two teachers across three years. Thus:

G =

G11 0

0 G22

 , and (1.10)



4

G11 = G22 =


σ2
year 0 0

0 σ2
year 0

0 0 σ2
year

 (1.11)

where G is a j x t matrix. The Z is a n x 3 matrix which will be written as:

Z =



1 0 0

...
...

...

0 1 0

...
...

...

0 0 1

...
...

...


(1.12)

This relationship can be drawn in a path model with year as dummy coded variable

as shown in Figure 1. The path model in Figure 1 will give equivalent results as when

using (1.7) with the Z matrix defined in (1.12).

2. The Correlated Cluster Model

Moving from the independence model assumption to the correlated cluster

model, in which the teacher’s measurements may be dependent across the years,

requires the SLD to be modeled in some way. A common modeling process that often

captures the relationship well is

Average(Score)jt = (1− ρ)µ+ ρ{Average(Scorej(t−1)}+ εjt, (1.13)

an autoregressive process with one lag AR(1), in which the average score for teacher

j in year t is partly determined by the previous year’s average score. G still follows
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Figure 1 Path model for multiyear model with the second level variables independent.
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the pattern shown in (1.10), but now

G11 = G22 = σ2
year =


1 ρ ρ2

ρ 1 ρ2

ρ2 ρ 1

 (1.14)

where ρ is the lag AR(1) coefficient (Ruppert, 2004). The Z matrix will still be

defined as seen in (1.12). The equivalent path diagram is shown in Figure 2. This

model can be generalized to have any covariate(s) at the second level given sufficient

degrees of freedom with no loss of generalizability. More complex processes can be

represented in a similar manner as that shown (1.14).

B. Missing Data

Missing data in educational research is almost always assured with student

absence or mobility making it unlikely to have all test scores gathered on all students.

Rubin (2004) made certain classifications for missing data and argued that missing

data could be ignored if it is missing completely at random (MCAR) or missing at

random (MAR). MCAR is defined as occuring when the probability that a data point

Y is missing is independent from all other observed variables including Y itself.

MAR is defined as occuring when the probability that a data point Y is missing

can be determined from the other observed variables, or the variable itself. The

typical default for ignoring missing data is listwise deletion. Allison (2002) argues

that listwise deletion causes the standard error of the estimate to be inflated in the

MCAR case and causes bias in the MAR case. Missing data is almost always assured

in multiyear studies where SLD could occur. Improperly dealing with missing data

could lead to biased estimates and underestimates of the standard errors (Chan,

1998).
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Figure 2 Path model for multiyear where the second level variable is correlated with

an AR(1) structure.



8

C. Dissertation

The purpose of this dissertation was 1) to test three widely-used computer

programs for their utility in analyzing a SLD correctly, and 2) to test two missing

data techniques in the presence of SLD. The first study compares SAS, LISREL, and

Mplus. The data was generated in SAS and analyzed in PROC MIXED. A subset of

the data was then exported to the other two programs. The bias and the standard

errors across the different programs was compared. The second study varied the

amount of missing data, the type of missing data (MAR or MCAR), and deals with

the missing data through either multiple imputations or full information maximum

likelihood (FIML). The results were compared to the full dataset results, comparing

the bias, the standard deviation of the estimates, and the standard errors. The

analysis was done in SAS.
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CHAPTER II

LITERATURE REVIEW

Social science tries to capture reality in complex situations, leading to the

evolution of advanced statistical methodologies such as hierarchical linear modeling

(HLM) and structural equation modeling (SEM). Many studies in education are lon-

gitidinal in nature. The effect of teachers in a public school on students might be

expected to exhibit covariation of their class means over time due to the kinds of

students that are assigned to a teacher’s classroom or to the teachers’ own charac-

teristics. All this teacher or classroom covariation is termed second level dependency

(SLD), second level because the covariation is at the classroom level, and dependency

because the effect is not independent across years or time periods. Missing data in

such research questions is normally assured with student absence or mobility making

it unlikely that all test scores will be gathered on all students. What follows is a

review of the literature relating to the computer programs that analyze such data

effectively and the missing data techniques that effectively handle longitudinal data

with a multilevel structure.

A. Hierarchical Linear Modeling (HLM)

Kreft, De Leeuw, & Kim (1990) compare four different HLM programs: GEN-

MOD, HLM, ML2, and VARCL3. All four programs use maximum likelihood (ML)

estimation to calculate the within and between variance components. None of these

programs handle missing data. All of the programs use an iterative procedure to

calculate parameters. The main differences come from the convergence criteria and

choice of algorithm to optimize these criteria.

GENMOD was originally written by Benjamin Hermalin and Albert F. Anderson
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at the Population Studies Center at the University of Michigan. The authors used the

general model proposed by Wong & Mason (1989). According to Kreft, De Leeuw,

& Kim (1990) the documentation is difficult to interpret, the learning curve is steep,

and the program doesn’t handle small data sets (where number of observations within

groups is less than the number of variables), has slow convergence, and does not have

any options for weighting the data. The program uses restricted maximum likelihood

(REML). GENMOD was never easy to obtain and has more less completely disap-

peared since it was developed (De Leeuw & Kreft, 2001).

VARCL3 was started by Aitkin & Longford (1986). It allows multilevel data but

does not allow interactions between slopes or covariates higher than level 1. It has

average documentation, an easy learning curve, analyzes small datasets, has relatively

handling of errors that occur during the compiling and has options for weighting the

data. Although very popular in the early 1990’s, VARCL3 is no longer actively de-

veloped or supported (De Leeuw & Kreft, 2001).

HLM version 2.1 was written by Bryk, Raudenbush, and Congdon Bryk, Rauden-

bush, Congdon, & Seltzer (1988). HLM has an easy-to-use interface and has output

that contains significance tests, and model testing. Unfortunately, HLM does have

a faulty singularity test affecting the software’s handling of any errors in compiling.

HLM’s outcome variable can be normal, binary, poisson, multinormal categorical, or

ordered categorical distributed. HLM has developed into a windows version with a

graphical user interface (GUI), and has HLM/2L which handles two-level analysis

and HLM/3L which handles three-level analysis. Version 4 saw an improvement in

its alorithm. Now it can use Fisher scoring instead of just the EM algorithm. The

documentation is user oriented but many of the choices in analysis are already made

by the developers and so are denied to the user. The faulty singularity test was not

mentioned again in the more recent reviews and so must be resolved in the current
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versions(De Leeuw & Kreft, 2001). HLM version 6 saw a further improvement in the

windows interface as options are placed in a logical order and the graphing capabilities

have been improved. The newer version contains more advanced modeling techniques

such as cross-classified random effects models for linear models and nonlinear link

functions. HLM version 6 has a greater capability for incorporating sample weights

in complex designs such as cluster sampling (Michela, 2006).

ML2 is software for two-level analysis by Rabash, Prosser, and Goldstein. It is

based on work by Goldstein (1987). ML2 has a lot of functionality, with the ability

to do data exploration and preparation before and after modeling. The manual is

clear and easy to use but the profusion of options makes learning the program diffi-

cult. ML2 can only handle two level data but a more recent product, ML3 (Prosser,

Rasbach, & Goldstein, 1991), can do three level analysis as well. Eventually, ML3

evolved into MLN which could handle any number of levels and MLN evolved into

MLWIN, the version that was created for windows by the same group. MLWIN has

the ability to analyze data where the outcome variable is either normal, binary, pois-

son, multinomial categorical, or ordered categorical.

MLA version 4.1 is a program developed for two-level analysis only (Busing,

Meijer, & van der Leeden, 2005). The interface for MLA is a little archaic as it does

not use a GUI that many modern programs do. It has many options for data simula-

tion, including options for bootstrapping multilevel models. It has simple estimation

methods as opposed to complex iterative procedures used by other programs and has

a fast algorithm for all model parameters. The program is not longer actively sup-

ported.

Other reviews also compare SAS PROC MIXED and the GLIMMIX macro

(which later became PROC GLIMMIX) comparing it with HLM, MLN, MLWIN,

and VARCL (Zhou, Perkins, & Hui, 1999). They found SAS PROC MIXED to be



12

comparable to the other programs, albeit slower. MLN and MLWIN were the only two

programs that performed second order approximations. Nevertheless, SAS has the

most error distributions and link functions available. PROC MIXED is only capable

of analyzing data where the outcome is normal, while PROC GLIMMIX is able to an-

alyze data where the outcome variable is either normal, binary, poisson, multinomial

categorical, or ordered categorical. A complete discussion of SAS PROC MIXED and

how to get equivalent results from SAS as you do from many other programs can be

found in Singer (1998).

B. Structural Equation Modeling (SEM)

Chantala & Suchindran (2006) compared Mplus, MLWIN, LISREL, PROC

MIXED (SAS), LISREL, and GLLAMM (STATA) and their abilities to analyze HLM

models. In addition to HLM capabilities LISREL, MPlus, and GLLAMM (STATA)

have the ability to do SEM-type analyses. The vendors for Mplus, MLWIN , LISREL,

and HLM all claim that their most recent upgrades produce similar results when an-

alyzing complex sampling data.

Mplus has the ability to incorporate sampling weights that are necessary in HLM.

In many cases it takes less than a minute to converge(Muthén & Muthén, 1998-2007).

The manuals are all available online, and there is extensive literature in online fo-

rums that answers most common questions. Nevertheless, Mplus does have a learning

curve associated with its software, sometimes convergence is a problem, and the error

messages in the output are ambiguous at times. Mplus is the only program reviewed

that is able to do subpopulation analysis and with LISREL shares the distinction

of being able to adjust analyses for stratification. Mplus’ outcome variables can be

normal, binary, poisson, multinomial categorical and ordered categorical.
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LISREL (Jöreskog, Sörbom, & Du Toit, 2000) also claims to have the ability to

incorporate sampling weights that are necessary in HLM. Unfortunately, simulation

results provide evidence that the sampling weights are not correctly integrated into

the estimation of the standard errors of the parameters, as shown in differing results

from HLM and Mplus(Chantala & Suchindran, 2006). The LISREL designers are

working on the problem. LISREL can only handle outcome variables that are normal

in nature. Additionally, LISREL has issues with its syntax, and the learning curve

for certain situations is steep. The published help available at LISREL appears to be

excellent.

