
LDPC CODES OVER LARGE ALPHABETS AND THEIR

APPLICATIONS TO COMPRESSED SENSING AND FLASH MEMORY

A Dissertation

by

FAN ZHANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2010

Major Subject: Electrical Engineering

LDPC CODES OVER LARGE ALPHABETS AND THEIR

APPLICATIONS TO COMPRESSED SENSING AND FLASH MEMORY

A Dissertation

by

FAN ZHANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Henry D. Pfister
Committee Members, Krishna R. Narayanan

Sebastian Hoyos
Guergana Petrova

Head of Department, Costas N. Georghiades

August 2010

Major Subject: Electrical Engineering

iii

ABSTRACT

LDPC Codes over Large Alphabets and Their

Applications to Compressed Sensing and Flash Memory. (August 2010)

Fan Zhang, B.S., University of Science and Technology of China;

M.S., University of Science and Technology of China

Chair of Advisory Committee: Prof. Henry D. Pfister

This dissertation is mainly focused on the analysis, design and optimization of

Low-density parity-check (LDPC) codes over channels with large alphabet sets and

the applications on compressed sensing (CS) and flash memories. Compared to belief-

propagation (BP) decoding, verification-based (VB) decoding has significantly lower

complexity and near optimal performance when the channel alphabet set is large.

We analyze the verification-based decoding of LDPC codes over the q-ary symmetric

channel (q-SC) and propose the list-message-passing (LMP) decoding which offers

a good tradeoff between complexity and decoding threshold. We prove that LDPC

codes with LMP decoding achieve the capacity of the q-SC when q and the block

length go to infinity.

CS is a newly emerging area which is closely related to coding theory and infor-

mation theory. CS deals with the sparse signal recovery problem with small number

of linear measurements. One big challenge in CS literature is to reduce the number

of measurements required to reconstruct the sparse signal. In this dissertation, we

show that LDPC codes with verification-based decoding can be applied to CS system

with surprisingly good performance and low complexity.

We also discuss modulation codes and error correcting codes (ECC’s) design for

flash memories. We design asymptotically optimal modulation codes and discuss their

improvement by using the idea from load-balancing theory. We also design LDPC

iv

codes over integer rings and fields with large alphabet sets for flash memories.

v

To my parents

vi

ACKNOWLEDGMENTS

In my four years’ stay in Texas A&M University, I have learned one thing - I

could have never done any of this, particularly the research and the writing that went

into this dissertation without the support and encouragement of a lot of people.

First, my foremost acknowledgement is to my advisor, Professor Henry Pfister.

When I joined Texas A&M in 2006, Henry also joined the WCL that fall as a new

faculty. I was so lucky to meet Henry and became his research assistant. Henry is the

most important reason that my academic experience at TAMU was so enjoyable and

fulfilling. Henry was always willing to help, encourage me and give valuable sugges-

tions. I am always deeply impressed by his insightful thoughts, solid mathematical

background, enthusiasm and persistence for solving complicated problems. Beyond

the research problems we solved, Henry also taught me the knowledge and philosophy

of being an independent researcher. I also would like to thank Henry for his generous

help and support with looking for a job.

I am also grateful to Professor Krishna Narayanan for many valuable discussions

on my research problems. Also, I would like to thank Krishna for his teaching of two

courses, Information Theory and Advanced Channel Coding. His deep understanding

on coding theory and information theory, and his innovative teaching style really

made every lecture very interesting and unforgetable. I am impressed by his ability

to express abstract and complicated concepts in a simple but precise way. Krishna

also helped me a lot during my job hunting.

My sincere thanks to Professor Krishna Narayanan, Professor Sebastian Hoyos

and Professor Guergana Petrova for being my committee members and helpful discus-

sions on compressed sensing. Also I would like to thank Professor Ronald Devore for

his wonderful course on compressed sensing. Ronald always described abstract prob-

vii

lems in a precise and easy-to-understand way. His innovative and interactive style

of teaching really made every class a happy journey. I would like to thank Professor

Anxiao (Andrew) Jiang for his wonderful course on flash memories and many helpful

discussions on the topic of ECC deisgn for flash memories. I also would like to thank

Professor Jean-Francois Chamberland, Professor Tie Liu, Professor Shuguang Cui,

Professor Costas Georghiades, Professor Zixiang Xiong, Professor Alex Sprintson,

Professor Scott Miller and Professor Serap Savari for their wonderful courses and

technical discussions on my research topics.

I would like to thank to all my colleagues Arvind Yedla, Wei-Yu Chen, Makesh

Pravin Wilson, Zhuizhuan Yu, Chiawen Wang, Phong Sy Nguyen, Yung-Yih Jian,

Byung Hak Kim, Lingjia Liu and many other names for their support and company.

Their kindness made my four years at TAMU so memorable.

My special thanks to Paula Evans, Salim Rouyaheb, Jing Jiang, Tao Lang,

Guodong Zhou and Yingning Wang for taking care of me in my first year at TAMU.

They were always willing to help on everything. Jing also offered generous help during

my job-hunting.

Finally, I would like to thank my parents, Jinlian Qiu and Rongmao Zhang and

my sister Yuyun Qiu for their unconditional love and support. This work is dedicated

to them.

viii

TABLE OF CONTENTS

Page

I INTRODUCTION . 1

A. Introduction . 1

B. Outline of Dissertation . 4

II VERIFICATION-BASED DECODING OF LDPC CODES

OVER THE Q-SC . 6

A. Introduction . 6

B. List-Message-Passing (LMP) Decoding Algorithm 9

1. Description of the Decoding Algorithm 9

2. Decoding with Unbounded List Size 11

3. Decoding with Bounded List Size 14

C. Analysis of Node-Based Algorithms 18

1. Differential Equation Analysis of LM1-NB 18

a. Motivation . 18

b. Analysis of Peeling-Style Decoding 20

c. CER Analysis . 23

d. IER1 Analysis . 24

2. Differential Equation Analysis of LM2-NB 25

a. CER Analysis . 30

b. IER2 Analysis . 31

3. Proof of Correctness of Differential Equation Anal-

ysis for LM2-NB . 36

D. Error Floor Analysis of LMP Algorithms 39

1. The Union Bound for ML Decoding 40

2. Error Analysis for LMP Algorithms 41

3. An Upper Bound on the Probability of Type-II FV

on Cycles . 43

4. An Upper Bound on the Probability of Unverifica-

tion on Cycles . 45

E. Comparison and Optimization 48

F. Simulation Results . 49

ix

Page

III VERIFICATION DECODING OF HIGH-RATE LDPC CODES

WITH APPLICATIONS IN COMPRESSED SENSING 52

A. Introduction . 52

1. Background on LDPC Codes 53

2. Structure of the Chapter 53

B. Background on Coding and CS 54

1. Encoding and Decoding 54

2. Analysis Tools . 56

3. Decoding Algorithms 58

4. Signal Model . 61

5. Interesting Rate Regime 62

C. Main Results . 62

D. High-Rate Scaling Via Density Evolution 64

1. DE Scaling Law Analysis for the BEC 64

2. Concentration Theorem for the BEC 66

3. DE Scaling Law Analysis for the q-SC 68

a. DE Scaling Law Analysis for LM1 68

b. Scaling Law Analysis Based on DE for LM2-MB . 70

4. Concentration Theorem for the q-SC 72

E. Scaling Laws Based on Stopping Set Analysis 74

1. Scaling Law Analysis for Stopping Sets on the BEC . 75

2. Stopping Set Analysis for the q-SC with LM1 76

3. Scaling Law Analysis for LM1 Stopping Sets 79

F. Information Theory and Sparse CS 84

G. Simulation Results . 86

IV MODULATION CODES FOR FLASH MEMORIES BASED

ON LOAD-BALANCING THEORY 92

A. Introduction . 92

B. System Model . 93

1. System Description 93

2. Performance Metrics 95

a. Lifetime v.s. Storage Efficiency 95

b. Worst Case v.s. Average Case 96

3. N = 1 v.s. N � 1 . 99

C. Self-randomized Modulation Codes 100

D. Load-balancing Modulation Codes 103

1. Analysis for Moderately Large q 103

x

Page

2. Load-balancing Modulation Codes 108

E. Simulation Results . 111

F. A Group-Theoretic Approach to Modulation Code De-

sign for Flash Memory . 116

1. General Definition of Modulation Codes 116

2. A Simple Modulation Code 117

3. Modulation Codes via Periodic Tiling 119

4. Self-randomized Modulation Codes (SRMC) 123

5. Self-randomized Modulation Codes with Input De-

composition (SRMC-ID) 125

6. Load-balancing Modulation Codes: The Power of

Two Random Choices 127

a. Type-A LBMC (LBMC-A) 128

b. Type-B LBMC (LBMC-B) 129

7. Analysis of SRMC and LBMC 131

G. Simulation Results . 132

V LDPC CODES FOR RANK MODULATION IN FLASH MEM-

ORIES . 138

A. Introduction . 138

B. Equivalent Channel of Rank Modulation 139

1. Rank Modulation . 139

2. LDPC Codes over Integer Rings for Rank Modulation 140

3. LDPC Codes over Finite Fields for Rank Modulation . 142

4. Equivalent Channel 143

C. LDPC Codes Design for Rank Modulation 149

1. Iterative verification-based decoder 149

a. NBSFVB Decoding Algorithm 150

b. MBSFVB Decoding Algorithm 151

D. Simulation Results . 155

VI CONCLUSIONS . 158

REFERENCES . 159

APPENDIX A . 169

APPENDIX B . 172

xi

Page

APPENDIX C . 173

APPENDIX D . 175

APPENDIX E . 177

APPENDIX F . 178

APPENDIX G . 181

APPENDIX H . 184

APPENDIX I . 185

APPENDIX J . 187

APPENDIX K . 188

APPENDIX L . 191

VITA . 194

xii

LIST OF TABLES

TABLE Page

I Brief Description of Message-Passing Algorithms for the q-SC 19

II Optimized Ensemble for LMP Algorithms (rate 1/2) 39

III Threshold vs. Algorithm for (3,6) Regular LDPC Codes 50

xiii

LIST OF FIGURES

FIGURE Page

1 Tanner graph for differential equation analysis. 22

2 Graph structure of an LDPC code with LM2-NB decoding algorithm 27

3 An example of type-II FV’s. 43

4 Simulation results for (3,6) regular codes with block length 100000. . 51

5 Structure of the encoder. 54

6 Thresholds vs 1-R, where R is the code rate, for LM1 stopping

set/DE analysis and the BEC stopping set analysis. 60

7 Numerical evaluation w′j,k(d) and theoretical bound v(d) 83

8 Simulation results for zero-one sparse signals of length 256 with

128 measurements. 86

9 Simulation results for Gaussian sparse signals of length 256 with

128 measurements. 88

10 Simulation of high rate scaling of (3, k) and (5, k) ensembles for

block length n = 10, 000. 89

11 Simulation results for zero-one spikes of length 256 with 128 mea-

surements by using (3, 6), (4, 8) and (5, 10) ensembles. 90

12 Simulation results for Gaussian spikes of length 256 with 128 mea-

surements by using (3, 6), (4, 8) and (5, 10) ensembles. 91

13 Simulation results for random loading and algorithms we proposed

with k = 3, l = 2 and 1000 block erasures. 112

14 Simulation results for random loading and codes in [4] with k = 2,

l = 2, n = 2 and 1000 block erasures. 113

xiv

FIGURE Page

15 Storage efficiency of self-randomized modulation code and load-

balancing modulation code with n = 16. 114

16 Storage efficiency of self-randomized modulation code and load-

balancing modulation code with n = 210. 115

17 Encoding grids for n = 2 and n = 3 119

18 Encoding grid of the FLM(2,2,2) code 126

19 Simulation results of load-balancing algorithms and the corre-

sponding modulation codes with n = 16. 133

20 Loading efficiency of SRMC-ID, RL1C and RL2C algorithms when

q = 2 . 133

21 Information efficiency of SRMC-ID, RL1C and RL2C algorithms

when q = 2 . 134

22 Loading efficiency of SRMC-ID, RL1C and RL2C algorithms when

q = 4 . 134

23 Information efficiency of SRMC-ID, RL1C and RL2C algorithms

when q = 4 . 135

24 Loading efficiency of SRMC-ID, RL1C and RL2C algorithms when

q = 8 . 135

25 Information efficiency of SRMC-ID, RL1C and RL2C algorithms

when q = 8 . 136

26 Loading efficiency of SRMC-ID, RL1C and RL2C algorithms when

q = 16 . 136

27 Information efficiency of SRMC-ID, RL1C and RL2C algorithms

when q = 16 . 137

28 Block diagram for ECC with modulation codes for flash memory. . . 139

29 Capacity of the real channel model and the approximate channel. . . 148

xv

FIGURE Page

30 Simulation results comparing the VB decoder with the full BP

decoder using the real channel model. 156

31 Finite-state machine for Lemma 2. 175

1

CHAPTER I

INTRODUCTION

A. Introduction

The mathematical study of probability theory began in the 16th century. As a funda-

mental building block of modern science, probability theory has affected many areas

in a very fundamental way, and also created many new areas of research. Shannon’s

seminal work on information theory is one of the most important examples.

There are two central topics in Shannon’s original work on information theory:

the compression and transmission of information [1]. Shannon formalizes these two

problems and derives their ultimate limits. The goal of coding theory is to find prac-

tical schemes to achieve these two ultimate limits. Shannon’s genius lies in several

parts. First, Shannon proposed a schematic diagram of a general communication sys-

tem. In the diagram, Shannon represents the communication system as the source,

communication channel and the receiver. Second, Shannon started a revolutionary

approach to the communication of information that revolutionized digital communica-

tions. If we transmit information using analog waveforms, as the signal is transmitted

over long distance, it gets weaker. If we just simply amplify the analog signal with

the noise, the signal becomes very noisy after a few stages.

Instead of dealing with the analog signal directly, Shannon showed that any

information can be represented in binary digits and the receiver of a digital com-

munication system can recover the binary digits with probability arbitrarily close to

1, if the amount of information transmitted per second is less than a limit. This

limit is now called the Shannon limit, the Shannon capacity, or simply channel ca-

This dissertation follows the style of IEEE Trans. on Information Theory.

2

pacity. Shannon’s work provides an ultimate limit for the information transmission

rate, which means that no matter what method we use, the information rate cannot

be more than Shannon capacity. Shannon shows, if we are allowed to jointly use the

channel multiple times to transmit the same piece of information, the channel capac-

ity is achievable. Unfortunately, Shannon’s proof does not provide a practical way

to achieve the channel capacity. In the past 60 years, researchers in channel coding

theory have spent tremendous efforts to find practical schemes to achieve channel ca-

pacity using channel codes. The idea is, instead of transmitting the information itself,

we also transmit some redundant information which can help the receiver combat the

noise and recover the original information. The channel capacity gives the minimum

fraction of redundancy needed for perfect recovery at the receiver.

The way how the redundancy is added and removed is call a channel code. In

particular, the way how the transmitter adds the redundancy is called encoding and

the way how the receiver recovers the information is called decoding. Channel coding

theory is mainly focused on finding practically implementable channel codes which

achieve the minimum fraction of redundancy, or channel capacity.

In the theoretical study of many information theoretic problems, choosing the

channel code randomly usually simplifies the proof significantly. But the decoding

complexity of random channel codes increases exponentially in the block-length of the

code. To achieve channel capacity, the block-length must go to infinity. To make the

codes practically implementable, the general idea is introduce some algebraic struc-

ture in the codewords instead of randomly generating them. By utilizing the structure

of the codes, the codes can have encoders/decoders with complexity polynomial in

the block-length and hopefully still achieve the channel capacity. For example, the

structure of a linear code can be described by its generator matrix or parity-check

matrix. Finding codes with both good structure and good error correcting capability

3

is always one of the most important problems in the research of coding theory.

There are two major frameworks when we consider code design: Hamming’s

framework and Shannon’s framework. In Hamming’s framework, the minimum Ham-

ming distance, or the worst case error correction capability is considered. While in

Shannon’s framework, the average error correction capability is considered. Shan-

non’s genius is to consider the whole communication system from a probabilistic

viewpoint and to focus on the average performance. This characteristic of Shannon’s

information theory allows it to produce many beautiful results. For example, this

allows strictly positive channel capacity even one requires the probability of decoding

error to be arbitrarily small.

For most algebraic codes such as Hamming codes and Reed-Solomon (RS) codes,

it is easy to analyze and optimize the performance of the codes in Hamming’s frame-

work. But they are usually sub-optimal in Shannon’s framework. For example,

RS codes, are maximum distance separable (MDS) codes that achieve the singleton

bound. Therefore, they are optimum in Hamming’s framework. But they are sub-

optimal, or non-capacity-achieving, in Shannon’s framework. On the other hand,

low-density parity-check (LDPC) codes [4] are capacity-achieving over the binary-

erasure channel (BEC) but they are not MDS codes [22]. Actually, there are no long

MDS binary codes found so far. In this dissertation, we consider the performance of

the codes using Shannon’s framework.

It remains an open problem to find what structure allows a channel code to be

capacity-achieving and encodable/decodable in polynomial complexity (in both time

and memory). A further question would be, if the structure exists, is it unique?

So far, two structures are shown to be potentially capacity-achieving or capacity-

approaching. The first one is the trellis structure, such as the trellis structure of

Turbo codes [2],[3]. The second structure is the tree-like graph structure such as

4

the bipartite graph of LDPC codes. The random interleaver in Turbo codes and the

random permutation in the bipartite graph of LDPC codes actually give these codes

some properties similar to random codes while still maintain a well structure of the

codes. However, this brings significant difficulty to the analysis of these codes in the

Hamming’s framework. LDPC codes have been proved to be capacity-achieving over

the BEC and suggested to be capacity-achieving over the q-ary symmetric channel

(q-SC) [22],[14]. In this dissertation, we provide the proof for the capacity-achieving

of the LDPC codes over the q-SC. Recently, Arikan shows that Polar codes are prov-

ably capacity-achieving over any symmetric binary-input discrete memoryless channel

[16]. Polar code construction is based on a phenomenon called channel polarization.

Interestingly, the channel polarization can also be represented by a tree structure.

B. Outline of Dissertation

In this dissertation, we mainly consider LDPC codes over large alphabet sets and their

applications to compressed sensing and flash memories. In Chapter II, we consider

verification-based decoding of LDPC codes over GF (q). We discuss the difference of

node-based and message-based verification-based decoding algorithms and we provide

the differential equation analysis for the node-based algorithms. We also propose

the list-message-passing (LMP) decoding which provides a smooth trade-off between

complexity and performance of verification-based decoding. In the density evolution

analysis of the LMP decoder, we show that LDPC codes are capacity-achieving over

the q-SC when q and n go to infinity. The false-verification probability and error

floors are also analyzed. In Chapter III, we consider the application of LDPC codes

with verification-based decoding to compressed sensing systems. First, we show the

connections between coding theory and compressed sensing problem. Then we discuss

5

how to apply LDPC codes with verification-based decoding algorithms to compressed

sensing systems. It turns out that compressed sensing system based on LDPC codes

with verification-based decoding only requires linear (in k) number of measurements

to recover a k-sparse signal with high probability. The proof is based on the scaling

law analysis of the density evolution equations and the stopping set analysis. In

Chapter IV and Chapter V, we consider code design for flash memories. In Chapter

IV, we discuss the modulation codes design for flash memories and in Chapter V, we

design LDPC codes with verification-based decoding algorithms for flash memories.

The conclusion is in Chapter VI.

6

CHAPTER II

VERIFICATION-BASED DECODING OF LDPC CODES OVER THE Q-SC

A. Introduction

Low-density parity-check (LDPC) codes are linear codes that were introduced by

Gallager in 1962 [4] and re-discovered by MacKay in 1995 [5]. The ensemble of

LDPC codes that we consider (e.g. see [22] and [6]) is defined by the edge degree

distribution (d.d.) functions λ(x) =
∑

k≥2 λkx
k−1 and ρ(x) =

∑
k≥2 ρkx

k−1. The

standard encoding and decoding algorithms are based on the bit-level operations.

However, when applied to the transmission of data packets, it is natural to perform

the encoding and decoding algorithm at the packet level rather than the bit level.

For example, if we are going to transmit 32 bits as a packet, then we can use error-

correcting codes over the, rather large, alphabet with 232 elements.

Let Y be the r.v. which is the output of the the q-SC given the transmitted r.v.

X. Then, the channel transition probability can be described as

Pr(Y = y|X = x) =

 1− p if x = y

p/(q − 1) if x 6= y

where x (resp. y) is the transmitted (resp. received) symbol and x, y ∈ GF (q).

The capacity of the q-SC is 1 + (1− p) logq(1− p) + p logq p− p logq(q − 1) which is

approximately equal to 1 − p symbols per channel use for large q. This implies the

number of symbols which can be reliably transmitted per channel use of the q-SC

with large q is approximately equal to that of the BEC with erasure probability p.

Moreover, the behavior of the q-SC with large q is similar to the BEC in the sense

that: i) incorrectly received symbols from the q-SC provide almost no information

about the transmitted symbol and ii) error detection (e.g., a CRC) can be added to

7

each symbol with negligible overhead [7].

Binary LDPC codes for the q-SC with moderate q are proposed and optimized

based on EXIT charts in [8] and [9]. It is known that the complexity of the FFT-

based belief-propagation algorithm for q-ary LDPC codes scales like O(q log q). Even

for moderate sizes of q, such as q = 256, this renders such algorithms ineffective in

practice. However, when q is large, an interesting effect can be used to facilitate

decoding: if a symbol is received in error, then it is essentially a randomly chosen

element of the alphabet, and the parity-check equations involving this symbol is very

unlikely to be valid.

Based on this idea, Luby and Mitzenmacher develop an elegant algorithm for

decoding LDPC codes on the q-SC for large q [10]. However, their paper did not

present simulation results and left capacity-achieving ensembles as an interesting

open problem. Metzner presented similar ideas earlier in [11] and [12], but the focus

and analysis is quite different. Davey and MacKay also develop and analyze a symbol-

level message-passing decoder over small finite fields in [71]. A number of approaches

to the q-SC (for large q) based on interleaved Reed-Solomon codes are also possible

[7] [13]. In [14], Shokrollahi and Wang discuss two ways of approaching capacity.

The first uses a two-stage approach where the first stage uses a Tornado code and

verification decoding. The second is, in fact, equivalent to one of the decoders we

discuss in this paper.1 When we discovered this, the authors were kind enough to

send us an extended abstract [15] which contains more details. Still, the authors did

not consider the theoretical performance with a maximum list size constraint, the

actual performance of the decoder via simulation, or false verification (FV) due to

cycles in the decoding graph. In this paper, we describe the algorithm in detail and

1The description of the second method in [14] is very brief and we believe its
capacity-achieving nature deserves further attention.

8

consider those details.

Inspired by [10], we introduce list-message-passing (LMP) decoding with verifi-

cation for LDPC codes on the q-SC. Instead of passing a single value between symbol

and check nodes, we pass a list of candidates to improve the decoding threshold.

This modification also increases the probability of FV. So, we analyze the causes of

FV and discuss techniques to mitigate FV. It is worth noting that the LMP decoder

we consider is somewhat different than the list extension suggested in [10]. Also,

the algorithms in [10] are proposed in a node-based (NB) style but analyzed using

message-based (MB) decoders. It is implicitly assumed that the two approaches are

equivalent. In fact, this is not always true. In this paper, we consider the differences

between NB and MB decoders and derive an asymptotic analysis for NB decoders.

The chapter is organized as follows. In Section B, we describe the LMP algorithm

for bounded and unbounded list size and use density evolution (DE) [17] to analyze

its performance. The difference between NB and MB decoders for the first (LM1) and

second algorithm (LM2) in [10] is discussed and the NB decoder analysis is derived

in Section C, respectively. The error floor of the LMP algorithms is considered in

Section D. In Section E, we use differential evolution to optimize code ensembles. We

describe the simulation of these codes and compare the results with the theoretical

thresholds. We also compare our results with previously published results in this area

[10] and [14]. In Section F, simulation results are shown. Applications of the LMP

algorithm are discussed.

9

B. List-Message-Passing (LMP) Decoding Algorithm

1. Description of the Decoding Algorithm

The LMP decoder we discuss is designed mainly for the q-SC and is based on local

decoding operations applied to lists of messages containing probable codeword sym-

bols. The list messages passed in the graph have three types: verified (V), unverified

(U) and erasure (E). Every V-message has a symbol value associated with it. Every

U-message has a list of symbols associated with it. Following [10], we mark messages

as verified when they are very likely to be correct. In particular, we will find that the

probability of FV approaches zero as q goes to infinity.

The LMP decoder works by passing list-messages around the decoding graph.

Instead of passing a single code symbol (e.g., Gallager A/B algorithm [4]) or a prob-

ability distribution over all possible code symbols (e.g., [71]), we pass a list of values

that are more likely to be correct than the other messages. At a check node, the

output list contains all symbols which could satisfy the check constraint for the given

input lists. At the check node, the output message will be verified if and only if all

the incoming messages are verified. At a node of degree d, the associativity and com-

mutativity of the node-processing operation allow it to be decomposed into (d − 1)

basic2 operations (e.g., a+b+c+d=(a+b)+(c+d)). In such a scheme, the computational

complexity of each basic operation is proportional to s2 at the check node and s ln s at

the variable node3, where s is the list size of the input list. The list size grows rapidly

as the number of iterations increases. In order to make the algorithm practical, we

have to truncate the list to keep the list size within some maximum value, denoted

2Here we use “basic“ to emphasize that it maps two list-messages to a single list
message.

3The basic operation at the variable node can be done by s binary searches of
length s and the complexity of a binary search of length s is O(ln s)

10

Smax. In our analysis, we also find that, after the number of iterations exceeds half

the girth of the decoding graph, the probability of FV increases very rapidly. We

analyze the reasons of FV and classify the FV’s into two types. We find that the

codes described in [10] and [14] both suffer from type-II FV. In Section D, we analyze

these FV’s and propose a scheme that reduces the probability of FV.

The message-passing decoding algorithm using list messages (or LMP) applies

the following simple rules to calculate the output messages for a check node:

• If all the input messages are verified, then the output becomes verified with the

value which makes all the incoming messages sum to zero.

• If any input message is an erasure, then the output message becomes an erasure.

• If there is no erasure on the input lists, then the output list contains all symbols

which could satisfy the check constraint for the given input lists.

• If the output list size is larger than Smax, then the output message is an erasure.

It applies the following rules to calculate the output messages of a variable node:

• If all the input messages are erasures or there are multiple verified messages

which disagree, then output message is the channel received value.

• If any of the input messages are verified (and there is no disagreement) or a

symbol appears more than once, then the output message becomes verified with

the same value as the verified input message or the symbol which appears more

than once.

• If there is no verified message on the input lists and no symbol appears more

than once, then the output list is the union of all input lists.

11

• If the output message has list size larger than Smax, then the output message

is the received value from the channel.

2. Decoding with Unbounded List Size

To apply DE to the LMP decoder with unbounded list sizes, denoted LMP-∞ (i.e.,

Smax = ∞), we consider three quantities which evolve with the iteration number i.

Let xi be the probability that the correct symbol is not on the list passed from a

variable node to a check node. Let yi be the probability that the message passed

from a variable node to a check node is not verified. Let zi be the average list size

passed from a variable node to a check node. The same variables are “marked”

(x̃i, ỹi, z̃i) to represent the same values for messages passed from the check nodes to

the variable nodes (i.e., the half-iteration value). We also assume all the messages

are independent, that is, we assume that the bipartite graph has girth greater than

twice the number of decoding iterations.

First, we consider the probability, xi, that the correct symbol is not on the list.

For any degree-d check node, the correct message symbol will only be on the edge

output list if all of the other d − 1 input lists contain their corresponding correct

symbols. This implies that x̃i = 1 − ρ(1 − xi). For any degree-d variable node, the

correct message symbol is not on the edge output list only if it is not on any of the

other d − 1 edge input lists. This implies that xi+1 = pλ(x̃i). This behavior is very

similar to erasure decoding of LDPC codes on the BEC and gives the identical update

equation

xi+1 = pλ (1− ρ(1− xi)) (2.1)

where p is the q-SC error probability. Note that throughout the DE analysis, we

assume that q is sufficiently large. Next, we consider the probability, yi, that the

12

message is not verified. For any degree-d check node, an edge output message is

verified only if all of the other d−1 edge input messages are verified. For any degree-

d variable node, an edge output message is verified if any symbol on the other d− 1

edge input lists is verified or occurs twice which implies ỹi = 1− ρ(1− yi). The event

that the output message is not verified can be broken into the union of two disjoint

events: (i) the correct symbol is not on any of the input lists, and (ii) the symbol

from the channel is incorrect and the correct symbol is on exactly one of the input

lists and not verified. For a degree-d variable node, this implies that

Pr(not verified) = (x̃i)
d−1 + p(d− 1) (ỹi − x̃i) (x̃i)

d−2 . (2.2)

Summing over the d.d. gives the update equation

yi+1 =λ (1− ρ(1− xi)) + p (ρ(1− xi)− ρ(1− yi))λ′ (1− ρ(1− xi)) . (2.3)

It is important to note that (2.1) and (2.3) were published first in [14, Thm. 2] (by

mapping xi = pi and yi = pi + qi), but were derived independently by us.

Finally, we consider the average list size zi. For any degree-d check node, the

output list size is equal4 to the product of the sizes of the other d − 1 input lists.

Since the mean of the product of i.i.d. random variables is equal to the product of

the means, this implies that z̃i = ρ(zi). For any degree-d variable node, the output

list size is equal to one5 plus the sum of the sizes of the other d− 1 input lists if the

output is not verified and one otherwise. Again, the mean of the sum of d − 1 i.i.d.

random variables is simply d − 1 times the mean of the distribution, so the average

4It is actually upper bounded because we ignore the possibility of collisions between
incorrect entries, but the probability of this occurring is negligible as q goes to infinity.

5A single symbol is always received from the channel.

13

output list size is given by

1 +
(

(x̃i)
d−1 + p(d− 1) (ỹi − x̃i) (x̃i)

d−2
)

(d− 1)z̃i.

This gives the update equation

zi+1 =1+[x̃iλ
′ (x̃i)+p (ỹi−x̃i) (λ′ (x̃i)+x̃iλ

′′ (x̃i))] ρ(zi).

For the LMP decoding algorithm, the threshold of an ensemble (λ(x), ρ(x)) is defined

to be

p∗ , sup

{
p ∈ (0, 1]

∣∣∣∣pλ(1− ρ(1− x)) < x ∀ x ∈ (0, 1]

}
.

Next, we show that some codes can achieve channel capacity using this decoding

algorithm.

Theorem 1. Let p∗ be the threshold of the d.d. pair (λ(x), ρ(x)) and assume that the

channel error rate p is less than p∗. In this case, the probability yi that a message is

not verified in the i-th decoding iteration satisfies limi→∞ yi → 0. Moreover, for any

ε > 0, there exists a q < ∞ such that LMP decoding of a long random (λ, ρ) LDPC

code, on a q-SC with error probability p, results in a symbol error rate of less than ε.

Proof. See Appendix B.

Remark 1. Note that the convergence condition, p∗λ(1−ρ(1−x)) < x for x ∈ (0, 1],

is identical to the BEC case but that x has a different meaning. In the DE equation

for the q-SC, x is the probability that the correct value is not on the list. In the DE

equation for the BEC, x is the probability that the message is an erasure. This tells us

any capacity-achieving ensemble for the BEC is capacity-achieving for the q-SC with

LMP-∞ algorithm and large q. This also gives some intuition about the behavior

of the q-SC for large q. For example, when q is large, an incorrectly received value

behaves like an erasure [7].

14

Corollary 1. The code with d.d. pair λ(x) = x and ρ(x) = (1 − ε)x + εx2 has a

threshold of 1− ε
1+ε

and a rate of r > ε
3(1+ε)

. Therefore, it achieves a rate of Θ(δ) for

a channel error rate of p = 1− δ.

Proof. Follows from
(
1− ε

1+ε

)
λ (1− ρ(1− x)) < x for x ∈ (0, 1] and Theorem 1.

Remark 2. We believe that Corollary 1 provides the first linear-time decodable con-

struction of rate Θ(δ) for a random-error model with error probability 1−δ. A discus-

sion of linear-time encodable/decodable codes, for both random and adversarial errors,

can be found in [18]. The complexity also depends on the required list size which may

be extremely large (though independent of the block length). Unfortunately, we do not

have explicit bounds on the required alphabet size or list size for this construction.

In practice, we cannot implement a list decoder with unbounded list size. There-

fore, we also evaluate the LMP decoder under a bounded list size assumption.

3. Decoding with Bounded List Size

First, we introduce some definitions and notation for the DE analysis with bounded

list size decoding algorithm. Note that, in the bounded list-size LMP algorithm, each

list may contain at most Smax symbols. For convenience, we classify the messages

into four types:

(V) Verified : message is verified and has list size 1.

(E) Erasure: message is an erasure and has list size 0.

(L) Correct on list : message is not verified or erased and the correct symbol is on

the list.

(N) Correct not on list : message is not verified or erased, and the correct symbol is

not on the list.

15

For the first two message types, we only need to track the fraction, Vi and Ei, of

message types in the i-th iteration. For the third and the fourth types of messages,

we also need to track the list sizes. Therefore, we track the characteristic function

of the list size for these messages, given by Li(x) and Ni(x). The coefficient of xj

represents the probability that the message has list size j. Specifically, Li(x) is defined

by

Li(x) =
Smax∑
j=1

li,jx
j,

where li,j is the probability that, in the i-th decoding iteration, the correct symbol is

on the list and the message list has size j. The function Ni(x) is defined similarly.

This implies that Li(1) is the probability that the list contains the correct symbol

and that it is not verified. For the same reason, Ni(1) gives the probability that the

list does not contain the correct symbol and that it is not verified. For the simplicity

of expression, we denote the overall density as Pi = [Vi, Ei, Li(x), Ni(x)]. The same

variables are “marked” (Ṽ , Ẽ, L̃, Ñ and P̃) to represent the same values for messages

passed from the check nodes to the variable nodes (i.e., the half-iteration value).

Using these definitions, we find that DE can be computed efficiently by using

arithmetic of polynomials. For the convenience of analysis and implementation, we

use a sequence of basic operations plus a separate truncation operator to represent

a multiple-input multiple-output operation. We use � to denote the check-node

operator and ⊗ to denote the variable-node operator. Using this, the DE for the

variable-node basic operation P (3) = P̃ (1) ⊗ P̃ (2) is given by

16

V (3) =Ṽ (1)+Ṽ (2)−Ṽ (1)Ṽ (2)+L̃(1)(1)L̃(2)(1) (2.4)

E(3) =Ẽ(1)Ẽ(2) (2.5)

L(3)(x) =L̃(1)(x)
(
Ẽ(2)+Ñ (2)(x)

)
+L̃(2)(x)

(
Ẽ(1)+Ñ (1)(x)

)
(2.6)

N (3)(x) =Ñ (1)(x)Ẽ(2)+Ñ (2)(x)Ẽ(1)+Ñ (1)(x)Ñ (2)(x). (2.7)

Note that (2.4) to (2.7) do not yet consider the list size truncation and the channel

value. For the basic check-node operation P̃ (3) = P (1) � P (2), the DE is given by

Ṽ (3) =V (1)V (2) (2.8)

Ẽ(3) =E(1)+E(2) − E(1)E(2) (2.9)

L̃(3)(z) =
[
V (1)L(2)(z)+V (2)L(1)(z)+L(1)(x)L(2)(y)

]
xjyk→zjk (2.10)

Ñ (3)(z) =
[
N (1)(x)N (2)(y)+N (1)(x)

(
V (2)y+L(2)(y)

)
+

N (2)(x)
(
V (1)y+L(1)(y)

)]
xjyk→zjk (2.11)

where the subscript xjyk → zjk means the replacement of variables. Finally, the

truncation of lists to size Smax is handled by truncation operators which map densities

to densities. We use T and T ′ to denote the truncation operation at the check and

variable nodes. Specifically, we truncate terms with degree higher than Smax in the

polynomials L(x) and N(x). At check nodes, the truncated probability mass is moved

to E.

