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ABSTRACT 

 

Parametric Excitation of a DWSC. (May 2010) 

Chandan Lakhotia, B.Tech., National Institute of Technology, Calicut 

Chair of Advisory Committee: Dr. Jeffrey M. Falzarano 

 

  

 Parametric excitation of the DWSC (Deep Water Stable Craneship) is studied in 

this thesis. It occurs for a system without any external forcing, when one of the 

coefficients in the equation of motion (EOM) modeling the system varies with time. 

Parametric instability might be triggered for certain values of the parameters describing 

the time-varying coefficient. The DWSC, basically a stepped classic spar with a 

catamaran as its deck, because of certain unique features, may be susceptible to 

parametric excitation. This thesis examines the phenomenon of parametric excitation 

with respect to roll motion in head seas, using time-domain simulation and stability 

analysis. It examines the DWSC’s susceptibility to parametric instability using the same 

methods of analysis and the effect of damping (especially viscous drag) on parametric 

excitation and instability. The thesis uses Mathieu’s equation as the basis for stability 

analysis and time-simulates the coupled heave-sway-roll EOM. 

 Time-domain simulation is done for two reasons: firstly for determining the 

variation in roll stiffness because of a regular wave (the variation in roll stiffness is an 

input to the stability analysis) and secondly for simulating the coupled heave-sway-roll 
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EOM. Both time-domain analysis and stability analysis are done for sea states of interest 

and for examining interesting phenomena like roll resonance (due to body-wave 

interaction) and parametric instability.  

 Results highlight: 1) a ‘cancellation frequency’ in the heave wave exciting force; 

2) the effect of viscous drag on coupled heave-sway-roll motions; 3) time-simulations 

validating the stability analysis; 4) the trend of stability with increasing sea states, wave 

periods and amplitudes; 5) characteristics of parametric instability; 6) the methodology 

used to predict or detect parametric instability and 7) the effect of viscous drag on 

parametric instability.  
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1. INTRODUCTION 

 

 

 The issue of parametric excitation could be of critical importance in the stability 

analysis of the Deep Water Stable Craneship (DWSC) using time-varying hydrostatics.  

 

 

Figure 1. USN’s concept of seabasing using the DWSC (Selfridge, 2005). 

 

 Parametric or internal excitation occurs in a system when one of the coefficients 

in the equation of motion (EOM) modeling the system varies with time. Pure parametric 

excitation results when external forcing is equal to zero. In ocean engineering/ naval 

architecture, parametric excitation is most often a consequence of time-varying 

____________ 
This thesis follows the style of Ocean Engineering. 
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hydrostatics. Parametric instability might be triggered for certain values of the 

parameters describing the time-varying coefficient. 

The DWSC is comprised of two entities, a stepped classic spar and a catamaran 

craneship. It was proposed to provide better seakeeping for the United States Navy’s 

seabasing (see Figure 1) goal of transferring containerized cargo between large and 

small vessels in sea states up to sea state four. Better seakeeping attributes of a spar 

provide the crane a relatively stable platform, thus minimizing load pendulation. 

 The DWSC has some unique features, some of which might increase its 

susceptibility to large motions and parametric instability. They are: 

1) the absence of a mooring system: the offshore practice is to permanently moor 

and physically connect vessels. Multi-vessel dynamic positioning seabase cannot 

afford the time 

2) the absence of strakes: as the DWSC forms a self-deploying, open ocean capable 

trimaran 

3) the absence of heave plates 

4) relatively low metacentric height: heave elevation of a stepped classic spar, like 

the DWSC, is expected to cause a smaller depression of the center of buoyancy B 

than for a purely classic spar. Hence heave-roll coupling and parametric 

excitation are supposed to be less significant for the DWSC. On the other hand, 

with a lower metacentric height GM as compared to spars used in the offshore 

industry, the heave motion of the DWSC is expected to have a significant 

influence on the roll EOM. 
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 There are two well-known cases where unfavorable tuning might trigger 

parametric instability: 

1) 1
,3 ,42n nT T=  

2) 1
,42wave nT T=  

Spars are usually designed to avoid the previous two cases. So is the DWSC. However it 

is important to note that several additional cases of unfavorable tuning are possible. For 

example, Haslum and Faltinsen (1999) defines 

,5 ,3

1
1 1critical

n n

T

T T

=
+

            (1.1) 

This corresponds to the wave frequency which interacts with the natural heave frequency 

to produce an envelope process with a difference frequency coinciding with the natural 

pitch frequency. 
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2. BACKGROUND 

 

 

 A lot of work, both experimental and numerical, has studied the stability and 

motions of spars in waves. Dern (1972) was one of the first researchers to study the 

stability of motions of free spars in waves. As a first step he determined the motions 

from the linearized equations of motion. An approximate wave exciting force acting on 

the spar was determined using the Froude-Krylov hypothesis. The coefficients appearing 

in the equations were obtained from model tests. His experiments indicated the presence 

of a phenomena believed to be of nonlinear origin i.e. rolling in head seas. Therefore 

Dern introduced nonlinear restoring terms in the equations of motion to explain the 

phenomena. Dern found linear theory to be valid only if the upper part of the spar is of 

constant cross section and if it is high enough to avoid over-topping.   

It has been known for many years that a ship moving in longitudinal regular 

waves can perform rolling motions of large amplitude. In 1955, Kerwin explained this 

motion by the periodic variation of the roll restoring moment due to the on-coming 

waves. The roll appears as an unstable solution to a Hill’s equation. In 1959, Paulling 

and Rosenberg showed that such instabilities in ship motion could be explained by the 

effect of second-order coupling terms in the equations of motion.  

