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ABSTRACT 

 

Simulation and Analysis of a Tissue Equivalent Proportional Counter Using the Monte 

Carlo Transport Code FLUKA. (May 2010) 

Jeremy Dell Northum, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Stephen Guetersloh 

 

The purpose of this study was to determine how well the Monte Carlo transport 

code FLUKA can simulate a tissue-equivalent proportional counter (TEPC) and produce 

the expected delta ray events when exposed to high energy heavy ions (HZE) like in the 

galactic cosmic ray (GCR) environment.  Accurate transport codes are desirable because 

of the high cost of beam time, the inability to measure the mixed field GCR on the 

ground and the flexibility they offer in the engineering and design process. 

A spherical TEPC simulating a 1 µm site size was constructed in FLUKA and its 

response was compared to experimental data for an 56Fe beam at 360 MeV/nucleon.  The 

response of several narrow beams at different impact parameters were used to explain 

the features of the response of the same detector exposed to a uniform field of radiation.  

Additionally, an investigation was made into the effect of the wall thickness on the 

response of the TEPC and the range of delta rays in the tissue-equivalent (TE) wall 

material.  A full impact parameter test (from IP = 0 to IP = detector radius) was 

performed to show that FLUKA produces the expected wall effect.  That is, energy 
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deposition in the gas volume can occur even when the primary beam does not pass 

through the gas volume. 

A final comparison to experimental data was made for the simulated TEPC 

exposed to various broad beams in the energy range of 200 – 1000 MeV/nucleon.  

FLUKA overestimated energy deposition in the gas volume in all cases.  The FLUKA 

results differed from the experimental data by an average of 25.2 % for yF and 12.4 % 

for yD.  It is suggested that this difference can be reduced by adjusting the FLUKA 

default ionization potential and density correction factors. 
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CHAPTER I 

INTRODUCTION 

 

The study is motivated by NASA’s need to minimize uncertainties associated 

with radiation exposures for long-term deep space travel. A tissue-equivalent 

proportional counter (TEPC) has been used as a dosimeter in mixed radiation fields. 

Since it does not measure linear energy transfer (LET) directly, the response function 

must be characterized in order to estimate quality factor and thus dose equivalent for the 

incident radiation. The objectives of this study are to simulate the measured response of 

a spherical TEPC, similar to one flown on the ISS, exposed to high-energy heavy ions 

(HZE) in the galactic environment by simulation using Monte Carlo methods.  

Simulations of heavy ion interactions using the FLUKA Monte Carlo transport code will 

be compared with measurements of energy deposition in a spherical TEPC.   Due to the 

wealth of data existing for 56Fe at 360 MeV/nucleon (Gersey 2002), this beam was 

chosen as a reference. 

Simulations of heavy ion interactions using the FLUKA Monte Carlo transport 

code will be compared with measurements of energy deposition in a spherical TEPC.  

The cell nucleus is a principal target for radiation injury because it contains virtually all 

of the DNA in the cell (Rossi 1996).  Since its dimensions are on the order of 

micrometers, a 1 µm site size is appropriate for studying the energy deposition in a cell 

nucleus.   

____________ 
This thesis follows the style of Health Physics. 
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Since a site size of 1 �m was chosen for the sensitive volume of the detector in 

the experiment, energy escaping the volume by delta ray transport away from the point 

of interaction becomes an issue for Monte Carlo transport simulations.  FLUKA has all 

of the components necessary for this study as it transports delta ray electrons and has the  

ability to track nuclear collisions resulting in fragmentation of the projectile and target 

atoms.  Work prior to this study confirms that FLUKA can accurately simulate patterns 

of energy deposition in microscopic volumes as well as microdosimeters simulating 

those sizes.  It is therefore a valuable tool not only for improving the design of the next 

generation of detectors, but also for understanding the operation of existing instruments 

without the need for costly flight time. 

TEPCs have existed for close to 50 years and have been very well characterized 

(Rossi 1996).  The distributions to be simulated have been measured as early as the 

1960s.  However, it is only recently (within the past 10 years) that such experiments 

have been simulated on a regular basis with Monte Carlo codes.  Similar studies have 

been performed with MCNP (Hoff 2002) and GEANT4 (Wang 2006). 

A literature search revealed FLUKA has been used to simulate TEPCs (Beck 

2005; Fasso 2003; Rollet 2004).  In these cases, however, FLUKA was used to model 

very specific detectors in very specific experimental arrangements.  As stated earlier, the 

goal of this research is to study how well FLUKA can produce the expected delta ray 

events.  That is, how well it can simulate the physical processes common to all TEPCs, 

not just how well it can simulate a very specific experiment.  If simulation and transport 

methods prove accurate, much time can be saved in the design phase of new instruments 
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as expensive beam time characterization may be minimized.  To achieve this goal, a 

consistent, generic TEPC design was chosen for each beam orientation along with a 

consistent beam (56Fe at 360 MeV/nucleon).  The TEPC will be analyzed on many levels 

including but not limited to: wall effects, response to beams of different orientations and 

with and without FLUKA transporting delta rays (referred to as delta rays “on” and delta 

rays “off,” respectively).  

