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ABSTRACT 

 

Studies in Bioinorganic Chemistry:   

Synthesis and Reactivity of Nickel and Vanadyl NxSy Complexes. (May 2010) 

Roxanne Michelle Jenkins, B.S., University of Texas as San Antonio 

Chair of Advisory Committee: Prof. Marcetta Y. Darensbourg 

 

 As inspired by the coordination environment of nickel in NikR and NiSOD, 

imidazole ligands were incorporated into N2SNiII square planar complexes in order to 

investigate the electronic and structural features of NiII species containing both imidazole 

and thiolate ligation.   Rare examples of nickel complexes containing such ligand sets in 

continuous tetradentate (N2N’S) and discontinuous (N2S---N’) coordination were 

synthesized and characterized.  A significant finding in these studies is that the plane of 

the imidazole ligand is oriented perpendicular to the N2SNi plane.  Further investigations 

addressed the orientational preference and stereodynamic nature of flat monodentate 

ligands (L = imidazoles, pyridine and an N-heterocyclic carbene) bound to planar N2SNi 

moieties.   The solid state molecular structures of planar [N2SNiL]n+ complexes accessed  

through bridge-splitting reactions of dimeric, thiolate-S bridged [N2SNi]2  complexes, 

reveal that the plane of the added monodentate ligand orients largely orthogonal to the 

N2SNiL square plane.    Variable temperature 1H NMR characterization of dynamic 

processes and ground state isomeric ratios of imidazole complexes in their stopped 

exchange limiting spectra, readily correlate with DFT-guided interpretation of Ni-L 

rotational activation barriers.   Full DFT characterization relates the orientation mainly to 
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steric hindrance derived both from ligand and binding pocket.  In the case of the 

imidazole ligands a minor electronic contribution derives from intramolecular 

electrostatic interactions (imidazole C-2 C-Hδ+- - Sδ- interaction).    

 Our group has firmly established the versatility of the (bme-daco)2-, (bme-dach)2-, 

and (ema)4- ligands to accommodate a number of metals (M = Ni, Zn, Cu, and Fe ), and 

have demonstrated reactivity of such N2S2M complexes occurs predominately at the S-

thiolate sites.  As vanadium is of interest for its biological, pharmacological and 

spectroscopic/analytical probe abilities, vanadyl analogues were explored as mimics of 

possible chelates formed from Cys-X-Cys binding sites in vivo.  The structural and 

electronic changes from the incorporation of V=O2+ in such dianionic and tetraanionic 

N2S2 binding pockets is investigated and compared to Ni2+ and Zn2+ in similar N2S2 

environments. The nucleophilicity of the S-thiolate in these systems is explored with 

alkylating agents and W(CO)x.    Furthermore, the vanadyl interaction with the CGC 

peptide, the biological analogue of the tetraanionic N2S2 ligand, was produced and 

characterized by EPR; its W(CO)x adducts were indentified by υ(CO) infrared 

spectroscopy. 
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CHAPTER I 

INTRODUCTION 

 

Biological Functions of Nickel in Microorganisms 

 Plants, fungi, archaebacteria and eubacteria utilize nickel ions in a variety of 

essential metalloproteins which participate in Ni-sensing, uptake, trafficking, storage, 

regulation and utilization.1-2  There are nine known Ni-dependent enzymes:  urease, 

[NiFe]-hydrogenase, carbon monoxide dehydrogenase, acetyl-coenzyme A 

decarbonylase/synthase, methyl-coenzyme M reductase, Ni-superoxide dismutase, Ni-

dependent glyoxylase, acireductone dioxygenase and methylenediurease.1 Nickel can 

function as a redox cycling agent, a binding site for reactive small molecules (CH3 or 

CO) in organometallic transformations, a Lewis acid to promote hydrolysis, or as a 

regulator of vital response mechanisms.1-2  For example, nickel ions are essential to the 

physiology of microorganisms such as Helicobacter pylori and Escherichia coli. The 

survival of the bacteria relies on the nickel-containing enzyme urease (comprised of a 

dinickel active site containing four histidines) which helps maintain a neutral pH within 

the bacterial cytoplasm, and it depends on the [NiFe]-hydrogenase to supply energy to 

the cell.3-5   The pathogenic bacterium H. pylori, found in the acidic environment of the 

stomach of humans, is known to infect more than 50% of the world’s population.6-7  It 

has been associated with the onset of duodenal or gastric ulcers, gastritis and certain 

gastric cancers.8     

___________ 
This dissertation follows the style of Journal of the American Chemical Society. 
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NikR: A Nickel Regulation Protein 

 As a surplus of nickel is toxic in biological systems, the control of the 

intracellular levels of nickel is essential.9  Nickel homeostasis in H. pylori and E. coli is 

controlled by the nickel-responsive transcription factor, NikR.10-12  The molecular 

structure of the NikR protein of E. coli has been most extensively studied.2  As shown in 

Figure I-1, it is a homotetramer containing four high-affinity nickel binding sites (one 

per subunit) in the Metal Binding Domain (MBD).13   

Figure I-1.  A. NikR apoprotein highlighting the disordered α3 helix.; B.  NikR 
holoprotein.; C.  DNA-bound NikR protein. Adapted from Reference 13. 

 

 Each NiII ion is held in a square-planar arrangement consisting of the side chains 

of two histidine (His87 and His89) and one cysteine residue (Cys95) from one NikR 

monomer, and a histidine (His76) from an adjacent monomer (Figure I-2).13-14   This 
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cytoplasmic nickel sensor is responsible for repressing the transcription of the nickel 

membrane transporter, NikABCDE, when ample levels of intracellular nickel are met.10  

The  initiation of NikR binding to a 28-bp palindromic operator sequence found in  the 

promoter nikABCDE occurs following the coordination of four nickel ions to the high 

affinity sites located in the Ni-regulatory domain, i.e. the metal binding domain 

(MBD).13  

Cys95

His76'
His89

His87 H

HH
Ni

N
N

N
N

N

N S

NH

  

Figure I-2.  The nickel binding site of NikR.  Adapted from Reference 14. 

 As Figure I-1 shows, the binding of Ni2+ ions in this domain organizes the α3 

helix and initiates the protein-DNA communication.13  The exact DNA-binding response 

mechanism is still not completely understood.   A DNA-complementary surface on the 

MBD is created from the binding of nickel ions in the high affinity sites in the MBD.    

Polar interactions between the α3 loop and DNA phosphate backbone are created from 

the stable conformation of the α3 helix.  The localization of the NikR protein to the 

DNA is promoted by a short-range allosteric effect.  The ribbon-helix-helix (RHH) 

domains extend completely outwards from the MBD and the β-sheets which bind to the 

DNA major groove point in opposite directions.  When the operator base sequence is 
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recognized by the repressor, a cooperative interaction of both RHH domains ensues.  

The RHH domains rotate about the interdomain linkers and the anti-parallel β-strands 

orient to occupy the nik operator half-sites in the DNA major groove.13  

 There have been two other metal binding sites proposed in NikR, one of which 

was observed in the molecular structure of the DNA-bound NikR protein.13  Drennan 

and coworkers observed an additional metal binding site bridging the metal binding 

domain and the DNA binding domain.13  They proposed this conformation was held in 

place by a K+ ion.  Still another, a low affinity nickel binding site has been postulated, 

but not indentified by X-ray crystallography.2  Studies have established that 

stoichiometric amounts of nickel induce a nanomolar binding affinity of NikR to 

DNA.15-16  However, it has been demonstrated that excess nickel causes tighter binding 

of the protein-DNA complex.  In this case, XAS data suggests a nickel coordinated to 

N/O donors in an octahedral geometry defines this site.15    Biomimetic studies of the 

high affinity nickel(II) binding site have not been reported until now.131 

 Proteins typically bind metal ions in a highly specific manner.  Nevertheless, 

divalent transition metal ion binding studies of the high affinity metal binding site of 

NikR have demonstrated that metals such as Co2+, Cu2+, Zn2+, and Cd2+, bind with a 

similar affinity as Ni2+.15-16  Drennan and Zamble, et al., investigated the structural 

changes in the NikR protein induced by the binding of Cu2+ and Zn2+ ions to the high 

affinity metal binding domain as compared to the Ni2+ bound form.17  The results 

indicated that both Ni2+ and Cu2+ ions coordinate to the protein in a similar manner, and 

both promote the ordering of the α3 helix.   In contrast, the α3 helix remains disordered 
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on the binding of Zn2+ ions.   Competitive binding between Ni2+ and Cu2+ ions is 

however not observed in the cell, since free copper in the 2+ form is not present.17 

Overall, it is important to note that the coordination geometry about the nickel ion in 

NikR is controlled by the binding preferences of the metal and not induced by the 

protein superstructure, and this is critical to the function of the protein. 

 

Ni-dependent Superoxide Dismutase (NiSOD)  

In contrast to the structural, redox invariant function of the nickel ions found in 

NikR, a nickel-dependent enzyme in microorganisms in which the nickel ion plays a 

redox role is superoxide dismutase. Nature has designed superoxide dismutase to defend 

respiring cells from the cytotoxic effects of superoxide, catalyzing its dismutation 

reaction to molecular oxygen and peroxide. The reaction proceeds via a two step, ping 

pong mechanism wherein the metal center is first reduced by one molecule of superoxide 

producing molecular oxygen and subsequently the metal center is reoxidized by a second 

molecule of superoxide generating peroxide (Figure I-3).19-20     

Superoxide is a natural byproduct of aerobic metabolism. Superoxide and its 

derivatives damage living systems by causing oxidative damage to cellular components.  

Superoxide has the ability to abstract weakly bound protons producing organic radical 

species and it can also reduce metals leading to various Reactive Oxygen Species, 
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M3+ + O2
·- + H+  →   M2+ + O2 

 
M2+ + O2

·- + H+  →   M3+ + H2O2

Figure I-3.  Ping pong mechanism of superoxide dismutation. 

 

 

ROS’s.  The extremely reactive products generated from cellular reactions with 

superoxide are more deleterious to the cell than superoxide itself.  The damaging 

reactivity of ROS’s include inactivating enzymes, abstracting protons from DNA bases, 

modifying amino acids and interfering with NO-mediated signaling.  Superoxide and 

reactive oxygen species have been linked to many degenerative conditions, 

inflammatory diseases, reperfusion injury after ischemia, the process of aging, cell death 

during infections, advancement of AIDS and amyotrophic lateral sclerosis (“Lou 

Gehrig’s disease”).19-21 

SODs are classified according to their redox active metal center.  As shown in 

Figure I-4, the metal centers of the heterobimetallic Cu, Zn- and the monometallic Fe- or 

Mn- containing SODs, are coordinated to hard N or O donor atoms.  Histidine 

imidazoles, aspartate carboxylates, and water are the common ligands demonstrated to 

bind to these metal centers.22  Two simultaneous studies presented by Getzoff et al.., and 

Wuerges et al.., revealed the first protein crystal structures of the nickel-containing 

superoxide dismutase, NiSOD.23-24    The NiSOD is a relatively small protein consisting 

of a 117 amino acid sequence and is comprised of a four helix bundle hexamer structure  
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containing six Ni ions arranged in an octahedral array (Figure I-5).  The nickel(II) 

binding sites were found to incorporate both N-histidine and S-cysteine ligands creating 

a N2S2 binding motif.  This distinct SOD coordination environment involving N2S2 

ligation is a nickel binding pocket which is also observed in the acetyl coA synthase 

(ACS) metalloenzyme, where a nickel is bound by two S-thiolates and two N-amides 

from a Cys-Gly-Cys tripeptide motif.25-27     

 Molecular structures of NiSOD suggested that the redox active metal center 

undergoes conformational changes during the catalytic cycle (Figure I-5).23  The reduced 

form of the active site of NiSOD features a square planar geometry about NiII consisting 

of the N-terminus amine nitrogen, a carboxyamido N atom, two cysteine thiolates and 

2O2
- + 2H+    H2O2 + O2
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Figure I-4.  The Cu,Zn-SOD active site, the Mn-, Fe-SOD active site and the reaction 
they catalyze. 



 8

 

 

possibly a fifth donor ligand from an axial histidine N atom.  The molecular structure of 

the oxidized form reveals axial imidazole coordination to the Ni metal center resulting in 

a five coordinate square pyramidal geometry, Figure I-5. The imidazole plane of His1 

rotates by ~55° in the course of coordinating the His imidazolate N to the open axial site, 

achieving a Ni-N distance of ~2.63 Å (Figure 1-6).23  This is a large movement of the 

imidazole.   

