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ABSTRACT 
 

Excitation and Far Field Spectroscopy of Surface Plasmons in Gold Nanostructures. 
(April 2010) 

 

Siying Peng 
Department of Physics 
Texas A&M University 

 

Research Advisor: Dr. Alexandre Kolomenski 
Department of Physics 

 

The properties of surface plasmons (SPs) and their excitation by a light wave are 

considered. The interaction of light with a metal nanostructure resulted in transmission, 

reflection and diffraction of light. The spectra of light obtained from these channels 

display excitation of SP modes at certain incidence angles and wavelengths. The 

interaction of SP modes near the normal incidence can result in energy and momentum 

spectral gaps and variations of the widths of SP resonances. The SP dispersion relations 

were described with the model of two coupled modes, and the spectral amplitude 

distribution of the transmitted and reflected light were simulated following Rayleigh 

approach.  
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NOMENCLATURE 

 

AM Air-Metal 

AFM Atomic Force Microscope 

ATIR Attenuated Total Internal Reflection 

CCD Charge Coupled Device 

FDTD Finite Difference Time Domain  

SEM Scanning Electron Microscope 

SM Substrate-Metal 

SNOM Scanning Near Field Optical Microscope 

SP Surface Plasmon 

SPP Surface Plasmon Polariton 

SPR Surface Plasmon Resonance 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

A. Early studies 

In 1902, it was discovered by Robert Wood [1] that when light is incident on a metallic 

grating abrupt variations of the intensity of the reflected light take place at certain 

wavelengths. This phenomenon is known in the literature as Wood’s anomalies, and 

Rayleigh was the first who tried to explain it theoretically [2]. Rayleigh's theory indeed 

provided an explanation to some of these anomalies that are related to passing over the 

horizon of waves, corresponding to certain diffraction orders; however, other anomalies 

as was shown by Fano [3], resulted from the interaction of light with surface waves. It 

should be noted that Sommerfeld and Zenike independently discovered the existence of 

surface electromagnetic waves using theoretical approach [4-5].  However, only later 

Fano was the first to relate certain class of Wood anomalies with such surface waves [3].   

 

In a paper by Ritchie et al [6] some Wood’s anomalies are explained as the result of the 

excitation of SPs on the metal surface due to special properties of the diffraction on 

metallic gratings. They produced gratings of Al and Au, and have also obtained clear 

evidence for frequency gaps in the dispersion curves for surface plasmons. More 

recently,   there  was  considerable  interest  in studies  of   the  interaction  of  light  with  

 
_______________ 
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metallic structures [7-12], since such structures can couple and guide light. 

 

B. Later developments 

Since the works of Kretchmann and Raether [13], the Attenuated Total Internal 

Reflection (ATIR) geometry, employing the matching of the propagation velocities of 

the incident light and SPs along the metal surface (SP resonance condition), was one of 

the most commonly used. Several new directions emerged more recently. The sensitivity 

of the propagation velocity of SPs to dielectric properties of the adjacent medium makes 

them an efficient tool in biosensing [14]. The attenuation of SPs determines the width of 

the SP resonance, which affects the sensitivity of the sensor [15].  The propagation 

length of SPs determines also the spatial resolution in imaging technique with the ATIR 

geometry [16]. Planar optical geometry is attractive for compact optical devices 

interconnected with electronic components, therefore the development of optics of SPs 

[17] is also one of the promising directions of research. It was shown that for a 

symmetrical structure of a metal film, sandwiched between two dielectric layers a mode 

of long-range SPs can propagate [18]. 

 

C. Light interaction with gratings 

The interaction of light with periodic metal structures, allowing for efficient coupling of 

light to surface plasmons (SPs) with their remarkable properties, such as sharp 
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resonances [1,2,6,19], localization and enhancement of the electromagnetic field [20,21], 

and wave guiding along metal surfaces [22] continues attracting considerable interest. In 

particular, mimicking SPs by metal nanostructures with holes [23] and enhancing light 

absorption [24,25] were demonstrated. Recently, after the discovery of the extraordinary 

light transmission through arrays of small holes [26] the investigation of the role of SPs 

in this phenomenon demonstrated that the transmission minima correspond to the 

excitation of the SP modes [27]. 

 

The interaction of light with periodic structures is also of interest, because excited SPs 

exhibit gaps in the energy spectrum (ω -gaps) [6,17,20,21], rendering these structures as 

simple plasmonic crystals.  The gaps appear due to mode interaction near the crossing of 

their unperturbed dispersion curves. The existence of momentum gaps (or k -gaps) was 

also discovered in experiments [28].  

 

D. Theoretical approaches 

There are various ways to calculate the transmission and reflection coefficient of light 

incident on a metallic grating. The general Scattering Matrix Method was proposed by 

Whittaker and Culshaw [29]. Tikhodeev et al. applied it to photonic crystal slabs [30] by 

representing the system as a set of thin layers and considering the solution of Maxwell 

Equations in each layer.  Transfer Matrix formalism was used to combine the input and 

output field vectors from adjacent layers.  The Finite Difference Time Domain (FDTD) 

method is used for calculations of electromagnetic wave interaction with material 
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structures. The basic FDTD grid and time-stepping algorithm is first developed by Kane 

Yee [31]. In this approach, the solution of Maxwell equations in each Yee lattice is 

considered in time domain and multiple dimensions can be considered. Botten et al. 

developed a rigorous theory describing the diffraction for both dielectric and highly 

conducting gratings [32-34]. They solved the Helmholtz equation within the grating 

region to obtain a transcendental equation for eigen values. The field in the grating was 

presented as a linear combination of the eigen-functions, satisfying boundary conditions 

at the grating. The field outside the grating was described as a Rayleigh sum of different 

diffraction orders. By matching the boundary conditions of electric and magnetic fields 

at the interface, the transmission and reflection coefficients are obtained. Lochbihler did 

a reasonable approximation which simplifies Botten's model by ignoring the field in the 

wires and using constant impedance [35].  

 

E.  Some recent trends in the study of the interaction of light with periodic metal 

structures 

Instead of using a one dimensional periodic structure, Altewischer et al. [36] investigate 

excitation and propagation of SPs in a metallic structure with a two dimensional 

structure. With a hexagonal nanohole array, they used microscopic imaging and 

observed forking of the propagation SP beams. It is concluded that forking is due to 

Bragg reflection. In the transmission spectrum, they observe wings besides the central 

transmission peak, which was considered due to the resonant excitation of SPs that 

propagate on the array. 
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Pendry et. al. [23] proposed designer Surface Plasmons. Surface plasmon modes don’t 

exist in highly conducting metal due to small internal losses. By perforating holes in the 

surface of highly conducting surface plasmon modes can exist. He suggested that by 

controlling the size and spacing of the perforated holes, designer surface plasmons can 

be created with any dispersion relation.  

