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ABSTRACT

A Study on the Coherent Atomic Effects

and Their Applications. (May 2010)

Qingqing Sun, B.S., Peking University;

M.S., Peking University

Co–Chairs of Advisory Committee: Dr. M. Suhail Zubairy
Dr. Marlan O. Scully

Coherent atomic states prepared by laser field can have quantum interference

between the different transition amplitudes. Therefore, the medium susceptibility

and optical response can be engineered, leading to many interesting phenomena, such

as coherent population trapping (CPT), electromagnetically induced transparency

(EIT), and lasing without inversion (LWI).

We studied the coherence effects in various prototype atomic systems, and found

many interesting applications. We solved the slow light bandwidth problem by de-

composing the pulse and matching each frequency to its EIT window using a magnetic

field gradient. We also considered the probe field deflection induced by the driving

field distribution in EIT, and showed that even a broadband pulse can be deflected

without serious spreading. In the fast light area, we examined the effects of noise and

parameter deviations in a bichromatic Raman type white light cavity. Taking advan-

tage of the adjustable absorption of EIT, we showed that EIT in a laser cavity can

have either first-order or second-order phase transitions. Last but not least, we show

that the adiabatic population transfer can be used to reverse the weak measurement

of an arbitrary field with finite photon number.
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CHAPTER I

INTRODUCTION

Quantum coherence has been a fascinating subject since the birth of quantum me-

chanics. Adding the probability amplitudes instead of transition probabilities has

led to many counterintuitive effects. Laser is a powerful tool to prepare atomic and

molecular media into states with quantum coherence. These media exhibit modi-

fication of the optical response due to the interference between different excitation

paths, which enables various interesting phenomena. One early example is the co-

herent population trapping (CPT) [1, 2, 3]. In CPT, the two fields pump the atoms

into a superposition state called dark state, whose excitation probability amplitude

is zero due to the destructive interference between the two paths. So the population

is effectively trapped in the dark state. Another closely related phenomenon is elec-

tromagnetically induced transparency (EIT) [4, 5, 6], in which the modification of

the field is also considered. Since the medium has been prepared into the dark state,

ideally they will no longer absorb these resonant fields, hence the name.

EIT has brought a rich set of features in optical response. For example, the steep

dispersion around the transparency frequency allows slow light propagation without

much absorption. Harris group reported the first experiment in Pb vapor with a group

velocity of c/165 [7], followed by many other experiments with much slower velocities

[8, 9, 10, 11]. By adiabatically reducing the drive field Rabi frequency, it is even

possible to fully “stop” an optical pulse [12]. What really happens is that the energy

in the pulse has been transferred into the Raman spin excitation and stored in the

medium. Slow light, with its controllable delay, has potential application in optical

The journal model is IEEE Transactions on Automatic Control.
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communication. While “stopped” light might be useful in optical storage. Refractive

index in the EIT window has also been explored [13]. In a usual EIT medium the

refractive index is 1 at resonance. However, by adding incoherent pumping it can be

significantly enhanced, which can be used in high precision magnetometry, linewidth

compression and frequency stabilization.

In this dissertation we discuss the effects of atomic coherence and interference in

a wide range of systems. A central theme of my study is based on EIT. In Chapter

II we consider the dispersion of EIT and propose a scheme to realize broadband slow

light. In Chapter III we make use of the refractive index in EIT. By engineering

the intensity profile of the drive field, the probe field can be deflected or focused. In

Chapter IV we show that even the absorption property can be useful. By putting

an EIT medium into a laser cavity and controlling the drive field intensity, we can

switch between first- and second-order phase transitions. We have also studied other

problems like effects of noise and parameter deviations in a bichromatic Raman type

white light cavity, and reversing the weak measurement of an arbitrary field with

finite photon number.

We use semiclassical theory to study the interaction between quantized atoms

and classical field. By solving the optical Bloch equation we can find the density

matrix and the system properties. In this chapter we first discuss the theoretical

framework [14], and then briefly introduce the concept of CPT, EIT, and some other

effects outgrown from them.
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A. Semiclassical theory

For a given quantum system, we can determine all the observables if we know the

state vector |ψ〉. The expectation value for an observable A is

〈
Â
〉

= 〈ψ| Â |ψ〉 . (1.1)

However, such a pure state is very rare in the real world. Due to the interaction

with the environment most systems are in mixed states, in which we only know the

probability Pψ for the system to be in a state |ψ〉. The statistical average gives us

the expectation value

〈
Â
〉

=
∑

ψ

Pψ 〈ψ| Â |ψ〉 =
∑

ψ

Pψ
∑

i

〈ψ| Â |φi〉 〈φi|ψ〉

=
∑

i

〈φi|
∑

ψ

Pψ |ψ〉 〈ψ| Â |φi〉 . (1.2)

Here |φi〉 is the set of orthonormal basis vectors for the system, which satisfies

∑
i |φi〉 〈φi| = 1.

We can introduce the density matrix operator ρ =
∑
ψ Pψ |ψ〉 〈ψ| and write the

above equation as

〈
Â
〉

=
∑

i

〈φi|
∑

ψ

Pψ |ψ〉 〈ψ| Â |φi〉 =
∑

i

〈φi| ρÂ |φi〉 = Tr(ρÂ). (1.3)

So with the knowledge of density matrix we could easily find out the expectation

values for a mixed state.

Time derivation on the density matrix operator leads to ρ̇ =
∑
ψ Pψ( ˙|ψ〉 〈ψ| +

|ψ〉 ˙〈ψ|). After substitution of the Schrodinger equation ˙|ψ〉 = − i
h̄
H |ψ〉 we obtain

ρ̇ = − i

h̄
[H, ρ] . (1.4)

This is the so called Liouville equation, from which we can derive a group of equations
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a
bE

Fig. 1. Interaction between a single mode field and a two-level atom.

for the density matrix elements. After adding the relaxation terms we can solve

the equations and find the properties of the system. The diagonal terms are the

probability for the atom to be in those energy levels, and non-diagonal terms reflect

the coherence between two levels.

As an example, we consider the simplest case of a single mode field interacting

with a two-level atom. In Fig. 1, |a〉 and |b〉 represent the excited and ground lev-

els of the atom, respectively. They are the unperturbed eigenstates for the atomic

Hamiltonian, with the eigenvalues h̄ωa and h̄ωb. From the completeness relation

|a〉 〈a| + |b〉 〈b| = 1, we obtain

H0 = (|a〉 〈a| + |b〉 〈b|)H0(|a〉 〈a| + |b〉 〈b|) = h̄ωa |a〉 〈a| + h̄ωb |b〉 〈b| . (1.5)

The atom-field interaction Hamiltonian

H1 = −er · E(t) = −e(|a〉 〈a| + |b〉 〈b|)r(|a〉 〈a| + |b〉 〈b|) · E(t)

= −(µab |a〉 〈b| + µba |b〉 〈a|) · E(t), (1.6)

where µab = µ∗
ba = e 〈a| r |b〉 is the matrix element of the electric dipole moment and

E(t) = E cos νt is the field at the atom location.

Substituting the Hamiltonian into the Liouville equation and adding the relax-
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ation terms, we have

ρ̇aa = −γaρaa +
i

h̄
[µabEρba − c.c.] ,

ρ̇bb = −γbρbb −
i

h̄
[µabEρba − c.c.] ,

ρ̇ab = −(iωab + γab)ρab −
i

h̄
µabE(ρaa − ρbb). (1.7)

where ωab = ωa − ωb is the atomic level separation, γa and γb are the population

relaxation rate and γab is the decoherence rate. In a closed system ρaa + ρbb = 1, we

can solve the density matrix. The macroscopic polarization

P (t) = N [ρab(t)µba + c.c.] =
ǫ

2
E
[
χ(ν)e−iνt + c.c.

]
, (1.8)

where N is the atomic number density. So we know the susceptibility χ can be

found through the coherence term. As we all know, the optical response of an atomic

medium is described by its susceptibility. The real part of the susceptibility is related

to the refractive index, and the imaginary part is related to medium absorption. In

this simplest case, when the field is at resonance the absorption has a peak and the

dispersion is negative. The atomic population undergoes the Rabi oscillation with

the Rabi frequency ΩR = |µba|E
h̄

.

B. Coherent population trapping

Coherent population trapping was first observed and explained in 1976 [1, 2, 3]. To

understand this phenomenon, we consider a three-level Λ system as shown in Fig. 2.

The Hamiltonian can be written as

H = H0 +H1 = h̄ωa |a〉 〈a| + h̄ωb |b〉 〈b| + h̄ωc |c〉 〈c|

− h̄

2
(ΩR1e

−iφ1e−iν1t |a〉 〈b| + ΩR2e
−iφ2e−iν2t |a〉 〈c| +H.c.), (1.9)
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1 2
Fig. 2. Coherent population trapping in a three-level Λ system.

in which ΩR1e
−iφ1 ,ΩR2e

−iφ2 are the complex Rabi frequencies for the two excitation

paths.

This Hamiltonian can be simplified in the interaction picture, in which we define

U0(t) = exp(− i

h̄
H0t) = exp(−iωat) |a〉 〈a| + exp(−iωbt) |b〉 〈b| . (1.10)

The Hamiltonian transforms as

V (t) = U †
0(t)H1U0(t) (1.11)

= − h̄
2

[
ΩR1e

−iφ1e−i(ν1−ωab)t |a〉 〈b| + ΩR2e
−iφ2e−i(ν2−ωac)t |a〉 〈c| +H.c.

]
.

At two-photon resonance ν1 −ωab = ν2 −ωac, it is easy to find a stationary eigenstate

|ψ(t)〉 =
ΩR2e

−iφ2 |b〉 − ΩR1e
−iφ1 |c〉

√
Ω2
R1 + Ω2

R2

, (1.12)

for which V |ψ(t)〉 = 0. This state is called dark state because once an atom sponta-

neously decays into this state, it no longer interacts with the fields. What actually

happens is the excitation probability amplitude from the two ground levels cancels

with each other. However, an atom in any other state can be excited to level |a〉 and

has the chance to decay to the dark state. Gradually most of the atoms are trapped
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into the dark state.

If instead of constant fields, we adiabatically change the Rabi frequencies, the

dark state coefficients will change but the atoms will remain in the dark state. In

this way we can adiabatically transfer the population from one component of the

superposition state to another component. This process is called stimulated Raman

adiabatic passage (STIRAP). For example, by slowly changing from ΩR2 >> ΩR1 to

ΩR2 << ΩR1, we can transfer the population from |b〉 to |c〉. Since the excited state

|a〉 is never populated during this process, we don’t need to worry about spontaneous

emission. The transfer efficiency is unity as far as the adiabatic condition is satisfied.

Due to these advantages STIRAP has become an important tool to prepare quantum

states.

C. Electromagnetically induced transparency

Electromagnetically induced transparency is closely related to CPT. Instead of con-

centrating on atomic state preparation, in EIT the optical response is also an impor-

tant part. We consider the same three-level Λ system as in Fig. 2, only now field 1 is

a weak probe field and field 2 is a strong coupling field at resonance. The equation

of motion for the density matrix can be written as

ρ̇ab = −(iωab + γab)ρab −
iΩ1e

−iφ1e−iν1t

2
(ρaa − ρbb) +

iΩ2e
−iφ2e−iν2t

2
ρcb,

ρ̇cb = −(iωcb + γcb)ρcb −
iΩ1e

−iφ1e−iν1t

2
ρca +

iΩ2e
iφ2eiν2t

2
ρab,

ρ̇ac = −(iωac + γac)ρac −
iΩ2e

−iφ2e−iν2t

2
(ρaa − ρcc) +

iΩ1e
−iφ1e−iν1t

2
ρbc. (1.13)

The stationary solution gives us

ρab(t) =
2iΩ1e

−iφ1e−iν1t(−i∆ + γcb)

4(−i∆ + γab)(−i∆ + γcb) + Ω2
2

, (1.14)
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Fig. 3. Susceptibility curve for the EIT medium.

from which we obtain the real part χ′ and imaginary part χ′′

χ′ = −N |µab|2∆
ǫ0h̄Z

[
γcb(γab + γcb) + (∆2 − γabγcb −

Ω2
2

4
)

]
,

χ′′ =
N |µab|2
ǫ0h̄Z

[
∆2(γab + γcb) − γcb(∆

2 − γabγcb −
Ω2

2

4
)

]
, (1.15)

where ∆ = ν1−ωab is the probe detuning and Z = ∆2(γab+γcb)
2+(∆2−γabγcb−Ω2

2/4)2.

From the susceptibility curve in Fig. 3 we can see the transparency window.

