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ABSTRACT 

 
Semi-Permeable Microcapsules for Use in Fluorescence-Based Glucose Sensing.  

(April 2010) 
 

Elizabeth Grace Joachim 
College of Engineering 
Texas A&M University 

 

Research Advisor: Dr. Michael J. McShane 
Department of Biomedical Engineering 

 

Due to the pain associated with conventional blood sugar monitoring techniques and the 

rising prevalence of diabetes, the development of noninvasive glucose sensing 

techniques is desirable. Towards this aim, implantable fluorescence-based glucose 

sensors are being developed. One strategy used in these sensors is to create a 

competitive binding scheme between fluorescent-labeled dextran and glucose using a 

fluorescent-labeled binding protein, such as glucose binding protein (GBP) or 

Concanavalin A (ConA), so that the protein and dextran create a Fluorescence 

Resonance Energy Transfer (FRET) pair. The sensing chemistry is then encapsulated in 

microcapsules with walls of nanoscale thickness formed using the Layer-by-Layer (LbL) 

method. This work involved two principal objectives: 1) to measure the permeability of 

capsules comprising different materials to dextran, as a means of identifying materials 

that allow the diffusion of glucose into the sensor while preventing release of the other 

components; and 2) evaluating the effects of different core formation methods on 

encapsulation. Results indicate that adding salt to the LbL solutions can decrease the 
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permeability of the films to dextran and [PAH-GPTS/PSS]10 films made with salt had 

the lowest overall diffusion coefficient. Also, both the time frame between core 

precipitation and the beginning of the LbL and the core precursor solution compositions 

affect encapsulation of ConA but not dextran. The development of the capsules 

described in this work represents an important first step towards the fabrication of a 

noninvasive glucose monitoring system. 
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NOMENCLATURE 

 

C    Permeate concentration (normalized to feed concentration) 

ConA    Concanavalin A 

D    Diffusivity (cm2/s) 

d    Length of diffusion cell (cm) 

FITC    Fluorescein isothiocyanate 

FRET    Fluorescence Resonance Energy Transfer 

GBP    Glucose Binding Protein 

l    Thickness of nanofilm (cm) 

LbL    Layer-by-Layer 

t    Time (sec) 

TRITC    Tetramethylrhodamine isothiocyanate 
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CHAPTER I 

INTRODUCTION 

 

According to the American Diabetes Association, 23.6 million children and adults in the 

US have diabetes and it is the seventh leading cause of death [1]. An estimated $116 

billion is spent annually to care for diabetics [1]. One of the keys to managing this 

disease is the accurate and regular monitoring of blood glucose levels. A number of 

products are commercially available for this purpose. These devices are typically 

invasive and require individuals to draw small amounts of blood for use in the test. 

Obviously, a less invasive, and less painful, method of blood sugar monitoring is 

desirable. Currently, there are very few minimally invasive blood sugar monitors on the 

market and all of them require daily calibration with traditional finger prick methods [2]. 

These systems are in need of improvement or replacement and, thus, new glucose 

monitoring methods are being investigated. 

 

Recently, research has been moving towards fully implantable glucose sensors that can 

either be read through the skin using light or transmit their data to a device, perhaps 

using RFID technology [3]. The majority of glucose sensors currently being developed 

fall into two broad categories: electrochemical [4-6] and optical [7-10]. Within both of 

these categories there is an emphasis on the use of biological molecules as receptors as 

well as producing sensor components on the micro and nano scales. For optical 

biosensors, this trend generally involves housing the sensor elements, such as glucose 

This thesis follows the style and format of IEEE Sensors Journal. 
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oxidase and fluorescent dyes, within microcapsules or microparticles and using the 

Layer-by-Layer technique [11-15] to adjust sensor properties such as range and 

sensitivity. In electrochemical sensors, enzymes have been used as the sensing portion of 

carbon nanotube electrodes [16] and carbon nanotubes have also been used in non-

enzymatic glucose electrodes [17]. 

 

For optical sensors, fluorescence schemes are the most prevalent. These sensors are 

typically based on oxygen-quenched dyes [18], environmentally-sensitive dyes [19], or 

FRET systems [20, 21]. Due to problems with tissue oxygen depletion in vivo, reaction 

byproduct formation, and enzyme degradation, competitive and non-competitive binding 

systems using a FRET pair or environmentally-sensitive dyes are desirable over 

enzymatic approaches.   