 

Bozhevolnyi et al. [37] study a structure with metal spots on gold film arranged in 

periodic triangular lattice. The experimental set up consists of a Scanning Near Field 

Optical Microscope (SNOM) and an arrangement for the SPPs excitation in the 

Kretschmann configuration. They consider the internal damping as the limit of the 

propagation length of SPP’s. They observed a strong difference of intensity distributions 

inside and outside of the structures, which diminishes at longer wavelength.  

 

Christ et al. studied the coupling between localized and delocalized surface plasmon 

modes by a multilayer metallic crystal slab, representing a photonic crystral [38]. The 

system they studied was one-dimensional gold nanowire array on top of the SiO2 spacer 

layer with underlying 20-nm-thick homogeneous silver film. They observed one 

minimum in transmission spectra without the silver film. With the system consist of the 

silver film, they observe two minima while the resonance at longer wavelength is 

broader and deeper. They consider the two minima in the spectrum as a localized 

magnetic plasmon mode and a grating-induced excitation of an extended surface 
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plasmon mode. The coupling of localized and delocalized modes leads to an enhanced 

resonant absorption for structures with intermediate spacer layer thicknesses. 

 

Vasa et al. observe SPP-quantum well interaction [39]. They studied experimentally a 

80nm thick gold grating with period 500nm deposited on top of a semiconductor. SPP 

excitation at both air-metal and substrate-metal interfaces was observed. They studied 

the reflection from the sample, where the coupling among the modes AM [-1], SM [+2], 

SM [-3] is dominating. 

 

F. Formulation of the research aim 

In the present work we study experimentally the interaction of light with SPs on a gold 

grating through transmission, reflection and diffraction. For the theoretical description of 

this interaction we follow a general approach proposed by Rayleigh and developed by 

Botten et al. [33-34] and Lochbihler [35]. Considering interaction of SP modes and 

formation of spectral gaps, we use the model of two coupled modes.  
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CHAPTER II 

PROPERTIES OF SURFACE PLASMONS IN METALLIC 

STRUCTURES 

 

A. Derivation of the dispersion equation for a planar geometry 

A special type of an electromagnetic wave can exist, which is localized near the surface. 

This propagating mode of oscillations, decaying exponentially on both sides of the 

interface of two adjacent media is referred to as surface wave.  

 

Difference types of surface waves can exist in nature. Along surfaces of solids can 

propagate surface acoustic waves, discovered at the beginning of the 20th century by 

Rayleigh. This wave propagate along the Earth surface, when, for instance, earthquakes 

happen. Surface electromagnetic waves were first studied theoretically by Sommerfeld 

[4] and Zenneck [5]. However, their relation with the electronic oscillations (plasmons) 

and a subsequent extensive study started in the middle of the 20th century, and these 

waves received the name “surface plasmon polaritons” or simply “surface plasmons”.  

 

We assume a system comprised of a metal half-space bordering with a dielectric and that 

there are no external charges and currents in the system and the magnetic susceptibility 

is 1. Then for electromagnetic field in this system we have a set of Maxwell’s equations: 

t
E

c
H

∂
∂

=×∇

→
→ 1ε                                                                                                               (1) 
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t
H

c
E

∂
∂

−=×∇

→
→ 1                                                                                                                (2) 

0=⋅∇
→

Eε                                                                                                                         (3) 

0=⋅∇
→

H                                                                                                                           (4) 

 

We consider a reference frame with x-axis along the interface and y-axis perpendicular 

to the interface.  Then by applying Maxwell’s equations to every medium and using the 

requirements of the continuity at the interface we obtain the boundary conditions: 

xx EE 21 =                    (5) 

yy HH 21 =                   (6) 

             (7) 

For derivation of boundary conditions (5,6,7) see Appendix A. 

 

From (1) and (2) it follows that electric and magnetic fields satisfy the wave equation. 

Indeed if we apply curl to both sides of equations (1) and (2) then we get: 

 

The right hand side: 

 

 

Thus,  

              (8) 

zz EE 2211 εε =

→→→→

−∇=∇−⋅∇∇=×∇×∇ HHHH 22)()(

2

2

2)1()(
t
H

c
H

tctc
E

tc ∂
∂

−=
∂
∂

−
∂
∂

=×∇
∂
∂

→
→→ εεε

02

2

2
2 =

∂
∂

−∇

→
→

t
H

c
H ε
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Similarly, we obtain the relation for electric field by applying curl to eq. (2): 

              (9) 

 

The Eqs. (8,9) are wave equations since they describe propagating of electromagnetic 

waves. 

 

Particular solutions of the Eqs.(8,9) are plane electromagnetic waves. Indeed, let us seek 

the solutions of the form (it is easy to show that these expressions satisfy of the wave 

equations (8,9)): 

)]([0 trkiExpHH ω−⋅=
→→→→

            (10) 

)]([0 trkiExpEE ω−⋅=
→→→→

              (11) 

where 
→

k  is the wave vector and ω  is frequency of the wave. Then immediately, from 

Eqs. (1,2) we see that the electric field and magnetic field are perpendicular to each other 

and perpendicular to the wave vector and, this means, to the propagation direction. 

Indeed, 

→→→

×=×∇ HkiH is parallel to 
→

E  from (1) 

→→→

⋅=×∇ EkiE is parallel to 
→

H  from (2) 

0=⋅
→→

Ek  from (3) 

0=⋅
→→

Hk  from (4) 

02

2

2
2 =

∂
∂

−∇

→
→

t
E

c
E ε
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Next, we are going to find solutions for the SPs. It is known from the theory of bulk 

plasmons that they represent a longitudinal mode of electromagnetic oscillations in 

which electric field is parallel to the propagation direction of the wave. 

 

Thus, we can expect that SPs also have a component of the electric field which is 

parallel to the propagation direction. On the other hand, they should satisfy the wave 

equations (8,9) and we can seek  the solution in the form of plane waves.  