 

 

Figure I-5.  Molecular structure of NiSOD. NiSOD active site. Left:  reduced form; 
Right: oxidized form.  Adapted from Reference 23. 
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Figure I-6.  The NiSOD active site in the reduced state (uncoordinated His) and 
the oxidized state (coordinated His) highlighting the large movement of the His1 
imidazole donor. 

 

 This work focuses mainly on the synthesis and structure of nickel coordination 

environments containing imidazole and thiolate ligation, as inspired by the NikR and 

NiSOD nickel binding sites.  Fundamental issues were discovered during the exploration 

of these bioinspired complexes, and led my work into the direction of investigating the 

factors that influence the orientation of heterocyclic monodentate ligands.  

 

Biological Relevance of Imidazole Orientation  

 Whereas the orientation of histidine donors in nickel-binding sites has not been 

addressed in structural studies of biomolecules, much effort has been directed to His-iron 

interactions, using simple imidazoles as mimics of histidine.  The axial imidazole 
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binding geometry in metalloporphrin complexes has been extensively studied by the use 

of small molecule models and theoretical computations.28-36 These works have 

demonstrated that the axial ligated imidazole geometry (orientation of the plane of the 

imidazole with respect to the Fe-Nporphyrin bond vectors, and tilt of the imidazole plane) 

can influence spectral changes,28-30,36 shifts in redox properties,30-31 coordination of 

substrates32 and changes in the spin state. 28   

A system to measure the orientation of imidazole ligands in metalloporphyrin 

complexes was developed by Hoard et al.., Figure I-7.37  The imidazole bonding 

geometry is described as the dihedral angle (ϕ) defined by the angle between the 

imidazole plane and a plane perpendicular to the N4Fe framework, which intersects a N-

atom bound to the Fe center.  When ϕ equals 0º (maximum steric repulsion), the 

imidazole plane eclipses the porphyrin nitrogen metal bonds and a ϕ value of 45º 

(minimum steric repulsion) corresponds to the imidazole bisecting the Nporphyrin-M- 

 

Fe

N
φ

N

N

N

Figure I-7.  Definition of ϕ  according to the system developed by Hoard et al. 
used to measure the orientation of imidazole ligands in metalloporphyrin 
complexes.  Adapted from Reference 37. 
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Nporphyrin angle.  An  evaluation of reported Fe heme structures by Scheidt and Chapman 

found that small ϕ angles (i.e. close to zero) were most often observed.28   These data 

implied that non-bonding interactions (steric repulsion) were not the dominating factor 

in the orientational preference of axial coordinated imidazole ligands in Fe heme 

complexes.  Structural analysis of metalloporphyrins containing two axial coordinated 

imidazoles found that longer Fe-Nimidazole bond distances were associated with imidazole 

ligands having smaller ϕ values.   

To investigate the electronic effect on ligand orientation, Scheidt and Chapman 

carried out computational studies on porphyrin type complexes that incorporated metal 

ions with various oxidation, spin states, imidazole angle.28  A stabilizing effect was 

found to be induced from an orientationally dependent small ϕ angle, which was 

determined to correspond to a bonding interaction involving a weak pπ imidazole and pπ 

metal interaction.  In all cases, with the exception of a low spin (LS) Fe(III) complex, the 

resulting conformation of the axial coordinated ligand derived from the opposing forces 

from pπ imidazole and pπ metal bonding interactions and steric factors, and  contributions 

of dπ orbitals were found to be minimal. In the LS Fe(III) system, the pπ imidazole and dπ 

metal interactions were shown to influence the value of ϕ to a greater extent.  

Furthermore, the π-bonding ability of imidazole ligands in (CN)5FeIII(1-CH3im)2- 

complexes  was examined by Asher and Abola, et al.38    These studies also found that 

weak π-bonding interactions between the Fe dπ-Im pπ orbitals of the coordinated 

imidazole ligand affect the imidazole conformation and the  M-imidazole bond distance.  
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Although a weak contribution from the π-donating properties of the imidazole 

ligand was suggested in early studies, current research has focused on other factors that 

affect the orientation of the imidazole ligand.  A recent survey of the Protein Data Base 

(PDB) crystal data base, by Knapp, et al.. found that in the majority of heme complexes 

the NH group of the axial ligated imidazole pointed in the direction of the propionic acid 

groups of porphyrin framework.34  In addition, they identified a second factor which 

influenced the orientational preference of the axial imidazole donor: the linker atoms of 

the histidine residue on the imidazole.  Both features were interpreted in terms of 

electrostatic interactions as according to their computational results, and both were 

considered to be a product of the overall protein environment.  A further theoretical 

study conducted by Knapp and coworkers examined the orientational preferences of 

axial ligated imidazoles in hemoproteins in the presence of a dielectric medium, such as 

water or protein environments, and determined that the electrostatic interaction of the 

total dipole moment of the heme-imidazole system with the solvent reaction field plays a 

significant role in the conformation of the axial imidazole ligand.35 

In addition to the stereochemical investigations of imidazole ligands in heme 

systems, imidazole orientational binding preferences have been studied in square planar 

platinum complexes and octahedral ruthenium complexes to understand the role of such 

metal complexes in biological systems, such as their mode of action as anticancer 

drugs.39-41  For example, Alessio, Marzilli and coworkers explored octahedral Ru(II) 

complexes that contained aromatic N-donor, “lopsided” ligands such as 1,5,6-

trimethylbenzimidazole, Me3Bzm, and concluded that opposing forces between steric 
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and electrostatic interactions affected ligand orientation and observed dynamic 

processes.39  The variable temperature 1H NMR spectra of cis,cis,cis-

RuCl2(DMSO)2(Me3Bzm)2 found that one Me3Bzm ligand readily flips between two 

identified species (each isomer rotated 180º from the another) while the second Me3Bzm 

ligand is immobile between -100 and +35 ºC.  The preferred, fixed orientation of the 

latter was attributed to electrostatic interactions between the C-Hδ+ of Me3Bzm and the 

two cis halides.  Other investigations by Velder, Reedijk et al. of Ru-N bound substituted 

imidazoles in dicationic Ru2+ complexes that lack coordinated halides established that 

the observed rotational behavior of the imidazole ligands about the Ru-Nimid bond is 

controlled exclusively by steric interactions.41   

The orientation and rotational fluxionality of N-heterocyclic carbene (NHC) 

ligands have also been carefully studied, concluding that rotation of NHCs about the M-

CNHC bond is also determined largely, and in most cases solely, by steric effects.43-51  For 

square planar d8 complexes the steric interference of NHC ligands with ancillary ligands 

dictates the NHC ligand plane to orient nearly perpendicular to the metal ligand 

plane.44,50-52 

A final example of the importance of imidazole orientation has been 

demonstrated in the CuA Azurin metalloprotein (Figure I-8).  Studies have established 

that the angular position of the His rings with respect to the Cu2S2 core in the active site 

of CuA Azurin modulates the interaction of the axial ligand with the copper ions, and 

thus fine tunes the structural and electronic properties of the metalloprotein.53-54 
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Figure I-8.  The active site of CuA azurin.  Adapted from Reference 53. 

 

 As a number of studies demonstrate the effects of subtle changes in imidazole 

orientation, and the fact that nature commonly employs histidine-rich sites in 

metalloproteins, further development of understanding the factors which influence the 

stereochemistry of metal bound His-imidazoles in other coordination geometries is 

important.  The main focus of this dissertation is to expand our knowledge in the 

coordination chemistry of imidazole ligands bound to nickel centers containing thiolate 

donors, and to understand the factors which influence the relative orientation of 

imidazole ligands in such systems.  Chapter III describes the electronic and structural 

effects of the incorporation of an imidazole donor into NiII square planar complexes 

containing thiolate ligation as inspired by the nickel binding sites found in NikR, a 

cytoplasmic nickel sensor protein, and NiSOD, the nickel-dependent superoxide 

dismutase.  The strikingly similar conformation of the imidazole ligand in the continuous 

tetradentate (N2N’S) and discontinuous (N2S---N’) coordination complexes encouraged 
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further investigations into the orientational preferences of various types of planar ligands 

(imidazoles, pyridine and an N-heterocyclic carbene), which is discussed in Chapter IV.   

 A final topic focuses on the coordination chemistry of vanadyl in N2S2 ligand 

sets.  Our group has utilized dianionic and tetraanionic N2S2 binding motifs to examine 

the structural and reactivity differences resulting from the incorporation of different 

metals in such sites.  Chapter V describes a synthesis and structural study of vanadyl 

held within a series of N2S2 donor environments.  The vanadyl analogues were explored 

for their reactivity with alkylating agents and W(CO)x.     
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CHAPTER II 

GENERAL EXPERIMENTAL DETAILS 

 

General Procedures    

 All solvents used were purified and degassed via a Bruker solvent system. 

Anaerobic techniques, an argon-filled glovebox and standard Schlenk techniques were 

employed for air sensitive reagents and complexes.  Reagents were purchased from 

commercial sources and used as received unless noted.   

 

General Physical Measurements 

 Electronic absorption spectra were recorded on a Hewlett-Packard 8453 diode 

array spectrometer and a Cary1E spectrophotometer using quartz cells (1.00 cm path 

length).  Mass spectrometry (ESI-MS) was performed by the Laboratory for Biological 

Mass Spectrometry at Texas A&M University.    Elemental analyses were performed by 

Atlantic Microlab, Inc., Norcross, Georgia or by Canadian Microanalytical Services, 

Ltd., Delta, British Columbia, Canada.  Infrared spectra were recorded on a Bruker 

Tensor 37 Fourier Transform infrared (FTIR) spectrometer.  Solution IR spectra were 

obtained using a CaF2 cell with a 0.1 mm path length and solid sample analysis was 

obtained using an attenuated total reflectance attachment equipped with a ZnSe crystal. 

 1H-NMR spectral measurements were carried out with a Mercury-300 FT-NMR 

spectrometer.  Variable temperature 1H-NMR spectra were acquired on an Inova500 

spectrometer operating at 500 MHz.  CD3OD or D2O were used as solvent and all 
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resonances were referenced to MeOH (CH3: 3.31 ppm) or D2O (H2O: 4.78), 

respectively, at all temperatures.  

 EPR spectra were collected on a Bruker ESP 300 spectrometer equipped with an 

Oxford ER910 cryostat operating at 10 K.  Samples were 1-2 mM in analyte and frozen 

DMF or MeCN solution.  The WinEPR Simfonia program was used to simulate the g 

and A parameters.55  

 

Electrochemistry 

 Cyclic voltammograms and differential pulse voltammograms were recorded on 

a BAS100W potentiostat under an Ar atmosphere using a three electrode cell, which 

consisted of a glassy carbon disk (0.071 cm2) working electrode, a coiled platinum wire 

counter electrode and Ag0/AgNO3 reference electrode.  Samples were measured in DMF 

with Bu4NBF4 (0.1 M) as the supporting electrolyte and at potential scan rates of 200 

mV/s.  Ferrocene was added as an internal standard and all potentials are reported 

relative to the Ag0/AgNO3 electrode using Cp2Fe/Cp2Fe+ as reference (E1/2
 = 0.00 V vs. 

Ag0/AgNO3 in DMF).  The reversibility of the observed redox couples is based on the 

internal reference (Cp2Fe/Cp2Fe+).  The peak-to-peak separations (Epa – Epc) for the 

complexes studied herein are larger than the 59 mV expected for a reversible one-

electron process, but comparable with Epa – Epc for the Cp2Fe/Cp2Fe+ couple under the 

same conditions.  The ratios of the anodic and cathodic peak currents were close to unity 

for the assigned reversible systems. Bulk electrolysis was carried out using a BAS 100A 

potentiostat and BAS bulk electrolysis cell containing 30 mL of DMF which was 1.0 
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mM in 3 and 0.1 M in Bu4NBF4 under an argon atmosphere. The working electrode of 

the BAS bulk electrolysis cell was reticulated vitreous carbon. Conductance 

measurements of mmolar concentrations of analyte used an Orion 160 conductivity 

meter.   