GLLAMM (Stata) (Rabe-Hesketh, Skrondal, & Pickles, 2001) allows HLM weights

and is able to do normal, binary, poisson, multinomial categorical and ordered cate-

gorical outcome variables. The results for GLLAMM are comparable to Mplus and

MLWIN, but while the other programs converged in under a minute GLLAMM took

over six hours for moderately complex models. This is perhaps do to approximations

that work well for the normal model.

PROC MIXED in SAS is not able to use HLM weights with stratification prop-

erly, but PROC NLMIXED with the help of a macro does(Rabe-Hesketh, Skrondal, &

Pickles, 2001). PROC NLMIXED will handle binary and poisson response variables

while PROC MIXED only handles normal response variables. PROC GLIMMIX has

all the capability of PROC MIXED but does allow non-normal outcome variables.

Other PROCS such as PROC SURVEYSELECT may be more appropriate for com-

plex survey data (Stapleton, 2006).
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C. Error Structure

The programs that specifically model HLM generally assume that the errors at

the second level are independent as in the case of MLWIN (Bryk, Raudenbush, Con-

gdon, & Seltzer, 1988), or does not address the issue at the second level as in the case

of HLM6 (Rasbash et al., 2000). PROC MIXED, on the other hand, has a rich array

of specific options, such as autoregressive, compound symmetry, Toeplitz, or variance

components, for specifying the structure of the error matrix (Singer, 1998).Manuals

for VARCL3 and GENMOD were unavailable but as they are not currently main-

tained they can be assumed to be at the same technical level or lower as HLM6 or

MLWIN.

According to the theory all SEM programs should be able to handle any error

structure the user can conceive. LISREL has less options than PROC MIXED but

allows the user to specify any error structure directly (Jöreskog & Sörbom, 2005).

Mplus’ approach to the error matrix is less intuitive and has to be modeled indi-

rectly using the variables themselves (Muthén & Muthén, 1998-2007). It appears

that GLLAMM does not approach this problem directly, but as GLLAMM is a SEM

program it can be assumed that errors can be modeled by specifying the relationship

between the variables themselves as is done in Mplus (Rabe-Hesketh, Skrondal, &

Pickles, 2001).

D. Missing Data

Missing data can lead to large standard errors and even bias when data is miss-

ing in systematic ways (Chan, 1998). Approaches such as listwise deletion, pairwise

deletion, full information maximum likelihood (FIML), and similar response pattern

imputation (Jöreskog & Sörbom, 1996) have all been studied with regard to their
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estimation bias when the data is incomplete (Enders & Bandalos, 2001). Hot-deck

imputation and mean imputation were studied by Brown (1994). Although all these

techniques have been evaluated for MAR and MCAR data (Newman, 2003), and other

work has suggested the need for investigating the effect that model misspecification

can have on the results of multiple imputation (Duncan & Duncan, 1994), nonethe-

less there is little reported research on correctly specified and misspecified SLD data

and their effects on missing data procedures. Lavori, Dawson, & Shera (1995) sug-

gested using a Bayesian approach with propensity scoring to deal with the missing

data. Others argued that simply using FIML approaches will serve well (Molenberghs

et al., 2004).
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CHAPTER III

MODELING SECOND LEVEL CLUSTER DEPENDENCIES

In the social sciences, multilevel designs have become increasingly complicated.

Many times, in education, students are nested in classrooms and then analyzed as if

the data was independent. This leads to incorrect results. Additionally, in education,

studies are carried out over a period of several years with different students each

year. Educational psychologists may be interested in the outcome variable at the

student level, but they need to account for the fact that the same teachers are present

each year. On the other hand, they may be interested in second level (classroom)

outcomes associated with teachers over time. Teachers may be expected to covary

on relevant variables such as their teaching quality over time, violating the usual

assumption of independent units at the second level. This is a second level dependency

(SLD). Hedges (2009) acknowledges this problem and proposes an adjustment to

the t statistics post-hoc. Other work has been done to analytically calculate the

SLD dependencies in certain meta-analyses where the structure is known (Stevens &

Taylor, 2008).

One way to model this situation is to treat each teacher as a cluster at the

third level with classroom means as data points at the second level. Unfortunately,

this approach generally assumes independence at the second level. Muthen (1997),

through simulation, shows the distortion effects on the standard errors and chi-square

statistics when data are assumed to be independent when in fact there is dependencies

at the first level. These results can be generalized to higher levels as well. Thus, to

correctly model this situation with a three-level model would require the covariance

matrix level at the second level to be unstructured or have some sort of structure

that does not assume independence. Generally there are insufficient data points at
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the second level to obtain stable results as multilevel modeling requires the sample

sizes for the lower levels to be large in order to have reliable results (Bentler, 1980;

Maas & Hox, 2005). Thus, the three-level approach is generally unworkable.

Another way to model SLD is to use a mixed model with random effects (Littell,

Milliken, Stroup, & Wolfinger, 1996). The random effect of year may have a nonzero

correlation structure, to correctly account for the potential of teachers’ effects on the

student outcomes to be correlated across years. Many possible forms of the correlation

structure may exist. One, an unstructured correlation matrix, allows all the elements

in the correlation matrix to vary. This structure consumes many degrees of freedom

and is cumbersome to interpret. Additionally, unstructured covariance estimation

has been shown to lead to underestimates of standard errors (Kwok, West, & Green,

2007). Usually, if there is a theoretical basis for using a more constrained structure,

it is preferred. For example, an autoregressive AR process: 1) may fit the theory

behind the relationship; 2) consumes fewer degrees of freedom; and 3) may be easier

to interpret. Our intent is to expand this to structural equation modeling (SEM)

problems.

A. The Model

A general multilevel model can be defined as it is in SAS (Littell, Milliken,

Stroup, & Wolfinger, 1996). Put into the context of an educational study the model

can be written as

(Score)ijt = β0jt + β1jt(Pretest)ijt + εijt (3.1)

where i is the student in the classroom, j is the teacher of the classroom, and t is the

year. Score is the result. Generally, it is a standardized test, but any quantitative

outcome variable can be used. Pretest is an antecedent covariate that may or may
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not be a parallel form to the outcome. Having the covariate will control for prior

achievement but is not necessary, from a statistical point of view, to do the analysis.

According the framework that Littell, Milliken, Stroup, & Wolfinger (1996) uses

the regression coefficients β0jt and β1jt arise from a model with nesting at the class-

room or teacher level. Assuming initially that there are no teacher-level exogenous

variables, the basic model is

β0jt = γ00t + δ0jt and (3.2)

β1jt = γ10t + δ1jt, (3.3)

where the class level disturbance terms (δ0jt, δ1j.) are independent and identically dis-

tributed Gaussian variables with a zero mean and have a nonzero variance-covariance

matrix.

Including a covariate here termed Quality, which captures the quality of teaching

in a classroom, a reasonable class level model then becomes

β0jt = γ00t + γ01(Quality)jt + δ0jt and (3.4)

β1jt = γ10t + γ11(Quality)jt + δ1jt. (3.5)

These expressions for β0jt and β1jt will be substituted into the full model, as

shown in (3.1), resulting in:

(Score)ijt = γ00k + γ01(Quality)jt + γ10(Pretest)ijt + δ0jt + εijt (3.6)

where Quality is a classroom level exogenous variable for classroom or teacher j in

year t. This model can written in general as

Y = Xβ + Zµ+ ε, (3.7)
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here Y is a vector of the quantitative outcome; X and Z are design matrices which

are none, both of which can include dummy variables and continuous covariates; β is

the vector of fixed effects; µ is a vector of the random effects; and ε is the random

error component. Then

V ar(Y ) = ZGZ ′ +R, where (3.8)

COV

µ
ε

 =

G 0

0 R

 . (3.9)

1. The Independence Model

In the scenario where all the teachers’ measurements are independent of each

other and across the years there is no SLD, and thus the G matrix in (3.8) and (3.9)

can be written simply. For example, assume that there are two teachers across three

years. Thus:

G =

G11 0

0 G22

 , and (3.10)

G11 = G22 =


σ2
year 0 0

0 σ2
year 0

0 0 σ2
year

 (3.11)
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Figure 3 Path model for multiyear model with teacher variable independent across

years.

where G is a j x t matrix. The Z is a n x 3 matrix which will be written as:

Z =



1 0 0

...
...

...

0 1 0

...
...

...

0 0 1

...
...

...


(3.12)

An equivalent path model is shown in Figure 3. This path model will give equivalent
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results as when using (3.7) with the Z matrix defined in (3.12).

2. The Correlated Cluster Model

The ‘independence’ model is unrealistic in many educational settings where

the same teachers are followed over the course of several years. A common modeling

process that reflects this fact is

Average(Score)jt = (1− ρ)µ+ ρ{Average(Scorej(t−1)}+ εjt, (3.13)

which is an autoregressive process with one lag AR(1). The average score for class-

room or teacher j in year t is partly determined by the previous year’s average score.

G still follows the pattern shown in (1.10), but now

G11 = G22 = σ2
year


1 ρ ρ2

ρ 1 ρ2

ρ2 ρ 1

 (3.14)

where the AR(1) parameter is ρ (Ruppert, 2004). The Z matrix is (3.12). This model

has its equivalent form in a path model as shown in Figure 4. The path model shown

assumes only one covariate at the classroom or teacher level, but additional covariates

can be added with no ill results given sufficient degrees of freedom.

B. Method

Many software packages analyze the zero SLD multilevel model reasonably

well: Mplus (Muthén & Muthén, 1998-2007), the statistical application MULTILEV

of LISREL for Windows (Jöreskog & Sörbom, 2005), SAS 9.2, and R (Ihaka & Gentle-

man, 1996), for example. We conducted a simulation study to evaluate the adequacy

of estimation (bias) of the point estimate, the bias of the standard errors and stan-
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Figure 4 Path model for multiyear where teacher variable is correlated with an AR(1)

structure.
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dard deviations of the point estimates in a nonzero covariance SLD for a 2x2x2x3x2

factorial design for the first three programs. The data was simulated in SAS PROC

IML. Table 1 shows the design conditions. To represent a more realistic design, we

included predictors at both first and second levels.