At variable nodes, lists longer than Smax are replaced by the channel value. Let

P ′i =
(
P̃⊗k−1
i

)
be the an intermediate density which is the result of applying the

basic operation k − 1 times on P̃i. The correct symbol node message density after

considering the channel value and truncation would be T ′(P ′i). To analyze this, we

separate L′i(x) into two terms: A′i(x) with degree less than Smax and xSmaxB′i(x)

17

with degree at least Smax. Likewise, we separate N ′i(x) into C ′i(x) and xSmaxD′i(x).

The inclusion of the channel symbol and the truncation are combined into a single

operation

Pi=T ′
([
V ′i , E

′
i, A

′
i(x) + xSmaxB′i(x), C ′i(x) + xSmaxD′i(x)

])
defined by

Vi =V ′i +(1− p) (A′i(1) +B′i(1)) (2.12)

Ei = 0 (2.13)

Li(x) = (1− p)x (E ′i+C
′
i(x)+D′i(1))+pxA′i(x) (2.14)

Ni(x) = px (E ′i+B
′
i(1)+C ′i(x)+D′i(1)) . (2.15)

Note that in (2.12), the term (1− p) (A′i(1) +B′i(1)) is due to the fact that messages

are compared for possible verification before truncation.

The overall DE recursion is easily written in terms of the forward (symbol to

check) density Pi and the backward (check to symbol) density P̃i by taking the ir-

regularity into account. The initial density is P0 = [0, 0, (1− p)x, px], where p is the

error probability of the q-SC channel, and the recursion is given by

P̃i =
dc∑
k=2

ρk T
(
P�k−1
i

)
(2.16)

Pi+1 =
dv∑
k=2

λk T ′
(
P̃⊗k−1
i

)
. (2.17)

Note that the DE recursion is not one-dimensional. This makes it difficult to opti-

mize the ensemble analytically. It remains an open problem to find the closed-form

expression of the threshold in terms of the maximum list size, d.d. pairs, and the

alphabet size q. In section E, we will fix the maximum variable and check degrees,

18

code rate, q and maximum list size and optimize the threshold over the d.d. pairs by

using a numerical approach.

C. Analysis of Node-Based Algorithms

1. Differential Equation Analysis of LM1-NB

We refer to the first and second algorithms in [10] as LM1 and LM2, respectively.

Each algorithm can be viewed either as message-based (MB) or node-based (NB).

The first and second algorithms in [14] and [15] are referred to as SW1 and SW2.

These algorithms are summarized in Table I. Note that, if no verification occurs, the

variable node (VN) sends the (“channel value”, U) and the check node (CN) sends

the (“expected correct value”,U) in all these algorithms. The algorithms SW1, SW2

and LMP are all MB algorithms, but can be modified to be NB algorithms.

a. Motivation

In [10], the algorithms are proposed in the node-based (NB) style [10, Section III-A

and IV], but analyzed in the message-based (MB) style [10, Section III-B and IV]. It

is easy to verify that the LM1-NB and LM1-MB have identical performance, but this

is not ture for the NB and MB LM2 algorithms. In this section, we will show the

differences between the NB decoder and MB decoder and derive a precise analysis for

LM1-NB.

First, we show the equivalence between LM1-MB and LM1-NB.

Theorem 2. Any verification that occurs in LM1-NB also occurs in LM1-MB and

vice versa. Therefore, LM1-NB and LM1-MB are equivalent.

Proof. See Appendix B.

19

Table I. Brief Description of Message-Passing Algorithms for the q-SC

Alg. Description

LMP-Smax LMP as described in Section 1 with maximum list size Smax

LM1-MB MP decoder that passes (value, U/V). [10, III.B]

At VN’s, output is V if any input is V or message matches

channel value, otherwise pass channel value.

At CN’s, output is V if all inputs are V .

LM1-NB Peeling decoder with VN state (value, U/V). [10, III.B]

At CN’s, if all neighbors sum to 0, then all neighbors get V .

At CN’s, if all neighbors but one are V , then last gets V .

LM2-MB The same as LM1-MB with one additional rule. [10, IV.A].

At VN’s, if two input messages match, then output V .

LM2-NB The same as LM1-NB with one additional rule. [10, IV.A].

At VN’s, if two neighbor values same, then VN gets V .

SW1 Identical to LM2-MB

SW2 Identical to LMP-∞. [14, Thm. 2]

Remark 3. The theorem shows the equivalence between LM1-NB and LM1-MB. This

also implies the stable error patterns or stopping sets of LM1-NB and LM1-MB are

the same.

In the NB decoder, the verification status is associated with the node. Once

a node is verified, all the outgoing messages are verified. In the MB decoder, the

status is associated with the edge/message and the outgoing messages may have

different verification status. NB algorithms cannot, in general, be analyzed using DE

because the independence assumption between messages does not hold. Therefore,

we develop peeling-style decoders which are equivalent to LM1-NB and LM2-NB and

20

use differential equations to analyze them.

Following [22], we analyze the peeling-style decoder using differential equations

to track the average number of edges (grouped into types) in the graph as decoding

progresses. From the results from [23] and [22], we know that the actual number

of edges (of any type), in any particular decoding realization is tightly concentrated

around the average over the lifetime of the random process. In a peeling-style decoder

for GF (q), a variable node and its edges are removed after verification. The check

node keeps track of the new parity constraint (i.e., the value to which the attached

variables must sum) by subtracting values associated with the removed edges.

b. Analysis of Peeling-Style Decoding

First, we introduce some notation and definitions for the analysis. A variable node

(VN) whose channel value is correctly received is called a correct variable node (CVN),

otherwise it is called an incorrect variable node (IVN). A check node (CN) with i

edges connected to the CVN’s and j edges connected to the IVN’s will be said to

have C-degree i and I-degree j, or type (i, j).

We also define the following quantities:

• t: decoding time or the fraction of VNs removed from graph

• Li(t): the number of edges connected to CVN’s with degree i at time t.

• Rj(t): the number of edges connected to IVN’s with degree j at time t.

• Ni,j(t): the number of edges connected to CN’s with C-degree i and I-degree j.

• El(t): the remaining number of edges connected to CVN’s at time t.

• Er(t): the remaining number of edges connected to IVN’s at time t.

21

• a(t): the average degree of CVN’s,

a(t) =
∑
i≥0

Li(t)i/El(t)

• b(t): the average degree of IVN’s,

b(t) =
∑
i≥0

Ri(t)i/Er(t)

• E: number of edges in the original graph,

E = El(0) + Er(0)

Counting edges in three ways gives the following equations:

∑
i≥0

Li(t) +
∑
i≥0

Ri(t) = El(t) + Er(t) =
∑
i≥0

∑
j≥0

Ni,j(t).

These r.v.’s represent a particular realization of the decoder. The differential

equations are defined for the normalized (i.e., divided by E) expected values of these

variables. We use lower-case notation (e.g., li(t), ri(t), ni,j(t), etc.) for these deter-

ministic trajectories. For a finite system, the decoder removes exactly one variable

node in one time step of ∆t.

The description of peeling-style decoder is as follows. The Tanner graph of an

LDPC codes can be represented as Fig. 1. The peeling-style decoder removes one

CVN or IVN in each time step by the following rules:

CER: If any CN has its edges all connected to CVN’s, pick one of the CVN’s and

remove it and all its edges.

IER1: If any IVN has at least one edge connected to a CN of type (0, 1), then the

value of the IVN is given by the attached CN and we remove the IVN and all

22

Fig. 1. Tanner graph for differential equation analysis.

its outgoing edges.

If both CER and IER1 can be applied, then one is chosen randomly as described

below.

Since both rules remove exactly one VN, the decoding process either finishes in

exactly N steps or stops early and cannot continue. The first case occurs only when

either the IER1 or CER condition is satisfied in every time step. When the decoder

stops early, the pattern of CVNs and IVNs remaining is known as a stopping set. We

also note that the rules above, though described differently, are equivalent to the first

node-based algorithm (LM1-NB) introduced in [10].

Recall that in the node-based algorithm for LM1 we have two verification rules.

The first rule is that if all messages but one are verified at a CN, then all messages are

verified. We call this type-I incorrect-edge-removal (IER1) and this is only possible

when n0,1(t) > 0. The second rule is: if all messages sum to zero at a CN, then all

messages are verified. We call this as correct-edge-removal (CER) in the peeling-style

decoder and this requires ni,0 > 0 for some i ≥ 1. The peeling-style decoder performs

one operation in time step. The operation is random and can be either CER or IER1.

When both operations are possible, we choose randomly between these two rules by

23

picking CER with probability c1(t) and IER1 with probability c2(t), where

c1(t) =

∑
i≥1 ni,0(t)∑

i≥1 ni,0(t) + n0,1(t)

c2(t) =
n0,1(t)∑

i≥1 ni,0(t) + n0,1(t)
.

Therefore, the differential equations can be written as

dli(t)

dt
= c1(t)

dl
(1)
i (t)

dt
+ c2(t)

dl
(2)
i (t)

dt

dri(t)

dt
= c1(t)

dr
(1)
i (t)

dt
+ c2(t)

dr
(2)
i (t)

dt

dni,j(t)

dt
= c1(t)

dn
(1)
i,j (t)

dt
+ c2(t)

dn
(2)
i,j (t)

dt
,

where (1) and (2) denote, respectively, the effects of CER and IER1.

c. CER Analysis

If the CER operation is picked, then we choose randomly an edge attached to a CN of

type (i, 0) with i ≥ 1. This VN endpoint of this edge is distributed uniformly across

the CVN edge sockets. Therefore, it will be attached to a CVN of degree k with

probability lk(t)
el(t)

. Therefore, one has the following differential equations for lk and rk

dl
(1)
k (t)

dt
=
lk(t)

el(t)
(−k), for k ≥ 1

and

dr
(1)
k (t)

dt
= 0.

For the effect on check edges, we can think of removing a CVN with degree k

as first randomly picking an edge of type (k, 0) connected to that CVN and then

removing all the other k−1 edges (called reflected edges) attached to the same CVN.

The k − 1 reflected edges are uniformly distributed over the El(t) correct sockets of

24

the CN’s. Averaging over all graphs, the k − 1 reflected edges hit
ni,j(t)i(k−1)

(i+j)el(t)
CN’s of

type (i, j). Averaging over the degree k shows that the reflected edges hit
ni,j(t)i(a(t)−1)

(i+j)el(t)

CN’s of type (i, j).

If a CN of type (i, j) is hit by a reflected edge, then we lose i + j edges of type

(i, j) and gain i−1+j edges of type (i−1, j). Hence, one has the following differential

equation for j > 0 and i+ j ≤ dc

dn
(1)
i,j (t)

dt
=
(
p

(1)
i+1,j(t)− p(1)

i,j (t)
)

(i+ j)

where

p
(1)
i,j (t) =

ni,j(t)i(a(t)− 1)

(i+ j)el(t)
.

One should keep in mind that ni,j(t) = 0 for i+ j > dc.

For n
(1)
i,j (t) with j = 0, the effect from above must be combined with effect of the

type-(i, 0) initial edge that was chosen. So the differential equation becomes

dn
(1)
i,0 (t)

dt
=
(
p

(1)
i+1,0(t)− p(1)

i,0 (t)
)
i+
(
q

(1)
i+1(t)− q(1)

i (t)
)
i

where

q
(1)
i (t) =

ni,0(t)∑
m≥1 nm,0(t)

.

Note that p
(1)
dc+1,0(t) , 0 and q

(1)
dc+1(t) , 0

d. IER1 Analysis

If the IER1 operation is picked, then we choose a random CN of type (0, 1) and follow

its only edge to the set of IVNs. The edge is attached uniformly to this set, so the

differential equations for IER1 can be written as

dl
(2)
k (t)

dt
= 0,

25

dr
(2)
k (t)

dt
=
rk(t)

er(t)
(−k), for k ≥ 1

and
dn

(2)
i,j (t)

dt
=
(
p

(2)
i,j+1(t)− p(2)

i,j (t)
)

(i+ j), for (i, j) 6= (0, 1)

where

p
(2)
i,j (t) =

ni,j(t)j(b(t)− 1)

(i+ j)er(t)
.

For ni,j(t) with (i, j) = (0, 1), the differential equation must also account for the

initial edge and becomes

dn
(2)
0,1(t)

dt
=
(
p

(2)
0,2(t)− p(2)

0,1(t)
)
− 1.

Notice that even for (3,6) codes, there are 30 differential equations6 to solve. So

we solve the differential equations numerically and the threshold for (3,6) code with

LM1 is p∗ = 0.169. This coincides with the result from density evolution analysis for

LM1-MB in [10] and hints at the equivalence between LM1-NB and LM1-MB. In the

proof of Theorem 2 we make this equivalence precise by showing that the stopping

sets of LM1-NB and LM1-MB are the same.

2. Differential Equation Analysis of LM2-NB

Similar to the analysis of LM1-NB algorithm, we analyze LM2-NB algorithm by ana-

lyzing a peeling-style decoder which is equivalent to the LM2-NB decoding algorithm.

The peeling-style decoder removes one CVN or IVN in each time unit according to

the following rules:

CER: If any CN has all its edges connected to CVN’s, pick one of the CVN’s and

6There are 28 for ni,j (i, j ∈ [0, · · · , 6] such that i + j ≤ 6), 1 for rk(t), and 1 for
lk(t).

26

remove it.

IER1: If any IVN has any messages from CN’s with type n0,1, then the IVN and all

its outgoing edges can be removed and we track the correct value by subtracting

the value from the check node.

IER2: If any IVN is attached to more than one CN with I-degree 1, then it will be

verified and all its outgoing edges can be removed.

For the reason of simplicity, we first introduce some definitions and short-hand nota-

tions.

• Correct Edges: edges which are connected to CVN’s

• Incorrect Edges: edges which are connected to IVN’s

• CER edges: the edges which are connected to check nodes with type ni,0 for

i ≥ 1

• IER1 edges: the edges which are connected to check nodes with type n0,1

• IER2 edges: the edges which connect IVN’s and the check nodes with type ni,1

for i ≥ 1

• NIE edges: normal incorrect edges, which are incorrect edges but neither IER1

edges nor IER2 edges

• CER nodes: CVN’s which have at least one CER edge

• IER1 nodes: IVN’s which have at least one IER1 edge

• IER2 nodes: IVN’s which have at least two IER2 edge

• NIE nodes: IVN’s which contain at most 1 IER2 edge and no IER1 edges.

27

Fig. 2. Graph structure of an LDPC code with LM2-NB decoding algorithm

Note that an IVN can be both an IER1 node and an IER2 node at the same time.

The analysis of LM2-NB is much more complicated than LM1-NB because the

IER2 operation makes the distribution of IER2 edges dependent on each other. In

each IER2 operation, one IVN with more than 2 IER2 edges can be removed, therefore

the rest of the IER2 edges are more likely to land on different IVN’s. The idea to

analyze LM2-NB decoder is to separate the incorrect edges into types such that the

edges in each type imply an uniform permutation. In detail, we model the structure

of an LDPC codes with LM2-NB decoder as shown in Fig. 2. There is one type of

correct edge and three types of incorrect edges. There is a random permutation for

each type of edges. We say a random permutation is uniform if each input socket is

mapped to all the output sockets with equal probability. As we will see soon, the

permutation of each type is uniform which allows us to calculate the probabilities of

certain events.

The peeling-style decoder randomly chooses one VN from the set of CER IER1

and IER2 nodes and removes this node and all its edges at each step. The idea of

the analysis is to first calculate the probability of choosing a VN with a certain type,

28

i.e., CER, IER1 or IER2, and the node degree. We then analyze how removing this

VN affects the system parameters.

In the analysis, we will track the evolution of the following system parameters.

• lk(t): the fraction of edges connected to CVN’s with degree k, 0 < k ≤ dv at

time t. 7

• ri,j,k(t) : the fraction of edges connected to IVN’s with i NIE edges, j IER2

edges and k IER1 edges at time t, i, j, k ∈ {0, 1, . . . , dv} and 0 < i+ j+ k ≤ dv.

8

• ni,j(t) : the fraction of edges connected to check nodes with i correct edges and

j incorrect edges at time t, i, j ∈ {0, 1, . . . , dc} and 0 < i+ j ≤ dc.
9

We note that, when we say “fraction”, we mean the number of a certain type of

edges/nodes normalized by the number of edges/nodes in the original graph.

The following quantities can be calculated by lk(t), ri,j,k(t) and ni,j(t).

• el(t) ,
∑dv

k=1 lk(t): the fraction of correct edges

• er(t) ,
∑dv

i=0

∑dv−i
j=0

∑dv−i−j
k=0 ri,j,k(t): the fraction of correct edges

• η0(t) ,
∑dc

j=2

∑dc−j
i=0

jni,j(t)

i+j
=
∑dv

i=1

∑dv−i
j=0

∑dv−i−j
k=0

iri,j,k(t)

i+j+k
: the fraction of NIE

edges

• η1(t) , n0,1(t) =
∑dv

k=1

∑dv−k
j=0

∑dv−i−j
i=0

kri,j,k(t)

(i+j+k)
: the fraction of IER1 edges

• η2(t) ,
∑dc

i=1
ni,1(t)

(i+1)
=
∑dv

j=1

∑dv−j
i=0

∑dv−i−j
k=0

jri,j,k(t)

(i+j+k)
: the fraction of IER2 edges

7We don’t track l0(t) and simply set l0(t) = 0.
8We don’t track r0,0,0(t) and simply set r0,0,0(t) = 0.
9We don’t track n0,0(t) and simply set n0,0(t) = 0.

29

• s0(t) ,
∑1

j=0

∑dv−j
i=1

ri,j,0
i+j

: the fraction of NIE nodes

• s1(t) ,
∑dv

k=1
nk,0(t)

k
: the fraction of CER nodes

• s2(t) ,
∑dv

k=1

∑dv−k
i=0

∑dv−i−k
j=0

ri,j,k
i+j+k

: the fraction of IER1 nodes

• s3(t) ,
∑dv

j=2

∑dv−j
i=0

∑dv−i−j
k=0

ri,j,k
i+j+k

: the fraction of IER2 nodes

As in the LM1-NB analysis, we use superscript (1) to denote the contribution by the

CER operations. We use (2) to denote the contribution by the IER1 operations and (3)

to denote the contribution by the IER2 operations. Since we assume that the decoder

randomly chooses a VN from the set of CER, IER1 and IER2 nodes and removes all

its edges in each time unit, the differential equations of the system parameters can be

written as the weighted sum of the contributions by CER, IER1 and IER2 operations.

The weights are chosen as

c1(t) =
s1(t)

(s1(t) + s2(t) + s3(t))

c2(t) =
s2(t)

(s1(t) + s2(t) + s3(t))

c3(t) =
s3(t)

(s1(t) + s2(t) + s3(t))
.

Next, we will show how CER, IER1 and IER2 operations affect the system parameters.

Given the d.d. pair (λ, ρ) and the channel error probability p, we initialize the

state as follows. Since a fraction (1 − p)λk of the edges are connected to CVN’s of

degree k, we initialize lk(t) with

lk(0) = (1− p)λk,

30

for k = 1, 2, . . . dv. Noticing that each CN socket is connected to a correct edge with

probability (1− p) and incorrect edge with probability p, we initialize ni,j(t) with

ni,j(0) = ρi+j

(
i+ j

i

)
(1− p)ipj,

for i+ j ∈ {1, 2, . . . , dc}. Since the probability an IVN socket is connected to an NIE

is
Pdc
j′=2

Pdc−j′
i′=0

j′ni′,j′ (0)

i′+j′

p
and the probability an IVN socket is connected to an IER2 edge

is n0,1(0)

p
, we initialize ri,j,k(t) with

ri,j,k(0) = pλi+j+k

(
i+ j + k

i, j, k

)∑dc
j′=2

∑dc−j′
i′=0

j′ni′,j′ (0)

i′+j′

p

i∑dc
i′=1

ni′,1(0)

(i′+1)

p

j(
n0,1(0)

p

)k
,

for i+ j + k ∈ {1, 2, . . . , dv}.

a. CER Analysis

The analysis for
dl

(1)
k (t)

dt
is the same as LM1-NB analysis. In the CER operation, the

decoder randomly selects a CER edge. With probability lk(t)
el(t)

, a CVN with degree k

is chosen, this decreases the number of edges of type lk by k. This gives

dl
(1)
k (t)

dt
=
−klk(t)
el(t)

, k ≥ 1.

For j ≥ 1 and i+ j ≤ dc

dn
(1)
i,j (t)

dt
=
(
p

(1)
i+1,j(t)− p(1)

i,j (t)
)

(i+ j)

where a(t) =
Pdv
k=1 klk(t)

el(t)
is the average degree of the CVN’s which are hit by the

initially chosen CER edge and p
(1)
i,j =

ni,j(t)i(a(t)−1)

(i+j)el(t)
is the average number of CN’s with

type ni,j hit by the a(t)− 1 reflecting edges.

For j = 0 and i ≥ 1, we also have to consider the initially chosen CER edge.

31

This gives
dn

(1)
i,0 (t)

dt
=
(
p

(1)
i+1,0(t)− p(1)

i,0 (t)
)
i+
(
q

(1)
i+1(t)− q(1)

i (t)
)
i

where q
(1)
i (t) =

ni,0(t)P
m≥1 nm,0(t)

is the probability that the initially chosen CER edge is of

type ni,0.

When one of the reflecting edge of the removed CER node hits a CN of type n1,1,

an IER2 edge becomes an IER1 edge. This is the only way the CER operation can

affect ri,j,k. On average, each CER operation generates a(t)− 1 reflecting edges. For

each reflecting edge, the probability that it hits a CN of type n1,1 is n1,1(t)

2el(t)
. Once a

reflecting edge hits a CN with type n1,1, one IER2 edge is changed to IER1 edge, but

not removed. By considering this, when j 6= dv and k 6= 0, we have

dr
(1)
i,j,k(t)

dt
= (a(t)− 1)

n1,1(t)

2el(t)(
jri,j,k(t)

(i+ j + k)η2(t)
(−(i+ j + k))− (j + 1)ri,j+1,k−1(t)

(i+ j + k)η2(t)
(−(i+ j + k))

)
= (a(t)− 1)

n1,1(t)

2el(t)

(−jri,j,k(t)
η2(t)

+
(j + 1)ri,j+1,k−1(t)

η2(t)

)
.

If k = 0 or k 6= dv, then the IVN’s with type ri,j,k can only lose edges and

dr
(1)
i,j,k(t)

dt
= (a(t)− 1)

n1,1(t)

2el(t)

(−jri,j,k(t)
η2(t)

)
.

b. IER2 Analysis

Since IER2 operation does not affect lk(t), we have

dl
(3)
k (t)

dt
= 0.

32

To analyze how IER2 operation changes ni,j(t) and ri,j,k(t), we first calculate the

probability that a randomly chosen IER2 node is of type ri,j,k as follows

Pr (type ri,j,k|IER2 node) =

ri,j,k(t)

i+j+k

s2(t)

if j ≥ 2 and i+ j + k 6= 0. Otherwise, Pr (type ri,j,k|IER2 node) = 0.

Let’s denote
dn

(3)

i′,j′ (t)

dt
caused by removing one NIE edge as ui′,j′(t),

dn
(3)

i′,j′ (t)

dt
caused

by removing one IER2 edge as vi′,j′(t) and
dn

(3)

i′,j′ (t)

dt
caused by removing one IER1 edge

as wi′,j′(t). Then, we can write
dn

(3)

i′,j′ (t)

dt
as

dn
(3)
i′,j′(t)

dt
=

dv∑
i=0

dv∑
j=0

dv∑
k=0

Pr (type ri,j,k|IER2 node) (iui′,j′(t) + jvi′,j′(t) + kwi′,j′(t)) .

First, we consider ui′,j′(t). If an NIE edge is chosen from the IVN side, it hits

a CN of type ni,j with probability
jni,j(t)

η0(i+j)
if j ≥ 2 and with probability 0 otherwise.

When j ≥ 2 and j ≤ dv − 1, we have

ui′,j′(t) =
j′ni′,j′(t)

(i′ + j′)η0(t)
(−(i′ + j′)) +

(j′ + 1)ni′,j′+1(i′ + j′)

(i′ + j′ + 1)η0(t)

=
−j′ni′,j′(t)
η0(t)

+
(j′ + 1)ni′,j′+1(i′ + j′)

(i′ + j′ + 1)η0(t)

and, when j = dv, we have

ui′,j′(t) =
−j′ni′j′(t)
η0(t)

.

Since an NIE edge cannot be connected to a CN with type ni′,1, we must treat

j′ = 1 separately. Notice that ni′,1 can still gain edges from ni′,2, we have

ui′,1(t) =
2ni′,2(t)(i′ + 1)

(i′ + 2)η0(t)
.

When j′ = 0, CN’s with type ni′,0 do not have any NIE edges. So we have

ui′,0(t) = 0.

33

Now we consider vi′,j′(t). Since edges of type ni′,j′ with j ≥ 2 cannot be IER2 edges,

ni′j′ with j ≥ 2 is not affected by removing IER2 edges. The IER2 edge removal

reduces the number of edges of type ni′,1, i ≥ 1. So we have

vi′,1 = − ni′,1
η2(t)

.

When j′ = 0 and i′ ≥ 1, we have

vi′,0 =
ni′,1
η2(t)

.

The CN’s with only type n0,1 are affected when we remove an IER1 edge on the IVN

side. So we have

w0,1 = 1

and wi′,j′ = 0 when (i′, j′) 6= (0, 1).

Next, we derive the differential equation for ri,j,k caused by removing an IER2

node. If the decoder removes an IER2 node with type ri′,j′,k′ , we need to study how

this affects ri,j,k(t). There are two effects caused by removing an IER2 node of type

ri′,j′,k′ . When we remove an IER2 node of type ri′,j′,k′ , we remove i′ NIE edges, j′

IER2 edges and k′ IER1 edges. For each removed edge, if we look at the CN side,

it may cause the types of some other edges on the same CN to change and therefore

affect ri,j,k(t). We also call the edges other than the one coming from the removed

IER2 node as “CN reflecting edges”. Let u′i,j,k(t) be the contribution to
dri,j,k(t)

dt
caused

by the CN reflecting edges of an NIE edge on the CN. Let v′i,j,k(t) be the contribution

to
dri,j,k(t)

dt
caused by the CN reflecting edges of an IER2 edge on the CN. Let w′i,j,k(t)

be the contribution to
dri,j,k(t)

dt
caused by the CN reflecting edges of an IER1 edge on

34

the CN. Then we can write
dr

(3)
i,j,k(t)

dt
as

dr
(3)
i,j,k(t)

dt
= −Pr (type ri,j,k|IER2 node) (i′ + j′ + k′)+

dv∑
i′=0

dv∑
j′=0

dv∑
k′=0

Pr (type ri′,j′,k′ |IER2 node)
(
i′u′i,j,k(t) + j′v′i,j,k(t) + k′w′i,j,k(t)

)
.

There are two ways that the CN reflecting edges of an NIE edge can affect ri,j,k(t).

The first one is when the CN is of type ni,2, 1 ≤ i ≤ dc − 2. Removing an NIE can

change the type of the other incorrect edge from NIE to IER2. The second way is

when the CN is of type n0,2. Removing an NIE can change the type of the other

incorrect edge from NIE to IER1. Notice that the probability that an NIE hits a CN

of type ni,2, 1 ≤ i ≤ dc − 2 is
Pdc−2
i=1

2ni,2(t)

i+2

η0(t)
, the probability that an NIE hits a CN of

type n0,2 is n0,2(t)

η0(t)
and the probability that an NIE edge is connected to an IVN of

type ri,j,k is
iri,j,k(t)

(i+j+k)η0(t)
. Therefore, we can write

u′i,j,k(t) =

∑dc−2
i=1

2ni,2(t)

i+2

η0(t)

(
−iri,j,k(t)

η0(t)
+

(i+ 1)ri+1,j−1,k(t)

η0(t)

)
+
n0,2(t)

η0(t)

(
−iri,j,k(t)

η0(t)
+

(i+ 1)ri+1,j,k−1(t)

η0(t)

)
if i 6= dv, j 6= 0 and k 6= 0. When i 6= dv, j 6= 0 and k = 0, we have

u′i,j,k(t) =

∑dc−2
i=1

2ni,2(t)

i+2

η0(t)

(
−iri,j,k(t)

η0(t)
+

(i+ 1)ri+1,j−1,k(t)

η0(t)

)
+
n0,2(t)

η0(t)

(
−iri,j,k(t)

η0(t)

)
.

When i 6= dv, j = 0 and k 6= 0, we have

u′i,j,k(t) =

∑dc−2
i=1

2ni,2(t)

i+2

η0(t)

(
−iri,j,k(t)

η0(t)

)
+
n0,2(t)

η0(t)

(
−iri,j,k(t)

η0(t)
+

(i+ 1)ri+1,j,k−1(t)

η0(t)

)
.

35

When i 6= dv, we have

u′i,j,k(t) =

∑dc−2
i=1

2ni,2(t)

i+2

η0(t)

(
−iri,j,k(t)

η0(t)

)
+
n0,2(t)

η0(t)

(
−iri,j,k(t)

η0(t)

)
.

Since there are no CN reflecting edges of type IER1 and IER2, v′i,j,k(t) = 0 and

w′i,j,k(t) = 0.

Like IER2 operations, the IER1 operation does not affect lk(t). So, we have

dl
(2)
k (t)

dt
= 0.

To analyze how IER1 changes ni,j(t) and ri,j,k(t), we first calculate the probability

that a randomly chosen IER1 node is of type ri,j,k as follows

Pr (type ri,j,k|IER1 node) =

ri,j,k(t)

i+j+k

s1(t)

when k ≥ 1 and Pr (type ri,j,k|IER1 node) = 0 when k = 0.

For the same reason,

dn
(2)
i′,j′(t)

dt
=

dv∑
i=0

dv∑
j=0

dv∑
k=0

Pr (type ri,j,k|IER1 node) (iui′,j′(t) + jvi′,j′(t) + kwi′,j′(t))

and

dr
(2)
i,j,k(t)

dt
= −Pr (type ri′,j′,k′ |IER1 node) (i′ + j′ + k′)+

dv∑
i′=0

dv∑
j′=0

dv∑
k′=0

Pr (type ri′,j′,k′ |IER1 node)
(
i′u′i,j,k(t) + j′v′i,j,k(t) + k′w′i,j,k(t)

)
.

We note that we provide a Matlab program for the LM2-NB analysis which is

available online at http://www.ece.tamu.edu/˜hpfister/software/lm2nb threshold.m

36

3. Proof of Correctness of Differential Equation Analysis for LM2-NB

Consider the peeling decoder for the BEC introduced in [10]. Throughout the decod-

ing process, one reveals and then removes edges one at a time from a hidden random

graph. The analysis of this decoder is simplified by the fact that, given the current

residual degree distribution, the unrevealed portion of the graph remains uniform for

every decoding trajectory. In fact, one can build a finite-length decoding simulation

never constructs the actual decoding graph. Instead, it tracks only the residual degree

distribution of the graph and implicitly chooses a random decoding graph one edge

at a time.

For asymptotically long codes,[10] used this approach leads to derive an analysis

based on differential equations. This analysis is actually quite general and can also be

applied to other peeling-style decoder in which the unrevealed graph is not uniform.

One may observe this from its proof of correctness, which depends on two important

observations. First, the distribution of all decoding paths is concentrated very tightly

around its average as the system size increases. Second, the expected change in the

decoder state can be written as a Lipschitz function of the current decoder state. If

one augments the decoding state to include enough information so that the expected

change can be computed from the augmented state (even for non-uniform residual

graphs), then the theorem still applies.

The differential equation gives the average (over all the random bipartite graph,

or the code ensemble) evolution of the system parameters as the block length n goes to

infinity. While the numerical simulation of long codes gives the evolution of the system

parameters of a particular code (a particular bipartite graph) as n goes to infinity.

To prove that the differential equation analysis precisely predicts the evolution of the

system parameters of a particular code, we need to show the concentration of the

37

evolution of the system parameters of a particular code around the ensemble average

as n goes to infinity.

In the LM2-NB algorithm, one edge is removed at a time. The main difference for

LM2-NB algorithm is that we have more edge types and we track some details of the

edge types on both the check nodes and the variable nodes. This causes a significant

problem in the analysis because updating the exact effect of edge removal requires

revealing some edges before they will be removed. For example, the CER operation

can cause an IER2 edge to become an IER1 edge, but revealing the adjacent symbol

node (or type) renders the analysis intractable.

To prove the correctness of the differential equation analysis, we will put our

analysis of the LM2-NB algorithm in the framework of [10, 23, 24] by indicating

exactly the discrete-time random process associated with the decoding analysis.

We first introduce the definitions of the random process. In this subsection, we

use t to represent the discrete time. We follow the same notation used in [10]. Let

the life-span of the random process be m. Let Ω denote a probability space and S

be a measurable space of observations. A discrete-time random process over Ω with

observations S is a sequence Q , (Q0, Q1, . . .) of random variables where Qt contains

the information revealed at t-th step. We denote the history of the process up to time

t as Ht , (Q0, Q1, . . . , Qt). Let S+ := ∪i≥1S
i denote the set of all histories and Y be

the set of all decoder states. One typically uses a state space that tracks the number

of edges of a certain type (e.g., the degree of the attached nodes).

We define the random process as follows. Let’s define the total number of edges

connected to IVN’s with type ri,j,k at time t as Ri,j,k(t) and the total number of edges

connected to check nodes with type ni,j as Ni,j(t). Let R̄i,j,k(t) , E[Ri,j,k(t)|Ht]. Let

R(t) , {Ri,j,k(t), 0 ≤ i ≤ dv, 0 ≤ j ≤ dv, 0 ≤ k ≤ dv, 0 ≤ i+ j + k ≤ dv},

38

R̄(t) , {R̄i,j,k(t), 0 ≤ i ≤ dv, 0 ≤ j ≤ dv, 0 ≤ k ≤ dv, 0 ≤ i+ j + k ≤ dv}

and

N(t) , {Ni,j(t), 0 ≤ i ≤ dc, 0 ≤ j ≤ dc, 0 ≤ i+ j ≤ dc}.

Let the r.v. Yt , {N(t), R̄(t)} be the decoder state at time t. We will show that

Yt/m concentrates around the solutions of our differential equation. In particular, The

R̄i,j,k(t) concentrates around ri,j,k(t/m) and N̄i,j(t) concentrates around ni,j(t/m).

The history of the random process is defined as follows. In the beginning of

the decoding, we label the variable/check nodes by their degrees. When the decoder

removes an edge, the revealed information Qt contains the degree of the variable node

and type of the check node to which the removed edge is connected to. We note that

sometimes the edge-removal operation changes the type of the un-removed edge on

that check node. In this case, Qt also contains the information about the type of

the check node to which this CN-reflecting edge is connected to. But Qt does not

contain any information about the IVN that this CN-reflecting edge is connected to.