 

Previous systems using competitive binding and FRET have been based on apoenzymes 

[20] or the binding protein Concanavalin A [21]. ConA-dextran systems often suffer 

from multivalent binding which lowers the percent change in fluorescence intensity 

when adding glucose [22]. This problem can be overcome, to an extent, by using 

apoenzymes, such as apo-glucose oxidase [23], or by using a dendrimer instead of 

dextran [22]. It has also been noted that ConA systems suffer from aggregation, a lack of 

specificity for glucose, toxicity, and degradation of reversibility over time [24, 25]. 

Apoenzyme systems do not suffer from the same shortcomings as ConA, being specific, 

reversible, and non-aggregating. Unfortunately, the process of removing an enzyme 

cofactor to make apoenzymes is not only time consuming and difficult, but the process 
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also destabilizes the enzyme making it less resistant to denaturation as well as introduces 

potentially toxic reagents, such as sulfuric acid, into the sensor [26].  

 

In the past, a number of different non-competitive binding schemes have been proposed 

[12, 27, 28]. One such system used genetically modified GBP from E. coli and an 

environmentally-sensitive dye [19, 24]. Environmentally-sensitive dyes are generally 

considered superior to FRET pairs for use with GBP in non-competitive binding 

schemes [29].  FRET systems do not perform well because there is not enough of a 

conformation change in GBP upon binding of glucose to change the fluorescence 

intensity more than about 20% [29].  

 

However, to our knowledge, the effectiveness of FRET and GBP in a competitive 

binding scheme has not been evaluated. Therefore, a competitive binding, FRET pair-

based sensor utilizing a GBP mutant labeled with a fluorescent dye and fluorescent-

labeled dextran encapsulated in microcapsules composed of polyelectrolyte multilayers 

is proposed here. As a first step towards the development of this novel system, the 

microcapsules previously described for macromolecule encapsulation [15] need to be 

studied further. And so, in this work capsule wall materials and core formation methods 

were investigated.  
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CHAPTER II 

EXPERIMENTAL DESIGN 

 

Materials 

All chemicals were reagent grade, obtained from Sigma, and used as received with no 

further purification unless otherwise noted. Fluorescein isothiocyanate conjugated 

dextran of various molecular weights (FITC-Dextran), succinylated concanavalin A 

conjugated with tetramethylrhodamine isothiocyanate (TRITC-ConA, EY Laboratories 

Inc), D-(+)-glucose, hydrochloric acid 37%, calcium chloride dihydrate, sodium 

carbonate, ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA), sodium 

chloride, (3-glycidyloxypropyl)trimethoxysilane (GPTS), sodium hydroxide, sodium 

phosphate dibasic, sodium phosphate monobasic, poly(allylamine hydrochloride) (Mw 

15 kDa, PAH), poly(sodium 4-styrenesulfonate) (Mw 1 MDa, PSS), poly(ethyleneimine) 

50% w/v in water (PEI). Other supplies included PES membrane filters (25 mm 

diameter, 0.02 µm pore size, Tisch Scientific) and open-faced filter holders (Pall Co). 

 

The diffusion test bed, shown in Fig. 1, consisted of three 7 mL diffusion cells 

(PermeGear), stir plate, and a water circulator (Lab Companion). Fluorescence intensity 

measurements were made using a PC1 Spectrofluorometer from ISS (Urbana, IL) and an 

Infinite F200 plate reader (Tecan). Imaging was done with an Eclipse TE2000-U 

(Nikon) inverted microscope and Coolsnap HQ2 camera (Photometrics). Confocal 

imaging was done using a TCS-SP5 Spectral Laser Scanning Confocal Microscope 
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equipped with an inverted DMI 6000 microscope and motorized stage (Leica). Particle 

sizing and counting was done with an Elzone II particle size analyzer (Micrometrics) 

fitted with a 190 µm orifice. A high frequency generator (Model BD-20, Electro-

Technic Products) with a 115 V power supply (Electro-Technic Products) was also used. 