Thus, we seek the solutions of the form: 

Medium 1, z<0, in which: 

2
1

2
2

1
2

1 c
kk zx

ω
=+

           (12A)
 

2
1

2
2

1 ε
cc =  

)]([)0,,0( 1111 tzkxkiExpHH zxy ω−+=
→

 

)]([),0,( 11111 tzkxkiExpEEE zxzx ω−+=
→

 

Medium 2, z>0 

2
2

2
2

2
2

2 c
kk zx

ω
=+

          (12B)
 

2
2

2
2

2 ε
cc =  

)]([)0,,0( 2222 tzkxkiExpHH zxy ω−+=
→
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)]([),0,( 22222 tzkxkiExpEEE zxzx ω−+=
→

 

Substituting these representations into (1) we obtain: 

yy

zyx

H
x

zH
z

x

HHH
zyx

zyx

H
∂
∂

+
∂
∂

−=
∂
∂

∂
∂

∂
∂

=×∇
→

ˆˆ

ˆˆˆ

 

Thus, we conclude from (1): 

ixi
iy E

tcz
H

∂
∂

−=
∂

∂ 1ε  

so that 

xyz E
c

Hk 1111 εω
=  

xyz E
c

Hk 2222 εω
=  

Using now eq. (5), we obtain: 

y
z

xy
z

x HckEHckE 2
2

2
21

1

1
1 ωεωε

===  

which implies: 

02
2

2
1

1

1 =− y
z

y
z HkHk

εε
 

In addition we have eq. (6): 

021 =− yy HH  

The system of algebraic homogeneous equations: 
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 0

0

2
2

2
1

1

1

21

=−

=−

y
z

y
z

yy

HkHk
HH

εε
             (13) 

 

has solution which is not trivial only if the determinant D0 is zero: 

0
11

2

2

1

1

2

2

1

10 =−=−

−
=

εεεε
zz

zz
kkkkD

           (14)

 

This last equation represents the dispersion equation for SPs. 

We can rewrite it in a more convenient form: 

)()( 2
12

2
2
2

2
22

2
2
1 k

c
k

c
−=− εωεεωε  

where we introduced wave number xkk = , since surface plasmons propagate along the 

surface and use the property of plane waves that  

i
i

zx c
kk εω

2

2
22 =+  (see eq. (12A,B)) 

Consequently, we get the dispersion equation:  

21

21
2

2
2

εε
εεω
+

=
c

k               (15) 

We would like to have a solution which localized to the surface, i.e. it decays with 

distance from the interface on both sides. 

Thus, we want to have k1z and k2z imaginary to provide conditions: 

0][ 1  → −∞→z
z zikExp  

0][ 2  → +∞→z
z zikExp  
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Consequently, 

for q1 and q2 as real numbers, we let: 

0, 11
2

22

2

1 >−=−= qiqk
c

k z εω  

0, 22
2

12

2

2 >=−= qiqk
c

k z εω  

Then our initial dispersion equation (14) becomes: 

0
2

2

1

1 =+
εε
qq

, where 02,1 >q  

We see that this condition can be fulfilled only when 1ε  or 2ε  are negative. 

Since we are looking for propagating surface waves, the wavenumber should be real and 

0
21

21
2

2
2 >

+
=

εε
εεω

c
k . 

Suppose that 2ε  corresponds to a dielectric and 02 >ε , then the above inequality is 

possible only if  

21 εε −<                    (16) 

Thus, we obtained the condition when the existence of SPs is possible. 

 

Now we need to understand for which materials this condition can be fulfilled. 

By using the Drude model for the dielectric properties, it is easy to show that this is 

possible in a metal and also in a doped semiconductor at the frequencies below the 

frequency of bulk plasmonic oscillations.  
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According to Drude’s model (see Appendix B) the dielectric function of a free electron 

gas is 2

2

1
ω
ω

ε P−= , where 
m
eeNP

2

4πω =  is the so called plasmon frequency.  

Thus we can see that in some interval of optical frequencies, when Pωω <  , the 

dielectric constant is negative and its absolute values increases with decreasing 

frequency, and therefore 

2
041

ω
πε

m
eE

eN
E

PE
E
D

−=
+

==             (17) 

can be satisfied and, consequently, the existence of SPs is possible.  

 

B. SP excitation due to interaction with a grating 

Although the excitation of SPs with a prism is quite common [13], in this work we will 

consider their excitation via an interaction with a grating. Fig. 1 shows schematically the 

interaction of light with a grating. SPs are in the plane of a metal film, and the bulk light 

wave is incident at an angle with the metal film.  

 

 

Fig. 1. Schematic representation of the excitation of a SP and its scattering on the surface 
roughness. 

 iθ

iK

SP
  

scK

grK
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 Coupling happens when the wave vector of the light after its interaction with the grating 

has a component in the plane of the grating equal to the wave vector of the surface 

plasmon.  

 

The second equation describes the scattering of a SP on the grating.  

 

Preliminary calculations were performed for a 3-layer system consisting of air )( 1ε , 

silver )( mε  and silicon )( 2ε  interacting with light incident at angleθ . We calculated the 

resonance angle for the SP mode excitation from the condition xpp KKKK =∆+= , in 

which K is a function ofω . The resonance angle can be found in the K−ω  diagram 

(see Fig. 2) from the intersection of the straight line gx K
c

nK += ωθsin  with the 

dispersion curve of SP. The refractive index of SP is
m

m
pn

εε
εε

+
⋅

=
1

1 , the wave number of 

SP is
c
n

K p
p

⋅
=

ω
, and the correction of wave number is g

a
aK p ⋅

+
−

=∆ 2
1

2

2
1

2

ε
ε , in 

which ( ) 2121 εεεεε ⋅−−⋅= ma , ]2exp[2 1
2

2 dKnKg m
ppp ⋅⋅⋅−⋅⋅⋅=

ε
ε

and d1 is the 

thickness of the metal film. A correction factor corrK  =1.14 was introduced with 

ω because there is certain deviation from the experimental result.   

spgrii KKK =+θsin

scscgrsp KKK θsin=−
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 The alternative way is to calculate for reflection at the interface of the glass and metal 

film for a three-layer system consisting of glass, gold film and air. The relationship of 

incident light, grating and SPs is given as follows: spgri KNKK =±θsin , 

in which N is the order of the SP excitation, iK  and iθ are the wavenumber and incidence 

angle of the incident light, grK  is the grating constant, and spK  is the wave number of 

the excited SPs. 

 

Fig. 2. Frequency and wave-number diagram calculated with Mathematica. 
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By calculating the angular dependence of the reflection coefficient for light of a given 

wavelength, we can find the resonance angle which gives minimum reflection of the 

corresponding wavelength.  

sprglass KK =θε sin  

In which K is the wave number of incidence light, and rθ  is resonance angle. Combining 

these two equations, we obtain: 

grirglass NKKK ±= θθε sinsin  

]sin[sin 1

K
K gr

rglassi ±= − θεθ . 

 

The dependence of cutoff wavelength with incidence angles of diffraction orders is 

given by the equation (See Fig.3 for cutoff wavelength versus incidence angle):  

+1 order: spg KKK =+θsin , )sin1( θλ −= dcutoff  

-1 order: spg KKK =+θsin , )sin1( θλ += dcutoff  

 

C. Propagation length of surface plasmons 

We directly observed the propagation of SPs supported by a gold film by detecting the 

scattered light in the far field with a microscope and an attached CCD camera [40]. The 

experimental results are compared with model calculations on the basis of an exact 

model and the model derived in the approximation of a relatively thick film and small 

losses. The relative role of different factors on the attenuation of surface plasmons is 
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analyzed. The calculations were performed in a broad wavelength interval, while the 

experimental study was performed at two optical wavelengths for 633 nm and 805 nm. 
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Fig. 3. Angle-wavelength dependence of ± 1st order diffraction cutoff. 