Accurate codes are desirable because of the high cost of beam time at 

accelerators that can produce particles with charge and velocity that simulate cosmic 

rays.  They are currently used for a variety of engineering and analysis applications, but 

full validation for very specialized tasks is still ongoing.  If codes are determined to 

accurately represent physical phenomena then significant “pre-engineering” can be done 

before experimental work, therefore reducing experimental costs and/or allowing for 

more efficient use of often limited experimental time. 
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CHAPTER II 

BACKGROUND 

 

Microdosimetric Quantities 

 In the field of microdosimetry, care must be taken to ensure energy deposition 

events are characterized properly.  The common health physics values of absorbed dose 

and dose equivalent, while perfectly applicable and widely used for large site sizes, do 

not carry the same relevance when applied to small volume (i.e. 1 µm site sizes).  On the 

large scale, these average values are sufficient for most applications.  On the small scale, 

however, they do no accurately describe energy deposition.  The stochastic nature of 

energy deposition events becomes increasingly more evident as the site size is reduced 

until a point is reached where the average values no longer accurately describe the 

physical phenomena.  At this point, energy deposition events are best described by a 

Poisson distribution. 

Microdosimetry is the study of energy deposition in very small volumes.  To aide 

in this study, small volumes are simulated by larger physical volumes.  Therefore, a 1 

µm site size of unit density (1 g cm-3) can be simulated by a volume orders of magnitude 

greater in physical dimension, to a size that is much easier to work with.  This is done by 

maintaining the same mass thickness, measured in units of g cm-2, in the simulated 

volume.  This simple relationship is given in Equation (1): 

 21 )()( dxdx ρρ =  (1) 
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where �1 and dx1 are the density and simulated site size, respectively, and �2 and dx2 are 

the density and size of physical site, respectively.  For the common site size of 1 µm, �1 

would be equal to 1 g cm-3 and dx1 would be equal to 1 µm.  Therefore, �2 and dx2 

are chosen such that their product equals the product of �1 and dx1, 1 x 10-4 g cm-2. 

There are several stochastic energy deposition quantities of interest in 

microdosimetry.  The first quantity of interest is energy deposition 

 i in ouE E Qε = − +  (2) 

where Ein is the energy of the incident ionizing particle (excluding rest energy), Eout is 

the sum of the energies of all ionizing particles leaving the interaction (excluding rest 

energy) and Q is the change in rest energies of the nucleus and of all particles involved 

in the interaction.  A quantity similar to this is energy imparted 

 i
i

ε ε=�  (3) 

which is the sum of all energy deposits, �i, in a given volume (ICRU 1998). 

Next, specific energy, z, is 

 z
m
ε=  (4) 

where � is the energy imparted by a single event and m is the mass of the site giving 

units of J kg-1.  Likewise, the lineal energy, y, is  

 
l

y
ε=  (5) 

where � again is the energy imparted by a single event and l is the mean chord length of 

the volume defined as  
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S
V

l
4=  (6) 

by Cauchy’s theorem (Cauchy 1908) where V and S are the volume and surface area of 

the site, respectively.  Applying this to a sphere, Equation (6) becomes 
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3
4

4
3
4

4
4

2
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Drr
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r

S
V

l ===
�
�

�
�
�

�

==
π

π
 (7) 

where r is the radius of the sphere and D is the diameter of the sphere.  Likewise, 

Equation (6) applied to a cylinder becomes 

 
HD

DH
l

2
2
+

=  (8) 

where D is the diameter of the cylinder and H is the height. 

The units of y are J m-1 but the units of keV µm-1 are commonly used instead.  It 

is customary to represent single-event distributions as a function of lineal energy, y, 

rather than specific energy, z (Rossi 1996).  As a result, a relationship has been derived 

that expresses z as a function of y for a spherical site 

 2)2(
204.0

r
y

z =  (9) 

where, again, r is the radius of the spherical site.  Using input values of y in units of keV 

µm-1 and r in units of µm, z is given in units of Gy (J kg-1).   

When analyzing microdosimetry data, it is often customary to consider the first 

and second moment of the y distribution, yF and yD, respectively, 

 �
∞

=
0

)( dyyyfyF  (10) 
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and 

 �
∞

=
0

2 )(
1

dyyfy
y

y
F

D  (11) 

where f(y) is the frequency distribution of y.  Likewise, the first and second moment of 

the z distribution are represented by zF and zD where 

 �
∞

=
0

1 )( dzzzfzF  (12) 

and 

 �
∞

=
0

1
2 )(

1
dzzfz

z
z

F
D  (13) 

where f1(z) is the frequency distribution of z. 

It should be noted that f1(z) denotes a single-event quantity while f(z) represents a 

general (multi-event) quantity (Rossi 1996). 

 

Stopping Power and Continuous Slowing Down Approximation (CSDA) 

Charged-particle Coulomb-force interactions can be classified by the relationship 

between the classical impact parameter, b, and the atomic radius, a (Attix 1986).  The 

three classifications are “soft” collisions (b>>a), hard (or “knock-on”) collisions (b ~ a), 

and Coulomb-force interactions with the external nuclear field (b<<a).  The interaction 

of interest in this study is the hard collision (b ~ a) because of the delta ray production 

(since the goal of this study is to study how well FLUKA can simulate a TEPC and 

produce the expected delta ray events). 



 8 

The rate of energy loss per unit path length by the incident particle is known as 

the stopping power and denoted as 
dT
dx

 which has SI units of J m-1 and common units of 

keV µm-1.  If stopping power is divided by density (in effect normalizing it for all 

densities), it is know as the mass stopping power.  Ignoring radiative stopping power, the 

collision stopping power becomes the total stopping power:  

 
c c c

s hdT dTdT
dx dx dxρ ρ ρ

� � � � � �= +� � � � � �
� � � � � �

 (14) 

where the subscript s denotes soft collisions and h denotes hard collisions (the collision 

of interest) and the subscript c denotes collision (as opposed to radiative). 