By defining the history as this, Yt is a deterministic function of Ht, and it satisfies

the bounded change condition, i.e., condition (i) in Theorem 5.1 in [24]. The con-

dition (iii) is also verified. We note that E[Yt+1 − Yt|Ht] = f
(
t/m, N(t)

m
, R(t)
m

)
. By

the following conjecture and the Lipschitz condition of f
(
t/m, N(t)

m
, R(t)
m

)
, we have

E[Yt+1 − Yt|Ht] = f
(
t/m, N(t)

m
, R̄(t)
m

)
+ o(1). This shows condition (ii) of Theorem

5.1 in [24] is also satisfied.

Conjecture 1. limm→∞ Pr
(
sup0≤t≤m

∣∣R̄i,j,k(t)−Ri,j,k(t)
∣∣ ≥ m5/6

)
= 0 holds for all

{i, j, k : 0 ≤ i ≤ dv, 0 ≤ j ≤ dv, 0 ≤ k ≤ dv, 0 ≤ i+ j + k ≤ dv}.

By Theorem 5.1 in [24], one can show the concentration of Yt, or N(t) and R̄(t).

Since R(t) and R̄(t) concentrate around the same function, we complete the proof.

39

D. Error Floor Analysis of LMP Algorithms

During the simulation of the optimized ensembles of Table II, we observed an error

floor that warranted more attention. While one might expect a floor due to finite

q effects, the simulation uses q large enough so that no FV’s were observed in the

error floor regime. Instead, the error floor is due to the event that some symbols

remain unverified when the decoding terminates. This motivates us to analyze the

error floor of LMP algorithms. We need to point out that, when q is relatively small,

error floors are caused by a mixture of several reasons such as type-I FV, type-II FV

(which we will discuss later) and the event that some symbols remain unverified when

the decoding terminates. These reasons are coupled together and affect each other.

But this is not the case of our interest and there are three reasons for this. The

first reason is that this is not the setting in our simulation, (e.g., the error floors

observed in the simulation are not caused by FV). The second reason is that, in

practice, one would like to let the assumption “the verified symbols are correct with

high probability” hold to make the verification-based algorithms to work well and to

make the analysis correct. This is can be done by picking large enough q as we did

in the simulation. Note that, if FV has significant impact on the algorithms, then

both the density evolution analysis and the differential equation analysis break down

and the thresholds are not correct anymore. The last reason is for the simplicity of

Table II. Optimized Ensemble for LMP Algorithms (rate 1/2)
Alg. λ(x) ρ(x) p∗

LMP-1 .1200x+.3500x2+.0400x4+.4900x14 x8 .2591
LMP-1 .1650x+.3145x2+.2111x14+.0265x24+.2674x49 .0030x2+.9970x10 .2593
LMP-8 .32x+.24x2+.26x8+.19x14 .02x4+.82x6+.16x8 .288
LMP-32 .40x+.20x3+.13x5+.04x8+.23x14 .04x4+.96x6 .303
LMP-∞ .34x+.16x2+.21x4+.29x14 x7 .480
LM2-MB .2x+.3x3+.05x5+.45x11 x8 .289

40

analysis. One can analyze the error floor caused by different reasons separately since

they are not coupled.

We note that, even though the error floor is not caused by FV, we still provide an

analysis of FV for sake of the completeness. The analysis actually helps us understand

why the dominant error events caused by FV can be avoided by increasing q. The

analysis is derived by considering each effect separately.

1. The Union Bound for ML Decoding

First, we derive the union bound on the probability of error with ML decoding for the

q-SC. To match our simulations with the union bounds, we expurgate (i.e., ignore)

all codeword weights that have an expected multiplicity less than 1.

First, we summarize a few results from [20, p. 497] that characterize the low-

weight codewords of LDPC codes with degree-2 variable nodes. When the block

length n is large, all of these low-weight codewords are caused, with high probability,

by short cycles of degree-2 nodes. For binary codes, the number of codewords with

weight k is a random variable which converges to a Poisson distribution with mean“
λ2ρ
′
(1)
”k

2k
. When the channel quality is high (i.e., high SNR, low error/erasure rate),

the probability of ML decoding error is mainly caused by low-weight codewords.

For non-binaryGF (q) codes, a codeword is supported on a cycle of degree-2 nodes

only if the product of the edge weights is 1. This occurs with probability 1/(q− 1) if

we choose the i.i.d. uniform random edge weights for the code. Hence, the number of

GF (q) codewords of weight k is a random variable, denoted Bk, which converges to a

Poisson distribution with mean bk =

“
λ2ρ
′
(1)
”k

2k(q−1)
. After expurgating weights that have

an expected multiplicity less than 1, k1 = arg mink≥1 b
(n)
k ≥ 1 becomes the minimum

codeword weight. An upper bound on the pairwise error probability (PEP) of the

q-SC with error probability p is given by the following lemma.

41

Lemma 1. Let y be the received symbol sequence assuming the all-zero codeword

was transmitted. Let u be any codeword with exactly k non-zero symbols. Then, the

probability that the ML decoder chooses u over the all-zero codeword is upper bounded

by

p2,k ≤
(
p
q − 2

q − 1
+

√
4p(1− p)
q − 1

)k

.

Proof. See Appendix C.

Remark 4. Notice that bk is exponential in k and the PEP is also exponential in

k. The union bound for the frame error rate, due to low-weight codewords, can be

written as

PB ≤
∞∑

k=k1

bkp2,k.

It is easy to see k1 = Ω(log q) and the sum is dominated by the first term bk1p2,k1

which has the smallest exponent. When q is large, the PEP upper bound is on the

order of O
(
pk
)
. Therefore. the order of the union bound on frame error rate with

ML decoding is

PB = O

((
λ2ρ

′
(1)p

)log q

q log q

)
and the expected number of symbols in error is

O

((
λ2ρ

′
(1)p

)log q

q

)
,

if pλ2ρ
′(1) < 1.

2. Error Analysis for LMP Algorithms

The error of LMP algorithm comes from two types of decoding failure. The first type

of decoding failure is due to unverified symbols. The second one is caused by the FV.

To understand the performance of LMP algorithms, we analyze these types of failure

42

separately. Note that when we analyze each error type, we neglect the interaction for

the simplicity of analysis.

The FV’s can be classified into two types. The first type is, as [10] mentions,

when the error magnitudes in a single check sum to zero; we call this type-I FV.

For single-element lists, it occurs with probability roughly 1/q (i.e., the chance that

two uniform random symbols are equal). For multiple lists with multiple entries, we

analyze the FV probability under the assumption that no list contains the correct

symbol. In this case, each list is uniform on the q − 1 incorrect symbols. For m lists

of size s1, . . . , sm, the type-I FV probability is given by 1 − (q−1
s1,s2,··· ,sm

)/∏m
i=1

(
q−1
si

)
.

In general, the Birthday paradox applies and the FV probability is roughly s2
(
m
2

)
/q

for large q and equal size lists.

The second type of FV is that messages become more and more correlated as the

number of iterations grows, so that an incorrect message may go through different

paths and return to the same node. We denote this kind of FV as a type-II FV.

Note that these are two different types of FV and one does not affect another.

We cannot avoid type-II FV by increasing q without randomizing the edge weights

and we cannot avoid type-I FV by constraining the number of decoding iterations to

be within half of the girth (or increasing the girth). Fig. 3 shows an example of type-II

FV. In Fig. 3, there is an 8-cycle in the graph and we assume the variable node on

the right has an incorrect incoming message “a”. Assume that the all-zero codeword

is transmitted, all the incoming messages at each variable node are not verified, the

list size is less than Smax, and each incoming message at each check node contains the

correct symbol. In this case, the incorrect symbol will travel along the cycle and cause

FV’s at all variable nodes along the cycle. If the characteristic of the field is 2, there

are a total of c/2 FV’s occurring along the cycle, where c is the length of the cycle.

This type of FV can be reduced significantly by choosing each non-zero entry in the

43

Fig. 3. An example of type-II FV’s.

parity-check matrix randomly from the non-zero elements of Galois field. In this case,

a cycle causes a type-II FV only if the product of the edge-weights along that cycle

is 1. Therefore, we suggest choosing the non-zero entries of the parity-check matrix

randomly to mitigate type-II FV. Recall that the idea to use non-binary elements in

the parity-check matrix appears in the early works on the LDPC codes over GF (q)

[71].

3. An Upper Bound on the Probability of Type-II FV on Cycles

In this subsection, we analyze the probability of error caused by type-II FV. Note

that type-II FV occurs only when the depth-2k directed neighborhood of an edge (or

a node) has cycles. But type-I FV occurs at every edge (or node). The order of the

probability that type-I FV occurs is approximately O(1/q) [10]. The probability of

type-II FV is hard to analyze because it depends on q, Smax and k in a complicated

way. But an upper bound of the probability of the type-II FV is derived in this

section.

Since the probability of type-II FV is dominated by short cycles of degree-2

nodes, we only analyze type-II FV along cycles of degree-2 nodes. As we will soon

see, the probability of type-II FV is exponential in the length of the cycle. So, the

error caused by type-II FV on cycles is dominated by short cycles. We also assume

Smax to be large enough such that an incorrectly received value can pass around a

44

cycle without being truncated. This assumption makes our analysis an upper bound.

Another condition required for an incorrectly received value to participate in a type-II

FV is that the product of the edge weights along the cycle is 1. If we assume that

almost all edges not on the cycle are verified, then once any edge on the cycle is

verified, all edges will be verified in the next k iterations. So we also assume that

nodes along a cycle are either all verified or all unverified.

We note that there are three possible patterns of verification on a cycle, depend-

ing on the received values. The first case is that all the nodes are received incorrectly.

As mentioned above, the incorrect value passes around the cycle without being trun-

cated, comes back to the node again and falsely verifies the outgoing messages of

the node. So all messages will be falsely verified (if they are all received incorrectly)

after k iterations. Note that this happens with probability 1
q−1

pk. The second case is

that all messages are verified correctly, say, no FV. Note that this does not require

all the nodes to have correctly received values. For example, if any pair of adjacent

nodes are received correctly, it is easy to see all messages will be correctly verified.

The last case is, there is at least 1 incorrectly received node in any pair of adjacent

nodes and there is at least 1 node with correctly received value on the cycle. In this

case, all messages will be verified after k iterations, i.e., messages from correct nodes

are verified correctly and those from incorrect nodes are falsely verified. Then the

verified messages will propagate and half of the messages will be verified correctly

and the other half will be falsely verified. Note that this happens with probability

1
q−1

2
(
pk/2 − pk) ≈ 2pk/2

q−1
and this approximation gives an upper bound even if we

combine the previous 1
q−1

pk term.

Recall that the number of cycles with length k converges to a Poisson with

mean (λ2ρ′(1))k

2k
. Using the union bound, we can upper bound on the ensemble average

45

probability of any type-II FV event with

Pr(any type-II FV) ≤
∞∑

k=k1

(
λ2ρ

′
(1)
)k

2k(q − 1)
2p

k
2 =

∞∑
k=k1

(
λ2ρ

′
(1)
√
p
)k

k(q − 1)
.

The ensemble average number of nodes involved in type-II FV events is given by

E [symbols in type-II FV] ≤
∞∑

k=k1

(
λ2ρ

′
(1)
)k

2k(q − 1)
2kp

k
2 =

∞∑
k=k1

(
λ2ρ

′
(1)
√
p
)k

(q − 1)
.

The upper bound on the frame error rate of type-II FV is on the order of

O

(“
λ2ρ
′
(1)
√
p
”log q

(q−1) log q

)
and the upper bound on the ensemble average number of nodes

in type-II FV symbol is on the order of O

(“
λ2ρ
′
(1)
√
p
”

(q−1)

)
. Notice that both bounds

are decreasing functions of q.

4. An Upper Bound on the Probability of Unverification on Cycles

In the simulation of the optimized ensembles from Table II, we observe significant

error floors and all the error events are caused by some unverified symbols when the

decoding terminates. In this subsection, We derive the union bound for the probability

of decoder failure caused by the symbols on short cycles which never become verified.

We call this event as unverification and we denote it by UV. As described above, to

match the settings of the simulation and simplify the analysis, we assume q is large

enough to have arbitrarily small probability of both type-I and type-II FV. In this

case, the error is dominated by the unverified messages because the following analysis

shows that the union bound on the probability of unverification is independent of q.

In contrast to type-II FV, unverification event does not require cycles, i.e., unver-

ification occurs even on subgraphs without cycles. But in the low error-rate regime,

the dominant unverification events occur on short cycles of degree-2 nodes. Therefore,

we only analyze the probability of unverification caused by short cycles of degree-2

46

nodes.

Consider a degree-2 cycle of length k and assume that no FV occurs in the

neighborhood of this cycle. Assuming the maximum list size is Smax, the condition

for UV is that there is at most one correctly received value along Smax + 1 adjacent

variable nodes. Note that we don’t consider type-II FV since type-II FV occurs with

probability 1
q−1

and we can choose q to be arbitrarily large. On the other hand,

unverification does not require the product of the edge weights on a cycle to be 1,

so we cannot mitigate it by increasing q. So the union bound on the probability of

unverification on a cycle with length k is

PU ≤
∞∑

k≥k2

(
λ2ρ

′
(1)
)k

2k
φ(Smax, p, k)

where k2 = arg mink≥1

“
λ2ρ
′
(1)
”k

2k
≥ 1 and φ(Smax, p, k) is the UV probability which is

given by the following lemma.

Lemma 2. Let the cycle have length k, the maximum list size be s, and the channel

error probability be p. Then, the probability of an unverification event on a degree-2

cycle of length-k is φ(s, p, k) = Tr
(
Bk(p)

)
where B(p) is the (s+ 1) by (s+ 1) matrix

B(p) =

p 1− p 0 0 · · · 0

0 0 p 0 · · · 0

0 0 0 p · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · p

p 0 0 0 · · · 0

. (2.18)

Proof. See Appendix D.

Finally, the union bound on the average number of symbols involved in unveri-

47

fication events is

E [unverified symbols] ≤
∞∑

k≥k2

(
λ2ρ

′
(1)
)k

2
φ(Smax, p, k). (2.19)

Note that if we have to choose some small q and we need to consider type-II FV,

then the union bound PU can be easily rewritten as

PU ≤
∞∑

k≥k2

(
λ2ρ

′
(1)
)k

(q − 2)

2k(q − 1)
φ(Smax, p, k)

since all symbols will always be verified if the product of the weights on the edges

equals to 1 if s is larger than half of the length of the cycle,10 the necessary conditions

for unverification are the UV condition mentioned above and the product of the

weights on the edges does not equal to 1. The union bound on the average number

of symbols involved in unverification events is

E [unverified symbols] ≤
∞∑

k≥k2

(
λ2ρ

′
(1)
)k

(q − 2)

2(q − 1)
φ(Smax, p, k). (2.20)

Let’s look at (2.19) and (2.20), we can see that the average number of unverified

symbols scales exponentially with k. The ensemble with larger λ2ρ
′
(1) will have more

short degree-2 cycles and more average unverified symbols. The average number of

unverified symbols depends on the maximum list size Smax in a complicated way.

Intuitively, if Smax is larger, then the constraint that ”there is at most one correct

symbol along Smax adjacent variable nodes“ becomes stronger since we assume the

probability of seeing a correct symbol is higher than that of seeing a incorrect symbol.

Therefore, unverification is less likely to happen and the average number of unverified

symbols will decrease as Smax increases. Note that (2.19) does not depend on q and

(2.20) depends on q weakly.

10When s is not large enough, this analysis provides an upper bound.

48

One might expect that the stability condition of the LMP-Smax decoding al-

gorithms can be used to analyze the error floor. Actually, one can show that the

stability condition for LMP-Smax decoding of irregular LDPC codes is identical to

that of the BEC, which is pλ2ρ
′(1) < 1. This is not much help for predicting the error

floor though, because for codes with degree-2 nodes, the error floor is determined

mainly by short cycles of degree-2 nodes instead. A finite number of degree-2 cycles

is predicted instead by the condition λ2ρ
′(1) < 1.

E. Comparison and Optimization

In this section, we compare the proposed algorithm with maximum list size Smax

(LMP-Smax) with other message-passing decoding algorithms for the q-SC. We note

that the LM2-MB algorithm is identical to SW1 for any code ensemble because the

decoding rules are the same. LM2-MB, SW1 and LMP-1 are identical for (3,6) regular

LDPC codes because the list size is always 1 and erasures never happen in LMP-1

for (3,6) regular LDPC codes. The LMP-∞ algorithm is identical to SW2.

There are two important differences between the LMP algorithm and previous

algorithms: (i) erasures and (ii) FV recovery. The LMP algorithm passes erasures

because, with a limited list size, it is better to pass an erasure than to keep unlikely

symbols on the list. The LMP algorithm also detects FV events and passes an erasure

if they cause disagreement between verified symbols later in decoding, and can some-

times recover from a FV event. LM1-NB and LM2-NB fix the status of a variable

node once it is verified and pass the verified value in all following iterations.

The results in [10] and [15] also do not consider the effects of type-II FV. These

FV events degrade the performance in practical systems with moderate block lengths,

and therefore we use random entries in the parity-check matrix to mitigate these

49

effects.

Using the DE analysis of the LMP-Smax algorithm, we can improve the threshold

by optimizing the degree distribution pair (λ, ρ). Since the DE recursion is not one-

dimensional, we use differential evolution to optimize the code ensembles [21]. In

Table II, we show the results of optimizing rate-1
2

ensembles for LMP with a maximum

list size of 1, 8, 32, and ∞. Thresholds for LM1 and LM2-NB/MB with rate 1/2 are

also shown. In all but one case, the maximum variable-node degree is 15 and the

maximum check-node degree is 9. The second table entry allowed for larger degrees

(in order to improve performance) but very little gain was observed. We can also

see that there is a gain of between 0.05 and 0.07 over the thresholds of (3,6) regular

ensemble with the same decoder.

F. Simulation Results

In this part, we show the simulation results for (3,6) regular LDPC codes using various

decoding algorithms as well as the simulation results for the optimized ensembles

shown in Table II with LMP algorithms in Fig. 4. In the simulation of optimized

ensembles, we try different maximum list sizes and different finite fields. We use

notation “LMPSmax,q,ensemble” to denote the simulation result of LMP algorithm

with maximum list size Smax, finite field GF (q) and the simulated ensemble. We

choose the block length to be 100000. The parity-check matrices are chosen randomly

without 4-cycles. Each non-zero entry in the parity-check matrix is chosen uniformly

from GF(q)\0. This allows us to keep the FV probability low. The maximum number

of decoding iterations is fixed to be 200 and more than 1000 blocks are run for each

point. These results are compared with the theoretical thresholds. Table III shows

the theoretical thresholds of (3, 6) regular codes on the q-SC for different algorithms

50

Table III. Threshold vs. Algorithm for (3,6) Regular LDPC Codes

LMP-1 LMP-8 LMP-32 LMP-∞ LM1 LM2-MB LM2-NB

.210 .217 .232 .429 .169 .210 .259

and Table II shows the thresholds for the optimized ensembles. The numerical results

match the theoretical thresholds very well.

In the results of (3,6) regular codes simulation, we cannot see any error floor

because there is almost no FV in the simulation. The LM2-NB performs much better

than other algorithms with list size 1 for (3,6) regular ensemble. In the optimized

ensembles, there are a large number of degree-2 variable nodes which cause the sig-

nificant error floor. By evaluating (2.19), the predicted error floor caused by unverifi-

cation is 1.6×10−5 for the optimized Smax = 1 ensemble, 8.3×10−7 for the optimized

Smax = 8 ensemble, and 1.5 × 10−6 for the optimized Smax = 32 ensemble. From

the results, we see the analysis of unverification events matches the numerical results

very well.

In next chapter, we will see some applications of LDPC codes over large alphabet

sets together with VB decoding algorithms in compressed sensing systems.

51

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Error Probability p

F
ra

ct
io

n
of

 u
nv

er
ifi

ed
 b

its

LMP1/SW1/LM2−MB,232,(3,6)

LMP8,232,(3,6)

LMP32,232,(3,6)

LM1,232,(3,6)

LMP1,232,OPT

LMP8,248,OPT

LMP32,232,OPT

LMP1,248,OPT

LMP8,232,OPT

LMP32,248,OPT

LM2−NB,232,(3,6)

Fig. 4. Simulation results for (3,6) regular codes with block length 100000.

52

CHAPTER III

VERIFICATION DECODING OF HIGH-RATE LDPC CODES WITH

APPLICATIONS IN COMPRESSED SENSING

A. Introduction

Compressed sensing (CS) is a relatively new area of signal processing that has re-

cently received a large amount of attention. The main idea is that many real-world

signals (e.g., those sparse in some transform domain) can be reconstructed from a

relatively small number of linear dot-product measurements. Its roots lie in the areas

of statistics and signal processing [27, 28, 29], but it is also very much related to

previous work in computer science [30] and applied mathematics [31, 32, 33]. CS is

also very closely related to error correcting codes, and can be seen as source coding

using linear codes over real numbers [34, 35, 36, 37, 38].

In this chapter, we analyze the performance of low-density parity-check (LDPC)

codes with verification decoding [68] as applied to CS. The resulting decoding algo-

rithm is almost identical to that of Sudocodes [34], but a more suitable code ensemble

is chosen and a more precise analysis is presented. Since most of the interesting ap-

plications of CS require very sparse (or compressible) signals, the natural mapping

to coding implies high-rate codes. One new characteristic of this analysis, which is

also interesting from a coding perspective, is that the performance estimates hold

uniformly as the code rate approaches one. This allows us to explore the sparsity (or

rate) regime that makes sense for compressed sensing.

An important implication of this work is that our randomized reconstruction

system allows linear-time reconstruction of strictly-sparse signals with a constant

oversampling ratio. In contrast, all previous reconstruction methods with moderate

53

reconstruction complexity have an oversampling ratio which grows logarithmically

with the signal dimension. We note that the material of this chapter is mainly from

[25].

1. Background on LDPC Codes

LDPC codes are linear codes introduced by Gallager in 1962 [4] and re-discovered by

MacKay in 1995 [39]. Binary LDPC codes are now known to be capacity approaching

on various channels when the block length tends to infinity. They can be represented

by a Tanner graph, where the i-th variable node is connected to the j-th check node

if the entry on the i-th column and j-th row of its parity-check matrix is non-zero.

LDPC codes can be decoded by an iterative message-passing (MP) algorithm

which passes messages between the variable nodes and check nodes iteratively. If the

messages passed along the edges are probabilities, then the algorithm is also called

belief propagation (BP) decoding. The performance of the MP algorithm can be

evaluated using density evolution (DE) [40] and stopping set analysis [41] [42]. Each

method provides a decoding threshold for the code ensemble.

2. Structure of the Chapter

Section B provides background information on coding and CS. Section C summarizes

the main results. In Section D, proofs and details are given for the main results

based on DE. While in Section E, proofs and details are provided for the main results

based on stopping-set analysis. Section F discusses a simple information-theoretic

bound on the number of measurements required for reconstruction. Section D presents

simulation results comparing the algorithms discussed in this chapter with a range of

other algorithms.

54

Fig. 5. Structure of the encoder.

B. Background on Coding and CS

1. Encoding and Decoding

The sparse graph representation of LDPC codes allows encoding and decoding algo-

rithms to be implemented with linear complexity in the code length n. Since LDPC

codes are usually defined over the finite field GF (q) instead of the real numbers, we

need to modify the encoding/decoding algorithm to deal with signals over real num-

bers. Each entry in the parity-check matrix is either 0 or a real number drawn from

a continuous distribution. The parity-check matrix Φ ∈ Rm×n will be full-rank with

high probability (w.h.p.) and is used as the measurement matrix in the CS system

(e.g., the signal vector x ∈ Rn is observed as y = Φx).

The process of generating the observation symbols can also be seen in a bipartite

Tanner graph representation. Fig. 5 shows the encoder structure. Each non-zero

entry in Φ is the edge-weight of its corresponding edge in this graph. Therefore, the

observation process associated with a degree d check node is as follows:

1. Encoding: The observation symbol is the weighted sum (using the edge weights)

of the d neighboring signal components.

55

In this work, we only consider strictly sparse signals and we use two decoders based

on verification which were proposed and analyzed in [68]. The second algorithm was

also proposed independently for CS in [34]. The decoding process uses the following

rules:

1. If a measurement is zero, then all the neighboring variable nodes are verified as

zero.

2. If a check node is of degree one, verify the variable node with the value of the

measurement.

3. [Enhanced verification] If two check nodes overlap in a single variable node and

have the same measurement value, then verify that variable node to the value

of the measurement.

4. Remove all verified variable nodes and the edges attached to them by subtract-

ing out the verified values from the measurements.

5. Repeat steps 1-4 until decoding succeeds or makes no further progress.

Note the first algorithm follows steps 1, 2, 4 and 5. The second algorithm follows steps

from 1 to 5. These two algorithms correspond to the first and second algorithms in

[68] and are referred to as LM1 and node-based LM2 (LM2-NB) in this chapter1. Note

that LDPC codes with regular check degree and Poisson symbol degree with LM2-

NB decoding is identical to the Sudocodes introduced in [34]. In [69], the LM2-NB

1In [68], the second algorithm (which we refer to as LM2) was described in a node-
based (NB) fashion (as above), but analyzed using a message-based (MB) density-
evolution. There is an implicit assumption that the two algorithms perform the same.
In fact, they perform differently and the LM2-NB algorithm is superior as observed
in [43][69].

56

algorithm which is an enhanced version of message-based LM2 (LM2-MB) is analyzed

precisely.

In general, the scheme described above does not guarantee that all verified sym-

bols are actually correct. The event that a symbol is verified but incorrect is called

false verification (FV). In order to guarantee there are no FVs, one can add a con-

straint on the signal such that the weighted sum, of any subset of a check node’s

non-zero neighbors, does not equal to zero [35] [34]. Another approach (e.g., taken

in this chapter) is to consider random signals with continuous distributions so that

FV occurs with probability zero. Finally, if the measured signal is assumed to be

non-negative, then FV is impossible for the LM1 decoding algorithm.

Verification decoding was originally introduced and analyzed for the q-SC. It

is based on the observation that, over large alphabets, the probability that “two

independent random numbers are equal” is quite small. This leads to the verification

assumption that any two matching values (during decoding) are generated by the

same set of non-zero coefficients. The primary connection between CS, codes over

real numbers, and verification decoding lies in the fact that:

The verification assumption applies equally well to both large discrete al-

phabets and the real numbers.

2. Analysis Tools

Based on the bipartite graph structure, LDPC codes can be decoded efficiently us-

ing iterative MP algorithms. The average performance of MP decoding algorithms

can be analyzed with density evolution (DE) [40] or extrinsic information transfer

(EXIT) charts [44]. The concentration theorem [40] shows that random realizations

of decoding are close to the average behavior w.h.p. as the block length goes to

57

infinity. DE analysis provides a threshold below which decoding (or reconstruction)

succeeds w.h.p.. The decoding threshold can be improved by optimizing the edge

degree distribution (d.d.) pair λ(x) and ρ(x).

Decoding can also be analyzed using combinatorial methods such as stopping set

analysis [41] and [42]. Stopping set analysis gives a threshold below which all error

patterns can be recovered with certainty under the assumption of no FV. Note that

DE and stopping set analysis lead to different thresholds in general. Since stopping

set analysis implies uniform recovery of all the error patterns, instead of just most

of them, the threshold given by stopping set analysis is always lower than the one

given by DE. For example, DE analysis of (3, 6) regular codes on the BEC shows that

erasure patterns with size less than 43% of the code length can be corrected w.h.p.

[22]. On the other hand, the result from stopping set analysis guarantees that most

codes correct all erasure patterns with size less than 1.8% of the code length when

n→∞.

Likewise, in CS systems, there are two standard measures of reconstruction: uni-

form reconstruction and randomized (or non-uniform) reconstruction. A CS system

achieves randomized reconstruction if most randomly chosen measurement matrices

recover most of the signals in the signal set. While a CS system achieves uniform

reconstruction if a measurement matrix and the decoder recover all the signals in the

signal set with certainty. Another criterion, which is between uniform reconstruction

and randomized reconstruction, is what we call uniform-in-probability reconstruction.

A CS system achieves uniform-in-probability reconstruction if, for any signal in the

signal set, most randomly chosen measurement matrices achieve successful decoding.

Since DE and the concentration theorem lead to w.h.p. statements for MP

decoding over all signals and graphs, it is natural to adopt a DE analysis to evaluate

the performance of randomized reconstruction CS systems based on LDPC codes.

58

For uniform reconstruction, a stopping set analysis of the MP decoder is the natural

choice. While this works for the BEC, the possibility of FV prevents this type of

strong statement for verification decoding. If the non-zero entries of Φ are chosen

randomly from a continuous distribution, however, then the probability of FV is zero

for all signals. Therefore, one can use stopping set analysis to analyze MP decoding

of LDPC code ensembles and show that the LDPC codes with MP decoding achieves

uniform-in-probability reconstruction in the CS system. The reader is cautioned that

these results are somewhat brittle, however, because they rely on exact calculation

and measurement of real numbers.

Understanding CS systems requires one to consider how the system parameters

(e.g., the number of measurements and the sparsity of the signal) scale in the regime

where the signal is both high-dimensional and extremely sparse. To compare results,

we focus on the oversampling ratio (i.e., the number of measurements divided by the

number of non-zero elements in the signal) required for reconstruction. This leads us

to a scaling law approach to the standard DE and stopping set analysis.

3. Decoding Algorithms

In CS, optimal decoding (in terms of oversampling ratio) requires a combinatorial

search that is known to be NP-Hard [45]. Practical reconstruction algorithms tend

to either be based on linear programming (e.g., basis pursuit (BP) [27]) or low-

complexity iterative algorithms (e.g., Orthogonal Matching Pursuit (OMP) [46]). A

wide range of algorithms allow one to trade-off the oversampling ratio for reconstruc-

tion complexity. In [34], LDPC codes are used in the CS system and the algorithm is

essentially identical to the verification based decoding proposed in [68]. The scaling

law analysis shows the oversampling ratio for LDPC codes based CS system can be

quite good. Encoding/decoding complexity is also a consideration. LDPC codes have

59

sparse bipartite graph representation so that encoding and decoding algorithms with

complexity linearly with the code length can be developed.

There are several existing MP decoding algorithms for LDPC codes over non-

binary fields. In [22] and [47], an analysis is introduced to find provably capacity-

achieving codes for erasure channels under MP decoding. Metzner presents a modified

majority-logic decoder in [11] that is similar to verification decoding. Davey and

MacKay develop and analyze a symbol-level MP decoder over small finite fields [71].

Two verification decoding algorithms for large discrete alphabets are proposed by

Luby and Mitzenmacher in [68] and called LM1 and LM2 in this chapter. The two

capacity-achieving algorithms presented by Shokrollahi and Wang in [15] and are

denoted as SW1 and SW2 in this chapter. The list-message-passing (LMP) algorithm

[69] provides a smooth trade-off between the performance and complexity of SW1 and

SW2. These algorithms are summarized in [69].

One can get a rough idea of the performance of these algorithms by comparing

their performance for the standard (3, 6)-regular LDPC code. A standard perfor-

mance measure is the noise threshold (or sparsity threshold for CS) below which

decoding succeeds with high probability. The threshold of the LM1 algorithm in

this case is 0.169 . This means that a long random (3, 6)-regular LDPC code will

correct a q-SC error pattern with high probability as long as the error rate is less

than 0.169. Likewise, it means that using the same code for LM1 reconstruction of

a strictly-sparse signal with succeed w.h.p. as long as the sparsity rate (i.e., fraction

of non-zero elements) of the signal vector is less than 0.169. The LM2-MB algorithm

improves this threshold to 0.210 and the LM2-NB algorithm further improves this

threshold to 0.259 [69].

Likewise, the stopping-set analysis of the LM1 algorithm in Section V shows that

a (3, 6)-regular code exists where LM1 succeeds (ignoring FV) for all error (or sparsity)

60

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1−R

E
rr

or
 T

hr
es

ho
ld

LM1SS

BECSS

LM1DE

Fig. 6. Thresholds vs 1-R, where R is the code rate, for LM1 stopping set/DE analysis

and the BEC stopping set analysis.

patterns whose fraction of non-zero entries is less than 0.0055. In comparison, the

BEC stopping-set threshold of the (3, 6) code is 0.018 for erasure patterns. However,

both of these thresholds can be increased significantly (for the same code rate) by

increasing the variable node degree. In fact, the (7, 14)-regular LDPC code gives the

best (both LM1 and BEC) stopping-set thresholds and they are (respectively) 0.0364

and 0.0645. Finally, if the signal is non-negative, then FV is not possible during LM1

decoding and therefore 0.0364 is a lower bound on the true LM1 rate-1
2

threshold

for uniform reconstruction. Fig. 6 shows the decoding/recovery thresholds for BEC

stopping set analysis, LM1 stopping set analysis and LM1 DE analysis. Note that if

the signal coefficients are non-negative, the threshold of LM1 given by stopping set

analysis is comparable to the strong bound given in [48, Fig. 1(a)], and the threshold

of LM1 given by DE analysis is comparable to the weak bound given in [48, Fig.

61

1(b)].

Since the scaling law analysis becomes somewhat tedious when complicated al-

gorithms are applied, we consider only the (j, k)-regular code ensemble and the rel-

atively simple algorithms LM1 and LM2-MB. The rather surprising result is that

even with regular codes and simple decoding algorithms, the scaling law implies that

LDPC codes with verification decoding perform very well for noiseless CS systems

with strictly-sparse signals.

4. Signal Model

There are some significant differences between coding theory and CS. One of them

is the signal model. The first difference is that coding theory typically uses discrete

alphabets (see [49] for one exception to this) while CS deals with signals over the

real numbers. Fortunately, some codes designed for large discrete alphabets (e.g.,

the q-ary symmetric channel) can be adapted to the real numbers. By exploring

the connection and the analogy between real field and finite field with large q, the

CS system can be seen as an essentially a syndrome-based source coding system

[36]. Using the parity-check matrix of a non-binary LDPC code as the measurement

matrix, the MP decoding algorithm can be used as the reconstruction algorithm.

The second difference in the signal model is that CS usually models the sparse

signal x ∈ RN as a random vector in an N -dimensional unit weak `r ball which is

denoted as U(`Nw,r). Note that the weak `r ball of radius M consists of vectors x

whose decreasing rearrangement, denoted as x∗, satisfies |x∗1| ≥ |x∗2| ≥ · · · ≥ |x∗N |
with |x∗i | ≤ Mi−1/r. The constraint x ∈ U(`Nw,r) defines the approximate sparsity

property of the signal. As r approaches zero, the decreasing rearrangement of the x

coefficients must decay faster. For decoding, the constants r and M provide a partial

ordering of the set {x|x ∈ U(`Nw,0)} and allow one to regularize the ill-conditioned

62

decoding problem.

In information theory and coding theory, the most commonly used signal model is

a probabilistic model; the signal is treated as a random variable and the pdf is used to

describe the signal. The sparsity of the signal can also be captured in the probabilistic

model. For example, we can use the weighted sum of a Dirac delta function at zero

and a very wide uniform distribution to model a strictly sparse signal.