 

We show [40] that the SP propagation length depends, besides internal and radiational 

losses, also on the surface roughness. In the approximation and ir ,2,2 εε >> , which is 

usually fulfilled for gold and silver films in the optical and IR spectral regions, the 

reflectivity can be expressed [41] in a Lorentzian form:  

*)-)((
)(4

1
,,

rad

rSPrSP

ri
kkkk

R
−

ΓΓ+Γ
−= ,                                                      (18) 

where  

)()( rad, rirpprrSPrSP ikkkikkk Γ+Γ+Γ+∆+∆+=Γ+∆+=                      (19) 
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is the complex wave number of the SP that takes into account roughness, the star (*)  

denotes complex conjugation, riii 21 Γ+Γ=Γ , )/2( 0λπ pp nk =  is the wave number of 

the SP corresponding to the case of infinitely thick metal film and 

∆k a a gp = − +[( ) / ( )]2
0

2 2
0

2ε ε is the correction to this number accounting for the 

finite thickness of the film.  The following notations were introduced in the above 

formulas  

)/(Re])/(2exp[2 121
2/1

21
2

rrrrppp dknkg εεεε +−= , rrra 20201 )( εεεεε −−= ,   

2/1
2121 )]/([ rrrrpn εεεε += , 22

111 )2/( pripi nk εε=Γ , 22
222 )2/( pripi nk εε=Γ ,              (20) 

gaa )]/(2[ 2
0

2
0rad εε +=Γ . The quantities 1iΓ  and 2iΓ  describe the damping that 

originates from the internal losses in the metal and the adjacent medium respectively and 

Γrad  describes the radiative loss due to the transmission of light through the metal film.  

Quantities rk∆ and rΓ in Eq. (19) describe the changes of the real and imaginary part of 

the wave number due to surface roughness. The term rΓ  includes contributions to 

additional attenuation of SPs related to the changes of the dielectric properties owing to 

the surface roughness, re-scattering losses as well as the losses resulting from the 

conversion of SPs into radiative bulk waves. 

 

Equation (18) shows explicitly the resonance character of the SP excitation 

phenomenon, and the resonance is the most pronounced for the optimal metal film 

thickness optd ,1 , which is about 47 nm for gold. The inverse of the imaginary part of 
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rSPk , determines the attenuation length (at e-1 level) of the SPs in terms of the SP field 

amplitude. However, in most experiments what is measured is the decay of the SP 

intensity, which is proportional to the square of the field. As a result, for the intensity 

attenuation length a factor of 0.5 must be introduced 

.)(5.0 1
21,

−Γ+Γ+Γ+Γ= radriirspL                                                                 (21) 

 

As it follows from Eq. (18), this length can be also approximately determined from the 

FWHM width θ∆ of the resonance curve  

  -1
res00 )cos( θθε ∆≈ kLsp  .                                                                      (22) 

 

The incident light with a power 0P scatters from a rough surface on the back side of the 

metal film yielding the power dP  that goes into a of solid angle element Ωd  [42]: 

( ) ( ) ( ) ,'~
cos

4 22
012

5.0
2

4

0 Ω−





= dGWtPdP kkθθ

θ
ε

λ
π                                              (23) 

where 0θ  is the incidence angle of the excitation light, ( ) 2
012 θt  is the transmission 

function for a two-boundary system with a metal film (namely, this function is the 

square of the ratio of strengths of the magnetic field at the second boundary metal-air 

and in the incident wave), ( ) 2θW is the dipole radiation function of the surface (for an 

explicit expression see Ref. [17], Eq.(2)); ( )kG~  is the power spectral density (PSD) 

function 
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( )
rkrrk diGG )exp()(

2
1)(~

2 −= ∫π
                                                                    (24) 

of the correlation function of the surface roughness )(rς : 

 
( )

rrrrr ′+′′= ∫ d
S

G
S

)()(
2

1)( 2 ςς
π

,                                                                (25) 

where the integral is taken over the illuminated area of the rough surface S. In Eq. (23) 

the argument of the PSD function is the difference of the interface components of the 

wave vectors of the scattered and incident light. The roughness correlation function is 

often approximated by a Gaussian function  









−= 2

2
2 exp)(

σ
δ rG r .                                                                     (26) 

where σ is the correlation length and δ  is the average height of the roughness. For a 

one-dimensional PSD function of the surface roughness we obtain 

( ) 







−=−== ∫ 4

exp
 2

)exp()0,(
2
1)(~ 222 σ

π
σδ

π
x

xx
k

dxxikyxGkG .                  (27) 

  

The roughness changes the complex wavenumber of SPs [43-46], which means also a 

correction to the SP dispersion equation. We calculated this change due to roughness, 

rrSPrSPSP ikkkk Γ+∆=−=∆ , ,                                                           (28) 

using Eq. (A42) of Ref. [46]. The real part of k∆  is responsible for the angular 

displacement of the SPR resonance and the imaginary part determines the change in 

attenuation of SPs and also the change of the width of the resonance curve due to 
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roughness.  Using the approximation of Eqs. (19-20), one can also calculate an effective 

dielectric constant of the metal eff,1ε  that gives the same change SPk∆  as the surface 

roughness (assuming that its contribution is relatively small), i.e. eff,1ε  can be found 

from the equation 

11,11
|)]([|)]([ radrad εεεε == Γ+Γ+Γ+∆+∆+=Γ+Γ+∆+ rirppipp ikkkikk

eff
.         (29) 

The obtained value of eff,1ε  can then be used to calculate the modified by roughness SPR 

curve, using the approximate expressions of Eqs.(18-20).  

 

The results of the calculations with and without surface roughness are presented in Fig. 

4. The curves without roughness were calculated with exact expressions for the three-

layer system [41], and the approximate model of Eqs. (18-20) gives close results. 
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Fig. 4. Measured and calculated SPR curves for (a) 633 nm and (b) 805 nm. 

 

The angular distribution of the reflected light intensity in the vicinity of the SPR angle 

for 633 nm and 805 nm is shown in Fig. 4. The minima indicate the angular positions of 

the SP resonance, which occurred at the light incidence angle onto the gold film 
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interface at 44.5º for 633 nm and at 42.8º for 805 nm. The dashed lines show calculated 

SPR curves without surface roughness. Thin solid curves are obtained taking into 

account roughness correction (Eq. (28)), then calculating the value of the effective 

dielectric constant eff,1ε by solving Eq. (29). For the calculations we used the dielectric 

constants compiled in Table 1. The roughness  

 

Table 1. Dielectric constants of gold 1ε  and glass 2ε ; SP attenuation length without 
roughness 

spL ; effective dielectric constant eff,1ε ; attenuation length rspL , calculated with 
roughness ( 0.2=δ nm, 36=σ nm) and experimentally determined SP attenuation 
lengths. 
 