Haslum and Faltinsen (1999) studied the motion response of spar platforms using 

a simplified calculation method. The simplified theory was based on a long wavelength 
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assumption i.e. it assumes no waves were created by the spar. The drag forces on the 

exterior hull (strakes and cylinder bottom) and the drag effects from the internal 

structure in the moonpool were calculated using 'Morison' drag elements based on the 

relative velocity. 

They also discussed the heave/pitch coupled Mathieu instability. The time-

variation was caused by the influence of the heave motions on the pitch restoring term. 

This Mathieu instability is general and may occur for all of the spar shapes they 

presented in Figure 2. The two parameters controlling the pitch restoring term are the 

submerged volume ∀  and the metacentric height GM. If the restoring term is calculated 

at the displaced position, instead of using the equilibrium position as in linear theory, 

both ∀  and GM are functions of the heave motion. The dominating contributor to static 

GM is the position of the centre of buoyancy B above the centre of gravity G. The 

metacentric radius BM is very limited due to a relatively low waterplane area moment of 

inertia and a large submerged volume. 

They concluded that classic cylindrical spars with constant cross section area are 

vulnerable to vertical excitation at long wave periods due to their low damping and 

relatively low natural heave periods. They also concluded that large amplitude pitch 

motions coupled to extreme amplitude heave motions may arise when a spar platform is 

exposed to regular waves of a particular wave period. This phenomenon was 

investigated theoretically and explained as a resonance. It was caused by nonlinear 

coupling effects between heave, surge and pitch. It was shown that for a critical wave 
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period the envelope of the heave motion makes the pitch motion unstable. Pitch damping 

may reduce this unstable motion. 

 

 

Figure 2. Alternative hull shapes (Haslum and Faltinsen, 1999). 

 

Liao and Yeung (2001) investigated the effects associated with the presence of 

bilge keels and fluid viscosity on the response near a ‘troublesome’ resonance condition. 

Roll response near resonance is strongly affected by viscous damping, not only in terms 

of the steady state response amplitude, but also in terms of the stability or boundedness 

of the response itself. They also investigated how the coupled multiple degree of 

freedom response of a floating body can critically depend on the representation of 

viscous damping. They showed that the response characteristics were very different 

depending on whether or not bilge keels and fluid viscosity were considered. For the 

cylinder with bilge keels, the response showed that the proper modeling of fluid 

viscosity was critical in order to predict the response accurately. On the other hand, 
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inviscid fluid models could predict an instability which might not be present in the 

physical world. 

Das and Falzarano (2001) studied the parametric excitation that results when the 

top of the pontoon of a column stabilized semisubmersible is alternately wetted and 

dried when a wave passes as the vessel heaves and pitches in head seas. They also 

investigated the sensitivity of the parametric instability to the representation of the 

radiated wave force. They specifically compared an approximate constant coefficient 

representation of the radiated wave force to the more accurate impulse response function 

representation.  

Zhang et al. (2002) studied the instability of the Mathieu’s equation with 

damping using the infinite determinant and the harmonic balance method. General 

stability diagrams (including damping effects) were generated in a relevant parametric 

plane to detect the instability zones. It was shown in the stability diagrams that higher-

order unstable regions are more sensitive to damping than the lower-order ones. 

Therefore lower-order unstable regions must be carefully examined and evaluated. It is 

to be noted that Haslum and Faltinsen (1999) showed a stability diagram for Mathieu’s 

equation ignoring pitch damping effects.  

It was shown that the maximum heave motions were very sensitive to heave 

damping in long wave swells. The major contributions to heave damping were the 

mooring lines and risers coupled with the riser supports inside the moonpool. Coupled 

analysis including the aforementioned effects are needed to estimate heave damping 

accurately. It is to be noted that the heave damping is motion amplitude dependent. 



 8 

Rho et al. (2002) studied the heave and pitch motions of a spar platform with 

damping plate, both experimentally and numerically. In experiments in regular waves, 

they observed that pitch motions are triggered when the magnitude of heave motion 

exceeds a certain threshold, when the natural pitch period is approximately double the 

heave natural period. They mentioned typical natural periods of the spars deployed in the 

Gulf of Mexico to be 160 s for surge, 60 s for pitch and 28 s for heave.They found that 

the numerical result of heave response at resonance is over-predicted because potential 

flow theory computer codes underestimate the  damping. 

Falzarano et al. (2003) explained the method of analyzing stability using Strutt-

Ince diagrams. The Strutt-Ince diagram has many advantages. The main advantage is 

that it allows easy visualization of the change in stability characteristics as parameters 

are changed.  

When a system is parametrically excited the response frequency is typically a 

sub-harmonic of the excitation frequency. Hence a parametrically excited system may 

exhibit large motion response amplitudes when the excitation frequency is twice the 

natural frequency. Another factor which can be important in such a stability analysis is 

the wave encounter frequency of the vessel.  

Mathieu’s equation is a special case of the Hill’s equation. Two methods are 

available to find the parameter values for instability in the parametric plane. The first is 

using the perturbation method and the second is using Hill’s infinite determinant. 

Tao et al. (2004) explicitly calculated the viscous damping of spars and 

incorporated it into their potential flow solution. They calculated the nonlinear viscous 
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heave damping forces by directly solving the Navier-Stokes equation based on the finite 

difference method. The wave exciting forces, added-mass and damping were calculated 

using a well known hydrodynamic software package based on potential flow theory. 

These two are then combined using an iterative procedure. Tao et al. (2000) had 

previously demonstrated that for a vertical cylinder in resonant heave the viscous 

damping forces exhibit different characteristics in different parameter regimes, i.e. the 

damping force appears to be independent of the amplitude at very small amplitudes of 

oscillation and is evidently dependent on the motion response as the amplitudes of 

oscillation increase. Viscous effects tend to dominate over the hydrodynamic damping 

mechanism around heave resonance and the damping model could be improved by 

introducing a linearization technique. When the heave amplitude of a spar is small, 

hydrodynamic damping from the spar hull may be small compared to other effects such 

as damping from risers and the mooring system. However, as a spar experiences large 

amplitude heave resonance, which is often excessive to the mooring system and riser 

integrity, the hydrodynamic damping from the spar hull and its appendages may be 

crucial in suppressing the heave resonance. 