5. Interesting Rate Regime

In coding theory, the code rate depends on the application and the interesting rate

regime varies from close to zero to almost one. In CS systems, the signal is sparse in

some domain and becomes increasingly sparse as the dimension increases. Intuitively,

this means we can use codes with very little redundancy or very high code rate to

represent the signal. So the interesting rate regime for CS systems is the high-rate

regime. We consider the relationship between the system parameters and how they

scale as the rate goes to one. The answer lies in the scaling law analysis developed in

this chapter.

C. Main Results

The main results of this chapter are listed as follows. The details follow in section D

and section E. Note that all results hold for randomly-chosen regular LDPC codes

with variable-degree j and check-degree k. For a given j, we can increase k and observe

how the decoding threshold scales. This provides a scaling law for the threshold and

leads to conditions for successful reconstruction and the converse. One consequence

of this is that randomized reconstruction can be achieved, for CS of strictly-sparse

signals, when the number of measurements scales linearly with the sparsity of the

63

signal.

(i) [DE-BEC] For the BEC, there is a K <∞ such that: a check-regular LDPC

codes with average variable node degree j ≥ 2 and check-degree k can recover a

δ < ᾱjj/(k − 1) fraction of erasures (w.h.p. as n → ∞) when k ≥ K. The constant

ᾱj (independent of k) is essentially the fraction of the optimal δ∗ = j/k achieved as

n→∞ and the rate goes to one. Conversely, if the erasure probability δ > ᾱjj/(k−1),

then decoding fails (w.h.p. as n→∞) for all k.

(ii) [SS-BEC] For any 0 ≤ θ < 1, there is a K < ∞ such that: for all k ≥ K, a

(j, k)-regular LDPC code with j ≥ 3 can recover all erasures (w.h.p. as n → ∞) of

size θne (k − 1)−j/(j−2).

(iii) [DE-q-SC-LM1] For the q-SC, when one chooses a code randomly from the

(j, k) regular ensemble with j ≥ 2 and uses LM1 as decoding algorithm, then there

is a K1 < ∞ such that one can recover almost all error patterns of size nδ for

δ < ᾱj(k − 1)−j/(j−1) (w.h.p. as n → ∞) for all k ≥ K1. Conversely, when δ >

ᾱj(k − 1)−j/(j−1), there is a K2 < ∞ such that the decoder fails (w.h.p. as n → ∞)

for all k ≥ K2.

(iv) [DE-q-SC-LM2-MB] For the q-SC, when one chooses a code randomly from

the (j, k) regular ensemble with j ≥ 3 and uses LM2-MB as decoding algorithm, then

there is a K1 < ∞ such that one can recover almost all error patterns of size nδ for

δ < ᾱjj/k (w.h.p. as n→∞). The constant ᾱj (independent of k) is essentially the

fraction of the optimal δ∗ = j/k achieved as the rate goes to one. Conversely, there

is a K2 < ∞ such that the decoder fails (w.h.p. as n → ∞) when δ > ᾱjj/k for all

k ≥ K2.

(v) [SS-q-SC-LM1] For any 0 ≤ θ < 1, there is a K < ∞ such that: For all

k ≥ K, a (j, k)-regular LDPC code with j ≥ 3 using LM1 decoding can recover

(w.h.p as n → ∞) all q-SC error patterns of size θnβ̄j(k − 1)−j/(j−2) if no false

64

verifications occur.

Note that the constants K, K1, K2 and ᾱj in (i), (ii), (iii), (iv) and (v) are

different, but for the simplicity of expression, we use the same notation.

The rest of the chapter is organized as follows. In Section D, we derive the high-

rate scaling based on DE analysis. We first show the high-rate scaling analysis for

the BEC under MP decoding. Then, the analysis of high-rate scaling for the q-SC

with LM1 and LM2-MB decoding algorithms is shown. In Section E, we derive the

stopping set analysis for the q-SC with LM1 decoding algorithm and the high-rate

scaling. The simulation results are shown in Section D.

D. High-Rate Scaling Via Density Evolution

1. DE Scaling Law Analysis for the BEC

DE analysis provides an explicit recursion which connects the distributions of mes-

sages passed from variable nodes to check nodes at two consecutive iterations of MP

algorithms. In the case of BEC, this task has been accomplished in [50] and [22].

It has been shown that the expected fraction of erasure messages which are passed

in the i-th iteration, called xi, evolves as xi = δλ(1 − ρ(1 − xi−1)) where δ is the

erasure probability of the channel. For general channels, the recursion may be much

more complicated because one has to track the general distributions which cannot be

represented by a single parameter [17].

To illustrate the scaling law, we start by analyzing the BEC case using DE.

Although this is not applicable to CS, it motivates the scaling law analysis for the

q-SC which is related to CS.

The scaling law of LDPC codes of check-regular ensemble over the BEC is shown

by the following theorem.

65

Theorem 3. Consider a sequence of check-regular LDPC codes with fixed variable

node degree distribution λ(x) and increasing check degree k. Let j = 1/
∫ 1

0
λ(x)dx be

the average symbol degree and αj, which is called α-threshold, be the largest α such

that λ (1− e−αjx) ≤ x for x ∈ (0, 1]. For the erasure probability δ = αj/(k − 1), the

iterative decoding of a randomly chosen length-n code from this ensemble fails (w.h.p

as n → ∞) for all k if α > αj. Conversely, if α < αj, then there exists a K < ∞
such that iterative decoding succeeds (w.h.p as n→∞) for all k ≥ K.

Lemma 3. For all s ≥ 0 and k1+s > |x|, the sequence ak =
(
1− x

k1+s

)k
is strictly

increasing in k and

1− xk−s ≤ ak ≤ e−xk
−s
. (3.1)

Proof of Lemma 3. We restrict our attention to x ≥ 0 because the proof is simplified

in this case and the continuation does not require x < 0. We show that ak is strictly

increasing with k by considering the power series expansion of ln ak, which converges

if k1+s > |x|. This gives

ln ak = k ln
(

1− x

k1+s

)
= −xk−s −

∞∑
i=2

xi

i k(1+s)i−1
, (3.2)

and keeping only the first term shows that ln ak ≤ −xk−s. Since all the terms are

negative and decreasing with k, we see that ak is strictly increasing with k. Since ak

is convex in x for k1+s > |x|, the lower bound ak ≥ 1 − xk−s follows from tangent

lower bound at x = 0.

Proof of Theorem 3. Using the change of variable, xi =
αjj

k−1
yi, the DE recursion can

be scaled to get

yi+1 = fk (yi) ,
α

αj
λ

(
1−

(
1− αjjyi

k − 1

)k−1
)
. (3.3)

By Lemma 3, (1− x
k−1

)k−1 increases monotonically (for x ≤ k− 1) to e−x, and we see

66

that fk(y) decreases monotonically to f∗(y) = α
αj
λ (1− e−αjjy). If α > αj, then (by

the definition of αj) f∗(y) > y for some y ∈ (0, 1]. Since fk(y) ≥ f∗(y), the recursion

yi+1 = fk (yi) will not converge to zero (from y0 = 1) and iterative decoding will fail

for all k w.h.p. as n→∞.

If α < αj, then f∗(y) < y for y ∈ (0, 1]. Since fk(y) ↘ f∗(y), we can choose

K <∞ to be the first k such that fk(y) < y for y ∈ (0, 1]. In this case, the recursion

yi+1 = fk (yi) will converge to zero (from y0 = 1) for all k ≥ K and iterative decoding

will succeed w.h.p. as n→∞.

The following proposition determines a few α-thresholds explicitly.

Proposition 1. For (j, k) regular LDPC codes, the α-threshold is given by αj with

α2 = 0.5, α3 ≈ 0.8184, and α4 ≈ 0.7722.

Proof. See Appendix E.

Remark 5. For example, if j = 3 and α = 0.75 < 0.8184 = α3, then numerical results

show that K = 9 suffices so that DE converges for all k ≥ 9 when δ < 3(0.75)/(k−1).

2. Concentration Theorem for the BEC

Note that in the proof of Theorem 3, we make use of the standard concentration

theorem [17] for MP decoding. For example, the “w.h.p.” statements rely on the

concentration theorem. However, the concentration theorem for the BEC DE analysis

proved in [17] holds only for fixed k (i.e., k is independent of n). In many CS

applications, the desired number of measurements is sublinear in the block length (i.e.,

k = nω with ω < 1). In this section, we discuss how the proof of the concentration

theorem can be modified to handle this case.

The concentration theorem [17] shows the performance of a randomly chosen

67

code concentrates around its expected value so that

Pr

{∣∣∣∣Z(`)

ne
− p(`)

∣∣∣∣ ≥ ε

}
≤ 2e−βε

2n,

where Z(`) is the r.v. which is equal to the number of variable-to-check erasure mes-

sages in the `-th iteration, p(`) = E
[
Z(`)

]
/ne is the expected erasure rate, ne is the

number of edges in the graph, and β is a constant which depends on the degree distri-

bution. Let T`,i be the number of edges in the depth-2` directed neighborhood of the

i-th edge, then the constant β can be chosen to be a/maxi T`,i, where a is a constant

independent of n and `. For regular ensembles, the number T`,i is independent of i

and this implies β = Θ
(
1/(j2`k2`)

)
. Concentration occurs as n → ∞ for fixed j, k

and `.

In this section, we consider the case where the check-node degree increases with

n. In this case, the concentration theorem is not informative if k grows faster than

n1/(2`). But, the following theorem shows that the concentration theorem can be

modified to handle the scaling law.

Theorem 4. For check-degree k = nω and erasure rate δ = αj
k

, the performance

(in terms of the fraction of erasure messages) of a code randomly chosen from the

(j, k)-regular ensemble over BEC concentrates around its expected value exponentially

in n
1−ω
1+2` where ` is the number of decoding iterations. Mathematically, there exist

constants β′(j, ω, `) and N(j, ω, `) such that

Pr

{∣∣∣∣Z(`)

nj
− p(`)

∣∣∣∣ ≥ ε

}
≤ 2e−β

′n
1−ω
1+2` ε2 (3.4)

for any ε > 0 and n > N .

Proof. See the Appendix F.

68

3. DE Scaling Law Analysis for the q-SC

a. DE Scaling Law Analysis for LM1

For the simplicity of our analysis, we only consider (j, k)-regular code ensemble and

the LM1 decoding algorithm [68] for the q-SC with error probability δ. The DE

recursion for LM1 is (from [68])

xi+1 =δ

(
1−
[
1−(1−δ) (1−(1−xi)k−1

)j−1− xi
]k−1

)j−1

, (3.5)

where xi is the fraction of unverified messages in the i-th iteration. Our analysis of

the scaling law relies on the following lemma.

Lemma 4. Let the functions gk+1(x) and gk+1(x) be defined by

gk+1(x) ,
α

αj

(
1−

[
1−

(
1− α

kj/(j−1)

)(
1−

(
1− αjx

kj/(j−1)

)k)j−1

− αjx

kj/(j−1)

]k)j−1

and

gk+1(x) ,
α

αj

1−
[

1− αj−1
j xj−1

k
− αjx

kj/(j−1)

]kj−1

,

where αj ≥ 1, α ∈ (0, αj], and j ≥ 2. For x ∈ (0, 1] and k > αj−1
j , these functions

satisfy (i) gk(x) ≤ gk(x), (ii) gk(x) is monotonically decreasing with k for k > αj−1
j ,

and (iii) limk→∞ gk(x) = limk→∞ gk(x) = α
αj

(
1− e−αj−1

j xj−1
)j−1

.

Proof. See the Appendix G.

Theorem 5. Consider a sequence of (j, k)-regular LDPC codes with fixed symbol

degree j ≥ 2 and increasing check degree k. Let ᾱj be the largest α such that (1 −

69

e−α
j−1xj−1

)j−1 ≤ x for x ∈ (0, 1]. If the sparsity of the signal is nδ for δ = α(k −
1)−j/(j−1) and α < ᾱj, then there exists a K1 such that by randomly choosing a length-

n code from the (j, k) regular LDPC code ensemble, LM1 reconstruction succeeds

(w.h.p as n→∞) for all k ≥ K1. Conversely, if α > ᾱj then there exists a K2 such

that LM1 reconstruction fails (w.h.p as n→∞) for all k ≥ K2.

Proof. Scaling (3.5) using the change of variables δ = α(k − 1)−j/(j−1) and xi =

αjyi(k − 1)−j/(j−1) gives yi+1 = gk (yi). The function gk(x) also allows us to define

the upper bound zi+1 = gk (zi) where zi ≤ yi implies zi+1 ≤ yi+1.

Since
(
1− x

k

)k
increases monotonically to e−x, we see that gk(y) decreases mono-

tonically to g∗(y). If α < αj, then g∗(y) < y for all y ∈ (0, 1]. Since gk(y) ≤ gk(y)↘
g∗(y), we can choose K1 < ∞ to be the first k such that gk(y) < y for all y ∈ (0, 1].

In this case, the recursion yi+1 = gk (yi) will converge to zero (from y0 = 1) for all

k ≥ K1 and iterative decoding will succeed w.h.p. as n→∞.

If α > αj, then (by the definition of αj) g∗(y) > y for some y ∈ (0, 1]. Since

limk→∞ gk(y) = g∗(y), there exists a K2 such that, for all k ≥ K2, the recursion

yi+1 = gk (yi) will not converge to zero (from y0 = 1) and iterative decoding will fail

w.h.p. as n→∞.

Remark 6. If a randomly chosen code from the (j, k) regular ensemble is applied to a

CS system with LM1 reconstruction, then randomized reconstruction succeeds (w.h.p

as n→∞) when the sparsity is nδ with δ < ᾱj(k−1)−j/(j−1). This requires m = γnδ

measurements with an oversampling ratio of γ > γ0 = ᾱ
−(j−1)/j
j δ−1/jj.

The following lemma shows how to calculate the constants in front of the scaling

laws.

Corollary 2. ᾱ2 = 1, ᾱ3 ≈ 1.87321, ᾱ4 ≈ 1.66455 and ᾱ5 ≈ 1.52073.

Proof. See Appendix H.

70

Corollary 3. For regular LDPC codes and LM1 reconstruction, choosing j =
⌈
ln 1

δ

⌉
gives a uniform lower bound on the oversampling ratio (as δ → 0) of

⌈
ln 1

δ

⌉
e.

Proof. The minimum oversampling ratio γ0 = ᾱ
− j−1

j

j jδ−1/j ≤ jδ−1/j and we choose

j =
⌈
ln 1

δ

⌉
, taking the logarithm of both sides shows that

ln γ0 ≤ ln

⌈
ln

1

δ

⌉
+

1⌈
ln 1

δ

⌉ ln
1

δ
≤ ln

⌈
ln

1

δ

⌉
+ 1. (3.6)

b. Scaling Law Analysis Based on DE for LM2-MB

For the second algorithm in [68], the DE recursion for the fraction xi of unverified

messages in the i-th iteration is

xi+1 = δ

(
λ (1− ρ (1− xi)) + λ

′
(1− ρ (1− xi))(

ρ (1− xi)− ρ
(

1− (1− δ)λ (1− ρ (1− xi))− xi
)))

.

(3.7)

Like the analysis of LM1, we first introduce a lemma to bound the scaled DE equation.

Lemma 5. The functions gk(x) and ḡk(x) are defined as

gk(x) ,
α

ᾱj

((
s(x)

)j−1
+ (j − 1)

(
s(x)

)j−2
(

1− αjx

k

)k−1

(
1−

(
1− 1− αj

k

1− αjx
k

(
s(x)

)j−1
)k−1))

,

where s(x) = 1− (1− αjx
k

)k−1
, i.e., 1− ρ(1− y), and

71

ḡk(x) ,
α

ᾱj

((
1−

(
1− αjx

k

)k)j−1

+ (j − 1)

(
1−

(
1− αjx

k

)k)j−2(
1− αjx

k

)k)
.

For x ∈ (0, 1] and k > α, these functions satisfy (i) ḡk(x) > gk(x), (ii) limk→∞ gk(x) =

limk→∞ gk(x) = g∗(x) where

g∗(x) ,
α

ᾱj

(
1− e−αjx)j−2 (

1 + (j − 2)e−αjx
)
, (3.8)

and (iii) ḡk(x) is a monotonically decreasing function of k.

Proof. See the Appendix I.

Theorem 6. Consider a sequence of (j, k)-regular LDPC codes with variable node

degree j ≥ 3. Let αj be the largest α such that (1− e−αjx)j−2
(1 + (j − 2)e−αjx) ≤ x

for x ∈ (0, 1]. If the sparsity of the signal is nδ with δ = αj/k and α < αj, then

there exists a K1 such that LM2-MB reconstruction succeeds (w.h.p as n → ∞) for

all k ≥ K1. Conversely, if α > αj then there exists a K2 such that LM2-MB decoding

fails (w.h.p as n→∞) for all k ≥ K2 .

Proof. The LM2-MB DE recursion is given by (3.7). Using the change of variables

xi =
αjj

k
yi and δ = αj

k
, the scaled DE equation can be written as yi+1 = gk(yi). Taking

the limit as k →∞ gives yi+1 = g∗(yi).

If α < αj, then the definition of ᾱj implies that g∗(y) < y for y ∈ (0, 1]. Since

gk(y) ≤ gk(y) ↘ g∗(y) (by Lemma 5), we can choose K1 < ∞ to be the first k such

that gk(y) < y for y ∈ (0, 1]. In this case, the recursion yi+1 = gk (yi) will converge

to zero (from y0 = 1) for all k ≥ K1 and iterative decoding will succeed w.h.p. as

72

n→∞.

If α > αj, then (by the definition of αj) g∗(y) > y for some y ∈ (0, 1]. In this

case, there is a K2 and y such that gk(y) > y for all k ≥ K2, and the recursion

yi+1 = gk (yi) does not converge to zero (from y0 = 1) and iterative decoding will fail

w.h.p. as n→∞.

For j = 2, the quantity α2 is undefined because (1− e−αjx)j−2
(1 + (j − 2)e−αjx) =

1. This implies that (2, k) regular LDPC codes do not obey this scaling law of LM2-

MB decoding.

Remark 7. If a randomly chosen code from the (j, k) regular ensemble is applied to

a CS system with LM2-MB reconstruction, then randomized reconstruction succeeds

(w.h.p as n → ∞) when the sparsity is nδ with δ < ᾱjj/k. This requires m ≥ γnδ

measurements and an oversampling ratio of γ > γ0 = 1/ᾱj.

Remark 8. For (j, k) regular LDPC codes, the α-threshold of LM2-MB is given by

αj and can be calculated numerically to get α3 = 1
6
, α4 ≈ 0.34 and α5 ≈ 0.37.

The interesting part of this result is that the number of measurements needed

for randomized reconstruction with LM2-MB scales linearly with the sparsity of the

signal. All previous reconstruction methods with reasonable complexity require a

super-linear number of measurements.

4. Concentration Theorem for the q-SC

Note that the proof of Theorem 5 also depends on the standard concentration theorem

in [17]. Like the BEC case, the result becomes non-informative if k grows faster than

n1/(2`). Therefore, we conjecture (i.e., give without proof) the following concentration

result for LM1 decoding for a randomly chosen code and q-SC error pattern. For

k = nω and δ = α(k− 1)−j/(j−1), the fraction of unverified messages after ` iterations

73

concentrates around its expected value p(`). Mathematically, there exist constants

β′(j, ω, , `) and N(j, ω, `) such that

Pr

{∣∣∣∣Z(`)

nj
− p(`)

∣∣∣∣ ≥ ε

}
≤ 2e−β

′n
1−ω
1+2` ε2

for any ε > 0 and n > N .

To show the concentration theorem, the idea is similar with the one used in

the BEC case. We first reduce the graph to a smaller one by removing the verified

edges in the first iteration, then prove the concentration for the residual graph. The

probability that an edge is not removed in the first iteration is

δ + (1− δ) ((1− (1− δ)k−1
)j
,

so the average number of edges which are not removed in the first iteration is

nj
(
δ + (1− δ) ((1− (1− δ)k−1

)j)
.

Note that the average number of check nodes which are not removed is nj
k

(1−(1− δ)k).
Therefore, the normalized (by the number edges connected to the remaining check

nodes) probability of an edge to remain is

ε ,
nj
(
δ + (1− δ) ((1− (1− δ)k−1

)j)
k nj
k

(
1− (1− δ)k

)
=

δ + (1− δ)
(

1− (1− δ)k−1
)j

1− (1− δ)k . (3.9)

If we substitute α(k − 1)−j/(j−1) for δ in (3.9) and use a Taylor expansion around

k =∞, we have ε = 1
k

+o
(

1
k

)
. So the probability that a check node has degree t after

removal is
(
k
t

)
εt(1 − ε)k−t which converges to Poisson distribution with mean 1 as

k →∞. Following the approach used for the BEC case shows that the concentration

74

theorem also holds for LM1 on the q-SC.

E. Scaling Laws Based on Stopping Set Analysis

DE analysis provides the threshold below which the randomized (or non-uniform)

recovery is guaranteed, in the following sense: the signal and the measurement ma-

trix are both chosen randomly, and w.h.p. the reconstruction algorithm gives the

correct answer. If the reconstruction algorithm is guaranteed to succeed for all sig-

nals of sufficient sparsity, this is called uniform recovery. On the other hand, if

reconstruction algorithm is uniform over all support sets of sufficient sparsity, but

succeeds w.h.p. over the amplitudes of the non-zero elements (i.e., has a small but

non-zero failure probability based on amplitudes), then the reconstruction is called

uniform-in-probability recovery.

According to the analysis in section D, we know that the number of measurements

needed for randomized recovery by using LM2-MB scales linearly with the sparsity of

the signal. Still, the reconstruction algorithm may fail due to the support set (e.g., it

reaches a stopping set) or due to the non-zero amplitudes of the signal (e.g., a false

verification occurs).

In this section, we will analyze the performance of MP decoding algorithms

with uniform-in-probability recovery in the high-rate regime. This follows from a

stopping set analysis of the decoding algorithms. A stopping set is defined as an

erasure pattern (or internal decoder state) from which the decoding algorithm makes

no further progress. Following the definition in [41], we let G = (V ∪ C,E) be the

Tanner graph of a code where V is the set of variable nodes, C is the set of check

nodes and E is the set of edges between V and C. A subset U ⊆ V is a BEC stopping

set if no check node is connected to U via a single edge. The scaling law below uses

75

the average stopping-set enumerator for LDPC codes as a starting point.

1. Scaling Law Analysis for Stopping Sets on the BEC

The average stopping set distribution En,j,k(s) is defined as the average (over the

ensemble) number of stopping sets with size s in a randomly chosen (j, k) regular code

with n variable nodes. The normalized stopping set distribution γj,k(α) is defined as

γj,k(α) , limn→∞
1
n

lnEn,j,k(nα). The critical stopping ratio α∗j,k is defined as α∗j,k ,

inf{α > 0 : γj,k(α) ≥ 0}. Intuitively, when the normalized size of the stopping set is

greater than or equal to α∗j,k, the average number of stopping sets grows exponentially

with n. When the normalized size of the stopping set is less than α∗j,k, the average

number of stopping sets decays exponentially with n. In fact, there exist codes with

no stopping sets of normalized size less than α∗j,k. Therefore, the quantity α∗j,k can

also be thought of as a deterministic decoding threshold.

The normalized average stopping set distribution γj,k(α) for (j, k) regular ensem-

bles on the BEC is given by [42]

γj,k(α)≤γj,k(α;x),
j

k
ln

(
(1+x)k−kx

xkα

)
−(j−1)h(α),

where h(·) is the entropy of a binary distribution and the bound holds for any 0 ≤
x ≤ 1. The optimal value x0 is the unique positive solution of

x((1 + x)k−1 − 1)

(1 + x)k − kx = α. (3.10)

This gives the following theorem.

Theorem 7. For any 0 ≤ θ < 1, there is a K < ∞ such that, for all k ≥ K, a

randomly chosen (j, k) regular LDPC code (j ≥ 3) will (w.h.p. as n → ∞) correct

all erasure patterns of size less than θne(k − 1)−j/(j−2).

76

Sketch of Proof. Since there is no explicit solution for x0, we use a 2nd order expan-

sion of the LHS of (3.10) around x = 0 and solve for x. This gives x0 =
√

α
k−1

+ o(α).

Since γj,k(α) ≤ γj,k(α, x) holds for all x ≥ 0, we have

γj,k(α)≤ j
k

ln

(
(1+
√

α
k−1)

k
−k
√

α
k−1

α
k−1

kα
2

)
−(j − 1)h(α). (3.11)

Next we expand the RHS of (3.11) around α = 0 and neglect the high order terms;

solving for α gives an upper bound on the critical stopping ratio

α∗j,k ≤ exp

(
j − 2− j ln(k − 1)

j − 2

)
.

It can be shown that this bound on α∗j,k is tight as k → ∞. This means that, for

any 0 ≤ θ < 1, there is a K such that θe(k − 1)−j/(j−2) ≤ α∗j,k ≤ e(k − 1)−j/(j−2) for

all k > K. Therefore, the critical stopping ratio α∗j,k scales like e(k − 1)−j/(j−2) as

k →∞.

Remark 9. Although the threshold is strictly increasing with j, this ignores the fact

that the code rate is decreasing with j. However, if one optimizes the oversampling

ratio instead, then the choice of j∗ = 2 + 2 ln(k − 1) is nearly optimal. Moreover,

it leads to the simple formula α∗j∗,k = 1
k−1

and an oversampling ratio which grows

logarithmically with k.

2. Stopping Set Analysis for the q-SC with LM1

A stopping set for LM1 is defined by considering a decoder where S, T, U are disjoint

subsets of V corresponding to verified, correct, and incorrect variable nodes. Decoding

progresses if and only if (i) a check node has all but one edge attached to S or (ii)

a check node has all edges attached to S ∪ T . Otherwise, the pattern is a stopping

set. In the stopping set analysis for q-SC, we can define En,j,k(α, β) as the average

77

number of stopping sets with |T | = nα correctly received variable nodes and |U | = nβ

incorrectly received variable nodes where n is the code length.

The average number of stopping sets En,j,k(α, β) can be computed by counting

the number of ways, Sn,j,k(a, b), that a correct variable nodes, b incorrect variables

nodes, and n − a − b verified variable nodes can be connected to nj
k

check nodes to

form a stopping set. The number Sn,j,k(a, b) can be computed using the generating

function for one check,

gk(x, y) , (1 + x+ y)k − ky − ((1 + x)k − 1
)
,

which enumerates the number of edge connection patterns (“1” counts verified edges,

“x” counts correct edges, and “y” counts incorrect edges) that prevent decoder

progress. Generalizing the approach of [42] gives

En,j,k(α, β)=

0BBBB@
n

nα, nβ, n(1− α− β)

1CCCCASn,j,k(αn, βn)

0BBBB@
nj

njα, njβ, nj(1− α− β)

1CCCCA
(3.12)

where

Sn,j,k(a, b) , coeff
(
gk(x, y)nj/k, xjayjb

)
.

For this work, we are mainly interested in largest β for which En,j,k(α, β) goes

to zero as n → ∞. Since the growth (or decay) rate of En,j,k(α, β) is exponential in

n, this leads us to consider the normalized average stopping set distribution γj,k(α, β)

which is defined as

γj,k(α, β) = lim
n→∞

1

n
lnEn,j,k(α, β). (3.13)

78

Likewise, the critical stopping ratio β∗j,k is defined as

β∗j,k = inf{β ∈ [0, 1] : wj,k(β) > 0} (3.14)

where

wj,k(β) , sup
α∈[0,1−β]

γj,k(α, β).

Note that wj,k(β) describes the asymptotic growth rate of the number of stopping

sets with number of incorrectly received nodes nβ. The number of stopping sets with

size less than nβ∗j,k decays exponentially with n and the ones with size larger than

nβ∗j,k grows exponentially with n.

Theorem 8. The normalized average stopping set distribution γj,k(α, β) for LM1 can

be bounded by

γj,k(α, β) ≤ γj,k(α, β;x, y) ,

j

k
ln

(
1 + (1 + x+ y)k − ky − (1 + x)k

)
xkαykβ

+ (1− j)h(α, β, 1− α− β)

(3.15)

where the tightest bound is given by choosing (x, y) to be the unique positive solution

of

x
(

(1 + x+ y)k−1 − (1 + x)k−1
)

1 + (1 + x+ y)k − ky − (1 + x)k
= α (3.16)

and
y
(

(1 + x+ y)k−1 − 1
)

1 + (1 + x+ y)k − ky − (1 + x)k
= β. (3.17)

79

Proof. Starting from (3.12) and using Stirling’s formula, it can be verified easily that

lim
n→∞

1

n
ln

(
n

nα,nβ,n(1−α−β

)(
nj

njα,njβ,nj(1−α−β

)=(1− j)h(α, β, 1− α− β),

where h(·) is the entropy of a ternary distribution. Using a Chernoff-type bound for

Sn,j,k(a, b) (i.e., coeff (f(x, y), xiyj) ≤ f(x,y)
xiyj

for all x, y > 0), we define

ψj,k(α, β;x, y),
nj

k
ln

(
1+(1+x+y)k−ky−(1+x)k

)
xkαykβ

.

Minimizing the bound over x, y gives

γj,k(α, β) ≤ γj,k(α, β;x, y)=

ψj,k(α, β;x, y) + (1− j)h(α, β, 1− α− β),

where (x, y) is the unique positive solution of (3.16) and (3.17). One can also show

that the bound is exponentially tight in n.

3. Scaling Law Analysis for LM1 Stopping Sets

In CS literature, we are only interested in the scenario that β is small. It means we

need to perform stopping set analysis in the high-rate regime or to the signal vectors

with sparse support. For the convenience of analysis, we only derive the analysis

for (j, k) regular codes though it can be generalized to irregular codes [42]. In our

analysis, the variable node degree j is fixed and the check node degree k is increasing.

By calculating the scaling law of wj,k(β), we find the uniform-in-probability recovery

decoding threshold β∗j,k which tells us the relationship between the minimum number

of measurements needed for uniform-in-probability recovery and the sparsity of the

signal.

The following theorem shows the scaling law of LM1 for the q-SC.

80

Theorem 9. There is a code from (j, k) regular LDPC code ensemble and a constant

K such that for the q-SC, all error patterns of size nδ for δ < β̄j(k − 1)−j/(j−2) can

be recovered by LM1 (w.h.p. as n → ∞) for k ≥ K where β̄j is the unique positive

root on c of the following implicit function

v(d) =
d

2

(
(c− 1)j ln(1− c)− 2c ln(c)

+ (1 + c)(j − 2)(−1 + ln d)
)

(3.18)

where d = (1− c)−j/(j−2)c2/(j−2).

Lemma 6. Consider sequences of (xk, yk) given by (3.16) and (3.17) which satisfy

βk = Θ
(
(k − 1)−j/(j−2)

)
as k goes to infinity. In this case, the implied xk, yk, and αk

all tend to zero.

Proof. See the Appendix J.

Lemma 7. For the q-SC with LM1 decoding and j ≥ 3, the average number of

stopping sets with size sublinear in n goes to zero as n→∞. More precisely, for each

3 ≤ j < k there exists a δj,k > 0 such that

lim
n→∞

δj,kn∑
b=1

n−b∑
a=0

En,j,k

(
a

n
,
b

n

)
= 0.

Proof. See the Appendix K.

Proof of Theorem 9. The main idea of the proof is to start from (3.15) and find a

scaling law for wj,k(β) as k grows. Since wj,k(β) is the exponent of the average

number of stopping sets and the resulting scaling function v(d) is negative in the range(
0, β̄j

)
, almost all codes have no stopping sets of size nδ with 0 < δ < β̄j(k−1)−j/(j−2).

Because finding the limiting function of the scaled wj,k(β) is mathematically difficult,

81

we first find an upper bound on wj,k(β) and then analyze the limiting function of this

upper bound.

Before we make any assumptions on the structure of x and y, we note that picking

any x and y gives an upper bound of γj,k(α, β). To make the bound tight, we should

pick good values for x and y. For example, the (x, y) which leads to the tightest bound

is the positive solution of (3.16) and (3.17). Since we are free to choose the variables

x and y as we like, we assume x and y decay with the same rate and are both equal

to o
(

1
k−1

)
so that the Taylor expansions of (3.16) and (3.17) converge.

Applying Taylor expansion for small x, y to (3.16) and (3.17), we have

xy(k − 1) ≈ α

(xy + y2) ≈ β.

Solving these equations for x and y gives the approximations

x0 ≈ α√
(β − α)(k − 1)

y0 ≈
√
β − α
k − 1

.

Next, we choose α = cβ for 0 < c < 1, which requires that 0 < α < β. 2 Applying

these substitutions to (3.15) gives

γj,k

(
cβ, β; cβ√

β(1−c)(k−1)
,
√

β(1−c)
k−1

)
which equals

2The scaling regime we consider is β = o(k−1) and this leads to the scaling of x, y.
The scaling of x, y also implies that 0 < α < β. So we see that, although there exist
stopping sets with α ≥ β, they do not occur in the scaling regime we consider.

82

β

2

(
(1 + c) (2− j) (1− ln(β))− (1− c) j ln(1− c)

− 2 c ln(c) + (1 + c) j ln(−1 + k)

)
+O

(
β3/2

)
.

(3.19)

Plugging β = d(k − 1)−j/(j−2) into this equation for d ≥ 0 gives

γj,k(α, β) ≤ d

2
(k − 1)−j/(j−2)

(
(c− 1)j ln(1− c)− 2c ln(c)

+ (1 + c)(2− j)(1− ln d)
)

+O
(
(k − 1)−2j/(j−2)

)
.

(3.20)

Scaling the RHS of (3.20) by (k − 1)j/(j−2) gives the limiting function

v(c, d) ,
d

2

(
(c− 1)j ln(1− c)

− 2c ln(c) + (1 + c)(2− j)(1− ln d)
)
.

(3.21)

Next, we maximize the scaled upper bound of γj,k(α, β) over α by maximizing v(c, d)

over c. The resulting function v(d) , maxc∈(0,1) v(c, d) is a scaled upper bound on

wj,k(β) as k goes to infinity. Taking the derivative w.r.t. c, setting it to zero, and

solving for d gives the unique solution

d = (1− c)−j/(j−2)c2/(j−2). (3.22)

Since the second derivative

d

2

(
−2

c
− j

1− c
)

(k − 1)−j/(j−2)

83

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

d

Zoomed Region

0.8 0.82 0.84 0.86 0.88

−0.02

−0.01

0

0.01

0.02

0.03

0.04

v(d)
w’

3,12
(d)

w’
3,24

(d)

w’
3,48

(d)

w’
3,6

(d)

Fig. 7. Numerical evaluation w′j,k(d) and theoretical bound v(d)

is negative, so we have found a maximum. Moreover, v(d) is given implicitly by

(3.21) and (3.22). The only positive root of v(d) is denoted β̄j and is a constant

independent of k. Fig. 7 shows the curves given by numerical evaluation of the scaled

wj,k(β), which is given by

w′j,k(d) = (k − 1)j/(j−2)wj,k
(
d/(k − 1)j/(j−2)

)
,

and the limiting function v(d). The proof is not yet complete, however, because we

have not yet considered stopping sets whose sizes are sublinear in n. To handle these,

we use Lemma 7, which shows that the average number of stopping sets with size

84

sublinear in n also goes to zero.

Remark 10. In a CS system with strictly sparse signals and LM1 reconstruction,

we have uniform-in-probability reconstruction (w.h.p. as n → ∞) of all signals with

sparsity at most nδ where δ < β̄j(k−1)−j/(j−2). This requires m = γnδ measurements

and an oversampling rate of γ > γ0 = β̄
−(j−2)/j
j jδ−2/j.

