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ABSTRACT 

 

Continuum-based Multiscale Computational Damage Modeling of  

Cementitious Composites. 

(May 2010) 

Sun-Myung Kim, B.En., Sejong University; M.En., Sejong University 

Chair of Advisory Committee: Dr. Rashid K. Abu Al-Rub 

 

Based on continuum damage mechanics (CDM), an isotropic and anisotropic damage 

model coupled with a novel plasticity model for plain concrete is proposed in this 

research. Two different damage evolution laws for both tension and compression are 

formulated for a more accurate prediction of the plain concrete behavior. In order to 

derive the constitutive equations, the strain equivalence hypothesis is adopted. The 

proposed constitutive model has been shown to satisfy the thermodynamics requirements, 

and detailed numerical algorithms are developed for the Finite Element implementation 

of the proposed model. Moreover, the numerical algorithm is coded using the user 

subroutine UMAT and then implemented in the commercial finite element analysis 

program Abaqus, and the overall performance of the proposed model is verified by 

comparing the model predictions to various experimental data on macroscopic level. 

 Using the proposed coupled plasticity-damage constitutive model, the effect of 

the micromechanical properties of concrete, such as aggregate shape, distribution, and 

volume fraction, the ITZ thickness, and the strength of the ITZ and mortar matrix on the 
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tensile behavior of concrete is investigated on 2-D and 3-D meso-scale. As a result of 

simulation, the tensile strength and thickness of the ITZ is the most important factor that 

control the global strength and behavior of concrete, and the aggregate shape and 

volume fraction has somewhat effect on the tensile behavior of concrete while the effect 

of the aggregate distribution is negligible. Furthermore, using the proposed constitutive 

model, the pull-out analysis of the single straight and curved CNT embedded in cement 

matrix is carried out. In consequence of the analysis, the interfacial fracture energy is the 

key parameter governing the CNT pull-out strength and ductility at bonding stage, and 

the Young’s modulus of the CNT has also great effect on the pull-out behavior of the 

straight CNT. In case of the single curved CNT, while the ultimate pull-out force of the 

curved CNT at sliding stage is governed by the initial sliding force when preexisting 

normal force is relatively high, the ultimate pull-out force, when the preexisting normal 

force is not significant, is increased linearly proportional to the curvature and the 

Young’s modulus of the CNT due to the additionally induced normal force by the 

bending stiffness of the curved CNT. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Problem Statement 

Concrete is a widely used material in numerous civil engineering structures due to the 

capability to be cast in site and the flexibility in different shapes. Although concrete 

material has longer history than other construction materials, such as steel and fiber 

reinforced polymer (FRP), the accurate understanding of its mechanical behavior under 

complex loading paths still represents a challenging task mainly due to its material 

characteristic. That is, concrete is not homogeneous material composed of entirely one 

material but heterogeneous composite material made of several distinctive components, 

such as coarse and fine aggregates, cement, water, and chemical admixture if necessary. 

Furthermore, it is well known that the failure of modern concrete structures is mainly 

caused by the material damage rather than the inadequate structural design. Therefore, it 

is crucial to understand the relationship among stress, material damage, stiffness 

reduction, and fracture at macro-scale, the role of each components, such as mortar 

matrix, aggregates, and interfacial transition zone (ITZ) and interaction among 

components at meso-scale, and the interaction between reinforcements, such as fiber and 

carbon nanotubes (CNTs) and mortar matrix or the ITZ at nano scale in order to predict 

more precisely the behavior of cementitious material and structures under various 

loading conditions.1 

                                                 
This dissertation follows style of the ASCE Journal of Engineering Mechanics. 
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 One of the most important characteristics of concrete is its low tensile strength 

compared to the compressive strength. The low strength for tension causes micro tensile 

cracks in material at the very low stress state, and governs dominantly global strength 

and behavior of concrete material or structures. Therefore, the accurate modeling of 

damage evolutions and crack propagations in concrete is very crucial. Two distinct 

mechanical processes: plasticity (slippage along grain boundaries, etc) and damage 

(micro-cracks and voids, crack nucleation and coalescence, and grain boundary cracks) 

can be attributed to the non-linear behavior of concrete. Therefore, theses two 

degradation processes should be considered simultaneously in order to account for the 

distinctive behavior of concrete for tension and compression, and it is important to 

develop a robust constitutive and computational model that can effectively describe the 

micro-crack nucleation and growth in plain concrete that lead to stiffness degradation of 

material and irreversible (plastic) deformations.  

 Concrete, based on the theory of micromechanics, can be considered as a three-

phase composite material consisting of mortar matrix, aggregate, and the ITZ between 

the aggregate and mortar matrix. Among three constituents, the ITZ is the weakest 

region, and the weakness of the ITZ under loading, since the global strength of concrete 

is governed by the strength of the weakest region, is the main reason of the low tensile 

strength of concrete. Therefore, the clear comprehension of the characteristics and 

behavior of the ITZ under loading should be preceded in order to understand and predict 

the behavior of concrete as a composite material. Moreover, the micromechanical 

properties of concrete such as, the Young’s modulus and yield strength of matrix, 
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aggregates, and the ITZ, aggregate shape, distribution, and volume fraction, and the 

thickness of the ITZ have great effect on the strength and behavior of concrete. However, 

it is impossible to investigate the effect of the micromechanical properties on concrete in 

macro-scale that concrete is considered as homogeneous material. Therefore, concrete 

should be considered as a composite material in the analysis to study the 

micromechanical properties effect, and mesoscopic level analysis is the most practical 

and useful method for evaluating a composite behavior of concrete.  

 Since concrete was used for the construction material, numerous experimental, 

analytical, and numerical researches have been developing the properties of concrete 

itself, such as stiffness, strength, and ductility. Generally, concrete is weak in tension, no 

matter how stronger concrete is, and this characteristic of plain concrete causes sudden 

collapse of structure after yielding. Therefore, a steel reinforcing bar is embedded in 

concrete in order to enhance the load resistance capacity against tension, and the 

reinforced concrete with steel rebar became the most successful concept in the history of 

construction. Even though the reinforcement of concrete with rebar increases the loading 

capacity of concrete members dramatically, however, concrete itself still has low tensile 

strength and shows a brittle behavior under tension. With this reason, numerous 

researches have been carried out from a few decades ago in order to control the 

properties of concrete itself, such as strength, ductility, fracture toughness, shrinkage, 

and impact resistance through adding special ingredients, such as meso and micro fibers 

in the cement matrix (Gopalaratnam and Gettu 1995; Zollo 1997; Nataraja et al. 1999). 

More recently, the enhancement of material properties of the cement matrix through 
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integration of nano fibers and filaments as reinforcements has become an active area of 

research. With these outstanding material properties, CNTs can be used for more 

effective reinforcement of cement matrix than any other conventional fibers by 

providing large interfacial contact area with mortar matrix. Thus, it is very important and 

strongly needed to investigate the pull-out process of CNTs embedded in matrix, the 

bridging effect of CNTs at crack surfaces, and the failure mechanism of the CNTs 

reinforced composites analytically in nano-scale which cannot be understood clearly by 

experimental tests in order to improve the properties of cement matrix.  

 In this research, on the basis of phenomenological observation that the damaged 

stiffness varies nonlinearly by the change of the damage density as argued by Cicekli et 

al. (2007), the modified constitutive model based on the coupled anisotropic damage and 

plasticity model is proposed. Two different damage evolution laws for both tension and 

compression are proposed and examined for a more accurate prediction of concrete 

behavior. Furthermore, in order to validate and demonstrate the capability of the 

proposed model and calibrated material constants, analysis results obtained with the 

proposed model are compared with experimental results at macroscopic level. And then, 

the proposed coupled plasticity-damage model for plain concrete is adopted for the 

meso-scale analysis of concrete. Considering concrete as a three-phase composite 

material considering of mortar matrix, aggregates, and the ITZ, the proposed constitutive 

model is applied to each phase with different material constants. The effect of the 

micromechanical properties of concrete, such as aggregate shape, distribution, and 

volume fraction, the Young’s modulus and strength of each constituent, and the ITZ 
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thickness on the behavior of concrete under tensile loading is investigated in mesoscopic 

level. Lastly, the reinforcing effect of cementitious material with straight and curved 

single CNT, as a preliminary study of the macromechanical behavior of the CNTs 

reinforced cementitious material, is investigated analytically. 

 

1.2 Background 

In order to clarify the aim of this research, limited literatures related to the constitutive 

model for plain concrete, macro- and meso-scale analysis of concrete, and the CNTs/ 

cement matrix composite material are reviewed.  

1.2.1 Constitutive Model for Plain Concrete  

The idealized stress-strain diagram of material under the uniaxial compression is 

illustrated in Figure 1.1.  During an ideal plastic deformation, the slop of the unloading 

path is not changed, and identical to the initial Young’s modulus, 0E  of the material as 

seen in Figure 1.1(a). However, a perfectly brittle material, as shown in Figure 1.1(b), 

returns to the origin point upon unloading, and there exists no residual strain due to the 

continuous change of the internal microstructure with the nucleation and growth of 

micro cracks ( 1 0E E< ). On the other hand, a general cementitious material displays both 

residual strain due to partial plastic deformation and the reduced Young’s modulus due 

to the evolution of micro cracks ( 1 2 0E E E< < ), and Figure 1.1(c) represents loading-

unloading path for concrete observed experimentally.   
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(a)                                     (b)                                       (c) 

Figure 1.1 Schematic representation of material behavior: (a) Ideal plastic deformation, 
(b) perfectly brittle behavior, and (c) combined plastic and brittle behavior of concrete 
 

 Additional to the combined behavior of concrete upon unloading and reloading, 

concrete shows distinctive behavior for tension and compression, and the representation 

of the characteristics of concrete is one of the most important and critical issues in the 

field of analytical research. Many theories have been introduced in order to predict the 

behavior of cementitious material, and the theories that have been commonly used for 

the description of concrete constitutive behavior are plasticity, continuum damage 

mechanics, fracture mechanics, elastic-damage, and combined plasticity and damage 

mechanics. The mathematical theory of plasticity is thoroughly established and some of 

these works were far superior to elastic approaches. These works, however, failed to 

address the degradation of the material stiffness due to micro-cracking as seen in Figure 

1.1(a) (Chen and Chen 1975; Bazant 1978; Voyiadjis and Abu-Lebdeh 1994; Feenstra 

and De Borst 1996; Grassl et al. 2002). Fracture mechanics (FM) has also been widely 

used to predict the behavior of concrete, especially to study how cracks form and the 

existing cracks propagate through materials. However, the facture mechanics approach 
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requires an initially defined or modeled crack, and this approach failed to describe the 

nucleation of numerous micro-cracks and the growth of the micro-cracks to macro-

cracks (Bažant and Oh 1983; Jenq and Shah 1985; Planas and Elices 1991). Continuum 

damage mechanics (CDM) (Kachanov 1958; Lemaitre 1985; Lemaitre and Chaboche 

1990) has also been used alone with elasticity to model the material nonlinear behavior 

of concrete. However, several facets of concrete behavior, such as irreversible 

deformations and inelastic volumetric expansion in compression cannot be described by 

this approach (Løland 1980; Ortiz and Popov 1982; Krajcinovic 1984; Krajcinovic 1985; 

Simo and Ju 1987a, 1987b; Mazars and Pijaudier-Cabot 1989). Therefore, since both 

micro-cracking and irreversible deformations are contributing to the nonlinear response 

of concrete, a constitutive model should address simultaneously the two physically 

distinct modes of irreversible changes in order to simulate the concrete nonlinear 

behavior properly up to fracture.  

 Combinations of plasticity and damage are usually based on isotropic hardening 

combined with either isotropic (scalar) or anisotropic (tensor) damage variables. One 

type of combination relies on stress-based plasticity formulated in the effective 

(undamaged) space (Simo and Ju 1987a, 1987b; Lee and Fenves 1998; Wu et al. 2006; 

Cicekli et al. 2007; Voyiadjis et al. 2008), where the effective stress is defined as the 

average micro-scale stress acting on the undamaged material between micro-defects. 

Another type is based on stress-based plasticity in the nominal (damaged) stress space 

(Bazant and Kim 1979; Ortiz 1985; Lubliner et al. 1989; Ananiev and Ožbolt 2004), 

where the nominal stress is defined as the macro-scale stress acting on both damaged 
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and undamaged material. However, it is shown by Abu Al-Rub and Voyiadjis(2003) that 

coupled plastic-damage models formulated in the effective space are numerically more 

stable and attractive. On the other hand, for better characterization of the concrete 

damage behavior, anisotropic damage effects, i.e. different micro-cracking in different 

directions, should be characterized (Ju 1990). However, anisotropic damage in concrete 

is complex and the coupling with plasticity and the application to structural analysis is 

not straightforward (Ju 1989; Ju 1990; Voyiadjis and Abu-Lebdeh 1994; Voyiadjis and 

Kattan 2006; Cicekli et al. 2007). 

 The model by Cicekli et al. (2007) is successfully used to predict the concrete 

distinct behavior in tension and compression. However, the model proposed by Cicekli 

et al. has few critical weaknesses. The model, unlike phenomenological observation, 

assumed the relation between the damaged stiffness and the damage density as linear. 

That is, they assumed that the decrease of the damage stiffness is directly proportional to 

the increase of the damage density. Moreover, the model couldn’t predict the behavior of 

concrete material when both the global stress-strain relation and the loading-unloading 

paths on the stress-strain curve are considered, while showed good performance when 

only the global stress-strain relation is considered. 

1.2.2 Macro-scale Analysis of Concrete 

Since concrete is used for the construction material, the analytic study about concrete 

material and structures has been mainly focused on macroscopic level through the 

homogenization process of a heterogeneous cementitious material. This is because the 

analysis and modeling are less complicated than meso or smaller-scale analysis, and 
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computational cost can be reduced. Although the macroscopic level analysis is the most 

common analysis type, this scale analysis have critical weaknesses: (1) the stiffness 

reduction and the crack initiation are totally dependent on the stress level and 

distribution generated by the external or internal loads; (2) the crack paths are always 

perpendicular to the principal stress direction in case of plain concrete; and (3) it is not 

allowed to establish the microstructure-property relationship for designing better and 

superior fracture resistant cementitious materials. In spite of these weaknesses, the 

macro-scale analysis of concrete structures is the most widely used method because it is 

possible to get enough information with the macro-scale analysis alone for the prediction 

of the global response, such as displacement and deflection, the failure load, and the 

collapse mechanism of the structure. With these reasons, almost analytic researches of 

concrete structures have been focused on the macroscopic level even now.  

1.2.3 Meso-scale Analysis of Concrete 

In order to overcome the weakness of the concrete analysis at macro-scale and to verify 

the effect of each constituent on the behavior of concrete material and fracture process of 

structures, the mesoscopic level analysis considering concrete as a three-phase 

composite material consisting of mortar matrix, aggregate, and ITZ have been performed. 

Although the properties of the ITZ, which plays a very important role in the concrete 

fracture behavior, was not easy to be measured experimentally in the past, the recent 

advances in understanding the chemical composition, thickness, and strength of the ITZ 

as well as the developments in computational power made it possible to effectively 

simulate the micro-mechanical behavior of concrete materials at mesoscopic level in 
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order to get insights about the effect of various microstructure features (e.g. aggregate 

size, shape, gradation, and distribution, ITZ thickness, and etc).  

The mesoscopic level analysis of concrete is the most practical and useful 

method for evaluating the composite behavior of concrete, and several numerical models 

have been proposed: (1) the random particle model (Bazant et al. 1990); (2) the random 

packing particle model (Fu and Dekelbab 2003); (3) the random two-dimensional natural 

shape aggregate model (Wittmann et al. 1985); (4) the lattice model (Schlangen and 

Garboczi 1997; van Mier 1997); and (5) the beam-particle model (Zhang et al. 2004). 

Currently, meso-scale analysis of cementitious material has been mainly focused on 

simulating the effect of aggregate shape and distribution, where randomly distributed 

circular particles are commonly used for the aggregate shape because it is practically 

very difficult to consider actual shape of the aggregate in every numerical simulation 

(Lilliu and van Mier 2007; Grassl and Rempling 2008). However, the arbitrary polygon 

shape and the elliptical shape aggregate model have also been used for more reasonable 

simulations by other researches (Kwan et al. 1999; Wang et al. 1999; Du and Sun 2007). 

1.2.4 Nano-reinforced Cementitious Composites 

The carbon nanotube (CNT), discovered by Iijima in 1991, is a nano-reinforcement, and 

has an extremely high specific strength and stiffness. The modulus of elasticity of the 

single walled CNT is approximately 1 TPa, yield strength varies generally from 20 to 60 

GPa. Furthermore, the aspect ratio of the CNT could exceed 107, while the density is less 

than 1500 kg/m3. With these specific material properties, the CNTs can be used as a 

more effective reinforcement of cement matrix than any other conventional fibers by 
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providing large interfacial contact area with the mortar matrix. While most attention has 

been paid to polymer based composite materials to date, CNT/cement composite 

material is recognized as a new area of research. Although it is beginning, a few 

experimental studies ascertain that the CNTs can strongly modify and reinforce the 

cement paste matrix with a variety of macro and nanoscopic observations. The CNTs 

increase the global strength, stiffness, and fracture toughness at macro-scale, delay crack 

opening due to the bridging effect of the CNTs at crack surfaces, and yield different 

crack patterns due to the CNT pull-out or breakage at nano-scale as observed by the 

scanning electron microscope (SEM) (Makar and Beaudoin 2003; Li et al. 2005; Makar 

et al. 2005; Li et al. 2007; Shah et al. 2009; Yazdanbakhsh et al. 2009; Konsta-Gdoutos 

et al. 2010). However, one cannot make sure of the failure mechanism or process of the 

CNTs embedded in the cement matrix at the crack surface through the experimental test. 

Therefore, one numerical analysis, recently, was conducted using the commercial finite 

element software ANSYS to investigate the effect of the interfacial and elastic properties 

of the CNT on the pull-out strength and ductility of cementitious composites (Chan and 

Andrawes 2009). The single CNT embedded representative volume element technique 

was employed. They revealed that the pull-out strength and ductility are proportional to 

the shear strength of the interface between the CNT and the cement matrix. They also 

concluded that the Young’s modulus of the CNT is also a critical parameter that controls 

the pull-out behavior. A single CNT pull-out analysis could be a key to understand the 

load transfer mechanism between the CNT and cement matrix, and to determine the 

global properties of the CNT-based composite materials.  
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 CNT pull-out process is composed of three stages - bonded, debonding, and 

sliding stage. In the bonded stage, the CNT and matrix are perfectly bonded, and the 

force and stress induced mainly by the crack opening and propagation on the matrix can 

be transferred entirely from the CNT to the matrix and vice versa. Besides, the initial 

pull-out strength of the CNT is governed by the interfacial characteristics between the 

CNT and the matrix at the bonded stage, the well-bonded stage, however, occupies 

infinitesimal pull-out displacement range compared to the whole pull-out displacement 

or the length of the CNT. In the second stage, called the debonding stage, the separation 

between the CNT and the matrix at interface of them begins to occur, and the debonded 

part coexists with the well-bonded part in this stage. Generally, the pull-out stiffness 

begins also to be decreased in the debonding stage, some amount of the pull-out force is 

charged to the interfacial friction force between the CNT and the matrix. Although the 

debonding stage occupies the wider pull-out displacement range than the bonded stage, 

this second stage is also relatively small compared to the total pull-out displacement. 

The last stage, so called sliding stage, is commenced as soon as the whole interface 

between the CNT and the matrix is fully damaged, and the friction force at interface 

resists the pull-out force of the CNT. Although the pull-out strength of the straight fiber 

or the straight CNT in the sliding stage is smaller than bonded or debonding stage, the 

fracture energy absorbed in the sliding stage is much higher than that in prior two stages, 

and almost the pull-out displacement lies in the sliding stage.  

 Considering the modeling techniques of a single CNT pull-out analysis, there are 

two types of models; the discrete model and the continuum model. In the discrete model, 
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such as the molecular dynamics, the individual carbon atoms are considered as particles, 

and the strength of the CNT is determined by the covalent bonds among the atoms. The 

nano-scale simulations using the discrete model have provided numerous data for 

understanding the behavior of the CNTs under various loading conditions (Yao et al. 

2001; Frankland and Harik 2003; Mylvaganam and Zhang 2004; Chowdhury and Okabe 

2007). The discrete model, however, is not a proper model for the conducting large scale 

simulations, such as the verification of the reinforcing effect of the CNT in the 

nanocomposite materials due to the difficulties in modeling and the computer power 

limitations. Therefore, the continuum model for the CNT was proposed about a decade 

ago such that the continuum mechanics approach has been successfully applied for the 

simulation of the CNT itself and the CNT/polymer composites considering the CNTs as 

beams, cylindrical shells or solids (Zhang et al. ; Sohlberg et al. 1998; Harik 2002; Li 

and Chou 2003; Odegard et al. 2003; Odegard 2007; Tserpes et al. 2008). Although the 

continuum models have some drawbacks due to the impossibility in predicting the size 

effect and the interactions between atoms, it is well known that the continuum mechanics 

approach is applicable if the global behaviors of the single CNTs or the CNT-based 

composite materials, such as the global strength and stiffness, deformations, and the 

failure mechanisms of the composite materials are of interest (Liu and Chen 2003).  

However, modeling the interfacial behavior between the CNT and the matrix using 

cohesive zone models allows one to incorporate intrinsic material length scales that can 

be used effectively to predict size-scale effects. 
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1.3 Research Objectives 

The research includes five major objectives for the development, verification, and 

application of the coupled-plasticity-damage constitutive model for plain concrete and 

for the investigation of the behavior of the CNT reinforced cementitious composites. 

 

 Objective I: Development of robust constitutive and computational model for 

 plain concrete 

It is needless to say that excellent constitutive model guarantees well prediction of 

material behavior. Especially, when the prediction of material failure is of interest, the 

need of the robust constitutive model and accurate modeling is greatly augmented. 

Although there are several constitutive models proposed to predict the behavior of 

concrete, all models have a little weakness. Therefore, based on continuum damage 

mechanics (CDM), an isotropic and anisotropic damage model coupled with a novel 

plasticity model is proposed in order to more effectively predict and simulate plain 

concrete fracture. Furthermore, detailed numerical algorithms are developed for the 

Finite Element implementation of the proposed coupled plasticity-damage model. 

 

 Object II: Identification of material parameters 

The application of the proposed model to the analysis of plain concrete needs 

identification of several material constants, such as tensile and compressive hardening 

modulus, h+  and Q− , tensile and compressive strength where uniaxial nonlinearity starts, 

B± , compressive hardening rate constant, b− , and constants for power tensile and 
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compressive damage evolution law, q± . Once the yield strength of concrete is 

determined from monotonic or cyclic experimental tests, the cyclic loading-unloading 

uniaxial compressive stress-strain experimental curve should then be used in identifying 

unique values for the material constants listed above. Therefore, loading-unloading 

stress-strain data can be used to identify the material constants associated with the 

plasticity and damage constitutive equations simultaneously such that the reduction in 

Young’s modulus can be used to identify the damage parameters. Once the damage law 

is calibrated, it can then be used to establish the effective stress-strain diagram which 

helps to identify the plasticity material constants in the effective configuration. 

 

 Object III: Verification of the proposed coupled plasticity-damage model in the 

 macro-scale 

In order to investigate the predictive capability of the proposed model and the 

effectiveness of the numerical strategy, several numerical examples have been analyzed 

and comparisons with available experimental data have been made at the macroscopic 

level. The algorithmic model is coded as a UMAT user material subroutine and 

implemented in the commercial finite element software ABAQUS. The response of the 

constitutive model is compared to the results of experiments in uniaxial tensile and 

compressive loading, biaxial compressive loading, and mixed mode fracture for different 

types of concrete.  

 

 



16 
 

 Object IV: Meso-scale simulation of cementitious composites 

At the macroscopic level, the crack nucleation and propagation in concrete material 

under loading is entirely dependent on the direction of principal stresses. At the 

mesoscopic level, however, the size and distribution of aggregate and the strength of 

each phase have a significant effect on the damage initiation and crack propagation. 

Especially, the accurate understanding of the properties and behavior of ITZ is one of the 

most important issues on meso-scale analysis because the damage is initiated at the 

weakest point and the ITZ is generally the weakest zone in concrete. Although the 

characteristic of the ITZ is not clearly understood currently, it can be assumed that the 

behavior of the ITZ, which has weaker mechanical properties, is similar to that of the 

mortar matrix. In this research, 2-D and 3-D meso-scale computational analysis is 

conducted in order to investigate the effect of aggregate shape, distribution, and volume 

fraction, the ITZ thickness, and the ITZ and mortar matrix strength in the tensile strength 

and the crack initiation and propagation of concrete. Moreover, the process of the crack 

penetration into the aggregate under uniaxial tensile loading is also investigated applying 

the proposed coupled plasticity-damage constitutive model to the aggregate as well as 

the ITZ and mortar matrix.  