Table 1

Number of Teachers, Students, Years, and the Different AR(1) Conditions in the

Simulation Study

Variable Number Effect Size (σ)

Teachers 20,35 (0,1)a

Students 20 (0,1)b

Year 3,5,9 0

AR(1) 2 0,.5(ρ)

aRepresents teacher’s ‘quality.’ bRepresents student’s ‘ability.’

We varied the number of ‘teachers’ as either 20 or 35, reflecting a medium to

large study. Teacher quality effect size referred to two scenarios, one where teachers

are homogeneous (effect size 0) and thus their ’quality’ scores will be a random draw

from a standard normal distribution N(0, 1). The second scenario occurs when the

effect size is equal to ‘1’. In that case, half of the teachers have a superior teaching

quality, with their scores drawn from a N(1, 1), while the normal teachers are drawn

from a N(0, 1). This is mirrored at the student level, where either the students are

homogeneous and their pretest scores are drawn fromN(0, 1), or half of the students in

each class have pretest scores drawn from a N(1, 1) distribution and half from N(0, 1).
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The year row refers to how many waves of data (2, 4, or 8) were generated, with the

assumption that there is no improvement or decline in the teacher’s exogenous quality

scores during the study’s duration. The AR(1) column refers to how teachers’ quality

scores covary between years of the study. In the ‘0’ value for condition, the teacher’s

quality scores are independent. In the 0.5 condition, the teacher’s quality scores are

drawn according to an AR(1) process:

Qualityjt = (1− ρ)µ+ ρ(Quality)j(t−1) + εjt (3.15)

as shown in equation (3.15) (Ruppert, 2004), with the AR(1) parameter, ρ, of 0.5.

Each of these conditions was simulated with 100 iterations. Notice in (3.15) that

‘Quality’ simply captures the AR structure. Without an exogenous variable, the AR

process is carried by the second level error covariance structure εj + (1− ρ)µ+ ρεt−1.

The dependent variable in the regression will be the predicted test scores of the

simulated students. The regression will produce estimates of the parameters which

will be averaged across all the iterations to produce the bias, standard errors, and

standard deviation of the estimates of the parameters of both first (student ‘ability’)

and second (teacher ‘quality’) levels. Bias is defined as the averaged estimated value

subtracted from the true parameter value. Additionally, the software programs ML-

WIN (Rasbash et al., 2000) and WINBUGS (Lunn, Thomas, Best, & Spiegelhalter,

2000) documentation will be examined to discover their ability to analyze SLD data

but no analysis using simulated data will be attempted.
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C. Results

In order to have a gold standard of comparison, a sample of the data is

analyzed with SAS PROC MIXED using a selected condition that reflected a typical

study. The sample is then analyzed in Mplus (Muthén & Muthén, 1998-2007) and

MULTILEV of LISREL for Windows (Jöreskog & Sörbom, 2005) to evaluate program-

specific compatibility and estimation problems. The data generated in SAS was then

evaluated in MULTILEV and Mplus. Because of the difficulty of analyzing many

different scenarios in Mplus and MULTILEV, one typical simulation was selected from

the simulation with ten iterations run at both four and eight years. The conditions

selected for the test case are: number of teachers, 35; number of students, 20; the

AR(1) component, .5; and teacher ‘quality’ and student ‘ability’ effect sizes of 1.

Table 2 summarizes the findings for the results in SAS. The ‘Student level bias’

and ‘Teacher level bias’ columns show how much bias was in the estimation of the

parameters ‘quality’ (at the classroom or teacher level) and ‘ability’ (at the student

level). As can be seen, the bias was minimal. The σ column shows the variance of

the estimate. The ‘Average SE’ column shows the average standard error for the

estimate.
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Table 2

Bias, Standard Deviation of Estimate, and Average Standard Error of Simulated

Data Analyzed by PROC MIXED (Students=20, simulations=10,000)

Teachers=20

Student Level Estimates Teacher Level Estimates

ρ ability quality years bias σ̂ S.E. bias σ̂ S.E.

0.0 0 0 2 −0.003 0.058 0.061 −0.018 0.245 0.274

0.5 0 0 2 0.003 0.059 0.061 −0.080 0.378 0.354

0.0 1 0 2 0.008 0.058 0.062 −0.007 0.225 0.266

0.5 1 0 2 −0.002 0.061 0.060 −0.066 0.339 0.354

0.0 0 1 2 −0.002 0.053 0.062 −0.038 0.249 0.272

0.5 0 1 2 0.001 0.056 0.060 −0.015 0.353 0.360

0.0 1 1 2 0.005 0.050 0.062 −0.021 0.296 0.269

0.5 1 1 2 0.005 0.063 0.061 −0.069 0.383 0.347

0.0 0 0 4 0.001 0.045 0.047 −0.015 0.192 0.211

0.5 0 0 4 0.004 0.053 0.047 0.002 0.269 0.305

0.0 1 0 4 0.002 0.044 0.048 −0.050 0.227 0.211

0.5 1 0 4 −0.001 0.042 0.048 0.057 0.281 0.307

0.0 0 1 4 −0.007 0.046 0.047 −0.022 0.218 0.214

0.5 0 1 4 0.004 0.049 0.048 −0.044 0.341 0.303

0.0 1 1 4 −0.002 0.042 0.047 −0.011 0.202 0.207

0.5 1 1 4 0.002 0.046 0.047 −0.036 0.293 0.308

0.0 0 0 8 −0.001 0.036 0.035 −0.002 0.158 0.164

0.5 0 0 8 −0.008 0.033 0.035 −0.006 0.251 0.246

0.0 1 0 8 0.003 0.033 0.035 −0.038 0.156 0.160
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Table 2 (Continued)

Student Level Estimates Teacher Level Estimates

ρ ability quality years bias σ̂ S.E. bias σ̂ S.E.

0.5 1 0 8 −0.002 0.031 0.036 0.002 0.207 0.248

0.0 0 1 8 0.005 0.034 0.035 −0.009 0.166 0.162

0.5 0 1 8 0.000 0.031 0.035 −0.016 0.247 0.243

0.0 1 1 8 0.000 0.028 0.035 −0.001 0.162 0.164

0.5 1 1 8 −0.007 0.038 0.035 −0.039 0.251 0.243

Teachers=35

Student Level Estimates Teacher Level Estimates

ρ ability quality years bias σ̂ S.E. bias σ̂ S.E.

0.0 0 0 2 0.001 0.043 0.046 0.027 0.169 0.207

0.5 0 0 2 0.005 0.044 0.046 0.049 0.278 0.276

0.0 1 0 2 0.004 0.041 0.046 0.044 0.198 0.201

0.5 1 0 2 0.001 0.047 0.046 −0.033 0.276 0.264

0.0 0 1 2 0.003 0.047 0.046 −0.004 0.195 0.204

0.5 0 1 2 −0.008 0.040 0.046 0.002 0.246 0.270

0.0 1 1 2 0.000 0.040 0.045 0.000 0.191 0.205

0.5 1 1 2 −0.001 0.039 0.046 −0.038 0.272 0.265

0.0 0 0 4 0.003 0.032 0.036 0.007 0.150 0.158

0.5 0 0 4 0.000 0.032 0.035 0.360 0.240 0.231

0.0 1 0 4 −0.001 0.037 0.035 0.011 0.164 0.159

0.5 1 0 4 −0.001 0.033 0.035 −0.024 0.198 0.233

0.0 0 1 4 0.003 0.036 0.035 0.035 0.141 0.163
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Table 2 (Continued)

Student Level Estimates Teacher Level Estimates

ρ ability quality years bias σ̂ S.E. bias σ̂ S.E.

0.5 0 1 4 −0.004 0.034 0.035 −0.012 0.228 0.227

0.0 1 1 4 −0.002 0.030 0.035 −0.007 0.158 0.162

0.5 1 1 4 −0.002 0.035 0.046 0.034 0.226 0.227

0.0 0 0 8 −0.001 0.022 0.026 −0.003 0.085 0.120

0.5 0 0 8 0.003 0.025 0.026 −0.002 0.198 0.185

0.0 1 1 8 −0.001 0.026 0.026 −0.001 0.144 0.119

0.5 1 0 8 0.003 0.027 0.026 −0.030 0.185 0.182

0.0 0 1 8 −0.003 0.023 0.026 0.009 0.098 0.120

0.5 0 1 8 −0.003 0.027 0.027 0.008 0.174 0.186

0.0 1 1 8 0.002 0.024 0.026 −0.011 0.127 0.119

0.5 1 1 8 −0.002 0.020 0.026 0.000 0.207 0.183

Table 3 shows the results averaged over the variables. As can be seen, the

standard errors behave as one would expect, decreasing with additional teachers and

years.

1. Parameter Estimation

The results in the fixed parameter estimation comparing the programs SAS,

Mplus, and MULTILEVEL are given in Table 4 for ten simulations.

SAS’s bias was low for the fixed parameters and the AR(1) component. SAS also

had the property of consistency, as the number of years increased the bias decreased.
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Table 3

Results of Simulation Using PROC MIXED Averaged Across the Variables

Student Level Estimate Teacher Level Estimate

Variable bias σ̂ S.E. bias σ̂ S.E.