The maximum energy that can be transferred to an atomic electron in a hard 

collision (and therefore the maximum energy of a delta ray) is denoted by max'T  

 MeV 
1

022.1
1

2' 2

2

2

2
2

max ��
�

�
��
�

�

−
=��

�

�
��
�

�

−
≅

β
β

β
β

cmT o  (15) 

where � is defined as  

 
v
c

β = . (16) 

The relationship between T, kinetic energy, and � is described by 

 
	
	



�

�
�


�
−

−
= 1

1

1
2

2

β
cMT o  (17) 

where Moc2 is the rest mass energy of the incident particle.  As Equation (17) 

demonstrates, the kinetic energy required by any particle to reach a given velocity is 

proportional to its rest energy.  Rearranging Equation (17) gives  
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β . (18) 

Equation (14) can be expanded (Attix 1986) for heavy particles to give 

 
2 2

2
2 20.3071 13.8373 ln ln

1
c

dT Zz
I

dx A
β β

ρ β β
� �� �� � = + − −� 	� �� � −� � � � 


 (19) 

where Z and A are the atomic number and mass number of the stopping medium, 

respectively, z is the charge of the incident particle and I is the mean excitation potential 

of the struck atom.  Equation (19) modified to include a shell correction term that takes 

into account the relative participation of atomic electrons in the slowing down process as 

the incident particle slows down: 
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2
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2

β
β

β
βρ

. (20) 

This impact of this correction term is insignificant for the incident particle energies 

discussed in this paper.  Nonetheless, it is included for completeness. 

Similarly, Equation (14) can be expanded for electrons and positrons: 

 
	
	



�

�
�


�
−−+��
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��
�
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�
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�

� ±
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 (21) 

where 

 2
0

T
m c

τ ≡ , (22) 
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for electrons 

 2

2
2

)1(
2ln)12(8/

1)(
+

+−+−≡−

τ
ττβτF , (23) 

for positrons 
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�
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�
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+
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+
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32

2

)2(
4

)2(
10

2
14

23
12

2ln2)(
τττ

βτF , (24) 

� is the correction term for the density effect and C/Z is the previously discussed shell 

correction term.  In the case where the stopping medium is a mixture of elements, the 

stopping power of the mixture is represented by the weighted sum of the stopping 

powers of the composing materials according to Bragg’s Rule (ICRU 1984):  

 
1 2

1 2

z z
mix z z

dT dTdT
f f

dx dx dxρ ρ ρ
� � � � � �= +� � � � � �
� � � � � �

+… (25) 

Similarly, � for a mixture is 

 
AZ

AZf
i

iizi

/

)/(�
=

δ
δ . (26) 

Another quantity of interest is the restricted stopping power which is the fraction 

of the collision stopping power that includes all soft collisions and those hard collisions 

resulting in delta rays with energies less than the cutoff value � (Attix 1986).  If � is 

increased to equal max'T (given in Equation (15)), then 

 
c

dx

dT

dx
dT

��
�

�
��
�

�
=��

�

�
��
�

�

∆ ρρ
 . (27) 

 

For electrons and positrons this quantity is 
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where 

 
T

η ∆≡ , (29) 

for electrons 

 [ ] [ ])1ln()12(2/)1()1()1(4ln1),( 22212 ητητβηηηβητ −++−+−+−+−−= −−G  (30) 

and for positrons 

 
2 2 2

2

2 2 3 3 3 4

1 (2 ) (3 )( / 2)
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(1 )( / 3) ( / 4)
G

ζ η ζ ζτ η
τ η η β

ζτ ζ τ η ζ τ η
+ � �+ − − +

= − � 	
+ + − 


, (31) 

where 

 ( ) 12ξ τ −≡ + . (32) 

Finally, the range of a charged particle is the expectation value of the pathlength 

p that is follows until it comes to rest which defined as 

 dT
dx

dTT
1

0CSDA
0

−

� ��
�

�
��
�

�≡ℜ
ρ

 (33) 

where T0 is the starting energy of the particle.  If dT/�dx is in MeV cm2/g and dT in 

MeV, then CSDAℜ  is thus given in g cm-2 (Attix 1986).  Because of the complexity of the 

stopping power equations, they and CSDAℜ are often found from tabulated references.  

The CSDAℜ  for a heavy charged particle of charge z and rest mass 0M  can be found via 

tabulated proton data by the relationship 
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 CSDA 0
CSDA 2

0

P

P

M
M z

ℜℜ =  (34) 

where CSDA
Pℜ is the range of a proton of rest mass 0

PM . 

 

Tissue-Equivalent Proportional Counter 

A tissue-equivalent proportional counter (TEPC) is a specialized type of 

proportional counter whose wall and fill gas mimic the elemental composition of 

biological tissue (Knoll 2000).  It is a versatile dosimeter because can measure both 

absorbed dose and dose equivalent in a mixed radiation field.  For walls that are 

sufficiently thick compared to the range of delta rays produced in the wall, an 

equilibrium exists whereby the flux of delta rays entering the gas volume becomes 

independent of the wall thickness (this phenomenon will be exploited later).  In the case 

of a low pressure TEPC, direct measurement of energy imparted, � from Equation (3), is 

possible on an event by event basis.  In summary, proportional counters are the principal 

instruments of microdosimetry (Rossi 1996). 