 

 Objective V: Analysis of CNT/cement matrix composites 

CNT is the strongest known material that has ever developed, and its aspect ratio 

exceeds 107, while the density is reported as less than 1500 kg/m3. With the specific 

material properties, CNTs can be used for more effective reinforcement of concrete than 
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any other conventional fibers by providing huge interfacial contact area with mortar 

matrix. With the experimental test results of CNTs itself and the composite effect 

between CNT and matrix, this research focused on the numerical analysis of 

CNT/cement composite material in order to validate the reinforcing effect of cement 

matrix with CNTs. As a simplest scenario, single straight CNT pull-out analysis is 

performed to find adequate interfacial model between CNT and mortar matrix, and 

investigate the effect of interfacial shear strength, stiffness, and fracture energy, the 

strength and the Young’s modulus of the matrix, and the CNT mechanical properties and 

aspect ratio in the CNT pull-out strength and ductility. Moreover, the pull-out analysis of 

the single curved CNT embedded in the elastic body is performed in order to investigate 

the curvature effect of the CNT in the pull-out strength.  

 

1.4 Outline of the Dissertation 

The dissertation contains 9 Chapters and is organized as follows. 

 Chapter I addresses the problem statement, background, and the objectives of the 

research. 

 Chapter II presents the modified coupled plasticity-damage constitutive model for 

plain concrete. Based on the phenomenological observation, the coupled plasticity-

damage model by Cicekli et al. (2007) is modified for better performance of the 

constitutive model. Moreover, both the isotropic and anisotropic damage model is 

considered, and the power damage evolution law is newly proposed in order to 

improve the predictability of the proposed constitutive model. 
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 Chapter III presents the thermodynamic admissibility of the proposed anisotropic 

damage model. The constitutive equations are derived from the second law of 

thermodynamics, the expression of Helmholtz free energy, the additive decomposition 

of the total strain rate into elastic and plastic components, the Clausius-Duhem 

inequality, and the maximum dissipation principle. 

 Chapter IV presents the time descretization and numerical integration procedures for 

the presented elasto-plastic-damage model. The plastic multiplier is derived with both 

semi-explicit and semi-implicit algorithm, and the expression of the elasto-plastic 

tangent stiffness is obtained. Furthermore, the tensile and compressive damage 

multiplier, dλ
± , are also derived using damage consistency conditions. 

 Chapter V is devoted in identifying material parameters, such as the tensile and 

compressive hardening modulus h+  and Q − , the tensile and compressive strength 

where uniaxial nonlinearity starts B± , the compressive hardening rate constant b− , and 

constants for the power tensile and compressive damage evolution law  q±  are 

calibrated in order for the application of the proposed coupled plasticity-damage model 

to the analysis of plain concrete. 

 Chapter VI presents the verification of the proposed model in the macro-scale by 

comparing the response of the proposed constitutive model with various experimental 

data; monotonic uniaxial tension and compression, monotonic biaxial compression, 

and mixed mode fracture for different types of concrete. 

 Chapter VII presents the application of the proposed constitutive model to the meso-

scale simulation of cementitious composites.  Using the proposed coupled plasticity-
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damage model with different material constants for the ITZ, cement matrix, and 

aggregate, 2-D and 3-D meso-scale computational simulations are conducted in order 

to investigate the effects of aggregate distribution, aggregate volume fraction, and ITZ 

thickness and properties on the overall tensile strength and micro-crack initiation and 

propagation of concrete. 

 Chapter VIII deals with the analysis of the carbon nanotube reinforced cementitious 

composites. The pull-out mechanisms of a single straight CNT from the cement matrix, 

the debonding process at the interface between the CNT and the matrix, and the 

damage initiation and propagations at the cement matrix surrounding the straight CNT 

are investigated through the single straight CNT pull-out simulations. Moreover, the 

pull-out simulation of the single curved CNT embedded in the elastic body is also 

performed in order to investigate the effect of the additional normal force induced by 

the bending stiffness of the curved CNT on the sliding behavior of the curved CNT. 

 Finally, in Chapter IX, conclusions of this research and future recommendations 

regarding the research are presented.  
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CHAPTER II 

COUPLED PLASTICITY AND DAMAGE MODEL 

 

The coupled plasticity-damage model formulated recently by Cicekli et al. (2007) for 

plain concrete is recalled and modified. In order to predict the plastic behavior of plain 

concrete for tension and compression separately, the Lubliner yield criterion (Lubliner et 

al. 1989; Lee and Fenves 1998) expressed in the effective (undamaged) configuration is 

adopted. Moreover, the non-associative plasticity flow rule based on the Drucker-Prager 

potential and two distinct damage evolution surfaces; tensile and compressive damage 

surfaces are included in the model. 

 Damage in materials can be represented in many forms such as specific void and 

crack surfaces, specific crack and void volumes, the spacing between cracks or voids. 

The physical interpretation of the damage variable, however, is introduced as the 

specific damage surface area in this research. 

 

2.1 Isotropic Damage Model 

The definition of the damage variable ϕ  in one-dimension proposed by Kachanov (1958) 

is adopted and recalled here for completeness. Consider a uniform bar subjected to a 

uniaxial tensile load T  as shown in Figure 2.1(a). The whole cross-sectional area of the 

bar in the damaged configuration is A  and the total damage area DA  is an area formed 

by both voids and cracks due to damage in the bar (Kattan and Voyiadjis 2001; 

Voyiadjis and Kattan 2006). Furthermore, a fictitious undamaged (effective) 
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configuration of the bar as shown in Figure 2.1(b) is considered in order to use the 

principles of continuum damage mechanics. In this effective configuration all types of 

damage, including both voids and cracks, are removed from the bar. The effective 

stressed cross-sectional area of the bar in this configuration is denoted by A . The 

damage density ϕ  is defined by the ratio of the total damaged area to whole cross-

sectional area of the bar and is expressed simply as follows: 

 
DA A A

A A
ϕ −
= =  (2.1) 

The damage density ϕ  can be varied from 0 to 1. That the damage density is equal to 

zero means that the material is undamaged and one means that the material is fully 

damaged. 

 

   
Figure 2.1 A cylindrical bar subjected to uniaxial tension 

  

Because the bar in both the damaged and the effective configuration are 

subjected to the same tensile force T , the following expression for the uniaxial stress σ  

Removeboth voidsand cracks

T

Aσ

T

A

(Area of cracks and voids)DA

σ

(a) Damaged configuration                       (b) Effective configuration

Cross section
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(Kachanov 1958; Rabotnov 1968) of damaged configuration is derived considering the 

relation between the applied force and the resultant stress for both configurations: 

 ( )1σ ϕ σ= −  (2.2) 

 Similarly, the relation between the nominal stress tensor ijσ  and the effective 

stress tensor ijσ  for the isotropic damage (scalar damage variable) can be written as 

follows: 

 ( )1ij ijσ ϕ σ= −  (2.3) 

Therefore, in the continuum damage mechanics framework, the effective stress means 

the average micro-level stress acting in the undamaged (intact) material between defects 

and is defined as the force divided by the undamaged part of the area, while the nominal 

stress means the macro-level stress and is defined as the force divided by the total area.   

 In order to derive the transformation relations between the damaged and the 

hypothetical undamaged states of the material, the strain equivalence hypothesis is 

adopted in this study for simplicity and ease in numerical implementation. This 

hypothesis states that the elastic and plastic strains in both the damaged and the effective 

configurations due to the applied force are equivalent. Therefore, the total strain tensor 

ijε  is set equal to the corresponding effective strain tensor ijε  (i.e. ij ijε ε= ), which can 

be decomposed into an elastic strain ( )e e
ij ijε ε=  and a plastic strain ( )p p

ij ijε ε= , such that: 

 e p e p
ij ij ij ij ij ijε ε ε ε ε ε= + = + =  (2.4) 
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The plastic strain in Eq. (2.4) incorporates all types of irreversible deformations whether 

they are due to tensile micro-cracking, breaking of internal bonds during shear loading, 

and/or compressive consolidation during the collapse of the micro-porous structure of 

the cement matrix. 

 Applying the hypothesis of the strain equivalence, the relation between the 

damaged elasticity tensor ijklE  and the effective (undamaged) elasticity tensor ijklE  can 

be expressed using the generalized Hooke’s law as follows: 

 ( )1ijkl ijklE Eϕ= −  (2.5) 

This relation states that the damaged stiffness is decreased linearly as the damage density 

ϕ  increases as shown in Figure 2.2. The concept of the isotropic damage model 

applying the hypothesis of the strain equivalence is very simple and has given a lot of 

inspirations to researchers. This damage model, however, is not fully capable of 

predicting the nonlinearity of the damaged stiffness degradation observed from the 

experiments due to the increase of the damage density (Cicekli et al. 2007).  

 

 
Figure 2.2 The linear relationship between the damage stiffness and density 
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2.2 Modified Isotropic Damage Model 

The motivation of the modified isotropic damage model is that the damaged stiffness 

varies nonlinearly with the damage density as argued by Cicekli et al. (2007) as shown 

in Figure 2.3.  

 

 

Figure 2.3 The nonlinear relationship between the damage stiffness and density 
 

Therefore, in order to predict the nonlinear degradation of the damaged stiffness due to 

the increase of the damage density, a nonlinear relationship between the nominal and the 

effective stress tensor is assumed such that: 

 ( )1ij ij
ασ ϕ σ= −  (2.6) 

where α  is a material constant. In the following development 2α =  will be assumed 

such that 

 ( )21ij ijσ ϕ σ= −  (2.7) 

 By applying the strain equivalence hypothesis, the damaged elasticity tensor ijklE  

can be expressed as follows: 
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 ( )21ijkl ijklE Eϕ= −  (2.8) 

 One can also use the strain energy equivalence hypothesis (Voyiadjis and Kattan 

2006) to obtain a nonlinear relationship between stiffness and the damage density as in 

Eq. (2.8); however, this will complicate the constitutive models and the numerical 

implementation. This issue has been discussed thoroughly by Abu Al-Rub and Voyiadjis 

(2003).  

 Since concrete has a distinct behavior in tension and compression and, therefore, 

in order to adequately characterize the damage in concrete due to tensile, compressive, 

and/or cyclic loadings, the Cauchy stress tensor (in the nominal or effective 

configurations) is decomposed into positive and negative parts using the spectral 

decomposition technique (Simo and Ju 1987a, 1987b; Krajcinovic 1996). Hereafter, the 

superscripts “+” and “–” designate, respectively, tensile and compressive entities. 

Therefore, the nominal stress tensor ijσ  and the effective stress tensor ijσ  can be 

decomposed as follows: 

 ,ij ij ij ij ij ijσ σ σ σ σ σ+ − + −= + = +  (2.9) 

where ijσ +  and ijσ +  are the tensile parts whereas ijσ −  and ijσ −  are the compressive parts of 

the stress tensor.  

 Using fourth-order tensile and compressive projection tensors ijklP+  and ijklP− , the 

nominal tensile and compressive stress tensors ijσ +  and ijσ −  can be related to ijσ  by 
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 ,kl klpq pq kl klpq pqP Pσ σ σ σ+ + − −= =  (2.10) 

where the projection tensors are defined as follows: 

 ( ) ( ) ( ) ( ) ( )
3

1

ˆ( ) ,k k k k k
ijpq i j p q ijpq ijpq ijpq

k
P H n n n n P I Pσ+ − +

=

= = −∑  (2.11) 

where ( )ˆ( )kH σ  denotes the Heaviside step function computed at k-th principal stress 

( )ˆ kσ  of ijσ  and ( )k
in  is the k-th corresponding unit principal directions. In the subsequent 

development, the superimposed hat “^” designates a principal value. 

Based on the decomposition in Eq. (2.9), the expression in Eq. (2.7) can be assumed to 

be valid for both tension and compression, such that: 

 ( ) ( )2 2
1 , 1ij ij ij ijσ ϕ σ σ ϕ σ+ + + − − −= − = −  (2.12) 

where ϕ+  and ϕ−  are the tensile and compressive damage densities, respectively. 

Therefore, by substituting Eqs. (2.12) into Eq. (2.9)1, ijσ  can be expressed as follows: 

 ( ) ( )2 2
1 1ij ij ijσ ϕ σ ϕ σ+ + − −= − + −  (2.13) 

 In the above expression the explicit decoupling between the tensile and 

compressive damage density is assumed, but they are coupled implicitly such that 

degradation in the tensile strength will cause further degradation in the compressive 

strength and vice versa. 
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 By substituting Eqs. (2.10) into Eq. (2.13), one can write the following relation 

between ijσ  and ijσ  in terms of ϕ+  and ϕ− , such that: 

 ( ) ( )2 2
1 1ij ijkl ijkl klP Pσ ϕ ϕ σ+ + − −⎡ ⎤= − + −⎢ ⎥⎣ ⎦

 (2.14) 

 

2.3 Anisotropic Damage Model 

Anisotropic damage is considered in this study for a more reliable representation of 

concrete damage behavior. Isotropic damage assumes that the strength and stiffness of 

the concrete material is degraded equally in different directions upon damage evolution 

which is not realistic. Therefore, in order to include damage-induced anisotropy (i.e. 

different degradation in different directions), the relation between ijσ  and ijσ  can be 

expressed as follows (Cordebois and Sidoroff 1979; Murakami and Ohno 1981; 

Voyiadjis and Kattan 2006): 

 ij ijkl klMσ σ=  (2.15) 

where ijklM  is the fourth-order damage-effect tensor that is used to make the stress 

tensor symmetrical. There are several definitions for the tensor ijklM  (Voyiadjis and Park 

1997); however, a different definition is presented in this study as follows: 

 ( )( ) ( )( )1
2ijkl im im jm jm kl ij km km lm lmM δ ϕ δ ϕ δ δ δ ϕ δ ϕ⎡ ⎤= − − + − −⎣ ⎦  (2.16) 

where ijδ  is the Kronecker delta and ijϕ  is a second-order damage tensor.  
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 Using the generalized Hooke’s law, ijσ  and ijσ  are given as follows: 

 ,e e
ij ijkl kl ij ijkl klE Eσ ε σ ε= =  (2.17) 

For isotropic linear-elastic material, ijklE  is given by 

 ( )2
32ijkl ik jl ij klE G K Gδ δ δ δ= + −  (2.18) 

where / 2(1 )G E ν= +  and ( )/ 3 1 2K E ν= −  are the effective shear and bulk moduli, 

respectively, with E  being the Young’s modulus and ν  is the Poisson’s ratio which are 

obtained from the stress-strain diagram in the effective configuration. 

From the Eq. (2.17) and since the strain equivalence hypothesis is adopted, the elastic 

strain tensor e
klε  can be expressed as follows: 

 1 1e
ij ijkl kl ijkl klE Eε σ σ− −= =  (2.19) 

where -1
ijklE  is the inverse (or compliance tensor) of the fourth-order damaged elastic 

tensor ijklE , which is a function of the damage variable ijϕ . 

 By substituting Eq. (2.15) into Eq. (2.17) or Eq. (2.19), one can express the 

damaged elasticity tensor ijklE  in terms of the corresponding undamaged elasticity tensor 

ijklE  by the following relation: 

 ijkl ijmn mnklE M E=  (2.20) 
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 Based on Eq. (2.9), the expression in Eq. (2.15) can be rewritten with decoupled 

damage evolution in tension and compression, such that: 

 ,ij ijkl kl ij ijkl klM Mσ σ σ σ+ + + − − −= =  (2.21) 

where ijklM +  is the tensile damage-effect tensor and ijklM −  is the corresponding 

compressive damage effect-tensor which can be expressed using Eq. (2.16) in a 

decoupled form as a function of the tensile and compressive damage variables, ijϕ+  and 

ijϕ− , respectively, as follows: 

 
( )( ) ( )( )

( )( ) ( )( )

1
2
1
2

ijkl im im jm jm kl ij km km lm lm

ijkl im im jm jm kl ij km km lm lm

M

M

δ ϕ δ ϕ δ δ δ ϕ δ ϕ

δ ϕ δ ϕ δ δ δ ϕ δ ϕ

+ + + + +

− − − − −

⎡ ⎤= − − + − −⎣ ⎦

⎡ ⎤= − − + − −⎣ ⎦

 (2.22) 

Now, by substituting Eq. (2.21) into Eq. (2.9)1, one can express ijσ  as follows: 

 ( ) ( )1 1

ij ijkl kl ijkl klM Mσ σ σ
− −+ + − −= +  (2.23) 

Similarly, ijσ  can be expressed as follows: 

 ij ijkl kl ijkl klM Mσ σ σ+ + − −= +  (2.24) 

 By substituting Eqs. (2.10) into Eq. (2.23) and comparing the result with Eq. 

(2.15), the following relation for the damage-effect tensor ijklM  can be obtained, such 

that: 
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 ijpq ijkl klpq ijkl klpqM M P M P+ + − −= +  (2.25) 

Using Eq. (2.11)2, the above expression can be rewritten as: 

 ijpq ijkl ijkl klpq ijpqM M M P M+ − + −⎡ ⎤= − +⎣ ⎦  (2.26) 

One should notice the following: 

 ijkl ijkl ijklM M M+ −≠ +  (2.27) 

or 

 ij ij ijϕ ϕ ϕ+ −≠ +  (2.28) 

 It is also noteworthy that the relation in Eq. (2.26) enhances a coupling between 

tensile and compressive damage through the fourth-order projection tensor ijklP+ . 

Therefore, for isotropic damage Eq. (2.14) gives the following expression for the fourth-

order damage-effect tensor: 

 ( ) ( )2 2
1 1ijkl ijkl ijklM P Pϕ ϕ+ + − −= − + −  (2.29) 

 From the above expression, adopting the decomposition of the scalar damage 

variable ϕ  into a positive ϕ+  part and a negative ϕ−  part still enhances a damage 

anisotropy through the spectral decomposition tensors ijklP+  and ijklP− . However, this 

anisotropy is weak when compared to the anisotropic damage effect tensor presented in 

Eq. (2.26). 
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2.4 Plastic Yield Surface 

Concrete materials exhibit plastic (irreversible) deformation upon unloading which 

implies that an elastic-damage model is not sufficient to model the concrete behavior 

even under tensile loading conditions. Therefore, an elasto-plastic-damage model should 

be developed. Thus, a plasticity yield surface and plasticity flow rules need to be 

developed. Furthermore, since concrete material behaves differently in tension and 

compression, the yield criterion of Lubliner et al. (1989) that accounts for both tension 

and compression plasticity is adopted in this study. However, since the stress state in the 

intact material is the one which drives the plasticity evolution, this yield criterion is 

expressed in the effective (undamaged) configuration as follows: 

 ( )2 1 max max
ˆ ˆ3 ( , )H( ) 1 ( ) 0eq eq eqf J I cα β ε ε σ σ α ε+ − − −= + + − − ≤  (2.30) 

where 2 / 2ij ijJ s s=  is the second-invariant of the effective deviatoric stress tensor 

/ 3ij ij kk ijs σ σ δ= − , 1 kkI σ=  is the first-invariant of the effective Cauchy stress tensor ijσ , 

maxσ̂  is the maximum principal effective stress, max
ˆH( )σ  is the Heaviside step function 

(H=1 for max
ˆ 0σ >  and  H=0 for max

ˆ 0σ < ), and the parameters α  and β  are 

dimensionless constants which are defined as follows: 

 0 0

0 0

( )( / ) 1 , (1 ) (1 )
2( / ) 1 ( )

eqb

b eq

cf f
f f c

ε
α β α α

ε

− −−

− + +

−
= = − − +

−
 (2.31) 

with 0bf  and 0f −  being the initial equi-biaxial and uniaxial compressive yield strengths, 

respectively.  
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 According to Eq. (2.31), both tension and compression plasticity material 

parameters looks to be needed to calculate α  and β  and the damage parameters. 

However, simplifying Eqs. (2.30) and (2.31) for the case of pure tension or pure 

compression, one can get an expression for the yield function independent of the 

compressive material parameters for pure tension (i.e. 11 0f cσ + += − = ) and a yield 

function independent of the tensile material parameters for pure compression (i.e. 

11 0f cσ − −= − = ). Experimental values for 0 0/bf f −  lie between 1.10 and 1.16; yielding 

values for α  between 0.08 and 0.12. The shape of the yield surface for two values of the 

dilatational constant α  and its comparison with the experimental results by Kupfer et al. 

(1969) are shown in Figure 2.4. 

 

 

Figure 2.4 Lubliner plasticity yielding surface for different values of α , and its 
comparison with experimental results by Kupfer et al.(1969) 
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As seen, when the α  constant is 0.12, the model gives a better prediction of the 

experimental results, and consequently, this value is used for α  constant in this research.  

The internal plastic state variables 
0

d
t

eq eq tε ε+ += ∫  and 
0

d
t

eq eq tε ε− −= ∫  are the 

equivalent plastic strains in tension and compression, respectively, where their rates are 

defined as follows: 

 max min
ˆ ˆˆ ˆ( ) , (1 ( ))p p

eq ij eq ijr rε σ ε ε σ ε+ −= = − −  (2.32) 

where max
ˆ pε  and min

ˆ pε  are the maximum and minimum principal values of the plastic 

strain rate p
ijε  such that 1 2 3

ˆ ˆ ˆp p pε ε ε> >  with max 1
ˆ ˆp pε ε=  and min 3

ˆ ˆp pε ε= . Note that the 

superscript +  or −  designates a tensile or compressive quantity, ( •̂ ) designates the 

principle value of (• ), and the subscripts eq, min, and max are not indicial indices. The 

dimensionless parameter ˆ( )ijr σ  is a weight factor for tension or compression depending 

on the values of the principal stresses and is defined as follows: 

 

3

1
3

1

ˆ
ˆ( )

ˆ

k
k

ij

k
k

r
σ

σ
σ

=

=

=
∑

∑
 (2.33) 

where  is the McAuley bracket presented as 1
2 ( )x x x= + . Note that ˆ( )ijr σ = ˆ( )ijr σ . 

Moreover, depending on the value of ˆ( )ijr σ : (a) if the loading is pure uniaxial tension 

ˆ 0kσ ≥ , then ˆ( ) 1ijr σ = , and (b) if the loading is pure uniaxial compression ˆ 0kσ ≤ , 

then ˆ( ) 0ijr σ = . 
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 In the last term of Eq. (2.30), the isotropic hardening function c− represents the 

material cohesion in uniaxial compression. Since the concrete behavior in compression 

is more of a ductile behavior as compared to its corresponding brittle behavior in tension, 

the evolution of the compressive and tensile isotropic hardening functions c−  and c+  are 

defined by the following exponential and linear hardening laws, respectively: 

 0 01 exp( ) ,eq eqc f Q b c f hε ε− − − − − + + + +⎡ ⎤= + − − = +⎣ ⎦  (2.34) 

where 0f −  and  0f +  are the initial yield stresses in compression and tension (i.e. when 

nonlinear behavior starts), respectively. The parameters Q− , b− , and h+  are material 

constants obtained in the effective configuration of the uniaxial stress-strain diagram. 

 For realistic modeling of the volumetric expansion under compression of 

concrete, a non-associative plasticity flow rule should be used. This can be done by 

writing the evolution of the plastic strain tensor p
ijε , in terms of a plastic potential pF  

that is not equal to the plastic yield function f , such that: 

 
p

p p
ij

ij

Fε λ
σ
∂

=
∂

 (2.35) 

where pλ  is the plastic multiplier, which can be obtained using the standard plasticity 

consistency condition, 0f = , such that: 

 0, 0, 0, 0p p pf f fλ λ λ≤ ≥ = =  (2.36) 
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The plastic potential pF  can be expressed in terms of the Drucker-Prager function as: 

 2 13p
pF J Iα= +  (2.37) 

where pα  is the dilation material constant. Then the plastic flow direction p
ijF σ∂ ∂  in 

Eq. (2.35) is given by 

 
2

3
2 3

p
ij

p ij
ij

sF
J

α δ
σ
∂

= +
∂

 (2.38) 

2.5 Tensile and Compressive Damage Surfaces 

The following damage growth function which is proposed by Chow and Wang (1987) 

and used by many others (Abu Al-Rub and Voyiadjis 2003, 2006) is adopted in this 

study. However, this function is generalized in Cicekli et al. (2007) in order to 

incorporate both tensile and compressive damage separately, such that: 

 1 ( ) 0
2 ij ijkl kl eqg Y L Y K ϕ± ± ± ± ± ±= − ≤  (2.39) 

where K ±  is the tensile or compressive damage isotropic hardening function such that 

0K K± ±=  when there is no damage, where 0K ±  is the tensile or compressive initial 

damage parameter (i.e. damage threshold), and ijklL±  is a fourth-order symmetric tensor 

and is presented in matrix form as follows: 
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1 0 0 0
1 0 0 0

1 0 0 0
0 0 0 2(1 ) 0 0
0 0 0 0 2(1 ) 0
0 0 0 0 0 2(1 )

ijklL

μ μ
μ μ
μ μ

μ
μ

μ

± ±

± ±

± ±

±

±

±

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

∓  (2.40) 

where μ±  is a material constant satisfying 1 2 1μ±− ≤ ≤ . However, in what follows, 

ijklL±  is taken as the fourth-order identity tensor ijklI  in order to simplify the anisotropic 

damage formulation. 