ρ = 0 0.0006 0.0385 0.0419 −0.0052 0.1786 0.1880

ρ = 0.5 −0.0003 0.0402 0.0418 −0.0133 0.2634 0.2644

Ability=0 −0.0002 0.0399 0.0418 −0.0046 0.2196 0.2272

Ability=1 0.0005 0.0389 0.0418 −0.0138 0.2224 0.2252

Quality=0 0.0009 0.0399 0.0419 −0.0058 0.2160 0.2265

Quality=1 −0.0006 0.0388 0.0418 −0.0127 0.2261 0.2259

Teachers=20 0.0003 0.0455 0.0479 −0.0225 0.2537 0.2580

Teachers=35 0.0000 0.0322 0.0358 0.0041 0.1883 0.1944

Years=2 0.0013 0.0500 0.0534 −0.0166 0.2683 0.2741

Years=4 −0.0001 0.0398 0.0413 −0.0024 0.2206 0.2267

Years=8 −0.0008 0.0283 0.0308 −0.0086 0.1742 0.1779

Overall 0.0001 0.0394 0.0418 −0.0092 0.2210 0.2262
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Table 4

Bias, Standard Deviation of Point Estimate, and the Average Standard Error for

SAS, MULTILEV, and Mplus. Number of Teachers=35, Number of Students=20,

ρ=.5, teacher ‘Quality’=1, student ‘Ability’=1 (simulations=10)

Years=4

SAS Mplus MULTILEV

Variable Valuea bias σ̂ S.E. bias σ̂ S.E. bias σ̂ S.E.

Ability 1.0 −0.02 0.04 0.04 0.03 0.03 −0.02 0.04 0.04 0.03

Quality 1.0 −0.18 0.24 0.25 0.13 0.19 −0.19 0.24 0.24 0.13

ρ 0.5 0.06 0.25 0.13 0.15 0.09 0.00 0.18 0.14 0.15

Years=8

SAS Mplus MULTILEV

Variable Valuea bias σ S.E. bias σ S.E. bias σ S.E.

Ability 1.0 −0.01 0.03 0.03 0.01 0.02 0.01 −0.01 0.03 0.03

Quality 1.0 −0.13 0.21 0.20 0.15 0.08 0.09 −0.13 0.21 0.18

ρ 0.5 0.01 0.07 0.06 0.18 0.11 0.04 −0.02 0.12 0.10

aPopulation Parameter Value
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MULTILEV and Mplus both had a larger bias for the AR(1) component. MULTI-

LEV’s bias decreased as the years increased while Mplus’ bias actually increased as

the years increased for the estimation of the ‘quality’ term and the AR(1) component.

The 2nd level correlation matrix estimated by SAS averaged across the 10 itera-

tions can be seen in Table 5 (4 years) and Table 6 (8 years). SAS correctly estimates

the correlation according to an AR(1) structure with no covariance estimates dipping

below 0 and all estimates very close to the theorectical value with differences that are

due to sampling.

Table 5

The 2nd Level Correlation Matrix as Estimated by SAS, Averaged over 10

Iterations (Years=4)

Year 1 Year 2 Year 3 Year 4

Year 1 1.00

Year 2 0.44 1.00

Year 3 0.22 0.44 1.00

Year 4 0.11 0.22 0.44 1.00

The 2nd level correlation matrix estimated by MULTILEV averaged across the

10 simulations can be seen in Table 7 (4 years) and Table 8 (8 years). As can be

seen, for MULTILEV the covariance parameter does not mirror an AR(1) structure.

Notice in the year 8 scenario there are negative estimates for the correlation which

is impossible with a positive AR(1) value. This is due to the fact that is impossible

to specify an exact AR(1) covariance structure in MULTILEV. Nevertheless, the es-
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Table 6

The 2nd Level Correlation Matrix as Estimated by SAS, Averaged over 10

Simulations (Years=8)

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

Year 1 1.00

Year 2 0.49 1.00

Year 3 0.25 0.49 1.00

Year 4 0.13 0.25 0.49 1.00

Year 5 0.06 0.13 0.25 0.49 1.00

Year 6 0.03 0.06 0.13 0.25 0.49 1.00

Year 7 0.02 0.03 0.06 0.13 0.25 0.49 1.00

Year 8 0.01 0.02 0.03 0.06 0.13 0.25 0.49 1.00

Table 7

The 2nd Level Correlation Matrix as Estimated by MULTILEV, Averaged over 10

Simulations (Years=4)

Year 1 Year 2 Year 3 Year 4

Year 1 1.00

Year 2 0.47 1.00

Year 3 0.22 0.47 1.00

Year 4 0.04 0.22 0.47 1.00
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Table 8

The 2nd Level Correlation Matrix as Estimated by MULTILEV, Averaged over 10

Simulations (Years=8)

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

Year 1 1.00

Year 2 0.50 1.00

Year 3 0.25 0.50 1.00

Year 4 0.09 0.25 0.50 1.00

Year 5 0.01 0.09 0.25 0.50 1.00

Year 6 −0.03 0.01 0.09 0.25 0.50 1.00

Year 7 −0.03 −0.03 0.01 0.09 0.25 0.50 1.00

Year 8 0.02 −0.03 −0.03 0.01 0.09 0.25 0.50 1.00
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timates are close, with errors due to sampling and the fact that only 10 simulations

were used to get these estiamtes.

The 2nd level correlation matrix estimated by Mplus averaged across the 10 it-

erations can be seen in Table 9 (4 years) and Table 10 (8 years). Mplus does not come

anywhere close to the theorectical values in its estimation. In the 4 year scenario as

seen in Table 9 the off diagonals do not appear to follow a AR(1) structure, where

the (2,1) coordinate would be .5, the (3,1) coordinate would be .25 and the (4,1)

coordinate would be .0625. Additionally, the off-diagonal elements vary from each

other as they should not. Coordinates (2,1) and (3,2) should be the same but they

are not. Table 10 shows that the problems observed in the 4 year scenario are not

resolved with more years added to the study. In fact the bias becomes more extreme;

the (8,1) coordinate should be very close to 0 but Mplus estimates the value to be 0.26.

Table 9

The 2nd Level Correlation Matrix as Estimated by Mplus, Averaged over 10

Iterations (Years=4)

Year 1 Year 2 Year 3 Year 4

Year 1 1.00

Year 2 0.58 1.00

Year 3 0.46 0.64 1.00

Year 4 0.32 0.46 0.66 1.00
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Table 10

The 2nd Level Correlation Matrix as Estimated by Mplus, Averaged over 10

Iterations (Years=8)

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

Year 1 1.00

Year 2 0.58 1.00

Year 3 0.46 0.64 1.00

Year 4 0.32 0.46 0.66 1.00

Year 5 0.27 0.35 0.47 0.64 1.00

Year 6 0.26 0.33 0.37 0.40 0.60 1.00

Year 7 0.30 0.33 0.31 0.32 0.47 0.65 1.00

Year 8 0.26 0.22 0.15 0.21 0.30 0.43 0.61 1.00
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2. MLWIN and WINBUGS

MLWIN (Rasbash et al., 2000) and WINBUGS (Lunn, Thomas, Best, &

Spiegelhalter, 2000) were examined for their capabilities in analyzing data with SLD

as well. Neither program will allow the user to specify the structure of the 2nd level

covariance matrix. Instead, an unstructured covariance matrix is estimated. This is

an inefficient solution as the unstructured covariance structure will consume many

degrees of freedom and any theory of the structure of the data cannot be applied to

the analysis directly. Thus, power is expected to be reduced with these programs,

although no bias would be expected.

D. Discussion

So which program should be used? The answer is, it depends on what the

researcher is trying to accomplish. In the cases of a PATH analysis with no mediating

variables, SAS’s PROC MIXED reigns supreme. If latent structures or mediating

variables are of interest, PROC CALIS would be used. PROC CALIS has structural

equation capability, but does not permit inclusion of random effects; thus SLD or

other complex correlated structures cannot be correctly estimated. Mplus has the

capability to analyze complex SEM frameworks, but does not handle SLD. The best

alternative for an SEM with latent variables and/or mediating relationships with a

SLD is MULTILEV. This fact is important when choices are made on which software

programs to invest time and money on and which software packages should be taught

in the classroom. Many frustrating hours of programming can be sidestepped if the

proper software with the capabilities needed can be chosen early. As every software

program has its quirks, learning curve, and different capabilities it is important to

know how to get equivalent results from different programs (Albright & Park, 2008;
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Chantala & Suchindran, 2006; Kenny, 2007, May). This is true even within a program

using the program’s different procedures (Gao, Thompson, Xiong, & Miller, 2009). In

the educational literature regarding longitudinal studies model misspecification with

missing independent variables can be a problem (Dewey, Husted, & Kenny, 2000),

as well as misspecification of the structure of the model which the fit indices may

not detect (Fan & Sivo, 2005, 2007). To add on top of these common problems an

SLD that is not correctly accounted for can lead to further bias in the parameter and

standard error estimations. Thus, it behooves the researcher to use the software that

has the capability to model their research question as closely to reality as possible.
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CHAPTER IV

MISSING DATA IMPUTATION VERSUS FULL INFORMATION MAXIMUM

LIKELIHOOD IN THE PRESENCE OF A SECOND LEVEL DEPENDENCY

Social science and in studying educational attempts to understand reality in

nested situations that lead to complex statistical techniques such as mulilevel or hi-

erarchial linear modeling (HLM). In the educational setting it is common for a study

to persist over several years where classrooms with the same teachers, but different

students, are observed over time. In such situations, the researcher may be interested

in student growth or change as measured by standardized tests. Because the teachers

are the same across time it would be inappropiate to treat each classroom as inde-

pendent across the years. Instead, some kind of covariance structure that takes into

account this dependency needs to be employed. This dependency exists only at the

classroom or teacher level which is the 2nd level, thus such dependencies are referred

to as second level dependencies (SLD). Few structural equation model (SEM) pro-

grams handle this characteristic of the data well (Larsen & Willson, unpublished).

To further complicate matters, it is almost assured that not all test scores will be

gathered for all students leading to missing data.

Missing data can either be missing completely at random (MCAR), or missing

at random (MAR) (Rubin, 1976). MCAR is defined as when the probability that a

data point Y is missing is independent from all other observed variables including

Y itself. In the case of MCAR, Rubin (1976) argues that the fact that some of the

data is missing can be safely ignored. This is not the case of MAR data where the

probability that Y is missing depends on the other observed variables.