 

Methods 

 

Capsule formation and characterization 

Capsule cores were formed by mixing a 200 mM calcium chloride solution with a 

solution containing  20 µM of 2 MDa FITC-Dextran and 200 mM sodium carbonate in 4 

mg/mL PSS in a 1:1 ratio while stirring. The large molecular weight was chosen to slow 

diffusion. Cores were then transferred into a 50 mL centrifuge tube and centrifuged at 

5000 RCF for 2 minutes. The supernatant was discarded before beginning LbL film 

assembly. The cores were alternately soaked in about 5 mL of a 2mg/mL polyanion and 

polycation solution for 10 minutes with an initial shaking of the tube to resuspend the 

particles. In between each polyelectrolyte layer, the samples were centrifuged at 5000 

RCF for 2 minutes, the supernatant was discarded, and the samples were resuspended in 

Fig. 1. Diffusion apparatus. This test bed includes three diffusion cells, a 96-well plate reader, and an 
automatic sampler. 
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DI water for 5 minutes and centrifuged again. After 5 to 10 bilayers were deposited 

(always ending with PSS, the polyanion, as the outermost layer), the coated cores were 

resuspended in 10 mL of PBS (pH 7.2) for at least 24 hours. Finally, the cores were 

dissolved by treatment with 10 mL of alternating solutions of 0.1 M EDTA at pH 7.4 

and 0.1 M HCl for 10 minutes each with rinsing and centrifuging at 2500 RCF for 10-15 

minutes in between treatments. The reduction in centrifuge speed is to prevent capsule 

rupture. Both capsule cores and fully formed microcapsules were sized. Fluorescence 

and bright field confocal images of the microcapsules were taken after core dissolution.  

 

Diffusion studies 

Two variables, salt concentration and GPTS content, were investigated for their affects 

on dextran diffusion. It was hypothesized that adding salt to the polyion solutions would 

slow diffusion by making the films thicker and that adding GPTS to the films would also 

reduce leaching by making silane cross-linkages [30]. A total of four different 

compositions of LbL films were tested for their ability to inhibit FITC-Dextran 

diffusion: PAH/PSS with salt, PAH/PSS without salt, PAH-GPTS/PSS with salt, and 

PAH-GPTS/PSS without salt. The PAH solutions were at pH 2.3 and the PSS solutions 

were at pH 2.1. The salt concentration was 0.5 M NaCl and the GPTS concentration was 

20 µL/mL.  

 

The films were deposited on PES membrane filters following a 45 sec corona treatment 

and an initial PEI layer (2 mg/mL), which served as the first polycation layer. After 

corona treatment, substrates were placed in the open-faced filter holders so that the films 
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could be formed on only one side of the filter. About 1 mL of the polyelectrolyte 

solution was deposited on the substrate and allowed to soak for 7 minutes. Following 

soaking, the films were rinsed with DI water for about 45 seconds before applying the 

next polyion solution. Each film was composed of 20 total layers with the last layer 

being PSS. Completed films were stored in PBS buffer in parafilm sealed petri dishes. A 

total of 4 sets of films were prepared: three with salt and one without salt. 

 

The diffusion properties of these four film configurations were tested in diffusion cells. 

PBS buffer was on the permeate side and a 0.2 µM solution of a medium weight FITC-

Dextran (10.5 kDa) in PBS was on the feed side. Filters were oriented so that the film 

side of the substrate was oriented towards the permeate side to simulate diffusion out of 

a capsule (Fig. 2). The diffusion cells were continuously stirred and protected by a foil 

covering to prevent photobleaching throughout the duration of the experiment. Over 

approximately 55 hours, 200 µL samples were periodically taken with a pipette from 

both the feed and permeate sides. The samples were deposited in a 96 well plate, 

covered with foil, and stored at 4oC until the fluorescence intensity could be read at the 

end of the experiment. All the films were tested in diffusion cells about 24 hours after 

formation. One set each of salt and no salt films were also retested after soaking in PBS 

for 2 weeks in order to evaluate their stability over time. 

Fig. 2. Film orientation diagram. (a) microcapsules in solution (b) diffusion cell. The filters were oriented 
so that diffusion out of a capsule was modeled. This made the feed side of the cells representative of the 

     

(b
) 

(a
) 
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The diffusion coefficient, D, of each film tested was calculated using the linear portion 

of the generated plots according to the following equation: 

where d is the cell length in cm, l is the film thickness in cm, t is the time in seconds, 

and C is the normalized concentration of dextran.  

 

Encapsulation methods  

The standard core precursor solutions are 200 mM calcium chloride and 200 mM 

sodium carbonate with 4 mg/mL PSS. The materials to be encapsulated (FITC-dextran 

and TRITC-ConA) are then added to these solutions. Because binding proteins, like 

ConA, can form aggregates with dextran in solution, methods to prevent aggregation 

before core precipitation were tested. It was hypothesized that adding glucose to the 

precursor solution or putting the dextran and ConA in different precursor solutions 

would prevent this problem. A total of eight different encapsulation precursor solution 

configurations were tested (Table I). It was also hypothesized that immediately 

beginning LbL after core formation will prevent dextran and protein from leaching out 

(1) 

aGroup B configurations were made twice: once for immediate LbL and once for delayed LbL. 