Physically the coupling field and the probe field prepare the atomic medium into the

dark state. Then the following probe field will not be absorbed. However, due to the

decoherence γcb, atoms can move out of the dark state, causing residue absorption.

Since the coupling field is strong, the two absorption peaks are located at ±Ω2/2 so

the transparency window has the width Ω2.

The steep positive dispersion in EIT transparency window can be used to propa-

gate slow light. If we send in a pulse whose frequency range is within the EIT window,

it will propagate almost losslessly. The group velocity

vg =
dω

dk
=

c

n+ ω(dn/dω)
. (1.16)
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Typically in an atomic gas medium, the susceptibility is much less than 1. So the

refractive index n =
√

1 + χ′ ≈ 1 + χ′/2. Substituting into the above equation we

have

vg =
c

1 + χ′

2
+ ω

2
dχ′

dω

. (1.17)

At the probe resonance χ′ = 0 and the slope dχ′/dω is positive, which means slow

light. Substitution of the χ′ expression shows that approximately vg ∝ Ω2
2 when the

drive field is strong. In order to get ultraslow light we have to lower the drive field

intensity, which limits the pulse bandwidth. We show a solution to this problem in

Chapter II.
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CHAPTER II

OPTICALLY CONTROLLED DELAYS FOR BROADBAND PULSES*

A. Introduction

Recent progress in the study of ultra-short optical pulse generation [15] creates a fun-

damentally new realm of laser applications in many areas, including material science,

information processing, communication and spectroscopy. The rapidly developing

technology of broadband optical pulse shaping requires systems to provide control-

lable delays for such pulses. For example, an optical buffer [16, 17] can be charac-

terized by the maximum number of bits Nb that can be simultaneously stored in the

buffer.

In this chapter, we show that the steep dispersion of an EIT medium [4, 14]

can be used to create large controllable delays for ultra-short pulses by using the

system shown in Fig. 4, thus yielding a large time-delay-bandwidth product. The

best product achieved so far in slow-light experiments is 3 [9, 10, 11, 18, 19, 20]. An

important feature of our scheme is that the delay is continuously controllable by an

optical field. The idea is to synthesize dispersion of the system by using the highly

steep dispersion of a three-level atomic system with inhomogeneous broadening.

*Part of this chapter is reprinted with permission from “Optically controlled
delays for broadband pulses” by Q. Sun, Y. V. Rostovtsev, J. P. Dowling, M. O.
Scully, and M. S. Zubairy, 2005. Phys. Rev. A, vol. 72, pp. 031802(R), Copyright
[2005] by the American Physical Society.



11

EIT

coupling pulse

probe pulse

Anti-Helmholtz coil

liquid crystal

EITEIT

coupling field

probe pulseprobe pulse

Anti-Helmholtz coil

liquid crystal

a

b
c

Fig. 4. Schemes providing a continuous controllable delay to a broadband optical pulse.

B. Setup

In Fig. 4 we present two possible schemes. The system consists of a set of prisms (or

diffraction gratings) with total dispersion equal to zero. The first prism disperses the

probe pulse transforming the parallel beam into divergent beams. The angle of refrac-

tion of the light beam with frequency ωL is β(ωL) = [n(ωL) − 1]α [21], where n(ωL)

is the refractive index of the material of the prism (see Fig. 5A). The second prism

produces parallel beams with different frequencies shifted in space (see Fig. 5A,B).

The light beams of varying frequencies then pass through an atomic medium that has

an inhomogeneous magnetic field gradient (see Fig. 5C). The medium consists of a

three-level atomic system. A drive field couples the levels a and c and the probe field

couples levels a and b.

In the first scheme, we maintain one- and two-photon resonances of the drive
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Fig. 5. Pulse decomposition and the magnetic field gradient. (A) The beam of light

has a Gaussian profile along x axis. Each ray in the dispersion region con-

sists of all frequencies ωx that come from the transverse rays dispersed by the

prisms. The solid line corresponds to the center of the probe beam, the dashed

line is shifted at the distance x from the center of the beam. The D-region is

the dispersive region where different frequencies of the probe pulse are sepa-

rated. (B) The spectra of the probe pulse are shown in different locations of

the D-region (1-5). The dash lines show the positions of the maximum and the

maximum amplitudes of the probe pulses correspondingly, visualizing the spec-

tral distribution of the probe pulse along x-axis. The total width of the spectra

is determined by the duration of the probe pulse. The spectral width of the

probe pulse at a particular location is determined by the frequency dispersion

of the system of prisms. (C) A three-level atomic medium with inhomogeneous

magnetic field. It is shown that at different locations inside medium (1-5) the

probe transition has different frequency, ωab = ωab0 +αx, that are in resonance

with the corresponding frequency component of the probe field, ωL = ω0 + βx,

via the system of prisms shown in Fig. 4.
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and probe fields at the a-c and a-b transitions, respectively, by an appropriate design

of the prism system. This scheme can work for hot gases with Doppler broadened

transitions. The second scheme has a drive field that propagates in the perpendicular

direction to the probe field. Here the medium should not have Doppler broadening,

i.e., this scheme works for cold atoms. Also it assumes that the a-c transition is not

influenced by the magnetic field at all locations inside the medium, and the drive field

is always at resonance (see Fig. 5C). A similar scheme has been presented in [22] and

a scheme based on photorefractive materials has also been discussed in [23].

C. Analysis and discussion

We assume a weak probe and a strong resonant drive field, i.e., all population is in

state b. The susceptibility χ associated with the a-b transition has the form [14]

χ(νp) =
ηγ(∆p + iγcb)

(γcb − i∆p)(γab − i∆p) + Ω2
, (2.1)

where ∆p = νp − ωab is the detuning of the probe from the atomic transitions a-b;

νp is the frequency of the probe field Ep; Ω is half of the drive Rabi frequency on

the a-c transition, γab and γcb are the decay rates of the atomic coherences ρab and

ρcb, respectively; γ is the radiation decay between a and b, and η = 3λ3N/8π2 with

λ being the wavelength of the probe field and N being the atomic number density.

The above equation is just a rewriting of (1.15) for simplicity of the expressions in

this Chapter. In hot gases, the Doppler shift changes the detuning ∆p → ∆p + kv

(k is the wavevector) due to thermal motion. For the sake of simplicity we consider

a Lorentzian profile with Doppler width D for the inhomogeneously broadened line

shape F (v). Averaging over inhomogenous distribution, i.e., 〈χ〉v =
∫∞
−∞ dvχF (v),
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gives

χ(νp) =
ηγ(∆p + iγcb)

(γcb − i∆p)(γab +D − i∆p) + Ω2
. (2.2)

The real part of χ is given by

χ′ =
ηγ∆p(Ω

2 − γ2
cb − ∆2

p)

(Ω2 + γcbD + γcbγab − ∆2
p)

2 + ∆2
p(γcb + γab +D)2

. (2.3)

In general, a pulse propagating in the resonant medium is distorted because χ′ has

nonvanishing higher-order derivatives with respect to νp, and the group velocity for the

different frequency components of a pulse are different. We first address the question:

What is the largest delay and the shortest pulse that can propagate through this EIT

medium without distortion? This question was discussed in Refs. [24, 25]. We shall

then analyze the advantages of inhomogeneous magnetic field induced inhomogeneous

broadening.

It is clear from (2.3) that the group velocity is positive if Ω > 1/T , where T is the

duration of the pulse. Thus, in order to have a delay of the probe pulse, a necessary

condition is ΩT > 1.

In order to see the distortion of pulses propagating through the EIT medium, we

consider the propagation of a Gaussian probe pulse Ωp(t, z), whose spectrum is also

Gaussian, i.e.,

Ωp(t, z = 0) = Ωp0 exp[− t2

2T 2
], Ωω

p =
TΩp0√

2π
exp[−T

2ω2

2
]. (2.4)

The wavenumber at frequency νp is given by

k(νp) =
νp
c

√
1 + χ(νp) ≃

νp
c

[1 +
χ(νp)

2
], (2.5)

and the probe pulse at the distance z can be calculated by

Ωp(t, z) =
TΩp0√

2π

∫ +∞

−∞
dω exp[−iωt− T 2ω2

2
+ ik(ω)z] (2.6)
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Fig. 6. Pulse distortion for different drive field intensity. (A) Input pulse (T = 5 ns)

is shown. (B) Delay time τdelay = kηγL/Ω2 = 0.65 µs. The output pulses

correspond to incoming: (a) ΩT = 5, (b) ΩT = 25, (c) ΩT = 100.

For large enough Rabi frequencies the atomic susceptibility is given by

χ′(νp) ≃
ηγ∆p

Ω2
. (2.7)

Therefore, at a position z, the delayed probe pulse is given by

Ωp(t, z) = Ωp0 exp[−(t− z/vg)
2

2T 2
], (2.8)

where the group velocity of the optical pulse is vg ≃ 2Ω2/kηγ (see [20]), and the delay

time is given by τdelay = L/vg = kηγL/2Ω2. Taking into account that ΩT > 1, a

good estimate for the delay time is

τdelay < kηLγT 2/2. (2.9)

Thus a high intensity drive field is needed to obtain significant delay for short pulses

(see Fig. 6).

For substantial delay times, the atomic number density should also be large. For
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Phase 
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Fig. 7. Piecewise EIT. (top) A broadband pulse is decomposed into several bands

and each passes through its own EIT. (bottom) The susceptibility curves for

piecewise EIT.

N = 1014 cm−3, L = 1 cm, λ ≃ 1 µm, we obtain

τdelay < 1012T 2. (2.10)

Thus, for T = 10−9 s, the delay time is of the order of a few µs, but for T = 1 ps, the

delay time is just 1 ps. We also note that the required power for the picosecond time

scale is six orders of magnitude higher than that for nanosecond pulses.

To break this bandwidth limit, we can split the broadband pulse into several

narrow frequency bands. Each band passes through its own EIT medium. With

appropriate phase compensation these bands recombine into a delayed pulse, as shown

in the top part of Fig. 7. The bottom part of that Figure shows the susceptibility

curves. The dispersion curves for these bands are lined up by the phase compensation.

The result is a broad EIT window with steep dispersion, which allows broadband slow

light.

To extend this technique to shorter time scales we suggest the setup shown in

Fig. 4. Due to the spectral dispersion of the prisms, the probe beam has an angular

spread after the first prism. The second prism has the same frequency dispersion,
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but its dispersion has the opposite sign relative to the first one. Thus after the

second prism the optical beam components become parallel and there is a one-to-

one correspondence between the x position and the frequency of the probe and drive

fields. As discussed earlier, the inhomogeneous magnetic field shifts the atomic levels

such that the probe and the drive fields are in both one-photon and two-photon

resonances for atoms at all locations inside the medium. In the limit of infinite

spectral resolution, prisms separate different frequencies of the input pulse, and then

these frequencies propagate through the EIT medium. For each frequency, the EIT

medium produces a time delay given by L/vg. This results in the delay for the whole

pulse which is restored after the second pair of prisms (see Fig.4). The important

improvement due to this scheme is that we relax the condition on the strength of

the drive field whose role is limited to providing only EIT for a particular frequency.

There is no requirement on the drive field to provide a linear dispersion for the range

of frequencies corresponding to the pulse spectrum.

However, in practice there is not infinite resolution of frequencies at the input

plane z = 0. Instead, due to the prism dispersion, there is a frequency distribution at

each point on the input plane whose width is of course considerably lower than the

spectral width of the original pulse. We next calculate the spectral width of the field

at a given point in the input plane (after passage through the double prisms system

of Fig. 4).

We assume, for simplicity, that the input pulse has a Gaussian spatial distribution

of width d perpendicular to the direction of propagation, as well as a Gaussian time

profile corresponding to its duration T , i.e.,

Ωp(t, x, z = 0) = Ωp0 exp[− t2

2T 2
− x2

2d2
]. (2.11)

As shown in Fig. 5A, the field at an arbitrary location x0, corresponding to frequency
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ω0 in the plane z = 0, is obtained from a spatial distribution of the original pulse

before the first pair of prisms. The field of frequency ωx coming from the x position

of the input pulse at x0 is related to ω0 via x = αLp
dn(ω0)
dω0

(ωx − ω0), where Lp is

the distance between the first two prisms [21] (see Fig. 5). The time dependence of

the pulse at the location x0 is given by adding all frequencies over the transverse

distribution of the beam. In Fig. 5, we show five positions in the D-region, the laser

pulse at each position has a central frequency and some spread of frequencies that

comes from the distribution of the optical beam in the x-direction. Then the probe

pulse at a location x0 with central frequency ω0 is given by

Ωω0
=

TΩp0√
2π

∫
dωx × exp[−(τ 2(ωx − ω0)

2 + T 2ω2
x)/2 − iωxt] (2.12)

=
TΩp0 exp[−(T 2τ 2ω2

0 − t2 − 2iω0τ
2t)/2(T 2 + τ 2)]√

T 2 + τ 2

where we have introduced τ 2 = α2L2
p(dn(ω0)/dω0)

2/d2. It is clear that, in the limit

d→ 0, we have τ → ∞ and this corresponds to infinite spectral resolution.