  

X-Ray Diffraction and Analyses 

 All X-ray diffraction studies were carried out in the X-ray Diffraction Laboratory 

in the Department of Chemistry at Texas A&M University.  Structures were determined 

with the assistance of Dr. Joe H. Reibenspies.  Low-temperature (110 K) X-ray data 

were obtained on a Bruker SMART 1000 CCD based diffractometer (Mo sealed X-ray 

tube, Kα = 0.71073 Å) or on a Bruker-D8 Adv GADDS general-purpose three-circle X-

ray diffractometer  (Cu sealed X-ray tube, Kα = 1.541 84 Å).  Space groups were 

determined on the basis of systematic absences and intensity statistics.  Structures were 

solved by direct methods and refined by full-matrix least squares on F2.  H atoms were 

placed at idealized positions and refined with fixed isotropic displacement parameters 

and anisotropic displacement parameters were employed for all non-hydrogen atoms.  

The following programs were used:  data collection, SMART WNT/2000 Version 

5.63256 or FRAMBO Version 4.1.05 (GADDS);57 data reduction, SAINTPLUS Version 

6.63;58 absorption correction, SADABS;59 cell refinement SHELXTL;60 structure 

solutions, SHELXS-97 (Sheldrick);61 and structure refinement, SHELXL-97 

(Sheldrick).62 The final data presentation and structure plots were generated in X-Seed 
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Version 1.5.63  Experimental conditions and crystallographic data are listed in the 

Appendix.   

  

Computational Details 

 All computations were carried out in the Laboratory of Molecular Simulation in 

the Department of Chemistry at Texas A&M University, and performed by group 

member Michael Singleton under the direction of Dr. Lisa Perez and Prof. Michael B. 

Hall.  Initial geometries were derived from X-ray structures or deductions based on 

conformations resulting from fluxional processes in the molecules. In both cases, the 

conformational space near each of the starting geometries was sampled through 

simulated annealing calculations in the gas phase using the Cerius2 software package.64  

The simulated annealing calculations were carried out using the Open Force Field (OFF) 

module with the Universal Force Field (UFF) for 15 annealing cycles, over a 

temperature range of 300-5000 K, with ΔT = 50 K. The compounds were minimized 

after each annealing cycle resulting in 15 conformations. The initial geometry and low 

energy conformations were then optimized using Density Functional Theory, with the 

Becke three-parameter exchange functional(B3)65 and the Lee-Yang-Parr correlation 

functional(LYP) (B3LYP).66 

All theoretical calculations, including optimization, frequency and NMR, were 

performed with the Gaussian 03 suite programs.67 The Stuttgart-Dresden68 (SDD) 

effective core potential and valence basis set were used for nickel. For sulfur, the 

effective core potential and basis set of Hay and Wadt69 were used with inclusion of a 
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modified polarization function developed by Hŏllworth et al.70  For nitrogen, the 

correlation-consistent polarized valence double-ζ basis set of Dunning and coworkers71 

(cc-pVDZ) was used.  All carbon and hydrogen atoms were represented using the split 

valence double- ζ basis set of Pople and coworkers with polarization functions on heavy 

and light atoms72-74 (6-31g(d’,p’)). 

Transition state geometries were calculated using the synchronous transit-guided 

quasi-Newton (QST2) method75-76 with the final optimized geometries for both 

rotational isomers for each complex used as the initial and final geometries. Relaxed 

potential energy scans looking at rotation about the Ni – Ldonor atom were accomplished by 

freezing the S–Ni–Nimid/pyr–C2 or S–Ni–CNHC–NNHC torsion angles at 5º intervals and 

then allowing the rest of the molecule to optimize.  
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CHAPTER III 

IMIDAZOLE-CONTAINING (N3S)-NiII COMPLEXES 

RELATING TO NICKEL-CONTAINING BIOMOLECULES* 

 

Introduction 

 The reactivity of tetradentate N2S2 ligands containing nucleophilic S-sites in 

transition metal thiolate complexes has been extensively explored.  In our laboratory, 

metalation, S-oxygenations, and alkylations have been used to establish reactivity of the 

neutral (bme-daco)Ni(II) complex, bme-daco = bismercaptoethanediazacyclooctane, the 

neutral (bme-dach)Ni(II) complex, bme-dach = bismercaptoethanediazacycloheptane, as 

well as the anionic [Ni(II)(ema)]2- complex, ema = N,N’-ethylenebis-2-

mercaptoacetamide.77-81  Coupled with S-thiolates, such amine, amide, or mixed 

amine/amide N-donor ligand environments have been proposed by us and others to serve 

as biomimetics of metalloenzyme active sites.82-92 

 The preparation of histidine/cysteine mixed donor binding sites was first 

demonstrated in small peptidic complexes by Suguri, et al., as models of blue copper 

proteins.93-94  Nickel complexes of -Xaa-Xaa-His- tripeptide motifs have been studied in 

detail for their ability to influence DNA damage and cross-linking through oxidative 

processes.95-96  To explore the potential oxidative chemistry of cysteine thiolates, 

 ____________ 

*Reproduced with permission from 132.  Jenkins, R. M.; Singleton, M. L.; Almaraz, E.; 
Reibenspies, J. H.; Darensbourg, M. Y.  Inorg. Chem.  2009, 48, 7280-7293.  Copyright 
2009 American Chemical Society. 
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Burrows and coworkers synthesized the cysteine variants, -Xaa-Cys-His- and -Cys-Xaa-

His-, as possible metal binding sequences.97-98  It was found that aerobic oxidation of 

such complexes with cysteine in the second position, -Xaa-Cys-His-, led to the rapid 

formation of disulfide dimers.  In this case, other oxidized products such as 

metallosulfoxides or metallosulfones were not observed.  The dimeric disulfide-bridged 

complex was found to have no further reactivity with oxygen even though NiII peptides 

with carboxylate termini are known to spontaneously decarboxylate in air.97  In contrast, 

the NiII derivative of N-terminal -Cys-Xaa-His- resulted in the formation of a cysteine 

sulfinic acid under aerobic conditions.98  Whether the plethora of possibilities of 

oxidative products complicate or play fundamental roles in the chemistry underlying 

biological action is not well understood. 

As described in the Introduction, the molecular structures of NikR and NiSOD 

revealed nickel(II) sites which contain both N-histidine and S-cysteine ligands.23-24  

Their nickel-binding sites are reproduced in Figure III-1 as a reminder of the N/S donor 

sets needed for biomimetic studies. While biomimetic studies of the NiSOD site are 

established and on-going, the NikR binding site has received very little attention.  This is 

surprising in that histidine N-binding sites play a major role in Ni-capture both in vivo 

and in technological (His-tag) applications.1-2,99   

Considerable work has been targeted toward understanding how the NiSOD 

enzyme avoids S-oxygenation and/or S-oxidation in the presence of the products of 

SOD, O2 and H2O2.  Computational investigations have concluded that the presence of 

one or two amide donors within the N2S2 core promotes metal-based chemistry.100-101   
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There has been significant progress in the preparation of synthetic mimics of the 

NiSOD active site.  In particular, a mixed amine/amide donor set in the N2S2 core has 

resulted in a NiII complex with a ligand environment similar to the reduced state of the 

native enzyme, and this NiSOD mimic demonstrated enhanced stability toward 

oxygenation.102-103  As cis dithiolate sulfurs in NiII complexes have been shown to form 

stable S-oxygenates in both neutral and dianionic N2S2Ni complexes, we have suggested 

that kinetic control accounts for the lack of S-oxygenates in the enzyme active site of 

NiSOD.81 

Jensen and coworkers have utilized “scorpionate” ligands to mimic the nitrogen 

donors and dithiocarbamates and organoxanthate to mimic the dithiolate ligands of the 

NiSOD binding motif to obtain a five-coordinate N3S2Ni(II) complex.104  Although 

synthetic N2S2Ni complexes as NiSOD active site mimics have similar spectroscopic 

features as the native enzyme and quasi-reversible redox couples in the range of SOD 

dismutation, Shearer and Zhao’s model complexes did not produce catalytic activity for 

Figure III-1.  The metal binding site of NikR and the active site of NiSOD.  
Adapted from References 13-14 and 23-24. 
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superoxide dismutation.102-103  Neither did Jensen et al. report SOD activity.104  

Nevertheless, nickel peptide-based models mimicking the amino acid nickel-hook 

sequence found in the native NiSOD enzyme have been more successful, demonstrating 

compatible electrochemistry as well as SOD activity.105  Studies by Shearer and 

coworkers also suggest that the His imidazole remains ligated throughout SOD catalysis, 

and this is supported by computational studies of Siegbahn, et al.106-107  

Very little is known about how the electronic structure of NiII complexes 

containing both imidazole and thiolate ligation responds to oxidation and how this might 

affect SOD catalysis and response to the H2O2/O2 products.  To address this, we have 

prepared two synthetic models containing a continuous and discontinuous N2N’S donor 

set.  For this study, a dimeric dithiolate bridged NiII dication and the readily accessed 

(bme-dach)Ni(II) were used as the precursors to mixed imidazole/thiolate complexes.  

The work herein reports the synthesis, characterization and molecular structures of both 

continuous tetradentate (N2N’S) and discontinuous (N2S-N’) synthetic models 

incorporating simple imidazoles as His mimics.  Variable temperature 1H NMR studies 

in correlation with DFT calculations have been carried out to further investigate the 

orientation of the imidazole ligand.  The physical properties of the derivatives and 

precursors and SOD activity are described.  
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Experimental Details 

 General Procedures.  Isobutylene sulfide,108 (bme-dach)Ni79 and 4-

(chloromethyl)-5-methyl-1H-imidazole hydrochloride109 were prepared according to 

published procedures.   

 Synthesis of 1-(2-Mercaptoethyl)-methyl-1,4-diazacycloheptane, me-mdach.  

Similar to the preparation of the N2S2 ligand Hmmp-dach,110 under N2, N-

methylhomopiperazine (5 mL, 0.0402 mmol) was dissolved in 50 mL of dry MeCN.  

With stirring, the solution was heated to 50 °C under N2 and an excess of ethylene 

sulfide (8 mL, 0.134 mmol) was added slowly forming a white solid and a light yellow 

solution.  Heating was continued for 20 h after which the solution was anaerobically 

filtered through Celite giving a light yellow solution.  The solvent was removed in vacuo 

resulting in a yellow oil, 3.33 g, 48% yield.  C8H18N2S (MW = 174 g/mol) +ESI-MS: m/z 

= 175 [M+H]+.  1H NMR (CDCl3): δ (ppm) = 1.83 (q, 2.0 H), 2.38 (s, 2.9 H), 2.64 (m, 

4.2 H), 2.77 (m, 5.2 H), 2.86 (m, 2.6 H). 

 1-(2-Mercapto-2-methylpropyl)-methyl-1,4-diazacycloheptane, mmp-mdach, 

was prepared in a similar manner to the above using isobutylene sulfide.  A light yellow 

oil was isolated in 31 % yield.  C10H22N2S (MW = 202 g/mol)  +ESI-MS: m/z =  203 

[M+H]+. 

 Synthesis of {[1-(2-Mercaptoethyl)-methyl-1,4-diazacycloheptane]nickel(II)} 

Tetrafluoroborate, [(me-mdach)Ni]2(BF4)2, Complex 1.  Under N2, me-mdach (0.56 

g, 3.22 mmol) was dissolved in 20 mL of dry MeOH.  A solution of NaOMe (0.17 g, 

3.17 mmol) in 10 mL dry MeOH was added via cannula and the mixture was stirred at 
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room temperature (RT) for 1 h.  A solution of Ni(BF4)2•6 H2O (0.75 g, 3.23 mmol) in 25 

mL of MeOH was added dropwise via cannula producing a red solution.  After stirring at 

RT for 4 hours the solvent volume was reduced to ca. 5 mL.  Addition of 25 mL MeCN 

resulted in the precipitation of NaBF4 salts, which were separated from the product by 

filtration in air.  The solvent of the filtrate was removed in vacuo resulting in a tacky 

maroon residue.  The residue was dissolved in a minimum of MeOH and a maroon solid 

was obtained on addition of diethyl ether.  Alumina column chromatography was used to 

purify the crude product using MeCN as the eluent until a light yellow band was 

removed, followed by an elution mixture of MeOH/MeCN (1:25), which yielded a 

maroon band of pure [(me-mdach)Ni2](BF4)2 (0.38 g, 37%).  X-ray quality crystals were 

obtained by Et2O diffusion into a MeCN solution at 5 °C.  Elemental anal. for 

Ni2C16H34N4S2B2F8 (MW = 638 g/mol) Calcd (found): C, 30.14 (30.40); N, 8.78 (8.65); 

H, 5.37 (5.25).  Absorption spectrum (MeOH): λmax (ε, M-1 cm-1) 524 (817), 452 (775), 

354 (2503), 305 (13075), 252 (13675), 229 (21330) nm.  +ESI-MS (MeCN): m/z = 549 

[(me-mdach)2Ni2)]BF4
+; 231 [(me-mdach)2Ni2]2+.  Molar conductance at 23 °C: 299 S 

cm2 mol-1 (MeCN); 310 S cm2 mol-1 (H2O). 