TABLE I 
PRECURSOR SOLUTION CONFIGURATIONS 

Precursor 
Solutions

CaCl2
ConA, 

glucose, 
Dextran

ConA, 
Glucose

ConA, 
Dextran ConA Dextran Dextran

Na2CO3, 
PSS

Dextran Dextran
ConA, 

glucose, 
Dextran

ConA, 
Glucose

ConA, 
Dextran ConA

Group A Group Ba
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of the CaCO3 matrix. To test this idea, four of the precursor configurations were tested at 

two different LbL start times: immediately and about 24 hours later (Table I).   

 

For these studies, 1 mL of 0.2 µM 10.5 kDa FITC-Dextran in PBS, 2 mL of 1 µM 

TRITC-ConA in Tris buffer, and/or 50mM glucose were added to 10 mL of the 

appropriate precursor solution. The two solutions were poured into 50 mL centrifuge 

tubes and shaken for about 30 seconds to aid core formation. The cores were then 

centrifuged at 5000 RCF for 5-10 min. Some of the cores were immediately transferred 

to 2 mL microcentrifuge tubes for the LbL process while others were allowed to sit 

overnight without removing the supernatant. All cores were coated using a [PAH-

GPTS/PSS]7 scheme with 0.5 M NaCl in the polyelectrolyte solutions. For each layer 1 

mL of polyion was allowed to adsorb for 7 min before being centrifuged for 2.5 min at 

2500 g. About 1 mL of water was then added and the samples were vortexed for about 

30 sec to resuspend the cores before centrifuging again. After 3-5 bilayers had been 

deposited, samples were sonicated for about 5 min to disperse aggregates that were 

forming. The coated cores were allowed to soak in PBS buffer for at least 12 hours so 

that the silane cross-linkages could form. The cores were dissolved using two treatments 

of 25 mL each of 0.1 M EDTA at pH 7.7. During each treatment the capsules were 

vortexed for 5 min, allowed to soak for 5 min, and vortexed another 5 min before being 

centrifuged at 5000 RCF for 10 min. After core dissolution, the microcapsules were 

transferred to cuvettes containing about 2 mL of PBS for fluorescent intensity readings. 

These readings indicate the relative concentrations of dextran and ConA that were 

encapsulated.
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CHAPTER III 

RESULTS AND DISCUSSION 

 

Capsule formation and characterization 

Particle size data indicates that the microcapsules are polydispersed, the majority of 

them being between 6 and 15 µm (Fig. 3). The distribution for uncoated cores (not 

shown) was similar, indicating that the films were very thin. Because of the thinness of 

the films, increasing the number of bilayers from 5 to 10 also does not change the 

particle size distribution. Fluorescent confocal images indicate that the microcapsules 

are often nonspherical and incapable of encapsulating dextran (Fig. 3 inset). Many of the 

capsules aggregate during the LbL process resulting in large, poorly formed 

microcapsules. If composed of only 5 bilayers, many of the capsule walls will not be 

contiguous thereby allowing some or all of the encapsulated material to escape. 

However, if the number of bilayers is increased to 7 to 10, a higher proportion of the 

walls will be contiguous. 

Fig. 3.  Microcapsule size distribution: shows a lack of monodispersity in capsule diameters. Inset: 
confocal micrograph of microcapsules with [PAH/PSS]5 walls showing some fully formed capsules, some 
shells with no dextran, and some misshapen capsules. Scale bar is 40 µm. 
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Diffusion studies  

Diffusion results indicated that none of the films tested reached steady state after two 

days (Fig. 4). Furthermore, the salt films were still in the linear phase at this time. These 

data also show a change in the diffusion properties of the PAH/PSS films made with salt 

between the one-day and two-week testing times. The GPTS is most likely adding 

stability to the film preventing a change in diffusivity over time. According to the 

calculated diffusion coefficients, adding salt to the polyion solutions can decrease D by 

All diffusion coefficients are in units of cm2/s. 