Thus, in the dispersion region, the pulse at a given frequency ω0 has a time

duration
√
T 2 + τ 2 where τ is related to the dispersion of the prism’s system β′.

After passing through the EIT medium each pulse at a given frequency experiences a

delay τd = L/vg, if the Rabi frequency of the drive field satisfies Ω
√
T 2 + τ 2 ≃ Ωτ ≫ 1

instead of ΩT ≫ 1. Here we see that the prism arrangement allows us to substantially

relax the condition on the drive field.

On combining all the frequency components after passage through the medium,

we therefore reproduce a short pulse with duration equal to initial time duration T

but shifted by τd, i.e.,

Ωp(t, z) =
∫
dω0Ωp(t− τd, x0, z) = Ωp0 exp[−(t− τd)

2

2T 2
]. (2.13)
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We note that different frequency components will acquire linear and nonlinear phase

shifts while passing through the EIT medium and an appropriate phase shifter such

as liquid crystal will be required to compensate these phase shifts.

The duration of the pulse is determined by the spectral width, which is deter-

mined by the inhomogenous broadening that we introduce via the inhomogeneous

magnetic field. We note that, locally, the medium is always resonant with the probe

and drive fields. The delay time is determined by the density of atoms

τdelay =
L

vg
=
kηγL

2Ω2
< kηLγ(T 2 + τ 2)/2. (2.14)

So now even for a short pulse with a small T , it is possible to have a large delay due to

the inclusion of τ . There should be no absorption if Ω >> 1/τ . In addition, for short

pulses having a broad spectrum there is a requirement on the magnetic field. That

is one needs to create the magnetic field with a gradient matching the dispersion in

the prism system at each position in the D-region of the probe field is at resonance.

The total shift of the atomic level should correspond to the spectrum of the short

pulse Γ = 1/T . This introduces the condition on the atomic configuration, namely

the level b should be able to move linearly with the magnetic field. For example, this

condition can be met in Ca atom where the states P0, P1, separated by 52 cm−1, and

the excited state S1 form the three-level Λ configuration suitable for our purposes.

Thus, for a 10 ps pulse, the change of the magnetic field needs to be about 1 T per

atomic cell. This gradient can be created by using just a simple wire with electric

current I = 102 kA (the cell has length l = 10 cm and one side of the cell is at the

distance of r1 = 1 cm from the wire and the second side at r2 = 11 cm), or using

anti-Helmholtz coils.



20

D. Effects of the EIT medium and the phase shifter

In the piecewise EIT scheme, the EIT medium and the phase shifter work together

to produce the delay. However, in the continuous EIT scheme, the EIT medium only

provides a large delay for each local pulse. But the global dispersion is zero because

each frequency has the same detuning to its local EIT center. It is the phase shifter

that introduces a global dispersion and the delay for the short pulse. Naturally one

would raise the question, what is the role of EIT here?

To answer this question, we need to analyze the phase delay in the system. After

passing through the phase shifter, a frequency component ω at position x would have

the phase delay

ϕ(ω, x) =
n(ω, x)ωL

c
+ φ(x) =

[
1 + α′(∆ω − ∆x

dω

dx
)

]
ωL

c
+ ∆x

dφ

dx
, (2.15)

where α′ = N |℘|2/2ε0h̄Ω
2, ∆ω = ω − ωc is the detuning from the central frequency

of the whole pulse, and ∆x = x − xc is the displacement from the central ray. For

each single frequency, the deflection angle θ is given by

sin θ =
c

ω

dϕ

dx

∣∣∣∣∣
constant ω

=
c

ω
(−α

′ωL

c

dω

dx
+
dφ

dx
). (2.16)

So both the EIT medium and the phase shifter have the deflection effect. To avoid

the deflection, we set the phase shifter in such a way that the two contributions cancel

with each other,

α′ωL

c

dω

dx
=
dφ

dx
. (2.17)

On the other hand, the global dispersion is related to frequency components spread

out from a single ray. For a matching magnetic field gradient, ∆ω − ∆xdω/dx is a
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constant. So the global delay is

τdelay =
dϕ

dx

∣∣∣∣∣
constant ∆ω−∆x dω

dx

− L

c
=
dx

dω

dφ

dx
=
α′ωL

c
. (2.18)

The global delay solely comes from the phase shifter. Its value is equal to those local

delays inside the EIT medium.

So indeed the EIT medium has no contribution to the global dispersion. It

cancels out the deflection side effect of the phase shifter.

E. Conclusion

In conclusion, we have suggested and theoretically analyzed a system that can po-

tentially provide delays for broadband optical pulses. Applications of these results

hold substantial promise ranging from radar systems and femtosecond pulse shaping

techniques to quantum storage for photons having very short coherence times.
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CHAPTER III

OPTICAL BEAM STEERING BASED ON ELECTROMAGNETICALLY

INDUCED TRANSPARENCY*

A. Introduction

Optical beam deflection is an important technology in modern optics. It has appli-

cations in the field of radar, optical imaging, laser machining and free space com-

munication. Many physical mechanisms have been used to obtain the deflection

[26, 27]. Among them mechanical motion [28, 29, 30] is the simplest and most conve-

nient way, since it only mechanically moves or rotates the deflector (mirror, grating,

etc.). Thermal gradient [31], acoustooptical interaction [32, 33], and electrooptic ef-

fect [34, 35, 36] all can induce a refractive index gradient which deflects the light. And

the electrooptic deflectors are faster than their acoustooptic counterparts as compared

in a 70s review [37]. Nowadays with the development of new materials and devices,

the attention has been focused on using photonic crystals [38, 39] and phased arrays

[40, 41, 42] to get fast beam steering.

Light can also change the propagation direction of another light through inter-

action with matter. Beam deflections have been reported in sodium vapor via optical

pumping [43] and in rubidium vapor via saturated absorption and hyperfine pumping

[44]. Electromagnetically induced transparency (EIT) provides another mechanism

since the probe has a steep dispersion near the transparency center [4, 45, 46]. Moseley

*Reprinted with permission from “Optical beam steering based on electromag-
netically induced transparency” by Q. Sun, Y. V. Rostovtsev, and M. S. Zubairy,
2006. Phys. Rev. A, vol. 74, pp. 033819, Copyright [2006] by the American Physical
Society.
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et al. first observed the electromagnetically induced focusing and defocusing effects in

a rubidium vapor [47, 48], which come from the spatial Gaussian distribution of the

drive field. They included both refraction and absorption modification in the numeri-

cal calculation and found a qualitatively accordance with the experiment. Mitsunaga

et al. observed the absorption imaging in cold sodium atoms [49]. The probe is mostly

absorbed after the atom cloud except for the focal point of the drive beam. Trans-

mission through this EIT point can reach almost 200% which is obviously a focusing

feature. Another example based on EIT is electromagnetically induced waveguiding

[50, 51, 52] which uses the drive field as a fiber to confine the probe field.

In this chapter we explore the possibility and limit of beam deflection through

EIT effect. Inhomogeneous drive field intensity produces refractive index gradient for

the probe. Ray optics is adopted to analyze the steering angle and absorption for

each probe ray. Under optimal distribution, rays of the same frequency can deflect

with the same angle, unaffected by the starting position. For single frequency we can

also obtain exact focusing. Finally we show that even a whole beam with spatial and

spectrum width can be deflected together using a specific setup.

B. Beam propagation in inhomogeneous medium

The idea of an all-optical steering of an electromagnetic wave is as follows. Consider a

pulse of central frequency ω propagating through a three-level EIT medium as shown

in Fig. 8. We assume that the spectral width of the pulse lies well within the EIT

window such that the inequalities Ω, γ >> ∆ω are satisfied. Here Ω is the Rabi

frequency of the drive field resonant with a− c transition, γ is the atomic decay rate,

and ∆ω = ω−ωab is the detuning of the probe frequency ω with the atomic transition

a− b. Now in order to steer the incident pulse to a different direction, we introduce
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the phase shift for the different transverse positions x of the pulse at the output by

modulating the Rabi frequency of the drive field. Thus the whole pulse has a different

direction while coming out of the EIT medium. Here we derive a simple expression

for the beam steering angle and the corresponding losses.

We assume that we have a highly dispersive medium. For a large enough Ω, the

index of refraction for probe field can be written as

n′ ≃ 1 +
χ′

2
≃ 1 + α∆ω, (3.1)

where N is the atomic density and α = N |℘|2/2ε0h̄Ω
2 with ℘ being the atomic dipole

moment on the a-b transition. Inhomogeneous Ω(x) leads to inhomogeneous n′(x).

The trajectory of the light rays propagating in an inhomogeneous medium can be

found by using the eikonal approximation [21]. We start with the Maxwell’s equation

that describes the propagation of the electromagnetic waves,

∇2E − 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
. (3.2)

We can expand the field and the polarization in terms of the slowly varying amplitudes

Eν and Pν and the eikonal ψ as

E =
∑

ν

Eνe
−iνt+ikψ, P =

∑

ν

Pνe
−iνt+ikψ. (3.3)

Here k = ν/c. The polarization of the medium is related to the field intensity as

Pν = ǫ0χνEν , where the susceptibility is χν = χ′
ν + iχ′′

ν . If we neglect the second

order derivative over coordinates for the amplitude Eν , the eikonal equation is given

by

(∇ψ)2 = 1 + χ′
ν ≃ n′2. (3.4)

So we can write down ∇ψ = n′dR/ds and obtain the geometrical optics differ-
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Fig. 8. The scheme and the susceptibility curve. (a) The schematics of a three-level

atomic system with the drive fields. (b) A slab of the three-level atomic medium

turns a probe light via an inhomogeneous drive field. (c) The real (1) and the

imaginary (2) parts of the atomic susceptibility, and the spectrum of probe

pulse (3) vs the probe frequency.
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ential equation in the vector form

d

ds

(
n′dR

ds

)
= ∇n′, (3.5)

where R is the the point of the ray. Here R(x, z) = X(z)x̂+ zẑ and x̂, ẑ are the unit

vectors along the axes. Then, for the x and z components,

d

ds

(
n′dX

ds

)
=
∂n′

∂x
, and

d

ds

(
n′dz

ds

)
=
∂n′

∂z
. (3.6)

The equation describing the amplitude of the electromagnetic field can be ob-

tained in a similar manner. It follows from the imaginary part of (3.2) that

2k∇ψ∇Eν + k(∇2ψ)Eν = −ν
2

c2
χ′′Eν . (3.7)

The solution of the above equation has the following form

Eν =
E0ν√
n′

exp

(
−
∫ s2

s1

νχ′′
ν

2n′c
ds

)
. (3.8)

In the next section we will discuss several inhomogeneous drive field distributions

and their steering effects.

C. Discussion

1. Single frequency deflection

For the first case assume that

Ω(x) = Ω0/
√

1 + βx, (3.9)

where β is the parameter that determines the inhomogeneous distribution of the drive

field. The refractive index is therefore of the form n′(x) ≃ 1 + α0∆ω(1 + βx) with

α0 = N |℘|2/2ε0h̄Ω
2
0. This form leads to constant ∇n′ for a single frequency. In the
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(a) (b) (c)

Fig. 9. Deflection effects for various drive field profiles. For different profiles of the

drive field the different regimes of probe light propagation takes place. (a) The

light deflection angle is the same for all the light rays; (b) the probe light turns

but spreads; (c) the focusing of the probe.

following we show that, for such a situation, we obtain the same steering angle for all

the transverse position x as shown in Fig. 9a. If the dependence of the drive field has

a different form then there will be a spread of the optical rays as shown in Fig. 9b.