 

FLUKA 

The objective of this study is to determine how well the Monte Carlo transport 

code FLUKA (Fasso 2005) can simulate a TEPC and produce the expected delta ray 

events.  FLUKA is the code of choice for this research because of its ability to simulate 

about 60 different particles, including electrons from 1 keV to thousands of TeV and 
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hadrons of energies up to 20 TeV (Fasso 2005).  For this application, FLUKA is a very 

flexible code. 

FLUKA is a general purpose Monte Carlo code for the interaction and transport 

of hadrons, heavy ions, and electromagnetic particles from few keV (or thermal energies 

for neutrons) to cosmic ray energies in whichever material (Battistoni 2007). 

As in most simulation codes that adopt a “condensed history” approach, in 

FLUKA “continuous” processes such as energy loss and angular deflections due to 

Coulomb interactions and “discrete” processes (delta ray production, nuclear 

interactions, decays, bremsstrahlung and photon interaction) are treated separately 

(Fasso 2005). 

The FLUKA code was originally developed in 1962 by J. Ranft and H. Geibel, 

who initiated the code for hadron beams. The name FLUKA (from FLUktuierende 

KAscade) came in 1970. Between 1970 and 1987 the development of the code was 

carried out in the framework of a collaboration between CERN and the groups of 

Leipzig and Helsinki. That version was essentially for shielding calculations. 

Since 1989 FLUKA has been developed within INFN (National Institute of 

Nuclear Physics) with the personal collaboration of A. Fassò (CERN) and J. Ranft 

(Leipzig). 

In 1990 MCNPX officially started using FLUKA for its high energy part. In 

1993 FLUKA was interfaced to GEANT3 (for the hadronic part only). This interface did 

not follow the subsequent FLUKA developments and it is therefore now obsolete. 
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Since 2002, FLUKA is an INFN project. The INFN project is carried on in 

collaboration with CERN and the University of Houston (Fasso 2005). 

According to the FLUKA manual, delta ray production is controlled via Bhabha 

and Møller scattering (Fasso 2005).  As previously mentioned (and will be seen in the 

results), delta ray production greatly influences the response of a TEPC.  Specifically, 

the two phenomena of interest are delta ray production in the wall and delta ray escape 

from the gas to the wall.  Simulating the response of a TEPC would be very difficult if 

not impossible without an accurate model for delta ray production.   

FLUKA’s most current transport limits appear in Table 1. 

 
 

Table 1 – FLUKA transport limits (Fasso 2005) 
 

 Secondary particles Primary particles 
charged hadrons 1 keV–20 TeV (a) 100 keV–20 TeV (a) 
neutrons thermal–20 TeV (a) thermal–20 TeV (a) 
antineutrons 1 keV–20 TeV (a) 10 MeV–20 TeV (a) 
muons 1 keV–1000 TeV 100 keV–1000 TeV 
electrons 1 keV–1000 TeV 70 keV–1000 TeV (low-Z materials) 

150 keV–1000 TeV (high-Z materials) 
photons 1 keV–1000 TeV 7 keV–1000 TeV 
heavy ions 10 MeV/n–10000 TeV/n 100 MeV/n–10000 TeV/n 

   (a) 10 PeV with the Dpmjet interface 
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CHAPTER III 

METHODS  

 

General Considerations 

A TEPC was constructed according to the experimental specifications (Gersey 

2002) which simulated a 1 µm site size of unity density (1 g cm -3).  This included a 

spherical gas volume 1.27 cm in diameter with a 0.254 cm thick tissue-equivalent (TE) 

wall.  Gersey states a gas pressure of 33 torr was used which corresponded to a 1 µm site 

size.  A simple calculation was performed using Equation (1) that gave a necessary gas 

density to produce a 1 µm site size of 7.87x10-5 g cm-3.  

Propane (C3H8) was used as the fill gas.  The composition of the TE material 

used was not detailed.  Therefore, it was assumed to be A-150 tissue-equivalent plastic 

as per the NIST standard with a density of 1.127 g cm-3 (NIST 2010).  A-150’s 

composition is detailed in Table 2.  As a side note, FLUKA does not have fluorine listed 

as one of its standard materials.  A separate material declaration was needed to create 

fluorine. 

 

Table 2 – Composition of A-150 tissue-equivalent plastic 

Atomic number Fraction by weight 
1 0.101327 
6 0.775501 
7 0.035057 
8 0.052316 
9 0.017422 

20 0.018378 
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All FLUKA simulations were run with the TEPC in a vacuum.  Gersey did not 

give specifications of the anode.  As a result, a 45 µm diameter tungsten anode was 

constructed in the FLUKA input file.  The simulated TEPC consisted of five regions as 

detailed in Table 3. 

 

Table 3 – FLUKA regions of simulated TEPC 

Region number Description 
1 Blackhole/universe 
2 Vacuum 
3 A-150 tissue-equivalent wall 
4 Gas volume, C3H8 
5 Tungsten anode 

 

 

Both electron transport limit and delta ray production thresholds were set to 1 

keV.  Both of these limits were applied to all materials.  FLUKA SCORE commands 

208, deposited energy (FLUKA name “Energy”), and 211, electromagnetic energy 

(electrons, positrons or photons – FLUKA name “EM-ENRGY”) were used for all runs.  

Essentially, 208 gives energy deposition from primary plus delta rays while 211 gives 

just energy deposition from delta rays because FLUKA was set not to transport photons 

by using the DISCARD command.  Data were generated using the EVENTDAT card 

which tabulated requested values (in this case 208 and 211) for each region.  A small 

C++ program was used to extract the relevant data from the FLUKA output file. 