 The damage driving force ijY ±  is interpreted as the energy release rate according 

to the notion of fracture mechanics as argued by Abu Al-Rub and Voyiadjis (2003), 

where the following expression is proposed: 

 11
2

ijpq
rs ijab ab pq

rs

M
Y E σ σ

ϕ
± −

±

∂
= −

∂
 (2.41) 

 The rate of the equivalent damage eqϕ ±  (i.e. rate of damage accumulation) is 

defined as: 

 
0

with d
t

eq ij ij eq eq tϕ ϕ ϕ ϕ ϕ± ± ± ± ±= = ∫  (2.42) 

where the evolution equation for ijϕ±  is defined by: 

 ij d
ij

g
Y

ϕ λ
±

± ±
±

∂
=

∂
 (2.43) 
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where dλ
±  is the damage multiplier such that one can easily show from Eqs. (2.39)-(2.43) 

that dλ ϕ± ±= . This multiplier can be obtained from the following damage consistency 

conditions: 

 

effective (undamagedstate)0 0
0, 0, and damage initiation0 0

damage growth0 0

d

d d

d

g g g
λ

λ λ

λ

±

± ±± ± ±

±

⎧ ⎫ ⎧< ⇒ =
⎪ ⎪ ⎪⎪ ⎪≤ = ⇔⎨ ⎬ ⎨= ⇒ =
⎪ ⎪ ⎪
= ⇒ >⎪ ⎪ ⎩⎩ ⎭

 (2.44) 

 

2.6 Tensile and Compressive Damage Evolution Laws 

In this research, two damage evolution laws, an exponential law and a power law, for 

both tensile and compressive loading cases are proposed and tested to see which one is 

more suitable than the other in predicting the damage behavior in concrete when 

compared to experimental data. 

2.6.1 Exponential Damage Evolution Law 

The following exponential tensile and compressive damage evolution laws are proposed 

for eqϕ±  in Eq. (2.42): 

 0

0

1 exp 1eq
K KB
K K

ϕ
+ +

+ +
+ +

⎡ ⎤⎛ ⎞⎛ ⎞
= − −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.45) 

 
0

1 exp 1eq
KB
K

ϕ
−

− −
−

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (2.46) 

where B±  is a material constant, which is related to the tensile and compressive fracture 

energies, and therefore can be calibrated from the uniaxial tensile and compressive 



38 
 

stress-strain diagrams. Both exponential damage evolution laws have similar form, 

however, the term 0 /K K+ + , the ratio of the tensile damage threshold to the tensile 

damage hardening function, is multiplied to the tensile damage evolution law in order to 

control the tensile damage evolution rate. The main advantage of the exponential 

damage evolution law is that there is only one material constant in each law, B± , which 

needs to be identified from experimental data. The above expressions are to a great 

extent similar to those proposed by Mazars and Pijaudier-Cabot (1989). 

 In the case of using the exponential damage evolution law, the evolution of the 

tensile and compressive damage isotropic hardening functions K +  and K −  in Eq. (2.39) 

can be derived by taking time derivative of Eqs. (2.45) and (2.46) as follows: 

 
0 0

exp 1 eq
K KK B

K KB
K

ϕ
+ +

+ + +
+ +

+
+

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦+
 (2.47) 

 0

0

exp 1 eq
K KK B
B K

ϕ
− −

− − −
− −

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (2.48) 

The above evolution equations are useful in the development of numerical algorithms as 

is seen later in this research. 

2.6.2 Power Damage Evolution Law 

The following power tensile and compressive damage evolution laws are proposed in 

order to improve the capability of the damage model for the prediction of the concrete 

behavior and to compare it to the exponential damage low which is widely used in the 

literature, such that: 
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 0

0

1
q

eq
K KB
K K

ϕ

+
+ +

+ +
+ +

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (2.49) 

 
0

1
q

eq
KB
K

ϕ

−
−

− −
−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.50) 

where B±  and q±  are material constants. The expense of this proposition is that one 

needs to identify more material constant from experimental data as compared to the 

exponential damage laws. However, it will be shown in the analysis section that even 

setting 1q± =  gives better predictions than the exponential damage laws.    

 Similarly, for the power damage laws, one can obtain the evolution of the 

damage isotropic hardening functions  K +  and K −  by taking the time derivative of Eqs. 

(2.49) and (2.50) as follows: 

 
1

00
0

1
1

q

eq
K KK

KKB q K
K

ϕ

+−+ +
+ +

++
+ + +

+

⎡ ⎤
= −⎢ ⎥⎛ ⎞ ⎣ ⎦− +⎜ ⎟

⎝ ⎠

 (2.51) 

 
1

0

0

1
q

eq
K KK

B q K
ϕ

−−− −
− −

− − −

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (2.52) 

 It is noted that the tensile and compressive exponential and power damage 

evolution laws in Eqs. (2.45) and (2.46) and Eqs. (2.49) and (2.50) obey the fundamental 

principle that the damage is not initiated until the damage hardening function K ±  is 

greater than the damage threshold 0K ± . It is also noteworthy that when concrete is under 

tensile loading, the tensile yielding of the material is almost coincide with the damage 
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initiation. Therefore, the tensile yield strength 0f
+  and the tensile damage threshold 0K +  

have almost the same value, and the gap between the two parameters is not significant 

even though the tensile damage threshold 0K +  is greater than the tensile yield strength 

0f
+ . When concrete is under compressive loading, however, the compressive damage is 

initiated later than the compressive yielding of the material. Therefore, the compressive 

damage threshold 0K −  is always greater than the compressive yield strength 0f
− . 
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CHAPTER III 

CONSISTENT THERMODYNAMIC FORMULATION 

 

The thermodynamic admissibility of the proposed anisotropic damage model is checked 

by following the internal variable procedure of Coleman and Gurtin (1967). The 

constitutive equations are derived from the second law of thermodynamics, the 

expression of Helmholtz free energy, the additive decomposition of the total strain rate 

in to elastic and plastic components, the Clausius-Duhem inequality, and the maximum 

energy dissipation principle. 

 

3.1 Plasticity and Damage Internal State Variables 

The Helmholtz free energy can be expressed in terms of a suitable set of internal state 

variables that characterize the elastic, plastic, and damage behavior of concrete. In this 

research the following internal variables are assumed to satisfactory characterize the 

concrete behavior both in tension and compression such that: 

 ( ), , , , , ,e
ij ij ij eq eq eq eqψ ψ ε ϕ ϕ ϕ ϕ ε ε+ − + − + −=  (3.1) 

where eqϕ+  and eqϕ−  are the equivalent (accumulated) damage variables for tension and 

compression , respectively, which are defined as 
0

d
t

eq eq tϕ ϕ± ±= ∫ . Similarly, eqε +  and eqε −  

are the equivalent tensile and compressive plastic strains that are used here to 

characterize the plasticity isotropic hardening, 
0

d
t

eq eq tε ε± ±= ∫ . 
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 The Helmholtz free energy is given as a decomposition of elastic eψ , plastic pψ , 

and damage dψ , parts such that:  

 ( , , ) ( , ) ( , )e e p d
ij ij ij eq eq eq eqψ ψ ε ϕ ϕ ψ ε ε ψ ϕ ϕ+ − + − + −= + +  (3.2) 

 It can be noted from the above decomposition that damage affects only the elastic 

properties and not the plastic ones. However, for a more realistic description, one should 

introduce the damage variables in the plastic part of the Helmholtz free energy (Abu Al-

Rub and Voyiadjis 2003). However, these effects are not significant for brittle materials 

and can, therefore, be neglected. 

 

3.2 Analytical Form for the Helmholtz Free Energy Density 

The elastic free energy eψ  is given in term of the second-order damage tensors ijϕ±  as 

follows: 

 1 1 1( , ) ( )
2 2 2

e e e e e
ij ijkl ij ij kl ij ij ij ij ijEψ ε ϕ ϕ ε σ ε σ σ ε+ − + −= = = +  (3.3) 

Substituting Eqs.  (2.21) along with Eqs.  (2.15) and (2.25), considering Eq. (2.10) into 

Eq. (3.3) and making some algebraic simplifications, one obtains the following relation: 

 1 1
2 2

e e e
ijpq pq ij ij ijMψ σ ε σ ε= =  (3.4) 

The plastic part of the Helmholtz free energy function is postulated to have the 

following form (Abu Al-Rub and Voyiadjis 2003): 
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 2
0 0

1 1( ) exp( )
2

p
eq eq eq eq eqf h f Q b

b
ρψ ε ε ε ε ε+ + + + − − − − − −

−

⎛ ⎞= + + + + −⎜ ⎟
⎝ ⎠

 (3.5) 

The damage part of the Helmholtz free energy functions for the exponential and the 

power damage evolution laws are postulated to have the following form: 

(1) for the exponential damage evolution law 

 { }0
1 (1 ) ln(1 )d

eq eq eq eqK
B

ρψ ϕ ϕ ϕ ϕ± ± ± ± ±
±

⎡ ⎤= + − − +⎢ ⎥⎣ ⎦
 (3.6) 

(2) for the power damage evolution law 

 
1 1

0
1

1

q
d q

eq eq
qK

q B
ρψ ϕ ϕ

±

±
± +

± ±
± ±

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= + ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
 (3.7) 

where 0K ±  is the initial damage threshold and B±  are material constants which are 

expressed in terms of the fracture energy. 

 

3.3 Plasticity and Damage Thermodynamic Conjugate Forces 

The Clausius-Duhem inequality for isothermal conditions (i.e. there is no change in 

temperature), which is the fundamental inequality for deriving constitutive equations, 

can be obtained through the thermodynamic requirement that the rate of the free energy 

should be less than or equal to the rate of external work, such that: 

 extρψ
Γ

≤∫
d dV P
dt

 (3.8) 
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where ρ  is the material density, Γ  is a sub-volume of the body V , d dt  indicates 

derivative with respect to time, and extP  is the external power (rate of external work), 

which according to the first law of thermodynamics (i.e. conservation of energy) should 

be equal to the internal power intP  such that 

 ext int=P P  (3.9) 

where  intP  can be simply expressed as follows 

 int σ ε
Γ

= ∫ ij ijP dV  (3.10) 

Therefore, using the conservation of mass along with the conservation of energy, Eq. 

(3.9), into Eq. (3.8) along with Eq. (3.10) one can write the following inequality: 

 ( ) 0σ ε ρψ
Γ

− ≥∫ ij ij dV  (3.11) 

From the above equation one can express the Clausius-Duhem inequality for isothermal 

case as follows: 

 0ij ijσ ε ρψ− ≥  (3.12) 

Taking the time derivative of Eq. (3.2), the following expression can be written: 

 
e e e p p d d

e
ij ij ij eq eq eq eqe

ij ij ij eq eq eq eq

ψ ψ ψ ψ ψ ψ ψψ ε ϕ ϕ ε ε ϕ ϕ
ε ϕ ϕ ε ε ϕ ϕ

+ − + − + −
+ − + − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (3.13) 
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By plugging the above equation into the Clausius-Duhem inequality, Eq. (3.12), and 

making some simplifications, one can obtain the following relations for any admissible 

states such that: 

 
e

ij e
ij

ψσ ρ
ε

∂
=

∂
 (3.14) 

and 

 0p
ij ij ij ij ij ij eq eq eq eqY Y c c K Kσ ε ϕ ϕ ε ε ϕ ϕ+ + − − + + − − + + − −+ + − − − − ≥  (3.15) 

where the damage and plasticity conjugate forces that appear in the above expression are 

defined as follows: 

 
e

ij
ij

Y ψρ
ϕ

+
+

∂
= −

∂
 (3.16) 

 
e

ij
ij

Y ψρ
ϕ

−
−

∂
= −

∂
 (3.17) 

 
d

eq

K ψρ
ϕ

+
+

∂
=

∂
 (3.18) 

 
d

eq

K ψρ
ϕ

−
−

∂
=

∂
 (3.19) 

 
p

eq

c ψρ
ε

+
+

∂
=

∂
 (3.20) 

 
p

eq

c ψρ
ε

−
−

∂
=

∂
 (3.21) 
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3.4 Maximum Dissipation Energy Principle 

The Clausius-Duhem inequality can be rewritten to yield the dissipation energy, Π , due 

to plasticity, pΠ , and damage, dΠ , such that 

 0d pΠ = Π +Π ≥  (3.22) 

with 

 0p p
ij ij eq eqc cσ ε ε ε+ + − −Π = − − ≥  (3.23) 

 0d
ij ij ij ij eq eqY Y K Kϕ ϕ ϕ ϕ+ + − − + + − −Π = + − − ≥  (3.24) 

 The rate of the internal variables associated with plastic and damage 

deformations are obtained by utilizing the calculus of functions of several variables with 

the plasticity and damage Lagrangian multipliers, pλ  and dλ
± , such that the following 

objective function can be defined: 

 0p p
d dF g gλ λ λ+ + − −Ω = Π − − − ≥  (3.25) 

 Using the well known maximum dissipation principle (Simo and Honein 1990; 

Simo and Hughes 1998), which states that the actual state of the thermodynamic forces 

( ijσ , ijY ± , c± , K ± ) are that which maximizes the dissipation function over all other 

possible admissible states, hence, one can maximize the objective function Ω  by using 

the necessary conditions as follows: 

 0, 0, 0, 0
ij ijY c Kσ ± ± ±

∂Ω ∂Ω ∂Ω ∂Ω
= = = =

∂ ∂ ∂ ∂
 (3.26) 
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 Substituting Eq. (3.25) along with Eqs. (3.23) and (3.24) into Eqs. (3.26) yield 

the following thermodynamic laws: 

 
p

p p
ij

ij

Fε λ
σ
∂

=
∂

 (3.27) 

 ij d
ij

g
Y

ϕ λ
+

+ +
+

∂
=

∂
 (3.28) 

 ij d
ij

g
Y

ϕ λ
−

− −
−

∂
=

∂
 (3.29) 

 
p

p
eq

F
c

ε λ+
+

∂
=

∂
 (3.30) 

 
p

p
eq

F
c

ε λ−
−

∂
=

∂
 (3.31) 

 eq d
g
K

ϕ λ
+

+ +
+

∂
=

∂
 (3.32) 

 eq d
g
K

ϕ λ
−

− −
−

∂
=

∂
 (3.33) 

 

3.5 Derivation of the Elastic, Plastic, Damage Constitutive Laws 

The elastic part of the Helmholtz free energy function, eψ , as presented in Eq. (3.3) can 

be substituted into Eq. (3.14) to yield the following stress-strain relation: 

 ( )e p
ij ijkl kl ijkl kl klE Eσ ε ε ε= = −  (3.34) 



48 
 

 Now, one can obtain expressions for the damage driving forces ijY ±  from Eqs. 

(3.3), (3.16), and (3.17) as follows: 

 
1
2

ijkle e
rs ij kl

rs

E
Y ε ε

ϕ
±

±

∂
= −

∂
 (3.35) 

By taking the derivative of Eq. (2.20) with respect to the damage parameter ijϕ±  one 

obtains: 

 ijkl ijmn
mnkl

rs rs

E M
E

ϕ ϕ± ±

∂ ∂
=

∂ ∂
 (3.36) 

Now, by substituting Eq. (3.36) into Eq. (3.35), the expression for ijY ±  can be obtained: 

 1
2

ijmne e
rs ij mnkl kl

rs

M
Y Eε ε

ϕ
±

±

∂
= −

∂
 (3.37) 

where from Eq. (2.25), one can write the following expression: 

 ijmn ijpq
pqmn

rs rs

M M
P

ϕ ϕ

±
±

± ±

∂ ∂
=

∂ ∂
 (3.38) 

 One can also rewrite Eq. (3.37) in terms of the effective stress tensor by 

replacing e
klε  from Eq. (2.17)2 as follows: 

 11
2

ijpq
rs ijab ab pq

rs

M
Y E σ σ

ϕ
± −

±

∂
= −

∂
 (3.39) 
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 Substituting Eq. (3.5) into Eqs. (3.26) and (3.27) yields the following expressions 

for the plasticity conjugate forces c+  and c−  that are equal to Eq. (2.34): 

 0 eqc f h ε+ + + += +  (3.40) 

 0 1 exp( )eqc f Q b ε− − − − −⎡ ⎤= + − −⎣ ⎦  (3.41) 

 Substituting Eq. (3.6) into Eqs. (3.18) and (3.19), the following expressions for 

the damage isotropic hardening function K ±  for the exponential damage evolution law 

can be easily obtained: 

 0
11 ln(1 )eqK K

B
ϕ± ± ±

±

⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (3.42) 

 Similarly, one can derive the damage isotropic hardening function K ±  for the 

power damage evolution law by substituting Eq. (3.7) into Eqs. (3.18) and (3.19) as 

follows: 

 
1

0
11

q

eqK K
B

ϕ
±

± ± ±
±

⎡ ⎤
⎛ ⎞⎢ ⎥= + ⎜ ⎟⎢ ⎥⎝ ⎠

⎣ ⎦
 (3.43) 

 By taking the time derivative of the above Eqs. (3.42) and (3.43) separately, one 

retrieves the rate form of the damage hardening/softening function K ±  for the 

exponential and the power damage evolution laws presented in Eqs. (2.47) - (2.52) such 

that: 
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 (1) for the exponential damage evolution law 

 0

0

exp (1 ) eq
K KK B
B K

ϕ
± ±

± ± ±
± ±

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
 (3.44) 

 (2) for the power damage evolution law 

 
1

0

0

1
q

eq
K KK

B q K
ϕ

±−± ±
± ±

± ± ±

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (3.45) 

 It is noteworthy that the expression of the tensile damage functions K + , for the 

exponential and the power damage evolution law presented in Eqs. (2.47) and (2.51), is 

slightly different with the expression shown in Eqs. (3.44) and (3.45). However, in the 

remaining of this study, Eqs. (2.47) and (2.51) are used. This is attributed to the better 

representation of the stress-strain diagram under tensile loading.  
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CHAPTER IV 

FINITE ELEMENT IMPLEMENTATION 

 

The time descretization and numerical integration procedures for the presented elasto-

plastic-damage model are presented in this chapter. The evolutions of the plastic and 

damage internal state variables can be obtained if the Lagrangian multipliers pλ  and dλ
±  

are computed. Therefore, the plasticity and damage consistency conditions, Eqs. (2.36) 

and (2.44), are used for computing both pλ  and dλ
± . This is shown in the subsequent 

developments. Then, at the beginning of the step, by applying the given strain increment 

( 1) ( )n n
ij ij ijε ε ε+Δ = −  and knowing the values of the stress and internal variables from the 

previous step, ( )( )ni , the updated values at the end of the step, ( )( 1)n+i , are obtained.  

 The implemented integration scheme is divided into two sequential steps, 

corresponding to the plastic and damage parts of the model. In the plastic part, the plastic 

strain p
ijε  and the effective stress ijσ  at the end of the step are determined by using the 

classical radial return mapping algorithm (Simo and Hughes 1998), such that one can 

write from Eqs. (2.17)2,  (2.4), and (2.35) the following algorithmic step: 

 ( )

p
tr p tr p

ij ij ijkl kl ij ijkl n
kl

FE Eσ σ ε σ λ
σ
∂

= − Δ = −Δ
∂

 (4.1) 

where ( )tr n
ij ij ijkl klEσ σ ε= + Δ  is the trial stress tensor, which is easily evaluated from the 

given strain increment. Also, substituting Eqs. (2.18) and (2.38) into Eq. (4.1), the above 

equation can be rewritten as follows: 
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( 1)

( 1)
6 3

n
ijtr p

ij ij p ijn
ij

s
G K

s
σ σ λ α δ

+

+

⎡ ⎤
⎢ ⎥= −Δ +
⎢ ⎥⎣ ⎦

 (4.2) 

where || ||ij ij ijs s s=  and ijs  is the deviatoric component of the effective stress tensor ijσ . 

If the trial stress is not outside the yield surface, i.e. ( )( ), 0tr n
ij cf cσ ≤ , the step is elastic 

and one sets 0pλΔ = , ( 1)tr n
ij ijσ σ += , ( 1) ( )p n p n

ij ijε ε+ = , ( 1) ( )n nc c± + ±= . However, if the trial 

stress is outside the yield surface, then ( 1)n
ijσ + , ( 1)p n

ijε
+ , and ( 1)nc± +  are determined by 

computing pλΔ . 

 In the damage part, the nominal stress ijσ  at the end of the step is obtained from 

Eq. (2.15) by knowing the damage variables ijϕ± , which can be calculated once dλ
±Δ  are 

computed from the damage consistency conditions in Eq. (2.44). Therefore, a decoupled 

updating algorithm is proposed in this research where the constitutive equations are 

updated first in the effective configuration and then the damaged variables are calculated 

in terms of the effective quantities which are the used to update the constitutive 

equations in the damaged configuration. 

 

4.1 Computation of the Plastic Multiplier with a Semi-explicit Algorithm 

From the plasticity consistency condition in Eq. (2.36), one can write the following 

relation at 1n+  step: 

 ( 1) ( ) 0n nf f f+ = + Δ =  (4.3) 
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where since ( )max, , ,ij eq eqf f σ σ ε ε− +=  from the Eq. (2.30), the increment of the plastic 

yield function fΔ  can be expressed as follows: 

 max
max

ˆ 0ˆij eq eq
ij eq eq

f f f ff σ σ ε ε
σ ε εσ

− +
− +

∂ ∂ ∂ ∂
Δ = Δ + Δ + Δ + Δ =

∂ ∂ ∂∂
 (4.4) 

where 

 
( )1

136 3
tr
ij ijtr p

ij ij p ij
ij

I
G K

s

σ δ
σ σ λ α δ

⎡ ⎤−
⎢ ⎥Δ = Δ −Δ +
⎢ ⎥⎣ ⎦

 (4.5) 

( )1
max 13

max max

ˆ
ˆ ˆ 6 3tr p

p
ij

I
G K

s

σ
σ σ λ α

⎡ ⎤−
⎢ ⎥Δ = Δ −Δ +
⎢ ⎥⎣ ⎦

 (4.6) 

 
max

ˆ

p
p

eq
Frε λ
σ

+ ∂
Δ = Δ

∂
 (4.7) 

 ( )
min

1 ˆ

p
p

eq
Frε λ
σ

− ∂
Δ = − − Δ

∂
 (4.8) 

 In order to go back radially to the yield surface, the following assumption is 

made (Simo and Hughes, 1998): 

 
( 1)

( 1)

n tr
ij ij

n tr
ij ij

s s
s s

+

+
=  (4.9) 

Substituting Eqs. (2.30), (2.37), (4.5)-(4.8) into Eqs. (4.4) and (4.3), and then by making 

few algebraic manipulations, one can obtain the plastic multiplier pλΔ  from the 

following expression: 



54 
 

 
tr

p f
H

λΔ =  (4.10) 

where trf  and H  are given as follows: 

 ( )3
1 max max2

ˆ ˆ( ) (1 )tr tr tr tr tr tr n
ijf s I H cα β σ σ α −= + + − −  (4.11) 

 ( )max
min max

ˆ3 9 (1 ) ˆ ˆ

p p
tr tr

p tr trtr tr
eq eq

f F f FH G K H Z r rα α β σ
ε εσ σ− +

∂ ∂ ∂ ∂
= + + + − −

∂ ∂∂ ∂
 (4.12) 

with 

 max 12
3

ˆ
6 3

tr tr

ptr tr
ij ij

IZ G K G
s s
σ α= + −  (4.13) 

 
1

min,max 13

min,max

ˆ( )3
ˆ 2

tr trp

ptr tr
ij

IF
s

σ
α

σ
−∂

= +
∂

 (4.14) 

 (1 ) exp( )eqtr
eq

f Q b bα ε
ε

− − − −
−

∂
= − − −

∂
 (4.15) 

 max 2

(1 )ˆ
( )

tr
tr

eq

f c h
c
ασ

ε

− +

+ +

∂ −
= −〈 〉

∂
 (4.16) 

 

4.2 Computation of the Plastic Multiplier with a Semi-implicit Algorithm 

4.2.1 Effective (Undamaged) Elastic Predictor 

Assuming that the variables of the model at iteration i , the trial elastic stress can be 

given in the corotational frame by the following relation: 

 ( 1) ( ) ( )( )tr n p n n
ij ijkl kl kl ij ijkl klE Eσ ε ε σ ε+= − = + Δ  (4.17) 
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Note that ( )n
ijσ is calculated from the previous step. If ( )( ), 0tr n

ij cf cσ <  then:  

 ( 1)n tr
ij ijσ σ+ =  (4.18) 

4.2.2 Effective Plastic Corrector 

The plastic-corrector problem may then be stated as (the objective rates reduce to a 

simple time derivative due to the fact that the global configuration is held fixed), such 

that the effective plastic corrector is derived as follows: 

 ( 1) ( )n n tr p
ij ij ij ij ijkl klEσ σ σ σ ε+ = + Δ = − Δ  (4.19) 

4.2.3 Effective Plastic Consistency Condition 

The plastic consistency condition (i.e., 0f = ) is satisfied at the end of the loading step 

for the effective (undamaged) case presented here. The Drucker-Prager flow rule is used 

and presented below. In the approach followed in this study, the consistency condition is 

transformed into a linear set of equations that depends on the material parameters and on 

the current coordinates of the integration points.  