In (3.6) using ds =
√
dX(z)2 + dz2 and n′ = 1 + α0∆ω(1 + βx), we obtain

d

ds

(
n′dX

ds

)
= α0∆ωβ, and

d

ds

(
n′dz

ds

)
= 0. (3.10)

The ordinary differential equation to describe the ray trajectory is given by

d2X(z)

dz2
=

1 + α0∆ω(1 + βX(z))

[1 + α0∆ω(1 + βX0)]
2α0∆ωβ ≃ α0∆ωβ, (3.11)

and its solution is

X(z) ≃ X0 +
α0∆ωβz

2

2
. (3.12)

The light turning angle θ can be found from dX(z)/dz = tan θ ≃ θ. The resulting

angle is

θ ≃ α0∆ωβL =
N |℘|2
2ε0h̄Ω2

0

∆ωβL. (3.13)
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Calculation based on full expression of χ [14] shows these simple estimations

(3.12,3.13) are valid for small deflection. Under parameters β = 5000/m,L =

1cm,Ω0 = 50πMHz,N = 1015/cm3, λ = 0.5µm, γab = γrad = 2πMHz, γcb = 1kHz

we get Fig. 10. A probe beam with detuning ∆ω = 3.3MHz (Fig. 10a,b) will expe-

rience the same deflection angle 5.76◦, although the ray starting position X0 ranges

from 0 to 0.2mm. The transmission decreases at larger X0 because there Ω is smaller.

Fig. 10(c,d) shows the linear dependence of deflection angle to detuning. Now X0 is

fixed at 0 and ∆ω varies from −4MHz to 4MHz. The transmission at negative ∆ω

is larger because the ray goes to negative x direction where Ω is larger.

To study the behavior of a beam with a finite diameter we perform some numer-

ical simulation. Consider a monochromatic electromagnetic wave with frequency ω,

the Helmholtz equation is given by

∇2
E + 2∇(E · ∇(ln n)) +

ω2

c2
n2

E = 0, (3.14)

where n = n′ + in′′ =
√

1 + χ. For this inhomogeneous media, n0 = 1 and δn(r) =

n(r) − n0, k0 = ωn0/c, r = (r⊥, z), E(r, t) = exp(ik0z − iωt)A(r⊥, z). We assume

that the field has linear polarization set to y direction. And at the entrance, it is

given by

A(x, 0) = A0exp[−(
x− x0

w0

)2]ŷ, (3.15)

where w0 = 0.1mm is the beam waist. x0 = 0.1mm is the beam center at the entrance.

To get an accurate result we go beyond the paraxial limit following the method of

[53, 54]. Separate the field into transverse and longitudinal components and expand

the equation on the small parameters λ/w0 and δn, we obtain

i
∂Ay
∂z

=
1

2n0k0

(
∂2δn

∂x2
Ay + 2

∂δn

∂x

∂Ay
∂x

+ δn
∂2Ay
∂x2

)
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Fig. 10. Deflection angle and transmission curves for the profile Ω(x) = Ω0/
√

1 + βx.

In (a,b) the detuning is fixed at ∆ω = 3.3MHz, the angle is constant when

X0 varying from 0 to 0.2mm. In (c,d) X0 = 0 while ∆ω changes from −4MHz

to 4MHz, the angle follows the detuning linearly.

− 1

2k0

∂2Ay
∂x2

− k0δn

n0

Ay. (3.16)

It is then straightforward to get the beam profile at z > 0. To compare with the result

in Fig. 10(a,b) we use the same parameters. The only difference is now it is a beam

instead of a ray. Simulation result is shown in Fig. 11. It clearly exhibits the beam

being deflected and absorbed as it propagates along the z axis. The peak of the beam

goes to X1 = 0.556mm. This is a little smaller than the value X1 = 0.600mm of a ray

starting from X0 = 0.1mm, which is reasonable since the absorption increases with
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Fig. 11. Numerical simulation for beam propagation. Here detuning ∆ω = 3.3MHz.

x and thus lower the peak position. The peak intensity of the beam is |Ay/A0|2 =

0.0664, slightly higher than the ray transmission 0.0555. The deflection angle from

the simulation is 5.75◦, matching the former result precisely. This angle is almost a

constant for the whole beam despite its extremely slow increasing with z.

From this example we see the deflection angle could be as large as

θ ≃ 0.1rad, (3.17)

with affordable losses, which shows a potential for an all-optical light steering. Here

the deflection angle is only constant for a single frequency, but this is not a big

problem for a probe pulse with narrow bandwidth.

As we have mentioned before, other drive field profiles will lead to spread of the

probe pulse because the refractive index gradient depends on the spatial coordinates

(see Fig. 9b). Consider the simplest case Ω(x) = Ω0(1 + βx), which gives n′(x) =

1 + α0∆ω/(1 + βx)2. β = 1500/m and all the other parameters same as the first

case. Now probe ray with ∆ω = 3.3MHz starting from different X0 have different

deflection angles, as shown in Fig. 12. It spreads even for a single frequency, so is not
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Fig. 12. Beam spreading for the profile Ω(x) = Ω0(1 + βx). The detuning is fixed at

∆ω = 3.3MHz. The deflection angle is not a constant for varying X0.

suitable for beam steering.

2. Focusing and defocusing

Next we show that, by controlling the spatial dependence of the Rabi frequency of the

drive field, we can have focusing or defocusing coherent media which adds additional

flexibility to handle the probe field. Thus the coherent medium can not only act as an

effective beam deflector but also it can be transformed into a lens with controllable

focal distance. We recall that in both Moseley and Mitsunaga papers they are using

Gaussian coupling beams so the focusing is not quite intense [47, 49]. Here we assume

that the Rabi frequency of the drive field depends on the transverse coordinate via

Ω(x) =
Ω0√

1 − βx2
. (3.18)

The space dependent refractive index is then given by n′(x) = 1+α0∆ω(1−βx2). This

creates the ray structure shown in Fig. 9c. To see this, we consider a ray that starts
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Fig. 13. Focusing effect for the profile Ω(x) = Ω0/
√

1 − βx2. In (a,b) the detuning

is fixed at ∆ω = 3.3MHz, the focal distance is constant when X0 varying

from −0.6mm to 0.6mm. In (c,d) X0 = 0 while ∆ω changes from 0.1MHz

to 3MHz, the angle follows (3.19).

at X0. As a simple estimate, it goes out of the cell at X1 = X(L) ≃ X0(1−α0∆ωβL
2)

and the deflection angle is θ ≃ −2α0∆ωβLX0. This ray passes the axis at the distance

F =
X1

−θ ≃ 1 − α0∆ωβL
2

2α0∆ωβL
, (3.19)

which is independent of the initial position of the ray, X0. This represents a lens with

a focal distance F .

The calculation based on full expression also supports these estimates. Consider

a system with ∆ω = 3.3MHz, β = 106/m2 and all the other parameters same to the
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first case. It is obvious from Fig. 13a that F does not change after X0. So the focal

distance F is well defined for a single frequency. However, this distance changes for

different frequencies (see Fig. 13c) as in (3.19). It decreases for large detuning which

is easy to understand since large detuning has rapid refractive index change and the

beam deflects quickly. The focal distance F can also be controlled by varying Ω0 or

β. Both smaller Ω0 and larger β can lead to smaller focal distance. The reason is

the same as above. Finally, using a negative β or negative ∆ω we can obtain good

defocusing effect. If both β and ∆ω are negative we get focusing again. This is more

applicable for experiment since the highest drive field required is Ω0 at the center.

Note here the drive field depends on x so this is only a 2D focusing. To simulate a

real lens it should depend on r⊥.

3. Short pulse deflection

Up to now our discussion applies to the propagation of continuous waves and pulses

that have time duration long enough to fit the EIT window, i.e. Ω2T/γ > 1, where

T is the pulse width. The problem with shorter pulses is that they have a broad

spectrum that may not fit the EIT window, leading to substantial absorption and a

nonlinear dispersion. As a result, we may encounter strong reshaping and absorption

while the pulse propagates through the EIT medium.

In last chapter, we proposed a solution to the problem of broadband pulse prop-

agation through the EIT medium [55]. We mentioned that the EIT medium provides

a deflection effect in that scheme. The gradient of the refractive index comes from the

gradient of the magnetic field, because the detuning is position dependent. Simply

remove the phase shifter and we have a scheme for short pulse deflection. The scheme

is depicted in Fig. 14. The system consists of a set of prisms (or diffraction gratings)

with total dispersion equal to zero. The first prism disperses the probe pulse into a
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Fig. 14. Scheme for broadband pulse deflection.

divergent beam. The second prism transforms the beam into a parallel beam, with

different frequencies shifted in space. When the beam goes into the EIT cell with cold

atoms, an inhomogeneous magnetic field moves the level b only so that each frequency

is resonant with the local a↔ b transition. At the same time, the constant drive field

propagates along the x direction, which is resonant with a↔ c transition.

Now a single frequency ray at different x positions will see different detunings

and refractive indexes because ωab changes with x due to the applied inhomogeneous

magnetic field. Such a refractive index gradient will cause deflection. For an ideal

system, the frequency distribution after the second prism is linear, i.e., dω/dx is a

constant. Also dωab/dx should be the same to match the field. We assume that a ray

of frequency ω enters the EIT cell at x0 position, and define δx = x− xc where xc is

the position the ray is resonant, i.e, ω = ωab(xc). So the detuning at position x is

∆ω(δx) = ω − ωab(x) = ωab(xc) − ωab(x) = −δxdωab
dx

. (3.20)
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Fig. 15. Deflection angle and transmission for the broadband pulse. Their dependence

on the position of the probe ray, δx0 (a,b) and on the magnitude of the Rabi

frequency (c,d).

The refractive index will be

n′
ω(δx) ≃ 1 + α0∆ω(δx) = 1 − α0δx

dω

dx
. (3.21)

The refractive gradient ∇n′ = −α0(dω/dx)x̂ is a constant. It follows from

(3.12)(3.13) that δx1 − δx0 ≃ |∇n′|L2/2 and sin θ ≃ |∇n′|L for small deflection.

They do not depend on δx0 or ω. So all the rays go through parallel paths. This is

crucial for the recombination of the pulse. Thus a probe beam with finite bandwidth

and finite diameter can be deflected perfectly.
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The above is only a simple estimate. In Fig. 15 we show some numerical results

for dω/dx = −1011Hz/m,L = 1mm and all the other parameters same to the first

case. In Fig. 15a and 15b we can see the rays of frequency 2π × 6 × 1014Hz starting

from different δx0, the deflection angles are around 3.47◦ although a little larger for

nonzero δx0. The transmission for δx0 = 0 is the highest (0.98) but decreases quickly

for other starting positions. This is good enough since we can always put the central

rays, which are the main part for an ordinary beam, at δx0 = 0. Unlike the first

case now the frequency does not influence the deflection angle. Calculation for ω

varying by 1010Hz still gives the same curve, which is reasonable because only local

decays are slightly changed. As a result the whole beam, despite its diameter and

bandwidth, deflects in the same angle. If the diameter is small enough to fit within

δx0 = ±0.05mm, the whole pulse will be deflected with transmission ∼ 1.

We can control the angle by varying the drive Rabi frequency, as shown in

Fig. 15(c,d). The parameters are still the same, λ = 5000Å, δx0 = 0, only Ω varying

from 2π× 1.25× 107Hz to 2π× 3× 107Hz. It is easy to find from the graph that the

larger deflection angle accompanies smaller transmission. Even angle greater than

10◦ is achievable at small drive field. But then the side rays (nonzero δx0) suffer

substantial absorption. For large drive field the system goes to the limit angle θ → 0

and transmission → 1.

D. Conclusion

We have shown that for single frequency or narrow bandwidth probe field, high qual-

ity deflection and focusing can be achieved under optimal profiles. The practical

difficulty is how to generate such profiles. One possible way is to put a screen with

the desired transmission function as in (3.9)(3.18) behind the drive field. The drive
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field diffraction may not be so severe if the propagation distance is short. Then we

can control the deflection angle or focal distance by only varying the input drive field

intensity (∝ Ω0). This method is convenient and continuous. However, the scan

speed is limited by the EIT establishment time, which is about the radiative lifetime

1/γrad.

A short pulse can also be deflected to the same angle in the proposed scheme. The

key point is here the magnetic gradient provides the same refractive index gradient

for all the frequency components. The deflection angle can also be controlled by the

drive intensity. This method is promising due to its broadband ability. Here the

problem is the lowest frequency gradient of a real prism system is 1014Hz/m and it

is only approximately constant. We need a better system to provide larger spatial

dispersion.

In both of the deflection schemes the maximum deflection angle without signifi-

cant absorption is ∼ 0.1rad. Larger deflection always comes with larger absorption.