Remark 11. If the signal has all non-negative components [48], then the verification

based algorithm will have no FV because the neighbors of a check node will sum to

zero only if these neighbors are exactly zero. Therefore, the above analysis implies

uniform recovery of non-negative signals that are sufficiently sparse.

F. Information Theory and Sparse CS

At first glance, the results in this chapter seem to be at odds with existing lower

bounds on the number of measurements required for CS. In this section, we explore

the fundamental conditions for linear scaling using sparse measurements from an

information theoretic point of view.

Let k and j be check and symbol degrees; let n be the number of symbol nodes

and m = nω be the number of check symbol nodes. The random signal vector Xn
1 has

i.i.d. components drawn from fX(x) and the random measurement vector is Y m
1 . The

number of non-zero elements in the signal is controlled by assuming that the average

number of non-zero symbol nodes attached to a check node is given by λ. This allows

us to write fX(x) = k−λ
k
δ(x)+ λ

k
fZ(x), where Z is the random variable associated with

a non-zero signal element. Since nj = mk, the condition ω < 1 implies k → ∞ and

that the number of non-zero symbol nodes attached to a check node becomes Poisson

with mean λ. Therefore, the amount of information provided by the measurements

is given by

85

H (Y m
1) ≤

m∑
i=1

H (Yi)

=
nj

k

∞∑
i=0

e−λ
λi

i!
H(Z ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸

i times

)

≤ jn1−ω
∞∑
i=0

e−λ
λi

i!
(iH(Z))

= jn1−ωλH(Z).

Since λ/k is the average fraction of non-zero symbol nodes, the entropy of the signal

vector can be written as

H (Xn
1) = −nh

(
λ

k

)
+ n

λ

k
H(Z)

= λn1−ω ln
1

λn−ω
+ λn1−ωH(Z) +O

(
n1−2ω

)
.

This implies that

H(Y m
1)−H(Xn

1) ≤ λn1−ω
(

(j − 1)H(Z)− n
1

λn−ω

)
.

Since a necessary condition for reconstruction is H (Y m
1)−H (Xn

1) ≥ 0, we therefore

find that

n ≤ exp

(
H(Z)(j − 1) + lnλ

ω

)
is required for reconstruction. This implies, that for any CS algorithm to work, either

H(Z) has to be infinite or j has to grow at least logarithmically with n. This does

not conflict with the analysis of LM2-MB in randomized reconstruction because, for

signals over real numbers or unbounded alphabets, the entropy H(Z) can be infinite.

86

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of non−zero elements

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

LM2NB (3,6)
LP
SP
ROMP
RWLP−0
RWLP−0.5
LM2−MB (3,6)
LM1 (3,6)

Fig. 8. Simulation results for zero-one sparse signals of length 256 with 128 measure-

ments.

G. Simulation Results

In this section, we provide the simulation results of LM1, LM2-MB and LM2-NB

reconstruction algorithms and compare these results with other reconstruction algo-

rithms. We consider two types of strictly sparse signals. The first type is the zero-one

sparse signal where the entries of the signal vector are either 0 or ±1. The second

type is the Gaussian sparse case where the entries of the signal are either 0 or a

Gaussian random variable with zero mean and unit variance. We choose the signal

length n = 256 and number of measurements m = 128.

We compare different recovery algorithms such as linear-programming (LP) [45],

87

subspace pursuit (SP) [51], regularized orthogonal matching pursuit (ROMP) [52],

reweighted `p minimization (RWLP-p) [53], LM1, LM2-MB and LM2-NB. The mea-

surement matrices for LM1, LM2-MB and LM2-NB are generated randomly from the

(3, 6), (4,8) and (5,10) ensembles without double edges and 4-cycles. We also pick the

non-zero entries in the measurement matrices to be i.i.d. Gaussian random variables.

In all other algorithms, the measurement matrices are i.i.d. Gaussian random ma-

trices with zero mean and unit variance3. Each point is obtained by simulating 100

blocks. Fig. 8 shows the simulation results for the zero-one sparse signal and Fig. 9

shows the results for Gaussian sparse signal. From the results we can see LM2-MB

and LM2-NB perform favorably when compared to other algorithms.

Another interesting observation is that LM1, LM2-MB and LM2-NB are not

sensitive to the magnitudes of the non-zero coefficients. They perform almost the same

for zero-one sparse signal and Gaussian sparse signal. This is due to the verification-

based nature of the decoding algorithm. The other advantage of LM1, LM2-MB and

LM2-NB is the computational complexity is linear for both the measuring process

(i.e., encoding) and the reconstruction process (i.e., decoding).

We also find the maximum sparsity K∗ for perfect reconstruction when we use

parity-check matrices from (3, k) and (5, k) ensembles (with different k) as the mea-

surement matrices when n is large and try to see how K∗ scales with the code rate.

In the simulation, we fix n = 10000, try different k’s (or m’s) and use LM2-MB as

the decoding algorithm. Fig. 10 shows the how K∗ scales with m in high rate regime.

We also show the theoretical scaling in Fig. 10 which is ᾱjnj/k with ᾱ3 = 1/6 and

ᾱ5 ≈ 0.37. Notice that the simulation and the theoretical results match very well.

3We also tried the other algorithms with our sparse measurement matrices (for the
sake of fairness), but the performance was worse than the dense Gaussian random
matrices.

88

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of non−zero elements

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

LM2NB (3,6)
LP
SP
ROMP
RWLP−0
RWLP−0.5
LM2−MB (3,6)
LM1 (3,6)

Fig. 9. Simulation results for Gaussian sparse signals of length 256 with 128 measure-

ments.

The simulation results for (3, 6), (4, 8) and (5, 10) ensembles are shown in Fig. 11

and Fig. 12. The results show that for short block length and rate a half, using

measurement matrix from ensemble with higher VN/CN degree leads to worse per-

formance. This seems to conflict the results shown in Fig. 10. Actually, in the scaling

law analysis, we consider rates close to 1 and large block-length which is not satisfied

in the simulation of Fig. 11 and Fig. 12.

In this chapter, we see how LDPC codes over large alphabet sets together with

VB decoding algorithms can be applied to a compressed sensing system. In next

chapter, we will discuss the modulatoin codes design for flash memories.

89

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

700

800

900

1000

Number of measurements

M
ax

im
um

 n
um

be
r

of
 n

on
−

ze
ro

 e
le

m
en

ts

Simulation, (3,k)

Simulation, (5,k)

Theoretical scaling, (3,k)

Theoretical scaling, (5,k)

Fig. 10. Simulation of high rate scaling of (3, k) and (5, k) ensembles for block length

n = 10, 000.

90

20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of non−zero elements

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

LM2NB (3,6)
LM2NB (4,8)
LM2NB (5,10)
LM2MB (3,6)
LM2MB (4,8)
LM2MB (5,10)
LM1 (3,6)
LM1 (4,8)
LM1 (5,10)

Fig. 11. Simulation results for zero-one spikes of length 256 with 128 measurements

by using (3, 6), (4, 8) and (5, 10) ensembles.

91

20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of non−zero elements

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

LM2NB (3,6)
LM2NB (4,8)
LM2NB (5,10)
LM2MB (3,6)
LM2MB (4,8)
LM2MB (5,10)
LM1 (3,6)
LM1 (4,8)
LM1 (5,10)

Fig. 12. Simulation results for Gaussian spikes of length 256 with 128 measurements

by using (3, 6), (4, 8) and (5, 10) ensembles.

92

CHAPTER IV

MODULATION CODES FOR FLASH MEMORIES BASED ON

LOAD-BALANCING THEORY

A. Introduction

Information-theoretic research on capacity and coding for write-limited memory orig-

inates in [57], [56], [58] and [59]. In [57], the authors consider a model of write-once

memory (WOM). In particular, each memory cell can be in state either 0 or 1. The

state of a cell can go from 0 to 1, but not from 1 back to 0 later. These write-once bits

are called wits. It is shown that, the efficiency of storing information in a WOM can

be improved if one allows multiple rewrites and designs the storage/rewrite scheme

carefully.

Multilevel flash memory is a storage technology where the charge level of any cell

can be easily increased, but is difficult to decrease. Recent multilevel cell technology

allows many charge levels to be stored in a cell. Cells are organized into blocks that

contain roughly 105 cells. The only way to decrease the charge level of a cell is to erase

the whole block (i.e., set the charge on all cells to zero) and reprogram each cell. This

takes time, consumes energy, and reduces the lifetime of the memory. Therefore, it is

important to design efficient rewriting schemes that maximize the number of rewrites

between two erasures [74], [75], [60], [78], [73]. The rewriting schemes increase some

cell charge levels based on the current cell state and message to be stored. In this

chapter, we call a rewriting scheme a modulation code.

Two different objective functions for modulation codes are primarily considered

in previous work: (i) maximizing the number of rewrites for the worst case [74, 75, 78]

and (ii) maximizing for the average case [73]. As Finucane et al. [73] mentioned, the

93

reason for considering average performance is the averaging effect caused by the large

number of erasures during the lifetime of a flash memory device. Our analysis shows

that the worst-case objective and the average case objective are two extreme cases of

our optimization objective. We also discuss under what conditions each optimality

measure makes sense.

In previous work (e.g., [73, 75, 60, 78]), many modulation codes are shown to

be asymptotically optimal as the number of cell-levels q goes to infinity. But the

condition that q → ∞ can not be satisfied in practical systems. Therefore, we also

analyze asymptotically optimal modulation codes when q is only moderately large

using the results from load-balancing theory [72, 76, 61]. This suggests an enhanced

algorithm that improves the performance of practical system significantly. Theoretical

analysis and simulation results show that this algorithm performs better than other

asymptotically optimal algorithms when q is moderately large.

The structure of the chapter is as follows. The system model and performance

evaluation metrics are discussed in Section B. An asymptotically optimal modulation

code, which is universal over arbitrary i.i.d. input distributions, is proposed in Section

C. The storage efficiency of this asymptotically optimal modulation code is analyzed

in Section D. An enhanced modulation code is also presented in Section D. The

storage efficiency of the enhanced algorithm is also analyzed in Section D. Simulation

results and comparisons are presented in Section D.

B. System Model

1. System Description

Flash memory devices usually rely on error detecting/correcting codes to ensure a

low error rate. So far, practical systems tend to use Bose-Chaudhuri-Hocquenghem

94

(BCH) and Reed-Solomon (RS) codes. The error-correcting codes (ECC’s) are used

as the outer codes while the modulation codes are the inner codes. In this chapter,

we focus on the modulation codes and ignore the noise and the design of ECC for

now.

Let us assume that a block contains n × N q-level cells and that n cells (called

an n-cell) are used together to store k l-ary variables (called a k-variable). A block

contains N n-cells and the N k-variables are assumed to be i.i.d. random variables.

We assume that all the k-variables are updated together randomly at the same time

and the new values are stored in the corresponding n-cells. This is a reasonable

assumption in a system with an outer ECC. We use the subscript t to denote the

time index and each rewrite increases t by 1. When we discuss a modulation code,

we focus on a single n-cell. (The encoder of the modulation code increases some of

the cell-levels based on the current cell-levels and the new value of the k-variable.)

Remember that cell-levels can only be increased during a rewrite. So, when any cell-

level must be increased beyond the maximum value q − 1, the whole block is erased

and all the cell levels are reset to zero. We let the maximal allowable number of

block-erasures be M and assume that after M block erasures, the device becomes

unreliable.

Assume the k-variable written at time t is a random variable xt sampled from the

set {0, 1, · · · , lk − 1} with distribution pX(x). For convenience, we also represent the

k-variable at time t in the vector form as x̄t ∈ Zk
l where Zl denotes the set of integers

modulo l. The cell-state vector at time t is denoted as s̄t = (st(0), st(1), . . . , st(n−1))

and st(i) ∈ Zq denotes the charge level of the i-th cell at time t. When we say s̄i � s̄j,

we mean si(m) ≥ sj(m) for m = 0, 1, , . . . , n− 1. Since the charge level of a cell can

only be increased, continuous use of the memory implies that an erasure of the whole

block will be required at some point. Although writes, reads and erasures can all

95

introduce noise into the memory, we neglect this and assume that the writes, reads

and erasures are noise-free.

Consider writing information to a flash memory when encoder knows the previous

cell state s̄t−1, the current k-variable x̄t, and an encoding function f : Zk
l × Zn

q → Zn
q

that maps x̄t and s̄t−1 to a new cell-state vector s̄t. The decoder only knows the

current cell state s̄t and the decoding function g : Zn
q → Zk

l that maps the cell state

s̄t back to the variable vector ¯̂xt. Of course, the encoding and decoding functions

could change over time to improve performance, but we only consider time-invariant

encoding/decoding functions for simplicity.

2. Performance Metrics

a. Lifetime v.s. Storage Efficiency

The idea of designing efficient modulation codes jointly to store multiple variables in

multiple cells was introduced by Jiang [74]. In previous work on modulation codes

design for flash memory (e.g. [74], [75], [78], [73]), the lifetime of the memory (either

worst-case or average) is maximized given fixed amount of information per rewrite.

Improving storage density and extending the lifetime of the device are two conflicting

objectives. One can either fix one and optimize the other or optimize over these two

jointly. Most previous work (e.g., [73, 75, 60, 78]) takes the first approach by fixing

the amount of information for each rewrite and maximizing the number of rewrites

between two erasures. In this chapter, we consider the latter approach and our

objective is to maximize the total amount of information stored in the device until

the device dies. This is equivalent to maximizing the average (over the k-variable

96

distribution pX(x)) amount of information stored per cell-level,

γ , E

(∑R
i=1 Ii

n(q − 1)

)
,

where Ii is the amount of information stored at the i-th rewrite, R is the number of

rewrites between two erasures, and the expectation is over the k-variable distribution.

We also call γ as storage efficiency.

b. Worst Case v.s. Average Case

In previous work on modulation codes for flash memory, the number of rewrites of an

n-cell has been maximized in two different ways. The authors in [74, 75, 78] consider

the worst case number of rewrites and the authors in [73] consider the average number

of rewrites. As mentioned in [73], the reason for considering the average case is due

to the large number of erasures in the lifetime of a flash memory device. Interest-

ingly, these two considerations can be seen as two extreme cases of the optimization

objective in (4.4).

Let the k-variables be a sequence of i.i.d. random variables over time and all

the n-cells. The objective of optimization is to maximize the amount of information

stored until the device dies. The total amount of information stored in the device1

can be upper-bounded by

W =
M∑
i=1

Ri log2(lk) (4.1)

where Ri is the number of rewrites between the (i− 1)-th and the i-th erasures. Note

that the upper bound in (4.1) is achievable by uniform input distribution, i.e., when

1There is a subtlety here. If the n-cell changes to the same value, should it count
as stored information? Should this count as a rewrite? This formula assumes that it
counts as a rewrite, so that lk values (rather than lk − 1) can be stored during each
rewrite.

97

the input k-variable is uniformly distributed over Zlk , each rewrite stores log2(lk) =

k log2 l bits of information. Due to the i.i.d. property of the input variables over

time, Ri’s are i.i.d. random variables over time. Since Ri’s are i.i.d. over time, we

can drop the subscript i. Since M , which is the maximum number of erasures allowed,

is approximately on the order of 107, by the law of large numbers (LLN), we have

W ≈ME [R] k log2(l).

Let the set of all valid encoder/decoder pairs be

Q = {f, g|s̄t = f(s̄t−1, x̄t), x̄t = g(s̄t), s̄t � s̄t−1} ,

where s̄t � s̄t−1 implies the charge levels are element-wise non-decreasing. This allows

us to treat the problem

max
f,g∈Q

W,

as the following equivalent problem

max
f,g∈Q

E [R] k log2(l). (4.2)

Denote the maximal charge level of the i-th n-cell at time t as di(t). Note that

time index t is reset to zero when a block erasure occurs and increased by one at

each rewrite otherwise. Denote the maximal charge level in a block at time t as d(t),

which can be calculated as d(t) = maxi di(t). Define ti as the time when the i-th

n-cell reaches its maximal allowed value, i.e., ti , min{t|di(t) = q}. We assume,

perhaps naively, that a block-erasure is required when any cell within a block reaches

its maximum allowed value. The time when a block erasure is required is defined as

T , mini ti. It is easy to see that E [R] = NE [T] , where the expectations are over

the k-variable distribution. So maximizing E [T] is equivalent to maximizing W . So

98

the optimization problem (4.2) can be written as the following optimization problem

max
f,g∈Q

E

[
min

i∈{1,2,··· ,N}
ti

]
. (4.3)

Under the assumption that the input is i.i.d. over all the n-cells and time indices, one

finds that the ti’s are i.i.d. random variables. Let their common probability density

function (pdf) be ft(x). It is easy to see that T is the minimum of N i.i.d. random

variables with pdf ft(x). Therefore, we have fT (x) = Nft(x) (1− Ft(x))N−1 , where

Ft(x) is the cumulative distribution function (cdf) of ti. So, the optimization problem

(4.3) becomes

max
f,g∈Q

E [T] = max
f,g∈Q

∫
Nft(x) (1− Ft(x))N−1 xdx. (4.4)

Note that when N = 1, the optimization problem in (4.4) simplifies to

max
f,g∈Q

E [ti] . (4.5)

This is essentially the case that the authors in [73] consider. When the whole block is

used as one n-cell and the number of erasures allowed is large, optimizing the average

(over all input sequences) number of rewrites of an n-cell is equivalent to maximizing

the total amount of information stored W. The analysis also shows that the reason

we consider average performance is not only due to the averaging effect caused by the

large number of erasures. One other important assumption is that there is only one

n-cell per block.

The other extreme is when N � 1. In this case, the pdf Nft(x) (1− Ft(x))N−1

tends to a point mass at the minimum of t and the integral
∫
Nft(x) (1− Ft(x))N−1 tdt

approaches the minimum of t. This gives the worst case stopping time for the pro-

gramming process of an n-cell. This case is considered by [74, 75, 78]. Our analysis

shows that we should consider the worst case when N � 1 even though the device

99

experiences a large number of erasures. So the optimality measure is not determined

only by M , but also by N. When N and M are large, it makes more sense to consider

the worst case performance. When N = 1, it is better to consider the average per-

formance. When N is moderately large, we should maximize the number of rewrites

using (4.4) which balances the worst case and the average case.

When N is moderately large, one should probably focus on optimizing the func-

tion in (4.4), but it is not clear how to do this directly. So, this remains an open

problem for future research. Instead, we will consider a load-balancing approach to

improve practical systems where q is moderately large.

3. N = 1 v.s. N � 1

If we assume that there is only one variable changed each time, the average amount

of information per cell-level can be bounded by log2 kl because there are kl possible

new values. Since the number of rewrites can be bounded by n(q − 1), we have

γ ≤ log2 kl. (4.6)

If we allow arbitrary change on the k-variables, there are totally lk possible new

values. It can be shown that

γ ≤ k log2 l. (4.7)

For fixed l and q, the bound in (4.7) suggests using a large k can improve the storage

efficiency. This is also the reason jointly coding over multiple cells can improve the

storage efficiency [74]. Since optimal rewriting schemes only allow a single cell-level

to increase by one during each rewrite, decodability implies that n ≥ kl − 1 for the

first case and n ≥ lk− 1 for the second case. Therefore, the bounds in (4.6) and (4.7)

also require large n to improve storage efficiency.

100

The upper bound in (4.7) grows linearly with k while the upper bound in (4.6)

grows logarithmically with k. Therefore, in the remainder of this chapter, we assume

an arbitrary change in the k-variable per rewrite and N = 1, i.e., the whole block is

used as an n-cell, to improve the storage efficiency. This approach implicitly trades

instantaneous capacity for future storage capacity because more cells are used to store

the same number of bits, but the cells can also be reused many more times.

Note that the assumption of N = 1 might be difficult for real implementation,

but its analysis gives an upper bound on the storage efficiency. From the analysis

above with N = 1, we also know that maximizing γ is equivalent to maximize the

average number of rewrites.

C. Self-randomized Modulation Codes

In [73], modulation codes are proposed that are asymptotically optimal (as q goes to

infinity) in the average sense when k = 2. In this section, we introduce a modulation

code that is asymptotically optimal for arbitrary input distributions and arbitrary

k and l. This rewriting algorithm can be seen as an extension of the one in [73].

The goal is, to increase the cell-levels uniformly on average for an arbitrary input

distribution. Of course, decodability must be maintained. The solution is to use

common information, known to both the encoder (to encode the input value) and the

decoder (to ensure the decodability), to randomize the cell index over time for each

particular input value.

Let us assume the k-variable is an i.i.d. random variable over time with arbitrary

distribution pX(x) and the k-variable at time t is denoted as xt ∈ Zlk . The output of

the decoder is denoted as x̂t ∈ Zlk . We choose n = lk and let the cell state vector at

time t be s̄t = (st(0), st(1), · · · , st(n− 1)), where st(i) ∈ Zq is the charge level of the

101

i-th cell at time t. At t = 0, the variables are initialized to s0 = (0, . . . , 0), x0 = 0 and

r0 = 0.

The decoding algorithm x̂t = g(s̄t) is described as follows.

• Step 1: Read cell state vector s̄t and calculate the `1 norm rt = ‖s̄t‖1.

• Step 2: Calculate st =
∑n−1

i=1 ist(i) and x̂t = st − rt(rt+1)
2

mod lk.

The encoding algorithm st = f(st−1, xt) is described as follows.

• Step 1: Read cell state s̄t−1 and calculate rt−1 and x̂t−1 as above. If x̂t−1 = xt,

then do nothing.

• Step 2: Calculate ∆xt = xt − x̂t−1 mod lk and wt = ∆xt + rt−1 + 1 mod lk

• Step 3: Increase the charge level of the wt-th cell by 1.

For convenience, in the rest of the chapter, we refer the above rewriting algorithm as

“self-randomized modulation code”.

Theorem 10. The self-randomized modulation code achieves at least n(q − q2/3)

rewrites with high probability, as q →∞, for arbitrary k, l, and i.i.d. input distribu-

tion pX(x). Therefore, it is asymptotically optimal for random inputs as q →∞.

Sketch of Proof. The proof is similar to the proof in [73]. Since exactly one cell has

its level increased by 1 during each rewrite, rt is an integer sequence that increases

by 1 at each rewrite. The cell index to be written wt is randomized by adding the

value (rt + 1) mod lk. This causes each consecutive sequence of lk rewrites to have

a uniform affect on all cell levels. As q → ∞, an unbounded number of rewrites is

possible and we can assume t→∞.

Consider the first nq−nq2/3 steps, the value at,k,l , (rt + 1) mod lk is as even as

possible over {0, 1, · · · , lk − 1}. For convenience, we say there are (q − q2/3) at,k,l’s at

102

each value, as the rounding difference by 1 is absorbed in the o(q) term. Assuming

the input distribution is pX = {p0, p1, · · · , plk−1}. For the case that at,k,l = i, the

probability that wt = j is p
(j−i) mod lk

for j ∈ {0, 1, · · · , lk − 1}. Therefore, wj has a

uniform distribution over {0, 1, · · · , lk − 1}. Since inputs are independent over time,

by applying the same Chernoff bound argument as [73], it follows that the number of

times wt = j is at most q− 3 with high probability (larger than 1− 1/poly(q)) for all

j. Summing over j, we finish the proof.

Remark 12. Notice that the randomizing term rt a deterministic term which makes

wt look random over time in the sense that there are equally many terms for each

value. Moreover, rt is known to both the encoder and the decoder such that the en-

coder can generate “uniform” cell indices over time and the decoder knows the accu-

mulated value of rt, it can subtract it out and recover the data correctly. Although

this algorithm is asymptotically optimal as q →∞, the maximum number of rewrites

n(q − o(q)) cannot be achieved for moderate q. This motivates the analysis and the

design of an enhanced version of this algorithm for practical systems in next section.

Remark 13. A self-randomized modulation code uses n = lk cells to store a k-

variable. This is much larger than the n = kl used by previous asymptotically optimal

algorithms because we allow the k-variable to change arbitrarily. Although this seems

to be a waste of cells, the average amount of information stored per cell-level is actually

maximized (see (4.6) and (4.7)). In fact, the definition of asymptotic optimality

requires n ≥ lk − 1 if we allow arbitrary changes to the k-variable.

Remark 14. We note that the optimality of the self-randomized modulation codes is

similar to the weak robust codes presented in [62].

Remark 15. We use n = lk cells to store one of lk − 1 possible messages. This

is slightly worse than the simple method of using n = lk − 1. Is it possible to have

103

self-randomization using only n = lk−1 cells? A preliminary analysis of this question

based on group theory indicates that it is not. Thus, the extra cell provides the pos-

sibility to randomize the mappings between message values and the cell indices over

time.

D. Load-balancing Modulation Codes

While asymptotically optimal modulation codes (e.g., codes in [74], [75], [78], [73]

and the self-randomized modulation codes described in Section C) require q → ∞,

practical systems use q values between 2 and 256. Compared to the number of cells

n, the size of q is not quite large enough for asymptotic optimality to suffice. In

other words, codes that are asymptotically optimal may have significantly suboptimal

performance when the system parameters are not large enough. Moreover, different

asymptotically optimal codes may perform differently when q is not large enough.

Therefore, asymptotic optimality can be misleading in this case. In this section, we

first analyze the storage efficiency of self-randomized modulation codes when q is not

large enough and then propose an enhanced algorithm which improves the storage

efficiency significantly.

1. Analysis for Moderately Large q

Before we analyze the storage efficiency of asymptotically optimal modulation codes

for moderately large q, we first show the connection between rewriting process and

the load-balancing problem (aka the balls-into-bins or balls-and-bins problem) which

is well studied in mathematics and computer science [72, 76, 61]. Basically, the

load-balancing problem considers how to distribute objects among a set of locations

as evenly as possible. Specifically, the balls-and-bins model considers the following

104

problem. If m balls are thrown into n bins, with each ball being placed into a bin

chosen independently and uniformly at random, define the load as the number of balls

in a bin, what is the maximal load over all the bins? Based on the results in Theorem

1 in [61], we take a simpler and less accurate approach to the balls-into-bins problem

and arrive at the following theorem.

Theorem 11. Suppose that m balls are sequentially placed into n bins. Each time a

bin is chosen independently and uniformly at random. The maximal load over all the

bins is L and:

(i) If m = d1n, the maximally loaded bin has L ≤ c1 lnn
ln lnn

balls, c1 > 2 and d1 ≥ 1,

with high probability (1− 1/poly(n)) as n→∞.
(ii) If m = n lnn, the maximally loaded bin has L ≤ c4(lnn)2

ln lnn
balls, c4 > 1, with

high probability (1− 1/poly(n)) as n→∞.
(iii) If m = c3n

d2 , the maximally loaded bin has L ≤ ec3n
d2−1 + c2 lnn, c2 > 1,

c3 ≥ 1 and d2 > 1, with high probability (1− 1/poly(n)) as n→∞.

Proof. Denote the event that there are at least k balls in a particular bin as Ek. Using

the union bound over all subsets of size k, it is easy to show that the probability that

Ek occurs is upper bounded by

Pr{Ek} ≤
(
m

k

)(
1

n

)k
.

Using Stirling’s formula, we have
(
m
k

) ≤ (me
k

)k
. Then Pr{Ek} can be further bounded

by

Pr{Ek} ≤
(me
nk

)k
. (4.8)

105

If m = d1n, substitute k = c1 lnn
ln lnn

to the RHS of (4.8), we have

Pr{Ek} ≤
(
d1e ln lnn

c1 lnn

) c1 lnn
ln lnn

= e(
c1 lnn
ln lnn

(ln(d1e ln lnn)−ln(c1 lnn)))

< e(
c1 lnn
ln lnn

(ln(d1e ln lnn)−ln lnn))

≤ e(−(c1−1) lnn) =
1

nc1−1
.

Denote the event that all bins have at most k balls as Ẽk. By applying the union

bound, it is shown that

Pr{Ẽk} ≥ 1− n

nc1−1
= 1− 1

nc1−2
.

Since c1 > 2, we finish the proof for the case of m = d1n.

If m = n lnn, substitute k = c4(lnn)2

ln lnn
to the RHS of (4.8), we have

Pr{Ek} ≤
(
e ln lnn

c4 lnn

) c4(lnn)2

ln lnn

= e

„
c4(lnn)2

ln lnn
(ln e ln lnn−ln c4 lnn)

«

≤ e

„
c4(lnn)2

ln lnn
(ln e ln lnn−ln lnn)

«

≤ e(−(c4−1)(lnn)2) = o

(
1

n2

)
.

By applying the union bound, we finish the proof for the case of m = n lnn.

If m = c3n
d2 , substitute k = ec3n

d2−1 + c2 lnn = ec3n
d2−1 + c2 lnn to the RHS of

106

(4.8), we have

Pr{Ek} ≤
(

ec3n
d2−1

ec3nd2−1 + c2 lnn

)c3end2−1+c2 lnn

= e((c5nd2−1+c2 lnn)(ln c5nd2−1−ln(c5nd2−1+c2 lnn)))

≤ e

„
(c5nd2−1+c2 lnn)

„
− c2 lnn

c5n
d2−1

««

≤ e(−c2 lnn) =
1

nc2

where c5 = ec3. By applying the union bound, it is shown that

Pr{Ẽk} ≤ 1− n

nc2
= 1− 1

nc2−1
.

Since c2 > 1, we finish the proof for the case of m = c3n
d2 .

Remark 16. Note that Theorem 11 only shows an upper bound on the maximum

load L with a simple proof. More precise results can be found in Theorem 1 of [61],

where the exact order of L is given for different cases. It is worth mentioning that the

results in Theorem 1 of [61] are different from Theorem 11 because Theorem 1 of [61]

holds with probability 1−o(1) while Theorem 11 holds with probability (1−1/poly(n)).

Remark 17. The asymptotic optimality in the rewriting process implies that each

rewrite only increases the cell-level of a cell by 1 and all the cell-levels are fully used

when an erasure occurs. This actually implies limm→∞
L

m/n
= 1. Since n is usually a

large number and q is not large enough in practice, the theorem shows that, when q is

not large enough, asymptotic optimality is not achievable. For example, in practical

systems, the number of cell-levels q does not depend on the number of cells in a block.

Therefore, rather than n(q − 1), only roughly n(q − 1) ln lnn
lnn

charge levels can be used

as n → ∞ if q is a small constant which is independent of n. In practice, this

loss could be mitigated by using writes that increase the charge level in multiple cells

107

simultaneously (instead of erasing the block).

Theorem 12. The self-randomized modulation code has storage efficiency γ = c ln k ln l
c

when q − 1 = c and γ = c
θ
k ln l when q − 1 = c lnn as n goes to infinity with high

probability (i.e., 1− o(1)).

Proof. Consider the problem of throwing m balls into n bins and let the r.v. M be

the number of balls thrown into n bins until some bin has more than q− 1 balls in it.

While we would like to calculate E[M] exactly, we still settle for an approximation

based on the following result. If m = cn lnn, then there is a constant d(c) such that

maximum number of balls L in any bin satisfies

(d(c)− 1) lnn ≤ L ≤ d(c) lnn

with probability 1 − o(1) as n → ∞ [61] . The constant d(c) is given by the largest

x-root of

x(ln c− lnx+ 1) + 1− c = 0,

and solving this equation for c gives the implicit expression c = −d(c)W
(
−e−1− 1

d(c)

)
.

Since the lower bound matches the expected maximum value better, we define θ ,

d(c) − 1 and apply it to our problem using the equation θ lnn = q − 1 or θ = q−1
lnn

.

Therefore, the storage efficiency is γ = m lnn
n(q−1)

= c
θ
k ln l

If m = cn, the maximum load is approximately lnn
ln n lnn

m

with probability 1− o(1)

for large n [61]. By definition, q − 1 = lnn
ln n lnn

m

. Therefore, the storage efficiency is

γ = m lnn
n(q−1)

= c ln lnn
c

= c ln k ln l
c
.

Remark 18. The results in Theorem 12 show that when q is on the order of O(lnn),

the storage efficiency is on the order of Θ(k ln l). Taking the limit as q, n→∞ with

q = O(lnn), we have lim γ
k ln l

= θ
c
> 0. When q is a constant independent of n, the

storage efficiency is on the order of Θ(ln k ln l). Taking the limit as n → ∞ with

108

q− 1 = c, we have lim γ
k ln l

= 0. In this regime, the self-randomized modulation codes

actually perform very poorly even though they are asymptotically optimal as q →∞.

2. Load-balancing Modulation Codes

Considering the bins-and-balls problem, can we distribute balls more evenly when

m/n is on the order of o(n)? Fortunately, when m = n, the maximal load can be

reduced by a factor of roughly lnn
(ln lnn)2

by using the power of two random choices [76].

In detail, the strategy is, every time we pick two bins independently and uniformly

at random and throw a ball into the less loaded bin. By doing this, the maximally

loaded bin has roughly ln lnn
ln 2

+ O(1) balls with high probability. Theorem 1 in [72]

gives the answer in a general form when we consider d random choices. The theorem

shows there is a large gain when the number of random choice is increased from 1 to

2. Beyond that, the gain is on the same order and only the constant can be improved.

Based on the idea of 2 random choices, we define the following load-balanced

modulation code.

Again, we let the cell state vector at time t be s̄t = (st(0), st(1), · · · , st(n− 1)),

where st(i) ∈ Zq is the charge level of the i-th cell at time t. This time, we use n = lk+1

cells to store a k-variable xt ∈ Zlk (i.e., we write (k+ 1) log2 l bits to store k log2 l bits

of information). The information loss provides l ways to write the same value. This

flexibility allows us to avoid sequences of writes that increase one cell level too much.

We are primarily interested in binary variables with 2 random choices or l = 2. For

the power of l choices to be effective, we must try to randomize (over time), the l

possible choices over the set of all
(
n
l

)
possibilities. The value rt = ‖s̄t‖1 is used to do

this. Let H be the Galois field with lk+1 elements and h : Zlk+1 → H be a bijection

that satisfies h(0) = 0 (i.e., the Galois field element 0 is associated with the integer

0).

109

The decoding algorithm calculates x̂t from s̄t and operates as follows:

• Step 1: Read cell state vector s̄t and calculate the `1 norm rt = ‖s̄t‖1.

• Step 2: Calculate st =
∑n

i=1 ist(i) and x̂′t = st mod lk+1.

• Step 3: Calculate at = h
((
rt mod lk − 1

)
+ 1
)

and bt = h
(
rt mod lk

)
• Step 4: Calculate x̂t = h−1

(
a−1
t (h(x̂′t)− bt)

)
mod lk.

The encoding algorithm stores xt and operates as follows.

• Step 1: Read cell state s̄t−1 and decode to x̂′t−1 and x̂t−1. If x̂t−1 = xt, then do

nothing.

• Step 2: Calculate rt = ‖s̄t−1‖1 + 1, at = h
((
rt mod lk − 1

)
+ 1
)
, and bt =

h
(
rt mod lk

)
• Step 3: Calculate x

(i)
t = h−1

(
ath(xt + ilk) + bt

)
and ∆x

(i)
t = x

(i)
t −x̂′t−1 mod lk+1

for i = 0, 1, . . . l − 1.

• Step 4: Calculate2 wt = arg minj∈Zl{st−1(∆x
(j)
t)}. Increase the charge level by

1 of cell ∆x
(wt)
t .

Note that the state vector at t = 0 is initialized to s0 = (0, . . . , 0) and therefore

x0 = 0. The first arbitrary value that can be stored is x1.

The following conjecture suggests that the ball-loading performance of the above

algorithm is identical to the random loading algorithm with l = 2 random choices.