 To compute p
klεΔ  in Eq. (4.19), the generalized mid-point rule is used. The flow 

rule for 1n+  step can be written as the following: 

 ( 1)
p p

kl n
kl

Fε λ
σ +

∂
Δ = Δ

∂
 (4.20) 

where ( 1)n
kl

F
σ +

∂
∂

 is given as the following: 
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( 1)

( 1) ( 1)

3
2

n
kl

p kln n
kl ij

sF
s

α δ
σ

+

+ +

∂
= +

∂
 (4.21) 

where ij ij ijA A A= and pλ is the plastic multiplier or also known as Lagrangian 

Multiplier.  

 The elasticity tensor in the undamaged configuration is given by: 

 2 dev
ijkl ijkl ij klE GI Kδ δ= +  (4.22) 

where G and K are the effective shear and bulk moduli, respectively, and 

1
3

dev
ijkl ik jl ij klI δ δ δ δ= − . 

 By substituting Eq. (4.22) along with the identity tensor for the deviatoric case, 

one obtains the updated effective stress by the return mapping equation as follows: 

 ( 1) 2
32 ( )n tr p p

ij ij ij kk ijG K Gσ σ ε ε δ+ ⎡ ⎤= − Δ + − Δ⎣ ⎦  (4.23) 

where p
kkεΔ  can now be obtained from Eqs. (4.20) and (4.21)  as follows: 

 3p p
kk pε α λΔ = Δ  (4.24) 

 By substituting Eqs.(4.20), (4.21), and (4.24) into Eq. (4.23), the updated 

effective stress can be rewritten as follows: 

 
( 1)

( 1) 3 2
2 3( 1)

2 ( )(3 )
n

ijn tr p p
ij ij p ij p ijn

ij

s
G K G

s
σ σ λ α δ α λ δ

+
+

+

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= − + + − Δ⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

 (4.25) 
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  Expanding and then simplifying the above equation, one can obtain the 

following form: 

 
( 1)

( 1)
( 1)

6 3
n

ijn tr p
ij ij p ijn

ij

s
G K

s
σ σ λ α δ

+
+

+

⎡ ⎤
⎢ ⎥= −Δ +
⎢ ⎥⎣ ⎦

 (4.26) 

 In order to return radially to the yield surface, one can use the radial return 

algorithm assumption such that: 

 
( 1)

( 1)

n tr
ij ij

n tr
ij ij

s s
s s

+

+
=  (4.27) 

where 1
3

tr tr tr
ij ij kk ijs σ σ δ= − . Therefore, at step 1n+ , one can write the following 

expressions for the deviatoric stress and the corresponding volumetric stress part, 

respectively: 

 ( 1) 6
tr

ijn tr p
ij ij tr

ij

s
s s G

s
λ+ = −Δ  (4.28) 

 ( 1)
1 1 9n tr p

pI I Kλ α+ = − Δ  (4.29) 

Multiplying both sides of Eq. (4.28) by 
tr

ij
tr

ij

s
s

 and applying the assumption of Eq. (4.27), 

the deviatoric stress at Eq. (4.28) can be rewritten as follows: 

 ( 1) 6n tr p
ij ijs s G λ+ = − Δ  (4.30) 
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4.2.4 Spectral Return-mapping Algorithm 

A return-mapping algorithm based on a spectral decomposition of the stress is presented. 

It is considered that the spectral return-mapping algorithm has the advantage for a yield 

function which includes principal stress terms in addition to the stress tensor invariants 

(Lee and Fenves 2001). For this work similar to the work that conducted by Fenves and 

Lee (2001), a decoupled version of the return-mapping algorithm is derived using a 

spectral decomposition. A second-order tensor is used for the stresses and strains. 

 The spectral decomposition of the stress at step 1n+  is given as follows: 

 ( 1) ( 1)ˆn n
ij ir rs jsl lσ σ+ +=  (4.31) 

Therefore, one can write ( 1) ( 1)ˆ( ) ( )n n
ij ijF Fσ σ+ += . As a result, one can express the following 

expressions in terms of the principal values as follows: 

 ( 1)
ˆ

ˆ
p p

ij n
ij

Fε λ
σ +

∂
Δ = Δ

∂
 (4.32) 

 ( 1)ˆ
p p

ij ir jsn
rs

Fl lε λ
σ +

∂
Δ = Δ

∂
 (4.33) 

 By substituting Eqs.(4.24), (4.31), and (4.33) into Eq. (4.23), one can write the 

return-mapping equation in the following form: 

 ( 1) 2
3( 1)

ˆ 2 3( )ˆ
n tr p p

ir rs js ij ir js p ijn
ij

Fl l G l l K Gσ σ λ α λ δ
σ

+
+

⎡ ⎤∂
= − Δ + − Δ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (4.34) 

and, one can use the following relation for Kronecker delta: 
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 ij ir rs jsl lδ δ=  (4.35) 

Substitute Eq. (4.35) into Eq. (4.34), the trial stress can be obtained as follows: 

 ( 1) 2
3( 1)

ˆ 2 3( )ˆ
n tr p

ir rs js ij ir p rs jsn
rs

Fl l l G K G lσ σ λ α δ
σ

+
+

⎡ ⎤∂
= −Δ + −⎢ ⎥∂⎣ ⎦

 (4.36) 

 In the case that the symmetric matrices have repeated eigenvalues, they do not 

have a unique spectral decomposition form. Therefore, similar to Eq. (4.31) one can 

write the following relation: 

 ˆtr tr
ij ir rs jsl lσ σ=  (4.37) 

where, tr
ijσ is the diagonal eigenvalue matrix of the effective stress, and the orthogonal 

eigenvector matrix ijl becomes an orthogonal eigenvector matrix of the trial stress matrix 

according to the Lemma. This leads the decomposition from of tr
ijσ  (at step 1n+ ) as 

shown in the Eq.(4.37). 

 From Eq. (4.36) along with Eq. (4.37) one can write the decoupled form of the 

return-mapping equation as follows: 

 ( 1) 2
3( 1)

ˆ ˆ 2 3( )ˆ
n tr p

ij ij p ijn
ij

FG K Gσ σ λ α δ
σ

+
+

⎡ ⎤∂
= −Δ + −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (4.38) 

where, the derivative of the potential function with respect to the principal stress is given 

as follows: 
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( 1)

( 1) ( 1)

ˆ3
ˆ ˆ2

n
ij

p ijn n
ij ij

sF
s

α δ
σ

+

+ +

∂
= +

∂
 (4.39) 

However, using Eq.(4.27), one can obtain the following expression: 

 1
( 1)

ˆ3 1
ˆ ˆ ˆ2 6

tr tr
ij

p ijn tr tr
ij ij ij

IF
s s

σ
α δ

σ +

⎛ ⎞∂ ⎜ ⎟= + −
⎜ ⎟∂ ⎝ ⎠

 (4.40) 

where 1 1
ˆtr trI I=  and ˆtr tr

ij ijs s= . 

 It should be noted that, the eigenvectors are preserved through the corrector steps 

which basically means that the eigenvectors are calculated at the predictor step. The 

principal stress is only needed to be computed at the plastic and degradation corrector 

steps. 

 Now, by substituting the final form of Eq. (4.40) into Eq. (4.38), one can obtain 

the following form: 

 ( 1) 1
ˆ 2ˆ ˆ 6 3

3

tr tr
ijn tr p

ij ij p ijtr tr
ij ij

IG K G
s s
σ

σ σ λ α δ+
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − Δ + −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (4.41) 

In order to obtain ( 1)
max max

ˆ ˆn trσ σ+ = , one can rewrite the above relation such that: 

 ( 1) max 1
max max

ˆ 2ˆ ˆ 6 3
3

tr tr
n tr p

ptr tr
ij ij

IG K G
s s
σσ σ λ α+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − Δ + −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (4.42) 
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 It should be noted that, if the plastic increment pεΔ  is obtained by a linear 

combination of 1
ˆ

nσ +  and I , e.g. for the Drucker-Prager model, the algebraic order of the 

effective (undamaged) principal stresses is maintained at the corrector steps (Lee and 

Fenves 2001). This can be proven by checking the Eq. (4.42). The stress is obtained only 

by a scalar multiplication and constant-vector addition on the trial stress. The order of 

the diagonal entries therefore in the trial stress matrix cannot be changed. This argument, 

however, is not valid for the case when the given yield criterion, f  is used as a plastic 

potential function. This means that if one takes the derivative with respect of the 

maximum stresses, maxσ̂ , the algebraic order in the eigenvalue matrix does not preserve 

the same order, i.e., the order changes. 

4.2.5 Updating of the Effective (Undamaged) Stress Tensor 

Using the spectral form of the effective principal stress in Eq.(4.41), an implicit radial 

return-mapping algorithm is shown in order to evaluate the plastic multiplier, pλ .  

From the effective consistency condition, one can write the following relation at 

1n+  step: 

 ( 1) ( )n nf f f+ = +Δ  (4.43) 

where, 

 ( )( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
2 1 max max

ˆ ˆ3 (1 )n n n n n n nf J I H cα β σ σ α+ + + + + + − += + − − −  (4.44) 
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 In the above equation, the third term of right side, ( )( 1) ( 1) ( 1)
max max

ˆ ˆn n nHβ σ σ+ + +  can be 

rewritten as follows: 

 
( ) ( ) ( )

( ) ( )

( 1) ( 1) ( 1) ( ) ( 1) ( 1)
max max max max

( ) ( 1) ( 1) ( 1) ( 1)
max max max max

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

n n n n n n

n n n n n

H H

H H

β σ σ β β σ σ

β σ σ β σ σ

+ + + + +

+ + + +

= + Δ

= +Δ
 (4.45) 

where, the dimensionless constant β  is already defined in Eq. (2.31)2 and its increment 

has the form like below: 

 

( ) ( )
( )

( )

2

min maxmax

1 1

1
ˆ ˆˆ

p p
p

eq eq

c
c c

c c

r f F r f F
c

α α
β

λ
ε εσ σσ

−
− +

+ +

+ − +

− −
Δ = Δ − Δ

⎡ ⎤− ∂ ∂ ∂ ∂⎢ ⎥= Δ +
∂ ∂∂ ∂⎢ ⎥⎣ ⎦

 (4.46) 

where, 

 ( )
( )max 2

1ˆ
eq

c hf

c

α
σ

ε

− +

+ +

−∂
= −

∂
 (4.47) 

 ( ) ( )1 exp eq
eq

f Q b bα ε
ε

− − − −
−

∂ ⎡ ⎤= − − −⎣ ⎦∂
 (4.48) 

and, the increment of the tensile and compressive isotropic hardening functions is 

expressed as follows from the Eq. (2.34): 

 
max

ˆ

p
p

eq
eq

c Fc rhε λ
ε σ

+
+ + +

+

∂ ∂
Δ = Δ = Δ

∂ ∂
 (4.49) 
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 ( ) ( )
min

1 exp ˆ

p
p

eq eq
eq

c Fc r Q b bε ε λ
ε σ

−
− − − − − −

−

∂ ∂⎡ ⎤Δ = Δ = − − − Δ⎣ ⎦∂ ∂
 (4.50) 

 By substituting Eqs. (4.42) and (4.46) into Eq. (4.45), one can get the expression 

as follows: 

 
( ) ( ) ( )( 1) ( 1) ( 1) ( ) ( )

max max max max max

max

ˆ ˆ ˆ ˆ ˆ

ˆ

n n n n tr tr n tr p

p
p

tr tr
eq

H H H Z

f Fr

β σ σ β σ σ β σ λ

λ
ε σ

+ + +

+

= − Δ

∂ ∂
+ Δ

∂ ∂

 (4.51) 

where, 

 max 1
ˆ 26 3

3

tr tr

ptr tr
ij ij

IZ G K G
s s
σ α= + −  (4.52) 

Moreover, the fourth term of Eq. (4.44) also can be rewritten as follows: 

 
( ) ( ) ( )

( ) ( )

( 1) ( )

( )

min

1 1 1

1 1 ˆ

n n

p
n p

eq

c c c

f Fc r

α α α

α λ
ε σ

− + − −

−
−

− = − + − Δ

∂ ∂
= − + − Δ

∂ ∂

 (4.53) 

 By substituting Eqs.(4.29), (4.30), (4.51), and (4.53) into Eq. (4.44), and making 

few arithmetic manipulations, the plastic multiplier pλΔ can be expressed as follows: 

 
tr

p f
H

λΔ =  (4.54) 

where trf  and H  are given as: 
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 ( ) ( )3
1 max max2

ˆ ˆ( ) (1 )tr tr tr n tr tr n
ijf s I H cα β σ σ α −= + + − −  (4.55) 

 ( )( )
max

min max

ˆ3 9 (1 ) ˆ ˆ

p p
n tr

p tr trtr tr
eq eq

f F f FH G K H Z r rα α β σ
ε εσ σ− +

∂ ∂ ∂ ∂
= + + + − −

∂ ∂∂ ∂
 (4.56) 

 

4.3 The Elasto-plastic Tangent Stiffness 

From the plastic yield criterion defined in Eq. (2.30) and the relation in Eq. (4.43), the 

increment of the yield function, fΔ  is expressed as follows: 

 max
max

ˆ 0ˆij eq eq
ij eq eq

f f f ff σ σ ε ε
σ ε εσ

− +
− +

∂ ∂ ∂ ∂
Δ = Δ + Δ + Δ + Δ =

∂ ∂ ∂∂
 (4.57) 

Moreover, for the effective (undamaged) configuration, the relation between the 

effective stress increment ijσΔ  and the elastic strain increment e
ijεΔ  can be written in the 

following form from Eqs. (2.17)2 and (2.35), such that: 

 
p

e p
ij ijkl kl ijkl kl ijkl

kl

FE E Eσ ε ε λ
σ
∂

Δ = Δ = Δ −Δ
∂

 (4.58) 

 By substituting Eqs. (2.4) and (2.18) into the above equation, the above 

expression can be rewritten as follows: 

 ( ) ( )2 2
3 32 2 3

p
p

ij ij kk ij p ij
ij

FG K G G K Gσ ε ε δ λ α δ
σ

⎡ ⎤∂
Δ = Δ + − Δ −Δ − −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (4.59) 
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Furthermore, based on a spectral decomposition of the stress tensor, Eq. (4.59) can be 

written for the increment of the effective principal stresses ˆ
ijσΔ  as follows: 

 ( ) ( )2 2
3 3

ˆ 2 2 3ˆ

p
p

ij ri rs sj kk ij p ij
ij

FGl l K G G K Gσ ε ε δ λ α δ
σ

⎡ ⎤∂
Δ = Δ + − Δ − Δ − −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (4.60) 

where (1) (2) (3) T

ij i i il n n n⎡ ⎤= ⎣ ⎦  is a second-order tensor that contains the principal 

directions of ijσ , where (1)
in , (2)

in , and (3)
in  are the eigenvectors that corresponds to

(1)
max

ˆ ˆσ σ= , (2)σ̂ , and (3)
min

ˆ ˆσ σ= , respectively, and []T  designates the transpose. Thus, the 

increment in the maximum principal stress maxσΔ  can be written as follows: 

 ( ) ( )(1) (1) 2 2
max 3 3

max

ˆ 2 2 3ˆ

p
p

i ij j kk p
FGn n K G G K Gσ ε ε λ α
σ

⎡ ⎤∂
Δ = Δ + − Δ −Δ + −⎢ ⎥∂⎣ ⎦

 (4.61) 

 By substituting Eqs. (4.59), (4.61), and (2.32) into Eq. (4.57) and making few 

algebraic manipulations, one can get the expression of the plastic multiplier pλΔ  as a 

function of the strain rate ijεΔ  as follows: 

 ( )(1) (1) 2
3

max max

1 2 ˆ ˆ
p

ijkl k l kl kl
ij

f f fE G n n K G
H

λ δ ε
σ σ σ

⎧ ⎫∂ ∂ ∂⎪ ⎪Δ = + + − Δ⎨ ⎬∂ ∂ ∂⎪ ⎪⎩ ⎭
 (4.62) 

Then, by substituting Eq. (4.62) into Eq. (4.58), the stress rate ijσΔ  can be rewritten as a 

function of the rate of the total strain ijεΔ  as follows: 



66 
 

 ij ijkl klDσ εΔ = Δ  (4.63) 

where the fourth-order tensor ijklD  represents the elasto-plastic tangent stiffness in the 

effective configuration and is expressed as follows: 

 ( )(1) (1) 2
3

max

1 2ˆ

p

ijkl ijkl mnkl k l kl ijpq
mn pq

f f FD E E Gn n K G E
H

δ
σ σσ

⎧ ⎫∂ ∂ ∂⎡ ⎤= − + + −⎨ ⎬⎣ ⎦∂ ∂∂⎩ ⎭
 (4.64) 

 The above equation retains ijkl ijklD E=  if the material is under elastic deformation 

or there is no plastic flow. 

 

4.4 Computation of the Tensile and Compressive Damage Multiplier 

In the following, the damage multipliers, dλ
± , are obtained using the consistency 

conditions in Eq. (2.44). The incremental expression for the damage consistency 

condition can be written as: 

 ( 1) ( ) 0n ng g g± + ± ±= + Δ =  (4.65) 

where g±  is the tensile and compressive damage surface function given in Eq. (2.39) 

and g±Δ  is the increment of the damage function which is expressed by: 

 ij
ij

g gg Y K
Y K

± ±
± ± ±

± ±

∂ ∂
Δ = Δ + Δ

∂ ∂
 (4.66) 
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However, since ijY ±  is a function of ijσ ±  and ijϕ±  from Eq. (3.37), one can write the 

following: 

 ij ij
ij kl kl

kl kl

Y Y
Y σ ϕ

σ ϕ

± ±
± ± ±

± ±

∂ ∂
Δ = Δ + Δ

∂ ∂
 (4.67) 

where klϕ±Δ  is obtained from Eqs. (3.28) and (3.29), such that: 

 kl d
kl

g
Y

ϕ λ
±

± ±
±

∂
Δ = Δ

∂
 (4.68) 

and klσ ±Δ  can be obtained from Eq. (2.21) as follows: 

 klrs
kl mn rs klrs rs

mn

M Mσ ϕ σ σ
ϕ

±
± ± ± ± ±

±

∂
Δ = Δ + Δ

∂
 (4.69) 

 By substituting Eqs. (4.67)-(4.69) into Eq. (4.66) and noticing that 

eq ij ijλ ϕ ϕ ϕ± ± ± ±= = , one can obtain the following relation: 

 

ij ijklrs
rs d klrs rs

ij kl mn mn ij kl

ij
d d

ij kl kl eq

Y YMg g gg M
Y Y Y

Yg g g K
Y Y K

σ λ σ
σ ϕ σ

λ λ
ϕ ϕ

± ±±± ± ±
± ± ± ± ±

± ± ± ± ± ±

±± ± ± ±
± ±

± ± ± ± ±

∂ ∂∂∂ ∂ ∂
Δ = Δ + Δ

∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂
+ Δ + Δ
∂ ∂ ∂ ∂ ∂

 (4.70) 

 Substituting the above equation into Eq. (4.65), one obtains dλ
±Δ  by the 

following relation: 
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tr

d
d

g
H

λ
±

±
±Δ =  (4.71) 

where, trg±  is the trial value of the damage function, dH ±  is the tensile or compressive 

damage modulus and is given as follows: 

 ij ijklrs
d rs

ij kl mn mn ij kl kl eq

Y YMg g g g g KH
Y Y Y Y K

σ
σ ϕ ϕ ϕ

± ±±± ± ± ± ± ±
± ±

± ± ± ± ± ± ± ± ±

∂ ∂∂∂ ∂ ∂ ∂ ∂ ∂
= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (4.72) 

where,  

 1g
K

±

±

∂
= −

∂
 (4.73) 
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0

q
q

eq eq

KK B
B qϕ ϕ

±

±
−

±±

± ± ± ±

⎛ ⎞∂
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 (4.74) 
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CHAPTER V 

IDENTIFICATION OF MATERIAL PARAMETERS 

 

Material parameters, such as the tensile and compressive hardening modulus h+  and Q − , 

the tensile and compressive strength where uniaxial nonlinearity starts B± , the 

compressive hardening rate constant b− , and constants for the power tensile and 

compressive damage evolution law  q±  are calibrated in order for the application of the 

coupled plasticity-damage model to the analysis of plain concrete and to investigate the 

predictive capability of the proposed power damage evolution law. The algorithmic 

model presented in the previous chapter is coded as a UMAT user material subroutine 

and implemented in the commercial finite element software Abaqus, and the response of 

the constitutive model is compared to the uniaxial tensile and compressive loading-

unloading experimental results. 

 

5.1 Calibration of the Compressive Plasticity and Damage Evolution Laws from 

Loading-unloading Uniaxial Test 

The identification of the plastic and damage material constants is commonly relied on 

monotonic stress-strain experimental curves in the field of continuum damage mechanics. 

Such an approach, however, results in a non-unique determination of these material 

constants. Therefore, a simple procedure for the identification of plasticity and damage 

material parameters is addressed.  
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 Once the compressive yield strength 0f −  is determined from monotonic or cyclic 

experimental results, the cyclic loading-unloading uniaxial compressive stress-strain 

experimental curve should then be used in identifying unique values for the material 

constants Q−  and b−  in Eq. (2.34)1 and  B− , oK − , and q−  in Eqs. (2.48) and (2.52). 

Therefore, loading-unloading stress-strain data can be used to identify the material 

constants associated with the plasticity and damage constitutive equations 

simultaneously such that the reduction in Young’s modulus can be used to identify the 

damage parameters. Once the damage law is calibrated, it can then be used to establish 

the effective stress-strain diagram which helps to identify the plasticity material 

constants in the effective (undamaged) configuration. This is demonstrated in the 

following subsections for some experimental loading-unloading compressive stress-

strain diagrams. However, it is noteworthy that the values of Q−  and b−  are crucial for 

the evolution of the compressive damage density when using either the exponential or 

the power damage compressive evolution equations, Eqs. (2.48) and (2.52), and hence 

they are crucial for the accurate prediction of the nominal stress-strain relationship. For 

example, Figures. 5.1 and 5.2 show the evolution of the compressive damage density 

versus the applied strain by changing the values of the compressive plasticity hardening 

parameters Q−  and b− , respectively.  

 In the case of using the exponential damage evolution law, the damage evolution 

versus the applied strain, as expected, shows that the rate of damage growth is high 

initially and then decays to reach a constant value depending on Q − .  
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(a) 

 
(b) 

Figure 5.1 Evolution of the damage due to the change of the compressive hardening 
modulus Q−  for: (a) Exponential damage evolution law in Eq. (2.48) and (b) power 
damage evolution law in Eq. (2.52) 
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(a) 

 
(b) 

Figure 5.2 Evolution of the damage due to the change of the compressive hardening rate 
constant b−  for: (a) Exponential damage evolution law in Eq. (2.48) and (b) power 
damage evolution law in Eq. (2.52) 
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Meanwhile, when the power damage evolution law is used, the damage growth is slow 

initially and then increases with the strain, but decays at higher strains depending on the 

value of Q − to give a desirable S-shape for the damage evolution. Moreover, for both 

damage evolution laws, the value of b−  affect the damage nucleation and growth rate 

whereas the value of Q −  affect the final damage value. 

5.1.1 Prediction of the Test Result by Karsan and Jirsa (1969) 

Since the plasticity constitutive equations are defined in the effective configuration, 

stress-strain data for an undamaged material is needed to indentify the plasticity material 

constants. One can establish such an effective stress-strain diagram from the nominal 

(damaged) loading-unloading stress-strain data by determining the damaged Young’s 

modulus E , for each cycle which is shown in Figure 5.3. From Eqs. (2.7) and (2.8), one 

can define the effective stress σ  as ( / )E Eσ σ= , where E , E , and σ  are measurable 

quantities such that at each unloading point ( A  to E ) the damaged Young’s moduli are 

determined by connecting each unloading and reloading points ( 'A  to 'E ).  

 As shown in Figure 5.3, the experimental effective stress-strain shows an almost 

linear relation, and the predicted effective stress-strain curve is in close agreement with 

the experimental result. Based on this analysis, the compressive yield strength 0f
− , 

compressive hardening modulus Q − , and the compressive hardening rate constant b− , 

although there can be numerous combinations, are determined as 15 MPa, 74 MPa, and 

670, respectively. Moreover, from Eq. (2.8) and the measured damaged Young’s 

modulus in Figure 5.3, one can plot the variation of the damage density with strain as 
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shown in Figure 5.4(b) such that 1 /E Eϕ = −  . Hence, these data can be used in 

identifying the damage parameters B−  and q−  and the damage threshold 0K − .  