Koo et al. (2004) evaluated the damping effects and hull/ mooring/ riser coupling 

effects on the principal instability. The wave elevation effect on Mathieu instability was 

also investigated. Mathieu instability of a practical spar platform was carefully analyzed 

by a series of systematic simulations and comparisons of many different scenarios. Their 

results showed that the additional pitch restoring force from buoyancy-cans played an 

important role in suppressing Mathieu instability. 
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Due to the motion characteristics of a spar, the sum frequency second-order 

effect is typically not important and thus is not included in the most motion analyses. 

The wave-force linear force transfer functions and quadratic force transfer functions 

were calculated in the frequency-domain and then these forces were converted to the 

time-domain using the two term Volterra series expansion. The frequency-dependent 

radiation damping was included in the form of a convolution integral in the time-domain 

simulations. To evaluate the heave and pitch damping ratios and natural periods, free 

decay simulations were conducted. The results showed that most of the heave damping 

in a classic spar platform comes from the mooring lines. 

When a spar exhibits Mathieu instability, it experiences a lock-in phenomena in 

the pitch motion. Their results showed that mooring line and riser buoyancy-can effects 

played an important role in the Mathieu instability analysis by increasing damping and 

shifting the natural pitch period. Their simulation results showed that the wave elevation 

effect can be very important for large wave elevations and large phase differences 

between wave elevations and heave motions.  

It is to be noted that Haslum and Faltinsen (1999), Zhang et al. (2002) and Rho et 

al. (2002) did not consider the effects of time-varying submerged volume. In Haslum’s 

and Rho’s studies, the hull/ mooring/ riser coupling effects were not considered. In 

Koo’s study, both were included. In Haslum’s and Rho’s experiments, the spar models 

had relatively smaller KBs (i.e. distance between keel and center of buoyancy) compared 

to real spar platforms. Koo et al. considered a practical spar platform design. 
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3. PHYSICAL SYSTEM MODELING 

 

 

3.1. Basis 

 The spar considered by Selfridge (2005) is used as a basis for modeling the 

DWSC. Table 1 lists the main dimensions of the DWSC. 

 

Table 1. DWSC’s main dimensions. 

Dimension  

Length 129.60 m 

Draft 118.00 m 

Lower section length 113.36 m 

Upper section length 4.64 m 

Lower section diameter 8.50 m 

Upper section diameter 6.00 m 

Total displacement 6761.00 t 

Center of buoyancy, KB 57.86 m 

Center of gravity, KG 56.30 m 

Metacentric height, GM 1.57 m 

Natural heave period, ,3nT   30.5 s 

Natural pitch period, ,5nT  148.8 s 
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3.2. Degrees of freedom 

 Motions of floating bodies are inherently coupled and the DWSC is no different. 

Head seas is the only condition considered in this thesis. In head seas surge is coupled to 

pitch and sway to roll. For small rotations, the parameters controlling the roll stiffness 

are the submerged volume ∀ and the metacentric height GM. When time-varying 

hydrostatics are considered, both ∀ and GM are affected by the heave motion (heave 

motion relative to the mean water line (MWL), to be precise). Therefore for time-

varying hydrostatics, heave couples to sway and roll. However it is to be noted that both 

sway and roll do not have any direct forcing in head seas. Also between sway and roll, 

only roll has restoring forces. Roll is therefore susceptible to resonant motions. The 

possibility and susceptibility to resonant roll motions in head seas makes the 

investigation of parametric roll crucial. In addition to looking at coupled heave-sway-roll 

motions, interesting insight might be gained by decoupling the roll EOM from the other 

degrees of freedom (DOF). Decoupling the roll EOM from the other DOF requires the 

determination of the ‘roll center’. The inertial, damping and stiffness coefficients then 

need to be determined about this new coordinate system center. In this thesis, instead of 

decoupling the roll EOM from the other DOF, the single DOF roll EOM about the MWL 

is used for the stability analysis. A single DOF roll EOM is amenable to the kind of 

stability analysis typically performed and carried out in this thesis. 
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3.3. Single degree of freedom roll motion 

    The heave-roll coupling can be represented by Mathieu’s or Hill’s equation. 

Roll motion in head seas is an unstable solution to Mathieu’s or Hill’s equation. The 

single DOF roll EOM that is used to model the DWSC is given by equation 3.1. 

2

44 44 442( ( )) ( ) ( , ) 0n n
d dI A B GZ t
dt dt
φ φω ω φ+ + + ∆ =         (3.1) 

It is to be noted that the single DOF roll oscillator described by equation 3.1 vibrates at 

the damped natural frequency, which is only slightly different from the undamped 

natural frequency. Therefore nω  is used in equation 3.1. 

Mathieu’s equation (equation 3.2), a special case of Hill’s equation (equation 

3.3), is a second-order ordinary differential equation with a harmonic coefficient. 

2

2 2 ( 16 cos 2 ) 0d d a q t
dt dt
φ φµ φ+ + + =           (3.2) 

2
2

02
1

2 ( 2 cos 2 ) 0d d t
dt dt ν

ν

φ φµ θ µ θ ν φ
∞

=

+ + + + =∑         (3.3) 

 The righting arm ( , )GZ tφ  is seen to be a function of both time and angle of roll. 