Listwise deletion, a common missing data technique, leads to inflated standard

errors for the parameter estimates in the case of MCAR and bias in the parame-
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ter estiamtes in the MAR case (Allison, 2002; Chan, 1998). Other approaches such

as: pairwise deletion, full information maximum likelihood (FIML), hot-deck impu-

tation, mean imputation, similar response pattern imputation, have all been studied

with regard to their performance in estimating unbiased estimates from both MCAR

and MAR data (Enders & Bandalos, 2001; Jöreskog & Sörbom, 1996; Brown, 1994;

Newman, 2003). Additionally, Duncan & Duncan (1994) suggest the need for inves-

tigating model misspecification and its effects on multiple imputation techniques.

Despite this rich literature on missing data techniques there is little reported

research on correctly specified and misspecified SLD data and their effects on missing

data procedures. There has been some work suggesting a Bayesian approach would

be effective (Lavori, Dawson, & Shera, 1995) and that FIML works well in such cases

(Molenberghs et al., 2004). This paper compares two missing data techniques, mul-

tiple imputations (MI) and the full information maximum likelihood (FIML) to see

which one performs the best in the presence of SLD with varying degrees of missing

data, covariation, and effect sizes.

A. The Model

The model underlying the simulated data is discussed at length elsewhere

(Larsen & Willson, unpublished); a typical multilevel is

(Score)ijt = γ00k + γ01(Teacher Covariate)jt + γ10(Student Covariate)ijt + δ0jt + εijt

(4.1)

where i is the student, j is the teacher, and t is the year. Score is the result of

an outcome test, Student Covariate is any covariate(s) of interest at the first level or

student level, and Teacher Covariate is any covariate(s) at the second or teacher level.

While the covariates are not necessary for this paper, they are included as typical for
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two-level designs.

1. Correlated Cluster Model

A common modeling process that captures the SLD relationship well is an

autoregressive process with one lag AR(1):

Average(Score)jt = (1− ρ)µ+ ρ{Average(Score)j(t−1)}+ εjt, (4.2)

where ρ is the lag coefficient (Ruppert, 2004). The path diagram shown in Figure

5. This model can be generalized to have ‘teacher’ mean scores at the second level

with any number of dependent variables or any number of exogenous predictors with

no loss of generalizability given sufficient degrees of freedom under SEM. I limit our

discussion here to the univariate dependent variable case.

2. Estimation Methods for Missing Data

Given missing data in the correlated cluster model, this paper explores the use

of MI or FIML. The MI approach has been well documented and has exhibited good

qualities when a wide variety of models is correctly specified (Rubin, 1996, 2004).

FIML is a popular approach for analyzing hierarchical data (Hartley & Rao, 1967).

FIML has been compared favorably with pairwise deletion, listwise deletion, and mean

imputation in a single level SEM (Enders, 2001; Enders & Bandalos, 2001). Given

the disparate set of findings, I wished to determine if there was a clear preference in

the SLD case.



41

Figure 5 Path model for model with several years with teacher variable independent

across years.
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Table 11

Variables in the Simulation Study and How They Vary Across the Simulation

Variable Setting Effect Size (σ)

Teachers 20,35 ‘Quality’ 0,1

Students 20 ‘Ability’ 0,1

Years 3,5,9 0

Percent Missing 0,25,50 NA

Missing Data Conditions MCAR, MAR NA

Missing Data Technique MI, FIML NA

B. Method

The author conducts a simulation study regarding the behavior of the bias

and standard errors for a 2x2x2x3x2x3x2 factorial design. The data was simulated in

SAS PROC IML (SAS, 1999). Table 11 shows the design conditions. To represent a

more realistic design predictors at both first and second levels are included.

The first factor in the study is the number of ‘teachers’ as either 20 or 35,

reflecting a medium to large study. The second factor is teacher quality effect size as

either effect size ‘0’, where teachers are homogeneous and thus their ‘quality’ scores

are a random draw from a standard normal distribution N(0,1) or the effect size of

‘1’ which refers to the case when half of the teachers have a superior teaching quality,

drawn from N(1,1), while the rest of the teachers are drawn from N(0,1). The third

factor is the ‘student’ ability with pretest scores drawn from N(0,1), or half of the

students in each class pretest scores drawn from a N(1,1) distribution and half from

N(0,1). The fourth factor is the number of waves of data generated: 3, 5, or 9, with
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the assumption that there is no improvement or decline in the teacher’s exogenous

quality scores during the study’s duration. The fifth factor is the AR condition, with

teachers’ quality scores covaring between years of the study at ‘0’ or ‘.5’, with the

teacher’s quality scores drawn according to an AR(1) process:

(Teacher Quality)jt = (1− ρ)µ+ ρ(Teacher Quality)j(t−1) + εjt (4.3)

as shown in equation 4.3 (Ruppert, 2004), with the AR(1) parameter, ρ, of .5. Notice

in equation 4.3 ‘Quality’ simply captures the AR structure. Without an exogenous

variable, the AR process is carried by the second level error covariance structure and

can be expressed: εt + (1 − ρ)µ + ρεt−1. The sixth factor of the simulation study is

a random percent of data taken out at the first level. This comprised the missing

data section. Either 0 percent was removed reflecting full data, or 25 percent, or

50 percent removed to show moderate or extreme missing quantities. I also altered

the way the data was missing, either MCAR or MAR. I simulated MAR data by

correlating high quality teaching with a probability of being missing. Specifically, a

worst case scenario was simulated with all those teachers with higher quality scores

having all the missing data.

The seventh factor of the simulation study is not a characteristic of the generated

data but how the missing data is dealt with, either the MI or the FIML approach.

For FIML the PROC MIXED estimation method maximum likelihood in SAS is

used. The Restricted Maximum Likelihood (REML) approach is also examined as a

subcategory of FIML to see if there were any advantages to either FIML or REML.

For the MI approach PROC MI in SAS are run with the covariates at the teacher,

and student level included, but year is ignored, which would be appropriate only if

the data was independent. This was done because of the limitations that are inherent

in PROC MI and other MI programs where random effects and advanced covariance
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structures cannot be specified. Nevertheless, it has been asserted that the model used

in the imputation procedure does not have to be exactly the model used in analysis

as long as the multiple imputation model is richer (Meng, 1994; Rubin, 1996). Thus,

the richest model possible that made sense was used in the MI step.

One hundred imputations were generated for the 50% missing case, analyzed with

PROC MIXED and then combined with PROC MIANALYZE. Forty imputations

were used for the 25% missing case. The choice to use a large number of imputations

is based on work by Bodner (2008) that concludes that the the earlier suggestions for

a low number of imputations are actually inappropriate with a large percentage of

missing data. Each of these conditions is simulated with 100 iterations for 0% missing,

50 iterations for 25% missing and 25 iterations for the 50% missing condition because

of computational time limitations.

To study the effects of the different missing data techniques the bias, defined

as the distance from the estimated statistic to the parameter, is recorded. It was

decided to not divide the bias by the true parameter value as is commonly done as

many times the parameter value is ‘0’. The standard deviation of the point estimate,

and the average standard error for both the first and second level are also recorded

across the differing conditions of the parameters.

C. Results

When considering the results of the study it is first necessary to compare those

datasets that have missing data with the dataset that is complete. If the missing data

procedures are effective the results should be similar to the full dataset results. The

results show that using either FIML or REML estimation techniques had nearly iden-

tical results, thus only the FIML results are shown.
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First, the variation in the parameter estimates for the covariates is considered.

The first level covariate is the ‘ability’ of the students, the second level covariate is

the ‘quality’ of the teachers. Table 12 and Table 13 record the average bias, average

standard deviation of the estimates, and the average standard errors of the estimates

of the covariates as the covariate condition (homogeneous or heterogeneous) itself

varies. The tables show that bias, standard deviation, and standard error are all

independent of the condition of the covariates. There were no statistically significant

interactions.

Table 12

Average Bias, Average Standard Deviation of the Point Estimate, and Average

Standard Error for both First and Second Level Parameters Across both MI and

FIML Techniques under MCAR and MAR Conditions Varying the Second Level

Parameter (Teacher ‘Quality’)

MCAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

’Quality’ bias σ S.E. bias σ S.E.

0 0.13 0.16 0.18 0.00 0.04 0.06

1 0.14 0.17 0.18 0.00 0.04 0.06

MCAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

’Quality’ bias σ S.E. bias σ S.E.

0 0.02 0.22 0.23 0.00 0.05 0.05
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Table 12 (Continued)

Teacher Level ‘Quality’ Student Level ‘Ability’

’Quality’ bias σ S.E. bias σ S.E.

1 0.02 0.22 0.23 0.00 0.05 0.05

MAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

’Quality’ bias σ S.E. bias σ S.E.

0 0.06 0.20 0.21 0.00 0.04 0.05

1 0.06 0.20 0.21 0.00 0.04 0.05

MAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

’Quality’ bias σ S.E. bias σ S.E.

0 0.03 0.23 0.23 0.00 0.04 0.05

1 0.03 0.23 0.23 0.00 0.04 0.05
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Table 13

Average Bias, Average Standard Deviation of the Point Estimate, and Average

Standard Error for both First and Second Level Parameters Across both MI and

FIML Techniques under MCAR and MAR Conditions Varying the First Level

Parameter (Student ‘Ability’)

MCAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

‘Ability’ bias σ S.E. bias σ S.E.

0 0.13 0.16 0.18 0.12 0.04 0.06

1 0.14 0.17 0.18 −0.12 0.04 0.06

MCAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

‘Ability’ bias σ S.E. bias σ S.E.

0 0.02 0.22 0.23 0.00 0.05 0.05

1 0.03 0.22 0.23 0.00 0.05 0.05

MAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

‘Ability’ bias σ S.E. bias σ S.E.

0 NA NA NA NA NA NA

1 0.06 0.20 0.21 0.00 0.04 0.06
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Table 13 (Continued)

MAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

‘Ability’ bias σ S.E. bias σ S.E.