 

 
Figure 5.3 Experimental analysis and predicted stress-strain diagrams in the effective 
(undamaged) and nominal (damaged) configurations for Karsan and Jirsa (1969) 
experimental data 
 

 The predicted nominal stress-strain curves and the damage densities using the 

exponential and power damage evolution laws as compared to the experimental results 

are shown in Figures 5.4 and 5.5, and the identified compressive plasticity and damage 

material constants are listed in Table 5.1.  
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(a) 

 
(b) 

Figure 5.4 Comparison of the compressive loading-unloading analysis results with the 
experimental data by Karsan and Jirsa (1969) using the exponential damage evolution 
law: (a) Nominal stress-strain curve and (b) damage density 
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(a) 

 
(b) 

Figure 5.5 Comparison of the compressive loading-unloading analysis results with the 
experimental data by Karsan and Jirsa (1969) using the power damage evolution law: (a) 
Nominal stress-strain curve and (b) damage density 
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Table 5.1 Material constants identified from the experimental results by Karsan and 
Jirsa (1969) 

 E  
(MPa) 

ν  
0f −  

(MPa) 
Q −  

(MPa) 
b−  0K −  

(MPa) 
B−  q−  

Exponential law 
31,000 0.2 15 74 670 

25 0.45 - 

Power law 20 0.22 1.16 

 

 One can see that the power damage evolution law as in Figure 5.5 gives much 

better predictions of both the nominal stress-strain diagram and the damage density as 

compared to the predictions of the exponential damage law as in Figure 5.4. However, 

one may argue that the power damage law is associated with three material constants 

( B− , q− , and 0K − ) whereas the exponential damage law is as associated with only two 

material constants ( B−  and 0K − ) such that one can obtain better predictions with more 

material constants. 

 In fact, in this study, setting 1q− =  (i.e. linear damage law) in all the numerical 

examples yielded much better predictions than the exponential damage law. Moreover, 

the smoothness of the stress-strain diagram, the accurate prediction of the damaged 

modulus, and the S-shape of the variation of the damage density with strain are highly 

desirable predicted features by the power law (or linear law when 1q− = ). 

5.1.2 Prediction of the Test Result by Sinha et al.(1964) 

Following the same procedure as in the previous subsection, the effective stress-strain 

diagram for the experimental result carried by Sinha et al. (1964) is established from the 

nominal stress-strain loading-unloading diagram as shown in Figure 5.6. The predicted 
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effective stress-strain relation agrees well with the established effective stress-strain 

diagram if the values of the material constants 0f
− , Q − , and b−  are identified as 14 

MPa, 41 MPa, and 430, respectively. Furthermore, the compressive damage parameters 

are identified through fitting the established damage density versus strain from the 

nominal stress-strain loading-unloading experimental curve (see Figure 5.7(b)). The 

identified compressive plasticity and damage material constants associated with fitting 

the experimental data by Sinha et al. (1964) are listed in Table 5.2. These constants are 

then used to predict the nominal stress-strain diagram and damage density as shown in 

Figures 5.7 and 5.8 when using the exponential and power damage laws, respectively.  

 

 
Figure 5.6 Experimental analysis and predicted stress-strain diagrams in the effective 
(undamaged) and nominal (damaged) configurations for Sinha et al. (1964) experimental 
data 
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(a) 

 
(b) 

Figure 5.7 Comparison of the compressive loading-unloading analysis results with the 
experimental data by Sinha et al. (1964) using the exponential damage law: (a) Nominal 
stress-strain curve and (b) damage density 
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(a) 

 
(b) 

Figure 5.8 Comparison of the compressive loading-unloading analysis results with the 
experimental data by Sinha et al. (1964) using the power damage law: (a) Nominal 
stress-strain curve and (b) damage density 
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Table 5.2 Material constants identified from the experimental results of Sinha et al. 
(1964) 

 E  
(MPa) 

ν  
0f −   

(MPa) 
Q −  

(MPa) 
b−  0K −  

(MPa) 
B−  q−  

Exponential law 
19,000 0.2 14 41 430 

9 0.5 - 

Power law 14.1 0.2 1.57 

 

 It can be seen, as concluded from the previous analysis of Karsan and Jirsa (1969) 

data, that the power damage evolution law gives a more accurate description of the 

softening part of the stress-strain diagram, degradation of the Young’s modulus, and the 

S-shape curve for the damage density versus the applied strain. 

 

5.2 Calibration of the Tensile Plasticity and Damage Evolution Laws from Loading-

unloading Uniaxial Tests 

The procedure in section 5.1 for the identification of the material constants associated 

with the compressive plasticity and damage constitutive equations is also followed here 

for calibration of the tensile plasticity and damage constitutive equations. The loading-

unloading uniaxial tensile tests by Taylor (1992) are adopted in order to identify the 

material constants in Eqs. (2.34)2, (2.47), and (2.51) (i.e. 0f + , h+ , B+ , 0K + , and q+ ).  

 Figures 5.9 and 5.10 show the analysis results where the identified material 

constants are listed in Table 5.3 for both exponential and power damage evolution laws, 

respectively. Although the two laws give similar results for the case of tensile loading, 

the power damage evolution law gives closer predictions of the softening part of the 

stress-strain diagram as compared to the corresponding prediction by the exponential  
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(a) 

 
(b) 

Figure 5.9 Comparison of the uniaxial tensile loading-unloading analysis results with 
the experimental data by Taylor (1992) using the exponential damage law: (a) Nominal 
stress-strain curve and (b) damage density 
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(a) 

 
(b) 

Figure 5.10 Comparison of the uniaxial tensile loading-unloading analysis results with 
the experimental data by Taylor (1992) using the power damage law: (a) Nominal stress-
strain curve and (b) damage density 
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Table 5.3 Material constants identified from the experimental data by Taylor (1992) 

 E  (MPa) ν  0f + (MPa) 0K + (MPa) h+ (MPa) B+  q+

Exponential law 
31,000 0.2 3.40 3.43 4,500 

2.4 - 

Power law 1.9 0.7

  

damage evolution equation. For the result using the power damage law in Figure 5.10(a), 

the difference between the experimental and numerical stress-strain curve at the 

softening region still exists. This is because both the nominal stress-strain relation and 

the loading-unloading paths are considered simultaneously in calibrating the tensile 

constitutive equations. If the unloading parts are disregarded as in the case of monotonic 

uniaxial tensile loading, one can get a more precise prediction by using the power 

damage law, and those cases are considered in the next chapter. 
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CHAPTER VI 

VERIFICATION OF THE PROPOSED MODEL IN THE MACRO-SCALE 

 

The proposed coupled plasticity-damage model for plain concrete is verified on 

macroscopic level by comparing the response of the proposed constitutive model with 

various experimental data; monotonic uniaxial tension and compression, monotonic 

biaxial compression, and mixed mode fracture for different types of concrete. Moreover, 

as a result of the uniaxial loading-unloading tensile and compressive analysis performed 

at previous chapter, the power damage evolution law shows a better ability to predict the 

softening behavior of concrete for both compressive and tensile loading-unloading 

results. Therefore, the power damage evolution law, instead of the exponential damage 

law that has been used widely in the literature, is used in all of the following predictions 

and simulations. 

 

6.1 Monotonic Uniaxial Compressive Loading 

Two different monotonic uniaxial compressive experimental results (Karsan and Jirsa 

1969; Zhang 2001) are employed. The analysis results using the power damage 

evolution law are compared with the test results in Figures 6.1 and 6.2, and the material 

constants used for the prediction of the two test results are listed in Table 6.1. For both 

cases, the softening behaviors of concrete under compressive loading as well as the 

hardening regime are well predicted. However, it is noteworthy that since the loading-

unloading experimental data are not available for uniaxial compressive loading for the  
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 (a) 

 
(b) 

Figure 6.1 Prediction of the monotonic uniaxial compressive experimental data by 
Karsan and Jirsa (1969): (a) Stress-strain relation and (b) damage density 
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(a) 

 
(b) 

Figure 6.2 Prediction of the monotonic uniaxial compressive experimental data by 
Zhang (2001):  (a) Stress-strain relation and (b) damage density 
 
 

0

10

20

30

40

50

0 1 2 3 4 5

St
re

ss
 (M

Pa
)

Strain (1.0E-3)

Zhang 1, (2001)

Zhang 2, (2001)

Proposed model (Power law)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5

D
am

ag
e D

en
sit

y

Strain (1.0E-3)



88 
 

Table 6.1 Material constants used for the monotonic uniaxial compressive loading 
analysis 

 E  
(MPa) 

ν  0f −

 
(MPa) 

0K +

 
(MPa) 

Q −

(MPa) 
b−   B−  q−  

Karsan and 
Jirsa (1969) 

32,000 0.2 11 12.8 100 1350 0.11 0.93 

Zhang (2001) 38,000 0.2 40 41 36 1300 1.35 1.55 

 

concrete considered in Figures 6.1(a) and 6.2(a), which are crucial for identifying the 

material parameters of the compressive damage law, one may use another set of material 

constants in Table 6.1 to get analogous predictions. Hence, the loading-unloading 

experimental results are indispensable to obtain a unique set of material parameters. This 

is also true for the following monotonic uniaxial tensile loading predictions. 

 

6.2 Monotonic Uniaxial Tensile Loading 

Two representative monotonic uniaxial tensile tests (Gopalaratnam and Shah 1985; 

Zhang 2001) are compared with the analysis results using the proposed tensile damage 

evolution law. The tensile material constants used to predict the two test results are listed 

in Table 6.2, and Figures 6.3 and 6.4 show the analysis results. As seen, the predicted 

nominal stress-strain relations by the proposed constitutive model using the power 

tensile damage evolution law are in close agreement with the experimental results. 
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(a) 

 
(b) 

Figure 6.3 Prediction of the monotonic uniaxial tensile experimental data by 
Gopalaratnam and Shah (1985): (a) Stress-strain relation and (b) damage density 
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(a) 

 
(b) 

Figure 6.4 Prediction of the monotonic uniaxial tensile experimental data by Zhang 
(2001): (a) Stress-strain relation and (b) damage density 
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Table 6.2 Material constants used for the monotonic uniaxial tensile loading analysis 

 E  
(MPa) 

ν  0f +

(MPa) 
0K +

(MPa) 
h+  

(MPa) B+  q+  

Gopalaratnam and 
Shah(1985) 

31,000 0.2 3.45 3.52 15,000 1.4 0.6 

Zhang (2001) 34,000 0.2 3.39 3.40 4,500 3.1 0.67

 

6.3 Monotonic Biaxial Compressive Loading  

The biaxial compressive test results carried out by Kupfer et al. (1969) are adopted in 

this research in order to validate the proposed model. The analysis results are compared 

with the experimental results in Figures 6.5(a)-(c) and the damage densities of each case 

are compared in Figure 6.5(d). The material constants used in this simulation are listed 

in Table 6.3. Those material constants are determined from the monotonic uniaxial 

compressive loading test in Figure 6.5(a) and then the same properties are used in 

predicting the biaxial compressive experimental results in Figures 6.5(b) and (c). 

 The predicted results in Figures 6.5(b) and (c) agree well with the test results 

although the ultimate stress is somewhat over predicted. Moreover, the damage density 

of the specimen under loading condition 2 1/ 1/ 1σ σ = − −  is slightly higher than that of 

the specimen under uniaxial loading 2 1/ 1 /0σ σ = − , while the damage density of the 

specimen under the loading condition 2 1/ 1/ 0.52σ σ = − −  is lower. This implies that the 

lump sum of damage densities in all directions is the highest for equi-biaxial 

compressive loading. 
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(a) 

 
(b) 

Figure 6.5 The model response in uniaxial and biaxial compressive loading compared to 
experimental results reported by Kupfer et al. (1969): (a) 2 1/ 1/ 0σ σ = − , (b) 

2 1/ 1/ 1σ σ = − − , (c) 2 1/ 1/ 0.52σ σ = − − , and (d) damage density versus strain 
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(c) 

 
(d) 

Figure 6.5 Continued 
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Table 6.3 Material constants used for the biaxial compressive loading analysis 

E  (MPa) ν  0f − (MPa) 0K − (MPa) Q − (MPa) b−  B−  q−  

29,000 0.2 15.0 20.0 70.0 810 0.16 1.29 

 

 The variation of the ultimate compressive strength and the damage density 

according to the change of the biaxial stress ratio 11 22 1 2/ /S S σ σ=  are shown in Figure 

6.6. For this analysis, the maximum transverse directional displacement 2δ  is fixed to 

0.005− mm, and the maximum longitudinal displacement 1δ , considering the Poisson’s 

effect, is varied from 0.001mm to 0.005− mm for the biaxial stress ratio to be varied 

from 0 to 1. Each point in Figure 6.6 is obtained at a strain level of 3×10-3. One can 

notice that the ultimate compressive strength has a maximum value at a biaxial stress 

ratio of 0.4 while the damage density is minimum at a biaxial stress ratio of 0.3 and 

tends to increase as the biaxial stress ratio increases to a maximum value for equi-biaxial 

stress (i.e. stress ratio of 1) as concluded above. When the biaxial stress ratio is shifted 

from 0.0 to 0.1, both the ultimate compressive strength and the damage density of the 

element shows sudden change. This is due to the additional tensile damage induced by 

the longitudinal displacement 1δ  when the biaxial stress ratio is zero in order to maintain 

a zero biaxial stress ratio taking into consideration the Poisson’s effect such that the 

tensile damage accelerates the transverse directional compressive damage. 
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(a) 

 
(b) 

Figure 6.6 Variation of the model response by the change of the biaxial stress ratio. (a) 
Ultimate compressive strength, and (b) damage density 
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6.4 Simulation of the Mixed-mode Fracture of Plain Concrete 

The mixed-mode fracture of the double-edge-notched (DEN) specimen tested by Nooru-

Mohamed (1992) is simulated to verify the efficiency of the proposed constitutive model. 

The geometry of the DEN specimens and the loading setup are presented in Figure 6.7. 

The specimen dimensions are 200 mm × 200 mm square, 50 mm thick, and the length 

and height of the two notches are 25 mm and 5 mm, respectively. Although only two 

lading plates, top and left upper parts, were attached in the experimental set up, one 

more loading plate on the right upper part is attached additionally in the simulation in 

order to prevent the premature failure on the upper right and lower left-hand corners of 

the DEN specimen due to stress concentration. The vertical displacement vδ  of the 

specimen is an average displacement of 'MMδ  and 'NNδ . 

 
Figure 6.7 Geometry and loading of the DEN specimen (units: mm) 
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Figure 6.8 shows the plots of the initial mesh configurations of the performed FE 

analysis. Three mesh densities are used: coarse mesh with 1550 elements, medium mesh 

with 4704 elements, and fine mesh with 16052 elements and the size of the smallest 

element for coarse, middle, and fine mesh are 5.0 mm × 5.0 mm, 2.5 mm × 2.5 mm, and 

1.25 mm × 1.25 mm, respectively.  

 

 
(a)                                         (b)                                          (c) 

Figure 6.8 Meshes used in the simulations: (a) coarse mesh, (b) medium mesh, and (c) 
fine mesh 
 
Table 6.4 Material constants used for the DEN specimen fracture simulation 

Elastic Constants  Yield Criterion  Tensile Material Constants 

E  
(MPa) 

ν   α  pα   0f
+  

(MPa) 
0K +  

(MPa) 
h+  

(MPa) 
B+  q+  

30,000 0.2  0.12 0.2  3.5 3.55 4,500 0.71 1.17 

Compressive Material Constants 

0f
−  (MPa) Q−  (MPa) b−  0K −  (MPa) B−  q−  

15.0 120 1000 22 0.15 1.14 
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A three-dimensional (3D) stress 8-node linear brick element with one integration 

point is used. Although 3D simulations are performed, a 2 mm out-of-plane thickness is 

assumed instead of 50 mm actual thickness, and one element is taken through the 

thickness in order to reduce the simulation time. Same with the experimental set-up, 

bottom and right lower parts are fixed during whole loading steps, and a lateral (shear) 

force, SP , is applied first up to the specified value of 5 kN or 10 kN with a zero vertical 

force, and then a vertical displacement, U , is loaded while the SP  remains constant (see 

Figure 6.7). The material parameters that are used in this simulation are listed in Table 

6.4. These material constants are assumed in light of the numerical comparisons in the 

previous sections and that matches qualitatively the observed experimental crack 

trajectories in Nooru-Mohamed (1992). 

The crack propagation for two loading cases are shown in Figure 6.9 for the fine 

mesh, where the final shape of the crack patterns are compared to the crack patterns 

experimentally reported in  Nooru-Mohamed (1992) as overlapping each other. As 

shown, the initial slop of the crack increases in proportion to a rise in lateral shear force, 

SP , and the trajectories of the crack of the analysis are in close agreement with the 

experimental results for both lateral loading cases. The tensile damage patterns for the 

three mesh densities are compared for both loading cases in Figures 6.10 and 6.11. As 

can be shown, the model predicts qualitatively the crack patterns and trajectories almost 

independent of the mesh size. However, Figure 6.12 shows plots of the reaction force 

versus the average displacement vδ  in which the solution is dependent on the mesh 

density; particularly, the ultimate load and the post-peak response.  
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(a)                                                             (b) 

Figure 6.9 Damage evolution showing the trend of crack propagation for two loading 
conditions: (a) SP  = 5.0 kN and (b) SP  = 10.0 kN. The figures at the bottom show the 
final crack propagation path as compared to the reported experiments by Nooru-
Mohamed (1992) 

5.983v mδ μ=

15.97v mδ μ=

27.55v mδ μ=

55.83v mδ μ=

5.973v mδ μ=

17.47v mδ μ=

29.23v mδ μ=

58.74v mδ μ=
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(a)                                     (b)                                      (c) 

Figure 6.10 Simulated crack trajectories for the load case SP  = 5.0 kN for three mesh 
densities: (a) coarse, (b) medium, and (c) fine 
 

 
(a)                                     (b)                                      (c) 

Figure 6.11 Simulated crack trajectories for the load case SP  = 10.0 kN for three mesh 
densities: (a) coarse, (b) medium, and (c) fine 

 

As the mesh density increases, the load capacity decreases due to damage localization 

and higher damage density. This implies that the proposed local constitutive model with 

damage localization and softening cannot provide an objective description of the failure 

results quantitatively, but to a less extent qualitatively. 
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(a) 

 
(b) 

Figure 6.12 Load versus displacement curves for different mesh densities and for the 
loading cases: (a) SP  = 5.0 kN and (b) SP  = 10.0 kN 
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CHAPTER VII 

MESO-SCALE SIMULATION OF CEMENTITIOUS COMPOSITES 

 

Concrete can be considered as a three-phase composite material consisting of mortar 

matrix, aggregate, and interfacial transition zone (ITZ) between the aggregate and the 

mortar matrix. However, the majority of the conducted research on the inelastic and 

damage behavior of concrete materials and structures has been focused on treating 

concrete as a homogeneous material at the macroscopic scale which did not allow one to 

establish the microstructure-property relationship for designing better and superior 

fracture-resistant cementitious materials. Micromechanical modeling of the inelastic and 

damage behavior of each phase in the concrete material is not a trivial task since: (1) the 

properties of the ITZ, which plays a very important role in the concrete fracture behavior, 

are not easy to be measured experimentally; and (2) the computational cost is very high. 

However, due to the recent advances in understanding the chemical composition, 

thickness, and strength of the ITZ and the developments in computational power, one 

can effectively simulate the micromechanical behavior of concrete materials in order to 

get insights about the effect of various microstructure features (e.g. aggregate size, shape, 

gradation, and distribution, ITZ thickness and mechanical properties, the mortar 

mechanical properties, etc). This will ultimately guide the design of better and superior 

fracture resistant concrete materials and structures.  

At the macroscopic level, the crack nucleation and propagation in concrete 

material under loading is entirely dependent on the direction of principal stresses. At the 
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mesoscopic level, however, the size and distribution of aggregate and the strength of 

each phase have a significant effect on the damage initiation and crack propagation. 

Especially, the accurate understanding of the properties and behavior of ITZ is one of the 

most important issues in the meso-scale analysis because the damage is initiated at the 

weakest region and the ITZ is generally the weakest link in concrete. Although the 

characteristic of the ITZ is not clearly understood currently (Scrivener et al. 2004; 

Mondal et al. 2008, 2009), it can be assumed that the behavior of the ITZ, which has 

weaker mechanical properties, is similar to that of the mortar matrix but with reduced 

stiffness and strength. Based on this assumption, the material properties of the mortar 

matrix and the ITZ should be chosen carefully. Moreover, the aggregate is modeled as a 

linear elastic material since the aggregate shows more brittle behavior than the mortar 

matrix, and has a higher Young’s modulus and yield strength.  

In this study, two- and three-dimensional meso-scale computational simulations 

are conducted in order to investigate the effects of aggregate distribution, aggregate 

volume fraction, and ITZ thickness and properties on the overall tensile strength and 

micro-crack initiation and propagation of concrete. The proposed coupled plasticity-

damage model is adopted in order to simulate the inelastic and damage behavior of the 

mortar matrix and the ITZ separately. 

 

7.1 2-D Meso-scale Analysis Model of Concrete 

The representative volume element of size 100 mm × 100 mm, which is found to be 

representative of the statistical distribution of aggregates in concrete is shown in Figure 
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7.1. The well-known finite element code Abaqus via the user material subroutine UMAT 

is used for the meso-scale analysis and a 4-node bilinear plane stress quadrilateral 

element (CPS4R) is used for all models.  

 

 
Figure 7.1 2-D meso-scale analysis model of a concrete 

 

The radius of the coarse, middle, and fine aggregate are 10, 5, and 2.5 mm, 

respectively, and the aggregate gradation is 5:3:2. Since there is very limited 

experimental data on the thickness and mechanical properties of the ITZ, in this study 

the thickness of ITZ is assumed to be 200 μm and its behavior described with the 

presented elasto-plastic-damage model with weaker mechanical properties as compared 

to the cement matrix. 

 

7.2 Material Properties of the ITZ and Mortar Matrix 

At mesoscopic level, it is crucial to understand the material mechanical properties and 

behavior of each phase and the interaction between the aggregate and the mortar matrix 

because the change in each material property has a great effect on the global 
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macroscopic behavior of concrete. Because micro-cracks are initiated at the weakest link, 

where the ITZ is the weakest link, it is one of the most important tasks to define the 

tensile and compressive behavior of the ITZ for predicting the overall mechanical 

properties of concrete composites. However, it is difficult to determine the local 

mechanical properties of ITZ because of the complexity of their microstructure and the 

constraints of the existing measurement techniques (Ramesh et al., 1998; Scrivener et al., 

2004; Mondal et al., 2008, 2009). Based on a systematic nano-indentation testing of the 

ITZ in concrete, Mondal et al. (2009) have shown that the Young’s modulus of the ITZ 

is comparable to the Young’s modulus of the mortar matrix. However, they also showed 

through using electron microscopy imaging that the microstructure of the ITZ is highly 

heterogeneous and highly damaged due to pre-existence micro-voids and micro-cracks 

within this zone. Hence, one can assume that the tensile/compressive strength of the ITZ 

is weaker than that of the mortar matrix. Thus, although the mechanical characteristic of 

the ITZ is not clearly understood currently, it can be assumed that the behavior of the 

ITZ, which has weaker mechanical properties (Scrivener et al., 2004; Mondal et al., 

2009), is similar to that of the mortar matrix. Based on this assumption, the material 

properties of the mortar matrix and the ITZ are chosen carefully such that the properties 

of the ITZ are chosen to be less than that of the mortar by a constant factor.  

In this study, the presented coupled plasticity-damage model is adopted for modeling 

the tensile and compressive behavior of the ITZ and the mortar matrix, whereas the 

aggregate is modeled as a linear elastic material ( E = 55,500 MPa, ν = 0.2) since the 

aggregate shows a more brittle behavior than the mortar matrix, and has a higher 
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Young’s modulus and yield strength. It is noteworthy that the cyclic or monotonic 

uniaxial loading-unloading tensile and compressive stress-strain experimental curve, as 

discussed in Chapter 5, should be used to identify unique values for the material 

parameters of the ITZ and the mortar matrix, such as 0K ± , B± , q± , h+ , b− , and Q− . The 

aim of the mesoscopic level analysis, however, is not in predicting the behavior of a 

specific concrete structure. Therefore, the material constants of the ITZ and the matrix 

used in the analysis are assumed to show suitable tensile and compressive loading-

unloading behavior based on the monotonic tensile and compressive loading-unloading 

experimental result by Taylor (1992) and Karsan and Jirsa (1969). The predicted tensile 

and compressive stress-strain relations based on these material constants of the mortar 

matrix and the ITZ are shown in Figure 7.2, and the material parameters used in the 

meso-scale analysis are listed in Table 7.1. 

 

Table 7.1 Material constants used in the meso-scale analysis 
 Elastic Constants Tensile Material Constants  Yield Criteria

 E   
(MPa) 

ν   0f
+  

(MPa) 
0K +  

(MPa) 
h+  

(MPa) 
B+  q+   α  pα  

Mortar 26,000 0.20  3.0 3.0 10,000 1.30 1.10  
0.12 0.20 

ITZ 25,000 0.16  2.0 2.0 10,000 1.40 1.05  

 Compressive Material Constants 

 0f
−  (MPa) Q −  (MPa) b−  0K −  (MPa) B−  q−  

Mortar 15.0 80.0 820.0 20.0 0.15 1.40 

ITZ 12.0 50.0 820.0 16.0 0.20 1.60 
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(a) 

 

 
(b) 

Figure 7.2 Stress-strain relation of mortar and the ITZ: (a) tensile and (b) compressive 
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7.3 The Effect of the Aggregate Shape 

Currently, circular or spherical aggregate shape is commonly used for 2-D or 3-D meso-

scale finite element analysis because of simplicity. However, it is found that the meso-

scale concrete model using circular shape of aggregate tends to give higher strength 

compared to the model using irregular actual shape of aggregate (Du and Sun, 2007). 