However in this thesis the variation of GM is modeled instead of ( , )GZ tφ . For small 

angles, ( , )GZ tφ  can be linearly approximated by ( )GM t φ . Therefore equation 3.1 

reduces to 

2

44 44 442( ( )) ( ) ( ) 0n n
d dI A B GM t
dt dt
φ φω ω φ+ + + ∆ =         (3.4) 

 ( )GM t∆  in this thesis is modeled as  

44( ) ( ) ( ) ( )GM t C t t gGM tρ∆ = = ∀           (3.5) 
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where 

( ) ( ) ( )GM t KB t BM t KG= + −           (3.6) 

and 

( )( )
( )

I tBM t
t

=
∀

             (3.7) 

where ( )I t  is either of two values, depending on wpA  

Substituting in equation 3.5, equation 3.4 further reduces to 

2

44 44 44 442( ( )) ( ) ( ) 0n n
d dI A B C t
dt dt
φ φω ω φ+ + + =         (3.8) 

3.4. Coupled heave-sway-roll motion 

The heave EOM can be solved independently of the sway and roll EOM. In this 

thesis it is solved both ignoring and considering viscous drag. The heave EOM with 

viscous drag can be written as 

2
3 3

33 33 33 33 3 3 , ,2( ( )) ( ) ( ) ( , ) ( ) ( )D upper D lower
d dM A B C t F t F t F t
dt dt
ξ ξω ω ξ ω+ + + = + +     (3.9) 

where 33( )C t  is either of two values, depending on wpA  

33 wpC A gρ=            (3.10) 

33C  is a function of t  as it depends on where the waterline is (which in turn depends on 

the relative heave). It is important to note that there are two horizontal surfaces (one 

circular, the other annular) for the viscous drag to act on. The viscous heave drag in this 

thesis has been incorporated in a rather nonlinear fashion: the distances of the horizontal 

surfaces from the instantaneous waterline are taken into account. For instance, if the 
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lower section of the DWSC penetrates the water surface, zero viscous drag is calculated 

to act on the upper horizontal surface (i.e. the annulus).   

The concept of relative heave is defined to account for the effect of wave 

elevation. Relative heave is the heave of the DWSC w.r.t. the instantaneous waterline. 

Therefore it is the relative heave which is coupled to the sway and roll EOM. 

3, 3relativeξ ξ η= −           (3.11) 

It is assumed above that the wave profile is such that the waterplane area can be 

considered a horizontal surface.  

 Once the heave EOM is solved for, the sway and roll EOM are solved together 

without and with viscous drag. The sway and roll EOM with viscous drag are as follows 

2 2
2 4 2 4

22 22 24 24 22 24 2,2 2( ( )) ( ( )) ( ) ( ) ( )D
d d d dM A M A B B F t
dt dt dt dt
ξ ξ ξ ξω ω ω ω+ + + + + =   (3.12) 

2 2
2 4 2 4

42 42 44 44 42 44 44 4 4,2 2( ( )) ( ( )) ( ) ( ) ( ) ( )D
d d d dM A M A B B C t F t
dt dt dt dt
ξ ξ ξ ξω ω ω ω ξ+ + + + + + =

            (3.13) 

The sways and roll viscous drag is calculated using ‘Morison’ drag elements based on 

relative velocity. It is to be noted that in this thesis four ‘Morison’ drag elements have 

been used. Also, only elements till the mean waterline are considered. 

 The same DC  is used for both the horizontal surfaces. In this thesis, following 

Chakrabarti (2005), ,D hC = 1.2 ( DC  for horizontal surfaces) and ,D vC = 0.6 ( DC  for 

vertical surfaces). 
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4. PROBLEM ANALYSIS TECHNIQUE 

 

 

4.1. General 

 The main result of this thesis is that due to relative heave motion both ∀ and GM 

of the DWSC change with time. This couples the sway and roll EOM to relative heave. 

Also, the heave-roll coupling (neglecting the sway EOM) allows the use of Mathieu’s 

equation for stability analysis. 

However it is important to understand that the Strutt-Ince diagram (stability 

diagram)s only requires the determination of 44 ( )C t  and its consequent Fourier analysis. 

The advantages of using the Strutt-Ince diagram for stability analysis will be discussed 

soon. 

The capability to simulate the sway and roll EOM helps in verifying the stability 

analysis and allows one to see the effect that viscous damping has. Available damping is 

known to be important in suppressing any instability. Therefore simulating the sway and 

roll EOM allows for an accurate evaluation of available damping and its effect on 

containing parametric instability.     

4.2. First step 

 As a first step the hydrodynamic analysis of the DWSC was carried out using 

WAMIT (Wave Analysis MIT) 6.414. WAMIT 6.414 is a panel method computer 

program based on linear potential flow theory. It provides, amongst other things, added-
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mass and damping coefficients, exciting forces and RAOs. The hydrodynamic analysis 

carried out for this thesis has the following features: 

1) single body analysis 

2) infinite water depth 

3) irregular frequency removal 

4) exciting force from diffraction potential  

4.3. Stability analysis background 

The determination of 44 ( )C t  for the DWSC is done by numerical simulation using 

MATLAB (Matrix Laboratory). It is carried out both without and with viscous drag. 

44 ( )C t  is used in the stability analysis in the following manner. Fourier analysis is done 

on 44 ( )C t  to get its first harmonic 44Cδ . For stability analysis using Mathieu’s equation, 

equation 3.8 is further simplified by assuming 

44 44, 44( ) cos( )meanC t C C tδ ω= +           (4.1) 

Following the method employed by Das (2000) and Francescutto (2001), equation 4.1 

yields 

22
44 44

2 2
44 44 44,

( )2 4 (1 cos(2 )) 0
( ( ))

n n

n mean

B Cd d t
dt I A dt C

ω ω δφ φ φ
ω ω ω

+ + + =
+

      (4.2) 

The above equation is compared to equation 3.2. By equating like terms, the following is 

deduced 

44

44 44

( )22
( ( ))

n

n

B
I A

ωµ
ω ω

=
+

           (4.3) 
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2

24 na ω
ω

=              (4.4) 

2
44

2
44,

16 4 n

mean

Cq
C

ω δ
ω

=             (4.5) 

 Only the first unstable zone is investigated in this thesis. This is because 

considerable wave energy is at wave periods much lesser than 1
,42 nT . Equations 4.3, 4.4 

and 4.5 are used to plot the points corresponding to the stability states of the DWSC onto 

the Strutt-Ince diagram.  