0 NA NA NA NA NA NA

1 0.03 0.23 0.23 0.00 0.04 0.05

Another variable of interest is the number of repeated measures or years the

study went on. The theory being that as years increase both the standard deviation

of the point estimate and the standard errors of the point estimates will, on average,

decrease. Bias should be unaffected.
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Table 14

Average Bias, Average Standard Deviation of the Point Estimate, and Average

Standard Error of First and Second Level Parameter Estimates as Years of the

Simulation Increases

MCAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

Years bias σ S.E. bias σ S.E.

3 0.14 0.20 0.22 0.00 0.05 0.07

5 0.14 0.16 0.18 0.00 0.04 0.06

9 0.13 0.13 0.14 0.00 0.03 0.04

MCAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

Years bias σ S.E. bias σ S.E.

3 0.03 0.27 0.28 0.00 0.06 0.06

5 0.02 0.22 0.23 0.00 0.05 0.05

9 0.02 0.17 0.18 0.00 0.04 0.04

MAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

Years bias σ S.E. bias σ S.E.

3 0.07 0.24 0.25 0.00 0.05 0.07

5 0.07 0.20 0.21 0.00 0.04 0.05

9 0.05 0.15 0.16 0.00 0.03 0.04
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Table 14 (Continued)

MAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

Years bias σ S.E. bias σ S.E.

3 0.03 0.28 0.28 0.00 0.06 0.06

5 0.03 0.22 0.23 0.00 0.04 0.04

9 0.02 0.19 0.18 0.00 0.03 0.03

Table 14 shows that the bias of the covariates was not affected at either the

teacher or student level as the number of years increased in the study. The stan-

dard deviation and the standard error, on the other hand, decreased as the numbers

of years increased. There were no statistically significant interactions of the results

when analyzed in PROC MIXED. This follows the large sample theory that as the

amount of data increases that estimates become more precise. Bias of the point esti-

mate was not affected.

Another variable of interest is the number of teachers in the study. As with

years, the theory states that the standard deviation of the point estimate, and the

standard error of the point estimate should decrease as the number of clusters (teach-

ers) increases.
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Table 15

Average Bias, Average Standard Deviation of the Point Estimate, and Average

Standard Error for both First and Second Level Parameters Across both MI and

FIML Techniques under MCAR and MAR Conditions Varying the Number of

Teachers in the Simulated Data

MCAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

Teachers bias σ S.E. bias σ S.E.

20 0.14 0.19 0.20 0.00 0.04 0.06

35 0.13 0.14 0.15 0.00 0.03 0.05

MCAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

Teachers bias σ S.E. bias σ S.E.

20 0.03 0.25 0.26 0.00 0.05 0.06

35 0.02 0.19 0.20 0.00 0.04 0.04

MAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

Teachers bias σ S.E. bias σ S.E.

20 0.06 0.23 0.23 0.00 0.04 0.06

35 0.06 0.18 0.18 0.00 0.03 0.04



52

Table 15 (Continued)

MAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

Teachers bias σ S.E. bias σ S.E.

20 0.03 0.27 0.26 0.00 0.05 0.05

35 0.03 0.19 0.19 0.00 0.04 0.04

Table 15 shows the standard errors and standard deviation of the estimate decreases

as the number of teachers increase; bias is unaffected.

The AR(1) component ρ is also of interest. The author predicted a priori that

the FIML technique would produce estiamates biased towards 0 when the missing

data were either MCAR or MAR in its standard error estimation.

Table 16

Average Bias, Average Standard Deviation of the Point Estimate, and Average

Standard Error for both First and Second Level Parameters Across both MI and

FIML Techniques under MCAR and MAR Conditions Varying the AR(1)

Component ρ

MCAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

ρ bias σ S.E. bias σ S.E.

0.0 0.13 0.14 0.15 0.00 0.04 0.06

0.5 0.14 0.20 0.21 0.00 0.04 0.06
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Table 16 (Continued)

MCAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

ρ bias σ S.E. bias σ S.E.

0.0 0.02 0.18 0.19 0.00 0.05 0.05

0.5 0.03 0.26 0.27 0.00 0.05 0.05

MAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

ρ bias σ S.E. bias σ S.E.

0.0 0.06 0.17 0.17 0.00 0.04 0.05

0.5 0.07 0.24 0.24 0.00 0.04 0.05

MAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

ρ bias σ S.E. bias σ S.E.

0.0 0.02 0.19 0.19 0.00 0.05 0.05

0.5 0.03 0.27 0.19 0.00 0.04 0.04

Table 16 shows the effect of varying the AR time component ρ had on the

estimates of the covariates of interest. The student level ‘ability’ was robust with

respect to a nonzero AR parameter, which follows intuitively as the student scores

are independent across the years. The standard error of the teacher level ‘quality’

increased with a nonzero AR. This is expected because there will be less information
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available to calculate estimates if the data are correlated. Surprisingly, the estimates

produced by FIML of the standard error when the missing data is MAR were not

biased toward zero but actually increased as they should.

One of the main purposes of this study was to observe the effect that missing

data has on the estimation of the parameters in a multilevel parameter when FIML

or multiple imputation techniques were used. The ideal case would be for the missing

data technique to correctly estimate the parameter (low bias), and to have the same

standard errors that are estimated when no data is missing.

Table 17

Average Bias, Average Standard Deviation of the Point Estimate, and Average

Standard Error of First and Second Level Parameter Estimates as the Percent of

Missing Data Increases

MCAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

% missing bias σ S.E. bias σ S.E.

0% 0.02 0.22 0.24 0.00 0.04 0.04

25% 0.13 0.17 0.18 0.00 0.04 0.06

50% 0.25 0.11 0.13 0.00 0.04 0.07

MCAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

% missing bias σ S.E. bias σ S.E.

0% 0.02 0.22 0.23 0.00 0.04 0.04
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Table 17 (Continued)

Teacher Level ‘Quality’ Student Level ‘Ability’

% missing bias σ S.E. bias σ S.E.

25% 0.03 0.22 0.23 0.00 0.04 0.05

50% 0.03 0.22 0.23 0.00 0.06 0.06

MAR: Multiple Imputations

Teacher Level ‘Quality’ Student Level ‘Ability’

% missing bias σ S.E. bias σ S.E.

0% 0.02 0.23 0.23 0.00 0.04 0.04

25% 0.06 0.20 0.20 0.00 0.04 0.05

50% 0.10 0.18 0.19 0.00 0.04 0.06

MAR: FIML

Teacher Level ‘Quality’ Student Level ‘Ability’

% missing bias σ S.E. bias σ S.E.

0% 0.02 0.23 0.23 0.00 0.04 0.04

25% 0.03 0.23 0.23 0.00 0.04 0.04

50% 0.03 0.23 0.23 0.00 0.05 0.05

Table 17 shows the effect that missing data had on the estimates of the covari-

ates. The student level ‘ability’ estimate was fairly robust against increasing missing

data. Nevertheless, there was a slight increase in the standard errors as percent of

missing data increased. This is expected as there should be extra variability in the
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estimates to reflect the less certain nature of the data with a higher percentage of the

data missing. The teacher level ‘quality’ showed a troubling increase in bias, and a

decrease in the standard errors as compared to the full data case. The fact that the

cases with more missing data had a smaller standard error shows than estimates with

a SLD and a high degree of missingness estimated with multiple imputations have

inappropriately high power for hypothesis testing.

Another important purpose to discuss is what, if any, are the interactions be-

tween the variables. Using PROC MIXED on the results, one interaction was found.

The estimate of the standard errors depended on both the percent of missing data

and the value of the AR(1) or ρ component as seen in Table 18.

Table 18

Average Standard Error of the First and Second Level Parameter Estimate as both

Percent Missing and the ρ Parameter Vary

MCAR: Multiple Imputations

Teacher Level ’Quality’ Student Level ’Ability’

% missing ρ=0 ρ=0.5 ρ=0 ρ=0.5

0% 0.19 0.26 0.04 0.04

25% 0.15 0.20 0.06 0.06

50% 0.11 0.15 0.07 0.07

MCAR: FIML

Teacher Level ’Quality’ Student Level ’Ability’

% missing ρ=0 ρ=0.5 ρ=0 ρ=0.5

0% 0.19 0.26 0.04 0.04
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Table 18 (Continued)

Teacher Level ’Quality’ Student Level ’Ability’

% missing ρ=0 ρ=0.5 ρ=0 ρ=0.5

25% 0.19 0.26 0.04 0.04

50% 0.19 0.26 0.04 0.04

MAR: Multiple Imputations

Teacher Level ’Quality’ Student Level ’Ability’

% missing ρ=0 ρ=0.5 ρ=0 ρ=0.5

0% 0.19 0.26 0.04 0.04

25% 0.17 0.24 0.05 0.05

50% 0.16 0.21 0.06 0.06

MAR: FIML

Teacher Level ’Quality’ Student Level ’Ability’

% missing ρ=0 ρ=0.5 ρ=0 ρ=0.5

0% 0.19 0.27 0.04 0.04

25% 0.19 0.27 0.04 0.04

50% 0.19 0.27 0.05 0.05

This problem of an inappropriately high power when multiple imputations

are used to deal with missing data is exacerbated with a higher ρ component as can

be seen in Table 18 and in Figure 6. Table 17 shows that the student level ‘ability’

estimate is free from an interaction but the teacher level ‘quality’ estimate is not.
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Figure 6 Standard error of second level parameter (teacher ‘quality’) when multiple

imputations are used to estimate missing data, graphed across ρ and percent missing.