λ (nm) 1ε

 2ε  spL
(μm) eff,1ε

 rspL , (m) 
 

spL
(μm) 

experiment 

633 -10.8+0.76i  [47] 2.30 4.4 -9.6+0.62i 3.6 3.0 (Fig. 4(a)) 
  

-11.0+1.5i  [48] 3.7 -8.6+0.88i 2.5 
-9.1+1.0i [49] 2.7 -8.2+0.85i 2.3 

805 -23.0+0.75i  [47] 2.28 23 -20.1+0.60i 17 17 (Fig. 4(a)) 
 -22.3+2.0i  [48] 14 -19.6+1.7i 11 

-26.8+1.8i [49] 24 -22.6+1.3i 18 
 

parameters were determined from measurements with an AFM. From the profile 

measurements the 1-D PSD function of the surface roughness was calculated. By fitting 

the PSD function with a Gaussian of the form of Eq. (27), we determined 0.2=δ nm and 

36=σ nm. 

 

As can be seen from Fig. 5 the attenuation length strongly increases with the optical 

wavelength, reaching values of the order of a millimeter at 4.2=λ mm. The thickness of 
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the film also strongly affects the SP losses. Figure 5(a) presents the angular dependences 

of the reflectivity, in the vicinity of the resonance for different thicknesses of the gold 

film for an optical wavelength 633 nm. For thin films the resonance becomes very broad, 

while for thick films the dip in the reflectivity reduces, which means that the coupling of 

light with the SP mode decreases.  
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Fig. 5. Attenuation lengths for (a) gold and (b) silver, calculated for a broad spectral 
range with the exact (solid lines and solid lines with triangles) and approximate (dashed 
lines) models. The steps in the dependences, calculated with the data from Ref. [49], are 
due to the shifts present in this data.  
 

The dependence of the attenuation length on the thickness of the gold film (see Fig.5(b))  

shows that this length increases with the thickness of the film experiencing flattening of 

the dependence at larger thicknesses, which starts at around d=70 nm. 

Figure 6 presents the angular dependences of the reflectivity, in the vicinity of the 

resonance for different thicknesses of the gold film for an optical wavelength 633 nm. 

For thin films the resonance becomes very broad, while for thick films the dip in the 

reflectivity reduces, which means that the coupling of light with the SP mode decreases.   
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Fig. 6. The influence of the thickness of the gold film on the properties of SPs: SP 
resonance curves at 633 nm for different film thicknesses. 
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CHAPTER III 

STUDY OF SURFACE PLASMON MODES IN METAL 

NANOSTRUCTURES WITH THE FAR FIELD SPECTROSCOPY 

 

A.  Investigated samples 

We used two similarly produced grating structures, formed on evaporated 40 nm gold 

films deposited on glass substrates. The grating structure had a rectangular profile 

protruding approximately 25 nm above the film surface. Measurement of angle vs. 

wavelength of the diffracted light produced estimates of 705 (Sample1) and 760 nm 

(Sample 2) for the periods of the gratings. A sample of the SEM data for one of the 

structures is given in Fig. 7. 

 

 

Fig. 7. A portion of the SEM data for Sample 2 (cross section and measurements from 
the blue line in the image). 



  27 

B.  Transmission for front-illuminated samples 

The beam was incident directly on the grating and transmitted light was taken directly. 

The spectra for normalization of transmission data were taken by passing the laser beam 

through a portion of the gold film at some distance from the grating structure, so as to 

remove any absorption effects from the normalized data. 

 

The spectra of light transmitted through the grating displayed two minima corresponding 

to +1 and -1 orders of the surface plasmon resonance excitation. The minimum 

corresponding to n=-1 order was more pronounced with efficiency of coupling of about 

70%. The typical dependence of the transmitted light intensity on the wavelength is 

shown in Fig. 8. For example, for incidence angle of 4 degrees, the first resonance in the 

spectra around 728 nm corresponds to n=+1, and the second resonance at 832 nm 

corresponds to n=-1. 

 

As incidence angle increases, the resonance corresponds to +1 order moves to shorter 

wavelength and the resonance corresponds to -1 order moves to longer wavelength. The 

data points were taken with incidence angle from -8 degrees to 8 degrees with a step of 1 

deg. Close to normal incidence the step was reduced to a quarter of a degree.  A gap 

between the resonance wavelengths of the two orders was observed in transmission at 

incidence angles around 
00  as shown in Fig. 9. 
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Figure 10 shows the coupling efficiency between incidence light and two orders of 

surface plasmon modes. We define coupling efficiency using the following formula: 

maxminmax /)( TTTefficiency −=  

where T is the intensity of transmission near the resonance. 

 

The coupling of the -1 order surface plasmon mode is much stronger than the +1 order 

mode. We can see abrupt changes of efficiency near the normal incidence, where the 

coupling of -1 order mode increases, the coupling of +1 order decreases close to 0. 
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Fig. 8. Dependence of the normalized transmission on the wavelength versus incidence 
angles from 0 to 5 degrees. (Sample 2) 
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Fig. 9. Wavelength versus incidence angle for the transmission minimum. (Sample 2) 
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Fig. 10. Angular dependences of the coupling for the -1 order and +1 order SP modes in 
transmission. (Sample 2) 
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C. Transmission with back-illuminated samples 

To compare the coupling to surface plasmons from different sides of the sample, we also 

studied the excitation when the sample was illuminated from the substrate side with the 

beam. The angular dependence of the resonance wavelengths is shown in Fig. 11. The 

resonance positions doesn't have significant shift from the case when the sample was 

front-illuminated. However, there is a noticeable difference in the coupling efficiency of 

the SP modes. 

 

We investigated the back-illuminated case at the region of small incidence angle with 

smaller angular step. As is shown in Fig. 12, we see the presence of energy gap near the 

normal incidence angle. 
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Fig. 11. Wavelength versus angle for minima in transmission from back illuminated 
sample (Sample 1). 
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Coupling efficiency of the incidence angle from -2 to +2 degrees from a back-

illuminated sample was shown in Fig. 12. Compared to the case of front-illumination, 

coupling efficiency of +1 order SP mode stays near zero. 
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Fig. 12. Angular dependence of the coupling in transmission for back illuminated 
sample. (Sample 1) 

 

D. Reflection with front illuminated samples 

To measure the reflection, a beam splitter was placed in front of the sample to direct a 

portion of the reflected beam away from the polarizer toward the optical fiber.  Spectra 

for normalization were taken from a specular reflection off a smooth portion of the film. 