This is determined by the relation between refractive index and absorption coefficient

in EIT. Note 0.1rad is already good enough for some applications. And additional

devices like multiple birefringent prisms or holographic glass with multiple holograms

can further increase the angle.
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CHAPTER IV

ELECTROMAGNETICALLY INDUCED TRANSPARENCY INSIDE THE

LASER CAVITY: SWITCH BETWEEN FIRST-ORDER AND SECOND-ORDER

PHASE TRANSITIONS*

A. Introduction

Lasing is a cooperative phenomenon of many atoms in the cavity. Each atom has a

dipole induced by the field from all the other atoms, in turn its dipole also contributes

to the field, which can be uniformly treated by the mean field theory. Although

laser is a non-equilibrium system, the formal similarity enables the analogy of its

near-threshold behavior to second-order phase transitions in the equilibrium systems

[56, 57, 58]. For example, in the analogy to the ferromagnetic phase transition,

the electric field corresponds to the magnetization M , the unsaturated population

inversion corresponds to the temperature, and an injected field corresponds to the

external magnetic field H. The measurement of the laser “coexistence curve” and

“susceptibility” below threshold confirmed this analogy quantitatively [59]. As a

completion of this analogy, Gatti and Lugiato showed that the correlation length of

a degenerate optical parametric oscillator diverges when it approaches the threshold

[60].

Once the second order phase transition analogy was established, people started

looking for similar analogy in first-order. Examples include the laser with a saturable

*Reprinted with permission from “Electromagnetically induced transparency in-
side the laser cavity: Switch between first-order and second-order phase transitions”
by Q. Sun, M. Selim Shahriar and M. S. Zubairy, 2008. Phys. Rev. A, vol. 78, pp.
013805, Copyright [2008] by the American Physical Society.
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absorber (LSA) [61, 62, 63, 64, 65], and the dye laser [66, 67]. Here we will concen-

trate on the LSA problem. The saturable absorber is inside the laser cavity. The

absorption saturation changes the nature of the system. So the laser output can have

two stable values and leads to bistability, hysteresis, etc. Experiments have been

done in many systems, e.g., He : Ne laser [68, 69], CO2 laser with SF6 absorber [70],

and N2O laser with NH3 absorber [71]. In theory, Mandel and coworkers treated the

problem analytically in both semiclassical and quantum theories [72]. In their model

both the active cell and the absorber cell contain two-level atoms, interacting with a

single cavity mode. The relative saturability and population inversion of the two cells

determine the number of roots. Hysteresis cycle is obtained when two stable roots

are available. The quantum theory based on Fokker-Planck equation gives the field

fluctuation and linewidth across the threshold. It is shown that the finite fluctuation

increase drastically when approaching the threshold, and then goes to zero above the

threshold. The linewidth also has a sharp narrowing. In a related paper [73] they

showed the including of higher order derivative terms reduces the width of the transi-

tion region, making the transition threshold much sharper. This model has also been

used to study the time-dependent behavior [74, 75]. Small amplitude harmonically

modulated intensity and the pulsed solution corresponding to the passive Q switching

are found to be the stable solutions. Roy gave the photon distribution in this system

and showed the similarity to the dye laser [76].

As another concept in the phase transition theory, a tricritical point is the joint of

a line of the first-order phase transition to a second-order line in the parameter space.

Scott pointed out the existence of tricritical point in his LSA model [77]. Mortazavi

and Singh measured the tricritical behavior by changing the discharge current of

the absorber cell [78]. Later they found that the intensity fluctuation undergoes

a qualitative change through the tricritical point [79]. For a second-order phase
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transition, the fluctuation decreases from the thermal value to zero with increasing

excitation, while for a first-order phase transition it first increases to a superthermal

value and then decreases to zero.

Systems that have multistability and multicritical points are also explored [80,

81, 82]. It is shown that when the potential has higher order terms or when multimode

laser introduces more order parameters, there could be multistability and multicritical

points.

Three-level systems have also been used to model the absorber. One example

is the two-photon absorber [83], in which the middle level is assumed to be far from

resonance so that the system is very similar to a two-level system. Agrawal considered

the case of a Λ system [84]. The laser frequency is assumed to lie midway between

the ground state sublevels. The phase transition is determined by the detuning,

which can be controlled by a static electric or magnetic field. He predicted the switch

between first-order and second-order phase transitions similar to our result, although

the mechanism is different.

The system we proposed is also based on EIT. The laser field resonant with one

transition should have been absorbed. But at the presence of another drive field

resonant with another transition with a common level, the coherence effect renders

transparency for the laser field. This property intrigues our interest in the possible

application into LSA problem. Since the drive field can control the absorption of the

probe field, it might simulate a system of laser with or without saturable absorber.

As a result, we would be able to switch between first-order and second-order phase

transitions by simply adjusting the drive field intensity.
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B. Free energy for a laser with/without a saturable absorber

From Landau’s theory the Gibbs free energy close to a critical point can be expanded

into even powers of a displacement parameter x,

G(x) = C2x
2 + C4x

4 + C6x
6 + . . . , (4.1)

where the coefficient C2 is linear to the difference between the reservoir variable and its

critical value. The phase transition is second-order if C4 is positive, while first-order

if C4 is negative.

A potential similar to the Gibbs free energy can be defined for a laser [56].

The displacement parameter is the electric field E . One can obtain a Fokker-Planck

equation from the laser theory and then apply it to the electric field to get a equation

of motion for the expectation value. The potential can then be obtained by integration

from

Ė = −∂G(E )

∂E
. (4.2)

For a laser without absorber, the equation of motion is well known as

Ė =
1

2

[
(A − C )E − BE

3
]
, (4.3)

here A is the unsaturated gain in the active medium, B is the saturation parameter,

and C is the cavity loss. Both A and B are proportional to the population inversion

σ. A simple integration gives C4 = B/8 which is positive. So it is a second-order

phase transition. The stable value of E changes continuously as one move across the

critical point.

For a laser with a saturable absorber inside the cavity, the equation of motion
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can be modified as [65]

Ė =
1

2

[
(A − C − S

1 + E 2/Is
)E − BE

3

]
, (4.4)

where S is the linear absorption from the saturable absorber and Is is the saturation

intensity. After integration the potential has a logarithmic term coming from the

saturable absorber. Power series expansion gives

C4 =
1

8
(B − S

Is
). (4.5)

So if the saturation intensity of the absorber is small Is ≤ S/B, the phase transition

would be first-order. The field has a discontinuous jump from zero to some finite

value when crossing the critical point.

C. Derivation and discussion

The setup for our system is shown in Fig. 16. We use a unidirectional ring laser

cavity and assume both kinds of atoms are homogenously broadened. The incoherent

pumping in the gain medium provides population inversion for the active atoms,

generating a laser field as the probe field for the Λ-type three-level atoms in the

absorber cell. This probe field with frequency ν interacts with the transition |a〉 ↔ |b〉.

While the external drive field with frequency νµ interacts with the transition |a〉 ↔ |c〉.

To avoid drive field recycling we assume the mirrors to be transparent to the drive

field.

For a closed system, the density matrix equations are

ρ̇bb = Γabρaa + Γcbρcc −
i

2h̄

(
℘abE e

−iνtρba − c.c.
)
, (4.6)

ρ̇cc = Γacρaa − Γcbρcc −
i

2

(
Ωµe

−iφµe−iνµtρca − c.c.
)
, (4.7)
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Fig. 16. The setup of EIT in a laser cavity. (a) The absorber cell filled with three-level

atoms is put inside the unidirectional ring laser cavity. (b) The level structure

for the three-level atoms.

ρ̇aa = −(Γab + Γac)ρaa +
i

2h̄

(
℘abE e

−iνtρba − c.c.
)

+
i

2

(
Ωµe

−iφµe−iνµtρca − c.c.
)
,(4.8)

ρ̇ab = −(iωab + γab)ρab −
i℘abE

2h̄
e−iνt(ρaa − ρbb) +

i

2
Ωµe

−iφµe−iνµtρcb, (4.9)

ρ̇cb = −(iωcb + γcb)ρcb −
i℘abE

2h̄
e−iνtρca +

i

2
Ωµe

iφµeiνµtρab, (4.10)

ρ̇ca = −(iωca + γca)ρca +
i

2
Ωµe

iφµeiνµt(ρaa − ρcc) −
i℘baE

∗

2h̄
eiνtρcb, (4.11)

where ℘ab is the the electric dipole moment, E is the probe field produced by the

active atoms, Ωµ is the drive Rabi frequency, Γ and γ are the population relaxation
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rates and dipole dephasing rates, respectively.

For simplicity, we assume both the drive field and the probe field to be resonant

with their corresponding transitions. After transforming into the rotating frame,

ρab = ρ̃abe
−iωabt, ρcb = ρ̃cbe

−i(ωab−νµ)t, ρca = ρ̃cae
iνµt. (4.12)

Together with the relation ρaa + ρbb + ρcc = 1 for the closed system, we can obtain

the steady state solution. So the effective polarization from the absorber

P = 2N e
a℘baρ̃ab = iN e

a

|℘ab|2 E

h̄D





∣∣∣∣∣
℘abE

2h̄

∣∣∣∣∣

2

(Γab + Γac)Γcb

+γcb

[
Ω2
µ

2
(Γab + Γcb) + γca(Γab + Γac)Γcb

]}
, (4.13)

where the denominator

D =

∣∣∣∣∣
℘abE

2h̄

∣∣∣∣∣

4

(2Γac + 4Γcb) +

∣∣∣∣∣
℘abE

2h̄

∣∣∣∣∣

2

[γab(Γab + Γac)Γcb+

+
Ω2
µ

2
(Γab + Γac − 3Γcb + 6γcb) + 2γcbγca(Γac + 2Γcb)

]

+(
Ω2
µ

4
+ γabγcb)

[
Ω2
µ

2
(Γab + Γcb) + γca(Γab + Γac)Γcb

]
, (4.14)

and N e
a is the effective number density for the three-level atoms. It can be related to

the actual number density by N e
a = NaVa/Vtot. Here Va and Vtot are the absorber vol-

ume and the total volume, respectively. Similarly we can define the effective number

density for the gain medium N e
g .

We assume the active system to be homogeneously broadened two-level system,

which has the same level separation as ωab and the same dipole moment. The field

equation of motion is

Ė =
1

2

[
(

A

1 + E 2/Is
− C )E − (

ν

ǫ0
)ImP

]
, (4.15)
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here A =
ν|℘ab|

2Ne
g

ǫ0h̄γab
and Is =

h̄2Γ2

ab

2|℘ab|2
is the saturation intensity for the active atoms.

After integration the coefficient of E 4 term in G(E ) is

C4 =
1

8

A

Is
− ν

2
N e
a

|℘ab|4

4ǫ0h̄
3 × (4.16)

×
Ω2

µ

4
[2γcb(Γab + Γac − 3Γcb) − (Γab + Γac)Γcb + 12γ2

cb] + 2γ2
cbγca(Γac + 2Γcb)

4(
Ω2

µ

4
+ γabγcb)2

[
Ω2

µ

2
(Γab + Γcb) + γca(Γab + Γac)Γcb

] .

If there is no drive field, i.e., Ωµ = 0, it is simplified

C4(Ωµ=0) =
1

8

A

Is
− ν

2
N e
a

|℘ab|4

4ǫ0h̄
3

Γac + 2Γcb
2γ2

ab(Γab + Γac)Γcb
. (4.17)

For large enough N e
a we could have C4(Ωµ=0) < 0. Then we increase the drive field

intensity so that the second term of (4.17) has a smaller magnitude. Finally at some

point C4 = 0. According to Ref [65] this is the criterion between first-order and

second-order phase transitions.

In the limiting case of a perfect EIT system, the dephasing rate between the

two lower levels γcb = 0, which also requires Γcb = 0. Substitute into the (4.17,4.17)

we find C4(Ωµ 6=0) = A /8Is while C4(Ωµ=0) → −∞. One might say that the phase

transition is second-order or first-order, just depends on whether we switch on the

drive field or not. But the stable value of E would also goes to infinity so it is a

idealized situation. One can never achieve a perfect EIT.

For a finite γcb we did the numerical calculation to find the steady state solutions

for (4.15). These solutions will follow the change of C = ν/Q where Q is the quality

factor of the cavity. As can be seen from Fig. 17, the probe intensity-Q curve is single

valued for a Rabi frequency above the threshold, while bistable for a Rabi frequency

below the threshold. Those parts with a negative slope are unstable. So the switch

between first-order and second-order phase transitions can be achieved by simply

changing the drive Rabi frequency. For a small range near the threshold there are
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Fig. 17. Intensity-Q factor curves for different drive Rabi frequencies. (a) From right

to left, Ωµ = 0.100MHz, 0.104MHz, 0.108MHz, 0.112MHz, 0.116MHz,

0.120MHz. Clearly there is a switch between first-order and second-order

phase transitions. (b) From right to left, Ωµ = 0.1088MHz, 0.1092MHz,

0.1096MHz, 0.1100MHz. For a small range near tricritical point, there could

be three nonzero solutions. The other parameters are |℘ab| = 10−29m · C,

λ = 1µm, N e
a = 4.5 · 1016m−3, N e

g = 1.28 · 1018m−3, and γcb = 1kHz.
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even three solutions. When the Q factor increases, one can see a second-order phase

transition followed by a first-order phase transition, as shown for Ωµ = 0.1096MHz.