Conjecture 2. If l = 2 and q − 1 = c lnn, then the load-balancing modulation code

has storage efficiency γ = k with probability 1-o(1) as n → ∞. If q − 1 = c, the

storage efficiency γ = c ln 2
ln lnn

k with probability 1-o(1).

2Ties can be broken arbitrarily.

110

Sketch of Proof. Consider the affine permutation π
(a,b)
x = h−1(ah(x) + b) for a ∈ H\0

and b ∈ H. As a, b vary, this permutation maps the two elements xt and xt + lk

uniformly over all pairs of cell indices. After m = n(n−1) steps, we see that all pairs

of a, b occur equally often. Therefore, by picking the less charged cell, the modulation

code is almost identical to the random loading algorithm with two random choices.

Unfortunately, we are interested in the case where m� n2 so the analysis is somewhat

more delicate. If m = cn lnn, the highest charge level is c lnn − 1 + ln lnn
ln 2
≈ c lnn

with probability 1− o(1) [72]. Since q − 1 = c lnn in this case, the storage efficiency

is γ = cn lnn log2 2k

nc lnn
= k. If m = cn, then q − 1 = c and the maximum load is

c− 1 + ln lnn/ ln 2 ≈ ln lnn
ln 2

. By definition, we have ln lnn
ln 2

= q − 1. Therefore, we have

γ = cn log2 2k

n(q−1)
= c ln 2

ln lnn
k.

Remark 19. If l = 2 and q is on the order of O(lnn), Conjecture 2 shows that the

bound (4.7) is achievable by load-balancing modulation codes as n goes to infinity.

In this regime, the load-balancing modulation codes provide a better constant than

self-randomized modulation codes by using twice many cells.

Remark 20. If l = 2 and q is a constant independent of n, the storage efficiency is

γ1 = c ln k
c

for the self-randomized modulation code and γ2 = c ln 2
ln lnn

log2
n
2

for the load-

balancing modulation code. But, the self-randomized modulation code uses n = 2k cells

and the load-balancing modulation code uses n = 2k+1 cells. To make fair comparison

on the storage efficiency between them, we let n = 2k+1 for both codes. Then we have

γ1 = c ln log2 n
c

and γ2 = c ln 2
ln lnn

log2
n
2
. So, as n → ∞, we see that γ1

γ2
→ 0. Therefore,

the load-balancing modulation code outperforms the self-randomized code when n is

sufficiently large.

111

E. Simulation Results

In this section, we present the simulation results for the modulation codes described

in Sections C and 2. In the figures, the first modulation code is called the “self-

randomized modulation code” while the second is called the “load-balancing modu-

lation code”. Let the “loss factor” η be the fraction of cell-levels which are not used

when a block erasure is required: η , 1− E[R]
n(q−1)

. We show the loss factor for random

loading with 1 and 2 random choices as comparison. Note that η does not take the

amount of information per cell-level into account. Results in Fig. 13 show that the

self-randomized modulation code has the same η with random loading with 1 random

choice and the load-balancing modulation code has the same η with random loading

with 2 random choices. This shows the optimality of these two modulation codes in

terms of ball loading.

We also provide the simulation results for random loading with 1 random choice

and the codes designed in [73], which we denote as FLM-(k = 2, l = 2, n = 2)

algorithm, in Fig. 14. From results shown in Fig. 14, we see that the FLM-(k =

2, l = 2, n = 2) algorithm has the same loss factor as random loading with 1 random

choice. This can be actually seen from the proof of asymptotic optimality in [73] as the

algorithm transforms an arbitrary input distribution into an uniform distribution on

the cell-level increment. Note that FLM algorithm is only proved to be optimal when

1 bit of information is stored. So we just compare the FLM algorithm with random

loading algorithm in this case. Fig. 15 and Fig. 16 show the storage efficiency γ

for these two modulation codes. Fig. 15 and Fig. 16 show that the load-balancing

modulation code performs better than self-randomized modulation code when n is

large. This is also shown by the theoretical analysis in Remark 20.

112

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
k=3, l=2 and 1000 erasures

q

lo
ss

 fa
ct

or
 η

Load balancing modulation code
Self−randomized modulation code
Random loading with 1 random choice
Random loading with 2 random choices

Fig. 13. Simulation results for random loading and algorithms we proposed with k = 3,

l = 2 and 1000 block erasures.

113

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

q

lo
ss

 fa
ct

or
 η

k=2, l=2,n=2 and 1000 erasures

random loading with 1 random choice
FLM algorithm (k=2,l=2,n=2)

Fig. 14. Simulation results for random loading and codes in [4] with k = 2, l = 2,

n = 2 and 1000 block erasures.

114

0 50 100 150 200 250
1.5

2

2.5

3

3.5

4
n=16, l=2

q

st
or

ag
e

ef
fic

ie
nc

y
γ

Load balancing modulation code, k=3
Self−randomized modulation code, k=4

Fig. 15. Storage efficiency of self-randomized modulation code and load-balancing

modulation code with n = 16.

115

0 50 100 150 200 250
1

2

3

4

5

6

7

8

9
n=210, l=2

q

st
or

ag
e

ef
fic

ie
nc

y
γ

Self−randomized modulation code, k=10

Load balancing modulation code, k=9

Fig. 16. Storage efficiency of self-randomized modulation code and load-balancing

modulation code with n = 210.

116

F. A Group-Theoretic Approach to Modulation Code Design for Flash Memory

In this section, we propose a group-theoretic approach to modulation code design

for flash memory. This approach provides a general mathematical framework for the

modulation codes design problem. We show that many previously proposed modu-

lation codes can be described in this framework. The framework also provides the

mathematical tools for analyzing and comparing different codes. Some interesting

connections between different codes are revealed. Furthermore, by using the idea

from load-balancing theory, this framework can be used to find good modulation

codes.

Consider a modulation code which represents one of M messages using n cells

with q levels, which range from 0 to q − 1. Suppose also that there are only certain

(e.g., one of NA) allowable changes in the message. For example, think of a message

containing k l-ary variables (i.e., M = lk) where only one variable can be changed at

a time (i.e., NA = k(l−1)). It will be useful to model the message set as a group and

the allowable changes as a subset of that group. The set of modulation codewords

also has a natural mapping to the group Zn
q , where Zq is the set of integers modulo

q. The following gives the general definition of modulation codes in a group-theoretic

framework.

1. General Definition of Modulation Codes

Let (G,+) be an M -element group representing the message set and A ⊆ G be a

subset with NA elements. The set A = {a1, . . . , aNA} represents the allowable single-

step changes in G. We will assume that the subset A generates G because otherwise,

the subset of possible messages will depend on the initial message. Let (H,+) be a

group representing the cell state and B ⊆ H be a subset with NB elements. The set B

117

represents the allowable single-step changes in H. The encoder E : H×A→ H maps

the current state and the message change to the new state. The decoder D : H → G

maps the cell state to the message value. A modulation code is defined by the

tupleC , {G,H,A,B,E,D}.

2. A Simple Modulation Code

For the reason of simplicity, we first consider the decoder which is a group homomor-

phism: D(s1 + s2) = D(s1) +D(s2) for all s1,s2 ∈ H . Since the decoder mapping is

a group homomorphism, one can write, for every allowable change b,

xt = D (st) = D (st−1 + b) = D (st−1) +D (b) = xt−1 +D(b).

Combining this equation and the set of allowable state changes, we discover that

decoding will succeed (i.e., return xt) iff

b ∈ D† (∆xt) , D−1 (xt − xt−1) ∩B,

where D−1(g) = {h ∈ H |D(h) = g}. If NB = NA, every valid message change must

be mapped to a valid cell state change and D† : A → B must be a bijection. Under

the assumption of group homomorphism, there is only one encoder/decoder pair up

to isomorphism which is uniquely defined. The implied encoder is given by

E (st−1, xt) =

st−1 if xt = D (st−1)

st−1 +D† (xt −D(st−1)) otherwise.

For efficiency, one would like to design modulation codes that maximize the

number of rewrites before any cell-level reaches q (or returns to 0 in the Zq group).

One difficulty is that the input distribution may not be uniform over all allowable

118

message changes. In this case, one cell level may reach q while other cell levels are

still quite small. The main problem with the setting above (i.e., NB = NA and the

homomorphism property) is that the encoder/decoder pair must have a one-to-one

mapping between the allowable message change set A and the allowable cell state

change set B. This prevents us from building randomization into the system to

mitigate the effect of non-uniform input distributions.

Lemma F.1. If NB = NA and the decoder is a group homomorphism, all messages

can be encoded by increasing the charge level of a single cell by one. All valid en-

coder/decoder pairs are isomorphic to the encoder/decoder pair uniquely defined by

D(s) =

NA∑
i=1

s(i)ai

where the multiplication of an integer s(i) by a group element ai is defined as

s(i)ai , ai + ai + · · ·+ ai︸ ︷︷ ︸
s(i) times

.

We say a modulation code is robust if the average number of rewrites is n(q − 1) −
o(nq). This modulation code is not robust (for non-uniform i.i.d. input distributions).

Proof. Since exactly one cell’s charge level can be increased by 1, each element in

B is uniquely represented by a cell index. Notice that the valid encoder/decoder

must have a one-to-one mapping between B and A. So all the valid encoders are

the same up to isomorphism. Since encoding the same change repeatedly will keep

increasing the cell-level of a particular cell, this encoder is not robust against general

non-uniform i.i.d. input distributions and none of these encoders are robust.

Remark 21. It would be interesting to know if there exists an encoder/decoder which

can handle arbitrarily i.i.d. input distributions if we are allowed to design the decoder

119

Fig. 17. Encoding grids for n = 2 and n = 3

which is not a group homomorphism, (e.g., by using different mappings between A and

B over time) The following subsection shows that if NA = NB and A = G\{0}, i.e.,

the input variable is allowed to change arbitrarily, there is no robust encoder/decoder

when n = 2 and n = 3. However, if A ⊂ G\{0} and NA = NB, there exists a robust

encoder/decoder by using different mappings over time when n = 2 [73].

3. Modulation Codes via Periodic Tiling

In this subsection, we consider robust modulation code design when NA = NB and

the decoder is not a group homomorphism. Without loss of generality, we consider

the case that we use n cells to store an (n + 1)-ary variable, i.e., H = Zn
q and

G = {0, 1, · · · , n}. We only allow one cell’s charge level to be increased by 1 at each

rewrite, i.e., B = {1, 2, · · · , n}. We allow arbitrary change of the message, i.e., the

set A = {+1,+2, · · · ,+n}. Then there is only 1 mapping between A and B up to

isomorphism. Actually, there are n! different mappings, but they are the same by

relabeling the indices of the cells and allowable message changes.

Before we discuss the encoder/decoder, we note that there may be different

Abelian groups given the size of the group. For example, the Klein four-group and

the cyclic group of order 4, i.e., Z4, are two different Abelian groups of size 4. Different

120

group structures may affect the existence of the robust codes.

Lemma F.2. When n = NA = NB = 2, there is only one encoder/decoder pair up to

isomorphism and it is not robust.

Proof. When n = 2, there is only one group of size 3 and the addition operation is

modulo 3 and we can write A = {+1,+2} and B = {1, 2}. There are two possible

mappings between A and B. The encoder can be represented by a 2-dimensional

directed grid shown in Figure 17-(a). The two axes represent the cell levels of two

cells and the numbers labeled on the arrows represent the change of the input message

a ∈ A. The decoder can be defined naturally by the encoding grid. Let’s look at

an arbitrary point p1 and its adjacent points p2, p3 and p4 shown in Figure 17-(a).

Encodability requires that each point (i.e., cell state) can encode all the elements

in A. Since p4 can be reached in two different ways, the decodability of p4 requires

a1 + a2 = a3 + a4 where the addition is modulo 3 addition. By simply enumerating

all the cases, it is easy to verify that the encodability and decodability can only be

satisfied by using the same mapping between A and B on p1, p2 and p3. Treating p1

as the origin and using induction shows that all the points in the encoding grid must

use the same mapping to satisfy the encodability and decodability. Therefore, there

are only two encoder/decoder pairs and they are the same up to relabeling.

Lemma F.3. When n = NA = NB = 3, there are more than 1 encoder/decoder pairs.

But there is no robust code.

Proof. When n = 3, there are two groups of size 4, i.e., the Klein four-group and Z4.

Since we consider arbitrary change of the input variable and one cell-level increased

per rewrite, A = {+1,+2,+3} and B = {1, 2, 3}. the encoder can be represented by

a 3-dimensional directed grid shown in Figure 17-(b). The three axes represent the

cell levels of three cells. Note that there are 6 possible mappings between A and B.

121

Similarly, the encodability of pi, i = 1, · · · , 4 requires that each point can encode all

the messages in A. The decodability of p5, p6 and p7 requires different encoding paths

starting from p1 to p5, p6 and p7 to have the same sum of the message changes, i.e.,

a1 + a8 = a2 + a4, a2 + a6 = a3 + a11 and a1 + a9 = a3 + a10 where the addition is

defined by the group addition operator. It is easy to see that the encodability and

decodability can be satisfied by using the same mapping on pi, i = 1 · · · , 4.

Interestingly, the encodability and decodability can also be satisfied by using

different mappings for pi, i = 1 · · · , 4. For example, an encoding grid based on the

Klein four-group is shown in Figure 17-(c) and an encoding grid based on Z4 is shown

in Figure 17-(d). We note that the whole encoding grid can be generated by using the

mappings on pi, i = 1 · · · , 4 recursively. Therefore, we also call the encoding grid of

pi, i = 1, · · · 4 as the fundamental encoding grid. In detail, in the first step, we treat p1

as the origin and determine the mappings used on p2, p3 and p4. Next step, we treat

p2, p3 and p4 as new origins and determine the mappings on the points which are one-

edge away from the new origins by finding the correspondence between the mappings

used on p1 and that used on p2, p3 and p4. One can generate the whole encoding

grid by doing this recursively. More details about the recursive generation of the

encoding gird will be discussed soon. To handle arbitrarily i.i.d. input distribution,

the encoding grid should have roughly equal number of +1’s, +2’s and +3’s on all

three axes. By enumerating all the possibilities, it can be shown that this cannot

be satisfied by designing the fundamental encoding grid or using different groups.

Therefore, there is no robust codes when n = 3.

Tiling is one of the most commonly known concepts in combinatorics. Intuitively,

an n-dimensional shape S tiles the n-dimensional space Zn if disjoint copies of S cover

Zn. The construction of our encoding grid for general n is related to the problem of

122

periodically tiling the encoding grid by copies of different fundamental encoding grids.

But this interesting connection does not make the problem easier. In this case, each

tile defines the message change for each edge in the encoding grid. The constraint

between adjacent tiles is the decodability of the newly added grid points.

In general, when NB = NA = n, the construction of an n-dimensional encoding

grid can be done as follows. First, we need to construct the fundamental encod-

ing grid which is defined at the origin, all its one-step encoding neighbors and the

edges starting from these points where each edge is associated with an element in

A. Without loss of generality, we assume ai is associated with the edge along the

i-th dimension on the origin and the encoding function on the origin is denoted as

E0 , {a1, a2, . . . , an}.
The construction of the fundamental encoding grid needs to satisfy two con-

straints. The first constraint is the encodability which means each element in A

occurs once and only once on every grid point in the fundamental encoding grid. Let

{πj : Zn → Zn, j = 1, 2, . . . , n!} be the set of permutations of Zn. The encoding

functions of the one-step encoding neighbors of the origin are determined by the fun-

damental encoding grid and denoted as Ei, i = 1, . . . , n. We can find ji such that

Ei = πji(E0) = {πji(a1), πji(a2), . . . , πji(an)}. The second constraint is the decodabil-

ity which means the sum of the edge values on different paths between the origin and

any of its two-step encoding grid points should be the same. Note that there are n!

different ways to associate the elements in A to the edges of a grid point such that

the encodability is satisfied. One trivial construction of the fundamental encoding

grid is to use the same encoding function on all the grid points in the fundamental

encoding grid. However, the construction of the fundamental encoding grid may not

be unique.

After we construct the fundamental encoding grid, we can tile the whole encoding

123

grid in the following way. For the i-th (indexed by the dimension) one-step encoding

neighbor of the origin, its encoding function is already constructed by the fundamental

encoding grid of the origin. We can construct the encoding function of its k-th one-

step encoding neighbor as πji(Ek). By doing this recursively, different permuted copies

of the fundamental encoding grid can be used to tile the whole encoding grid and the

encodability and decodability are both satisfied. This reduces the construction of

the encoding grid to the construction of the fundamental encoding grid. A robust

code requires roughly the same number of each element in A along each dimension.

The existence of the robust codes for general n remains an open problem. The main

difficulty to make the general statement is that the construction of the fundamental

encoding grid when n > 3 is complicated and group of size n+ 1 is not unique.

In the following discussion, we will see how to design robust modulation codes

to combat non-uniform i.i.d. input distribution using a different approach.

4. Self-randomized Modulation Codes (SRMC)

If NB = NA + 1 and we only increase one cell-level by 1 at each rewrite, then we

can define a self-randomized modulation code (SRMC) [79] by using an integer dither

sequence rt to modify the encoded sequence xt. Let rt = φ(st) be a sequence which

is uniquely defined by st. For example, if H = Zn
q and B = {e0, e1, . . . , en−1} is the

set of unit vectors, then we can choose φ(st) = ‖st‖1 (i.e., the `1 norm) and this

implies that rt+1 = rt + 1. Let πi : G → G be a sequence of permutations on G for

i = 0, 1, . . . , (q − 1)n − 1. Then, we can define the dithered decoder to be

D̃ (st) = πφ(st) (D(st))

124

and the dithered encoder to be

Ẽ (st−1, xt) =

st−1, if xt = D̃ (st−1)

st−1 +D†
(
π−1
φ(st−1)

(
xt − D̃(st−1)

))
,

otherwise .

Lemma F.4. Let elements of G be g0, g1, . . . gM−1 in some arbitrary order and let

πi be a left circular shift by i(i+1)
2

mod M places in this order. In other words, let

πi(gj) = gk with k =
(
j + i(i+1)

2

)
mod M . Then, the expected cell-level increment is

the same for every cell after every integer multiple of M steps.

Proof. The difference of the dither term i(i+1)
2

between πi and πi−1 is i(i+1)
2
− i(i−1)

2
= i.

Each time, the input distribution is circularly (due to the modulo M operation)

shifted by 1. Therefore any integer multiple of M steps of permutations transfers any

input distribution into a uniform distribution, i.e., any integer multiple of M steps

of permutations map the elements in G to each element in A equally number (more

than 1) of times.

Lemma F.5. If NB = NA + 1, SRMC allows only one cell-level increment at each

rewrite and the cell index is uniform over time for arbitrary non-uniform i.i.d. input

distributions.

Proof. If we have one extra cell, the valid encoder/decoder can choose NA cells and

have the one-to-one mapping between the those cells and the message changes. Dif-

ferent choice of these NA cells gives different encoder up to isomorphism. Therefore,

there are NA+1 different encoders. This allows us to randomize over all the encoders

to make the encoder robust against non-uniform but i.i.d. input distributions.

125

5. Self-randomized Modulation Codes with Input Decomposition (SRMC-ID)

Although the SRMC is shown to be asymptotically optimum as q →∞ for arbitrary

l, k, and n [79], when q is small, the number of rewrites can be improved significantly

by allowing input decomposition and multiple cell-level increments when the desired

cell is full. When the cell given by the SRMC encoder is full, instead of performing

block erasure, we can write the input as the sum (modulo lk) of two numbers. Then

the input can be stored by encoding these two numbers separately which causes two

cell-levels to be increased per input. Note that the analysis on the average number of

rewrites is difficult for this scheme. But the worst case performance can be analyzed

easily.

Theorem 13. SRMC-ID guarantees 1
2

(⌊
n
2

⌋− 1
)

(q− 1) rewrites before any cell-level

reaches q.

Proof. Note that there are
⌊
n+1

2

⌋
ways to decompose any input number. So this

scheme fails only when more than half of the cells are full. Since the failure occurs

only if more than half of the cells are full, the worst case input will keep writing the

same cell until it is full, then the encoder starts to decompose the input. For any input

value, it takes 1
2

(⌊
n
2

⌋− 1
)

(q−1) steps to fill up the other
(⌊

n
2

⌋− 1
)

cells. Therefore,

the total number of rewrites for the worst case is
(
1 + 1

2

(⌊
n
2

⌋− 1
))

(q − 1).

Remark 22. Comparing to the upper bound shown in [75], which is [n− k(l − 1) + 1] (q−
1), this scheme achieves roughly 1/4 number of rewrites of this upper bound. To be

fair, we must point out that in the SRMC, each rewrite stores log2(lk − 1) bits of in-

formation since the SRMC allows arbitrary change of the message. But the the bound

given in [75] considers only one variable changed each rewrite, i.e., log2 k(l − 1) bits

of information is stored per rewrite.

126

Fig. 18. Encoding grid of the FLM(2,2,2) code

Example 1. The floating code with parameter k = l = n = 2, which is proposed

in [73], which is denoted as the FLM(2,2,2) code here, can be described as a group

theoretic framework as follows.

Let G = {00, 01, 10, 11}, A = {10, 01}, B = {10, 01} and H = Z2
q. The encoder

is defined as

Ẽ (st−1, xt) = st−1 + bi∗

where i∗ = ‖st−1‖1 + j and xt − xt−1 = aj, j ∈ {0, 1}. Note that all the arithmetic is

modulo 2. There are also two possible mappings between A and B and the `1 norm

of st−1 is serving as the dither sequence to randomize the choices of mappings. The

difference between the SRMC and the FLM (2,2,2) code is, the FLM (2,2,2) code

only allows two changes instead of all 4 possible changes as SRMC does, (i.e., the

FLM code stores 1 bit of information per rewrite by using 2 cells while SRMC store

2 bits of information per rewrite by using 2 cells) This constraint on A provides the

extra degrees of freedom to randomize the encoders. It is also interesting to look at the

encoding grid of the FLM(2,2,2). Figure 18 shows the encoding grid of the FLM(2,2,2)

code. It can be seen that the mappings used on the grid points are alternating between

two different mappings. For large q, there are roughly the same number of 10’s and

01’s on both axes. Therefore the FLM(2,2,2) code is asymptotically robust against

arbitrarily i.i.d. input distributions even with NA = NB.

127

We note that this does not conflict with the conclusion of n = 2 in subsection 3

where we allow arbitrary change on the input and |G| = 2. In the FLM(2,2,2) code,

NA < |G|−1, i.e., the input variable is not allowed to change arbitrarily and |G| = 4.

Since |G| = 4, there are two groups, i.e., the Klein four-group and Z4. The encoding

grid of FLM(2,2,2) code is based on the Klein four-group. It is easy to see, if Z4 is

used, all the grid points must use the same mapping to satisfy the encodability and

decodability. We can say, the FLM(2,2,2) code sacrifices information per rewrite to

obtain the robustness against arbitrarily i.i.d. input distribution. The SRMC can be

thought of as another way to trade-off between the storage efficiency, which is defined

as the amount of information stored per cell-level between two block erasures, and the

robustness. To compare the storage efficiency of FLM(2,2,2) and SRMC, one can

either use 2 cells to storage 1 binary variable by using SRMC or use 2 cells to storage

2 binary variables but only allow 1 variable to change each time. It is obvious that

the FLM(2,2,2) and SRMC are equivalent in terms of storage efficiency. Unlike the

SRMC, the FLM code cannot be generalized to general parameters [73].

In the following subsection, we will see how to design codes which have better

storage efficiency than the SRMC when q is finite by combining ideas from load-

balancing theory with the group-theoretic approach.

6. Load-balancing Modulation Codes: The Power of Two Random Choices

An analogy between random-loading and random input cell-charging enables one to

use the ideas from load-balancing theory to help make the cell-levels more uniform

than SRMC does [79] when q is finite. There are many papers on load-balancing

algorithms based on the power of d random choices, depending on how we choose the

d random bins. For the m-balls-into-n-bins problem, the analysis [77, 76] shows that

128

when we choose d (not necessarily distinct) bins uniformly and independently, then

the maximum load is O
(

ln lnn
ln d

)
with high probability (w.h.p) if the number of balls

m = cn. If we first divide the bins into d parts and randomly (i.i.d.) choose one from

each group each time, and a tie can be broken randomly, then the maximum load is

O
(

ln lnn
d

)
. If the tie is broken by picking the lowest part number, then the maximum

load is O
(

ln lnn
dφ(d)

)
where φ(d) is a constant less than 2 and dependent on d. Depending

on different load-balancing algorithms, we can have different LBMC’s. As the result,

the average number of rewrites of the LBMC’s may be analyzed by using the results

in the load-balancing literature.

a. Type-A LBMC (LBMC-A)

Let NB = 2(NA + 1) 3. Let r1(t) and r2(t) be two dither sequences, namely, r1(t) =

φ1(st) and r2(t) = φ2(st). For any message-change a ∈ A, we have two mappings

b1 = πr1(t)(a) and b2 = πr2(t)(a) such that the following properties hold.

• πr1(t)(A) ∪ πr2(t)(A) = B and πr1(t)(A) ∩ πr2(t)(A) = ∅ holds for all t.

• πr1(t)(a) and πr2(t)(a) for all a ∈ A are pairwise uniform over B ×B.

The encoder of LBMC-A is as follows

E (st−1, xt) =

st−1, if xt = D (st−1)

st−1 +D† (xt −D(st−1)) ,

otherwise

3To use the power of two random choices, we privide two candidates b1, b2 ∈ B for
each input value a ∈ A. For the same reason, we need one extra cell for each NA cells
to allow randomization such that the cell-level increases uniformly for arbitarily i.i.d.
input.

129

where

D†(a) = πri∗ (t)(a)

and

i∗ = arg min
i∈{1,2}

st−1

(
πri(t)(a)

)
.

Note that tie in the arg min can be broken arbitrarily. Note that the group-theoretic

definition of LBMC-A is very general and we can have different designs for πr1(t)(a),

πr2(t)(a) and the corresponding decoders. The following is an example of a particular

LBMC-A.

Example 2. [LBMC-A] The LBMC described in [79] is a particular design of an

LBMC-A. In particular, Let NB = 2(NA + 1) = 2k+1. We choose r1(t) = r2(t) =

‖st−1‖1 + 1 where the addition is the integer addition. Let H be the Galois field

GF (2k+1) and h : Z2k+1 → H be a bijection that satisfies h(0) = 0 (i.e., the Galois

field element 0 is associated with the integer 0). The two choices πr1(t)(a) and πr2(t)(a)

are calculated as πr1(t)(a) = h−1 (cth(xt) + dt) and πr2(t)(a) = h−1
(
cth(xt + 2k) + dt

)
,

where ct = h
((
rt mod 2k − 1

)
+ 1
)
, and dt = h

(
rt mod 2k

)
. The encoder increases

the lower cell by 1.

b. Type-B LBMC (LBMC-B)

Based on the results in [77], the load-balancing performance can be further improved if

we divide all the cells into d parts and we randomly pick one from each part each time.

We can design a different LBMC as follows. Let NB = 2(NA + 1). Let r1(t) = φ1(st)

and r2(t) = φ2(st) be two pairwise uniform dither sequences. The idea of LBMC-B

is, we first divide all the cells into two parts, say, s
(1)
t = {st(0), · · · , st(NA)} and

s
(2)
t = {st(NA + 1), · · · , st(2NA + 1)} and apply an SRMC on each part. Denote the

encoders and decoders of the two SRMC’s as Ẽi(·) and D̃i(·), i = 1, 2. Then decoder

130

of LBMC-B D̃(st) is as

D̃(st) = D̃1(s
(1)
t) + D̃1(s

(2)
t)

= πr1(t)

(
D1(s

(1)
t)
)

+ πr2(t)

(
D2(s

(2)
t)
)

where πr(t)(·) is a permutation from G to G which is indexed by r(t).

The encoder E (st−1, xt) = st is defined as

st = st−1, if xt = D̃ (st−1)

s
(1)
t = s

(1)
t−1; s

(2)
t = s

(2)
t−1 +D†(2)

(
π−1
r2(t−1)

(
xt − D̃(st−1)

))
,

if xt 6= D̃ (st−1) and i∗ = 2

s
(2)
t = s

(2)
t−1; s

(1)
t = s

(1)
t−1 +D†(1)

(
π−1
r1(t−1)

(
xt − D̃(st−1)

))
,

otherwise

where

i∗ = arg min
i∈{1,2}

st−1

(
D†(i)

(
π−1
ri(t−1)

(
xt − D̃(st−1)

)))
and ties are broken by always picking the cell in the first group. Note that there may

be different encoder/decoder pairs can be design following this principal. A particular

example is as follows.

Example 3. [LBMC-B] Let r1(t) = c1‖st‖1 +
⌊
‖st‖1
n

⌋
and r2(t) = c2‖st‖1 where c1,

c2 and n = NA + 1 are pairwise co-prime. For input value a ∈ A, the cell index

candidate in s
(1)
t is chosen as Ẽ1(a) = (a+ r1(t)) mod n and the cell index candidate

in s
(2)
t is chosen as Ẽ2(a) = ((a+ r2(t)) mod n)+n. It is easy to see Ẽ1(a) and Ẽ2(a)

are pairwise uniform over time, i.e., each possible pair appears with equal number of

times at every multiple of n2 rewrites.

Remark 23. We note that when the number of rewrites is less than n2, this scheme

131

provides slightly better load-balancing performance than “always-go-left” random load-

ing algorithm since the pairs are chosen in a deterministic way to avoid duplicated

choice with certainty. In the “always-go-left” load balancing algorithm [77], although

two candidates are chosen independently and uniformly, there is still some non-zero

probability that the same pair is chosen more than once.

7. Analysis of SRMC and LBMC

The SRMC and LBMC algorithms are motivated by the load-balancing algorithms.

Various load-balancing algorithms have been analyzed thoroughly in previous work.

But the difference between SRMC/LBMC and the load-balancing algorithms is SRMC/LBMC

are pseudo-random so that the analyisis of load-balancing algorithms does not extend

easily. During the simulation, we observe that the load-balancing modulation codes

perform very similarly or slightly better than their load-balancing counterparts. So

we leave it as the following conjecture.

Conjecture 3. Suppose n q-level cells are used to store k distinct l-ary random

variables and each rewrite only increases one cell by 1. The input is an i.i.d. random

variable over Zk
l , where n = 2lk, and arbitrary change is allowed at each rewrite.

When any cell level reaches q, the total number of rewrites by applying LBMC-A is

denoted as QLBMC−A and the total number of rewrites by applying LBMC-B is denoted

as QLBMC−B. As the counterparts, let’s consider the load-balancing problem of loading

infinite number of balls into n bins sequentially. If any bin has (q−1) balls, the loading

process stops and the total number of balls in all the bins is denoted as QRL2C if the

RL2C algorithm is applied. The total number of balls by applying the always-go-right

algorithm with two partitions is denoted as QAGR2. Then E [QLBMC−A] ≥ E [QRL2C]

and E [QLBMC−B] ≥ E [QAGR2].

132

Remark 24. A rigorous proof is technically non-trivial and the main difficulty in

analyzing the average maximum load for SRMC/LMBC is that the choices at different

times are not independent. So the techniques used in the previous work on the balls-

into-bins problem, e.g. [72][77][76], can not be applied. Therefore, we leave it as a

conjecture and instead use simulation results to support this conjecture.

G. Simulation Results

We simulate three load-balancing algorithms and three corresponding modulation

codes. They are random loading with 1 choice (RL1C), random loading with two

choices (RL2C), always-go-left with 2 choices, the SRMC described in Section a, the

modulation code shown in Example 2 (LBMC-A) and the modulation code shown in

Example 3 (LBMC-B). Note that we choose n = 16, q from 1 to 16 and calculate the

normalized (by q) maximum cell levels for different schemes in Figure 19. In RL2C,

two independent choices of the bins can be the same and tie is broken arbitrarily. In

always-go-left, the two bins are chosen independently and uniformly from two groups

and tie is broken by always picking the left cell. In LBMC-A, two bins are chosen

pairwise uniformly as described in [79] and tie is broken arbitrarily. In LBMC-B,

two bins are chosen pairwise uniformly from two groups and tie is broken by always

choosing the left cell.

From the simulation results, we can see that SRMC, LBMC-A and LBMC-B

match the corresponding load-balancing algorithms very well. Note that when q is

small, these modulation codes perform slightly better than the load-balancing algo-

rithms due to the deterministic randomness of the modulation codes.

We also simulate the SRMC with input decomposition (SRMC-ID) algorithm

and compare it to RL1C and RL2C algorithms. The simulation results are shown

133

0 2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

q

no
rm

al
iz

ed
 m

ax
im

um
 c

el
l−

le
ve

l

LBMC−A
"Always−go−left"
LBMC−B
RL1C
RL2C
SRMC

Fig. 19. Simulation results of load-balancing algorithms and the corresponding mod-

ulation codes with n = 16.

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
q=2

n

lo
ad

in
g

ef
fic

ie
nc

y

RL2C
SRMC
SRMC−ID

Fig. 20. Loading efficiency of SRMC-ID, RL1C and RL2C algorithms when q = 2

134

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
q=2

n

in
fo

rm
at

io
n

ef
fic

ie
nc

y

RL2C
SRMC
SRMC−ID

Fig. 21. Information efficiency of SRMC-ID, RL1C and RL2C algorithms when q = 2

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
q=4

n

lo
ad

in
g

ef
fic

ie
nc

y

RL2C
SRMC
SRMC−ID

Fig. 22. Loading efficiency of SRMC-ID, RL1C and RL2C algorithms when q = 4

135

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
q=4

n

in
fo

rm
at

io
n

ef
fic

ie
nc

y

RL2C

SRMC

SRMC−ID

Fig. 23. Information efficiency of SRMC-ID, RL1C and RL2C algorithms when q = 4

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1
q=8

n

lo
ad

in
g

ef
fic

ie
nc

y

RL2C
SRMC
SRMC−ID

Fig. 24. Loading efficiency of SRMC-ID, RL1C and RL2C algorithms when q = 8

136

0 50 100 150 200 250 300
0

1

2

3

4

5

6
q=8

n

in
fo

rm
at

io
n

ef
fic

ie
nc

y

RL2C

SRMC

SRMC−ID

Fig. 25. Information efficiency of SRMC-ID, RL1C and RL2C algorithms when q = 8

0 50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1
q=16

n

lo
ad

in
g

ef
fic

ie
nc

y

RL2C

SRMC

SRMC−ID

Fig. 26. Loading efficiency of SRMC-ID, RL1C and RL2C algorithms when q = 16

137

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7
q=16

n

in
fo

rm
at

io
n

ef
fic

ie
nc

y

RL2C

SRMC

SRMC−ID

Fig. 27. Information efficiency of SRMC-ID, RL1C and RL2C algorithms when q = 16

in Figure 20 to 27. In the simulation, we choose q = 2, 4, 8 and 16, and n = 2i,

i = 1, 2, . . . , 8. We define the loading efficiency as the number of rewrites normalized

by n(q − 1) when any cell level reaches q. We also define the information efficiency

as the amount of information stored (in terms of bits) normalized by n(q − 1) when

any cell level reaches q. We compare the loading efficiency and information efficiency

of RL2C, SRMC and SRMC-ID algorithms. In SRMC and RL2C algorithms, if any

cell level reaches q, we stop the simulation and calculate the loading efficiency and

information efficiency, which is the number of rewrites normalized by n(q − 1). In

SRMC-ID, if the desired cell is full, the input is decomposed into two values and

two non-full cells are increased by 1 each. This gives 1 rewrite, but 2 cell increases.