 

The spectra of light reflected from the gratings was shown in Fig. 13 at incidence angles 

from 0 to 3 degrees, the incidence angle wavelength dependence of resonance was 
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shown in Fig. 14. Compared to what we observed in the transmission spectra, the Fano 

type resonance seems to be inverted. For better comparison, we plotted the reflection and 

transmission spectra together in Fig. 15. We can see the difference in the coupling of SPs 

to reflected and transmitted light in both samples. It also suggested a slight shift of 

resonance wavelength at certain incidence angle. 
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Fig.13. Dependence of the normalized reflection on the wavelength for incidence angles 
from 0 to 3 degrees. (Sample 2) 
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Fig. 14. Wavelength versus incidence angle for the reflection minimum (Sample2) 
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Fig. 15. Reflection and transmission spectra ((a) Sample 1, (b) Sample 2) 

 

E. Reflection from back-illuminated samples 

The spectra of the light reflected from a back-illuminated sample did not display any 

significant minima at expected resonance angles. Instead, these spectra displayed only 
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small-scale oscillations that appeared to result from interference between reflections 

from the glass and metal surfaces. 

 

F. Diffraction 

Diffracted light was collected with a spherical mirror focused on a paper diffuser to 

ensure all wavelengths in the spectrum were equally represented at the spectrometer. To 

check the change of the coupling for excitation from different sides of the sample, we 

measured diffracted light with back illumination.  

 

A spectrum of diffraction at incidence angle of 2.5 degrees is presented in Fig. 16. The 

diffraction spectrum is cut off at 737 nm. This results from the diffracted light passing 

over the horizon. This cutoff follows the relation: 

)sin1( θλ += dcutoff   

where θ  is the angle between the incident light and the surface normal, with positive 

angles corresponding to incident and diffracted light on opposite sides of the normal. In 

our case, this limited us to observing only the +1 order SP resonance at angles of 1 

degree or larger.  
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Fig.16. Diffraction spectra versus wavelength of a front illuminated sample at incidence 
angle of 2.5 degrees (Sample 1)  
 

SP coupling at a grating surface is highly dependent on the polarization of the incident 

light. Maximum coupling is achieved when the magnetic field vector of the incident 

light is aligned along the rulings of the grating, or when the projection of the electric 

field vector onto the grating surface is perpendicular to the rulings. We measured SP 

coupling with light at normal incidence for varied polarizations. Normalized results for 

normal incidence are presented in Fig. 17. The data suggest a cosine squared 

dependence—i.e., only the component of the polarization perpendicular to the grooves 

contributes to SP coupling.  
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Fig. 17. Dependence of coupling on the polarization angle, with 0 degrees corresponding 
to polarization in the plane of incidence. 
  

G. Reflection, transmission and diffraction in the interaction of light with a grating 

The calculation for reflection and transmission coefficient is based on Botten's model 

[33,34]. A three-layer model with vacuum, metal grating and substrate and p-polarized 

incidence light was considered. The vacuum, wire, slit (the empty spacing between the 

wires of the grating) and the substrate regions were denoted as D0, D1, D2, and D3 

respectively. The magnetic field in regions D0 and D3 obeys the Helmholtz equations: 

0)( 2
0

2 =+∇ Hk  in D0 

0)( 2
3

2 =+∇ Hk  in D3 

where 
λ
π2

0 =k  and 303 rkk =  and λ  is the incidence wavelength.  

In D0, the magnetic field can be expressed as Rayleigh series [2,50]: 
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Similarly, in region D3 , 

)())2/(exp(),( xehyiTyxH p
p

pp∑
∞

−∞=

+−= η
 

22
3 pp k αη −=

 

In the grating region D1 and D2, the field can be expressed as eigenfunction series, 

which came from the solution of the Helmholtz equation: 

∑ +=
n

nnnnn xuybyayxH )())cos()sin((),( µµ
 

where )(xun  is the eigenfunction of the slit region with the eigen value determined form 

the  transcendental equation: 
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where β  is the eigenvalue and 222 ζβγ += , 2
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The boundary conditions at 2/hy ±=  imply that H is continuous at both boundaries and 

its derivative is continuous, by solving the four  equations we get from the boundary 

condition the reflection and transmission coefficients, R and T: 

)( *
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*
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1 bDaDJiFR +−= −χ  

where F is a vector whose entries are 0ppF δ=  

)/( 2
0kdiag pχχ =  

)( 11 mDdiagD =  
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The infinite matrix for *a  and *b  can be truncated and solved numerically.  

The calculation of transmission coefficient we obtained with Lockbihler's simplification 

[35]: 
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Fig. 18. Calculation of transmission spectra for wavelength versus incidence angle from 
-1 to 1 degrees: period=705 nm, wire width=350 nm  
 

The calculation was performed with a grating of period 705 nm, and wire width 390 nm. 

The height of the grating is 50 nm. As we can see from the figures, the separation of the 

two resonances increases as we increase the incidence angle, which is what we observed 

in the experiment as well.  
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CHAPTER IV 

BAND GAPS OF SP MODES IN METAL NANOSTRUCTURES 

 

A. Previous studies  

Excited SPs exhibit gaps in the energy spectrum (ω -gaps) [6,21,22,28], rendering these 

structures as simple plasmonic crystals.  The gaps appear due to mode interaction near 

the crossing of their unperturbed dispersion curves and can be employed for wave 

guiding [37], developing sensors [51] and photonic notch filters [52]. The existence of 

momentum gaps (or k -gaps) was also proposed and confirmed in experimental [28] and 

theoretical works [53-55]. However, it has also been suggested that a k -gap is an 

artifact, resulting from the mode over-damping [56]. 

 

B. Experimental investigation of laser light interaction with gold nanostructures 

We studied two types of metallic structures: a periodic array of gold nanowires on a 

glass substrate and a similar array with an additional gold sub-layer [57]. The periods of 

the arrays were chosen to provide SP resonances at the normal incidence close to the 

middle of the spectral range (from 650 to 850 nm) of the laser pulses. The configurations 

of the two samples produced by thermal vapor deposition and electron beam lithography 

are shown in Fig. 19(a). Both samples had a gold grating structure with rectangular 

profile. For the first sample the grating was thinner, and it was deposited onto an 

underlying gold film. The thickness of the films during the deposition was monitored 

with a quartz crystal monitor. 
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Fig. 19.  Measured samples: (a). Schematic of the sample profile and the geometry of the 
laser beam incidence (red arrows).  The two samples had the following dimensions. 
Sample 1A: nm705=d , nm3901 =d , nm27=h , nm351 =h . Sample 2A: 

nm710=d , nm3651 =d , nm50=h , 01 =h . (b). SEM image of sample 2A.  
 