This is attributed to the increased levels of stress concentration when modeling the actual 

shape of the aggregate. Therefore, the effect of the aggregate shape on the tensile 

strength of 2-D meso-scale concrete model is investigated in this section. Five different 

aggregate shapes; circular, hexagonal, pentagonal, tetragonal, and arbitrary polygonal 

shapes are considered as shown in Figure 7.3.  

  

           
(a)                                 (b)                                  (c) 

      
(d)                                   (e) 

Figure 7.3 Aggregate shape sensitivity analysis micro-structures: (a) Circular, (b) 
hexagonal, (c) pentagonal, (d) tetragonal, and (e) arbitrary polygonal RVEs 



109 
 

 For all these cases, the aggregate volume fraction is assumed 50%, and the 

aggregate gradation of models except for the arbitrary polygonal shape (Figure 7.3(e)) is 

assumed 5:3:2. The arbitrary polygonal shape model generated by Wang et al. (1999) 

based on X-ray tomography is utilized in this work. 

 Micro-crack distribution for the aggregate shape sensitivity analyses at vertical 

displacement of 10 μm are shown in Figure 7.4. Also, the corresponding load-

displacement diagrams and the normalized values of the tensile strength and the strain 

capacity at the onset of damage are shown in Figure 7.5. In this study, the strain at 

damage-onset is defined as the strain at which micro-cracks are initiated and degradation 

in strength and elastic modulus occurs. Therefore, by predicting this strain as a function 

of the material’s microstructure, one can investigate the key microstructural parameters 

that mitigate damage onset and decreases cracking potential. It is obvious that the 

aggregate shape has a weak effect on the ultimate strength of concrete and on the strain 

to damage-onset as shown in Figure 7.5, but significantly affects the crack initiation, 

propagation, and distribution as shown in Figure 7.4. However, one can notice that due 

to the stress concentration at the sharp edges of polygonal aggregate shape, both the 

ultimate tensile strength and the strain at onset of damage of the circular shape aggregate 

model are higher than those of the other aggregate shapes. Specifically, the ultimate 

tensile strength of the circular aggregate model shows larger than 6% increase than that 

of the arbitrary polygonal shape aggregate model.   
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(a)                                                           (b) 

           
(c)                                                           (d) 

 
(e) 

Figure 7.4 Final micro-crack distributions for the aggregate shape effect analyses: (a) 
Circular, (b) hexagonal, (c) pentagonal, (d) tetragonal, and (e) arbitrary polygonal shapes 
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(a) 

 
(b) 

Figure 7.5 Results of the aggregate shape effect analyses: (a) Load-displacement 
relation and (b) variation of the ultimate strength and the strain at onset of damage as a 
function of the aggregate shape 
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 Due to the small differences in the predictions of the overall tensile strength and 

strain capacity of the concrete when considering different aggregate shapes, in the 

following simulations a circular aggregate shape is assumed for simplicity in carrying 

out the finite element simulations.  

 

7.4 The Effect of the Aggregate Distribution 

Although the maximum and minimum aggregate size, the aggregate gradation, and 

volume fraction, depending on the purpose, can be controlled in the concrete mix design, 

it is actually impossible to control the distribution of aggregate. Furthermore, the 

concentration of the aggregates on a localized region due to poor mix or segregation may 

have effect on the strength of concrete. Mixing and pouring concrete is based on the 

basic assumption that aggregate is randomly and uniformly distributed, and the 

aggregate distribution has little effect on the strength and behavior of concrete. 

Therefore, the aggregate distribution effect is investigated with four different aggregate 

distribution models as shown in Figure 7.6.  

 
(a)                             (b)                              (c)                            (d) 

Figure 7.6 Aggregate distribution sensitivity analyses with aggregate volume fraction of 
50 %: (a) Model 1, (b) model 2, (c) model 3, and (d) model 4 
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The size of the RVE is 100 mm × 100 mm, and the aggregate volume fraction of the 

models is identical with 50%. The number of coarse, middle, and fine aggregates used in 

the analysis is 8, 19, and 51, respectively, and all aggregates are randomly distributed 

with the same aggregate gradation of 5:3:2.  

 The final crack patterns and the load-displacement relations for the change of the 

aggregate distribution of the four simulated RVEs are shown in Figures. 7.7 and 7.8.  

 

           
(a)                                                          (b) 

           
(c)                                                           (d) 

Figure 7.7 Final micro-crack distributions for the aggregate distribution effect: (a) 
model 1, (b) model 2, (c) model 3, and (d) model 4 shown in Figure 7.6 
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Figure 7.8 Load-displacement relations for the different aggregate distributions in 
Figure 7.6 
 

As seen in Figure 7.7, the micro-crack distribution is totally dependent on the 

distribution of aggregates. However, it is obvious from Figure 7.8 that the tensile 

strength and strain capacity under tensile loading is less dependent on the aggregate 

distribution. This result can be explained with the global damage density, and the 

fraction of damaged element at 5 μm of vertical displacement as listed in Table 7.2. It 

can be seen from Table 7.2 that although the crack distribution of each model is quite 

different, the difference of the fraction of damaged elements is insignificant. Therefore, 

it can be concluded that the aggregate statistical distribution has a negligible effect on 

overall mechanical response of concrete composites. 
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Table 7.2 The fraction of damaged elements for the different aggregate distributions in 
Figure 7.6 

Model 1 2 3 4 

ITZ 18.5 % 20.1 % 23.9 % 22.1 % 

Mortar 2.7 % 2.5 % 2.3 % 2.1 % 

 

7.5 The Effect of the Aggregate Volume Fraction 

It is obvious that aggregate plays a vital role in the fracture of concrete because 

aggregate takes up to 75% of the total volume of concrete, and the aggregate volume 

fraction is one of the most important factors governing the failure mechanism of 

concrete. It is well known through experimental tests that the Young’s modulus of 

normal strength concrete is proportional to the aggregate volume fraction, whereas the 

compressive strength of concrete generally is inversely proportional to that (Tasdemir 

and Karihaloo, 2001; Amparano et al., 2000). However, there is little information how 

the aggregate volume fraction affects the tensile strength of concrete since the direct 

tensile test is not that easy to perform (Stock et al., 1979). Therefore, the effect of the 

aggregate volume fraction on the tensile behavior of concrete is examined in this section.  

In order to investigate the effect of aggregate volume fraction, Figure 7.9 shows 

different RVEs with increasing aggregate volume fractions from 10% to 60%. The 

number and fraction of aggregates used in this analysis are summarized in Table 7.3. 

Each RVE in Figure 7.9 is subjected to a vertical tensile displacement. However, Figure 

7.9(g-l) show the same considered aggregate volume fractions, but with different 

aggregate distributions. 
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(a)                                         (b)                                          (c) 

           
(d)                                         (e)                                          (f) 

           
(g)                                         (h)                                          (i) 

           
(j)                                         (k)                                          (l) 

Figure 7.9 Aggregate volume fraction sensitivity analysis models: (a) Set 1 - 10 %, (b) 
set 1 - 20 %, (c) set 1 - 30 %, (d) set 1 - 40 %, (e) set 1 - 50 %, (f) set 1 - 60 %, (g) set 2 - 
10 %, (h) set 2 - 20 %, (i) set 2 - 30 %, (j) set 2 - 40 %, (k) set 2 - 50 %, and (l) set 2 - 
60 % 
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Table 7.3 The number and fraction of aggregates used in the aggregate volume fraction 
simulations 

Volume 
fraction 

(%) 

Coarse 
aggregate 

(%) 

Middle 
aggregate 

(%) 

Fine 
aggregate 

(%) 

Total area 
(mm2) 

Actual volume 
fraction  

(%) 

10 1 (31.4) 5 (39.3) 15 (29.5) 1001.38 10.01 

20 3 (47.1) 8 (31.4) 21 (20.6) 1983.13 19.83 

30 5 (52.4) 11 (28.8) 29 (19.0) 3004.15 30.04 

40 6 (47.1) 17 (33.4) 40 (19.6) 4005.53 40.06 

50 8 (50.3) 19 (29.8) 51 (20.0) 5006.92 50.07 

60 10 (52.4) 22 (28.8) 60 (19.6) 6047.57 60.48 

 

This second set of RVEs are simulated in order to make sure that altering the aggregate 

distribution does not have significant effect on the drawn conclusions on the effects of 

aggregate volume fraction as concluded from the previous section. Also, it should be 

noted that the obtained results in this section are obtained from performing four 

simulations: (1) by applying tensile vertical displacement to the RVEs in set 1 in Figures 

7.9 (a-f); (2) by applying tensile vertical displacement to the RVEs in set 2 in Figures 

7.9 (g-l); (3) by applying tensile horizontal displacement to the RVEs in set 1 in Figures 

7.9 (a-f); and (4) by applying tensile horizontal displacement to the RVEs in set 2 in 

Figures 7.9 (g-l). This is equivalent to simulating four different distributions for each 

considered aggregate volume fraction. 

 The micro-crack distributions at 0.02 mm of tensile vertical displacement are 

shown in Figure 7.10, and the process of micro-crack initiation and propagation is shown 

in Figure 7.11.  
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(a)                                                            (b) 

            
(c)                                                            (d) 

           
(e)                                                            (f) 

Figure 7.10 Micro-crack distributions due to applied tensile loading for different 
aggregate volume fractions of set 1 in Figure 7.9: (a) 10 %, (b) 20 %, (c) 30 %, (d) 40 %, 
(e) 50 %, and (f) 60 % 
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(a)                                                        (b) 

           
(c)                                                       (d) 

Figure 7.11 Micro-crack nucleation and propagation for a RVE with aggregate volume 
fraction of 50%. Micro-crack distribution at increasing deformations: (a) 4.2 µm (onset 
of damage), (b) 4.5 µm (peak), (c) 5.0 µm, and (d) u=10.0 µm 
 
 As shown in Figure 7.10, the crack distributions are totally dependent on the 

aggregate volume fraction and distribution, and tend to be more localized as the 

aggregate volume fraction increases. Furthermore, the tensile damage is initiated at the 

ITZ, the weakest region at a vertical displacement of 4.2 µm. Subsequently, a number of 

micro-cracks are developed at the ITZ regions simultaneously after damage initiation, 

and the micro-cracks are then propagated to the mortar matrix, coalesced with each other, 

and developed to macro-cracks as the vertical displacement increases. 
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 The effects of varying the aggregate volume fraction on the overall mechanical 

response of the concrete composite are shown in Figure 7.12. It can be seen from Figure 

7.12(b) that the Young’s modulus of concrete is almost linearly proportional to the 

aggregate volume fraction and is not affected by the aggregate distribution. It can also be 

seen from Figure 7.12(d) that the strain at the onset of damage is inversely proportional 

to the aggregate volume fraction and is not significantly influenced by the aggregate 

distribution.  

 Whereas, the ultimate tensile strength of concrete as a function of aggregate 

volume fraction, unlike the Young’s modulus and strain at damage initiation, is not 

monotonic such that the concrete capacity is found to be minimum at 40 % volume 

fraction. As can be seen from Figure 7.12(c) that although the aggregate distribution has 

a slight effect on the tensile strength of concrete, the distribution of aggregates cannot be 

the reason for the observed response in Figure 7.12(c). This observed behavior can be 

attributed to sever localized damage distribution leading to clear macro-crack evolution 

at the top and bottom of the 40% aggregate volume fraction RVE as shown in Figure 

7.10(d). Therefore, the load carrying capacity is mainly localized within small regions of 

the mortar matrix while the surrounding material is elastically unloaded. On the other 

hand, more distributed micro-damage evolution and propagation is seen for other 

volume fractions such that the loading carrying capacity is more distributed within the 

mortar matrix. Furthermore, it is believed that at volume fractions greater than 40% the 

aggregates are more closely packed to each other inducing confinement effects on the 

surrounding matrix and making the response stronger. 
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(a) 

 
(b) 

Figure 7.12 Aggregate volume fraction on (a) load-displacement response, (b) Young’s 
modulus, (c) tensile strength, and (d) strain at onset of damage 
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(c) 

 
(d) 

Figure 7.12 Continued 
 

 

1.56

1.58

1.60

1.62

1.64

1.66

1.68

1.70

1.72

1.74

0 10 20 30 40 50 60

Te
ns

ile
 S

tr
en

gt
h 

(M
Pa

)

Aggregate Volume Fraction (%)

3.5

4.0

4.5

5.0

5.5

6.0

0 10 20 30 40 50 60

St
ra

in
 to

 D
am

ag
e 

(μ
ε)

Aggregate Volume Fraction (%)



123 
 

7.6 The Effect of the ITZ Thickness 

Understanding the characteristics of the ITZ is one of the most critical issues in 

predicting the overall mechanical response of concrete composites based on meso-scale 

simulations since the ITZ is the weakest region in concrete such that the strength and 

behavior of concrete is mainly governed by the properties of the ITZ (Scrivener et al. 

2004; Mondal et al. 2008, 2009). The ITZ as a constituent of concrete can be considered 

as an initial defect, and the increase of the ITZ thickness or volume may lower the global 

strength of concrete. The effect the ITZ thickness on the tensile strength of concrete is 

investigated in this section. Five thicknesses are simulated in this section as shown in 

Figure 7.13. The thickness of the ITZ varies from 0.1 mm to 0.8 mm. 

 

 
 

 
 
Figure 7.13 Geometry and finite element meshes for studying the effect of varying the 
ITZ thickness 
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The ITZ thickness sensitivity analysis results are shown in Figure 7.14. As shown in 

Figure 7.14(a), the increase in the ITZ thickness has a slight effect on the post-peak 

behavior such that the brittleness of concrete increases as the ITZ thickness increases. 

However, as shown in Figure 7.14(b) that the decrease in the tensile strength with 

increasing the thickness of the ITZ is not that significant and reaches a constant value 

with further increase in the ITZ thickness. This result indicates that further increase in 

the thickness of the ITZ may have no effect on the global strength of concrete. As seen 

in Figure 7.14(c), the strain at onset of damage is not affected by increasing the ITZ 

thickness, whereas changing the aggregate volume fraction has a more significant effect 

on the strain to damage, which is the conclusion from the previous section. 

 
(a) 

Figure 7.14 The effect of varying the ITZ thickness on (a) the load-displacement 
relation for an aggregate volume fraction (AVF) of 40%, (b) the normalized tensile 
strength for different AVFs, and (c) the strain at onset of damage for different AVFs 
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(b) 

 
(c) 

Figure 7.14 Continued 
 

1.60

1.62

1.64

1.66

1.68

1.70

1.72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Te
ns

ile
 S

tr
en

gt
h 

(M
Pa

)

Thickness of ITZ (mm)

AVF = 20 %

AVF = 30 %

AVF = 40 %

AVF = 50 %

35

40

45

50

55

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

St
ra

in
 to

 D
am

ag
e 

(μ
ε)

Thickness of the ITZ (mm)

AVF = 20 % AVF = 30 %

AVF = 40 % AVF = 50 %



126 
 

           
(a)                                                             (b) 

           
(c)                                                             (d) 

 
(e) 

Figure 7.15 Micro-crack distributions for ITZ thicknesses of (a) 0.1 mm, (b) 0.2 mm, 
(c) 0.4 mm, (d) 0.6 mm, and (e) 0.8 mm. The simulations are obtained at 6 µm 
displacement and for an aggregate volume fraction of 50 % 
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Figure 7.15 shows the micro-crack distribution for varying the ITZ thickness. 

Although the crack distribution and initiation points are almost the same for each change 

in the ITZ thickness, macro-cracks are more localized and wider as the thickness of the 

ITZ increases.  

 

7.7 The Effect of the ITZ and Mortar Matrix Strength 

The global ultimate tensile strength of concrete as a function of the ITZ and mortar 

matrix tensile strengths is analyzed in this section. Although the ITZ strength cannot be 

in excess of the strength of mortar matrix for normal concrete, cases where the ITZ 

strength is higher than that of the mortar matrix are considered too. The ITZ strength 

may be greater than the matrix strength through surface treatment of aggregates and 

nano-modification of the cement paste (e.g. the use of nano silica fume, nano fibers, 

nano tubes). In the following simulations, the reference tensile strengths (100 % of 

strength) of the ITZ and mortar matrix are assumed to be 2.0 MPa and 3.0 MPa, 

respectively. The strength of the ITZ varies from 10% ( y ITZσ −  = 0.2 MPa) to 200% 

( y ITZσ −  = 4.0 MPa) of the reference strength of ITZ, whereas the strength of the mortar 

matrix varies from 70% ( y Mortarσ −  = 2.1 MPa) to 200% ( y Mortarσ −  = 6.0 MPa) of the 

reference strength of matrix.  

The analysis results of varying the ITZ and mortar matrix tensile strengths 

assuming 50% aggregate volume fraction is shown in Figure 7.16. It can be seen from 

Figure 7.16(a) that the variation in the ITZ strength has a significant effect on the global 

response of concrete. However, in case that the ITZ tensile strength is less than 40% of 
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its reference strength (i.e. the ITZ tensile strength is equal or less than 0.8 MPa), the 

variation of the ITZ strength does not affect the ultimate tensile load as shown in Figure 

7.16(b). This is because the ITZ is easily damaged whereas the mortar matrix is still 

elastically loaded and can resist additional loading, which explains the observed 

subsequent hardening response in Figure 7.16(b). Then, after the load is redistributed 

and transferred to the mortar matrix due to the complete damage of the ITZ region, one 

can start seeing micro-cracking of the mortar matrix. When the ITZ tensile strength lies 

in the range of 40% (0.8 MPa) and 150% (3.0 MPa) of reference strength, the ultimate 

tensile strength of concrete increases linearly with the increase of the ITZ strength.  

Figure 7.17 shows the variation of micro-crack distributions as a function of the 

ITZ strength at 10 μm of applied vertical displacement. As seen, almost all ITZ elements 

are damaged when the strength of the ITZ is very low compared to the mortar matrix 

strength, and this distributed tensile damage on the ITZ yields higher ductility. As the 

ITZ strength increases, the more tensile cracks are propagated through the mortar matrix, 

and the model shows more brittle behavior. Also, one can notice from Figs. 7.17(a) and 

(b) that the majority of micro-cracking occurs at the ITZ region and much less within the 

mortar matrix as compared to the micro-crack distributions in Figs. 7.17(c-f). Therefore, 

increasing the ITZ strength will mitigate the micro-cracking from the interface (adhesive) 

to the matrix (cohesive), which leads to a stronger response as shown in Figure 7.16. 

However, the additional increase in the ITZ strength over the mortar’s strength has no 

effect on the ultimate strength of concrete because in this case the concrete strength is 

governed by the mortar’s tensile strength of 3.0 MPa, which is the weakest link.  
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(a) 

 
(b) 

Figure 7.16 The effect of varying the ITZ and mortar matrix tensile strengths on (a) the 
load-displacement response assuming y Mortarσ − =3.0 MPa, and (b) the ultimate load. 50% 
aggregate volume fraction is assumed 
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(a)                                                             (b) 

           
(c)                                                             (d) 

           
(e)                                                             (f) 

Figure 7.17 Micro-crack distributions as a function of the ITZ strength for aggregate 
volume fraction of 50% and applied vertical displacement of 10 μm: (a) 10% (0.2 MPa), 
(b) 40% (0.8 MPa), (c) 70% (1.4 MPa), (d) 100% (2.0 MPa), (e) 130% (2.6 MPa), and (f) 
150% (3.0 MPa, same as the mortar strength) 
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Although the variation of the ITZ strength influences the yield and the ultimate 

strength of concrete, the increase in the mortar matrix strength with assuming constant 

ITZ strength has no effect on the variation of the tensile strength of concrete. This is 

because the tensile strain at onset of damage at the ITZ is unchanged regardless of the 

increase in the mortar’s strength due to the constant strength of the ITZ. Furthermore, 

the force resisted by the ITZ and aggregates is suddenly transmitted to the mortar matrix 

as the strain increases after damage initiation at the ITZ, and then the loss of the 

interaction between aggregates and mortar matrix due to the damage at the ITZ. 

 

7.8 Simulation of the Crack Penetration into Aggregate Phase 

In case of the normal strength concrete which compressive strength is about 30 MPa, the 

aggregate can be considered as a linear elastic material because the Young’s modulus 

and strength of the aggregate is so high compared to those of mortar matrix that the 

micro cracks initiated at the ITZ or initially damaged mortar at low stress is mainly 

propagated through the ITZ surrounding the aggregates. With this reason, the global 

strength of concrete is connected directly with the ITZ strength, and the majority of 

meso-scale analytical researches dealing with the concrete fracture or the crack 

propagation in concrete, including the papers reviewed in section 1.2.3, have been 

focused on the variation of the ITZ properties with considering aggregates as a linear 

elastic material. On the other hand, for high strength concrete which compressive 

strength is over 40 MPa as American Concrete Institute defines, the thickness and the 

porosity of the ITZ is decreased and the strength of the ITZ is increased as the strength 
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of the concrete increases (Poon et al. 2004), and then the micro-cracks initiated at the 

ITZ or mortar matrix can cause the aggregate breakage due to the improved ITZ strength. 

Relating to the aggregate fracture, a few experimental and analytical results were 

reported. Wu et al. (1999) presented that the shape and size of aggregate have effect 

considerably on the rupture probability of coarse aggregate, and Rosselló and Elices 

(2004) reported experimentally the effect of the ITZ strength on the aggregate damage. 

Mohamed and Hansen (1999) showed analytically that the tensile strength ratio between 

the aggregate and the matrix plays an important role in determining the possibility of 

crack penetration into the aggregate. They, however, assumed that the ITZ strength is 

always 90% of the matrix strength, and the meso-scale analysis model is limited to the 

circular shape aggregate model.  

 In order to investigate more clearly the process of the crack propagation into the 

aggregate under tensile loading, 2-D meso-scale analysis is performed applying the 

proposed coupled plasticity-damage model to the aggregate phase as well as the ITZ and 

mortar matrix. Two different aggregate shape models, circular and arbitrary polygonal 

shape models, are considered, and the effect of the ITZ strength on the crack penetration 

into the aggregate is investigated. The effect of notches on both sides of the meso-scale 

analysis model is also observed. The tensile stress-strain relation of the aggregate and 

mortar matrix are shown in Figure 7.18, and the material constants of each phase used in 

the simulation are also listed in Table 7.4. As seen, the aggregate shows much brittle 

behavior after yielding compared to the behavior of the mortar matrix.  
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Figure 7.18 Tensile stress-strain relation of the aggregate and mortar matrix for the 
simulation of the crack penetration process into the aggregates 
 

Table 7.4 Material constants of  the aggregate and mortar matrix 

 Elastic Constants Tensile Material Constants  Yield Criteria 

 E   
(MPa) ν   0f

+   
(MPa) 

0K +   
(MPa) 

h+   
(MPa) B+  q+   α  pα  

Mortar 26,000 0.22  3.0 3.0 10,000 1.30 1.10  
0.12 0.20 

Agg. 55,500 0.16  9.0 9.0 25,000 2.00 0.40  

 Compressive Material Constants 

 0f
−  (MPa) Q −  (MPa) b−  0K −  (MPa) B−  q−  

Mortar 15.0 80.0 820.0 20.0 0.15 1.40 

Agg. 23.0 90.0 1200.0 25.0 0.20 1.50 
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 The behavior and crack distribution of the elastic damage aggregate model under 

the uniaxial tensile loading is compared with those of the elastic aggregate model. 

Moreover, two notches at both sides of the meso-scale analysis model, as Figure 7.19, 

are generated in order to investigate the effect of the notch on the process of the crack 

propagation, and the size of the notch is 10mm × 1mm. The properties of the ITZ 

assumed to be identical to the properties of the mortar matrix in this simulation. 

Figure 7.19 shows the tensile crack distribution of the elastic and elastic damage 

circular and arbitrary polygonal shape aggregate models without the notches. In case of 

the meso-scale analysis model without the notch, the property of the aggregate, although 

several cracks on the aggregate of the elastic damage aggregate model are observed, has 

little effect on the condition of the tensile crack propagation, and the tensile cracks are 

distributed widely for both models. This is because several tensile cracks are initiated 

simultaneously at several places of the mortar matrix, and the cracks are propagated to 

different directions. The tensile crack distribution of the elastic and elastic damage 

circular and arbitrary polygonal shape aggregate models with the notches is shown in 

Figure 7.20. Unlike the results of the analysis model without the notch, the distribution 

of the tensile cracks is remarkably localized in the middle of the model for both cases 

because the initial damage is localized at the tip of the notches acting as an initial defect, 

and the stress is also concentrated in the middle of the model. Especially, the macro 

tensile crack on the elastic damage arbitrary aggregate shape model is propagated almost 

horizontally from the end of the both notches with penetrating coarse aggregate. 

Moreover, comparing the elastic damage arbitrary shape aggregate model (Figure 7.20 



135 
 

(d)) with the elastic damage circular shape aggregate model (Figure 7.20 (b)), since the 

tensile crack on the circular shape aggregate model can be propagated readily following 

the smooth surface of the circular aggregate, the intensity of the aggregate damage of the 

arbitrary shape aggregate model is more severe than that of the circular shape aggregate 

model.  