It can be seen that SRMC-ID improved the average number of rewrites of SRMC

significantly.

138

CHAPTER V

LDPC CODES FOR RANK MODULATION IN FLASH MEMORIES

A. Introduction

In the previous chapter, we discuss different ways to design efficient modulation codes

which improve the reuse efficiency and extend the life-span of the device. In this

chapter, we will discuss the error-correcting codes (ECC’s) design for flash momories.

Research has already been done on error-correcting codes (ECCs), rewriting

codes and capacity analysis for rank modulation. Based on the Kendall tau distance,

error-correcting codes for a single rank modulation block were explored in [63, 66].

In [66], a family of single-error-correcting codes was constructed, whose number of

codewords is provably at least half of optimal. In [63], the asymptotic rates of optimal

ECCs were derived, and the existence of good t-error-correcting codes was proved.

Rewriting codes that enable data to be rewritten without block erasures and capacity

analysis were also presented [65, 67].

In this chapter, we study LDPC codes for rank modulation. Compared to codes

designed for a single rank modulation block, where the cell levels are ordered into a

permutation [63, 66], our LDPC code approach partitions the cells into many small

groups and uses rank modulation separately for each group. In this work, we treat

the rank modulation code as part of the channel, as shown in Fig. 28. We consider

the physical channel together with the rank modulation encoder and decoder as the

equivalent channel for the ECC. We analyze the equivalent channel, and study the

design of good LDPC codes for the channel. A family of symbol-flipping verification-

based (SFVB) decoding algorithms is proposed and analyzed.

The structure of the chapter is as follows. In Section B, we study the equivalent

139

Fig. 28. Block diagram for ECC with modulation codes for flash memory.

channel model of rank modulation. Section C presents the LDPC codes design and

the performance analysis for rank modulation. Section D presents the simulation

results.

B. Equivalent Channel of Rank Modulation

In this section, we define rank modulation and its LDPC codes, and analyze the

equivalent channel.

1. Rank Modulation

Consider a group of n cells, whose levels are c1, c2, . . . , cn. Here ci ∈ R for i = 1, . . . , n,

and represents the amount of charge stored in the i-th cell. Let Sn be the set of

m = n! permutations of length n. Specifically, we have Sn = {s1, s2, · · · , sm} where,

for i = 1, . . . ,m,

si , (si(1), si(2), · · · , si(n))

is a permutation of (1, 2, · · · , n). The rank modulation scheme [65] defines a mapping

R
R : {(c1, . . . , cn) ∈ Rn} → Sn

140

as follows. If R(c1, c2, . . . , cn) = (i1, i2, . . . , in), then for any j1 6= j2 ∈ {1, . . . , n},
ij1 > ij2 if and only if cj1 ≥ cj2 . Namely, the function R ranks the n cells based on the

relative order of their cell levels. The rank modulation scheme uses the permutation

induced by the cell levels, namely R(c1, . . . , cn), to represent data.

Let Zm = {1, 2, . . . ,m} be the ring of integers modulo m. Let Π be a bijection:

Π : Sn → Zm.

As a modulation code, the rank modulation scheme has an encoder and a decoder, as

shown in Fig. 28. Given a variable x ∈ Zm as input to the encoder, the flash memory

programs the n cells such that their cell levels (c1, . . . , cn) satisfy

Π(R(c1, . . . , cn)) = x.

For the decoder, it takes the cell levels (c1, . . . , cn) as input, and outputs the variable

Π(R(c1, . . . , cn)) ∈ Zm.

2. LDPC Codes over Integer Rings for Rank Modulation

One way to design LDPC codes for rank modulation is to match the alphabet size of

the LDPC codes and rank modulation. We can define the LDPC code over the integer

ring Zm. As Fig. 28 shows. the outputs of the LDPC code encoder are mapped to

permutations in Sn by Π. Then the permutation is represented by cell levels by rank

modulation. The rank modulation demodulator calculates the permutations implied

by the cell levels. The permutations are mapped to elements in Zm for the LDPC

code decoder.

An element x′ ∈ Zm has a multiplicative inverse, and is called invertible, if and

only if x′ and m are co-prime (i.e., gcd(x′,m) = 1). Let N be the block length of

the code, and let M be the number of parity check equations. Every symbol of the

141

code is realized by a group of n cells using rank modulation, so the code corresponds

to nN cells in total. Let Ω ⊆ Zm be the subset of invertible elements which is also

known as the multiplicative group of Zm.

An LDPC code over Zm is defined by its parity-check matrix H, which is an M

by N sparse matrix whose non-zero entries are chosen independently and uniformly

from Ω. A valid codeword X ∈ ZN
m should satisfy all the parity check equations,

i.e., XH = 0. The number of invertible elements |Ω| is given by ϕ(m), where ϕ(·) is

Euler’s totient function. It is known that large integer rings must have a reasonable

number of invertible elements because ϕ(m) can be bounded by ϕ(m) ≥ m1−ε for

arbitrary ε > 0 and large enough m.

We can obtain the generator matrix G by using Gaussian elimination to place H

in the row reduced form. In particular, one needs to find an invertible element as the

pivot, and use it to zero out all the elements below and above it. If the element on

the i-th row and the i-th column is not an invertible element, then we will look for

an invertible element from Hj,k, where j ≥ i and k ≥ i, and exchange the i-th row

with the j-th row and exchange the i-th column with the k-th column. Note that

elementary row operations do not change the code, and exchanging two columns only

changes the order of the two code symbols.

For some parity-check matrices, the Gaussian elimination may get stuck before

one finds the row-reduced echelon form of H (e.g., there is no invertible element

available for exchange). However, this seems to occur with very small probability

when H is sparse and m is large. The probability of finding a G from H is easily

seen as equivalent to the probability of H being full rank. The results in [64] show

that a uniform random matrix over Zm is full rank with high probability as m→∞.

Restricting our attention to sparse matrices whose non-zero entries are invertible

changes the setting of the problem, and we do not have analytical results in this case.

142

But numerical experiments show that one can almost always find a generator matrix

G by trying Gaussian elimination on several randomly chosen H’s.

During the analysis and numerical simulation, we find that the LDPC codes

over integer rings can cause non-negligible false verification if a message-passing style

decoder is applied. However, this can be fixed by designing LDPC codes over finite

fields shown in the following subsection.

3. LDPC Codes over Finite Fields for Rank Modulation

Another way to design LDPC codes for rank modulation is to design the codes over

a finite field GF (q) which is embedded into Zm such that q ≤ m [22, 69]. In detail,

let L be a subset of Zn! with q elements. To associate L with GF (q), one can design

an arbitrary one-to-one correspondence between L and GF (q) which is denoted as

℘ : L → GF (q).

The parity-check matrix H is an M by N matrix whose non-zero elements are

randomly chosen from GF (q) and the codes are defined over GF (q).

The input and output alphabet sets of the encoder are both GF (q) and the

coded symbols are mapped to the permutations in L symbol by symbol by ℘. Each

permutation is then modulated by rank modulation and passes through the physical

channel. The rank modulation demodulator calculates the permutation implied by

the cell levels read back from the channel and the permutation is mapped back to

GF (q) as the input of the LDPC code decoder. Note that sometimes the output of the

rank modulation demodulator is not in L due to the channel error. In this case, the

outputs of the rank modulation demodulator need to be pre-processed before LDPC

code decoding. We will discuss more details about this in next section.

Comparing to the codes over integer rings described in previous subsection, here

we only use q symbols out of all m possible symbols implied by rank modulation

143

during the encoding and this causes a rate loss by a factor of ζn ,
log q
logn!

. For example,

ζ5 = 0.869, ζ6 = 0.948, ζ7 = 0.976 and ζ8 = 0.980. This field-embedding modification

leads to codes with lower false verification probability and better performance at the

error floor regime [22, 69].

4. Equivalent Channel

In this subsection, we consider the equivalent channel for rank modulation. By treat-

ing the modulation encoder and decoder as part of the channel, the input and output

alphabet sets of the equivalent channel are both Zm. Let the input variable be x, and

the output variable be y, where x, y ∈ Zm. We first derive the transition probability

of the equivalent channel, namely, the probability of y given x, which we denote by

W (y|x). Due to the difficulty of having a closed-form mathematical description, we

derive an approximation of this channel when the noise is i.i.d. additive Gaussian

with small variance.

Let us first consider the general case. Consider a group of n cells (which rep-

resents a code symbol), and let the physical noise in the cell levels have the joint

probability density function (pdf) f(w1, w2, · · · , wn), where wi is the noise in the i-th

cell’s level. We need to find the channel transition probability W (y|x). Say that the

rank-modulation encoder maps the input integer x to si = Π−1(x), and programs

the cell levels as c = {c1, c2, · · · , cn} such that R(c) = si. Then the cell levels are

distorted by the additive noise w = (w1, w2, · · · , wn), where wi is the noise in the i-th

cell level.

The rank-modulation decoder reads the noisy cell levels c′ = {c1 + w1, c2 +

w2, · · · , cn + wn}, computes the permutation sj = R(c′), and outputs the integer

y = Π(sj). (Note that the mapping Π(·) can be chosen arbitrarily.) Without loss of

generality, we assume that Π−1(1) = (1, 2, · · · , n), the identity permutation. Since

144

Π is a bijection, we also abuse notation and write W (sj|si) = W (y|x) for a channel

whose inputs and outputs are permutations.

Let π be a permutation on {1, 2, . . . , n}. Since permutations naturally operate

on each other via composition, we have π ◦ si = (π(si(1)), . . . , π(si(n))). For any

fixed bijection Π, the equivalent channel is symmetric if and only if for all si and sj,

W (Π(sj)|Π(si)) = W (Π(π ◦ sj|Π(π ◦ si)) holds for all π.

When the noise is i.i.d., it is easily seen that the equivalent channel is symmetric.

Therefore, without loss of generality, we assume the input variable is 1, and analyze

W (y|1). For any input integer x, the channel transition probability is W (y|x) =

W (y′|1) where y′ = Π(π ◦ Π−1(y)), and π is the unique permutation satisfying π ◦
Π−1(x) = Π−1(1).

Let s1 = Π−1(1) = (1, 2, · · · , n), c = (1, 2, . . . , n), and c′ = c+w. Then, the hard

decision receiver for rank modulation computes y = R(c′) = R((c1 +w1, . . . , cn+wn))

and the channel transition probability W (sj|s1) is given by

W (sj|s1)=

∫
Aj
f(w1, w2, · · · , wn)dw1dw2 · · · dwn

where Aj = R−1(sj) is the decision region for sj. The integration domain Aj can be

simplified to the intersection of n− 1 half spaces given by

Aj ,

w

∣∣∣∣∣∣∣∣∣∣∣∣∣

wsj(1) + csj(1) < wsj(2) + csj(2)

wsj(2) + csj(2) < wsj(3) + csj(3)

...

wsj(n−1) + csj(n−1) < wsj(n) + csj(n)

.

This decision region remains valid for the general case where the cell levels are

not equally separated and the noise has an arbitrary joint distribution on the n cells.

Since the integral cannot be further simplified without making more assumptions, it

145

is computed numerically in practice using Monte Carlo integration.

In the following, we assume that the noise is i.i.d. Gaussian with zero mean

and small variance σ2. We also assume that all the adjacent cell levels are separated

equally by a constant ∆. (Note that for rank modulation, the memory only needs

to use comparison circuits to program and read cells, and the real cell levels are

unknown to the decoder. Results obtained by assuming evenly-spaced cell levels can

be extended later for more robust code design.)

To study the approximate channel transition probability W̃ (y|x), we first define

two concepts.

Definition 1. An adjacent transposition in a rank-modulation symbol is a transposi-

tion of adjacent cell levels (among the n cells). For example, an adjacent transposition

in a permutation induced by the n cell levels, causes the two integers i and i+ 1 (for

some i ∈ {1, 2, . . . , n− 1}) to switch their positions.

Definition 2. For i = 0, 1, . . . , n(n−1)
2

, for any permutation s ∈ Sn, we define Ni(s),

called the i-th neighborhood of s, as follows: the minimum number of adjacent trans-

positions to change any permutation in Ni(s) to s (and vice versa) is i. Namely,

Ni(s) is the set of permutations at Kendall tau distance i from s. We note that

|N1(s)| = n− 1.

Given the input symbol s ∈ Sn to the channel, the output symbol will be s with

probability 1 − p. Let p1 be the approximate probability that the output symbol is

s′ ∈ N1(s). For small noise, it can be shown that p ≈ |N1(s)|p1 = (n− 1)p1, that is,

the dominant errors are the errors causing one adjacent transposition. The following

lemma makes this notion precise, Due to the limited space, its proof is omitted.

Lemma 8. For additive i.i.d. Gaussian noise with small variance σ2, the channel

model can be approximated as follows. (We call it the approximate channel model.)

146

Let x, y ∈ Sn be the input and output permutations to the channel, respectively. Then

the channel transition probability for the approximate channel is

W̃ (y|x) =

1− (n− 1)p1 + o(p1) if x = y

p1 + o(p1) if y ∈ N1(x)

O(p2
1) otherwise

(5.1)

where p1 = σ√
π∆

exp
(
− ∆2

4σ2

)
.

Proof. The idea of the proof is that we first show the probability of any pair of

adjacent cell-levels getting flipped is on the order of o(exp(−∆2)). Therefore only

those pairs which are separated by ∆ are likely to be flipped. The second step is to

show the dominant error event is that only one adjacent pair gets flipped.

Consider two cell levels which are separated by ∆. Let the i.i.d. Gaussian noise

be w1 and w2. The probability that they are flipped is

p0 ,
∫ ∞
w2=−∞

∫ ∞
w1≥w2+∆

f(w1)f(w2)dw1dw2

where f(·) is the pdf of the Gaussian noise. By symmetry,

p0 =

∫ −√2
2

∆

w=−∞
f(w)dw = Q

(
∆√
2σ

)
.

It is well know that when σ is small, a good approximation of the Q function is

Q(x) = 1√
2πx

exp
(
−x2

2

)
(1 +O(x−1)) . Therefore, we have

p0 =
σ√
π∆

exp

(
−∆2

4σ2

)
(1 +O(σ)) = p1 + o(p1).

The probability that two cell levels which are separated by i∆ are flipped is pi =

O(pi
2

1).

Next, we will show that, as noise variance goes to zero, with high probability,

147

there is only one pair of adjacent cell-levels being flipped when an error occurs. Note

that there are two possible locations for two pairs of cell-levels, i.e., they are either

disjoint and independent or they share a cell. If two pairs share a cell and both pairs

are flipped, the probability of this can be upper bounded by the probability that the

lowest cell-level and the highest cell-level of these three cells are flipped, which is

O(p4
1). On the other hand, if two pairs are independent, it is easy to see that the

probability that both pairs are flipped is O(p2
1). Since the number of choices of two

pairs are independent of p1, the probability that there are more than 1 adjacent and

disjoint pairs of cell levels being flipped is O(p2
1). Therefore, each error symbol in

N1(x) occurs with probability p1 +o(p1). The probability that the error symbol is not

in N1(x) is O(p2
1). The symbol is correct with probability 1− (n− 1)p1 + o(p1). Note

that we use the Landau notation by following the definition of [19]. All the Landau

notations are used to described the behavior of some variables when σ is near 0.

Remark 25. Note that the above analysis still holds even when the cell-level separa-

tion is not uniform. This is the case if we consider rewriting using rank modulation.

The similar analysis shows that each error symbol in N1(x) occurs with probability

p1 + o(p1). The error symbol y /∈ N1(x) occurs with probability O(p2
1) and the symbol

is correct with probability 1− |N1(x)| p1 + o(p1). The only difference is that there are

only m ≤ n− 1 symbols in N1(x) where there are only m adjacent pairs of cell-levels

which are separated by ∆ and the other n − 1 − m pairs of adjacent cell-levels are

separated by c∆ with c > 1.

Note that we evaluate the channel capacity for the real channel and the approx-

imate channel when n = 5. The results are shown in Fig. 29. The unit of the y-axis

is a symbol per channel use.

148

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

channel error probability p

ca
pa

ci
ty

 (
sy

m
bo

l p
er

 c
ha

nn
el

 u
se

)

real channel
approximate channel

Fig. 29. Capacity of the real channel model and the approximate channel.

149

C. LDPC Codes Design for Rank Modulation

Before introducing the LDPC codes, we first analyze the maximum likelihood (ML)

decoder for the approximate channel.

Lemma 9. For p1 < 1
2(n−1)

, the ML decoder for the approximate channel is the

minimum Hamming distance decoder as follows

X̂ = arg min
X:XH=0

‖X − Y ‖H .

Theorem 14. For any error correcting code, the maximum rate for zero error ML

decoding is log(n−1)!
logn!

.

Proof. The condition for zero-error ML decoding is that there is at most one valid

codeword in the N1 neighborhood of any vector Y ∈ ΠN
n . Therefore, the maximum

number of codeword can be obtained by the sphere packing argument. Let Q be the

maximum number of non-overlapping spheres in ZN
m. It is obvious to see Q = (m)N

nN
.

Since there is at most one codeword in each sphere, therefore the maximum number

of codewords is Q and the maximum code rate for zero-error ML decoding is R∗ =

logM
log(m)N

= log(n−1)!
logm

.

By Stirling’s approximation, we have R∗ ≈ log((n−1)
e)

(n−1)

log(ne)
n = (n−1)(log(n−1)−1)

n(logn−1)
=

1 − o(1
n
). This shows that there exist high rate codes such that ML decoding has a

negligible error rate.

1. Iterative verification-based decoder

We are interested in message-passing decoders for this problem because they have

complexity that is linear in N . In particular, we design a symbol-flipping algorithm

based on verification. The idea is to jointly use the a priori information about the

150

channel and the assumption that two error messages match with low enough probabil-

ity as n is large enough. We note that this general idea can be applied to the decoders

of both codes over integer rings and finite fields and the density evolution analysis is

exactly the same for both codes. This results in decoding algorithms that are simi-

lar to both symbol-flipping algorithms, which can be seen as a generalization of the

Gallager-A and Gallager-B hard decision decoding algorithms [55], and verification-

based decoding algorithm [68]. We also refer these algorithms as the symbol-flipping

verification-based (SFVB) algorithms. The event that two incorrect symbols match is

also called false verification (FV). Note that when we analyze the SFVB algorithms,

we don’t consider FV.

Note that the verification-based decoding algorithms can be further classified

into node-based (NB) and message-based (MB) algorithms [69]. Therefore, the SFVB

decoding algorithms also have two categories, namely, node-based SFVB (NBSFVB)

decoding algorithms and message-based SFVB (MBSFVB) decoding algorithms. The

messages from the variable nodes to the check nodes (resp. from the check nodes to

the variable nodes) are multiplied by the (resp. inverse of the) random entries in

the parity-check matrix. For simplicity, we will not describe this explicitly in the

following.

a. NBSFVB Decoding Algorithm

In each iteration, we first calculate the check sums of the check nodes. Then we

perform the symbol-flipping operation on the variable nodes simultaneously by the

following rules.

• If all the check nodes connected to a variable node are satisfied (i.e., the check

sum equals 0), then the variable node remains at its current value x.

151

• Otherwise, the variable node tries to change its value to one of the N1(y) neigh-

bors of its received value y.

– If it finds a value x′ ∈ N1(y) which satisfies all the checks, then the variable

node flips its value to x′: x→ x′.

– If it cannot find a value which satisfies all the checks, it keeps its value

unchanged.

We note that this algorithm cannot be analyzed by density evolution since the two-

way messages on the same edge are not independent. This algorithm is a node-based

message-passing decoding [69] and one can analyze it using the differential equation

approach described in [22] [69]. Also note that this algorithm can be further improved

by relaxing the flipping condition. The idea is similar to Gallager-B hard decision

decoding algorithm [55] for the BSC and we skip the details here.

b. MBSFVB Decoding Algorithm

By using the a priori channel information and the fact that the size of the channel

output alphabet set is large, we propose the MBSFVB decoding algorithm. The

decoding rules are described as follows.

• Check Node Operation: Let the variable-to-check messages bem0, m1, · · · ,mr−1.

For a check node of degree r, the check-to-variable message on the j-th edge is

m′j = mj −
∑r−1

k=0mk.

• Variable Node Operation: For a variable node of degree l, let the channel output

value be y and check-to-variable messages be m′0, m
′
1, · · · ,m′l−1. The variable-

152

to-check message on the j-th edge is

mj =

m, if C1

y′ if not(C1) and C2

y otherwise

where condition C1 represents the event that at least 2 messages from the

message set {y}∪{m′0,m′1, · · · ,m′l−1}\{m′j} match and equal m. Condition C2

represents the event that there exists a value y′ ∈ N1(y) such that y′ matches

at least 1 message in {m′0,m′1, · · · ,m′l−1}\{m′j}.

Based on [69], we derive the DE analysis of MBSFVB under the assumption that

the output message is correct whenever condition C1 or C2 holds (i.e., there is no

false verification (FV)). Let pi be the probability that a variable-to-check message is

incorrect at iteration i. Let qi be the probability that a check-to-variable message is

incorrect at iteration i. Note that p0 = p is the channel error probability. The DE

equations for the MBSFVB algorithm are

qi = 1− (1− pi)r−1

and

pi+1 = pql−1
i .

Taking the irregularity into account, the DE equations can be written as

qi = 1− ρ(1− pi)

and

pi+1 = pλ(qi),

153

where λ(x) and ρ(x) are the variable node and check node degree distributions in the

edge perspective.

Remark 26. The DE recursion of the MBSFVB algorithms is identical to the DE

recursion of the BEC. The decoding threshold of the (3,6) ensemble with the MBSFVB

algorithm is p∗MBSFV B = 0.428. The decoding threshold of the (3,50) ensemble with

the MBSFVB algorithm is p∗MBSFV B = 0.047.

In the real channel model, error symbols in the N2-neighborhood may also be

corrected by the MBSFVB or NBSFVB algorithm. But the a priori channel informa-

tion, i.e, the fact that the correct symbol can only lie in the N1-neighborhood of the

received output symbol, helps improve the decoding threshold significantly. A simple

modification of the MBSFVB algorithm that does not utilize the channel a priori

information actually performs very poorly. For example, let us define the MBSFVB

algorithm as follows.

• Check Node Operation: The check node operation is the same as with the

MBSFVB algorithm.

• Variable Node Operation: For a variable node of degree l, let the channel output

value be y and check-to-variable messages be m′0, m
′
1, · · · , m′l−1. The variable-

to-check message on the j-th edge is

mj =

 m if m′k = m, for all k 6= j;

y otherwise.

We derived the DE analysis, and the result shows that the decoding threshold is 0.092

for the (3,6) ensemble. Due to the poor performance, we omit the details about the

DE analysis here.

154

As mentioned in previous section, when the codes are defined over GF (q) which

is embedded into Zm, sometimes the output permutation y of the rank modulation

demodulator is not in L, hence y cannot be mapped back to GF (q). In this case, we

know that the correct permutation falls in N1(y) with high probability. We assign

an arbitrary element in Z(y) , {z|z ∈ GF (q), ℘−1(z) ∈ N1(y), ℘−1(z) ∈ L} to this

coded symbol and we assign the rest elements in Z(y) as its decoding neighborhood.

Then we can still apply the SFVB decoding algorithms described above. We note

that this results in slightly better error correcting performance than that predicted by

the DE analysis because there is less ambiguity on those symbols on the boundary of

L given the channel observation. Since the error correcting capability is better if the

transmitted symbol is on the boundary of L, the analysis of the average performance

can not be simplified to the analysis of the all-1 codeword (where each permutation

is the identity permutation). We only use the DE result as an upper bound of the

decoding threshold.

In our DE anlaysis, we assume that there is no FV. During our simulations of

codes over Zm, we discovered that the probability of FV is not negligible for moderate

n (e.g., n ≤ 8). The problem is not that the alphabet size is too small (e.g., 8! = 40320

is large enough based on previous work). Instead, it appears that the issue of FV is

more complicated for codes over integer rings. The reason is that multiplication with

random edge weights maps some incorrect symbols (e.g., (n−1)! ∈ Zm) to sets whose

size are significantly smaller than m or even φ(m). Therefore, the probability that

two incorrect symbols match is too large to be ignored. Unfortunately, we do not yet

have a good analysis of the probability of FV. Still, the simulation results show that,

for n ≥ 8, the probability of FV is low enough that the algorithm is of interest.

155

D. Simulation Results

We evaluate the capacity of the real channel and the approximate channel. The result

is shown in Fig. 29. From the result we can see that the approximate channel and

the real channel have approximately the same capacity when p < 0.05.

We simulate the MBSFVB decoder, or the verification-based (VB) decoder, with

the (3, 50) regular ensemble with rate 0.94 and threshold p∗V B = 0.047. The reason

we choose the (3, 50) ensemble is that the approximate channel and the real channel

model have approximately the same capacity around the decoding threshold. The

channel used is the real channel model. Note that the threshold p∗V B = 0.047 implies

the threshold σ∗V B = 0.315 in the real channel model. The codes are generated

without 4 cycles. Each coded symbol is stored by 5 to 8 cells with rank modulation.

We simulate both codes over integer rings and codes over finite fields with different

alphabets. We also simulate the VB decoder without FV by artificially avoiding FV’s.

To see how the numerical simulation matches the DE analysis, we choose the block

length to be 105 and the maximum number of decoding iterations to be 100. Each

point is the average of up to 108 trials. And the results are shown in Fig. 30. It can

be seen that the simulation matches the DE analysis very well.

To be fair, we also compare the VB decoder with the full belief propagation

(BP) decoder, where each message is a probability mass function (pmf) over Zm.

For the check node, the check-to-variable message is calculated by the convolution

of all other variable-to-check pmf’s. For the variable node, the variable-to-check

message is calculated by normalizing the product of the channel pmf and all other

check-to-variable pmf’s. The complexity of this method in the probability domain is

O(Nm2) per iteration without optimization. The log domain FFT-based decoder has

complexity O(Nm log(m)) per iteration [70, 71].

156

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

σ

sy
m

bo
l e

rr
or

 r
at

e

VB, 100k, No FV

σ*
VB

BP, 1k, n=5

VB, 1k, n=5

VB, 1k, n=8

VB, 1k, No FV

FE, GF(26), 1k, n=5

FE, GF(29), 1k, n=6

FE, GF(212), 1k, n=7

FE, GF(215), 1k, n=8

Fig. 30. Simulation results comparing the VB decoder with the full BP decoder using

the real channel model.

157

We compare the VB decoder with the full BP decoder in Fig. 30. We simulate

codes from the (3,50) ensemble by the VB decoder and the full BP decoder. We

simulate codes over integer rings Zm and finite fields which are embedded in Zm. We

choose the block length to be 1000 and n = 5 to 8 and without FV for the VB decoder

and n = 5 for the full decoder due to high complexity of the full BP decoder and the

reason of fair comparison. The real channel model is used. The x-axis is the standard

deviation σ of the i.i.d. Gaussian noise. From the results we can see the VB decoder

without FV’s has similar performance with the full decoder. The performance loss of

the codes over Zm with n = 5 and n = 8 is due to the probability of FV’s. While this

loss can be compensated by using the codes over GF (q) which is embedded into the

rings. This improves the performance significantly with a slight rate loss.

158

CHAPTER VI

CONCLUSIONS

In this dissertation, we study LDPC codes over large alphabets and their applica-

tions on compressed sensing and flash memory. The analysis of decoding threshold

for different decoding algorithms are derived. During the analysis of the decoding

threshold, we prove that LDPC codes are capacity-achieving over the q-ary sym-

metric channel. We also propose the list-message-passing decoding algorithm which

provides a smooth trade-off between the computational complexity and the error

correcting capability. The application of LDPC codes over large alphabets to com-

pressed sensing systems shows significant improvement of the system performance.

We analyze the performance and compare our LDPC codes based compressed sensing

system to many other existing algorithms. We also discuss LDPC codes design for

flash memory and analyze the decoding threshold.

159

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-

nical Journal, vol. 27, pp. 379–423 and pp. 623–656, Jul. and Oct. 1948.

[2] C. Berrou and A. Glavieux and P. Thitimajshima, “ Near shannon limit error-

correcting coding and decoding: turbo-codes,” in Proc. IEEE Int. Conf. Com-

mun. (ICC), Geneva, Switzerland, May 1993, pp. 1064–1070.

[3] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:

turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261–1271, Oct. 1996.

[4] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,

vol. 18, no. 1, pp. 21–28, Jan. 1962.

[5] D. MacKay and R. Neal, “Good codes based on very sparse matrices,” Lecture

Notes in Computer Science, vol. 1025, pp. 100–111, 1995.

[6] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching

irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2,

pp. 619–637, Feb. 2001.

[7] A. Shokrollahi, “Capacity-approaching codes on the q-ary symmetric channel for

large q,” in Proc. IEEE Inform. Theory Workshop, San Antonio, TX, Oct. 2004,

pp. 204–208.

[8] C. Weidmann, “Coding for the q-ary symmetric channel with moderate q,”

in Proc. IEEE Int. Symp. Information Theory, Toronto, Canada, Jul. 2008,

pp. 2156–2159.

160

[9] G. Lechner and C. Weidmann, “Optimization of binary ldpc codes for the q-ary

symmetric channel with moderate q,” in Proc. 5th International Symposium on

Turbo Codes and Related Topics, Lausanne, Switzerland, Sept., 2008, pp. 221–

224.

[10] M. Luby and M. Mitzenmacher, “Verification-based decoding for packet-based

low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 51,no. 1, pp. 120–

127, Jan. 2005.

[11] J. Metzner, “Majority-logic-like decoding of vector symbols,” IEEE Trans. Com-

mun., vol. 44, no. 10, pp. 1227–1230, Oct. 1996.

[12] J. Metzner, “Majority-logic-like vector symbol decoding with alternative symbol

value lists,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2005–2013, Dec. 2000.

[13] D. Bleichenbacher, A. Kiyayias, and M. Yung, “Decoding of interleaved Reed-

Solomon codes over noisy data,” in Proc. of ICALP, pp. 97–108, 2003.

[14] A. Shokrollahi and W. Wang, “Low-density parity-check codes with rates very

close to the capacity of the q-ary symmetric channel for large q,” in Proc. IEEE

Int. Symp. Inf. Theory, Chicago, IL, Jun. 2004, pp. 275.

[15] A. Shokrollahi and W. Wang, “Low-density parity-check codes with rates very

close to the capacity of the q-ary symmetric channel for large q.” Unpublished

extended abstract, 2004.

[16] E. Arikan, “Channel polarization: A method for constructing capacity-achieving

codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. The-

ory, vol. 55, no. 7, pp. 3051–3073, 2009.

161

[17] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes

under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2,

pp. 599–618, Feb. 2001.

[18] V. Guruswami and P. Indyk, “Linear time encodable and list decodable codes,”

in Proc. 35th Annual ACM Symp. on Theory of Comp., San Diego, CA, 2003,

pp. 126–135.

[19] D. E. Knuth, “Big omicron and big omega and big theta,” In SICACT News,

vol. 8, no. 2, pp. 18–24, Apr. 1976.

[20] T. J. Richardson and R. L. Urbanke, Modern Coding Theory. Cambridge Uni-

versity Press., New York, USA, 2008.

[21] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces,” J. Global Optim., vol. 11, no. 4,

pp. 341–359, 1997.

[22] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient erasure

correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 569–584, Feb.

2001.

[23] N. Wormald, “Differential equations for random processes and random graphs,”

Annals of Applied Probability, vol. 5, no. 4, pp. 1217–1235, 1995.

[24] N. Wormald, “The differential equation method for random graph processes and

greedy algorithms,” Lecture Notes in Summer School on Randomized Algorithms,

Antonin, Poland, 1997.

[25] F. Zhang and H. D. Pfister, “Verification decoding of high-rate ldpc codes with

applications in compressed sensing.” submitted to IEEE Trans. on Inf. Theory

162

also available in Arxiv preprint cs.IT/0903.2232v3, 2009.

[26] A. Kavcic, X. Ma, and M. Mitzenmacher, “Binary intersymbol interference chan-

nels: Gallager codes, density evolution, and code performance bounds,” IEEE

Trans. Inf. Theory, vol. 49, no. 7, pp. 1636–1652, Jul. 2003.

[27] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”

SIAM J. Sci. Comp., vol. 20, no. 1, pp. 33–61, 1998.

[28] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4,

pp. 1289–1306, 2006.

[29] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact sig-

nal reconstruction from highly incomplete frequency information,” IEEE Trans.

Inf. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[30] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, “One sketch for all:

fast algorithms for compressed sensing,” In in Proceedings of the ACM Sympo-

sium on the Theory of Computing (STOC 2007), 2007.

[31] A. Cohen, W. Dahmen, and R. DeVore, “Compressed sensing and best k -term

approximation,” IGPM Report, RWTH-Aachen, Jul. 2006.

[32] W. Johnson and J. Lindenstrauss, “Extensions of lipschitz maps into hilbert

space,” Contemp. Math., vol. 26, pp. 189–206, 1984.

[33] E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets,”

Math. USSR Sbornik, vol. 48, pp. 173–182, 1984.

[34] S. Sarvotham, D. Baron, and R. G. Baraniuk, “Sudocodes–fast measurement and

reconstruction of sparse signals,” in Proc. IEEE Int. Symp. Information Theory,

Seattle, WA, Jul. 2006, pp. 2804–2808.

163

[35] W. Xu and B. Hassibi, “Efficient compressive sensing with deterministic guar-

antees using expander graphs,” in Proc. IEEE Inform. Theory Workshop, Lake

Tahoe, CA, Sept. 2007, pp. 414–419.

[36] F. Zhang and H. D. Pfister, “Compressed sensing and linear codes over real

numbers,” in Proc. 2008 Workshop on Inform. Theory and Appl., UCSD, La

Jolla, CA, Feb. 2008, pp. 558–561.

[37] S. Sarvotham, D. Baron, and R. Baraniuk, “Compressed sensing reconstruction

via belief propagation,” Rice University, Tech. Rep. ECE-06-01, Jul. 2006.

[38] W. Dai and O. Milenkovic, “Weighted superimposed codes and constrained in-

teger compressed sensing,” 2008, submitted to IEEE Trans. Inf. Theory also

available in Arxiv preprint cs.IT/0806.2682v1.

[39] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, March 1999.

[40] T. Richardson, M. A. Shokrollahi, and R. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory,

vol. 47, no. 2, pp. 619–637, Feb. 2001.

[41] C. Di, D. Proietti, E. Telatar, T. J. Richardson, and R. Urbanke, “Finite-length

analysis of low-density parity-check codes on the binary erasure channel,” IEEE

Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, Jun. 2002.

[42] A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribution of LDPC

code ensembles,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 929–953, 2005.

[43] F. Zhang and H. D. Pfister, “List-message passing achieves capacity on the q-ary

164

symmetric channel for large q,” in Proc. IEEE Global Telecom. Conf., Washing-

ton, DC, Nov. 2007, pp. 283–287.

[44] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated

codes.” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 1727–1737, Oct. 2001.

[45] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf.

Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[46] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements

via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12,

pp. 4655–4666, 2007.

[47] M. A. Shokrollahi, “New sequences of linear time erasure codes approaching

the channel capacity,” In Applicable Algebra in Eng., Commun. Comp., 1999,

pp. 65–76.

[48] M. A. Khajehnejad, A. G. Dimakis, W. Xu, and B. Hassibi, “Sparse recovery

of positive signals with minimal expansion,” 2009, available in Arxiv preprint

cs.IT/0902.4045v1.