FLUKA was run on the Texas A&M Department of Nuclear Engineering Unix 

cluster, grove, the specifications for which appear in Table 4. 
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Table 4 – grove specifications 

Server name Server type Processor 
specifications 

Operating 
system RAM 

grove Dell PowerEdge 
2950 (master) 

(2) Intel Xeon 5345 
(Quad-Core 2.33GHz) 

RedHat 
Enterprise 
Linux AS 4 

16GB 

compute-00 
through 
compute -09 

Dell PowerEdge 
1950 (10 nodes) 

(2) Intel Xeon 5345 
(Quad-Core 2.33GHz) 
each  
80 processor 
equivalent for running 
jobs 

RedHat 
Enterprise 
Linux WS 4 

20GB 

 

 

Beam Geometry 

The simulation consisted of passing an 
56

Fe beam at 360 MeV/nucleon through 

the detector, perpendicular to the axis of the anode.  In all cases, the beam started 2 cm 

outside the TEPC and energy deposition was recorded (via SCORE 208 and/or SCORE 

211) in the gas only (FLUKA region 4). 

Four specific beam profiles were run:  
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Figure 1 – Beam schematic a broad beam.  The broad beam has the shape of an annular 

ring with inner radius = 0 and outer radius = detector radius. 

 

a uniform broad beam covering the entire cross sectional area of the detector (Fig. 1),  
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Figure 2 – Beam schematic for a narrow beam down the diameter. 

 

a narrow beam down the diameter of the detector (Fig. 2),  
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Figure 3 – Beam schematic for a narrow beam 1 µm inside the gas/wall interface 

 

a narrow beam 1 µm inside the gas/wall interface (Fig. 3), 
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Figure 4 – Beam schematic for a narrow beam 1000 µm inside the gas/wall interface. 

 

and a narrow beam 1000 µm inside the gas/wall interface (Fig. 4).  The latter three 

narrow beams are meant to provide insight into explaining and characterizing how 

energy enters and is lost due to the inhomogeneous gas/wall interface, better explaining 

the features of the broad beam.  Each beam orientation was run with and without 

FLUKA transporting delta rays.  This was done to show that when delta rays are “turned 

off,” FLUKA deposits energy locally. 

 

 



 22 

In addition, a series of narrow beams were ran a varying impact parameters 

(radial distance from center of detector to beam axis) to further explore the effect of the 

TE wall on the delta ray spectrum.  The beams were kept uniform (56Fe at 360 

MeV/nucleon) and only the beam location was changed.  In a similar fashion, the beam 

location was held constant (impact parameter < 0.5 mm) while the beam energy was 

varied (200-1000 MeV/nucleon 56Fe) to verify FLUKA’s scoring of energy deposition of 

beam of varying LET. 

 

Wall Thickness 

Because of the long runtimes of these simulations, anywhere from 10-20 days to 

produce statistically acceptable results for beam orientations described in Figs. 1-4, the 

option of using a thinner wall was explored.  To find an acceptable thinner wall, energy 

deposition from electrons, specifically delta rays, only (SCORE 211 from above) was 

used.  The first test consisted of performing the run detailed in Fig. 2, 360 MeV/nucleon 

56Fe narrow beam down the diameter, except with a varying TE wall thickness.  From 

these data, it was expected to find that the energy deposition will plateau and further 

increasing the wall thickness will have no effect on the energy deposition.  The goal of 

this test is to find the range of forward-going delta rays produced in the wall. 

In a second test, the standard beam, 360 MeV/nucleon 56Fe, was passed down the 

axis of a 1 µm long, 1000 µm radius TE cylinder.  Energy deposition from electrons was 

scored as a function of radial distance from 100 to 1000 µm in 25 µm increments.  

Similar to the goal of the first test, the goal of this test is to find the range of delta rays in 
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the radial direction.  To find the range of delta rays in angles between 0 and 90º, this test 

was repeated for a 1000 µm long, 1000 µm radius TE cylinder. 
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CHAPTER IV 

RESULTS AND DISCUSSION  

 

Simulated TEPC 

 The first data set of interest is the energy deposition histogram for an evenly 

distributed broad beam incident on the simulated TEPC shown in Fig. 5.  This response 

is what is typical for a detector with a solid wall exposed to a radiation source in a 

laboratory. 
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Figure 5 – Energy Deposition Histogram for an 56Fe beam at 360 MeV/nucleon incident     

on the simulated TEPC (broad beam, covering entire surface area) 
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In the paper detailing the experimental data, the three general energy regions of this plot 

were identified – low energies (< 10 keV), peak at mid energies, and the small number 

of very high energy events.  To explain these regions of interest, the broad beam plot in 

Fig. 5 will be compared to the three specific narrow beams outlined in Figs. 2-4. 

The first narrow beam of interest is that of a narrow beam passed down the 

diameter of the detector, perpendicular to the anode.  The resulting energy deposition 

histogram is shown in Fig. 6.  The beam orientation was matched to the beam in the 

experimental data, all particles having an impact parameter less than 0.5 mm (Gersey 

2002).  This narrow beam is responsible for the peak and most probable energy 

deposition value of ~200 keV found in Fig. 5. 
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Narrow Beam Energy Deposition Histogram
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Figure 6 – Energy Deposition Histogram for an 56Fe beam at 360 MeV/nucleon with an 

impact parameter less than 0.5 mm incident on the simulated TEPC. 