The Strutt-Ince diagram used in this thesis is drawn on the a q−  plane. For 

generating the first unstable zone of the Strutt-Ince diagram, the following relations from 

Hayashi (1964) are used. They are defined w.r.t equation 3.2.  

2 31 8 cos 2 ( 16 8cos 4 ) 8 cos 2a q q qσ σ σ= + + − + −         (4.6) 

34 sin 2 12 sin 2q qµ σ σ= −            (4.7) 

where µ  is the non-dimensional damping ratio. For every µ , a set of pairs ( , )a q  

defines the boundary of the stability/ instability region. Any point lying above this 

boundary corresponds to an instability state for that particular µ . Similarly any point 

lying below that boundary corresponds to a stability state for that particular µ .    

Therefore the Strutt-Ince diagram plots the stability/ instability domain as a 

function of inverse frequency ratio (where frequency ratio = 
n

ω
ω

) and relative excitation 

(see equations 4.4 and 4.5).  
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It is to be noted that with increasing damping ratios the unstable region reduces 

in size and moves further away from the horizontal axis.  

 Stability analysis using the Strutt-Ince diagram has the following advantages: 

1) allows easy visualization of the change in stability as parameters are varied 

2) multiple physical situations can be compared at the same time 

3) can be very useful in design 

4.4. Simulation background 

 Time simulations are done for a monochromatic wave i.e. only regular waves are 

considered in this thesis. Therefore the hydrodynamic coefficients can be assumed to be 

constant in this analysis. The simulations use the ode45 solver (based on Runge-Kutta 

(4,5) formula) to solve 3ξ  first. Then 2ξ  and 4ξ  are solved for.      
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5. RESULTS 

 

 

5.1. Format of results 

 The results presented in this thesis are primarily organized according to the 

structure analyzed and secondarily according to the method of analysis. Two structures 

viz. the DWSC and a modified DWSC are analyzed to different extents. Frequency-

domain, time-domain, Fourier and stability analysis are employed. The secondary 

organization is discarded for the modified DWSC. This omission helps to highlight the 

influence of viscous drag on a parametrically excited system in a more deliberate 

fashion.  

 A modified DWSC is created to demonstrate the typical characteristics of 

parametric instability at appropriate tunings. DWSC’s 44
BI  was reduced by 60% to arrive 

at the modified DWSC configuration. Such a structure does not seem to be ‘realistic’.  

Frequency-domain results are obtained from WAMIT. Time-domain simulations 

are from a suite of programs written in MATLAB. These programs utilize WAMIT’s 

frequency-domain output. Fourier analysis is carried out to identify the first harmonic of 

44 ( )C t . Stability analysis then yields the stability state corresponding to physical 

situations. 

Wave periods are chosen for either of two reasons: to investigate the behavior of 

the DWSC in certain sea states or to investigate certain critical phenomena. Sea states 

two through four are studied as the DWSC was conceptualized to increase operational 
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limits from sea state two to sea state four. Sea states five and eight are studied to gain 

insight into the DWSC’s behavior at higher ‘survival’ sea states. Wave periods range 

from 4.2 s to 34.5 s. The possibility and probability of existence of longer waves with 

respect to this range are a matter of debate. Wave amplitudes for waves corresponding to 

the sea states considered are taken as half the mean significant wave height of the 

respective sea states. They range from 0.15 m to 5.75 m.  

5.2. DWSC: frequency-domain 

 Figure 3 show the heave wave exciting force vs. wave frequency for the DWSC. 

An area of special interest with respect to the heave wave exciting force is magnified 

into in Figure 4. In Figure 5 the pitch RAOs for the DWSC and a modified DWSC are 

presented.   

 

 

Figure 3. Heave wave exciting force vs. wave frequency for the DWSC. 
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Figure 4. Heave wave exciting force vs. wave frequency for the DWSC (magnified). 

 

 

 

Figure 5. Pitch RAO for the DWSC and a modified DWSC. 

 



 23 

5.3. DWSC: time-domain simulations 

 Time histories of 44C  ignoring and considering viscous drag are presented in 

increasing order of sea state and then wave period. Then time histories of 3ξ , 2ξ  and 4ξ  

ignoring and considering viscous drag for wave criticalT T= are presented. 

 

 

Figure 6. Roll stiffness variation: waveT = 4.2 s and A = 0.15 m (sea state 2). 

 

Figures 6-23 show the roll stiffness time histories ignoring and considering 

viscous heave drag for regular waves corresponding to sea states two through four. 

Figures 6, 8, 10, 12, 14, 16, 18, 20 and 22 show the roll stiffness time histories ignoring 

viscous drag. Figures 7, 9, 11, 13, 15, 17, 19, 21 and 23 show the roll stiffness time 

histories considering viscous drag. Figures 24 and 25 show the roll stiffness time 

histories ignoring and considering viscous drag for wave criticalT T= . 
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Figure 7. Roll stiffness variation (drag) : waveT = 4.2 s and A = 0.15 m (sea state 2). 

 

 

 

Figure 8. Roll stiffness variation: waveT = 6.9 s and A = 0.15 m (sea state 2). 
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Figure 9. Roll stiffness variation (drag) : waveT = 6.9 s and A = 0.15 m (sea state 2). 