 Chloro-[1-(2-Mercaptoethyl)-methyl-1,4-diazacycloheptane]nickel(II), [(me-

mdach)-NiCl]2, Complex 2. Chloro-[1-(2-Mercaptoethyl)-methyl-1,4-

diazacycloheptane]nickel(II), [(me-mdach)-NiCl]2, complex 2, was prepared and 

purified in a similar manner using NiCl2•6H2O as the metal source.  The complex was 

purified by alumina column chromatography yielding pure [(me-mdach)NiCl]2 as a 

reddish brown solid (31% yield).  X-ray quality crystals were obtained by Et2O diffusion 
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into an MeCN solution at 5 °C.  Elemental anal. for Ni2C16H34N4S2Cl2 (MW = 535 

g/mol) Calcd (found): C, 36.0 (37.0); N, 10.5 (10.2); H, 6.41 (6.76).  Absorption 

spectrum (MeOH): λmax (ε, M-1 cm-1) 527 (967), 490 (sh), 350 (3307), 307 (7816), 247 

(17126), 211 (18002) nm.  +ESI-MS: m/z = 497 [(me-mdach)2Ni2Cl]+; 231 [(me-

mdach)2Ni2]2+.  Molar conductance at 23 °C: 124 S cm2 mol-1 (MeCN); 303 S cm2 mol-1 

(H2O). 

 Chloro-[1-(2-Mercapto-2-methylpropyl)-methyl-1,4-diazacycloheptane]-

nickel(II), [(mmp-mdach)NiCl]2, Complex 2-Me2. Chloro-[1-(2-Mercapto-2-

methylpropyl)-methyl-1,4-diazacycloheptane]nickel(II), [(mmp-mdach)NiCl]2, complex 

2-Me2, was obtained via the above method by using the mmp-mdach ligand.  Absorption 

spectrum (MeOH): λmax (ε, M-1 cm-1) 532 (904), 426 (988), 326 (6120), 283 (11940), 

244 (21300), 205 (24580) nm.  +ESI-MS mass spectral analysis for Ni2C20H42N4S2Cl2 

(MW = 591 g/mol): m/z = 553 [(mmp-mdach)2Ni2Cl]+; 259 [(mmp-mdach)Ni2]2+. Molar 

conductance at 23 °C: 104 S cm2 mol-1 (MeCN); 299 S cm2 mol-1 (H2O).  

 Synthesis of [1-(2-Mercapto-2-methylpropyl)-methyl-1,4-

diazacycloheptane]-nickel(II) Imidazole Chloride, [(mmp-mdach)Ni(Im)]Cl, 

Complex 3.  After degassing and under N2, complex 2, [(mmp-mdach)NiCl]2, (0.102 g, 

0.173 mmol) and imidazole (0.035 g, 0.514 mmol) were dissolved in 30 mL of dry 

MeOH, which immediately produced an orange solution.  After stirring overnight, the 

solution volume was reduced to a minimum under vacuum, and Et2O was added to 

precipitate the product.  The ether was decanted and the product was washed 2 x 25 mL 

Et2O to remove excess imidazole.  Pure product was isolated as an orange solid (0.092 g, 
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71% yield). X-ray quality crystals were obtained by Et2O diffusion into a MeOH 

solution at -30 °C.  NiC13H25N4SCl Elemental anal. for NiC13H25N4SCl•H2O (MW = 382 

g/mol) Calcd (found): C, 40.92 (40.88); N, 14.68 (14.45); H, 7.13 (7.07).  Absorption 

spectrum (MeOH): λmax (ε, M-1 cm-1) 467 (501), 340 (sh), 288 (10767), 211 (21461) nm.  

+ESI-MS (MeOH): m/z = 327 [(mmp-mdach)Ni(Im)]+.  Molar conductance at 23 °C: 89 

S cm2 mol-1 (MeOH); 156 S cm2 mol-1 (H2O). 

 Synthesis of [1-(5-methyl-1H-imidazol-4-yl)methylthio)ethyl-4-

mercaptoethyl-1,4-diazacycloheptane]nickel(II) Chloride, [Ni-1’(CH2-mIm)]Cl, 

Complex 4.  A 100 mL Schlenk flask was charged with (bme-dach)Ni (0.100 g, 0.361 

mmol).  The solid was degassed and suspended in 25 mL of MeCN.  A suspension of 4-

(chloromethyl)-5-methyl-1H-imidazole hydrochloride (0.060 g, 0.361 mmol) in 25 mL 

of MeCN was transferred via cannula.  As the reaction proceeded, the solids were drawn 

into solution followed by formation of a light pink precipitate.  The mixture was stirred 

overnight.  Filtration yielded a pink solid which was washed 3 x 75 mL MeCN, 

dissolved in a minimum of MeOH, and recrystallized with Et2O.  The solid was washed 

2 x 25 mL Et2O (45 mg, 31 %).  X-ray quality crystals were obtained by Et2O diffusion 

into a MeOH solution.  Elemental anal. for NiC14H25N4S2Cl·H2O (MW = 426 g/mol) 

Calcd (found): C, 39.50 (40.07); N, 13.16 (13.23); H, 6.39 (6.44).  Absorption spectrum 

(MeOH): λmax (ε, M-1 cm-1) 469 (235), 288 (6052), 211 (16983) nm.  +ESI-MS: m/z = 

371 [Ni-1’(CH2-mIm]+.  Molar conductance at 23 °C: 103 S cm2 mol-1 (MeOH); 164 S 

cm2 mol-1 (H2O). 
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 Synthesis of 1,4-Bis(3-methylimidazol-4-ylmethyl)-1,4-diazacycloheptane 

nickel(II) Tetrafloroborate, [(bmIme-dach)Ni](BF4)2, Complex 5.  Synthesis, 

purification and characterization of 1,4-bis(3-methylimidazol-4-ylmethyl)-1,4-

diazacycloheptane penta-hydrochloride hydrate (L-5HCl•H2O) was executed following 

the procedure published by Bu, et al.. with 4-(chloromethyl)-5-methyl-1H-imidazole 

hydrochloride used in the place of 4-(chloromethyl)-1H-imidazole hydrochloride.111-112  

A solution of Ni(BF4)2•6 H2O (1.328 g, 3.903 mmol) in 10 mL of MeOH was added 

dropwise to a stirring solution of L-5HCl•H2O (1.100 g, 3.814 mmol) in 15 mL of 

MeOH, resulting in immediate precipitation of yellow solid.  The reaction mixture was 

stirred overnight at 22 °C under an N2 blanket.  The ensuing green solution and yellow 

solid were separated via filtration, and the solid was washed with Et2O and dried in 

vacuo to yield 0.757 g (1.45 mmol, 38 %).  X-ray quality crystals were obtained by slow 

evaporation from a methanol solution.  Elemental anal. for NiC15H24N6B2F8 (MW = 521 

g/mol) Calcd. (found): C, 34.60 (34.07); H, 4.65 (4.70); N, 16.14 (15.62). Absorption 

spectrum (MeOH): λmax (ε, M-1 cm-1): 449 (29), 280 (sh), 233 (2232) nm.  +ESI-MS in 

MeOH: [M]2+ m/z = 173 [(bmIme-dach)Ni]2+.  Molar conductance at 23 °C: 198 S cm2 

mol-1 (MeOH); 223 S cm2 mol-1 (H2O). 

  

Synthesis and Structural Characterization 

 Synthesis and structure of N2S bridged thiolate dimers: [(me-

mdach)Ni]2(BF4)2, 1, and [(me-mdach)NiCl]2, 2.   There are many examples of N2S2Ni 

complexes in µ2S2-bridged dimers which demonstrate the diverse structural 
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arrangements encountered by µ-S-thiolate bridging.84, 87, 90,113-117 Scheme III-1 outlines 

the synthetic protocol for the N2S thiolate bridged dimeric complexes 1 and 2 explored  

Scheme III-1.

 

herein.  Both are isolated as hygroscopic, air stable solids.  Complex 1 is a deep maroon 

solid that is very soluble in MeCN and H2O and moderately soluble in MeOH.  Complex 
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 2 is isolated as a reddish-brown powder and is very soluble in MeOH and H2O and 

moderately soluble in MeCN.  The molecular structures of 1 and 2 are shown in Figure 

III-2 and a selection of metric data is given in Table III-1.  The dimeric form of complex 

1 involves edged-bridged square planes with symmetry imposed disorder relating to the 

S to N linkers.  The NiN2S2 unit is almost perfectly square planar with average standard  
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Figure III-2.  Molecular structure of complexes [(me-mdach)Ni]2(BF4)2,  1, and 
[(me-mdach)-NiCl]2, 2, shown as thermal ellipsoids at 50% probability. First 
coordination spheres shown at right. 



 32

Table III-1.  Metric data for complexes [(me-
mdach)Ni]2(BF4)2,  1, and [(me-mdach)-NiCl]2, 2. 
 1 2 
Ni(1)-S(1) 2.069(19) Å 2.369(17) Å 
Ni(1)-S(1A) 2.245(16) Å 2.346(18) Å 
Ni(1)-N(1) 1.923(8) Å 2.084(5) Å 
Ni(1)-N(2) 1.914(8) Å 2.144(5) Å 
Ni(1)···Ni(2) 2.837 Å 3.268 Å 
Ni(1)-Cl(1) 2.331(17) Å 
N(1)-Ni(1)-N(2) 83.6(3) º 77.3(2) º 
N(1)-Ni(1)-S(1) 96.4(5) º 86.7(14) º 
N(2)-Ni(1)-Cl(1) 92.9(14) º 
S(1)-Ni(1)-Cl(1) 96.6(6) º 
S(1)-Ni(1)-S(1A) 79.6(6) º 92.3(5) º 
Cl(1)-Ni(1)-S(1A) 114.6(6) º 
N(1)-Ni(1)-S(1A) 175.4(5) º 100.6(15) º 
N(2)-Ni(1)-S(1A) 100.5(4) º 96.8(15) º 
Ni(1)-S(1)-Ni(1A) 82.1(6) º 87.8(5) º 

 

 

deviation from plane of 0.0038 Å.  The “hinge” angle in this butterfly type complex, that 

is, the dihedral angle between the two N2S2 best planes, is 116.7º; the Ni···Ni distance is  

2.837 Å.  A similar dimer with gem dimethyl groups on the carbon α to the bridging 

sulfurs has a greater hinge angle of 135.7º and a Ni···Ni distance of 3.034 Å.110  These 

distances are compatible with other complexes containing (µ2-SR)2 bridged Ni2S2 

rhombs.84, 87, 113-117  The closest BF4
- counterion in 1 has an F···Ni distance of 5.031 Å. 

In contrast to the µ-SR bridged square planar NiN2S(µ-S) of 1, the solid state 

structure of 2 finds a penta-coordinate NiII in pseudotrigonal bipyramidal, N2S(µ-S)Cl  

coordination (Figure III-2).  The equatorial plane in each tbp is comprised of one N-

donor atom of the tridentate N2S ligand, a chloro ligand and a sulfur atom from the 

adjacent (N2S)Ni moiety resulting in an Ni2S2 diamond core.  The S-donor atom and the 
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trans N-donor atom of the tridentate N2S ligand make up the axial sites.  The Ni-Saxial 

bond distance of 2 is slightly longer than Ni-Sequatorial.  As expected, the average Ni-N 

and Ni-S distances are longer in the penta-coordinate chloride derivative 2 than in 1, and 

an increase in the Ni···Ni distance, from 2.837 Å in complex 1 to 3.268 Å in complex 2 

is also observed, Table III-1.  The N-Ni-N and S-Ni-S angles in complex 1 are acute at 

83.6º and 79.6º, while the N-Ni-S angle, within the five-membered ring, is 96.4º.  In 

complex 2, the N-Ni-N angle contracts to 77.3º, the S-Ni-S opens to 92.3º, and the N-Ni-

S angle within the five-membered ring contracts to 86.7º. 