 

The second narrow beam of interest is that passed almost tangent to the gas/wall 

interface (specifically 1 µm inside the TE wall).  This spectrum has two general features 

worth noting.  First, this spectrum is quite broad.  The histogram in Fig. 7 shows values 

out to 1000 keV.  However, this represents a truncation of the entire spectrum with 

recorded events well past the 1000 keV cutoff.  The second point of interest is that the 

average energy deposition of this spectrum is much greater than that of the other spectra.  

As evident from this spectrum, beams tangent (or close to tangent) to the gas/wall 

interface are responsible for the highest energy deposition events found in the broad 
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beam.  Additionally, because of the broad spectrum produced by a tangent beam, it can 

be said that the broadness of the tangent beam spectrum, generally speaking, “washes 

out” the broad beam spectrum a bit making details less pronounced than in other spectra.  
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Figure 7 – Energy Deposition Histogram for a tangent (1 µm inside the gas/wall 

interface) 56Fe beam at 360 MeV/nucleon incident on the simulated TEPC. 

 

The third and final narrow beam of interest is that passed 1000 µm inside the 

gas/wall interface.  As evident in the histogram in Fig. 8, this beam orientation is 

responsible for the very low energy deposition events in the simulated TEPC.  The 

energy deposition is so low because all delta rays produced in the wall by the incident 
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beam have to travel through at least 1000 µm of TE material before they reach the gas.  

In many cases, this was enough material to stop the delta rays completely resulting in 

zero energy deposition in the gas.  For the delta rays that did make it through the TE wall 

and into the gas, very little energy (a few keV) was deposited.  
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Figure 8 – Energy Deposition Histogram for a narrow 56Fe beam at 360 MeV/nucleon 

1000 µm inside the gas/wall interface incident on the simulated TEPC. 

 

With the features of the broad beam explained by narrow beams, the next step in 

analyzing how well FLUKA produces the expected delta ray events is to explore what 

happens when delta rays are turned off in FLUKA (i.e. the DELTARAY command is not 



 29 

included in the input file).  To conduct this study, the same input file used to generate the 

histogram in Fig. 6 (narrow beam with impact parameter < 0.5 mm) was used except that 

the DELTARAY command was commented out.  The resulting energy deposition 

histogram is in Fig. 9.  A comparison of Figs. 6 and 9 (delta rays “on” and “off”) show 

they both contain a peak and most probable value at ~200 keV.  However, with delta 

rays off, the distribution has a large tail that extends out well past the 300 keV cutoff of 

the plot window.  This large tail is present because with delta rays turned off, FLUKA is 

depositing all energy locally.  That is, where delta rays would normally carry a 

significant fraction out of the gas and into the wall, FLUKA is now depositing all of the 

delta ray’s kinetic energy at the location it is produced. 

 In this case, energy loss by the particle passing through the gas is equal to the 

energy deposited in the gas.  For the case of delta rays turned on, this is not the case and 

the energy deposited in the gas is less than the energy lost by the incident particle 

passing through the gas. 

 This “delta ray off” energy deposition histogram resembles a Vavilovian energy 

loss distribution (Vavilov 1957).  
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Narrow Beam Energy Deposition Histrogram with Delta Rays Off
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Figure 9 – Energy Deposition Histogram for an 56Fe beam at 360 MeV/nucleon incident     

on the simulated TEPC (broad beam, covering entire surface area) with delta rays turned 

off. 

 

 Another point of interest for the simulated TEPC is how the TE wall affects the 

energy deposition spectrum.  The energy deposition histogram for a wall-less TEPC (TE 

wall replaced with a vacuum) with delta rays turned on and the incident beam having an 

impact parameter less than 0.5 mm is found in Fig. 10.  This is the same beam 

orientation as in Fig. 6 except no detector wall is present.  As a comparison shows, the 

spectra in Figs. 6 and 10 are quite similar.  Both contain a very well defined narrow peak 

with the only difference being the wall-less peak has shifted down about 20 keV as 



 31 

compared to the walled peak (~180 keV vs. ~200 keV).  This spectrum shift is due to the 

loss of the delta rays entering the gas volume from the TE wall (i.e. the forward-going 

delta rays).  It should be noted again that in all simulations, only energy deposition in the 

gas was scored.  As a result, the energy loss in the wall (or lack of in the case of a wall-

less detector) does not affect the energy deposition in gas except for the delta rays 

produced in the wall that manage to make it to the gas volume. 
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Figure 10 – Energy Deposition Histogram for an 56Fe beam at 360 MeV/nucleon with an 

impact parameter less than 0.5 mm incident on the simulated TEPC without a wall. 
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 A comparison of the walled and wall-less energy deposition histograms is found 

in Fig. 11.  As stated above, the peak for the wall-less detector has been shifted ~20 keV 

lower than the walled detector.  Additionally, the height of the walled detector 

distribution is slightly lower than the wall-less distribution.  This is because the walled 

peak is slightly wider than the wall-less peak, most likely due to the variance in the 

number of delta rays entering the gas.  
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Figure 11 – Comparison of Energy Deposition Histograms for an 56Fe beam at 360 

MeV/nucleon with an impact parameter less than 0.5 mm incident on the simulated 

walled (solid line) and wall-less (dashed line) TEPC. 
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Wall Thickness/Delta Ray Range 

 The next area of consideration is how the TE wall thickness affects the energy 

deposition in the gas.  As discussed earlier, the wall is important not because of the 

energy lost by the primary beam in it but rather the energy deposited in the gas volume 

by delta rays produced in the wall. 