Measurements of the transmitted light for a set of incidence angles were performed. A 

portion of the beam from a broadband pulsed laser (Rainbow, Femtolasers) was weakly 

focused and front-illuminated the sample.  The sample was mounted on a rotation stage 

allowing for variation of the incidence angle from -6° to +6° with small steps and 

accuracy better than 0.05°. The light that interacted with the grating on the sample was 

selected by a small aperture and directed into an Ocean Optics spectrometer, registering 

the distribution of the spectral intensity. Normalized transmission spectra for two 

samples are shown as density plots in Fig. 20(a,c). The intensity distribution over 

incidence angle and wavelength displays two diagonal valleys corresponding to n=±1 

orders of the SP resonance excitation, producing a decrease in the transmitted intensity. 
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The higher frequency branch demonstrates a narrowing for sample 1A and a slight 

broadening for sample 2A, when approaching the crossing region. This can be seen by 

comparing the shorter-wavelength dips of the spectral intensity profiles shown for a set 

of angles in Fig. 20(b,d), which exhibit asymmetric Fano-type resonances [58]. Such 

changes indicate damping variations of the SP modes. In particular, radiative damping 

can change due to a shift of  the mode intensity distribution relative to the grooves of the 

grating, as the wavelength changes [12], and also the effect of the mode interaction due 

to Bragg scattering increases closer to the normal incidence, corresponding in spk -space 

to the boundary of the Brillouin zone [36]. 

 

The plots of the minima of the experimentally measured transmission show qualitatively 

different patterns of the dispersion relations for samples 1A,2A, depicted in Fig. 21(a,d). 

For sample 1A an ω -gap of about 30  meV is observed (Fig. 21(a)), which  appears as a 

result of the interaction of 1±=n  modes and is mainly due to the presence of the second 

harmonic in the spatial profile of the nano-structure [56,59]. The lower and higher 

frequency branches can be related to the symmetric and antisymmetric modes 

[12,56,60]. The edges of the gap at o0=θ have wavelength values 723.. =fhλ nm and 

736.. =flλ nm and two different SP phase velocities .., fhspv  and .., flspv of the high and low 
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Fig. 20. Transmitted light intensity for different incidence angles and wavelengths: (a,b) 
sample 1A, (c,d) sample 2A. Fig.s (a, c) show false color density plots with the dark 
(blue) color corresponding to the reduction of the light transmission due to the SP 
excitation. Fig.s (b,d) depict the wavelength dependences of the intensity for a set of 
angles, showing that while in (b) the minimum at shorter wavelength becomes narrower 
for smaller angles, in (d) the similar minimum becomes slightly broader; in (b,d) the 
curves for different wavelengths are equidistantly shifted vertically for better viewing. 
 

1 

0 

0.5 

(c) 

1 

0 

0.5 

(a) 

650 700 750 800
0

40

80

120

θ=-2.0 deg.

θ=-4.0 deg.

θ=-1.0 deg.

In
te

ns
ity

 (a
rb

. u
nit

s)

Wavelength (nm)

(b)

650 700 750 800
0

40

80

120

160

200

θ=−2.5 deg.

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Wavelength (nm)

θ=−1.5 deg.

θ=−4.0 deg.

(d)



  44 

frequency SP modes, which have the following ratios to the speed of light c in air, 

968.0// ...., == fhfhsp dcv λ  and 951.0// ...., == flflsp dcv λ , inferred from Eq. (1) for 

normal incidence. 

 

For sample 2A, the mode pattern in the band-gap region is qualitatively different for 

higher and lower frequency branches. For the higher frequency branch, the dispersion 

curves with 1±=n  do not tend to merge when they approach the avoided crossing 

region, but rather form a gap in θ  values ( k -gap, =∆k 1.91×103 cm-1). The origin of 

such a gap cannot be attributed to a partial overlap of the approaching modes in the 

avoided crossing region, as was suggested [56], since only one, namely the lower 

frequency branch passes the center of this region.  

 

Figs. 21(b,e) show the evolution of the transmission angular dependence for the two 

samples in the avoided crossing regions, indicated by dashed boxes in Fig. 21(a,d), as 

the wavelength is changed in small steps. With increasing wavelength the two side 

minima in the angular intensity distribution (Fig. 21(b), sample 1A), which are seen 

clearly for 716=λ nm, initially merge into a valley and then re-appear again. In Fig. 

21(e) (sample 2A) with increasing wavelength the two side minima stay separated until 

they disappear (four lower curves), and then two shallow minima are formed.  
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Fig. 21. Observed and calculated SP modes in the avoided crossing region: (a, d) minima 
of the transmission from the experiment, (b,e) transmitted intensity vs. angle for a set of 
wavelengths and (c,f) calculation of the SP modes of 1±=n  orders taking into account 
their interaction (Eq. (3), details in the text).  Crosses in (a,d) show the extension of the 
observed minima into the gap region. Dotted lines in (c,f) show the dispersion 
dependences of the SP modes without interaction. Transmission dependences in the 
band-gap regions, indicated by dashed boxes in (a,d) are plotted for different 
wavelengths with steps of 4 nm in (b) and with steps of 2 nm in (e) for samples 1A and 
2A, respectively. 

 

C. Interpretation of avoided crossing and spectral gaps with coupled-mode theory  

The following derivation follows general concepts of the coupled mode theory [61,62]. 

We consider two parallel waveguides a and b, the total field solutions can be written as 

linear combinations of the individual waveguide modes: 
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),()(),()(),,( )()( yxHzbyxHzazyxH ba +=  

 

Consider two coupled SP modes with complex amplitudes )(1 zA  (mode with n=+1) and 

)(2 zA (n=-1), counter-propagating along the z-axis and coupled with coefficients 2,1K  

and 1,2K : 

)()()( 21,211;1 zAiKzAikzA
dz
d

sp += , )()()( 22;12,12 zAikzAiKzA
dz
d

sp+= ,   

where 1;spk  and 2;spk  are wave numbers of the two SP modes without interaction,  

corresponding to the incident light frequency λπω /2 c= . The main mechanism of the 

interaction of these modes is their Bragg scattering with grk2  [21,36,56]. Assuming 

dependences )exp( ziksp∝ , we find wave numbers as functions of ω  taking into account 

the coupling of the modes: 

qkkk spspsp ±+= 2/)(' 2;1;2,1; , Gq +∆= 2 , 2/)( 2;1; spsp kk −=∆ ,  1,22,1 KKG = .            (30) 

 

These equations show that if the condition 2∆−<G  is fulfilled, which corresponds to an 

interval of ω  values, parameter q becomes imaginary, giving rise to a strong 

suppression (attenuation) of the SP modes (for small losses of the SP modes, as the first 

approximation, 2;1; , spsp kk  can be assumed to be real). Thus, for 2∆−<G  the two SP 

modes form an ω -gap (conservative coupling), while for 2∆−>G  the gap appears in the 

spk '  values (dissipative coupling) [62]. When attenuation of the SP modes takes place or 
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the coupling constants are complex, the values of 2,1;'spk  also become complex, so that 

the real parts [ ]2,1;'Re spk  determine the phase constants of the modes, and the imaginary 

parts [ ]2,1;'Im spk  determine their attenuation or amplification depending on the sign.  