The dimeric species, [(mmp-mdach)NiCl]2, 2-Me2, is isolated as a hygroscopic, 

air stable, bright purple powder, which is very soluble in MeOH, H2O and MeCN.  Thus 

far crystals have not been obtained; however, conductivity and cyclic voltammetry 

measurements are similar in 2-Me2 and 2, suggesting similar structures.  The 2-Me2 

complex was cleaved by imidazole in the preparation of complex 3. 

 Synthesis and Structure of [(mmp-mdach)Ni(Im)]Cl, 3  The cleavage of 

dimeric µ-dithiolato NiII by monodentate ligands is a fairly common, but not a 

universally successful approach to mononuclear square planar nickel complexes.52,110,118-

120  As shown in Scheme III-1, addition of excess imidazole to [(mmp-mdach)NiCl]2 in 

MeOH results in an orange solid analyzed as complex 3 in high yield.  Complex 3 is 

hygroscopic, soluble in MeOH, H2O and DMF and crystallizes on layering a MeOH 

solution with Et2O.  The molecular structure of the imidazole-cleaved complex is shown 

in Figure III-3 and significant metric parameters are listed in the figure caption.  To our 

knowledge, 3 provides the first molecular structure of a Ni complex containing both 
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Figure III-3.  Molecular structure of the cation of [(mmp-mdach)Ni(Im)]Cl, 3, 
shown as thermal ellipsoids at 50% probability. The Cl- counter ion and MeOH 
molecule are not shown.  

 

thiolate and imidazole donor ligands.  The nickel coordination environment is largely 

square planar with very slight tetrahedral twist distortion, 7.9°, defined by the 

intersection of N(1)Ni(1)N(2) and N(3)Ni(1)S(1) planes.  The N-Ni-N angle within the 

dach donor is 81.5º while the S-Ni-Nimid angle is 91.4º; the N(2)-Ni(1)-N(3) angle is 

97.1º.  Notably, the plane of the imidazole ligand is perpendicular to the N2N’SNi plane, 

with the amine N(4) in the imidazole ring on the same side of the N2N’S coordination 

plane as is the C3 portion of the dach ring.  As in complexes 1 and 2, the NiN2C3 

metallodiazacyclohexane ring is in the chair conformation.  There is no significant 

difference in the bond distances of the Ni-Namine and the Ni-Nimid.  The Ni-S distance of 

2.149(3) Å is shorter than any Ni-S distance of complexes 1 or 2.  The extended 

structure finds a Cl- and MeOH molecule within the unit cell which appear to create a H-

bonding network as seen by the Cl···O distance of 3.568 Å and Cl···Nimid distance of 

3.119 Å (Figure III-4).  The latter is well within the summation of van der Waals' radii of 

chlorine and nitrogen.  
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Figure III-4.  Packing diagram of complex [(mmp-mdach)Ni(Im)]Cl, 3.

 

 Synthesis and Structure of [Ni-1’(CH2-mIm)]Cl, 4. Stoichiometric addition of 

4-(chloromethyl)-5-methyl-imidazole·HCl to neutral (bme-dach)Ni in MeOH results in 

solubilization of the insoluble precursors as S-alkylation occurs, Scheme III-2.  The 

acidic conditions of the reaction sacrifice a portion of the (bme-dach)Ni starting 

material; however, use of the acid-free imidazole results in poorer yields.  Purified 

complex 4 was isolated as a rose-colored solid in 30% yield.  It is hygroscopic and 

soluble in H2O, MeOH, and DMF; crystals were grown in a solution of MeOH layered  
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Scheme III-2 

(Cl-) 

1+

 

with Et2O.  The solid state structure of 4 (Figure III-5) reveals a (N2N’S)Ni square 

planar binding motif of two amine nitrogens from the dach ring, the imidazole nitrogen 

and the thiolate sulfur with a slightly larger distortion from planarity, a 13.2° Td twist, 

than was found in complex 3.  

 As given in Figure III-6, angles and bond distances in complex 4 are similar to 

those of complex 3.  The thioether-S is oriented over the N2N’S plane, however the Ni-

Sthioether distance of 3.022 Å is beyond bonding.  Although thioethers are weak donors, 

there are several square planar N2S2Ni compounds known in which the sulfur is a 

thioether within a polydentate ligand or macrocycle.121-122  In addition, S-alkylation by 

reagents that provide an additional binding site is known to maintain the tetradentate 

N2S2 bonding and expand the coordination number of N2S2Ni complexes.123-124  The 

switch of the donor atom from the thioether to the N-imidazole in 4 indicates that the 

greater binding ability of the imidazole nitrogen over the thioether sulfur overwhelms 

the favorable chelate effect for the thioether, going from a five-membered ring to a less  
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Figure III-5.  Molecular structure of the cation of [Ni-1’(CH2-mIm)]Cl, 4, shown as 
thermal ellipsoids at 50% probability. The Cl- counter ion is not shown.   

 

 

 

Figure III-6.  Ball and stick drawings of (a) [(mmp-mdach)Ni(Im)]Cl, 3, and (b) 
[Ni-1’(CH2-mIm]Cl, 4.  Counter anions are not shown.  Top: side view; Bottom: 
View ┴ to N2S plane with selected metric parameters. 
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Scheme III-3 

 

favored eight-membered ring.  Scheme III-3 outlines likely intermediates (in brackets) in 

the reaction pathway; neither of these has thus far been verified.   

As was also seen in complex 3, the orientation of the imidazole plane in 4 is 

perpendicular to the N2N’S plane.  The N(2)···S(1)···C(11) linker or imidazole tether is 

sufficiently long so as not to interfere with the optimal binding of the imidazole donor 

(vide infra).  The closest chloride ions in the crystal lattice are located 3.046 Å away 

from the N of the imidazole ligand (Figure III-7). 

 Synthesis and Structure of [(bmIme-dach)Ni](BF4)2, 5.  Complex 5, prepared 

by coworker Elky Almaraz as described in Scheme III-4, is isolated as a gold solid that 

is soluble in MeCN, MeOH, H2O and DMF.  Figure III-8 displays the thermal ellipsoid 

plot for complex 5 along with alternate views that highlight the slight staggering of the 

imidazole rings while the NiN4 plane (Td twist of 7.9°) is largely coplanar with the 

imidazole ligand planes.  The dihedral angle between the planes of the pendant 

imidazole rings is 11.4º.  An analogue of complex 5, lacking the methyl group on the  
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Scheme III-4 

Figure III-7.  Packing diagram of [Ni-1’(CH2-mIm)]Cl, 4. 

 

 

 
5

(BF4
-)2

2+

Ni(BF4)2   6H2O

2
N N N

N

N

N

N NH
Cl

N N
HCl

KOH, pH 9
MeOH

Ni
N

N
N

N

N
N

HH

H

H

H H



 40

Figure III-8.  Molecular structure of the dication of [(bmIme-dach)Ni](BF4)2, 5, 
shown as thermal ellipsoids at 50% probability.  The BF4 counter ions are not 
shown.   

 

 

imidazole and isolated as a perchlorate salt, reported by Bu, et al. has similar metric 

parameters; however, a smaller dihedral angle exists between the imidazole ring planes 

(6.1°).111-112  The extended packing structure of complex 5 shows π-π stacking between 

imidazole rings as suggested by interplanar distances of 3.432 Å (Figure III-9).  In 

contrast, the crystal structure reported by Bu et al., shows the formation of 

intermolecular hydrogen bonds between the imidazole N-H and the O atom of the ClO4
- 

counterion resulting in a dimeric structure.111-112  

 Despite the differences in the imidazole orientation of the tetradentate 

(Namine)2(Nimid)2Ni, complex 5, and the complexes 3 and 4, the Ni-Nimid bond distances 

are significantly the same.  A final note on the monomeric nickel N2N’S and N2N’2 

complexes is in regards to angles within the square plane.  Figure III-6 shows minor 

differences in the free imidazole complex 3 and the long tethered imidazole complex 4.  
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In complex 5, the N(1)-Ni-N(2) angle is largely the same as in complexes 3 and 4, while 

the angle between donor atoms trans to the diazacycle donors, N(3) and S or N(3) and 

N(4), opens substantially from 91.4º and 91.6º in 3 and 4, respectively, to 104º in 

complex 5.    

Figure III-9.  Packing diagram of [(bmIme-dach)Ni](BF4)2, 5, showing π-π stacking 
between imidazole rings. 

 

 

Conductivity Measurements   

 The results of molar conductivity measurements are listed in Table III-2.  As 

expected, because of the non-coordinating BF4
- counterion, complex 2 behaves as a 2:1 

electrolyte in both MeCN and H2O solutions, while the Cl- derivative, complex 1, is a 

1:1 electrolyte in MeCN and acts as a 2:1 electrolyte in H2O.125  Note that the 

conductivity of 2-Me2 follows that of complex 1 with a single Cl- dissociating in the 

polar organic solvent; both Cl- ions dissociate in H2O.  The molar conductance values for 
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the mononuclear square planar complexes, 3 and 4, are consistent with a 1:1 electrolyte 

in both MeOH and H2O solutions and complex 5 is a 2:1 electrolyte in MeOH and H2O. 

 

Table III-2.  Molar conductivities at 25ºC. 
 ΛM at 10-3 M (cm-1mol-1Ω-1) 
Compound H2O MeCN MeOH 
[(me-mdach)2Ni2](BF4)2, 1 310  299   
[(me-mdach)NiCl]2, 2 303  124   
[(mmp-mdach)NiCl]2, 2-Me2 299  104   
[(mmp-mdach)Ni(Im)](Cl), 3 156   89  
[Ni-1’(CH2·mIm)](Cl), 4 164  103  
[(bmIme-dach)Ni](BF4)2, 5 223  198 

 

 

Electronic Absorption Spectra   

 Typical square planar nickel complexes exhibit d-d transitions in the range of 

400-600 nm.  Higher energy and more intense features can be assigned as ligand-to-

metal charge transfer (LMCT) transitions.  Nickel complexes with RS- ligands show 

such intense absorbances within the 250-350 nm range, which are attributed to RS- → 

NiII charge transfer transitions.126  Table III-3 lists the electronic absorption data for 

complexes 1-5 and 2-Me2. The UV-vis absorption spectrum of [(me-mdach)Ni]2(BF4)2, 

1, in which the Ni2+ ions are held in a square planar geometry exhibit two d→d bands 

with λmax at 452 and 524 nm, in addition to high energy LMCT absorptions at 229, 252, 

305, and 354 nm (ε values > 10,000 M-1 cm-1).  In complex [(me-mdach)NiCl]2, 2, four 

intense LMCT absorptions are observed and a broad d→d band is seen at 527 nm with a 
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shoulder at 490 nm. The absorptions for 2-Me2 are similar to complex 2.  The 

absorption spectrum of the imidazole cleaved dimer, (mmp-mdach)Ni(Im)](Cl), 3, 

displays one d-d band with λmax at 467 nm and two intense ligand to metal charge 

transfer bands at 211 and 288 nm.  Similar absorptions are observed for the square 

planar complex 4.  In complex 5, all absorptions are of low intensity.  

 

Table III-3.  Summary of electronic absorption spectra. 

 UV-Vis:  λmax (nm) (ε, M-1 cm-1) 

 CT transitions d→d transitions 

[(me-mdach)2Ni2](BF4)2, 1 b 229 (21330) 252 (13765) 305 (13075) 354 (2503) 452 (775) 524 (817) 

[(me-mdach)NiCl]2, 2  211 (18000) 247 (17126) 307 (7816) 350 (3310) 490 (sh) 527 (967) 

[(mmp-mdach)NiCl]2, 2-Me2  244 (21298) 283 (11940) 426 (6115) 426 (988) 532 (904) 

(mmp-mdach)Ni(Im)](Cl), 3  211 (21460)   288 (10767) 340 (sh) 467 (501) 

[Ni-1’(CH2-mIm)](Cl), 4  211 (16980)   288 (6052)  469 (235) 

[(bmIme-dach)Ni](BF4)2, 5   233 (2232)  280 (sh)  449 (29) 
a Unless specified otherwise, all results were obtained from MeOH solutions.  b The electronic spectrum of [(me-mdach)2Ni2](BF4)2 
was measured in MeCN. 