 To begin this study, a 1000 µm radius cylinder made of A-150 TE material was 

simulated as outlined in Chapter III.  Energy deposition as a function of radial distance 

was plotted for a narrow beam passed down the axis of the cylinder as shown in Fig. 12.  

Since the primary 360 MeV/nucleon 56Fe beam was passed down the axis, the energy 

deposition at hundreds of µm away from the axis is from the delta rays produced by the 

primary beam.  As expected, energy deposition decreases as the radial distance 

increases. 
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Figure 12 – Energy deposition as a function of radial distance for a narrow 56Fe beam at 

360 MeV/nucleon passed down the axis of a 1000 µm long, 1000 µm radius cylinder of 

TE material on a linear scale. 

 

 It should be noted that this geometry is sufficient (i.e. equal length and radius) to 

record energy deposition for delta rays produced at all angles (as opposed to just in the 

radial direction to be discussed next). 
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 A plot of the same spectrum appears in Fig. 13 but this time a log scale is used 

for the y axis to show detail at the larger radial distances.  As the plot shows, even at a 

radial distance of 1000 µm, there is still a non-negligible amount of energy deposition, 

~10 keV. 
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Figure 13 – Energy deposition as a function of radial distance for a narrow 56Fe beam at 

360 MeV/nucleon passed down the axis of a 1000 µm long, 1000 µm radius cylinder of 

TE material on a log scale. 

 

A plot similar to that found in Fig. 12 is found in Fig. 14.  However, the TE 

cylinder in this case is only 1 µm long as opposed to 1000 µm long in Fig. 12.  This thin 
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cylinder (closer in relative dimensions to a coin) is meant to capture only those delta rays 

produced at an angle of 90 º with respect to the primary beam.  The shape is similar, but 

the magnitude of energy deposition is less (as expected). 
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Figure 14 – Energy deposition as a function of radial distance for a narrow 56Fe beam at 

360 MeV/nucleon passed down the axis of a 1 µm long, 1000 µm radius cylinder of TE 

material on a linear scale. 

 

A plot of the same spectrum appears in Fig. 15 but this time a log scale is used 

for the y axis to show detail at the larger radial distances.  As the plot shows, energy 

deposition is reduced to very small values (on the order of tens of eV) once a radial 
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distance of 100 µm is reached.  It should be noted that as radial distance increases, the 

2� error bars increase as well.  Once a radial distance of 120 µm is reached, the 2� error 

bars approach an order of magnitude.  This is a result of an increasing number of zero 

energy deposition events as radial distance increases.  After about a 100 µm radial 

distance, a significant fraction of delta rays have stopped in the TE material. 

 

1 µm Long TE Cylinder

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0 20 40 60 80 100 120 140

Radial Distance [µm]

E
ne

rg
y 

D
ep

os
iti

on
 [k

eV
]

 

Figure 15 – Energy deposition as a function of radial distance for a narrow 56Fe beam at 

360 MeV/nucleon passed down the axis of a 1 µm long, 1000 µm radius cylinder of TE 

material on a log scale. 
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Figure 16 – Delta ray energy deposition as a function of wall thickness for a narrow 56Fe 

beam at 360 MeV/nucleon passed down the diameter of the simulated TEPC. 

 

 To investigate the influence of wall thickness on the energy deposition in the gas, 

multiple narrow beams (impact parameter < 0.5 mm) were run with a varying thickness 

for the TE wall.  This energy deposition vs. wall thickness plot is found in Fig. 16.  Note, 

this is energy deposition from electrons (delta rays) only using the SCORE 211 FLUKA 

command.  As expected, the energy deposition in the gas volume reaches a plateau.  A 

recent study that modeled the response of a TEPC to neutrons using MCNPX gave 

similar results (Perez-Nunez 2010).  From this plot alone, it could be said that a wall 

thickness of 300 µm would be sufficient to give the same response as the TEPC wall 
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(2540 µm).  As the 1000 µm long TE cylinder demonstrates, however, significant delta 

ray energy deposition occurs past 300 µm.   
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Figure 17 – Energy deposition as a function of radial distance from the gas/wall interface 

for a narrow 56Fe beam at 360 MeV/nucleon incident on the simulated TEPC on a linear 

scale. 

 

 The last test in investigating how the TE wall thickness affects energy deposition 

in the gas involves passing a narrow beam through the simulated TEPC at various 

distances inside the gas/wall interface.  In all cases no primary 56Fe particles passed 

through the gas.  The energy deposition vs. beam position plot appears in Fig. 17.  As 
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expected, the energy deposition in the gas is quite small due to the delta rays travelling 

through hundreds or even thousands of µm of TE material. 
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Figure 18 – Energy deposition as a function of radial distance from the gas/wall interface 

for a narrow 56Fe beam at 360 MeV/nucleon incident on the simulated TEPC on a log 

scale. 

 

 The same plot appears in Fig. 18 except this time the y axis is on a log scale to 

bring out detail at the larger impact parameters.  The 2� error bars increases dramatically 

as the beam is moved further away from the gas volume.  The reasoning behind this is 

the same as with the 1 µm TE cylinder – many of the delta rays are stopping in the TE 
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material.  As a result, many zero energy deposition events are being included in the 

average which increases the standard error. 