The parameters we used are somehow extreme. The Q factor and drive Rabi

frequency are small. But the probe laser intensity is large, which is still acceptable

since it is inside the cavity. There is no requirement for a small probe because we

keep E to all order in (4.13). An interesting thing is to compare the threshold value

to the solution of C4 = 0. Ideally they should be the same. But we found a small

difference. This can be understood since the C4 expression is obtained from small

probe approximation, which does not apply quite well in this case.

The switch between first-order and second-order phase transition is a tricritical

point in the phase space, as can be seen from the phase diagram Fig. 18. Such

tricritical points have been predicted in the two-level atom saturable absorber case

[78]. In that system the point is the termination of both lines, while here the first-

order line goes beyond the tricritical point. So for a given drive Rabi frequency, we can

observe a first-order transition, or a second-order transition followed by a first-order

transition, or a second-order transition.

We use the Q factor as the variable to investigate the phase transition because

it is the only parameter not in the expression of C4. So we can compare the criterion

C4 = 0 to the numerical results. Without that purpose other parameters may also be

used as the variable, for example, the effective number density of the gain medium.

It is proportional to the discharge current if we use a gas discharge cell as the gain

cell [78]. The numerical calculation shown in Fig. 19 is similar to Fig. 17. For a given

drive Rabi frequency there could be one, two, or three solutions.

The latent heat in first-order phase transition is also an interesting topic [65]. At
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g curves for different drive Rabi frequencies. From right to left,

Ωµ = 0.011MHz, 0.11MHz, 0.14MHz, 1.1MHz. Similarly there is a switch

between first-order and second-order phase transitions. In the small window

enlarged around the tricritical point, Ωµ = 0.121MHz and there are three

nonzero solutions. The other parameters are |℘ab| = 10−29m · C, λ = 1µm,

N e
a = 4.5 · 1016m−3, Q = 27, and γcb = 1kHz.
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the critical point, the Clausius-Clapeyron equation is

L = T0(V2 − V1)
dP

dT0

. (4.18)

In our system, minus threshold population inversion corresponds to the critical tem-

perature T0, drive field corresponds to the pressure P , and the laser field corresponds

to the volume V . E1 and E2 can be solved from (4.15).

LSA problem has also been investigated from the dispersive point of view. Man-

del showed that if both cells contains two-level atoms, there could be new solutions

corresponding to nonzero detuning because of the anomalous dispersion [85]. Lukin

et al. considered the intracavity EIT and found a pronounced frequency pulling and

cavity-linewidth narrowing [86]. Here we are mainly interested in the absorption

property, so we take the detuning to be zero to avoid the pulling effect.

D. Conclusion

In this chapter, we investigate the effect of including an EIT cell as an absorber inside

the laser cavity. By controlling the drive Rabi frequency, we can simulate the cases

of laser with or without absorber and obtain phase transitions of both first-order and

second-order. Around the tricritical point there could even be a second-order phase

transition followed by a first-order one. These phenomena can be seen clearly from

the phase diagram, in which the first-order phase transition line goes beyond its joint

with the second-order line. The tricritical value determined by the criterion C4 = 0

is close to the numerical result but not very accurate, because in this case the probe

field is no longer small. Our calculation is based on Λ-type system. Other three-level

systems like V -type or Ξ-type should have similar drive intensity controlled phase

transition as well.
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CHAPTER V

EFFECTS OF NOISE AND PARAMETER DEVIATION IN A BICHROMATIC

RAMAN TYPE WHITE LIGHT CAVITY*

A. Introduction

In a Fabry-Perot cavity the round-trip phase delay is proportional to the frequency.

Thus only certain discrete frequencies can be exactly resonant. If the cavity is filled

with a medium which provides a negative dispersion and cancels the frequency de-

pendence of the phase delay, a continuous range of spectrum can be resonant at the

same time. Such a cavity is named as white light cavity (WLC) [87]. For precision

measurements such as gravitational wave detection [88, 89, 90] and ring laser gyro-

scopes [91], the high sensitivity requires a high finesse Fabry-Perot cavity, at the price

of a reduced bandwidth. WLC provides an effective way to increase the bandwidth

and solves this dilemma.

The dispersion requirement for the medium is ∂νn = −1/ν, where the refractive

index n is a function of the frequency ν. This is the so called λ-compensation or

white light condition. A lot of systems are able to provide negative dispersion with

small absorption or even gain [92, 93]. For example, for two-level atoms driven by a

strong resonant field [94, 95], the probe dispersion is negative around the resonance.

A variation of this scheme is the degenerate two-level system [96], in which there

are two degenerate ground levels. Both the resonant drive field and the probe field

*Reprinted with permission from “Effects of noise and parameter deviations in
a bichromatic Raman white light cavity” by Q. Sun, M. Selim Shahriar and M. S.
Zubairy, 2010. Phys. Rev. A, vol. 81, pp. 033826, Copyright [2010] by the American
Physical Society.
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interact with the two transitions simultaneously. The advantage of this scheme is

that it does not require a very strong drive field. For a Λ system with a bichromatic

drive field far from resonance [97, 98], the probe field experiences a gain-doublet

and the dispersion is negative at the center. Another system is double-Λ system in

which the drive field interacts with the transitions from both ground levels to one of

the excite level, and the probe field interacts with the transitions from both ground

levels to the other excite level [88]. If instead using two drive fields in the double-

Λ system, the propagation dynamics becomes important and it further enhances the

cavity bandwidth [99]. Recently Savchenkov and co-workers demonstrated white light

whispering gallery mode resonators [100]. For a resonator thick enough the modal

spectrum becomes essentially continuous and the high quality factor is frequency-

independent.

The idea of the gain-doublet scheme is proposed by Steinberg and Chiao during

their pursuit of superluminal phenomena [101]. Wang et al. first realized it experi-

mentally in a Λ system [97, 98]. Due to the negative dispersion, the group velocity can

be superluminal or even negative. The ideal case of infinite group velocity is equiv-

alent to the white light condition. The ability of this system to achieve the white

light condition has been investigated by measuring the dispersion using a heterodyne

technique [102], and by measuring the transmission spectrum [103]. A broadband

cavity response has been observed.

In order to satisfy the white light condition we need to choose the parameters

carefully. However, there are always deviations from the ideal values [88] and statis-

tical noise. In this chapter we discuss the effects of parameter deviations and laser

phase and amplitude noises in the bichromatic Raman system.
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Fig. 20. The scheme of the bichromatic Raman system. The pump fields are far de-

tuned from the single photon transition |a〉 ↔ |c〉 and provides a gain-doublet

for the probe field.

B. Parameter dependence of the susceptibility

The level structure of the bichromatic Raman system is shown in Fig. 20. There

are two drive fields with frequencies ν1 and ν2 and Rabi frequencies Ω1 and Ω2,

respectively. They are far detuned from the transition |a〉 ↔ |c〉 with the detunings

∆0+∆ and ∆0−∆, where ∆ = (ν1−ν2)/2 and ∆0 = ωac−(ν1+ν2)/2. The probe field

frequency ν scans across the two Raman transitions. Such a gain doublet provides

the negative dispersion at the center.

The susceptibility of the probe field can be written as [98]

χ(ν) =
M1

(ν − ν0 − ∆) + iΓ
+

M2

(ν − ν0 + ∆) + iΓ
, (5.1)

where ν0 = 1
2
(ν1 + ν2)− ωbc is the probe central frequency, and Γ is the Raman tran-

sition line broadening, Mj = N(|µab|2/4πh̄ǫ0)(|Ωj|2/∆2
0), (j = 1, 2) with the effective

atomic number density N and dipole moment µab. Usually we have M1
∼= M2 = M
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Fig. 21. The probe susceptibility of a typical bichromatic Raman system. The sym-

metric curve is the imaginary part and the anti-symmetric curve is the real

part. The dispersion inside the gain-doublet is negative.

to get the symmetrical gain peaks. Typical susceptibility curves are shown in Fig. 21.

From the susceptibility, we can determine the refractive index n and the absorp-

tion coefficient α. At the central frequency we have

n ∼= 1 +
1

2
χ′ = 1 +

1

2

(−M1 +M2)∆

∆2 + Γ2
, (5.2)

α ∼= ν0

2c
χ′′ = −ν0

2c

(M1 +M2)Γ

∆2 + Γ2
, (5.3)

where χ′ and χ′′ are the real and imaginary parts of the susceptibility χ. The disper-

sion at ν0 is given by

∂νn = −M1 +M2

2

(∆2 − Γ2)

(∆2 + Γ2)2
. (5.4)

By choosing the parameters carefully we can have a dispersion equal to −1/ν0. Then
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the white light condition is satisfied.

In order to analyze the effect of the parameter deviations, we note that Mj is

proportional to both the pump field intensity Ij and the number density N . Therefore

the deviations of Ij or N lead to the variation of the absorption, dispersion and

refractive index as

δ (∂νn)

∂νn
=
δα

α
=
δM1 + δM2

2M
, (5.5)

δn =
1

2

(−δM1 + δM2)∆

∆2 + Γ2
. (5.6)

The two intensity deviations can be independent from each other. From the

proportionality between Mj and Ij we get

δ (∂νn)

∂νn
=
δα

α
=

1

2
(
δI1
I1

+
δI2
I2

). (5.7)

It is easier to keep the white light condition if the relative intensity deviations of the

two drive fields are of opposite signs.

On the other hand, number density deviation affects M1 and M2 simultaneously.

Therefore

δ (∂νn)

∂νn
=
δα

α
=
δN

N
. (5.8)

From (5.6), the refractive index does not change under the number density deviation.

Next we consider the effect of drive frequency deviation. If the frequency ν1 is

changed by the amount δν1 and ν2 is changed by δν2, the susceptibility would become

χ(ν) =
M

(ν − ν0 − ∆ − δν1) + iΓ
+

M

(ν − ν0 + ∆ − δν2) + iΓ
. (5.9)

From the susceptibility we can derive

δn =
M(∆2 − Γ2)

2(∆2 + Γ2)2
(δν1 + δν2) , (5.10)
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δα =
ν0M∆Γ

c(∆2 + Γ2)2
(δν1 − δν2) , (5.11)

δ(∂νn)

∂νn
= −∆(∆2 − 3Γ2)

∆4 − Γ4
(δν1 − δν2) . (5.12)

We consider the parameters from [103], i.e., ∆ = 3.97MHz, Γ = 1MHz and

λ = 780nm. On substituting these values into the above expressions we obtain δn =

2.07 × 10−16(s) (δν1 + δν2), δα = 8.97 × 10−10(s/m) (δν1 − δν2), and δ(∂νn)/∂νn =

−2.05 × 10−7(s) (δν1 − δν2). Compared to the double-Λ system [88], the frequency

deviation has a smaller impact to the refractive index in our system, while its effect

to the dispersion and the absorption are much larger. To avoid that we can use two

drive fields generated from the same laser to have the same frequency deviations.

They cancel out and do not change the dispersion and absorption.

Based on the same argument as in [88] we conclude that the variation results in

bichromatic Raman type white light cavity can be controlled within 10−4. So in theory

the white light cavity linewidth could be 104 times broader than an empty cavity. But

of course one has to include the other imperfect effects such as the nonlinear shape

of the dispersion curve, etc.

C. Effect of laser phase and amplitude noise

In the previous section, we calculated the effect of parameter deviations, or in a more

strict sense, the deviation of the expectation value. Here we consider the noise ef-

fect from the drive fields. In other words, the expectation values may have satisfied

the white light condition, but the random fluctuation of the laser phase and ampli-

tude will nevertheless modify the dispersion. The phase noises account for the finite

linewidth of the drive fields and the amplitude noises are responsible for the intensity
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fluctuations. We calculate the effect of these noise sources independently. For sim-

plicity, we assume that the separation between the two Raman peaks is much larger

than the Raman linewidth and therefore we can treat the two Raman transitions

independently.

Following the expressions in [98], the effective Hamiltonian for the system can

be written as

Ĥ = Ĥ0 + ĤI = −h̄ωab |b〉 〈b| − h̄ωac |c〉 〈c|

− h̄Ωpe
−iνt |a〉 〈b| − h̄Ω1e

−iν1t |a〉 〈c| +H.c. (5.13)

A usual way to account for the effect of the laser phase noise is based on density

matrix equations [104, 105], which is convenient if the coefficient matrices commute

with each other. Here we follow a somewhat different approach as the usual methods

are not easily applied. In particular, we consider the state vector instead of density

matrix equations.