 

D. Calculation of the dispersion relations of SPs modes and comparisons to 

experiment 

The theoretical approach for calculation of unperturbed dispersion curves is based on 

calculating the properties of a three-layer system consisting of glass, metal film, and air, 

with a grating present at the film-air interface. For certain incidence angles, light 

wavelengths, and grating parameters, the coupling of light and the surface plasmon 

mode can take place. 

 

The results of the dispersion relation calculations with the model of two coupled SP 

modes (Eq. 3) are shown in Figs. 21(c,f) as )(θλ  dependences to enable direct 

comparison with the experimental data. The unperturbed dispersion relations )(1; ωspk  

and )(2; ωspk
 
were calculated using the three layer model [41], taking into account the 

grating as an additional gold layer with effective thickness 15)1(
1, =effh nm and 

35)2(
1, =effh nm for samples 1A and 2A, respectively. For sample 1A, agreement with the 

experiment is obtained when the value of G  has a negative real part and a relatively 

small imaginary part, so that in the assumption 1,22,1 KK =  we obtain for contra-
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directional waves )8.318(212,1 iKK +=−= meV. When the real part of G  is positive 

and exceeds certain value, two almost vertical portions of the dispersion curves appear 

with a gap for the θ  (or k) values. If this k -gap is small and damping is present, as in 

our case, these portions merge, forming a vertical line of minima in the transmission, as 

observed in the experiment (Fig. 21(a), the data points shown by crosses).  

 

For sample 2A, the lower frequency branch looks similar to that of sample 1A. However, 

the higher frequency branch shows the divergence of the dispersion curves for n=+1 and 

n=-1 in the vicinity of the avoided crossing region ( 728=< cλλ nm), while in the 

region cλλ >  the portions of the dispersion curve tend to merge as the wavelength is 

approaching the center of the gap cλ . The different behavior in these two wavelength 

regions provides evidence that the sign of the real part of the product G  changes, as the 

wavelength changes from cλλ < to cλλ > . The solid lines in Fig. 21(f) are calculated 

with iKK 172112 =−= meV for cλλ <  and with 2112 KK −= =24 meV for cλλ >  and 

give good agreement with experimental points.  

 

The change of the coupling constant can be related to a spatial shift of the intensity 

distribution relative to the grating slits with increasing wavelength, as the excitation 

switches from the higher frequency dark mode to the lower frequency bright mode, 

which was recently observed in a grating structure [12]. The coupled mode model 

directly calculates dispersion dependences of the modes, and thus, plots of Fig. 21(c,f) 
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suggest the possible existence of k -gaps. The experiment shows the presence of the 

transmission minima also in the gap region (in Fig. 21(d) these points are shown by 

crosses), which are not reproduced by the presented theory. These minima gradually 

disappear farther from the respective dispersion branch, which indicates their transitional 

nature.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

In this thesis a study of the interaction of light with a metal grating is considered. By 

investigating transmission, reflection and diffraction of light a role of SPs in this 

interaction is elucidated. A derivation of the dispersion equation of SPs is presented. It is 

shown that the propagation length of SPs increases with the wavelength, and surface 

roughness leads to a reduction of this length. The interaction of light with gold 

nanostructures is experimentally studied. The distributions of the transmitted and 

reflected light versus incidence angle and wavelength clearly show efficient excitation of 

SP modes. They also give an evidence of the energy and momentum gaps in the SP 

spectrum. To describe interaction of light with metal nano-gratings we followed 

Rayleigh’s approach. The formation of spectral gaps was explained in terms of the 

coupled-mode model.  
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APPENDIX A 

DERIVATION OF BOUNDARY CONDITIONS 

 

The boundary conditions (5-7) can be derived in the following way: For (6), we consider 

an integral of the magnetic field over a rectangular loop, encompassing a segment of the 

boundary.   

  

 

where  l1 and l2 are the sides of the rectangular loop parallel to the boundary 

corresponding to medium 1 and 2, and l1=-l2 and we took into account that the integral 

over the two sides perpendicular to the boundary goes to zero in the limit when the loop 

is squeezed to the surface. Then we apply Stokes's theorem to the left side the last 

equation, and use Eq. (1), 

 

 

 Since the area of the rectangular loop goes to zero, we have the integral goes to zeros, 

which implies: 

 

Boundary condition (5) can be obtained in the same way. 

 To derive boundary condition (7), we have to consider equation (3) and integrate 

it over a rectangular volume containing a small part of the interface. We consider the 

electric field that goes through the surface, and since the field flux through the surface 
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perpendicular to the boundary goes to zero, we only have the electric field which goes 

through the surface parallel to the boundary: 

 

 

Since the two surfaces have the relation S1=-S2, by applying the Gauss's theorem we 

obtain: 

 

, 

the integral over the rectangular volume goes to zero in the limit, when the volume is 

squeezed to the surface, consequently    

 

which is  Eq. (7). 

dsEdsEEds
SSS
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APPENDIX B 

DERIVATION OF THE DIELECTRIC CONSTANT OF A FREE 

ELECTRON GAS 

 

Consider a simple model of electrons in a metal under action of oscillating electrical 

field tieEE ω
0= . The electrons move according to the Newton’s second law: 

eEv
dt
dm −= . 

Then we find the displacement amplitude of an electron: 

m
eE

eE
m

x 2
0

02 )(1
ωω

=−
−

=  

This displacement of electrons will induce polarization eNxP π4−= , where N is the 

number of electrons in a unit volume. 

Then for the dielectric susceptibility we have: 

2
041

ω
πε

m
eE

eN
E

PE
E
D

−=
+

==              

which is Eq. (17) 

Consequently, the obtain the dielectric function 2

2

1
ω
ω

ε P−= , where 
m
eeNP

2

4πω =  is 

the so called plasmon frequency.  

The derivation of the relation between the polarization and the displacement of charges 

can be carried out in the following way. In SGS system of units, Gauss's law provides: 
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∑∫ =
i

i
S

qdsE π4  

Consider now a thin element of a medium perpendicular to the displacement x of the 

electrons. Then eNx−=σ  represents the surface density of charges. In some point A 

between the sides of the element due to this separation of charges we will have 

additional electric field which is just due to polarization. Since this field is uniform we 

can consider this similar to the field in a plane capacitor. Then, 

EP ∆=  

σσ −+ ∆+∆=∆ EEE  

σσ −+ ∆=∆ EE  

SES πσσ 42 =∆ +  

Thus, polarization is: 

eNxEP ππσ 44 −==∆=  
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