 

 

 

Figure 10. Roll stiffness variation: waveT = 13.8 s and A = 0.15 m (sea state 2). 
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Figure 11. Roll stiffness variation (drag) : waveT = 13.8 s and A = 0.15 m (sea state 2). 

 

 

 

Figure 12. Roll stiffness variation: waveT = 5.1 s and A = 0.4375 m (sea state 3). 
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Figure 13. Roll stiffness variation (drag) : waveT = 5.1 s and A = 0.4375 m (sea state 3). 

 

 

 

Figure 14. Roll stiffness variation: waveT = 7.5 s and A = 0.4375 m (sea state 3). 
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Figure 15. Roll stiffness variation (drag) : waveT = 7.5 s and A = 0.4375 m (sea state 3). 

 

 

 

Figure 16. Roll stiffness variation: waveT = 15.4 s and A = 0.4375 m (sea state 3). 
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Figure 17. Roll stiffness variation (drag) : waveT = 15.4 s and A = 0.4375 m (sea state 3). 

 

 

 

Figure 18. Roll stiffness variation: waveT = 6.1 s and A = 0.9375 m (sea state 4). 
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Figure 19. Roll stiffness variation (drag) : waveT = 6.1 s and A = 0.9375 m (sea state 4). 

  

 

 

Figure 20. Roll stiffness variation: waveT = 8.8 s and A = 0.9375 m (sea state 4). 
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Figure 21. Roll stiffness variation (drag) : waveT = 8.8 s and A = 0.9375 m (sea state 4). 

 

 

 

Figure 22. Roll stiffness variation: waveT = 16.2 s and A = 0.9375 m (sea state 4). 
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Figure 23. Roll stiffness variation (drag) : waveT = 16.2 s and A = 0.9375 m (sea state 4). 

 

 

 

Figure 24. Roll stiffness variation: wave criticalT T=  and A = 1.25 m. 
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Figure 25. Roll stiffness variation (drag) : wave criticalT T=  and A = 1.25 m. 

 

 

 

Figure 26. Heave displacement variation: wave criticalT T=  and A = 1.25 m. 
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Figure 27. Heave displacement variation (drag) : wave criticalT T=  and A = 1.25 m. 

 

 

 

Figure 28. Sway displacement variation: wave criticalT T=  and A = 1.25 m. 
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Figure 29. Sway displacement variation (drag) : wave criticalT T=  and A = 1.25 m. 

 

 

 

Figure 30. Roll displacement variation: wave criticalT T=  and A = 1.25 m. 



 36 

 

Figure 31. Roll displacement variation: wave criticalT T=  and A = 1.25 m. 

 

 Time histories of heave displacement 3ξ  ignoring and considering viscous drag 

for wave criticalT T=  are presented in Figures 26 and 27. Figures 28 and 29 show the time 

histories of sway displacement 2ξ  ignoring and considering viscous drag for 

wave criticalT T= . Time histories of roll displacement 4ξ  ignoring and considering viscous 

drag for wave criticalT T=  are presented in Figures 30 and 31. 

5.4. DWSC: Fourier analysis 

 Stability analysis using Mathieu’s equation requires only the first harmonic of the 

roll stiffness variation. Time histories of 44C  ignoring and considering viscous drag are 

analyzed for its first harmonic using a fast Fourier transform (FFT) algorithm. The ratios 

of the first harmonics of 44 ( )C t  (without viscous drag) to 44,meanC  are calculated for 

previously used pairs of wave periods and amplitudes. Table 2 lists the output of the  
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 Table 2. Input data for the stability analysis of the DWSC. 

waveT  (s) A  (m) 44, /w oCδ  

(N.m) 

44,withCδ  

(N.m) 

44, /

44,

w o

mean

C
C
δ

 
NATO Sea 

state  

25.31 1.2500 19640000 19620000 0.188680951 n/a 

4.20 0.1500 2336000 2336000 0.022441889 2 

6.90 0.1500 2475000 2475000 0.023777258 2 

13.80 0.1500 2052000 2053000 0.019713509 2 

5.10 0.4375 7534000 7534000 0.072378935 3 

7.50 0.4375 7310000 7310000 0.070226973 3 

15.40 0.4375 5393000 5394000 0.051810406 3 

6.10 0.9375 14700000 14700000 0.141222504 4 

8.80 0.9375 15000000 15000000 0.144104596 4 

16.20 0.9375 11470000 11470000 0.110191981 4 

7.20 1.6250 26340000 26340000 0.253047671 5 

9.70 1.6250 24650000 24650000 0.236811886 5 

16.60 1.6250 20850000 20850000 0.200305389 5 

14.40 5.7500 79110000 78710000 0.760007641 8 

16.40 5.7500 71920000 70510000 0.690933504 8 

20.00 5.7500 70250000 69270000 0.674889859 8 

 

Fourier analysis. In addition to previously used pairs of wave periods and amplitudes, 

sea states five and eight are utilized in the Fourier analysis.    



 38 

5.5. DWSC: stability analysis 

The Strutt-Ince diagram is used to predict the stability or instability of a 

parametrically excited system when the system is modeled by Mathieu’s equation. These 

diagrams are presented in increasing order of sea states and then wave periods ( 

corresponding to pairs of wave periods and amplitudes previously used in time-domain 

simulations). Figures 32-34 show the Strutt-Ince diagrams corresponding to sea state 

two. Figures 35-37 show the Strutt-Ince diagrams corresponding to sea state three. 

Figures 38-40 show the Strutt-Ince diagrams corresponding to sea state four. The Strutt-

Ince diagram corresponding to wave criticalT T=  is presented in Figure 41. 

A diagram combining the presented stability states (Figures 32-40) and those 

corresponding to sea states (SS) five and eight is shown in Figure 42 to highlight  

 

 

Figure 32. Strutt-Ince diagram: waveT = 4.2 s and A = 0.15 m (sea state 2). 