TABLE II 
DIFFUSION COEFFICIENTS 

Fig. 4.  Diffusion of dextran through films of various compositions. (a) films without salt in the polyion 
solutions (b) films with salt in the polyion solutions. Films 1.1 and 1.14 are the same film tested after 1 
day in storage and 2 weeks in storage, respectively. All these intensity readings are from the permeate 
side and were normalized to the initial intensity in the feed side for a maximum value of 0.5. 

7.4 x 10-13

1.5 x 10-11 1.9 x 10-10

4.2 x 10-12 1.6 x 10-10
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at least one order of magnitude (Table II). Because the thickness of all the films was 

estimated to be about 100 nm based on previous ellipsometry measurements of the 

thickness for a [PSS/PAH]7 film with salt [31], the calculated diffusion coefficients for 

the films without salt are under estimates.  

 

Encapsulation methods 

According to the ANOVA tests (α = 0.05) conducted on the data from Fig. 5, both the 

precursor solution configuration and the time between core precipitation and 

commencement of LbL affect the final encapsulation of ConA (p = 0.048) but not 

dextran (p = 0.0759). Because the number of FITC and TRITC molecules is proportional 

to the number of dextran and ConA molecules respectively, the fluorescence intensity of 

the capsules is proportional to the amount of each molecule entrapped within.  

 

Fig. 5.  Encapsulation of FITC-Dextran and TRITC ConA with varying precursor configurations. The 
groups are the same as in Table I with B-2 having a delayed LbL start. Dextran and ConA in the same 
precursor solution is denoted by t, in different solutions is s, and glucose in the ConA containing solution 
is denoted by g. Error bars represent 3 measurements of the same sample. 
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The Group A (ConA in CaCl2) and Group B (ConA in Na2CO3) configurations showed 

slightly different patterns of encapsulation, especially in the glucose-free samples. 

Interestingly, these differences are not maintained when LbL is delayed (Group B2). In 

every group, the encapsulation is lowest when ConA, glucose, and dextran are mixed in 

the same precursor solution and relatively equal in all the other configurations. 
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CHAPTER IV 

SUMMARY AND FUTURE WORK 

 

The general structure and diffusion barrier properties of microcapsules constructed via 

LbL deposition of polyions around calcium carbonate cores were investigated. The 

capsules formed were neither monodispersed nor spherical. In addition, those made with 

only 5 bilayers were not able to fully entrap sensor components resulting in numerous 

empty capsules. By making capsule walls out of 7 to 10 bilayers of PAH-GPTS/PSS 

with 0.5 M NaCl the diffusion of dextran, a sensor component, can be limited.   

 

Various core formation methods were also investigated. Based on preliminary results, it 

seems that both the precursor solution configuration and the time between precipitation 

and start of LbL can have an effect on final encapsulation of ConA but not dextran. The 

affects of the ConA containing solution (CaCl2 vs. Na2CO3) are lessened when LbL is 

delayed. The delayed start time may allow for more CaCO3 precipitation and thus 

greater total encapsulation. The least efficient encapsulation method is putting all three 

elements (ConA, glucose, and dextran) in the same precursor solution.  

 

In the future, more LbL materials could be evaluated as dextran diffusion barriers. PSS 

and PAH were originally chosen for this study because they were the original materials 

used with this encapsulation technique [14, 15]. However, a similar technique for protein 

encapsulation used poly-L-lysine and heparin [12]. These so-called natural materials can 
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have the advantage of greater biocompatibility. Similarly, the reasons behind the ability 

of GPTS to decrease D and seemingly increase film stability needs to be studied. Also, 

higher molecular weights of dextran should be tested to determine the approximate 

molecular weight cutoff the films.  

 

Now that general microcapsule structure and potential capsule wall materials have been 

identified, work on the other sensor components can begin. First, the E. coli glucose 

binding protein needs to be genetically modified to make it more amenable to 

fluorescent labeling by adding a sulfhydryl group. This group can be added by mutating 

an amino acid residue to a cysteine, which contains the group on its side chain. The free 

sulfhydryl group can then be reacted with an appropriate dye. Because GBP contains no 

native cysteine residues, the exact location of the dye binding site can be specified. One 

favorable site for mutation, residue 26, would locate the dye on the opposite face of the 

protein from the active site thereby preventing interference of the dye with the normal 

functioning of GBP. After producing sufficient quantities of Q26C GBP mutants, the 

binding affinity of GBP for dextran and glucose needs to be determined. Finally, sensors 

containing GBP and dextran will need to be fabricated and have their properties 

optimized using a combination of computer models and an in vitro test bed. 
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