From the data gathered by the previous test (Figs. 17 and 18), a determination 

was made that a wall thickness of 750 µm could be used as a substitute for the original 

TEPC wall (2540 µm).  When a narrow beam was passed 750 µm inside the TE wall, an 

average energy deposition of just over 2 keV was recorded.  Using this 750 µm (“thin”) 

wall vs. the original 2540 µm (“thick”) wall results in a ~1% decrease in recorded 

energy deposition.  Using a thin wall is quite beneficial for simulation purposes because 

of the reduced CPU time it offers.   

This tradeoff was deemed acceptable for producing the plot in Fig. 19 which 

details energy deposition in the gas volume as a function of impact parameter from IP = 

0 to IP = TE wall outer radius.  Any reduction in CPU time was appreciated in producing 

this plot because of the many runs necessary with the beam so close to gas/TE wall 

interface (the longest track through the TE material therefore giving the longest 

runtime).  This plot matches a similar plot using experimental data (Gersey 2002).  The 

feature of interest is the spike in energy deposition close to the gas/wall interface 

(analyzed with the tangent beam in Fig. 7). 

Plotted on the same graph is LET x chord length.  As Fig. 19 shows, there is 

significant energy deposition in the gas volume when the beam is just inside the gas/wall 

interface.  In that case, the chord length is 0 so LET x chord length is 0 as well.  This 

difference is a result of delta rays depositing energy in the gas volume that were 

produced in the wall. 
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Figure 19 – Energy deposition as a function of impact parameter for a narrow 56Fe beam 

at 360 MeV/nucleon incident on the simulated TEPC with a thin (750 µm) TE wall.  In 

addition, LET x Chord Length is plotted to show the wall effect. 

 

Summary of Data 

 To complete the analysis of the simulated TEPC, five different broad (covering 

surface area of detector) 56Fe beams were run with energies of 200, 360, 540, 700, 790, 

and 1000 MeV/nucleon.  These energies were chosen because of the readily available 

experimental data available for comparison.  For all five beams, the thin wall (750 µm) 

was used to reduce CPU time. 
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 Table 5 summarizes the FLUKA simulation and experimental (Gersey 2002) 

results.  

 

Table 5 – Summary of yF and yD data 

Fe-56 Beam  

Energy 

(MeV/nucleon) 

Gersey yF 

(keV/µm) 

FLUKA 

yF 

(keV/µm) 

yF % 

diff. 

Gersey 

yD 

(keV/µm) 

FLUKA 

yD 

(keV/µm) 

yD % 

diff. 

200 199 286 43.8 328 354 7.9 

360 146 196 33.9 216 246 13.7 

540 134 160 19.2 173 199 15.2 

700 125 144 14.9 159 181 13.9 

790 118 138 17.2 153 173 13.0 

1000 106 130 22.2 147 163 11.0 

 

  

 Table 5 contains the frequency mean lineal energy (yF) and dose mean lineal 

energy (yD) for both the Gersey experimental data and the FLUKA simulation data and 

their respective percent differences.  From these data it can be seen that FLUKA 

consistently overestimates energy deposition in the simulated TEPC.  The percent 

difference for yF is greater than that for yD and as a general trend, the simulation data 

better matched the experimental data as the beam energy increased.  This is most likely 

due to the fact that FLUKA is primarily designed to be a high energy accelerator code 

and it not surprisingly benchmarked better for higher energies. 
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 A plot of the data in Table 5 is found in Fig. 20.  The FLUKA data follows the 

general trend of the experimental data but overestimates in all cases. 
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Figure 20 – Comparison of experimental (Gersey 2002) and simulation (using thin wall) 

frequency mean lineal energy (yF) and dose mean lineal energy (yD) for 56Fe beams at 

200, 360, 540, 700, 790, and 1000 MeV/nucleon incident on the simulated TEPC (broad 

beam, covering entire surface area). 
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CHAPTER V 

CONCLUSION  

 

A TEPC was successfully simulated using FLUKA.  The main features of the 

broad beam spectrum were confirmed with narrow beams at different impact parameters.  

In addition, the TEPC was tested without FLUKA transporting delta rays (delta rays 

“off”) and with the TE wall replaced with a vacuum. 

Wall thickness was a characteristic of the detector that was studied in detail.  

Care was taken to ensure FLUKA responded as expected.  An important end result of 

this wall thickness study was the determination of a suitable thinner wall to be used for 

the entire detector energy deposition vs. impact parameter plot and the final beam energy 

vs. yF and yD analysis.  A thinner wall was desirable to reduce CPU time. 

In all cases, FLUKA overestimated energy deposition in the gas volume.  This is 

most likely due the low pressure and density of the gas.  A simple test was performed 

where a 360 MeV/nucleon 56Fe beam was passed through a 1 µm thick slab of water.  

For this simple test, FLUKA returned an average energy deposition equal to the 

expected stopping power.  When the same test was run with propane, however, the 

energy deposition value was higher than expected (like it has been for the TEPC results). 

The developers of FLUKA advertise how well it can simulate interactions at very 

high energies (see Table 1 – FLUKA transport limits).   However, it seems the user may 

need to perform a slight calibration and manipulate several default values to obtain 

accurate results at lower energies.   
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Therefore, it is suggested that to ensure FLUKA gives a proper response, the 

MAT-PROP command (material properties) should be used.  Among other things, the 

MAT-PROP command allows the user to override default values for ionization potential 

and density correction factors.  With the usage of default MAT-PROP values in this 

study, the average percent error between the experimental and simulation data was  

25.2 % for yF and  12.4% for yD. 
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