 39 

 

Figure 33. Strutt-Ince diagram: waveT = 6.9 s and A = 0.15 m (sea state 2). 

 

 

 

Figure 34. Strutt-Ince diagram: waveT = 13.8 s and A = 0.15 m (sea state 2). 

 

possible trends in stability with respect to sea states, wave periods and amplitudes. 
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Figure 35. Strutt-Ince diagram: waveT = 5.1 s and A = 0.4375 m (sea state 3). 

 

 

 

Figure 36. Strutt-Ince diagram: waveT = 7.5 s and A = 0.4375 m (sea state 3). 
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Figure 37. Strutt-Ince diagram: waveT = 15.4 s and A = 0.4375 m (sea state 3). 

 

 

 

Figure 38. Strutt-Ince diagram: waveT = 6.1 s and A = 0.9375 m (sea state 4). 
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Figure 39. Strutt-Ince diagram: waveT = 8.8 s and A = 0.9375 m (sea state 4). 

 

 

 

Figure 40. Strutt-Ince diagram: waveT = 16.2 s and A = 0.9375 m (sea state 4). 



 43 

 

Figure 41. Strutt-Ince diagram: wave criticalT T=  and A = 1.25 m. 

 

 

 

Figure 42. Combined stability state diagram for different sea states (SS). 
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5.6. Modified DWSC 

A modified DWSC is obtained by modifying the inertial mass of the DWSC to 

deliberately push it into a region of unfavorable tuning. The inertial mass of this 

modified DWSC is found to be somewhat similar to that of a solid stepped spar of 

uniform density. The idea here is to show how changes in a platform’s properties can 

lead to instances of unfavorable tuning. This small exercise helps to shine more light on 

the issues to keep in mind during the design process. 

Some of the following results exhibit characteristics of parametric instability at a 

particular unfavorable tuning. Natural roll or pitch period for the modified DWSC is 

determined to be ≈  69.0 s. The modified DWSC is forced by a regular wave of waveT =  

34.5 s and A =  1.25 m. The attempt here is to trigger instability by having 1
,42wave nT T≈ . 

Even though the possibility or probability of such a wave is debatable, it is nevertheless 

used to demonstrate parametric instability and how it is affected by viscous drag. 

Figures 43 and 44 show the time histories of heave displacement and roll 

stiffness (determined ignoring viscous drag). A comparison of the roll stiffness variation 

(determined ignoring viscous drag) vs. its fit is presented in Figure 45. The 

corresponding Strutt-Ince diagram is presented in Figure 46. The radiated wave damping 

ratio for the single DOF roll EOM is determined to be 6.74e-07. The iso-damping curves 

on the Strutt-Ince diagram correspond to ζ =  1%, 2% and 3% respectively. Figures 47 

and 48 show the time histories of sway and roll displacement (determined ignoring 

viscous drag). 
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Figures 49 and 50 show the time histories of heave displacement and roll 

stiffness (determined considering viscous drag). A comparison of the roll stiffness 

variation (determined considering viscous drag) vs. its fit is presented in Figure 51. 

Table 3 lists the input for the stability analysis of the modified DWSC. Figures 52 and 

53 show the time histories of sway and roll displacement (determined considering 

viscous drag).  

 

 

Figure 43. Heave displacement variation: waveT = 34.5 s and A = 1.25 m (modified 

DWSC). 
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Figure 44. Roll stiffness variation: waveT = 34.5 s and A = 1.25 m (modified DWSC). 

 

 

 

Figure 45. Roll stiffness variation vs. fit: waveT = 34.5 s and A = 1.25 m (modified 

DWSC). 
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Figure 46. Strutt-Ince diagram: waveT = 34.5 s and A = 1.25 m (modified DWSC). 

 

 

 

Figure 47. Sway displacement variation: waveT = 34.5 s and A = 1.25 m (modified 

DWSC). 
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Figure 48. Roll displacement variation: waveT = 34.5 s and A = 1.25 m (modified DWSC). 

 

 

 

Figure 49. Heave displacement variation (drag) : waveT = 34.5 s and A = 1.25 m (modified 

DWSC). 
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Figure 50. Roll stiffness variation (drag) : waveT = 34.5 s and A = 1.25 m (modified 

DWSC). 

 

 

Figure 51. Roll stiffness variation vs. fit (drag) : waveT = 34.5 s and A = 1.25 m (modified 

DWSC). 
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Table 3. Input data for the stability analysis of the modified DWSC. 

waveT  (s) A  (m) 44, /w oCδ  

(N.m) 

44,withCδ  

(N.m) 

44, /

44,

w o

mean

C
C
δ

 
NATO Sea 

state  

34.5 1.25 11880000 11500000 0.11413084 n/a 

 

 

 

Figure 52. Sway displacement variation (drag) : waveT = 34.5 s and A = 1.25 m (modified 

DWSC). 
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Figure 53. Roll displacement variation (drag) : waveT = 34.5 s and A = 1.25 m (modified 

DWSC). 
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6. ANALYSIS OF RESULTS 

 

 

6.1. Format of analysis of results 

 The results in this thesis are analyzed in the same order in which they are 

presented.  

6.2. DWSC: frequency-domain 

In section 5.2 plots of heave wave exciting force vs. wave frequency are 

presented to demonstrate a unique feature of the DWSC with respect to spars of constant 

cross section. Figure 3 shows a drastically reduced heave wave exciting force at 0.2398 

rad/s (26.2018s). It seems that the heave wave exciting force at 0.2398 rad/s has been 

reduced by tuning the counteracting forces. The DWSC, by virtue of having two 

horizontal surfaces, may have the dynamic pressure force acting on the upper horizontal 

surface counteract (to some extent) the dynamic pressure force on the bottom of the 

DWSC. Due to the exponential decay of the wave effects with depth, a smaller area 

closer to the water surface produces the same counteracting effect as a larger area further 

away from the water surface. The fact that Haslum’s and Faltinsen’s criticalT =  25.3118s 

is close to this ‘cancellation frequency’ might explain why roll/ pitch resonance is not 

triggered.   