The state vector of the three-level atomic system is described by

|ψ〉 = Ca(t) |a〉 + Cb(t)e
iωabt |b〉 + Cc(t)e

iωact |c〉 , (5.14)

where Ca(t), Cb(t) and Cc(t) are the slowly varying amplitudes. The equations of

motion for the amplitudes of states |a〉 and |b〉 are

Ċa(t) = iΩ1e
−i∆1tCc + iΩpe

−i∆ptCb, (5.15)

Ċb(t) = iΩ∗
pe
i∆ptCa − γCb, (5.16)

where ∆1 = ν1 − ωac is the drive field detuning, ∆p = ν − ωab is the probe detuning,

and γ is the decay rate from level |b〉. In order to produce gain for the probe field we

set the atoms to be initially in the |c〉 state. To the lowest order of approximation we
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can take Cc ≈ 1 and Cb ≈ 0. It then follows on integrating (5.15), that

Ca(t) =
∫ t

0
iΩ1e

−i∆1t
′

Cc(t
′)dt′. (5.17)

From (5.16) we obtain the formal solution

Cb(t) =
∫ t

0
iΩ∗

pe
i∆pt

′

Ca(t
′)e−γ(t−t

′)dt′. (5.18)

The off-diagonal density matrix element ρab is equal to (apart from the phase factor

exp[−iωabt])

〈Ca(t)C∗
b (t)〉 =

∫ t

0
−iΩpe

−i∆pt
′ 〈Ca(t)C∗

a(t
′)〉 e−γ(t−t′)dt′

=
∫ t

0
−iΩpe

−i∆pt
′

e−γ(t−t
′)dt′

∫ t

0
iCce

−i∆1t
′′

dt′′ ×

×
∫ t′

0
−iC∗

c e
i∆1t

′′′ 〈Ω1(t
′′)Ω∗

1(t
′′′)〉 dt′′′. (5.19)

In order to consider the effect of phase noise, we can write the drive Rabi fre-

quency as Ω1(t) = Ω1e
iφ1(t). As well known the phase fluctuation of a laser is a

Wiener-Levy process, i.e., the random phase with Gaussian statistics performs a

Brownian motion.

〈φ1(t)〉 = 0,

〈φ1(t)φ1(t
′)〉 = D1(t+ t′ − |t− t′|), (5.20)

where D1 is the phase induced bandwidth. This gives us the correlation

〈Ω1(t)Ω
∗
1(t

′)〉 = |Ω1|2
〈
eiφ1(t)−iφ1(t′)

〉
= |Ω1|2 e−D1|t−t′|. (5.21)

On substituting from (5.21) into (5.19) we obtain

〈Ca(t)C∗
b (t)〉 ∼=

Ωp|Ω1|2
∆2

0

e−i∆pt

(∆p − ∆1) + i(γ +D1)
+ other freq. (5.22)
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In the last step we used the far detuned condition ∆0 ≈ ∆1 ≈ ∆p >> D1, γ to ignore

the small terms. There are also some terms with other frequencies which do not

contribute to the probe susceptibility. We recall that the polarization P = Nµabρab =

χǫ0Ep where the population matrix element ρab = 〈Ca(t)C∗
b (t)〉 e−iωabt. Therefore

with both Raman transitions the probe susceptibility under phase noises is

χ(∆p) =
M1

(∆p − ∆1) + i(γ +D1)
+

M2

(∆p − ∆2) + i(γ +D2)
. (5.23)

This is (5.1) if we take Γj = γ+Dj, (j = 1, 2). The inclusion of phase noise effectively

increases the width of the gain peaks. From (5.4) we find that larger Γ decreases the

magnitude of the dispersion. In order to keep the white light condition we can adjust

the parameters. For example, we can increase the field intensity to get larger Mj,

or alternatively we can use a smaller ∆. Although the dispersion condition can be

restored, there is still an impact to the cavity transmission, as shown in Fig. 22. All

the three curves are under white light condition with the same parameters except

that Γ increases from the lowest to the highest curve. We find that the transmission

bandwidth is slightly increased but the curve becomes more uneven, which is not

preferred.

Next we consider the effect of amplitude noise, Ω1(t) = Ω1+δΩ1(t). The Gaussian

type fluctuation can be described by an Ornstein-Uhlenbeck stochastic process [106]

〈δΩ1(t)〉 = 0,

〈δΩ1(t)δΩ1(t
′)〉 = IΩ1A1e

−A1|t−t′|, (5.24)

where IΩ1 is the variance of amplitude fluctuations and A1 is the amplitude fluctuation

induced bandwidth. Again by substituting from (5.24) into (5.19) we obtain
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Fig. 22. The transmission curve of the white light cavity. White light condition is

satisfied in all curves. The only difference is that the decay rate increases

from lower curve to higher curve.

〈Ca(t)C∗
b (t)〉 ∼= Ωp|Ω1|2

∆2
0

e−i∆pt

(∆p − ∆1) + iγ

+
ΩpIΩ1A1

∆2
0

e−i∆pt

(∆p − ∆1) + i(γ + A1)
+ other freq. (5.25)

χ(∆p) =
M1

(∆p − ∆1) + iγ
+
IΩ1A1

|Ω1|2
M1

(∆p − ∆1) + i(γ + A1)

+
M2

(∆p − ∆2) + iγ
+
IΩ2A2

|Ω2|2
M2

(∆p − ∆2) + i(γ + A2)
. (5.26)

Similarly we have ignored the small terms in (5.25). In (5.26) both Raman

transitions are included to find the susceptibility under amplitude noise. The net

effect are the two additional terms which are similar to the original terms with only

different coefficients and γ changed to γ+Aj. Therefore both the dispersion and gain
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will increase in magnitudes. Still we can satisfy the white light condition by adjusting

the parameters, for example we can decrease the drive field intensity. Similarly we

will find the cavity transmission curve becomes uneven since the two additional terms

have a larger linewidth γ + Aj.

D. Conclusion

We consider the impact of parameter deviations and laser phase and amplitude noises

on a bichromatic Raman type white light cavity. We find the dispersion, which needs

to satisfy the white light condition, can be controlled within 10−4 under the parameter

deviations. Therefore a white light cavity could have 104 times broader linewidth

compared to an empty cavity at the same finesse.

The phase noise effectively increases the Raman linewidth by the diffusion D,

causing a smaller dispersion. The amplitude noise introduces an additional term in

the probe susceptibility and makes the dispersion larger. These opposite effects allow

us to easily adjust the parameters to satisfy the white light condition. Both noises

have the effect of making the transmission curve uneven for the white light cavity.
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CHAPTER VI

REVERSING THE WEAK MEASUREMENT OF AN ARBITRARY FIELD

WITH FINITE PHOTON NUMBER*

A. Introduction

In a quantum measurement, an operator projects the system into one of its eigenstates

with a specific eigenvalue as the readout. Once the measurement is done, the unknown

initial state of the system is destroyed, and in general there is no way to recover it

from the result. However, such quantum measurement, the so-called strong or von

Neumann measurement [107], is only part of the story. There is another type of

quantum measurement called weak measurement [108], in which the outcome cannot

determine the measured system precisely. Since this weak measurement does not

totally collapse the system, the information of the initial state can be passed over

to the final state. If such retained information is complete, it would be possible to

recover the initial state with some operations. This kind of state protection could be

useful for quantum information processing.

One type of reversible measurements is deterministic, in which the initial state lies

in a certain subspace and the measurement provides no information about it. Mabuchi

and Zoller showed the conditions to unitarily invert quantum jumps in continuously

monitored systems [109]. These conditions have been generalized by Nielsen and

Caves to any ideal quantum operation [110], with quantum teleportation as a special

*Reprinted with permission from “Reversing the weak measurement of an arbi-
trary field with finite photon number” by Q. Sun, M. Al-Amri, and M. S. Zubairy,
2009. Phys. Rev. A, vol. 80, pp. 033838, Copyright [2009] by the American Physical
Society.



63

example.

Another type is the probabilistically reversible measurements, for which only a

certain outcome of the second measurement successfully restores the initial state. It

has been discussed in quantum counter [111], quantum nondemolition measurement

[112], spin systems [113], and linear optics [114]. A general theory with necessary and

sufficient conditions has been given in [115] as well as an information-theoretical anal-

ysis in [116]. Koashi and Ueda derived a trade-off relation between the unsharpness of

the measurement and the best efficiency of the reversing operation [117]. In a recent

experiment [118], based on a proposal by Korotkov and Jordan [119], the reversal of

a weak measurement on a superconducting phase qubit was performed. A general

procedure for N -dimensional system was also proposed in [119], which requires 2N

steps.

An important question remains: can we reverse a multi-dimensional state in

a simpler way? In Section B, we address this question and propose two schemes in

cavity quantum electrodynamics (QED) systems, in which only a few steps are needed

for the reversal. In Section C, we further consider click-allowed reversal for a specific

class of states. Section D is the conclusion.

B. Schemes

The state is an arbitrary cavity field with finite photon number
∑nmax

n,m=0 ρnm |n〉 〈m|,

which is continuously monitored by an ideal photon detector outside. If there is no

click, the field evolves into
∑nmax

n,m=0 ρnme
−(n+m)γt |n〉 〈m| according to the quantum tra-

jectory theory, where 2γ is the photon decay rate in the cavity and t is the duration

of the measurement. Here we ignore all the normalization constants for simplicity till

the end of the derivation. For finite time this measurement is not sharp since any
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Fock component could give null result. To reverse the weak measurement, we need to

swap the components symmetrically to
∑nmax

n,m=0 ρnme
−(n+m)γt |N − n〉 〈N −m|, where

N(≥ nmax) is an adjustable system parameter. Then we make another measure-

ment. If it successfully produces null result again, the resulting field is projected

into
∑nmax

n,m=0 ρnme
−2Nγt |N − n〉 〈N −m|. The common factor e−2Nγt is dropped after

normalization. Finally we swap back the components and the initial field is restored.

So the main challenge is how to swap the components |n〉 → |N − n〉 for all

n ∈ [0, nmax] simultaneously. In our schemes, we realize it by using either multiple

atoms or an atom with degenerate sublevels. Both schemes adopt the adiabatic

passages to map the field coherence into the atoms, then swap the atomic levels with

the help of some auxiliary fields, and finally map the coherence back to the field. The

swapping procedures for each scheme go as following:

1. Multi-atom scheme

The atoms are Λ-type with an excited level |a〉 and two lower levels |b〉 and |c〉. We

prepare N(≥ nmax) atoms in level |c〉 and send them into the cavity. The diagram of

the scheme is shown in Fig. 23. Two classical fields transversely propagate through

two sides of the cavity. They are both resonant to the transition |b〉 ↔ |a〉 and

have space-dependent Rabi frequencies Ω(z) and Ω′(z), where z is the longitudinal

coordinate. The cavity mode in the middle is resonant to the transition |c〉 ↔ |a〉

with a coupling constant g(z). To verify that the scheme works, we consider a Fock

component |n〉 of the field.

Step (I) At the entrance the atoms encounter first the classical field Ω(z) and

then the cavity mode g(z). The Hamiltonian of the system can be written as [14]

H =
N∑

i=1

(h̄Ω |ai〉 〈bi| + h̄g |ai〉 〈ci| â) +H.c. (6.1)
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Fig. 23. The multi-atom scheme. An adiabatic passage maps the field state into the

atoms. Then the atomic levels are swapped by an effective π pulse. Finally

another adiabatic passage maps the state back to the cavity field.

where â is the annihilation operator for the cavity mode. Such a system has a manifold

of dark states [120], which evolve in parallel. Each number of excitations, either in

the form of cavity mode photons or level |b〉 atoms, has its own dark state. The one

with n(≤ N) excitations is

∣∣∣Ψdark
n

〉
= (−Ω/g)n |c · · · c〉 |n〉 /

√
n!

+(−Ω/g)n−1
N∑

i=1

|c · · · bi · · · c〉 |n− 1〉 /
√

(n− 1)!

+ · · · +
∑

1≤i1<···<in≤N

|c · · · bi1 · · · bin · · · c〉 |0〉 . (6.2)

The key to state mapping is the adiabatic passage within the dark states. When

the atoms move from the classical field region into the cavity mode region, they feel
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the adiabatic change from Ω ≫ g to Ω ≪ g. The component evolves as:

|c · · · c〉 |n〉 →
∑

1≤i1<···<in≤N

|c · · · bi1 · · · bin · · · c〉 |0〉 . (6.3)

Phase factor from (−Ω/g)n is neglected here because it will be cancelled after the

reversal.