   

      
(a)                                                             (b) 

      
(c)                                                             (d) 

Figure 7.19 Tensile crack distribution of the circular shape aggregate model; (a) Elastic 
aggregate model without the notch, (b) elastic damage aggregate model without the 
notch, (c) elastic aggregate model with the notches, and (d) elastic damage aggregate 
model with the notches 



136 
 

           
(a)                                                             (b) 

           
(c)                                                             (d) 

Figure 7.20 Tensile crack distribution of the arbitrary polygonal shape aggregate model; 
(a) Elastic aggregate model without the notch, (b) elastic damage aggregate model 
without the notch, (c) elastic aggregate model with the notches, and (d) elastic damage 
aggregate model with the notches 
 

 The tensile load-displacement curves of eight analysis models discussed above 

are shown in Figure 7.21. As discussed at section 7.3, the circular shape aggregate model 

gives the higher tensile strength then the arbitrary polygonal shape aggregate model. In 

case of the models without the notch, the tensile behavior of the model, although the 

elastic aggregate model shows little higher tensile strength, is almost the same. 
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(a) 

 
(b) 

Figure 7.21 Load-displacement curves; (a) Models with notches and (b) models without 
notch 
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On the other hand, in case of the models with the notches at both sides, the tensile 

strength of the elastic aggregate model is much higher than that of the elastic-damage 

aggregate model for the circular shape aggregate model. For the arbitrary shape 

aggregate model, since the tensile crack propagation mechanism of the two models is 

totally different, the different post-yielding behavior of the two models is noticeable 

while the tensile strength of the two models is almost the same. 

 Since the condition of the crack penetration into the aggregates is more apparent 

on the arbitrary polygonal shape aggregate model with the notches as discussed above, 

the effect of the tensile strength variation of the ITZ is investigated with the arbitrary 

polygonal shape aggregate model with the notches. The stress-strain curve for the ITZ is 

shown in Figure 7.22. The tensile strength of the ITZ varies from 2.1 MPa (70% of the 

mortar matrix strength) to 3.0 MPa (100% of the mortar matrix strength). 

 The crack distribution of the arbitrary shape aggregate models with notches 

under the uniaxial tensile loading by the change of the ITZ strength is shown in Figure 

7.23.  As the result of the analysis, the tensile crack distribution and condition of the 

crack penetration into the aggregate is considerably different by the change of the ITZ 

strength. Although few minor cracks penetrate into the aggregates even when the ITZ 

strength is less than 80 % of the mortar strength, the dominant tensile crack on the 

aggregates is occurred when the ITZ strength is greater than 90 % of the mortar strength. 

Moreover, in case that the ITZ strength is less than 80 % of the mortar strength, even 

though the aggregate shows the elastic-damage response, the tensile cracks are mainly 

propagated through the ITZ surrounding the aggregates, while the tensile crack tends to 
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localized on the middle of the RVE as the ITZ strength increased. The tensile load-

displacement relation is shown in Figure 7.24. Whereas the yield strength and the first 

peak stress are proportional to the ITZ strength, the second peak stress, that is the 

ultimate strength caused by the crack bridging of the aggregate does not linearly 

proportional to the ITZ strength, and the model which ITZ strength is 90% of the matrix 

strength (2.7 MPa) gives the highest ultimate strength. It means that the yield and 

ultimate strength of the meso-scale concrete analysis model considering aggregate 

fracture can be affected by the aggregate distribution. Furthermore, in case that the 

tensile crack passes through the aggregate clearly, that is, when the yield strength of the 

ITZ is 3.0 and 2.7 MPa, the post-yielding strength drops greatly as the displacement 

increases. 

 

 
Figure 7.22 Variation of the ITZ tensile strength 
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(a)                                                             (b) 

           
(a)                                                             (b) 

Figure 7.23 Tensile crack distribution on the arbitrary polygonal shape aggregate 
models with the notches by the change of the ITZ strength. (a) ITZσ = 3.0 MPa, (b) ITZσ

= 2.7 MPa, (c) ITZσ = 2.4 MPa, and (d) ITZσ = 2.1 MPa 

 

 The processes of the tensile crack propagation for two different ITZ strength 

models ( ITZσ = 3.0 MPa and ITZσ = 2.1 MPa) are compared with each others and shown 

in Figure 7.25.  For both analysis models, the crack is initiated at the end of the right 

notch due to the crack bridging effect of coarse aggregate existing just ahead of the left 

notch. In case of the model which the ITZ strength is 2.1 MPa, the tensile crack initiated 
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at the end of the right notch, as the vertical displacement increases, is developed quickly 

through the ITZ surrounding aggregates. On the other hand, the crack is propagated 

relatively slowly through the aggregates when the ITZ strength of the model is 3.0 MPa. 

As the result of the research, it is noteworthy that the crack approaching angle to the 

aggregate that can be altered by the aggregate distribution as well as the size and shape 

of aggregate is also important factor that controls the condition of the crack penetration 

into the aggregates. 

 

 
Figure 7.24 Load-displacement relation of the arbitrary shape aggregate models with 
notches according to the change of the ITZ strength 
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Figure 7.25 Crack propagation processes of the elastic and elastic damage arbitrary 
shape aggregate models with notches 
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7.9 3-D Meso-scale Simulation of Concrete 

In order to use the proposed coupled plasticity-damage constitutive model for the 

comparison with the simplified 2-D meso-scale analysis results, the tensile behavior of 

concrete is investigated with a 3-D meso-scale analysis model. Figure 7.26 shows the 3-

D meso-scale RVE of concrete, and the distribution of coarse, middle, and fine 

aggregates is shown in Figure 7.27.   

 

 
Figure 7.26 3-D meso-scale analysis model for concrete 

 

 In order to reduce the computational cost, only the size of the 3-D RVE is 

reduced to 50 mm × 50 mm × 50 mm, and all other micromechanical properties, such as 

the size of coarse, middle, and fine aggregate, the aggregate gradation, the ITZ thickness, 
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and the material properties of the ITZ, aggregate, and mortar matrix are identical to 

those of the 2-D meso-scale analyses. A 40 % of aggregate volume fraction is assumed 

for conducting the 3-D meso-scale analysis, and the number of coarse, middle, and fine 

aggregates used for the generation of the 3-D model is 6, 28, and 154, respectively. This 

3-D simulation will show the applicability of the conducted 2-D simulations in that the 

later provide very meaningful simulations as compared to more realistic 3-D models. 

 

       
(a)                                            (b)                                             (c) 

Figure 7.27 Distribution of aggregates. (a) Coarse aggregates, (b) middle aggregates, 
and (c) fine aggregates 

 

 The stress-strain responses from the 3-D and 2-D simulations are shown in 

Figure 7.28. As can be seen, the 3-D analysis gives the lower ultimate tensile strength 

but the higher ductility compared to the 2-D meso-scale analysis. This is because the ITZ 

volume fraction of the 3-D model is about 50% greater than that of the 2-D meso-scale 

model although the aggregate volume fraction and the ITZ thickness of the 2-D and 3-D 

models are the same for both models.  
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Figure 7.28 Comparison between the 2-D and 3-D meso-scale analysis results 

 

 The distribution of the tensile damage in the mortar matrix and the ITZ are 

shown in Figure 7.29. Although the tensile damage is initiated at the ITZ when the 

vertical strain is 0.30×10-4, the initial micro tensile damage at the ITZ has a marginal 

effect on the reduction of the Young’s modulus of concrete, and the Young’s modulus of 

the 3-D meso-scale concrete analysis model begins to reduce when the vertical strain is 

0.38×10-4 which causes initial tensile damage in the mortar matrix. Due to the vertically 

applied tensile displacement, the ITZ region existing on the top and bottom of 

aggregates is mainly damaged, and the damaged ITZ region is localized with forming a 

plane on the top part of the analysis model although the tensile damage at the ITZ is 

initiated at several regions simultaneously.  
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                                           (a)                                                             (b) 

Figure 7.29 Distribution of the tensile damage. (a) Outside of the mortar matrix , and (b) 
the ITZ 

 

 The progressive tensile damage propagation in the mortar matrix with the 

increase of the vertical displacement is shown in Figure 7.30. Although the initial tensile 

damage in the mortar matrix occurs randomly at the several regions simultaneously, the 

tensile damage is propagated with forming one overwhelming damaged plane as the 

vertical displacement increases. 
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ε  = 0.5×10-4 

 
 

  
 

ε  = 0.6×10-4 
 

  
 

ε  = 0.7×10-4 

  
 

ε  = 1.0×10-4 
 
 

  
                                                        (a)                                                (b) 

Figure 7.30 Tensile damage propagation. (a) with aggregates and (b) without aggregates
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CHAPTER VIII 

ANALYSIS OF NANOTUBE REINFORCED CEMENT COMPOSITES 

 

As mentioned, the CNT pull-out process is composed of three stages - bonded, 

debonding, and sliding stage. In the bonded stage, the CNT and the matrix surrounding 

the CNT are perfectly bonded, in the debonding stage, the separation between the CNT 

and the matrix at interface of them begins to occur, and the debonded part coexists with 

the well-bonded part in this stage, and the last stage, sliding stage, is commenced as soon 

as the whole interface between the CNT and the matrix is fully debonded, and the 

friction force at interface resists the pull-out force of the CNT.  

 Since the ultimate pull-out strength of the straight CNT is determined by the 

bonding strength of the interface between the CNT and the matrix, the first stage, well-

bonded stage is the most important for the straight CNT while the other two stages – 

debonding and sliding stage – can be neglected if the pull-out strength is the only matter 

of concern. For the curved CNT, however, the sliding stage can be more interesting and 

important stage even though the ultimate pull-out strength is of unique interest. This is 

because the bending stiffness of the CNT due to the extremely high modulus of elasticity 

can cause extra friction force during the sliding stage. 

 Therefore, based on the existing experimental and numerical research results of 

the CNTs itself and the composite effect between the CNT and the matrix, this chapter is 

focused on the verification of the pull-out mechanisms of the single straight CNT from 

the cement matrix, the debonding process at the interface between the CNT and the 
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matrix, and the damage initiation and propagations at the cement matrix surrounding the 

CNT through the single straight CNT pull-out simulations. The simulations will be 

conducted with varying a variety of parameters such as the interfacial shear strength, 

stiffness, and fracture energy, the strength and the Young’s modulus of the matrix, and 

the CNT mechanical properties and aspect ratio.  

 Moreover, the pull-out mechanisms of the single curved CNT embedded in the 

elastic body is investigated. Since the third stage, sliding stage can be more important for 

the single curved CNT pull-out analysis, the first and second stages, bonding and 

debonding stages are not considered. With the 3-dimensional analysis model, the effect 

of the friction force, the Young’s modulus of the CNT and the matrix, and the radius of 

curvature of the CNT on the sliding behavior of the CNT during pull-out process are also 

investigated. 

 

8.1 Single Straight CNT Pull-out Analysis 

8.1.1 Single Straight CNT Pull-out Analysis Model 

With the proposed coupled plasticity-damage model for cement matrix, the single CNT 

pull-out analysis is performed. Figure 8.1 shows the representative volume element 

(Cervenka and Papanikolaou) finite element model for the CNT/cement matrix 

composite. From the literature review, the outer diameter and thickness of the embedded 

CNT are chosen to be 20 nm and 0.34 nm, respectively. Besides, the diameter of the 

cement matrix surrounding the CNT is 292 nm, and the embedded length of the CNT is 

assumed to be 1000 nm.  
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 Since both the CNT and mortar matrix are the axisymmetric with respect to the 

longitudinal axis, the axisymmetric model is generated as shown in Figure 8.2. The 

commercial FE analysis software, Abaqus v6.9 is used for the analysis. Moreover, a 4-

node bilinear axisymmetric quadrilateral element with reduced integration (CAX4R) is 

used for the cement matrix and a 2-node linear axisymmetric shell element (SAX1) is 

used for the CNT. The minimum element size of the mortar matrix is 2.5 nm × 2.5 nm, 

and the mesh density is coarsened towards the outer surface boundary in order to reduce 

the computational time. 

 
             (a)                                                                              (b) 

Figure 8.1 RVE of the CNT/cement matrix composite: (a) Sectional and (b) side view 

 
Figure 8.2 Finite element pull-out analysis mesh and boundary conditions 
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 Since the CNT is much stronger than the cement matrix, the Young’s modulus 

and Poisson’s ratio of the CNT is assumed to be 1.0 TPa and 0.1, respectively, and the 

material properties of the cement matrix used in the analysis are listed in Table 8.1. 

Since the CNT is much stronger than the cement matrix, the CNT is modeled as a linear 

elastic material, while the tensile and compressive stress-strain relation of the mortar 

matrix and the damage evolution by the increase of the strain are shown in Figure 8.3. 

 

 
(a)                                                                           (b) 

 
(c)                                                                           (d) 

Figure 8.3 Material properties of the mortar matrix: (a) Tensile stress-strain relation, (b) 
tensile damage density evolution, (c) compressive stress-strain relation and (d) 
compressive damage evolution 
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Table 8.1 Material properties used in the single CNT pull-out analysis 

Elastic Constants  Yield Criterion  Tensile Material Constants 

E  
(MPa) 

ν   α  pα   0f
+  

(MPa) 
0K +  

(MPa) 
h+  

(MPa) 
B+  q+  

30,000 0.2  0.12 0.2  3.0 3.0 10,000 1.30 1.10 

Compressive Material Constants 

0f
−  (MPa) Q−  (MPa) b−  0K −  (MPa) B−  q−  

15.0 120 1000 20 0.15 1.40 

 8.1.2 Cohesive Interfacial Model 

In order to simulate the CNT pull-out process, clear comprehension about the behavior 

of the CNT and mortar matrix under loads as well as the interfacial properties between 

the CNT and mortar matrix should be preceded. Since the load transfer mechanisms 

between the CNT or fiber and matrix are totally dependent on the properties of the 

interfacial zone between them, it is crucial to understand the behavior of the interface 

region, where that the reliability of the CNT- or fiber-based composite material model is 

governed by the modeling technique of the interface region. For the simulation of the 

single fiber pull-out process, several interfacial models, such as perfect bonding model, 

spring-like model, and interphase model have been used (Achenbach and Zhu 1989; Jia 

et al. 1999; Liu and Xu 2000; Liu et al. 2000; Thostenson et al. 2001; Liu and Chen 

2003). Especially, the friction model has been commonly used for modeling of the 

interfacial zone since the energy absorbed by the friction between the fiber and matrix 

during sliding after debonding is one of the most significant factors that govern the 

reinforcing effect of the fiber on the matrix.  
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 The cohesive zone model technique is selected since it is considered one of most 

efficient and simple methodologies to represent interfacial deterioration. It includes 

fracture mechanics principles to numerically simulate crack nucleation, initiation and 

propagation at the interface of two materials. The concept of a cohesive zone was 

originally presented by Barenblatt (1959) and Dugdale (1960) and has been widely used 

to describe a gradual separation across an interface. In the following micromechanical 

simulations, the interface is constructed using the zero-thickness built-in cohesive 

elements available in Abaqus. The mechanical response of these elements is linear 

elastic prior to the damage initiation. The damage initiates when the element reaches an 

especial criterion associated with the strength of the interface. After the damage initiates, 

energy is released and the traction resistance of the interface is reduced. A crack initiates 

when the element losses completely its traction capabilities. The load this element used 

to carry is then transmitted to the surrounding elements, promoting the propagation of 

the crack through the interface. In summary, the mechanical response of the cohesive 

elements is dictated by the traction-separation law that has three main components: 1) a 

linear elastic modulus prior to damage initiation, 2) a damage initiation criterion, and 3) 

a damage propagation criteria (i.e., crack initiation criterion).  

 In this study, it is assumed that the effect of the energy absorbed by the friction 

between the CNT and mortar matrix during pull-out process after debonding is 

negligible because the surface of the natural CNT is very smooth. Therefore, the load 

transferring between the CNT and the mortar matrix is assumed to occur only during 

elastic deformation and debonding process. Furthermore, since the interfacial zone 



154 
 

between the CNT and mortar matrix has almost a zero thickness, surface-based cohesive 

behavior that is primarily intended for simulations in which the thickness of the interface 

is negligibly small is adopted. Figure 8.4 shows the response of the interface used in the 

analysis. The linear elastic traction-separation law prior to damage and the energy-based 

damage evolution with linear softening for cohesive surfaces are assumed. The failure of 

the cohesive bond is characterized by progressive degradation of the cohesive stiffness, 

which is driven by the damage process. 

 

 
Figure 8.4 Linear traction-separation response of the interface 

 

 In three-dimensional problems, the nominal traction stress vector, t , consists of 

three components: nt , st , and tt , which represent the normal and two shear tractions, 

respectively. The corresponding separation to the tractions are denoted by nδ , sδ , and 

tδ . Then, the elastic behavior can be written as follows: 

traction

separation

( )0 0 0,n s tt t t

( )0 0 0,n s tδ δ δ ( ),f f f
n s tδ δ δ
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 (8.1) 

 The elasticity matrix K  provides fully coupled behavior between all components 

of the traction vector and separation vector, and the off-diagonal terms are zero for 

uncoupled traction-separation behavior. Moreover, the maximum separation criterion is 

adopted for the damage initiation. This criterion means that the damage is assumed to 

initiate when the maximum separation ratio reaches the value of one, and the criterion 

can be represented as follows: 

 0 0 0max , , 1n s t

n s t

δ δ δ
δ δ δ

⎧ ⎫
=⎨ ⎬

⎩ ⎭
 (8.2) 

where 0
nδ , 0

sδ , and 0
tδ  represent the peak values of the contact separation, when the 

separation is either purely along the contact normal or purely in the first or the second 

shear direction, respectively. 

 Conceptually, similar ideas to the damage density ϕ  explained in detail in 

Chapter II, is applied for describing damage evolution on cohesive surfaces. The damage 

evolution law in the cohesive model describes the rate at which the cohesive stiffness is 

degraded on the corresponding initiation criterion is reached. A scalar damage variable, 

D , is employed and represents the overall damage at the contact point. The damage 

variable initially has a value of zero and monotonically evolves from 0 to 1 upon further 
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loading after the initiation of damage. Therefore, the contact stress components affected 

by the damage is expressed as follows: 

 

( )

( )
( )

1 , 0
, otherwise(no damage to compressive stiffness)

1

1

n n
n

n

s s

t t

D t t
t

t

t D t

t D t

⎧ − ≥⎪= ⎨
⎪⎩

= −

= −

 (8.3) 

where nt , st , and tt  are the contact stress components predicted by the elastic traction-

separation behavior for the current separation without damage. 

8.1.3 The Effect of the Interfacial Shear Strength 

The effect of the interfacial shear strength on the global CNT pull-out strength and 

ductility is investigated first. In order to observe the sensitivity of the interfacial shear 

strength, other interfacial properties, such as the cohesive stiffness and the fracture 

energy are maintained constant. Currently, the studies about the effect of the interfacial 

shear strength of the CNT/cement composites are very few. Thus, the range of the 

interfacial shear strength extracted from the pull-out experimental test by Naaman et al. 

(1991). Naaman et al. (1991) investigated the pull-out strength and the interfacial bond 

shear stress through the pull-out test of the single steel fiber embedded in the 

cementitious matrix, and the test showed that the interfacial shear strength varies from 

1.47 MPa (for low strength matrix) to 9.73 MPa (for high strength matrix). Based on the 

experimental test results of Naaman et al., the analytical range of the interfacial shear 

strength is determined considering normal strength cement matrix.  
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(a) 

 
(b) 

Figure 8.5 The interfacial shear strength variation: (a) G = 16×10-16 N/nm and (b) G = 
32×10-16 N/nm 
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Figure 8.5 shows the assumed variation of the interfacial shear strength. The 

interfacial shear strength between the CNT and the cement matrix is varied between 1.8 

MPa to 4.2 MPa with the increment of 0.6 MPa, and the magnitude of the fracture 

energy for model 1 (Figure 8.5(a)) and model 2 (Figure 8.5(b)) are 16×10-16 N/nm and 

32×10-16 N/nm, respectively. 

The single CNT pull-out analysis results with varying the interfacial shear 

strength are shown in Figure 8.6. The global pull-out strength and the ductility are 

merely affected by the variation of the interfacial shear strength. On the other hand, the 

increase of the fracture energy causes the rise of both the CNT pull-out strength and the 

ductility. Moreover, it is noteworthy that the magnitude of the interfacial shear strength 

does not have a direct influence on the damage distribution in the matrix. Sudden drops 

in the applied load due to damage evolution in the matrix for some cases can be 

identified in Figure 8.6(b). It should be noted that there are two reasons causing the drop 

in the applied load during the pull-out process. One is the material damage in the cement 

matrix; another is the abnormal energy release accumulated. In case that the interfacial 

shear strength is 2.4 MPa, the applied load shows several sudden drops due to damage in 

the cement matrix, and one can notice that the interfacial shear stiffness during reloading, 

comparing to the elastic shear stiffness of the interface, reduces more and more as the 

pull-out displacement increases. On the other hand, the decrease of the applied load 

when the interfacial shear strengths are 3.6 and 4.2 MPa is caused by the abrupt energy 

release. Regardless of the damage in the cement matrix, the global CNT pull-out strength 

and ductility are not varied if the fracture energy of the interface is a constant.  
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(a) 

 

(b) 

Figure 8.6 The interfacial shear strength sensitivity analysis results: (a) G = 16×10-16 
N/nm and (b) G = 32×10-16 N/nm 
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 The damage initiation and propagation processes in the matrix surrounding the 

CNT when the interfacial shear strength, t, and the fracture energy, G, are 3.6 MPa and 

16×10-16 N/nm, respectively (see Figure 8.6(a)) are illustrated in Figure 8.7. In order to 

clearly show the final debonding between the CNT and the matrix, the longitudinal 

displacement is magnified 500 times. 

 As seen in Figure 8.7(a), the first drop of the applied load is not caused by the 

matrix damage, but caused by the energy release, and the second drop of the applied load 

is due to the initiation of the damage at the matrix when the CNT is pulled out 0.027 nm. 

Figure 8.7(b) shows the damage propagation in the cement matrix as the pull-out 

displacement of the CNT increases, and the final debonding configuration is shown in 

Figure 8.7(c) with several damage regions. As a result of the simulation, the damage int 

matrix during pull-out process is not distributed uniformly through the whole length of 

the matrix, but tends to be localized at some regions, and the damage at matrix always 

causes the fluctuation of the applied load.  

 Up to date, it is well known that the fiber pull-out strength is proportional to the 

strength of the interface between the fiber and matrix. However, it may be said that this 

statement is partially wrong based on the analysis results shown in Figure 8.6. Since the 

variation of the interfacial strength is generally accompanied with the variation of the 

other properties, such as the stiffness and the fracture energy, one cannot draw a 

conclusion simply that the pull-out strength and the ductility are proportional to only the 

strength of the interface between the reinforcement and the matrix. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 8.7 The damage evolution at cement matrix during pull-out process: (a) damage 
initiation at 0.027 nm pull-out displacement of the CNT, (b) damage propagation, and (c) 
final debonding between the CNT and the matrix 
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8.1.4 The Effect of the Cohesive Stiffness 

With the constant interfacial shear strength and fracture energy, the peak value of the 

contact separation 0δ  is chosen as a unique variable in order to investigate the effect of 

the cohesive stiffness, K on the ultimate pull-out strength and ductility. Figure 8.8 shows 

the interfacial models used in the analysis.  

 The fracture energy is fixed with 16×10-16 N/nm for all three models, and the 

interfacial shear strength of the model (a), (b), and (c) are 2.4 MPa, 3.0 MPa, and 3.6 

MPa, respectively. Since the cohesive stiffness, K is defined as the initial slop of the 

traction-separation relation ( /K t δ= ), the peak value of the contact separation, 0δ  for 

each case is chosen for the cohesive stiffness, K to be varied from 1×10-8 N/nm3 to 5×10-

8 N/nm3. 

 The cohesive stiffness sensitivity analysis results are shown in Figure 8.9. 