Figure 5 contains pitch RAOs for the DWSC ( ,5nT  148.8s) and the modified 

DWSC ( ,5nT  69.0s). 
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6.3. DWSC: time-domain simulations 

     Time-domain simulations of 44C  without and with viscous drag are presented 

in ascending order of sea state and then wave period. For each sea state, wave periods 

corresponding to 5 percentile, 95 percentile and peak frequency are considered. 44,meanC  

is calculated as 104091058.8 N.m. For lower sea states, wave periods and amplitudes, 

viscous heave drag seems to have very little effect.  

 44 ( )C t , 3ξ , 2ξ  and 4ξ  are then investigated for wave criticalT T= and A = 1.25m. 2ξ  

and 4ξ  simulations are meant to validate the prediction of stability or instability of the 

DWSC (predicted using the Strutt-Ince diagram). Viscous drag is seen to have a 

significant influence on 3ξ , 2ξ  and 4ξ  but not so much on 44 ( )C t . 

6.4. DWSC: Fourier analysis 

 Fourier analysis of both 44 ( )C t  shows very little difference between 44, /w oCδ  and 

44,withCδ . Therefore 44, /

44,

w o

mean

C
C
δ

 is used in the stability analysis. The difference might not be 

negligible for higher harmonics. 

6.5. DWSC: stability analysis 

For waveT s and A s considered corresponding to sea states 2 to 4 the point 

denoting the stability/ instability state falls far away from the instability region. 

wave criticalT T=  and A = 1.25m has similar result. A diagram combining the presented 

stability states (Figures 32-40) and those corresponding to sea states (SS) five and eight 

is shown in Figure 42 to highlight that with higher sea states, wave periods and 
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amplitudes the points denoting the stability or instability state move relatively closer to 

the instability region. 

6.6. Modified DWSC 

The modified DWSC is a deliberate attempt to showcase parametric instability. It 

also helps in validating the methodology used in this thesis to predict/ detect parametric 

instability.  

 Fourier analysis of 44 ( )C t  shows very little difference between 44, /w oCδ  and 

44,withCδ . Therefore it really does not matter whether one uses 44, /w oCδ  or 44,withCδ  in the 

stability analysis. Considering 44 ( )C t  without viscous drag, a Strutt-Ince diagram with 

the point, denoting the stability/ instability state, falling just below the 3% damping ratio 

curve results. As the radiated wave damping ratio for the unforced roll EOM is 6.74e-07, 

therefore the modified DWSC is susceptible to parametric instability. This is 

corroborated by 2ξ  and 4ξ  simulations without viscous drag. 

 If viscous heave drag is considered and viscous sway and roll drag are not 

considered, then the Strutt-Ince diagram changes very little as there is very little 

difference between 44, /w oCδ  and 44,withCδ . This implies that viscous heave drag is not 

really affecting parametric instability at this particular combination of waveT and A . This 

fact is validated by 2ξ  and 4ξ  simulations with viscous drag. Viscous sway and roll drag 

are seen to stop the parametric instability from occurring. This implies that viscous roll 

drag probably pushes the damping ratio for the unforced roll EOM to 3% or above it. 
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 Figure 45 is presented to highlight an instance where modeling the roll stiffness 

variation as a sum of a mean with one harmonic is not an accurate description of the roll 

stiffness variation. Figure 51 shows how the consideration of viscous drag allows a 

better description of the roll stiffness variation as a sum of a mean with one harmonic in 

comparison to when viscous drag is ignored. Therefore when the roll stiffness variation 

cannot be adequately described by a mean and one harmonic and when points, denoting 

stability states, are close to an instability region, a Hill’s equation based stability analysis 

might be required. 
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7. CONCLUSIONS 

 

 

 The following conclusions are reached in this thesis: 

1) Parametric instability is not found for the DWSC. The reason why parametric 

instability is not triggered is because: 

a) the natural period in heave is nowhere close to half the natural period in roll 

b) there is not considerable wave energy at half the natural period in roll 

2) Roll resonance is not triggered when wave criticalT T=  as criticalT =  25.3118s is close 

to a ‘cancellation point’ vis-à-vis heave wave exciting force.   

3) The DWSC has to be modified considerably to make it susceptible to parametric 

instability.  

4) Viscous drag does not seem to have significant effect at lower sea states, wave 

periods and amplitudes. 

5) The difference between 44, /w oCδ  and 44,withCδ  might be negligible but the same 

might not be true for higher harmonics. This could be important for a stability 

analysis based on Hill’s equation.  

6) With higher sea states, wave periods and amplitudes the points denoting the 

stability state move relatively closer to the instability region. 

7) Viscous sway and roll drag are seen to strongly effect the possibility of 

parametric instability.  

8) The DWSC seems to avoid heave resonance by: 
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a) having increased damping: the DWSC because of its stepped nature has an 

additional horizontal surface for viscous drag to act.  

b) pushing the natural period out of the wave energy range: DWSC’s non-

constant cross section increases the added mass. Also its decreased 

waterplane area increases its natural period. 

c) reducing the heave exciting force: the DWSC because of its stepped nature 

reduces the heave exciting force by tuning counteracting forces. 

9) Further investigation of the DWSC with respect to second-order effects 

(especially difference frequency) might be needed as natural periods of the 

DWSC are relatively high. 

10) When the roll stiffness variation cannot be adequately described by a mean and 

the first harmonic and when points, denoting stability states, are close to an 

instability region, a Hill’s equation based stability analysis might be required. 

11) Stability analysis should be extended to ‘realistic’ seaways.       
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