 

  

 Electronic absorption spectroscopy was used to investigate whether donor 

switching of the N-imidazole to the S-thioether of Ni-1’(CH2-mIm)](Cl) might occur 

during incremental addition of acetic acid to a methanolic solution of 4, with the 

expectation that protonated imidazole might promote thioether binding.  No changes in 

the absorption spectrum were observed over a pH range of 8.5 to 3.4, indicating that the 

coordination environment was constant.  These results are consistent with density 

functional theory (DFT) computations which found the crystallographically observed 
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imidazole bound structure was the isomer of lower energy with an energy difference 

between the two of  3.34 kcal/mol, Figure III-10.  

 

3.34 kcal/mol

Figure III-10.  DFT optimized isomeric forms of [Ni-1’(CH2-mIm)]Cl, 4.  (top) S-
thioether bond (bottom) N-imidazole bound.  

 

Electrochemical Properties   

 A summary of electrochemical properties of complexes 1-5, 2-Me2 and (bme-

dach)Ni are given in Table III-4.  All seven complexes show an irreversible oxidation 

event, which is ascribed to thiolate oxidation in the case of complexes 3, 4, and (bme-

dach)Ni.   

 The cyclic voltammograms for the N2S µ-thiolate bridged Ni dimers, 1, 2, and 2-

Me2, are shown in Figure III-11.  Two well-defined reduction events are observed in 

each; the first reduction is reversible when the scan direction is reversed before the  



 45

 

(b) 

(c) 

(a) 

complex 1 

complex 2 

complex 2-Me2 

Figure III-11.  Cyclic voltammograms of a 2 mM solution of complexes (a) [(me-
mdach)Ni]2(BF4)2, 1; (b) [(me-mdach)NiCl]2, 2; (c) [(mmp-mdach)NiCl]2, 2-Me2, in DMF 
(0.1 M [nBu4N][BF4]) using a Ag/AgNO3 reference electrode, a platinum counter 
electrode and a glassy carbon working electrode standardized to Fc/Fc+. 
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Table III-4.  Electrochemical data in DMF.  

Complex Eox (V) 
Epa  

Ered (V) 
E1/2             Epc          

[(me-mdach)Ni]2(BF4)2, 1 +0.14   -1.30        -2.02 

[(me-mdach)NiCl]2, 2 +0.06   -1.45        -2.03 

[(mmp-mdach)NiCl]2, 2-Me2 +0.04   -1.58        -1.91 

(mmp-mdach)Ni(Im)](Cl), 3 -0.07 
                  -1.96 
                  -2.13 
                  -2.31 

[Ni-1’(CH2-mIm)](Cl), 4 -0.18   -2.50       -1.82 

[(bmIme-dach)Ni](BF4)2, 5 +0.77   -1.59       -1.21 

(bme-dach)Ni -0.14   -2.50 
Ar deaerated DMF solution (0.1 M nBu4NBF4).  All experiments 
were recorded using a glassy carbon working electrode (A = 0.071 
cm2) referenced to Fc/Fc+ and a Pt counter electrode at a scan rate of 
200 mV/s. 

 

 

 

 

 

 

 

 

 

 

2 

1 

Figure III-12.  Differential pulse voltammetry of a 2 mM solution of [(me-
mdach)Ni]2(BF4)2, 1, and  [(me-mdach)NiCl]2, 2, in DMF (0.1 M [nBu4N][BF4]) using 
a Ag/AgNO3 reference electrode, a platinum counter electrode and a glassy carbon 
working electrode standardized to Fc/Fc+. 
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(a) (c) 

(d) 

complex 5 

(bme-dach)Ni 

complex 4 

complex 3 

(b) 

Figure III-13. Cyclic voltammograms of mononuclear square planar NiII complexes in 
DMF and referenced to Fc/Fc+.  (a) [(bmIme-dach)Ni](BF4)2, 5; (b) (bme-dach)Ni; (c) 
[Ni-1’(CH2-mIm)](Cl), 4; (d) (mmp-mdach)Ni(Im)](Cl), 3. 

 second reduction, and is assigned to a NiIINiII/NiIINiI couple. The second reduction, 

presumably accessing an unstable NiINiI redox level in the intact dimers, engenders 

degradation as seen by its irreversibility and also in the differential pulse voltammetry of 

the first reduction process (Figure III-12).  All three dimers display similar 

electrochemistry in both the anodic and cathodic regimes with differences in potentials 

relating to the extent of counterion interaction or the presence of gem-dimethyl groups in 
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2-Me2.  Figure III-13 displays the cyclic voltammograms of mononuclear complexes 3-5 

and (bme-dach)Ni.  Figure III-13 (a) and (b) show fully reversible NiII/NiI reduction 

events at -1.59 and -2.50 V for complex 5 and (bme-dach)Ni, respectively.  The greater 

accessibility of the former is a result of the dicationic charge, as well as the differences 

in donor ability of the imidazole versus the thiolate ligands.  For complex 4 a 

reproducible broad feature (deconvoluting into at least 3 maxima by square wave 

voltammetry, Figure III-14) is centered at -1.82 V, and a fully reversible reduction is 

seen at -2.50 V, identical to the NiII/NiI couple of the (bme-dach)Ni dithiolate complex, 

Figure III-13 (b).  Multiple scans did not affect the form of the CV, however bulk 

electrolysis of 4 was informative.  A potential of -2.26 V was applied to a solution of 

pure, crystalline complex 4 dissolved in DMF and stopped when the total charge (Q) 

approached a calculated value of 3 electrons per molecule. The cyclic voltammogram 

obtained on this solution showed almost total loss of the broad  

 

Figure III-14.  Square wave pulse voltammetry of a 2 mM solution of [(mmp-
mdach)Ni(Im)]Cl, 3, in DMF (0.1 M [nBu4N][BF4]) using a Ag/AgNO3 reference 
electrode, a platinum counter electrode and a glassy carbon working electrode 
standardized to Fc/Fc+.  
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Figure III-15.  Cyclic voltammograms before (black) and after (red) bulk 
electrolysis (-2.26 V) of a 2 mM solution of [Ni-1’(CH2-mIm)]Cl, 4, in DMF (0.1 M 
[nBu4N][BF4]) using a Ag/AgNO3 reference electrode, a platinum counter electrode 
and a glassy carbon working electrode standardized to Fc/Fc+. 

 

 

feature at -1.82 V while the reversible wave at -2.50 V and the oxidation wave at -0.18 V 

remained unchanged, see Figure III-15.  The lack of current increase following bulk 

electrolysis in the -2.50 V event was of concern.  As the addition of excess (bme-

dach)Ni did not change the intensity or potential of the CV waves, it may be assumed 

that the solubility limit of (bme-dach)Ni in DMF was reached.  This was confirmed by 

control experiments with pure (bme-dach)Ni. The low intensity, broad feature centered 

at -1.82 V in complex 4 and the first two reduction waves in complex 3 (DPV shown in 

Figure III-16) are tentatively assigned to complexes of different imidazole coordination 

in number or isomeric form.  Consistent with this assignment, on addition of free 

imidazole to a solution containing complex 3 the multiple events become one broad 

intense feature centered at ca. -2.05  V (Figure III-17).   
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Figure III-16.  Square wave voltammetry of a 2 mM solution of [Ni-1’(CH2-
mIm)]Cl, 4, in DMF (0.1 M [nBu4N][BF4]) using a Ag/AgNO3 reference 
electrode, a platinum counter electrode and a glassy carbon working electrode 
standardized to Fc/Fc+.  

 

 

Figure III-17.  Cyclic voltammograms before (black) and after (red) bulk 
electrolysis (-2.26 V) of a 2 mM solution of [Ni-1’(CH2-mIm)]Cl, 4, in DMF (0.1 M 
[nBu4N][BF4]) using a Ag/AgNO3 reference electrode, a platinum counter electrode 
and a glassy carbon working electrode standardized to Fc/Fc+. 
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Computational Studies   

 DFT computational studies were carried out by group member Michael Singleton 

with a goal of determining the activation barrier to imidazole rotation about the Ni-N 

bond.  Using the X-ray crystal structures as a starting point, DFT optimized structures 

accurately reproduced the experimental coordination geometries, see Figure III-18 and 

Table III-5.  Table III-6 lists the energies and compositions of the frontier molecular 

orbitals of complexes 3 and 4; the corresponding MO contour plots are shown in Figure 

III-19. 

 

ba 

Figure III-18.  Overlay of experimental structure from X-ray diffraction with DFT 
optimized structures of (a) [(mmp-mdach)Ni(Im)]Cl, 3, and (b) [Ni-1’(CH2-
Im)]Cl, 4. 

The highest-occupied molecular orbitals (HOMO) of complexes 3 and 4 both 

display Ni dπ – Spπ antibonding orbital character, with electron density from the Ni dyz 

(12.3%) and Sthiolate pz (58.8%) orbitals of complex 3; in complex 4, the distribution is Ni 

dyz (17.1%) and Sthiolate pz (57.1%).  The S-thiolate contribution to the HOMO is slightly 

more in the untethered imidazole derivative, 3, as compared to the tethered  
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Table III-5. Selected experimental and optimized 
parameters for [(mmp-mdach)Ni(Im)]Cl, 3, and [Ni-
1’(CH2-Im)]Cl, 4. 
 Calculated Experimental 

Complex 3   

Ni-NImid 1.922 Å 1.888 Å 

Ni-Namine 1.998 Å 1.923 Å 

Ni-Sthiolate 2.179 Å 2.149 Å 

Complex 4   

Ni-NImid 1.930 Å 1.908 Å 

Ni-Namine 2.005 Å 1.950 Å 

Ni-Sthiolate 2.192 Å 2.168 Å 

Ni-Sthioether 3.145 Å 3.022 Å 

 

 

Table III-6. Energies and composition (%) of frontier molecular orbitals of [(mmp-mdach)Ni(Im)]Cl, 
3,  and [Ni-1’(CH2-Im)]Cl, 4, as obtained from DFT calculations. 

MO E(eV) Ni Sthiolate Sthioether Nimid N-Himid Namine Orbital composition 

Complex 3         

LUMO -4.56 51.7% 13.1%  5.73% 1.15% 14.8% Ni(x2-y2) 

HOMO -8.19 17.8% 69.0%  0.309% 0.298% 0.838% S(pz) 

HOMO-1 -9.35 76.6% 14.6%  0.286% 0.187% 1.88% Ni(z2) 

Complex 4         

LUMO -4.43 52.7% 14.0% 0.238% 5.34% 0.159% 15.3% Ni(x2-y2) 

HOMO -8.02 22.1% 62.3% 4.38% 0.144% 0.020% 0.568% S(pz) 

HOMO-1 -8.83 60.2% 4.67% 23.5% 0.452% 1.71% 0.319% Ni(z2), Sthioether(px,y,z) 

imidazole complex, 4, while the Ni orbital contribution is slightly greater in the tethered 

imidazole compound. Similarly there are small differences between the orbital makeup 

of the lowest unoccupied molecular orbitals (LUMO’s) in complexes 3 and 4, which are 

in the σ-framework of the molecules. The HOMO-LUMO gaps in complexes 3 and 4 are 

nearly identical at 3.63 eV and 3.59 eV, respectively.  
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(b) (a) 

Figure III-19.  Frontier molecular orbitals of (a) [(mmp-mdach)Ni(Im)]Cl, 3, and (b) [Ni-
1’(CH2-Im)]Cl, 4.  In each column, the orbitals descend in the order LUMO, HOMO, and 
HOMO-1. 

 

 The most significant differences in molecular orbitals are observed in the 

HOMO-1. The HOMO-1 of complex 3 is comprised largely of the overlap of the Ni 

dz2(54.0%), Ni s (15.5%) and Sthiolate py (12.4%) orbitals whereas the HOMO-1 of pπ 

complex 4 shows a large contribution from the Sthioether of 23.4% in addition to the Ni dπ–

overlap.  
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 As discussed above, the Sthiolate-Ni interaction dominates the frontier molecular 

orbitals in complexes 3 and 4.  The Nimidazole-Ni bonding interaction is seen in lower 

lying orbitals which show large contributions of Ni and the N-imidazole character for 

both the ground and the DFT derived transition state for rotation of the imidazole about 

the Ni-N bond in complex 3, vide infra.   