The 0% line in Figure 6 shows the best approximation and any deviations from it

can be thought of as design-dependent. There is a straight forward reduction in the

estimate of standard errors in the case where ρ=0. This difference becomes wider as

ρ increases to 0.5. Thus, even without an SLD the MI procedure does not handle

imputing the data appropriately. This is due to the fact that PROC MI does not

include random effects, so that all the student level data is assumed to come from

the same classroom when running PROC MI. This problem becomes worse if there is

any SLD. This situation is not mirrored when using the FIML approach either with

MAR or MCAR data. Thus, it seems clear that FIML in these situations is superior

to MI techniques as implemented in SAS.
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D. Discussion

The results of this study indicate that it is very important to realize that the

MI approach for dealing with missing data may give underestimates for the standard

error and increase the bias of the estimate. This could seriously impact the results of

studies with small effect sizes such as those common in the social sciences. Thus, as

many other research conditions have indicated (Enders & Bandalos, 2001), the FIML

approach is robust to the SLD deficiencies that MI exhibits. This is probably due

to the fact that when using the FIML of PROC MIXED it is possible to specify the

correct model while in PROC MI it is only possible to generate an approximation for

that model. As long as the model used in the MI is more general than the model used

in analyzing the data good results should be produced (Schafer, 2005, Nov). The

model specified in the MI step could be argued as a more general model as it does not

take year into account, but as noted previously this generalization does not take into

account the particular covariance effects. It should be noted that PROC MIXED,

while correctly handling MAR data as shown, will throw out any data missing any of

the values for the covariates, which assumes the data is MCAR. This will also lead

to incorrect estimates if the data is in fact MAR. Further work needs to be done to

explore that scenario using PROC MIXED to analyze data. Otherwise, Larsen &

Willson (unpublished) have shown that LISREL competes favorably with SAS in its

estimation of models with SLD. Therefore, in the highly probable event of missing

data for the covariates as well as the response, LISREL should be used with FIML

in analyzing SEM data. In the future if MI techniques are still going to be useful in

the missing data field, additional error structures, random effects, and a wider array

of models need to be engineered into common MI procedures.
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CHAPTER V

CONCLUSION

The best alternative for an SEM with latent variables and/or mediating rela-

tionships with a SLD is MULTILEV. This fact is important when choices are made

on which software programs to invest time and money on and which software pack-

ages to choose for classroom instruction. Choosing the right software can save time

and resources which would be better allocated to study design and theory. Addi-

tionally, because the differences between programs, it is important to know how to

get equivalent results from different programs (Albright & Park, 2008; Chantala &

Suchindran, 2006; Kenny, 2007, May) or from different procedures within the same

programs (Gao, Thompson, Xiong, & Miller, 2009) so the results can be validated.

In the educational literature with longitudinal studies model misspecification

with missing independent variables can be a problem (Dewey, Husted, & Kenny,

2000), as well as misspecification of the structure of the model which the fit indices

may not detect (Fan & Sivo, 2005, 2007). To add on top of these common problems

an SLD that is not correctly accounted for can lead to further bias in the parameter

and standard error estimations. Thus, it behooves the researcher to use the software

that has the capability to model reality as close as possible. Because practical and

statistical significance are big concerns in educational research (Fan, 2001), correct

standard errors are absolutely essential for making correct policy decisions. Correct

standard errors are also necessary for sample size calculations (Snijders & Bosker,

1993).

Missing data and missing data techniques are still being studied (Acock, 2005),

and SLD is not heavily emphasized in the literature. Thus, an incorrect approach can

cause standard error deflation and lead to inappropiate conclusions and poor educa-
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tional policy decisions. The bias that occurs if a SLD is not modeled correctly and

the bias that occurs by using incorrect missing data techniques may be small in an

individual study but as many policy decisions are made on results of meta-analysis

(Kavale & Forness, 2000), small errors will add up to inflated effect sizes and incorrect

expectations.

A. Limitations and Future Research

This dissertation has several limitations. First, only three computer programs

are compared explicitly. Other programs may have the same functionality of SAS and

the same flexibility of LISREL. Other limitations have to deal with the data structure

itself. There was no attempt to have variation at higher levels that would represent

the school such as the district. Additionally, the study assumed that the teacher’s

quality remains constant through time which denies the fact that teachers can improve

in time, and ignored any analytic techniques that takes improvement into account.

Any trends in class assignment such as giving poorly performing students to younger

teachers are ignored. Class assignment is assumed to be perfectly random which is not

reality. Also, the whole simulation study was not replicated in the other programs.

If it had been, perhaps other idiosyncrasies in Mplus and LISREL might have been

discovered.

The missing data study is limited insomuch that only MCAR and MAR missing

data patterns are considered and one MAR situation is considered. Also, other missing

data techniques besides MI and FIML are not considered. Other programs who claim

to use FIML like Mplus was not tested.

Both simulation studies assumed normal data which in reality may not be true

as data are often binary, ordinal, multinomial etc. Future research needs to be done



62

with missing data and a SLD in the absence of the normality assumption.

All these limitations are opportunities for future research. It would be interesting

to simulate data in other programs such as Mplus or LISREL and see if the results

are constant across all conditions. Additionally, other multiple imputation programs

besides PROC MI in SAS could be considered for use in dealing with missing data.
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APPENDIX A

CODE FOR SIMULATING DATA IN SAS PROC IML

%macro Sim1(iter=, tmax=,smax=,ymax=,cmax=
,qmax= ,amax= ,yemax=, cemax=,missing=,);

proc iml;
nit=&iter;
tmax=&tmax;
smax=&smax;
ymax=&ymax;
cmax=&cmax;
qmax=&qmax;
amax=&amax;

yemax=&yemax;
cemax=&cemax;
miss=&missing;
/*setting up parameters for model*/
total=tmax*smax*3*cmax*qmax+1*amax+1*yemax+1*cemax+1;
data=j(smax,14,-9);
final=j(1,14,-9);
scenario=1;
group=0;
achieve=0;
iteration=0;
do iteration=1 to nit;
do timeeffect=0 to 1;
yeareffect=rand(’normal’,timeeffect,1);

do ability=0 to amax;
do quality=0 to qmax;
do teacher=1 to tmax;
if teacher<(tmax+1)/2 then group=0;
else group=1;
do year=0 to ymax;
if year=0 then
teachereffect=rand(’normal’,0,1)+(quality*group);
else teachereffect=(teachereffect-(quality*group))
*timeeffect/2+(quality*group)
+rand(’normal’,0,(1-(timeeffect/2)**2)**(1/2));

do student=1 to smax;
if student<smax/2 then achieve=0;
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else achieve=1;
data[student,1]=rand(’normal’,0,1)+(ability*achieve);
data[student,2]=ability;
data[student,3]=teacher;
data[student,4]=teachereffect;
data[student,5]=data[student,1]+data[student,4];
data[student,6]=quality;
data[student,7]=year;
data[student,8]=yeareffect;
data[student,9]=timeeffect/2;
data[student,10]=teachereffect*rand(’normal’,0,1);
data[student,11]=group;
data[student,12]=achieve;
data[student,13]=iteration;
data[student,14]=student;

end;
final=final//data;

end;

end;

end;

end;

end;

print iteration;

end;

create data from final;
append from final;
quit;

data data;
set data;
if _n_ ne 1;
run;

data analyze (rename= (COL1=student COL2=ability
COL3=teacher COL4=teachereffect COL5=score COL6=quality COL7=year
COL8=yeareffect COL9=timeeffect COL10=scenario
COL11=group COL12=achieve COL13=iteration COL14=ID));

set data;
run;

data analyze&tmax&smax&ymax&missing;
set analyze;
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run;

proc sort data=analyze;
by quality ability timeeffect iteration ;
run;

ODS output ConvergenceStatus=Converge;
ODS output SolutionF=fit;
ods listing close;

proc mixed data=analyze;
by iteration timeeffect ability quality NOTSORTED;
class teacher year ;
model score= achieve group/ solution;
random intercept achieve/ sub=teacher ;
random year / sub=teacher type=AR(1) ;
ods output SolutionF=mxparms;
run;
ods listing;

/*Calculating the mean bias for achieve*/

data meanbiasachieve;
set fit;
if Effect ^= ’achieve’ then delete;
run;

ODS output Moments=AchieveMeanBias;
ods listing close;
proc univariate data=meanbiasachieve;
by timeeffect ability quality NOTSORTED;
var estimate Stderr;
run;
ods listing;

data achieveBias&tmax&smax&ymax&missing;
set AchieveMeanBias;
if Label1 = ’Mean’ then select=1;
if Label2 =’Variance’ then select=1;
if select ^=1 then delete;
calcvalue=cvalue1;
Bias=cvalue1-ability;
iterations=&iter;
teachers=&tmax;
students=&smax;
years=&ymax;



74

missing=&missing;
keep Varname iterations timeeffect ability
quality teachers students years calcvalue Bias Label1;
run;

/*Calculating the mean bias for group
which is teacher’s ability*/

data meanbiasgroup;
set fit;
if Effect ^= ’group’ then delete;
run;

ODS output Moments=GroupMeanBias;
ods listing close;
proc univariate data=meanbiasgroup;
by timeeffect ability quality NOTSORTED;
var estimate Stderr;
run;
ods listing;

data GroupBias&tmax&smax&ymax&missing;
set GroupMeanBias;
if Label1 = ’Mean’ then select=1;
if Label2 =’Variance’ then select=1;
if select ^=1 then delete;
calcvalue=cvalue1;
Bias=cvalue1-quality;
iterations=&iter;
teachers=&tmax;
students=&smax;
years=&ymax;
missing=&missing;
keep Varname iterations timeeffect ability
quality teachers students years calcvalue Bias Label1;
run;

/*Coverage bias*/

ODS output Moments=MeanConverge;
ods listing close;
proc univariate data=Converge;
by timeeffect ability quality NOTSORTED;
var status pdG pdH;
run;
ods listing;
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ODS output Moments=MeanConverge;
ods listing close;
proc univariate data=Converge;
by timeeffect ability quality NOTSORTED;
var status pdG pdH;
run;
ods listing;

data MeanConverge&tmax&smax&ymax&missing;
set MeanConverge;
if Label1 ^= ’Mean’ then delete;
percent_convergence=(1-cvalue1)*100;
iterations=&iter;
teachers=&tmax;
students=&smax;
years=&ymax;
missing=&missing;
keep Varname iterations timeeffect ability
quality teachers students years percent_convergence ;
run;
quit;
%mend Sim1;
/**/
%Sim1 (iter=100,tmax=20,smax=20,ymax=1,cmax=2
,qmax=1, amax=1,yemax=1, cemax=1);
%Sim1 (iter=100,tmax=20,smax=20,ymax=3,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1);
%Sim1 (iter=100,tmax=20,smax=20,ymax=7,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1);
%Sim1 (iter=100,tmax=35,smax=20,ymax=1,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1);
%Sim1 (iter=100,tmax=35,smax=20,ymax=3,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1);
%Sim1 (iter=100,tmax=35,smax=20,ymax=7,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1);