Step (II) We add two other classical fields to the middle of the cavity. They have

the same detuning ν1 − ωab = ν2 − ωac = ∆ and same Rabi frequency Ω1 = Ω2 ≪ ∆.

Under the initial condition ca(0) ≈ 0, the excited level is adiabatically eliminated and

each atom effectively behaves like a two-level atom. The two lower levels swap with

each other after a π pulse, |b〉 ↔ − |c〉. So the component changes as

∑

1≤i1<···<in≤N

|c · · · bi1 · · · bin · · · c〉 |0〉 →
∑

1≤i1<···<iN−n≤N

∣∣∣bi1 · · · c · · · c · · · biN−n

〉
|0〉 ,(6.4)

which is just another dark state with N − n excitations.

Step (III) Now the atoms leave the cavity mode and encounter the other resonant

classical field Ω′(z). They feel the adiabatic change from Ω′ ≪ g to Ω′ ≫ g, the dark

states evolve as the reversal of (6.3):

∑

1≤i1<···<iN−n≤N

∣∣∣bi1 · · · c · · · biN−n

〉
|0〉 → |c · · · c〉 |N − n〉 . (6.5)

So after the atoms fly out, the coherence is mapped back to the field, and the swapping

|n〉 → |N − n〉 is achieved.

2. Zeeman-level scheme

The second scheme uses a degenerate two-level atom with Jg = N + 1 ↔ Je = N .

We send in the atom prepared in the level |gN〉. The diagram of the scheme is shown

in Fig. 24(d). Two circularly polarized classical fields are placed at two sides of the

cavity with the π polarized cavity mode in the middle. They are all resonant to the
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Fig. 24. The Zeeman-level scheme. (a) Level structure in Step (I). The classical field

is σ+ polarized and the cavity mode is π polarized. (b) Level structure in Step

(II). The classical field is σ− polarized. (c) The profiles of the fields, required

for the adiabatic passages. (d) The system diagram.

atomic separation and the Rabi frequencies are Ω+(z), Ω−(z), and g(z), respectively.

We examine the transformation of an arbitrary field component |n〉 below.

Step (I) The atom first encounters the σ+ field and then the cavity mode, with

the level structure shown in Fig. 24(a). The dark state containing the component

|gN〉 |n〉 is [121, 122]

∣∣∣Ψdark
n,gN

〉
= |gN〉 |n〉ΩNΩN−1 · · ·ΩN−n+1

+ |gN−1〉 |n− 1〉G(n)
N ΩN−1 · · ·ΩN−n+1

+ · · · + |gN−n〉 |0〉G(n)
N G

(n)
N−1 · · ·G

(n)
N−n+1, (6.6)

where G
(n)
k = g(t)

√
n+ k −N 〈Jg(mg = k); 10|Je(me = k)〉, and the Rabi frequencies

Ωk = Ω+(t) 〈Jg(mg = k − 1); 11|Je(me = k)〉. For this configuration all the Clebsch-
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Gordan coefficients are nonzero. So when leaving the σ+ field and entering the cavity

mode, the atom feels the adiabatic change from Ω+ ≫ g to Ω+ ≪ g and the state

transforms as

|gN〉 |n〉 → |gN−n〉 |0〉 , (6.7)

under the condition nmax ≤ 2N . The atom jumps to the left sublevels, consuming

one photon at each jump.

Step (II) In the latter half of the cavity, the atom only feels the cavity mode and

the σ− polarized field, as shown in Fig. 24(b). The new dark states are very similar

to (6.6), except that now they connect all the ground levels to |g−N〉. When the

atom moves from the cavity mode to the σ− field, it feels the change from Ω− ≪ g to

Ω− ≫ g. The adiabatic passage pumps the atom toward the left sublevels, generating

one photon at each jump. In the end the state transforms as

|gN−n〉 |0〉 → |g−N〉 |2N − n〉 . (6.8)

Then we remove the atom and the remaining field is |2N − n〉.

We immediately find the advantage of this scheme: the fixed total number of

jumps (2N) automatically swaps the components when we map the state back to the

field, so only two steps are required instead of three in the first scheme. Another

advantage is that it does not require precise interaction time since there is no π pulse.

3. Probability and information analysis

The reversing probability is just the probability of null result during the second mea-

surement, which can be written as

P
(0)
2 (t) =

Tr(
∑nmax

n,m=0 ρnme
−2Nγt |N − n〉 〈N −m|)

Tr(
∑nmax

n,m=0 ρnme
−(n+m)γt |N − n〉 〈N −m|)
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= e−2Nγt/
nmax∑

n=0

e−2nγtρnn. (6.9)

(or N → 2N for the second scheme). In order to increase the success probability we

should choose small N , down to the limit N = nmax, in which case the probability

is optimal because it reaches the upper bound minP (0)/P (0)(ρ) [119]. Since e−2Nγt

decreases faster than any term in the denominator, P
(0)
2 (t) decreases with time.

From the information-theoretical point of view, we can take the field being in

state |n〉 as an event xn ∈ X, and the detector reading of k clicks as yk ∈ Y . The

mutual information gained from the first null-result measurement can be written as

[123],

I(X; y0) =
nmax∑

n=0

p(xn|y0)log
p(xn|y0)

p(xn)
, (6.10)

where p(xn) = ρnn is the initial probability, and p(xn|y0) = e−2nγtρnn/
∑nmax

n′=0 e
−2n′γtρn′n′

is the final probability for the field to be in |n〉. From Cauchy inequality we find

dI/dt > 0 for all t ∈ (0,∞). The two limits are I(0) = 0 which means no measure-

ment (weakest), and I(∞) = −logρ00 which means a sharp measurement. So for a

longer monitoring time, the measurement is stronger and more information is gained,

while the reversing probability decreases. We illustrate these trends with a simple

example as shown in Fig. 25.

C. Click-allowed reversal

So far we have been considering the reversibility of null-result measurements. Such

measurements do not destroy any component and only generate exponential factors

which can be unified by a symmetric swapping and another null measurement. In

the situation of photons being detected, the annihilation operator could destroy some

components and it also brings additional factors which cannot be unified in gen-
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Fig. 25. The reversal probability and gained information curves. The initial state is

(|0〉 + |1〉 + |2〉)/
√

3. With the time passing by, more information I(X; y0) is

obtained while the chance of successful reversal P
(0)
2 diminishes.

eral. Only a certain class of states, namely the two-component states ρnn |n〉 〈n| +

ρmm |m〉 〈m|+ ρnm |n〉 〈m|+ ρmn |m〉 〈n|, can still be reversed probabilistically. If the

photon detector registered k (m > n ≥ k) clicks during time t, the component |n〉

will change into

e−γâ
†âtâk |n〉 = e−γ(n−k)t

√
n!/(n− k)! |n− k〉 , (6.11)

where we have ignored the pre-factor e−γ(t1+···+tk) because it will be cancelled after

normalization. To reverse this measurement, we adopt the swapping procedures de-

scribed in the two schemes. Taking N (or 2N in the second scheme) = m + n − k,

the component after swapping would be e−γ(n−k)t
√
n!/(n− k)! |m〉. After another

measurement, provided there are k clicks as well, we swap again and the component

becomes e−γ(n−k)t
√
n!/(n− k)!e−γ(m−k)t

√
m!/(m− k)! |n〉. The initial |m〉 component
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will have the same factor which is symmetric to m and n. So the normalized field is

identical to the initial one.

The probability of k clicks during the first measurement is

P
(k)
1 (t) = (1 − e−2γt)k

[
(mk ) e−2γ(m−k)tρmm + (nk) e

−2γ(n−k)tρnn
]
. (6.12)

The physical meaning is clear: for a Fock state |n〉 to have k clicks within time t, the

photons have to be separated into two groups which causes the combination factor

(nk). Each of the remaining n− k photons contributes a factor e−2γt, and each of the

decayed k photons contributes a factor 1 − e−2γt. The reversing probability is the

probability of emitting k photons in the second measurement. Following the same

argument, we find it to be

P
(k)
2 (t) = (e2γt − 1)k

(mk ) e−2γmt (nk) e
−2γnt

(mk ) e−2γmtρmm + (nk) e
−2γntρnn

. (6.13)

When k = 0, the above equation reduces to (6.9).

The advantage of click-allowed reversal is clear when we consider the probability

of state protection. P
(k)
1 (t)P

(k)
2 (t) gives the protection probability along the k-click

path. So the total probability of protecting a field with two components |m〉 and |n〉

in time 2t is

Ps(2t) =
n∑

k=0

P
(k)
1 (t)P

(k)
2 (t)

= e−2γ(m+n)t
n∑

k=0

(e2γt − 1)2k (mk ) (nk) . (6.14)

We can choose n = m− 1 to optimize the result.

For the no-click reversal of a general state
∑nmax

n,m=0 ρnm |n〉 〈m|, the probability of

null result during the first measurement is P
(0)
1 (t) =

∑nmax

n=0 e
−2nγtρnn. Therefore the
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Fig. 26. The state protection probability-time curves for no-click reversal, and click-

-allowed reversals with m = 2, 9, 20(n ≡ m − 1). (inset) The probability-m

relation for a fixed 2γt = 2.5.

protection probability is

P (0)
s (2t) = P

(0)
1 (t)P

(0)
2 (t) = e−2Nγt, (6.15)

which is highest when we take N = nmax = 1. Interestingly, both Ps(2t) and P (0)
s (2t)

are independent of the initial coefficients. Their comparison is shown in Fig. 26.

The no-click reversal has higher protection probability for short time, while the click-

allowed reversal is more successful for long time protection. This trend is more obvious
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for larger m as those curves are more extended in the time domain. For a specific

time we can find out which m gives the best probability, as shown in Fig. 26(inset).

Even for 2γt = 5 when the no-click reversal gives a protection probability of only

0.0067, the click-allowed reversal can still have a success chance above 0.2, although

the m required is around 100 which is quite a challenge. In case of a limited m, the

long-time protection probability will be low. But we can increase it by split the time

into many shorter cycles of measurement and reversal.

D. Conclusion

In summary, we propose two schemes to reverse the weak measurement of arbitrary

states with finite photons. Taking advantage of the adiabatic passage in the dark

states, the reversal can be achieved in a few simple steps. We also consider the

click-allowed reversal for a certain class of states and show its advantage in state

protection.

In all the derivations above, we assumed that the photon decay during the swap-

ping procedures is negligible. This requires the adiabatic passage to be much faster

than the typical photon decay time, i.e., 1/T ≫ γ. The condition for adiabatic

passage g,Ω ≫ 1/T also needs to be satisfied. The atomic decay can be neglected

because the excited levels are never significantly populated. Another issue is the

overall phase of the state, which may not be reversible. It could have an effect for

applications like interferometry.

The implementation of the first scheme could benefit a lot from the fact that

experimentalists have been playing with Λ-type three-level atoms for a long time.

For the second scheme, the degenerate two-level atom has many possible candidates,

such as the transition 2p53s(3P2) → 2p53p(3P1) in neon [124] and 1s5(J = 2) →
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2p10(J = 1) in argon [125]. There are also several techniques to prepare the atom

into a Zeeman sublevel, see [126] and the references therein.
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CHAPTER VII

SUMMARY

In summary, we have studied the coherent atomic effects and their applications in

many systems. Most of these effects are based on EIT. Using the steep positive

dispersion of EIT, we proposed a scheme for broadband slow light propagation. The

pulse is frequency decomposed and each frequency goes through its own EIT window

shifted by the magnetic field gradient. Using the refractive index near transparency,

we suggested a scheme for optical beam steering. The drive field intensity gradient

leads to a refractive index gradient, which deflects the light. We found the optimal

drive field profiles for single frequency deflection and beam focusing, and we found

that the previous scheme is good for broadband pulse deflection. Even the absorption

of EIT can be very useful. We considered the effect of putting an EIT medium into

a laser cavity. If the drive field is strong, the EIT medium is almost transparent and

the laser system goes through second-order phase transition. But if the drive field

is very weak, the EIT medium acts like a saturable absorber and the system goes

through first-order phase transition.

We have also studied other coherent effects besides EIT. We analyzed the effects

of noise and parameter deviations in a bichromatic Raman type white light cavity. In

such a cavity a continuous range of frequencies can be resonant at the same time due

to the negative dispersion which compensates the phase delay difference. Finally by

making use of STIRAP, we proposed two schemes to reverse the weak measurement

of an arbitrary field with finite photon number.
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