 

Variable Temperature 1H NMR Studies   

 As shown in Figure III-6, solid state structures find the orientation of the 

imidazole ligand plane in both [(mmp-mdach)Ni(Im)]Cl, 3, and [Ni-1’(CH2-mIm)]Cl, 4, 

to be perpendicular to the NiN2N’S plane and largely eclipsing the N-Ni-N’ vector.  In 

order to further explore the imidazole ligand orientational preference, in collaboration 

with group member Michael Singleton, the solution phase conformation of the imidazole 

ligand in complex 3 was investigated via variable temperature 1H NMR spectroscopy.  

At 23 ºC, the spectrum of 3 in CD3OD shows three sharp singlets attributed to the C-H 

hydrogens on the coordinated imidazole ligand positioned at 8.11, 7.33 and 7.12 ppm, 

Figure III-20.  The assignments given in Figure III-20 are in agreement with DFT 

computations, vide infra (Figure III-21).  Upon lowering the temperature, resonances a 

and b broaden and by -80 ºC each has split into two signals, indicating the presence of 

two isomers.  Integration shows a’ and a’’ to be in a ratio of ~1.  The resonance due to 

the proton labeled c remains sharp throughout the temperature range and the resonances 

derived from b overlap with c and an impurity.  Note that impurities are readily seen at 

room temperature.  The lower field impurity is unaffected by temperature changes.  



 55

However, the higher field impurity, which has not been identified, undergoes broadening 

as do the signals of interest. 
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Figure III-20.  Variable temperature 400-MHz 1H NMR spectra of [(mmp-
mdach)Ni(Im)]Cl, 3, in MeOH. * = impurity. 
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Room Temperature Low Temperature 

Experimental 

-8.5 -8.3 -8.1 -7.9 -7.7 -7.5 -7.3 -7.1

ppm
-8.5 -8.3 -8.1 -7.9 -7.7 -7.5 -7.3 -7.1

ppm

Calculated 

-8.5 -8.3 -8.1 -7.9 -7.7 -7.5 -7.3 -7.1

PPM

-8.50 -8.30 -8.10 -7.90 -7.70 -7.50 -7.30 -7.10

ppm

Figure III-21.  Experimental 1H NMR resonances and DFT 1H NMR 
predictions for the imidazole protons of [(mmp-mdach)Ni(Im)]Cl, 3, calculated 
at room and low temperature. 

 
 

Thermodynamic (isomer ratios) and kinetic barriers associated with the fluxional 

process were obtained by using conventional equations, eqs 1 and 2. 

ΔGº = - RT ln (Keq),     Keq = [a’]/ [a’’]  (1) 

 ΔG‡ = - RT ln (kTh/ kbTcoal),     kT = (πΔν/ √2) (2) 

The ratio of the two isomers (57: 43) at -80 ºC (193 K) resulted in a ΔGº of 0.1 kcal mol-

1.  From the chemical shift difference of a’ and a’’ (164.7 Hz) and the coalescence 

temperature (213 K), eq 2 gives ΔG‡ equal to 8.9 kcal mol-1. 

 There are four possible isomers of 3 (Figure III-22).  Isomer A depicts the 

molecular structure as determined by X-ray crystallography.  Isomer B leaves the 

imidazole orientation unchanged but the NiN2C3 metallocycloheptane ring is converted  
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from chair to boat conformation.  Isomers C and D are analogous to A and B, 

respectively, but with the imidazole ring inverted.  While the lowest energy gas phase 

DFT-calculated structure is isomer C, solvent correction indicates that in MeOH isomer 

A, the experimentally found structure is of lowest energy (more stable than C by 0.68 

kcal/mol).  The stability of A in polar solvent over C is attributed to the differences in 

the dipole moments of the two complexes; the dipole moment in A is calculated to be 

6.59 and in C it is 6.11.  In both the gas phase and in solvent, the calculated difference in 
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Figure III-22.  Four possible conformational isomers of [(mmp-
mdach)Ni(Im)]Cl, 3, and their DFT calculated relative energies (Gº)  Black: gas 
phase; Red: solvent correction in MeOH. 
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energy between the two complexes is relatively small.  DFT calculations were used to 

examine activation barriers to proton site equilibration due to the ring flip in the 

diazacycle backbone (A vs B or C vs D) or to rotation of the coordinated imidazole (A 

vs C or B vs D). 

 Note that the calculated ΔGº value of isomers A vs. B and C vs. D would 

correspond to an isomer ratio of ~33,000:1 and ~700:1, respectively.  At these ratios, 

only one set of signals in the NMR spectra would be observable at low temperatures.  On 

the basis on these values, the fluxional process that most likely corresponds to the 

signals seen in the NMR spectra is the rotation of the imidazole ring that equilibrates 

isomers A and C. 

 The DFT calculated barriers for the processes that interconvert the four isomers 

are given in Figure III-23.  As shown in Figure III-23(a), starting from the structure of 3 

determined crystallographically, isomer A, the DFT calculated ΔG‡ for the ring flip in 

the diazacycle backbone from the chair to the boat conformation, achieving a transition 

state where the C3 N to N linker is fairly flat, is 7.02 kcal mol-1.  Calculations carried out 

for the ring flip of the isomer with the imidazole rotated 180º as compared to the solid 

state structure, isomer B, resulted in a ΔG‡ of 6.59 kcal mol-1 (Figure III-23(b)).  The 

DFT-calculated ΔG‡ of 8.86 kcal mol-1 for the conversion of isomer A to C, that is, 

rotation of the imidazole as seen in Figure III-23(c), passing through a transition state 

where the imidazole plane is roughly within the NiN2S plane, is strikingly similar to the 

experimental value obtained from the VT NMR study.  Thus, the DFT calculations that 

aid interpretation of experimental results suggest that the separate isomers seen at low 
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temperature are due to cessation of imidazole rotation about the Ni-N bond.  

Furthermore, the calculations suggest there is little difference in energy between the two 

rotational isomers of 3 (<0.2 kcal mol-1), and this is also indicated in the experimental 1H 

NMR data which by the ratio of isomers is ca. 1 at -80º C. 

 

Reactivity Studies with Small Molecules (O2
-, O2 and H2O2)   

 Complexes 3-5 have been examined for superoxide reactivity using the nitroblue 

tetrazolium (NBT) assay.  This qualitative test based on the reduction of NBT by O2
- is 

detected by the change of colorless NBT to the blue formazan (λmax = 580 nm, ~30 000 

M-1 cm-1; Figure III-24).127   
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Figure III-24.  Nitroblue tetrazolium (NBT) reaction with superoxide to produce 
formazan. 

 
 
 The presence of an active SOD inhibits the color formation by scavenging the 

O2
- radical.  Figure III-25 shows the results of addition of solid KO2 (100 eq. per mole of 

NBT) to a (61 µM) aqueous NBT solution (phosphate buffer, pH 7.4).  Note that the  
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Figure III-25.  Electronic spectra of (a) NBT in aqueous phosphate buffer (pH 7.4).  
(b) Blue - Addition of 100 eq of KO2; Red – 5 min after addition (formation of 
insoluble formazan decreases total intensity).  

 

limited solubility of formazan in aqueous solution causes a decrease in the absorbance 

over time. 

 Under the same conditions employed in the control experiment and in the 

presence of complex 3 (69 µM), a 40% decrease in the intensity of the band centered at 

580 nm was observed, indicating a decrease in formazan production (Figure III-26a).    

This result suggests that 3 possesses superoxide scavenging properties that prevent a  
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portion of the NBT from reacting with O2
- and at a rate competitive with NBT.  In 

addition, intense bubble formation, much more than with formazan in the absence of 3, 

was observed within the first 30 seconds following KO2 addition.  It should be noted that 

there is no indication of catalytic O2
- decomposition.  The addition of solid KO2 to 

concentrated solutions of  complex 3, resulted in a shift in the d-d band from 464 nm to 

471 nm and a new band appeared at 350 nm (Figure III-26b), suggesting that a new 

nickel species is formed.   
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Figure III-26.  Electronic spectra of [(mmp-mdach)Ni(Im)]Cl, 3, in phosphate buffer 
(pH 7.4) (a): Blue - Addition of 100 eq of KO2 to NBT (61 µM); Red - Addition of 
100 eq of KO2 to NBT (61 µM) /complex 3 (69 µM).  (b): Red – Complex 3 (2.75 
mM); Black – Addition of KO2 to Complex 3 (0.46 mM)/ NBT buffer solution (0.18 
mM). 
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The ability of complexes 4 and 5, and (bme-dach)Ni, as well as NiCl2, to inhibit 

NBT superoxide reactivity was screened by identical experiments.  Under both low and 

high concentrations, none inhibited the production of formazan.   

Complex 3 was screened for reactivity with the products of superoxide 

dismutation, O2 and H2O2.   Molecular oxygen was bubbled through a MeOH solution of 

complex 3. No oxygenation products were observed and only the starting material was 

recovered.  Upon addition of H2O2 (10 mM) to complex 3 dissolved in MeOH, an 

immediate color change from orange to yellow was observed.  The molecular formulas 

and predicted isotope envelopes for both the mono-oxygenated and bis-oxygenated 

derivatives of complex 3 were observed in the ESI-MS spectrum (Figure III-27). These 

results indicate that complex 3 is stable to aerobic oxidation and only strong oxidants are 

capable of oxidizing the Ni-bound  N2N’S ligand.  

 

Summary and Remarks   

  Complexes 3 and 4 presented above are, to our knowledge, the first molecular 

structures of compounds containing both an S-thiolate and N-imidazole donor atom in 

the first coordination sphere of NiII.  The use of the (bme-dach)Ni complex and the 

dimeric dithiolate bridged NiII dication as precursor reagents in the preparation of the 

Ni(N2N’S) complexes resulted in similar solid state structures for complexes containing 

both  tethered and untethered imidazole ligands.  That the diazacycloheptane N2 

backbone" plays a stabilizing role in these complexes is highly reasonable. The 

following salient points are to be noted. 



 64

[NiC13H25N4SO2]+ 
FW = 359 g/mol 

0

500

1000

1500

2000

2500

3000

3500

335 340 345 350 355 360 365 370

m/z, amu

In
te

ns
ity

, c
ou

nt
s

343 

359
[NiC13H25N4SO]+ 
FW = 343 g/mol 

Predicted Isotope Envelopes 

0

20

40

60

80

100

343 344 345 346 347 348 349 350 351 352

m/z, amu

In
te

ns
ity

0

20

40

60

80

100

359 360 361 362 363 364 365 366 367 368

m/z, amu

In
te

ns
ity

Figure III-27.  Positive mode ESI-MS of [(mmp-mdach)Ni(Im)]Cl, 3, in MeOH 
after reaction with H2O2. 

 

 

 Imidazole Ligand Geometrical Orientation in Square Planar NiII 

Complexes. While severe ligand restrictions position the imidazole ligand coplanar with 

the N2N'2NiII plane of complex 5, the solid state structures of complexes 3 and 4 revealed 

a preferred orientation of the imidazole donor ligand perpendicular to the N2N’SNiII 

plane.  The solution phase VT 1H NMR study of complex 3 demonstrated that the 

imidazole ligand freely rotates about the Ni-Nimid bond at 22°C, with static structures 
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appearing between -60 and -80°C.  Both the experimental and the DFT computed 

barriers to rotation are found to be ~9 kcal mol-1. The lowest energy DFT-calculated gas 

phase structure also found the imidazole plane to orient perpendicular to the N2N’S 

plane, but rotated 180° with respect to the crystallographically determined structure.  

Applying solvent corrections, the DFT lowest energy structure was calculated to be the 

same orientation as observed in the solid state. Thus the built-in asymmetry of the 

diazacycloheptane ring provides subtle tuning of ligand orientation preferences. 