76

APPENDIX B

CODE FOR ANALYZING DATA IN MULTILEV, LISREL, MPLUS, AND SAS

SAS Code:

proc mixed data=analyze;
class teacher year ;
model score= achieve group/ solution;
random intercept achieve/ sub=teacher;
random year / sub=teacher type=AR(1);
run;

Mplus Code:

TITLE: Simulation

DATA:
FILE IS "G:\ESPY\Simulation\URGEN\Data_for_MPLUS.dat";

VARIABLE:
NAMES ARE Teacher ID group achieve y1 y2 y3 y4;

USEVARIABLES ARE Teacher group achieve y1-y4;
CLUSTER IS Teacher;

within=achieve;
between=group;

ANALYSIS:
TYPE IS TWOLEVEL;
ESTIMATOR IS ML;
ITERATIONS = 1000;
CONVERGENCE = 0.00005;

Model:
%WITHIN%
iw | y1@0 y2@1 y3@2 y4@3;

y1-y4 (1);
Y1 WITH Y4@0;
Y2 WITH Y3@0;
Y2 WITH Y4@0;
Y3 WITH Y4@0;
iw on achieve;

%BETWEEN%
ib | y1@0 y2@1 y3@2 y4@3;



77

Y1-Y4 (2);
y1 with y2 (3);
y2 with y3 (3);
y3 with y4 (3);

ib ON group
output: sampstat stand;

MULTILEV Code:

OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=100 EFFECTS=YES
OUTPUT=STANDARD ;
TITLE=Multilevel;
SY=’G:\ESPY\Simulation\Eightyear Lisrel\EYDA.psf’;
ID2=teacher;
RESPONSE=score;
FIXED=intcept group achieve;
DUMMY=year;
RANDOM1=intcept achieve;
RANDOM2=dummy1 dummy2 dummy3 dummy4 dummy5 dummy6 dummy7 dummy8;

COV2PAT=
1
2 1
4 2 1
8 4 2 1
16 8 4 2 1
32 16 8 4 2 1
64 32 16 8 4 2 1

128 64 32 16 8 4 2 1;
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APPENDIX C

CODE FOR SIMULATING DATA, SIMULATING MISSING DATA

CONDITIONS (MCAR AND MAR) AND ANALYZING RESULTS IN SAS PROC

IML AND SAS PROC MIXED

%macro Sim1(iter=, tmax=,smax=,ymax=,cmax=,qmax= ,
amax= ,yemax=, cemax=,missing=,);

proc iml;
nit=&iter;
tmax=&tmax;
smax=&smax;
ymax=&ymax;
cmax=&cmax;
qmax=&qmax;
amax=&amax;

yemax=&yemax;
cemax=&cemax;
miss=&missing;
/*setting up parameters for model*/
total=tmax*smax*3*cmax*qmax+1*amax+1*yemax+1*cemax+1;
data=j(smax,13,-9);
final=j(1,13,-9);
scenario=1;
group=0;
achieve=0;
iteration=0;
do iteration=1 to nit;
do timeeffect=0 to 1;
yeareffect=rand(’normal’,timeeffect,1);

do ability=0 to amax;
do quality=0 to qmax;
do teacher=1 to tmax;
if teacher<(tmax+1)/2 then group=0;
else group=1;
do year=0 to ymax;
if year=0 then
teachereffect=rand(’normal’,0,1)+(quality*group);
else teachereffect=(teachereffect-(quality*group))
*timeeffect/2+(quality*group)
+rand(’normal’,0,(1-(timeeffect/2)**2)**(1/2));
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do student=1 to smax;
if student<smax/2 then achieve=0;
else achieve=1;
data[student,1]=rand(’normal’,0,1)+(ability*achieve);
data[student,2]=ability;
data[student,3]=teacher;
data[student,4]=teachereffect;
r=RAND(’UNIFORM’);
if r<(1-1/miss) then
data[student,5]=data[student,1]+data[student,4];
else data[student,5]=-9999;
data[student,6]=quality;
data[student,7]=year;
data[student,8]=yeareffect;
data[student,9]=timeeffect/2;
data[student,10]=teachereffect*rand(’normal’,0,1);
data[student,11]=group;
data[student,12]=achieve;
data[student,13]=iteration;

end;
final=final//data;

end;

end;

end;

end;

end;

print iteration;

end;

create data from final;
append from final;
quit;

data data;
set data;
if _n_ ne 1;
run;

data analyze1 (rename= (COL1=student COL2=ability
COL3=teacher COL4=teachereffect COL5=score
COL6=quality COL7=year
COL8=yeareffect COL9=timeeffect COL10=scenario
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COL11=group COL12=achieve COL13=iteration ));
set data;
run;

data analyze2;
set analyze1;
if score=-9999 then
call missing(score);
run;

proc mi data=analyze2 out=analyze NIMPUTE=100 method=ML;
by iteration timeeffect ability quality NOTSORTED;
mcmc chain=multiple displayinit initial=em(itprint);

var achieve group score;
run;

proc sort data=analyze;
by quality ability timeeffect iteration ;
run;
/**/
/*proc print data=analyze;*/
/*run;*/
/*ODS output ConvergenceStatus=Converge;*/
/*ODS output SolutionF=fit;*/

proc mixed data=analyze method=ML;
by iteration timeeffect ability
quality NOTSORTED _Imputation_;
class teacher year ;
model score= achieve group/ solution;
random intercept achieve/ sub=teacher;
random year / sub=teacher type=AR(1);
ods output SolutionF=mxparms;
run;

ODS output ParameterEstimates=fit1;

proc mianalyze parms(classvar=full)=mxparms;
by iteration timeeffect ability quality NOTSORTED;

class teacher;
modeleffects Intercept achieve group;

run;
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data fit;
set fit1;
Effect=PARM;
drop PARM;
run;

/*Calculating the mean bias for achieve*/

data meanbiasachieve;
set fit;
if Effect ^= ’achieve’ then delete;
run;

ODS output Moments=AchieveMeanBias;
ods listing close;
proc univariate data=meanbiasachieve;
by timeeffect ability quality NOTSORTED;
var estimate;
run;
ods listing;

data achieveBias&tmax&smax&ymax&missing;
set AchieveMeanBias;
if Label1 ^= ’Mean’ then delete;
calcvalue=cvalue1;
Bias=cvalue1-ability;
iterations=&iter;
teachers=&tmax;
students=&smax;
years=&ymax;
missing=&missing;
keep Varname iterations timeeffect ability quality
teachers students years missing calcvalue Bias ;
run;

/*Calculating the mean bias for
group which is teacher’s ability*/

data meanbiasgroup;
set fit;
if Effect ^= ’group’ then delete;
run;

ODS output Moments=GroupMeanBias;
ods listing close;
proc univariate data=meanbiasgroup;
by timeeffect ability quality NOTSORTED;
var estimate;
run;
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ods listing;

data GroupBias&tmax&smax&ymax&missing;
set GroupMeanBias;
if Label1 ^= ’Mean’ then delete;
calcvalue=cvalue1;
Bias=cvalue1-quality;
iterations=&iter;
teachers=&tmax;
students=&smax;
years=&ymax;
missing=&missing;
keep Varname iterations timeeffect
ability quality teachers

students years missing calcvalue Bias ;
run;

/*Coverage bias*/

/*ODS output Moments=MeanConverge;*/
/*ods listing close;*/
/*proc univariate data=Converge;*/
/*by timeeffect ability quality NOTSORTED;*/
/*var status pdG pdH;*/
/*run;*/
/*ods listing;*/
/**/
/**/
/*ODS output Moments=MeanConverge;*/
/*ods listing close;*/
/*proc univariate data=Converge;*/
/*by timeeffect ability quality NOTSORTED;*/
/*var status pdG pdH;*/
/*run;*/
/*ods listing;*/
/**/
/**/
/*data MeanConverge&tmax&smax&ymax&missing;*/
/*set MeanConverge;*/
/*if Label1 ^= ’Mean’ then delete;*/
/*percent_convergence=(1-cvalue1)*100;*/
/*iterations=&iter;*/
/*teachers=&tmax;*/
/*students=&smax;*/
/*years=&ymax;*/
/*missing=&missing;*/
/*keep Varname iterations timeeffect
ability quality teachers students years
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missing percent_convergence ;*/
/*run;*/
quit;
%mend Sim1;

%Sim1 (iter=25,tmax=20,smax=20,ymax=4,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1,missing=2);
%Sim1 (iter=25,tmax=20,smax=20,ymax=8,cmax=2,qmax=1,
amax=1,yemax=1, cemax=1,missing=2);
%Sim1 (iter=25,tmax=35,smax=20,ymax=2,cmax=2,qmax=1,
amax=1,yemax=1, cemax=1,missing=2);
%Sim1 (iter=25,tmax=35,smax=20,ymax=4,cmax=2,qmax=1,
amax=1,yemax=1, cemax=1,missing=2);

%Sim1 (iter=25,tmax=35,smax=20,ymax=8,cmax=2,qmax=1,
amax=1,yemax=1, cemax=1,missing=2);
%Sim1 (iter=100,tmax=20,smax=20,ymax=2,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1,missing=4);
%Sim1 (iter=100,tmax=20,smax=20,ymax=4,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1,missing=4);
%Sim1 (iter=100,tmax=20,smax=20,ymax=8,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1,missing=4);
%Sim1 (iter=100,tmax=35,smax=20,ymax=2,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1,missing=4);
%Sim1 (iter=100,tmax=35,smax=20,ymax=4,cmax=2,
qmax=1, amax=1,yemax=1, cemax=1,missing=4);
%Sim1 (iter=100,tmax=35,smax=20,ymax=8,
cmax=2,qmax=1, amax=1,yemax=1, cemax=1,missing=4);
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