Although there are several fluctuations of the applied pull-out force due to the damage at 

matrix or the sudden release of the energy, the ultimate pull-out strength and the ductility 

are merely affected by the variation of the cohesive. Moreover, the results are 

independent of the magnitude of the interfacial shear strength. Therefore, it should be 

noted that the alteration of the cohesive stiffness or the interfacial shear strength only 

cannot change the strength of the CNT reinforced cementitious composite.  
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(a) 

 
(b) 

Figure 8.8 The variation of the cohesive stiffness of the interface between the CNT and 
the cement matrix: (a) t = 2.4 MPa, (b) t = 3.0 MPa, and (c) t = 3.6 MPa 
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(c) 

Figure 8.8 Continued 
 

 
(a) 

Figure 8.9 The cohesive stiffness sensitivity analysis results: (a) t = 2.4 MPa, (b) t = 3.0 
MPa, and (c) t = 3.6 MPa 
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(b) 

 
(c) 

Figure 8.9 Continued 
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8.1.5 The Effect of the Interfacial Fracture Energy 

In order to investigate the effect of the fracture energy on the global CNT pull-out 

behavior, the interfacial fracture energy is varied with the constant interfacial shear 

strength and stiffness. Furthermore, three sets of the interfacial property models having 

different interfacial shear strength are considered and showed in Figure 8.10. The 

interfacial shear strength of the model 1, 2, and 3 are 2.4 MPa, 3.0 MPa, and 3.6 MPa, 

respectively. For the variation of the fracture energy only, the linear softening region 

after yielding is changed so that the fracture energy varies from 4×10-16 N/nm to 68×10-

16 N/nm  with the constant interfacial shear strength and stiffness.  

 

 
(a) 

Figure 8.10 The variation of the fracture energy of the interface between the CNT and 
the cement matrix: (a) t = 2.4 MPa, (b) t = 3.0 MPa, and (c) t = 3.6 MPa 
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(b) 

 
(c) 

Figure 8.10 Continued 
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The results of the fracture energy sensitivity analysis are shown in Figure 8.11. Both the 

global CNT pull-out strength and the ductility are proportional to the fracture energy for 

all three cases, and the ultimate pull-out force and the final debonding displacement of 

the CNT are independent of the damage in matrix as mentioned earlier.  

 The variation of the ultimate pull-out force and the final debonding displacement 

of the CNT with the variation of the fracture energy are shown in Figure 8.12. The 

ultimate pull-out strength and the final debonding displacement are increased linearly as 

the fracture energy increases, and the same fracture energy gives rise to the same 

ultimate pull-out strength and ductility. It means that the composite strength between the 

CNT and cement matrix is governed by the fracture energy of the interface rather than 

by the interfacial shear strength or the cohesive stiffness.  

 
(a) 

Figure 8.11 The fracture energy sensitivity analysis results: (a) model 1 (t = 2.4 MPa), 
(b) model 2 (t = 3.0 MPa), and (c) model 3 (t = 3.6 MPa) 
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(b) 

 
(c) 

Figure 8.11 Continued 
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(a) 

 
(b) 

Figure 8.12 The variation of the ultimate pull-out strength and the ductility by the 
increase of the fracture energy: (a) ultimate pull-out force and (b) final debonding 
displacement of the CNT 
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8.1.6 The Effect of the Embedded Length 

The effect of the CNT embedded length on the debonding strength and ductility with the 

constant interfacial shear strength and the fracture energy is investigated. For the 

simulation, three different embedded length models, 1000, 2000, and 4000 nm, are 

adopted, and the two damaged cases, that is when the cement matrix is damaged during 

pull-out process and when there is no damage in matrix are considered separately with 

using different interfacial material properties. The interfacial shear strength and the 

fracture energy used for the undamaged case are 2.4 MPa and 4×10-16 N/nm, 

respectively, and 3.0 MPa and 28×10-16 N/nm, respectively for the damaged case. Figure 

8.13 shows the embedded length effect analysis results.  

 
(a) 

Figure 8.13 The CNT embedded length effect: (a) undamaged matrix and (b) damaged 
matrix 
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(b) 

Figure 8.13 Continued 
 

 The ultimate pull-out strength is independent on the embedded length, while the 

final debonding displacement is linearly increased with the embedded length for both 

cases. Moreover, the damage position on cement matrix during pull-out process is also 

not affected by the embedded length of the CNT as shown in Figure 8.13 (b). 
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Therefore, the variation effect of the properties of the CNT and the matrix on the pull-

out strength and the ductility is investigated.  

 Firstly, the Young’s modulus of the CNT varies from 0.25 TPa to 2.0 TPa with a 

constant Young’s modulus of the matrix, and the three different interfacial fracture 

energy, such as 12×10-16 N/nm, 24×10-16 N/nm, and 36×10-16 N/nm with increasing only 

the complete failure displacement, fδ  are adopted to each Young’s modulus of the CNT 

in order to examine the interaction between them. Figure 8.14 shows the analysis results 

of the CNT Young’s modulus effect on the CNT pull-out behavior. As the Young’s 

modulus of the CNT increases, the ultimate pull-out force is increased while the final 

debonding displacement, the ductility is decreased (Figure 8.14 (a)). This is because the 

larger the CNT Young’s modulus is, the smaller the deformation is induced at the same 

level of force, and then the wider the interfacial contact area is activated and the faster 

the interfacial debonding is propagated to resist the same amount of the displacement of 

the CNT. Figure 8.14 (b) and (c) show the variation of the ultimate strength and the final 

debonding displacement with the change of the CNT Young’s modulus and the 

interfacial fracture energy. The increase of the interfacial fracture energy intensifies the 

effect of the CNT Young’s modulus on the ultimate pull-out strength while weakens on 

the final debonding displacement. Moreover, the energy absorption capacity, that is, the 

area of the applied load-final debonding displacement curve in Figure 8.14 (a) by the 

change of the CNT Young’s modulus and the interfacial fracture energy is illustrated in 

Figure 8.14 (d). The energy absorption capacity of the interface between the CNT and  
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(a) 

 
(b) 

Figure 8.14 The variation effect of the CNT Young’s modulus: (a) applied load-
displacement relation, (b) ultimate pull-out force change, (c) final debonding 
displacement change, and (d) the energy absorption capacity change with the variation of 
the Young’s modulus of the CNT and the interfacial fracture energy 

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

A
pp

lie
d 

L
oa

d 
(n

N
)

Displacement (nm)

E = 0.50 TPa
E = 0.75 TPa
E = 1.00 TPa
E = 1.25 TPa
E = 1.50 TPa

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.5 1.0 1.5 2.0 2.5

U
lti

m
at

e 
pu

ll-
ou

t f
or

ce
 (n

N
)

Young's modulus of the CNT (TPa)

G = 12E-16 N/nm

G = 24E-16 N/nm

G = 36E-16 N/nm



175 
 

 
(c) 

 
(d) 

Figure 8.14 Continued 
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the matrix is hardly dependent on the variation of the CNT Young’s modulus, and the 

absorbed energy is almost linearly proportional to the amount of the interfacial fracture 

energy.  

 Secondly, the effect of the tensile strength and the Young’s modulus of the 

matrix are investigated with the constant CNT Young’s modulus. For the matrix strength 

effect, as shown in Figure 8.15, tensile strength of the cement matrix varies from 1.5 

MPa to 6.0 MPa. The Young’s modulus of the CNT is 1 TPa, and the shear strength and 

fracture energy of the interface are 3.0 MPa and 12×10-16 N/nm, respectively for case of 

no damage induced in matrix and 3.0 MPa and 20×10-16 N/nm, respectively for case of 

damage induced in matrix. Figure 8.16 shows the effect of the matrix tensile strength for 

both cases; undamaged and damaged cement matrix.  

 

 
Figure 8.15 Variation of the tensile strength of the mortar matrix 
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(a) 

 
(b) 

Figure 8.16 The effect of the matrix tensile strength: (a) no damage induced at matrix 
(G = 12×10-16 N/nm) and (b) damage induced at matrix during pull-out (G = 20×10-16 
N/nm) 
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 It is worth noting that the variation of the matrix tensile strength with constant 

interfacial properties, when there is no damage on the cement matrix (Figure 8.16(a)), 

has no effect on the global pull-out strength and the ductility. Even though the cement 

matrix is severely damaged during pull-out process (Figure 8.16(b)), the ultimate pull-

out strength and the ductility have merely affected by the variation of the tensile strength 

of the matrix, and the variation of the matrix strength influences simply the intensity of 

the damage in matrix.  

 For the investigation of the matrix Young’s modulus effect, the matrix is 

considered as an elastic material since the tensile strength of the matrix has hardly effect 

on the pull-out behavior of the CNT as above, and in order to consider wide range of the 

matrix stiffness to the analysis. The shear strength and the fracture energy of the 

interface are chosen to be 3.0 MPa and 12×10-16 N/nm, respectively, and the Young’s 

modulus of the matrix varies from 20 GPa to 500 GPa.  

 As a result of simulations, the variation of the matrix Young’s modulus only with 

constant interfacial properties has also merely effect on the pull-out behavior of the CNT 

as seen in Figure 8.17. These results imply that the strengthening of the matrix only 

without improving the properties of the interface between the reinforcement and the 

matrix may not guarantee the improvement of the strength of the CNT reinforced 

composite material. However, in actual, the modification of the matrix properties only 

may also lead the alteration of the pull-out behavior because the change of the matrix 

properties is generally accompanied by the change of the interfacial properties. 
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Figure 8.17 The effect of the matrix Young’s modulus 
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effect of the interfacial surface area with a constant CNT volume ratio on the pull-out 
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             (a)                              (b)                                (c)                                 (d) 

Figure 8.18 Interfacial surface area sensitivity analysis models (units: nm): (a) DCNT = 
10 nm, (b) DCNT = 20 nm, (c) DCNT = 30 nm, and (d) DCNT = 40 nm 
 

 
Figure 8.19 Interfacial surface area sensitivity analysis result 
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model (Figure 8.18(d)) is multiplied to the pull-out strength of each model. As the result 

of the analysis, the ultimate pull-out strength is inversely proportional to the embedded 

CNT size or proportional to the surface area of the CNT while the ductility is 

independent of the variation of the interfacial surface area. It means that the 

augmentation of the interfacial surface area by using smaller sized CNTs with 

maintaining the same CNT volume fraction within the limits that the addition of the 

CNT to the cement matrix allows proper dispersion and workability will guarantee the 

stronger CNT/cement composite.  

 

8.2 Single Curved CNT Pull-out Analysis 

The interfacial friction force F  between the CNT and the matrix that is one of the 

critical factors governing the pull-out behavior of the CNT at sliding stage is simply 

defined by the multiplication of the friction coefficient μ  and the normal force N . The 

friction coefficient of the CNT which surface is much smoother than other materials can 

generally be varied from 0.002 to 0.07 according to the surface treatment (Vander Wal et 

al. 2005).  Moreover, the normal force applied to the contact surface can also be varied 

widely by several factors such as, the external force, different thermal expansion 

coefficient of the CNT and the matrix, the swelling of the matrix, and the bending 

stiffness of the CNT.  

 In case of the straight CNT, the normal force N  acting on the interface between 

the CNT and matrix is purely preexisting force that can be generated by the factors 

mentioned above, and there is no normal force that is caused additionally during pull-out 
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process. In case of the curved CNT, however, there exists additional normal force 

induced by the extraordinarily high bending stiffness of the CNT during pull-out process, 

and the friction force at interface between the curved CNT and matrix, distinguishing the 

additional normal force with the preexisting normal force, can be expressed as follows: 

 ( )preexisting additionalF N Nμ= +  (8.4) 

where preexistingN  is the preexisting normal force and additionalN  is the additionally induced 

normal force during pull-out process due to the bending stiffness of the CNT.  If the 

preexisting normal force preexistingN  is much greater than the additional normal force 

additionalN  or the curvature of the curved CNT is small, the additional normal force may 

be negligible, and the pull-out behavior of the curved CNT will be similar to that of the 

straight CNT.  However, the majority of CNTs embedded in matrix has a high curvature, 

and the effect of the additional normal force due to the curvature of the CNT cannot be 

negligible. Moreover, since a major portion of the CNT pull-out process lies on the third 

stage, the sliding stage, the investigation of the sliding behavior of the curved CNT is 

more important and interesting than that of the straight CNT.  

 Therefore, this research is focused on the sliding stage of the curved CNT pull-

out process, and the effects of the friction force, the Young’s modulus of the CNT and 

the matrix, and the curvature of the CNT on the sliding behavior of the CNT during pull-

out process are investigated with the 3-dimensional analysis model.  
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8.2.1 Single Curved CNT Pull-out Analysis Model 

The representative curved CNT pull-out analysis model is shown in Figure 8.20. Since 

the analysis model is symmetric with respect to the vertical axis, only the half of the 

whole model is generated in order to reduce the simulation time. An 8-node 3-D brick 

element (C3D8) is used for the matrix, and a 4-node doubly curved general-purpose 

shell element (S4) is used for the CNT.  The outer diameter and the thickness of the 

curved CNT are 20 nm and 0.34 nm, respectively, the diameter of the matrix is 400 nm, 

and the embedded length of the CNT is 500 nm. Furthermore, the reference Young’s 

modulus of the CNT and the matrix are 1000 MPa and 30 MPa, respectively, and the 

variation of the properties for the parametric research are listed in Table 8.2.  

 

 

                                                   (a)                                                              (b) 

Figure 8.20 3-D Curved CNT pull-out analysis model. (a) Side view and (b) front view 
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Table 8.2 Variation of the parameters for the curved CNT pull-out analysis 

Variables Lower bound Reference Upper bound 

CNTE  (GPa) 500 1000 1500 

MatrixE  (GPa) 10 30 50 

Friction coefficient, μ 0.02 0.04 0.06 

Normal force , N  (nN/nm2) 0.1 0.15 0.3 

Radius of curvature of the CNT, R  (nm) 1000 1700 3500 

 

 The simulation of the curved CNT pull-out is composed of two steps as shown in 

Figure 8.21. The external force is loaded to the outer surface of the matrix at the first 

step in order to generate the normal force at the interface between the CNT and the 

matrix, and then the horizontal displacement is applied to the exposed end of the CNT at 

the second step with fixing the horizontal displacement of the outer surface of the matrix 

and maintaining the magnitude of the normal force.  

 

 
Figure 8.21 Curved CNT pull-out simulation steps 

( )1Step N

( )2Step U

( )1Step N



185 
 

8.2.2 The Effect of the Preexisting Normal Force and the Frictional Coefficient 

The interfacial friction force between the CNT and the matrix is the one of the critical 

factors governing the pull-out behavior of the CNT at the sliding stage, and the effect of 

the preexisting normal force and the coefficient of friction determining the magnitude of 

the friction force on the sliding behavior of the CNT is investigated. Furthermore, the 

straight CNT embedded 3-D analysis model is also generated as seen in Figure 8.22 in 

order to verify the analysis model and procedure and to compare the analysis results. 

 

 
                                                (a)                                                        (b) 

Figure 8.22 3-D Straight CNT pull-out analysis model. (a) Side view and (b) front view 
 

 All resultant outputs are normalized for the easiness of the comparison, and the 

normalization factor for the pull-out displacement is the embedded length of the CNT, 

and the for pull-out force it is the ultimate pull-out force of the straight CNT. Figure 8.23 

show the sliding behavior of the curved CNT embedded in the matrix is compared with 

that of the straight CNT. 
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(a) 

 
(b) 

Figure 8.23 The effect of the combination of the friction force. (a) Straight CNT and (b) 
curved CNT 
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 Since there is no additional normal force during the straight CNT pull-out 

process, the variation of the preexisting normal force and the frictional coefficient, if the 

magnitude of the friction force that is the multiplication of the frictional coefficient and 

the normal force, has merely effect on the sliding behavior of the straight CNT. On the 

other hand, the sliding behavior and the ultimate pull-out force of the curved CNT are 

significantly affected by the combination of the preexisting normal force and the 

frictional coefficient even though the friction force acting on the interface is a constant. 

That is, as the preexisting normal force decreases and the frictional coefficient increases, 

the pull-out force of the curved CNT after the initial sliding is significantly increased 

due to the effect of the additional normal force induced by the bending stiffness of the 

curved CNT as shown in Figure 8.24. 

 

 
Figure 8.24 The normal stress distribution induced by the bending of the curved CNT 

 

 The effect of the frictional coefficient and the preexisting normal force on the 

pull-out behavior of the curve CNT is investigated separately in Figure 8.25.  
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(a) 

 
(b) 

Figure 8.25 The effect of the frictional coefficient and the preexisting normal force. (a) 
Frictional coefficient effect ( preexistingN =0.15 nN/nm2) and (b) the preexisting normal 

force effect (μ =0.4) 
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 As can be seen in Figure 8.25, the variation of the frictional coefficient affects 

both the initial and the ultimate pull-out force after initial sliding of the curved CNT 

while the variation of the preexisting normal force changes mainly the initial sliding 

force. As a result of the analysis, the importance of the additional normal force additionalN , 

as explained with Eq. 8.4, is augmented as the preexisting normal force preexistingN  

decreases. It is noteworthy that the ultimate pull-out force of the curved CNT, according 

to the contribution of the additional normal force due to the bending stiffness of the 

curved CNT, can exceed the force that causes initial sliding while the ultimate pull-out 

force of the straight CNT is always the initial sliding force.  

8.2.3 The Effect of the Young’s Modulus of the CNT and the Matrix 

The effect of varying the Young’s modulus of the CNT and the matrix is investigated, 

and shown in Figure 8.26. As a result, although both the initial sliding and the pull-out 

force after sliding of the curved CNT is proportional to the variation of the CNT 

Young’s modulus, the effect of varying the Young’s modulus of the CNT on the pull-out 

force after sliding is greater than on the initial sliding force since the additional normal 

force induced by the bending stiffness of the CNT is linearly proportional to the Young’s 

modulus of the CNT. On the other hand, the variation of the matrix Young’s modulus 

gives totally different results. That is, the increase of the matrix Young’s modulus rises 

the pull-out force after the initial sliding of the curved CNT while lowers the initial 

sliding force of the curved CNT because the preexisting normal force at the interface 

between the CNT and the matrix is inversely proportional to the Young’s modulus of the 

matrix.  
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(a) 

 
(b) 

Figure 8.26 The effect of the Young’s modulus. (a) The CNT Young’s modulus effect 
( MatrixE =30 GPa) and (b) the matrix Young’s modulus effect ( CNTE =1000 GPa) 
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8.2.4 The Effect of the Curvature of the CNT 

As can be seen in Figure 8.24, the exposed part of the initially curved CNT is 

straightened during pull-out process, and the straightening (or bending) stiffness of the 

exposed region of the curved CNT has great effect on the pull-out strength of the curved 

CNT. Moreover, the straightening stiffness of the curved CNT is linearly proportional to 

the curvature of the CNT. Therefore, the curvature of the CNT is one of the most critical 

factors control the sliding behavior of the curved CNT, and the effect of the curvature of 

the CNT is investigated in this section. The radius of curvature of the CNT is varied 

from 1000 nm to 3500 nm, and the Young’s modulus of the CNT and the matrix are 

1000 GPa and 30 GPa, respectively. Besides, the frictional coefficient of the interface 

and the preexisting normal force used in the analysis are 0.06 and 0.1 nN/nm2, 

respectively.   

 Figure 8.27 shows the effect of the radius of curvature of the CNT on the pull-out 

force of the curved CNT. While the initial sliding force is merely affected by the 

variation of the radius of curvature of the CNT, the pull-out behavior after the initial 

sliding is significantly influenced by the curvature of the CNT. When the curvature of 

the CNT is relatively small ( R =3500 nm), the pull-out behavior of the curved CNT 

resembles the pull-out behavior of the straight CNT, and it means that the additional 

normal force induced by the bending stiffness of the curved CNT is negligible.  

 From the curved CNT pull-out analysis, it is noted that when the additional 

normal force induced by the bending stiffness of the curved CNT is relatively small 

compared to the preexisting normal force, the pull-out force after the initial sliding does 
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not exceed the initial sliding force, and the ultimate sliding force of the curved CNT at 

the sliding stage is governed by the initial sliding force. However, if the contribution of 

the additional normal force is increased by the variation of the frictional coefficient of 

the interface, the preexisting normal force, the Young’s modulus of the curved CNT, and 

the curvature of the CNT, then the pull-out force after the initial sliding can exceed the 

initial sliding force. 

 

 
Figure 8.27 The effect of the radius of curvature of the CNT 
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CHAPTER IX 

SUMMARY, CONCLUSIONS, AND FUTURE RECOMMENDATIONS 

9.1 Summary 

The modified coupled plasticity-damage model for plain concrete on the basis of 

phenomenological observation that the damaged stiffness varies nonlinearly by the 

change of the damage density is presented. Two different yield criteria are used in this 

model: one for plasticity and another for damage, and two different damage evolution 

laws, the power and exponential damage evolution laws, for both tension and 

compression are proposed and examined for a more accurate prediction of concrete 

behavior. The numerical algorithm is coded using the user subroutine UMAT and then 

implemented in the finite element program Abaqus, and the overall performance of the 

proposed model is verified by comparing the model predictions to various experimental 

data in macroscopic level. 

 Furthermore, the effect of the micromechanical properties of concrete, such as 

aggregate shape, distribution, and volume fraction, the ITZ thickness, and the strength of 

the ITZ and mortar matrix on the tensile behavior of concrete is investigated on 2-D and 

3-D meso-scale. The tensile damage characteristic of aggregates in concrete is also 

investigated applying the proposed elasto-plastic damage model to the aggregate in 

mesoscopic level.  

 Lastly, the pull-out mechanisms of the single straight CNT embedded in cement 

matrix and the curved CNT embedded in elastic body are investigated. The CNT is 

considered as a linear elastic material, and the proposed constitutive model is used to 
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represent the cement matrix behavior. Moreover, the surface-based cohesive behavior is 

adopted for the interface model between the single straight CNT and the cement matrix, 

and the frictional contact is used for the interfacial between the curved CNT and the 

elastic body. 

 

9.2 Conclusions 

The following conclusions are drawn from the work in this dissertation. 

(1) In Chapters II, III, IV, and V, it is concluded that the calibration of a plasticity and 

damage material parameters should be based on loading-unloading or cyclic loading 

experimental results in order to guarantee the uniqueness of the material constants, 

and material constants that are identified from simple monotonic loading test cannot 

be used as reliable values for simulating the damage and failure of concrete 

structures that are subjected to various loading conditions. It is also shown that the 

proposed model using the power damage evolution law gives a better prediction than 

the model using the exponential damage evolution law through the uniaxial loading-

unloading tension and compression analyses. 

(2) The macro-scale experimental simulations of concrete response, using the newly 

proposed power damage evolution law, under various loading conditions, such as 

monotonic uniaxial tension and compression and monotonic biaxial compression, 

show close agreement with the experimental results. Furthermore, the numerical 

simulation of the mixed-mode fracture of DEN specimen agrees well with the test 
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data. This shows that the proposed model with corporation of plasticity and damage 

provides an effective method for modeling the concrete behavior under various 

loading conditions such that the model is suitable for three-dimensional structural 

concrete applications.  

(3) From the 2-D meso-scale analysis of the cementitious composites, one can draw a 

conclusion that the aggregate shape and volume fraction and the strength and 

thickness of the ITZ are critical parameters that control the global strength of 

concrete while the aggregate distribution effect is negligible. Moreover, the Young’s 

modulus of concrete is almost linearly proportional to the aggregate volume fraction 

while the ductility of concrete is inversely proportional, and the ultimate tensile 

strength of concrete is a minimum at 40% aggregate volume fraction. In case of the 

3-D meso-scale analysis, the initial tensile damage at the ITZ doesn’t provoke the 

yielding of the model, but the yielding is occurred as soon as the mortar matrix is 

damaged. Moreover, the 3-D meso-scale analysis gives a lower ultimate tensile 

strength but a higher ductility compared to the 2-D meso-scale analysis. 

(4) When aggregate is also considered as an elastic damage material in the 2-D meso-

scale analysis, the aggregate shape and distribution have a significant effect on the 

condition of the crack penetration into the aggregate and the yield and ultimate 

strength of concrete. Moreover, the ratio of the tensile yield strength among the ITZ, 

mortar matrix, and aggregate is the most important parameter controlling the 

aggregate damage. 
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(5) From the pull-out simulations of the single straight and curved CNT embedded in the 

mortar matrix and elastic body in Chapter VIII, it is concluded that in case of the 

straight CNT embedded in the cement matrix, the interfacial fracture energy and the 

Young’s modulus of the CNT are key parameters governing the pull-out behavior 

and the ultimate strength of the straight CNT while the variation of the interfacial 

shear strength and stiffness only has merely effect on the ultimate CNT pull-out 

strength and the ductility. In case of the curved CNT embedded in the elastic body, 

when the additional normal force induced by the bending stiffness of the curved 

CNT is relatively small compared to the preexisting normal force, the pull-out force 

after initial sliding does not exceed the initial sliding force, and the ultimate sliding 

force of the curved CNT in sliding stage is governed by the initial sliding force. 

However, if the contribution of the additional normal force is increased by the 

variation of the frictional coefficient of the interface, the preexisting normal force, 

the Young’s modulus of the curved CNT, and the curvature of the CNT, then the 

pull-out force after initial sliding can exceed the initial sliding force. 

 

9.3 Future Recommendations 

Several issues that should be investigated and identified in the near future are considered 

as an extension of this work: 

(1) Updating of the proposed constitutive model to predict the behavior of cementitious 

materials under triaxial loading condition. 
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(2) Extension of the proposed model application to the static and dynamic analysis of 

reinforced concrete structures on macro-scale. 

(3) Investigation of the behavior of cementitious composites under compressive loading, 

bending, and combined loading conditions in meso-scale. 

(4) Examination of the relation between the onset of damage at matrix and mechanical 

properties of the interface between the CNT and cement matrix in nano-scale. 

(5) Investigation of the pull-out mechanisms of the curved CNT embedded in cement 

matrix. 

(6) Three-dimensional simulation of the CNTs reinforced cementitious composites under 

various loading conditions. 
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