[49] J. K. Wolf, “Redundancy, the discrete Fourier transform, and impulse noise

cancellation,” IEEE Trans. Commun., vol. 31, no. 3, pp. 458–461, March 1983.

[50] M. G. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Practical loss-resilient

codes,” in Proc. 29th Annu. ACM Symp. Theory of Computing, 1997, pp. 150–

159.

[51] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal

reconstruction,” 2008. [Online]. Available: http://arxiv.org/abs/0803.0811

165

[52] N. Deanna and V. Roman, “Uniform uncertainty principle and signal recovery via

regularized orthogonal matching pursuit,” Foundations of Computational Math-

ematics, vol. 9, no. 3, pp. 317–334, June 2009.

[53] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive

sensing,” In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE

International Conference on, 2008, pp. 3869–108.

[54] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the Lambert W

function,” Advances in Computational mathematics, vol. 5, no. 1, pp. 329–359,

1996.

[55] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA, USA: The

M.I.T. Press, 1963.

[56] A. Fiat and A. Shamir. Generalized write-once memories. IEEE Trans. Inf.

Theory, vol. 30, no. 3, pp. 470–480, May 1984.

[57] R.L. Rivest and A. Shamir. How to reuse a write-once memory. Information

and Control, vol. 55, pp. 227–231, 1984.

[58] C. Heegard and A. El Gamal. On the capacity of computer memory with defects.

IEEE Trans. Inf. Theory, vol. 29, no. 5, pp. 731–739, Sept. 1983.

[59] J. Ziv J. K. Wolf, A.D. Wyner and J. Korner. Coding for a write-once memory.

AT&T Bell Laboratories Technical Journal, vol. 63, no. 6, pp. 1089–1112, 1984.

[60] A. Jiang and J Bruck. Joint coding for flash memory storage. in Proc. IEEE

Int. Symp. Information Theory, Toronto, Canada, Jul. 2008, pp. 1741–1745.

166

[61] M. Raab and A. Steger. ”Balls into bins” - a simple and tight analysis. in

Proc. the Second International Workshop on Randomization and Approximation

Techniques in Computer Science, 1998, vol. 1518, pp. 159–170.

[62] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck. Universal rewriting in con-

strained memories. in Proc. IEEE Int. Symp. Information Theory, South Korea,

Jun. 2009, pp. 1219-1223.

[63] A. Barg and A. Mazumdar, “Codes in permutations and error correction for rank

modulation,” Available as Arxiv preprint cs.IT/0908.4094, 2009.

[64] R. P. Brent and B. D. McKay, “Determinants and ranks of random matrices over

Zm,” In Discrete Mathematics, vol. 66, pp. 35–49, 1987.

[65] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation for flash

memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673, 2009.

[66] A. Jiang, M. Schwartz and J. Bruck, “Error-correcting codes for rank modula-

tion,” in Proc. IEEE Int. Symp. Information Theory,Toronto, Canada, Jul. 2008,

pp. 1736–1740.

[67] Z. Wang, A. Jiang and J. Bruck, “On the capacity of bounded rank modulation

for flash memories,” in Proc. IEEE Int. Symp. Information Theory, South Korea,

Jun. 2009, pp. 1234–1238.

[68] M. Luby and M. Mitzenmacher, “Verification-based decoding for packet-based

low-density parity-check codes,” In IEEE Trans. Inf. Theory, vol. 51, no. 1,

pp. 120–127, 2005.

[69] F. Zhang and H. D. Pfister, “List-message passing achieves capacity on the q-ary

symmetric channel for large q,” submitted to IEEE Trans. Inf. Theory. Available

167

as Arxiv preprint cs.IT/0806.3243, 2008.

[70] H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC codes

for magnetic recording,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1081–1087, 2003.

[71] M. Davey and D. J. C. MacKay, “Low density parity check codes over GF(q),”

In IEEE Commun. Lett., vol. 2, no. 6, pp. 165–167, Jun. 1998.

[72] Y. Azar, A. Z. Brodery, A. R. Karlinz, and E. Upfal. Balanced allocations. in

Proc. 26-th annual ACM symposium on Theory of computing, pp. 593–602, 1994.

[73] H. Finucane, Z. Liu, and M. Mitzenmacher. Designing floating codes for expected

performance. in Proc. 46th Annual Allerton Conf. on Commun., Control, and

Comp., Monticello, IL, September 2008, pp 968–978.

[74] A. Jiang. On the generalization of error-correcting WOM codes. in Proc. IEEE

Int. Symp. Information Theory, Nice, France, Jun. 2007, pp. 1391–1395.

[75] A. Jiang, V. Bohossian, and J. Bruck. Floating codes for joint information

storage in write asymmetric memories. in Proc. IEEE Int. Symp. Information

Theory, Nice, France, Jun. 2007, pp. 1166–1170.

[76] M. D. Mitzenmacher. The power of two choices in randomized load balancing.

IEEE Tran. Par. Dist. Sys., vol. 12, no. 10, pp. 1094–1104, 1996.

[77] B. Vocking. How asymmetry helps load balancing. in Foundations of Computer

Science, 1999. 40th Annual Symposium on, pp. 131–141, 1999.

[78] E. Yaakobi, A. Vardy, P. H. Siegel, , and J. K. Wolf. Multidimensional flash

codes. in Proc. 46th Annual Allerton Conf. on Commun., Control, and Comp.,

Monticello, IL, Sep. 2008, pp. 392–399.

168

[79] F. Zhang and H. D. Pfister. Modulation codes for flash memory based on load-

balancing theory. in Proc. 47th Annual Allerton Conf. on Commun., Control,

and Comp., Monticello, IL, 2009, pp. 1039–1046.

169

APPENDIX A

Proof of theorem 1

Proof. Given pλ(1−ρ(1−x)) < x for x ∈ (0, 1], we start by showing that both xi and

yi go to zero as i goes to infinity. To do this, we let α = supx∈(0,1)
1
x
pλ(1− ρ(1− x))

and note that α < 1 because p < p∗. It is also easy to see that, starting from x0 = 1,

we have xi ≤ αi and xi → 0. Next, we rewrite (2.3) as

yi+1 =
1

p
xi+1 + p (ρ(1− xi)− ρ(1− yi))λ′(1− ρ(1− xi))

(a)

≤ 1

p
αi+1 + p

(
1− ρ′(1)αi − ρ(1− yi)

) (
λ2 +O(αi)

)
(b)

≤ 1

p
αi+1 + pλ(1− ρ(1− yi))

(
1 +O(αi)

)
(c)

≤ 1

p
αi+1 + αyi

(
1 +O(αi)

)
,

where (a) follows from ρ(1 − x) ≤ 1 − ρ′(1)x, (b) follows from λ2(1 − ρ(1 − y)) ≤
λ(1− ρ(1− y)), and (c) follows from pλ(1− ρ(1− y)) ≤ αy. It is easy to verify that

yi+1 < yi as long as yi >
αi+1

p(1−α(1+O(αi)))
. Therefore, we find that yi → 0 because the

recursion does not have any positive fixed points as i→∞. Moreover, one can show

that yi eventually decreases exponentially at a rate arbitrarily close to α.

Note that the decoding error comes from two reasons, one is the event that

message is not verified and the other one is the event that the message is falsely

verified. Next, we are going to show that the actual performance of a code converges

to the ensemble average exponentially which means almost every code in a capacity-

achieving ensemble has capacity-achieving performance. Note that the concentration

170

effect and the decay of FV probability hold regardless whether the error probability

of the decoder converges to zero or not.

We can prove that the performance of a particular code converges to the threshold

which is the average performance of a tree-like ensemble in a similar way in [17], where

the average is over the graph ensemble (λ(x), ρ(x)) and all the channel inputs. There

are two difference between our scenario and [17], i.e, our algorithm passes a list of

values with unbounded list size, the second difference is the graph may be irregular

in our case. Here we only mention the brief procedure of the proof. We can let

Z(l)/E denote the fraction of unverified messages at the l-th iteration, where E is the

number of edges in the graph. Note that Z(l) denotes the number of incorrect and

erasure messages in [17]. Following [17], we can break the failure the probability into

a tree-like neighborhood term and a Martingale concentration term to get

Pr

(∣∣∣∣Z(l)(s)

E
− yl

∣∣∣∣ ≥ ε

)
≤

Pr

(∣∣∣∣∣Z(l)(s)

E
− E

[
Z(l)(s)

]
E

∣∣∣∣∣ ≥ ε/2

)
+

Pr

(∣∣∣∣∣E
[
Z(l)(s)

]
E

− yl
∣∣∣∣∣ ≥ ε/2

)
where s is an arbitrary codeword chosen from ensemble (λ, ρ), Z(l)(s) is the ran-

dom variable that denotes the number of unverified variable-to-check messages after

l decoding iterations. E is the number of edges in the graph. This means that

the concentration bound consists two parts: concentration from a particular code

to the ensemble with cycles and concentration from a ensemble with cycles to the

tree-like ensemble. Notice that the proof of the later concentration and the proof of

the probability of a tree-like neighborhood are not limited to the specific decoding

algorithm and the definition of Z(l), the proof is omitted here. By forming a Doob’s

171

martingale on the edge-exposure and applying Azuma’s inequality, we can prove the

concentration from a particular code to the ensemble in the same manner as [17].

In our scenario, the proof of bounded difference of the martingale, the right hand

side of [17, Eq. (16)] should be the cardinality of depth 2l directed neighbor of e,˛̨̨
~N (2l)
e

˛̨̨
2

. The right hand side of [17, Eq. (17)] should be 4
∣∣∣ ~N (2l)

e

∣∣∣. The β in applying

Azuma’s inequality is
∑E

k=1

(
4
∣∣∣ ~N (2l)

e

∣∣∣)2

+
∑n

k=1

(
4
∣∣∣ ~N (2l)

e

∣∣∣)2

. So far, we prove that,

for an arbitrary small constant ε/2, there exist positive numbers β and γ, such that

if n > 2γ
ε

, then

Pr

(∣∣∣∣Z(l)(s)

E
− yl

∣∣∣∣ ≥ ε

)
≤ e−βε

2n

Note that the similar proof can be found in [17] (the proof of Theorem 2) and [26]

(the proof of Theorem 1). Note that [17] proves for the regular code ensemble and

[26] extends the proof to the irregular code ensemble. So, for an arbitrary code s and

an arbitrary small quantity ε, the fraction of unverified message is less than ε/2 as n

goes to infinity.

In [17] and [26], it is proved that, when a code graph is chosen uniformly at

random from all possible graphs with degree distribution pair (λ(x), ρ(x)),

Pr (neighborhood of depth 2l is not tree-like) ≤ γ

n

where γ is a constant independent of n. So, given ε, we can choose n large enough

such that the number of variable nodes which are involved in cycles of length less

than 2l is less than nε/2 with probability arbitrarily close to one as n goes to infinity.

So the probability of error caused by type-II FV’s is upper bounded by ε/2 (for the

notation of type-I and type-II FV, please refer to Section 2). Here, we don’t consider

the type-I FV’s because the probability of type-I FV’s can be forced arbitrarily close

to zero by choosing a large enough q.

172

APPENDIX B

Proof of Theorem 2

All verifications that occur in LM1-NB also occur in LM1-MB and vice versa.

So LM1-NB and LM1-MB are equivalent.

Proof. The operations of LM1-MB and LM1-NB are different because they have dif-

ferent verification rules (see Table. I). We can prove they are equivalent by showing

the verification occurs in LM1-MB also occurs in LM1-NB and vice versa, but in

different decoding steps. Let’s first look at the check node when the summation of

all messages equals to zero but there are more than 1 messages are unverified. In this

case, LM1-NB will verify all the messages. In LM1-MB none of them will be verified

but all the values will be correct. In the following iteration, all these messages will be

verified on their variable nodes. Notice that this is the only case verification occurs

in LM1-NB but not in LM1-MB. So verification in LM1-NB also occurs in LM1-MB.

Let’s then look at the variable node when any incoming message is correct and the

channel value is correct. In LM1-MB, the outgoing message will be verified. In LM1-

NB the message will be correct but not verified. Notice that the incoming is correct

means all the other messages are correct at the check node, so the unverified correct

message will be verified in the next step on check node. Notice that this is the only

case verification occurs in LM1-MB but not in LM1-NB. So verification in LM1-MB

also occurs in LM1-NB.

173

APPENDIX C

Proof of Lemma 1 Let y be the received symbol sequence assuming the all-zero code-

word was transmitted. Let u be any codeword with exactly k non-zero symbols. It

is easy to verify that the probability that ML decoder chooses u over the all-zero

codeword is given by

p2,k =
k∑
j=0

j∑
i=0

(
k

i, j, k − i− j
)

(1− p)i
(

p

q − 1

)j (
p(q − 2)

q − 1

)k−i−j
.

Using the multinomial theorem, it is also easy to verify that

A(x) =

(
(1− p) +

p

q − 1
x2 +

p(q − 2)

q − 1
x

)k
=

k∑
j=0

k−j∑
i=0

(
k

i, j, k − i− j
)

(1− p)i
(

p

q − 1

)j (
p(q − 2)

q − 1

)k−i−j
xk−i+j

,
2k∑
l=0

Alx
l,

where Al is the coefficient of xl in A(x). Finally, we observe that p2,k =
∑2k

l=k Al

is simply an unweighted sum of a subset of terms in A(x) (namely, those where

k − i+ j ≥ k).

This implies that

xkp2,k =
2k∑
l=k

Alx
k ≤ A(x)

for any x ≥ 1. Therefore, we can compute the Chernoff-type bound

p2,k ≤ inf
x≥1

x−kA(x).

174

By taking derivative of x−kA(x) over x and setting it to zero, we arrive at the bound

p2,k ≤
(
p
q − 2

q − 1
+

√
4p(1− p)
q − 1

)k

.

175

APPENDIX D

Proof of Lemma 2

1− pp

0

p

1

p

2 ...

p

p

s

Fig. 31. Finite-state machine for Lemma 2.

Proof. An unverification event occurs on a degree-2 cycle of length-k when there is

at most one correct variable node in any adjacent set of s+ 1 nodes. Let the set of all

error patterns (i.e., 0 means correct and 1 means error) of length-k which satisfy the

UV condition be Φ(s, p, k) ⊆ {0, 1}k. Using the Hamming weight w(z), of an error

pattern as z, to count the number of errors, we can write the probability of UV as

φ(s, p, k) =
∑

z∈Φ(s,p,k)

pw(z)(1− p)k−w(z).

This expression can be evaluated using the transfer matrix method to enumerate

all weighted walks through a particular digraph. If we walk through the nodes along

the cycle by picking an arbitrary node as the starting node, the UV constraint can be

seen as k-steps of a particular finite-state machine. Since we are walking on a cycle,

the initial state must equal to the final state.

176

The finite-state machine, which is shown in Fig. 31, has s+1 states {0, 1, . . . , s}.
Let state 0 be the state where we are free to choose either a correct or incorrect

symbol (i.e., the previous s symbols are all incorrect). This state has a self-loop

associated with the next symbol also being incorrect. Let state i > 0 be the state

where the past i values consist of one correct symbol followed by i − 1 incorrect

symbols. Notice that only state 0 may generate correct symbols. By defining the

transfer matrix with (2.18), the probability that the UV condition holds is therefore

φ(s, p, k) = Tr
(
Bk(p)

)
.

177

APPENDIX E

Proof of Proposition 1

Proof. Starting with the convergence condition λ (1− e−αjjx) ≤ x for x ∈ (0, 1], we

first solve for αj to get

αj = inf
x∈(0,1)

− 1

jx
ln
(
1− λ−1(x)

)
. (E.1)

Next, we substitute x = λ (1− e−y) and simplify to get

αj = inf
y∈(0,∞)

y

jλ (1− e−y) . (E.2)

For j ≥ 3, this function is unbounded as y → 0 or y → ∞, so the minimum must

occur at an interior critical point y∗. Choosing λ(x) = xj−1 and setting the derivative

w.r.t. y to zero gives

j
(
1− e−y∗)j−1 − j(j − 1)y∗

(
1− e−y∗)j−2

e−y
∗

j2 (1− e−y∗)2j−2 = 0 (E.3)

Canceling terms and simplifying the numerator gives 1 − e−y∗ − (j − 1)y∗e−y
∗

= 0,

which can be rewritten as ey
∗

= (j− 1)y∗+ 1. Ignoring y∗ = 0, this implies that y∗ is

given by the unique intersection of ey and (j − 1)y + 1 for y > 0. That intersection

point can be written in closed form using the non-principal real branch of the Lambert

W-function [54], W−1(x), and is given by, for j ≥ 2,

y∗j = − 1

j − 1

(
1 + (j − 1)W−1

(
− 1

j − 1
e−1/(j−1)

))
. (E.4)

Using this, the α-threshold for j-regular ensembles is given by αj = 1
j
y∗j
(
1− e−y∗j)1−j

.

For j = 2, the minimum occurs as y∗2 → 0 and the limit gives α2 = 1
2
.

178

APPENDIX F

Proof of Theorem 4

Before proving the theorem, we first prove the following lemma.

Lemma .1. Let X be a Poisson random variable with mean λ. The tail probability

can be bounded by

Pr(X ≥ x0) ≤ e−λ
(x0

λ

)−x0

ex0 (F.1)

Proof. The moment generating function of Poisson distribution is MX(s) = eλ(es−1).

The Chernoff bound shows

Pr(X ≥ x0) ≤ e−sx0MX(s)

for s ≥ 0. Setting the derivative of the RHS over s to zero to minimize the RHS (since

the second derivative is positive), we have the RHS of (F.1). Note that the RHS of

(F.1) decays faster than e−Ax0 for any constant A.

Proof of Theorem 2. To show the concentration for our case, we modify the proof as

following. In the first iteration, we reduce the graph to a smaller one by removing the

edges which are not erased. Let δ = αj
k

be the channel erasure probability and k = nω,

the number of check nodes concentrates around nj
k

= jn1−ω and the number of variable

nodes concentrates around n′ = nδ = αjn1−ω. The probability that a check node has

degree t after removal is
(
k
t

)
δt(1− δ)k−t which converges to Poisson distribution as

k → ∞. So the edge degree distribution of check node is ρ(x) =
∑

t
(αj)t

t!
e−αjxt−1,

the average check node degree is αj, and the edge degree distribution of the variable

node is λ(x) = xj−1.

179

By the similar edge-revealing argument [40], we can model the graph-uncovering

process as a martingale and apply the Azuma’s inequality, we can bound the proba-

bility that the performance of a particular code deviates the cycle-free case by more

than ε,

Pr

{∣∣∣∣Z(`)

n′e
− p′(`)

∣∣∣∣ ≥ ε

}
≤ 2e

− (n′jε)2

2
Pn′(1+j)
i=1

α2
i (F.2)

where αi is an upper-bound of the difference of the numbers of erasure messages

between the graphs obtained by revealing the (i− 1)-th and the i-th edge. n′e is the

number of edges in the residual graph which concentrates around αj2n1−ω. p′(`) is the

fraction of erasures of the residual graph given by DE. It is easy to see n′p′(`) = np(`)

where p(`) is the DE result of the original graph. For simplicity, we can pick αi to be

2T`,i where T`,i is the number of edges in the depth-2` directed neighborhood of the

i-th edge. Note that αi is identically distributed but not independent. So the law of

large numbers does not apply in general.

Since the check node degree is an i.i.d. random variable. By applying the union

bound to Lemma .1, the probability that every check node in the residual graph has

degree no more than cn′θ can be bounded as follows

Pr(every CN has degree ≤ n′θ) < n′e−An
′θ ≤ e−A

′n′θ (F.3)

for sufficiently large n′, where A′ = A− ε.
For a (j, n′θ) regular ensemble, T`,i = T` = Θ

(
n′`θ
)

and α2
t = Θ

(
n′2`θ

)
. So we

have

− (n′jε)2

2
∑n′(1+j)

i=1 α2
i

≤ −B
′ (n′jε)2

2n′jn′2`θ
= −Bε2n′1−2`θ

given every check node has degree no more than n′θ where B′ and B are constants

independent of n′. Note that the event that |Z(`)

n′e
− p′(`)| ≥ ε can be caused by two

reasons. The first one is the rare events that captured by Azuma’s inequality. The

180

second reason is that some check nodes have very large degrees such that the RHS of

(3.4) has positive exponent. Equation (F.2) shows the probability that |Z(`)

n′e
−p′(`)| ≥ ε

which is caused by the first reasons and (F.3) shows the probability that |Z(`)

n′e
−p′(`)| ≥

ε which is caused by the second reason. Note that the event |Z(`)

n′e
− p′(`)| ≥ ε can be

caused by both of the first and the second reasons. By the union bound,

Pr

{∣∣∣∣Z(`)

n′e
− p′(`)

∣∣∣∣ ≥ ε

}
≤ n′e−An

′θ
+ 2e−Bε

2n′1−2`θ

. (F.4)

Now we set 1− 2`θ = θ to balance the probability that Azuma’s inequality fails and

the probability that any check node has too large degree. This gives θ = 1
1+2`

. So

(F.4) can be rewritten as

Pr

{∣∣∣∣Z(`)

n′e
− p′(`)

∣∣∣∣ ≥ ε

}
≤ n′e−β

′ε2n
′ 1
1+2`

= n′e−β
′ε2n

1−ω
1+2l

where β′ is a constant independent of n.

181

APPENDIX G

Proof of Lemma 4

Proof. All statements are implied to hold for all k > αj−1
j , all x ∈ [0, 1], and all

α ∈ [0, αj]. Since 1− (1−x)k is concave for k ≥ 1, the tangent upper bound at x = 0

shows that 1− (1− x)k ≤ kx. This implies that(
1−

(
1− αjx

kj/(j−1)

)k)j−1

≤ αj−1
j xj−1

k
. (G.1)

Since α
kj/(j−1) ≤ αj

αj−1
j

≤ 1, we can use (G.1) to upper bound gk+1(x) with

gk+1(x) ≤ α

αj

(
1−

[
1− αj−1

j xj−1

k

+
α

kj/(j−1)

αj−1
j xj−1

k
− αjx

kj/(j−1)

]k)j−1

≤ α

αj

(
1−

[
1− αj−1

j xj−1

k
− αjx

kj/(j−1)

]k)j−1

.

This completes the proof of (i).

The fact that gk+1(x) is monotonically decreasing follows from Lemma 3. This

completes the proof of (ii). Lemma 3 also shows that the limit of gk+1(x) is

g∗(x) ,
α

αj

(
1− e−αj−1

j xj−1
)j−1

.

This proves the first part of (iii).

182

Next, we will show that

lim
k→∞

gk(x) =
α

αj

(
1− e−αj−1

j xj−1
)j−1

.

First, we show that

lim
k→∞

k

(
1−

(
1− αjx

kj/(j−1)

)k)j−1

= αj−1
j xj−1. (G.2)

In light of the the upper bound (G.1), the limit is clearly upper bounded by αj−1
j xj−1.

Using the lower bound in Lemma 3, we see that(
1− αjx

kj/(j−1)

)k
≥ e−αjxk

−1/(j−1)

(1 + αjxk−j/(j−1))
αjxk−1/(j−1)

≥ e−αjxk
−1/(j−1)

(1 + αjxk−j/(j−1))

≥
(

1− αjx

kj/(j−1)

)
e−αjxk

−1/(j−1)

.

This implies that(
1−
(

1− αjx

kj/(j−1)

)k)j−1

≥
(

1−
(

1− αjx

kj/(j−1)

)
e−αjxk

−1/(j−1)

)j−1

.

Together with

lim
k→∞

k

(
1−

(
1− αjx

kj/(j−1)

)
e−αjxk

−1/(j−1)

)j−1

= αj−1
j xj−1,

we see that the limit (G.2) holds.

To calculate the limit of gk(x), we can use the fact that limk→∞
(
1− ak + o

(
1
k

))k
=

e− limk→∞ kak whenever limk→∞ kak exists. Using this, we see that limk→∞ gk+1(x) can
be rewritten as

183

lim
k→∞

α

αj

1−
1−

(
1−
(

1− αjx

kj/(j−1)

)k)j−1

+ o

(
1

k

)k

j−1

=
α

αj

(
1− e−αj−1

j xj−1
)j−1

,

where the last step follows from (G.2).

184

APPENDIX H

Proof of Lemma 2

Proof. Recall that ᾱj is defined as the largest α s.t.
(

1− e−αj−1xj−1
)j−1

≤ x for

x ∈ (0, 1]. So ᾱj can be written as

ᾱj = inf
x∈(0,1]

hj(x) (H.1)

where hj(x) =
(− ln

(
1− x1/(j−1)

)
x(1−j))1/(j−1)

. Notice that hj(x) is a monotonically

increasing function of x when j = 2. So we have

ᾱ2 = lim
x→0

hj(x) = 1. (H.2)

When j ≥ 3, hj(x) goes to infinity when x goes to either 0 or 1, so the infimum is

achieved at an interior point x∗j . By taking derivative of x and setting it to zero, x∗j

is the solution of

x
1
j−1(

1− x 1
j−1

)
ln
(

1− x 1
j−1

) = − (j − 1)2 . (H.3)

So

x∗j =

(
1 +

1

(j − 1)2W−1 (−e−1/(j−1)2/(j − 1)2)

)2

. (H.4)

By solving this numerically, we find that x∗3 ≈ 0.816042, x∗4 ≈ 0.938976 and x∗5 ≈
0.971087. Substituting x∗j into (H.1), we have ᾱ3 ≈ 1.87321, ᾱ4 ≈ 1.66455 and ᾱ5 ≈
1.52073.

185

APPENDIX I

Proof of Lemma 5

Proof. Let us define the function ĝk(x) with

ĝk(x) ,
α

ᾱj

(
1−

(
1− αjx

k

)k−1
)j−1

+ (j − 1)

(
1−

(
1− αjx

k

)k−1
)j−2(

1− αjx

k

)k−1

.

To prove (i), we will show gk(x) < ĝk(x) < ḡk(x). To see that gk(x) < ĝk(x), we must

simply observe that

1−
1− 1− αj

k

1− αjx
k

(
1−

(
1− αjx

k

)k−1
)j−1

k−1

< 1.

This can be seen by working from the inner expression outwards and using the facts

that 0 < αj
k
< 1 and 0 < x < 1. Each step gives a result that is bounded between 0

and 1.

To show ĝk(x) < ḡk(x), we first change variables to z =
(
1− αjx

k

)k
where z ∈

(0, 1). This allows ḡk(x) to be written as a function of z with

ḡk(z) =
α

ᾱj

(
(1− z)j−1 + (j − 1) (1− z)j−3 z

)
. (I.1)

186

Taking the derivative of ḡk(z) with respect to z gives

dḡk(z)

dz
= − α

ᾱj
(j − 2) (j − 1) (1− z)j−3 z (I.2)

which is negative for j ≥ 3. So ḡk(z) is a monotonically decreasing function of z.

Using the inequality
(
1− αjx

k

)k−1
>
(
1− αjx

k

)k
, we find that ĝk(x) < ḡk(x).

Next, we will prove (ii) by showing the limits of gk(x) and ḡk(x) are the same.

First, we take the the term by term limit of ḡk(x) to see that

lim
k→∞

ḡk(x) =
α

ᾱj

((
1− e−αjx)j−1

+

(j − 1)
(
1− e−αjx)j−2

e−αjx
)

=
α

ᾱj

(
1− e−αjx)j−2 (

1 + (j − 2)e−αjx
)
. (I.3)

Next, we use the fact that
(
1− αjx

k

)k−1 → e−αjx to see that

lim
k→∞

1− 1− αj
k

1− αjx
k

(
1−

(
1− αjx

k

)k−1
)j−1

k−1

= 0.

From this, we find that the term by term limit of gk(x) is also equal to (I.3).

To prove (iii), we recall that, using the change of variables z =
(
1− αjx

k

)k
, ḡk(z)

is a monotonically decreasing function of z. Moreover, ḡk(z) does not depend on k

and z =
(
1− αjx

k

)k
is a monotonically increasing function of k (e.g., see Lemma 3).

So ḡk(x) is a monotonically decreasing function of k.

187

APPENDIX J

Proof of Lemma 6

Proof. Consider whether the sequences xk and yk converge to zero or not. Clearly,

there are only 4 possible cases.

If xk = o(1) and yk = Ω(1), the limit

lim
k→∞

βk = lim
k→∞

yk(1 + yk)
k−1

(1 + yk)k
= lim

k→∞
yk (J.1)

contradicts βk = Θ
(
(k − 1)−j/(j−2)

)
.

If xk = Ω(1) and yk = o(1), the limit

lim
k→∞

kβk = lim
k→∞

yk (1 + xk)
k−1

yk (1 + xk)
k−1

= 1

contradicts βk = Θ
(
(k − 1)−j/(j−2)

)
.

If xk = Ω(1) and yk = Ω(1), the limit satisfies

lim
k→∞

βk = lim
k→∞

yk (1 + xk + yk)
k−1

(1 + xk + yk)
k − (1 + xk)

k

> lim
k→∞

yk
1 + xk + yk

,

and this contradicts βk = Θ
(
(k − 1)−j/(j−2)

)
.

188

APPENDIX K

Proof of Lemma 7

Since all stopping sets with size sublinear in n shrink to the zero point on the

scaled curve, we must treat sublinear stopping sets separately. The proof proceeds

by considering separately stopping sets of size O(lnn) and size δn for very small

δ. The number of correct and incorrect variable nodes in a stopping set is denoted,

respectively, a and b (i.e., nα = a and nβ = b).

Proof. Using (3.12) and Lemma .2, we can bound En,j,k(α, β) with

En,j,k(α, β)≤je 1
12jn e(1−j)nh(α,β,1−α−β)Sn,j,k(αn, βn).

The coefficient Sn,j,k(a, b) can be bounded using a Chernoff-type bound and this gives

lnSn,j,k(a, b) ≤ jn

k
ln

1+(1+x+y)k−ky−(1+x)k

xjayjb

≤ jn

k
ln
(
(1+x+y)k−ky −kx)−ja lnx−jb ln y

for arbitrary x ≥ 0 and y ≥ 0. Choosing x = 1√
n

and y = 1√
n

gives the bound

Sn,j,k(a, b) ≤ e2j(k−1)+O(n−1/2)n(a+b)j/2

≤ Cn(a+b)j/2, (K.1)

where C is a constant independent of n. Applying (K.1) to the En,j,k(α, β) bound

189

shows that En,j,k
(
a
n
, b
n

)
≤ je

1
12nj exp

(
(1− j)nh

(
a

n
,
b

n
, 1− a

n
− b

n

))
Sn,j,k(a, b)

≤ je
1

12nj

(a
n

)(j−1)a
(
b

n

)(j−1)b

Sn,j,k(a, b)

≤ je
1

12jCn(a+b)(j/2−(j−1)(1−ε))
(a
nε

)(j−1)a
(
b

nε

)(j−1)b

(K.2)

where 0 < ε < 1
4

and j ≥ 3.

Now, we can use this to show that

lim
n→∞

A lnn∑
b=1

n−b∑
a=0

En,j,k

(
a

n
,
b

n

)
= 0.

Since a stopping set cannot have a check node that attaches to only verified and

correct edges, a simple counting argument shows that Sn,j,k(a, b) = 0 if a > (k − 1)b.

Therefore, the above condition can be simplified to

lim
n→∞

A lnn∑
b=1

(k−1)b∑
a=0

En,j,k

(
a

n
,
b

n

)
= 0. (K.3)

Starting from (K.2), we note that b ≤ A lnn and a ≤ (k−1)b implies that
(
a
nε

)(j−1)a (b
nε

)(j−1)b
<

1 for large enough n. Therefore, we find that the double sum in (K.3) is upper bounded

by

je
1

12jCn(j/2−(j−1)(1−ε))(k − 1)(A lnn)2

for large enough n. Since the exponent (a+ b)(j/2− (j − 1)(1− ε)) of n is negative

as long as ε < 1
4

and j ≥ 3, we also find that the limit of the double sum in (K.3)

goes to zero as n goes to infinity for any A > 0.

Now, we consider stopping sets of size greater than A lnn but less than δj,kn.

Combining (3.15) and Lemma .2 shows that En,j,k(α, β) ≤ je
1

12jn enγj,k(α,β). Notice that

(3.19) is an accurate upper bound on γj,k(α, β) for small enough β and its maximum

190

over α is given parametrically by (3.18). Moreover, v(d) is strictly decreasing at

d = 0, and this implies that γj,k(α, β) is strictly decreasing in β at β = 0 for all valid

α. Therefore, there is a δj,k > 0 and η > 0 such that

γj,k(α, β) < −ηβ

for all 0 ≤ β ≤ δj,k. From this, we conclude that A lnn
n

< β < δj,kn which implies that

En,j,k(α, β) ≤ je
1

12jn enγj,k(α,β) ≤ je
1

12jn e−nηβ

≤ je
1

12jn e−ηA lnn ≤ je
1

12jnn−Aη,

where Aη can be made arbitrarily large by increasing A. Choosing A = 3
η

so that

Aη = 3 shows that

lim
n→∞

δj,kn∑
b=logn

n−b∑
a=0

En,j,k

(
a

n
,
b

n

)
≤ lim

n→∞
n2je

1
12jnn−3 = 0.

This completes the proof.

191

APPENDIX L

Lemma .2

Lemma .2. The ratio D ,

0BBBB@
n

a, b, n− a− b

1CCCCA
0BBBB@

nj

aj, bj, (n− a− b)j

1CCCCA
can be bounded with

j exp

(
(1− j)nh(

a

n
,
b

n
, 1− a

n
− b

n
)− 1

12n

)
≤ D

≤ j exp

(
(1− j)nh(

a

n
,
b

n
, 1− a

n
− b

n
) +

1

12jn

)
.

Proof. Let D be defined by

D =

 n

a+ b

 a+ b

a

 nj

(a+ b)j

 (a+ b)j

aj

.

Using Stirling’s approximation, the binomial coefficient can be bounded using

192

1√
2πnλ(1− λ)

exp

(
nh(λ)− 1

12nλ(1− λ)

)
≤

 n

λn

≤ 1√

2πnλ(1− λ)
exp (nh(λ)) ,

where h(·) is the entropy function in nats [55]. Applying this bound to D gives, after

some manipulation, that

j exp

(
(1− j)

(
nh

(
a+ b

n
, 1− a+ b

n

)
+

(a+ b)h

(
a

a+ b
,

b

a+ b

))
− 1

12n

)
≤ D

≤ j exp

(
(1− j)

(
nh

(
a+ b

n
, 1− a+ b

n

)
+

(a+ b)h

(
a

a+ b
,

b

a+ b

))
+

1

12jn

)
.

Finally, we notice that

193

nh

(
a+ b

n
, 1− a+ b

n

)
+ (a+ b)h

(
a

a+ b
,

b

a+ b

)
=

nh

(
a

n
,
b

n
, 1− a

n
− b

n

)
.

This completes the proof.

194

VITA

Fan Zhang received his B.S. and M.S. degrees both in Electrical Engineering at

University of Science and Technology of China, Hefei, Anhui, China in 2003 and 2006,

respectively. During 2003 and 2006, he also worked with UTStarcom Inc. R&D at

Hefei, Anhui China. From 2006-2010, Zhang was a research assistant at Texas A&M

University under Professor Henry D. Pfister. His contact address is Mailbox 407,

Dept. ECE, TAMU, College Station, TX, 77840.

The typist for this dissertation was Fan Zhang.