As discussed in the Introduction, a number of studies have demonstrated that the 

orientation of imidazole ligands found in metalloenzyme active sites influences 

structure/function relationships.28-36,53-54  Furthermore, ligand rotational properties have 

been shown to contribute to significant factors affecting antitumor properties in platinum 

and ruthenium antitumor compounds.42  The DFT computed transition state structure for 

imidazole rotation about the Ni-Nimid bond in complex 3 positions the imidazole ligand 

roughly coplanar with the NiN2S plane. In fact, elongation of the Nimidazole-Ni bond 

distance by 0.06 Å (from 1.922 in the DFT calculated ground state to 1.982 Å in the 

transition state) is accompanied by distortion (a Td twist defined by the intersection of 

the N2Ni and SNimidNi planes, of 21.2°), Figure III-28.   The preferred orientation may 

be a product of steric and/or electronic effects, which is the focus of discussion in 

Chapter IV.   
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Figure III-28.  (a) DFT calculated ground state structure (b) DFT calculated transition
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 Superoxide Reactivity.  The nickel-imidazole complexes described above are all 

water soluble and thus their potential for superoxide reactivity could be assessed in 

aqueous buffer via the NBT assay.  Only complex 3 competed with the NBT scavenging 

of superoxide; complexes 4, 5, and (bme-dach)Ni did not and neither did simple salts 

such as NiCl2.  As the NBT assay gives little information regarding the nature of 

interference from the coordination complex, we can regard these results as preliminary. 

This data suggests the need for further examination of nickel complexes of various 

charge and redox properties such as we have in a catalog of such square planar Ni 

complexes. 

 Implications to Nickel Containing Biomolecules.  An unsuccessful attempt was 

made to synthesize a NiSOD enzyme active site model complex from alkylation of a 

thiolate within an N2S2NiII framework by chloromethylimidazole to thus incorporate a 
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dangling imidazole (His mimic) with the capability of shifting into an axial binding 

position on oxidation of NiII to NiIII.  The resulting N2N’Sthioether binding motif found for 

complex 4, which matched that of complex 3, was impressive of the good binding ability 

of imidazole nitrogen and its preference for the square plane of NiII.  In the NiSOD 

enzyme active site, the axial His binding is governed by the protein superstructure, the 

position of the His residue next to the N-terminus that provides the amine ligation, the 

coordination of the strong carboxyamido N and S donors of one cysteine unit, and a 

second distal S-cysteine donor.  This square planar coordination environment creates 

two favorable 5-membered rings, whereas the His ligand binding in the square plane in 

place of the N-terminus amine would result in one 5-membered ring and a less-favored 

7-membered ring.  

Interestingly, the (Nimid)3NiScys "plane" of NikR, Figure III-1, finds a range of 

Nimid plane orientations, canted so as to best accommodate the steric requirements.23-24  

As nickel binding or release, with concomitant long range protein structural changes, is 

an important feature of this site, specific orientations of the imidazole ligands are likely 

suspects as triggers of release and binding.  Drennan, Zamble and coworkers have 

demonstrated that other metal ions may bind in this site, however the nickel form is 

reported to be 250x more active.13, 15  Our (N2N’S)Ni complexes are suitable as first 

coordination sphere molecular models of the Ni-binding site of the NikR protein, and are 

expected to be useful for selectivity and relative binding affinity studies of 

physiologically relevant metal ions. 
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CHAPTER IV 

STUDIES OF THE ORIENTATION OF PLANAR MONODENTATE LIGANDS 

IN SQUARE PLANAR NICKEL COMPLEXES 

 

Introduction 

 The orientational binding preferences and fluxional processes of ligands in 

transition metal complexes is an area of fundamental significance relating to catalysis 

and reactivity.128-130  In the case of biologically relevant ligands such as imidazole, the 

study of these processes purports to offer insight into a vast array of biological systems 

containing metal bound histidine residues.  As discussed in Chapter I, much of the effort 

in this area has been directed toward understanding His-iron interactions through the use 

of simple imidazoles as mimics of histidine.   

Adding to the importance of Fe-Nhistidine interactions, is a wide range of 

biological metal-bound histidine complexes that could have orientational consequences, 

specifically the Ni-containing imidazole metal binding sites found in Ni superoxide 

dismutase (NiSOD), and the transcription factor, NikR.13-14,23-24   The orientation of 

histidine donors in nickel-binding sites in such systems has not thus far been emphasized 

in structural studies. 

Our work has employed diazacycles such as  diazacycloheptane (dach) as support 

for  pendant thiolate arms in development of N2S2 and N2S multi-dentate ligands.  The 

dach frame has been particularly amenable to the production of a monothiolate N2S 

ligand, which upon reaction with nickel, readily forms a dimeric, dithiolate-bridged NiII 
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dication as precursor to monomeric cyano, and as described in Chapter III, imidazole 

complexes.110, 131   The µ2(SR)2-bridged NiII dimer/ligand cleavage approach has also 

been used by Gale, Patra and Harrop to produce monomeric N2SS’Ni complexes 

designed as NiSOD analogues,132 and extensive syntheses based on cleavage reactions of 

(S-N-S)2Ni2 complexes were recently reported by Huang, Holm et al.52   

As described in Chapter III, solution phase investigations using 1H NMR 

spectroscopy demonstrated that, due to the unsymmetric dach framework, isomers of the 

(N2SN’)Ni complex A, Figure IV-1, existed at low temperatures in nearly equal ratio.131  

The observed equilibration of up/down orientations of the imidazole (with respect to the 

6-membered nickel diazacyclohexane ring), isomers A and A’, was assigned to the 

rotation of the imidazole ligand about the Ni-Nimidazole bond. The rotational barrier, ~8.9  

 

 

Figure IV-1.  Left to right:  [(mmp-mdach)Ni(Im)]+, A, DFT-calculated ground state 
structure of complex A; A‡, DFT-calculated transition state structure of complex A en 
route to isomer A’; Td twist (angle of intersection of N2Ni and N’SNi planes) of A = 
7.9 °, of A‡  = 21.2°.  Adapted from Reference 132. 
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kcal/mol, was derived from analysis of the VT 1H NMR data.  Density Functional 

Theory (DFT) analysis of the ground state and transition state structures, complexes A 

and A‡, indicated for the latter a 0.06 Å increase in the Ni-Nimid bond distance in 

addition to a significant deviation from square planarity, as shown in Figure 1.131  To 

explore the generality of this result and to provide insight into the factors contributing to 

the ground state imidazole binding orientation and to transition states of dynamic ligand 

rotational processes, a broader series of [(N2S)Ni]2 cleavage products containing planar 

ligands (imidazoles, pyridine and an N-heterocyclic carbene)  has been prepared.  As the 

π-accepting/π-donating abilities of the added ligands are insignificant in these strong σ 

donors, the orientation of the monodentate ligand is dictated largely by minimization of 

steric interactions of L with the steric constraints of N2SNi binding site.  Nevertheless, 

electronic effects are seen via DFT computations that suggest an intramolecular 

donor/acceptor interaction between the imidazole C-H and the thiolate S is operative in 

determining the stability of the ground state and transition state structures.  A structural 

survey of the solid state structures of ten square planar imidazole Ni complexes of 

tridentate ONO, ONN, ONS, and NNS Schiff base type ligands shows the importance of 

this effect in the presence of hard oxygen donors cis to the imidazole. 133-141  

 

Experimental Details 

 General Procedures.  The starting material 1,3-bis(methyl)imidazolium iodide 

was prepared according to literature procedures.142 Complexes 1, 1-H, and A were 
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prepared as described previously.110, 131  Lauren A. Leamer, an REU student, assisted 

with the preparation of complexes 3-8. 

 [(mmp-mdach)Ni]2[BF4]2, Complex 2.  To a solution of 0.050 g (0.085 mmol) 

of [(mmp-mdach)NiCl]2, complex 1,  in MeOH (20 mL)  was added 0.019 g (0.173 

mmol) of NaBF4 in MeOH (15 mL); the solution was stirred overnight.  Solvent was 

removed under vacuum, and MeCN (20 mL) was added, precipitating NaCl, and 

yielding a maroon solution of [(mmp-mdach)Ni]2[BF4]2, complex 2. The solution was 

filtered over celite, solvent was removed in vacuo, and 0.055 g (93% yield) of pure 

complex 2 was isolated as a maroon solid.  Absorption spectrum (MeOH): λmax (ε, M-1 

cm-1) 525 (354), 418 (322), 280 (4138), 244 (7247) nm. +ESI-MS (MeCN): m/z = 259 

[(me-mdach)Ni]2
2+.   

[(mmp-mdach)Ni(py)][Cl], Complex 3.  A mixture of 0.030 g (0.051 mmol) of 

1 in MeOH (25 mL) with 12.0 µL (0.149 mmol) of pyridine was stirred overnight, 

producing a color change from red wine to yellow-orange.   As the solvent was removed 

in vacuo, the completely dried residue on the sides of the flask turned purple, while the 

solution changed to a deep orange.  An additional 20.0 µL (0.248 mmol) of pyridine was 

added to the concentrated solution, stirred to mix the residue on the sides of flask, 

yielding a dark orange solution.  Absorption spectrum of the reaction mixture (MeOH): 

λmax 453, 350 (sh), 290, 255, 231 nm.  +ESI-MS (MeOH): m/z = 338, [(mmp-

mdach)Ni(py)]+.     

py-[(mmp-mdach)Ni]2[BF4]2, Complex 4.  A mixture of 0.050 g (0.072 mmol) 

of 2 in MeCN (30 mL) with 21.8 µL (0.253 mmol) of pyridine was stirred for 2 days, 
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producing a color change from maroon to deep yellow. The solvent was reduced to a 

minimum followed by Et2O diffusion (in the presence of a ~ 2.5 equiv excess py) to 

yield X-ray quality crystals. Pure reddish-orange crystalline product was isolated (0.031 

g, 54% yield). Elemental anal. for Ni2C25H47N5S2B2F8 (MW = 773 g/mol) Calcd (found): 

C, 38.85 (38.29); N, 9.06 (8.88); H, 6.13 (6.09).  Absorption spectrum (MeOH): λmax (ε, 

M-1 cm-1) 502 (sh), 471 (344), 334 (sh), 291 (6976), 244 (8345) nm. ESI-MS 

(CH2Cl2:MeOH): m/z = 684, py-[(mmp-mdach)Ni)]2BF4
+; 338, [(mmp-mdach)Ni(py)]+;  

259, [(me-mdach)Ni]2
2+. 

 [(mmp-mdach)Ni(mIm)][BF4], Complex 6.  Method A: To a maroon solution 

of 2, (0.073 g, 0.105 mmol) in MeOH (30 mL) was added a colorless solution of 1-

Methylimidazole, mIm, (30 µL, 0.376 mmol, a 3.5 equiv excess) in MeOH (10 mL), 

which produced an orange solution.  After stirring overnight, the solution volume was 

reduced to a minimum under vacuum and Et2O was added to precipitate the product.  

The ether was decanted and the resulting orange product was dried in vacuo.    The solid 

was dissolved in MeCN (15 mL) and additional mIm (20 µL, 0.251 mmol, ~2 equiv 

excess mIm) was added.  The solution was filtered over celite, the filtrate reduced in 

volume, and the filtrate was layered with Et2O.   Absorption spectrum (MeOH): λmax (ε, 

M-1 cm-1) 467 (319), 341 (sh), 290 (6534), 225 (8097) nm.  +ESI-MS (MeOH): m/z = 

341 [(mmp-mdach)Ni(mIm)]+.  Diffusion of Et2O into the reaction mixture that contains 

complex 6 (with 1 equiv of excess py) that gave small yellow-orange needles initially 

and within two days changed into red-orange block crystals (12 mg, 15%) indentified 

not as 6 but rather the dinuclear (mIm-[(mmp-mdach)Ni]2[BF4]2, complex 5.   
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Method B: To a maroon solution of 2, (0.035 g, 0.050 mmol) in MeCN (25 mL) 

was added a colorless solution of mIm (41 µL, 0.514 mmol, a 10-fold molar excess) in 

MeCN (10 mL), which immediately produced an orange solution.  After stirring 

overnight, the solution volume was reduced to a minimum under vacuum and additional 

neat mIm (30 µL, 0.376 mmol) was added.  The solution was filtered and the filtrate was 

layered with Et2O to deposit orange-brown crystalline product (0.018 g, 42% yield) 

identified as the mononuclear product [(mmp-mdach)Ni(mIm)][BF4], complex 6.  

Elemental anal. for NiC14H27N4SBF4 (MW = 429 g/mol) Calcd (found): C, 39.20 

(39.21); N, 13.10 (12.97); H, 6.34 (6.34).  Absorption spectrum (MeOH): λmax (ε, M-1 

cm-1) 467 (319), 341 (sh), 290 (6534), 225 (8097) nm.  +ESI-MS (MeOH): m/z = 341 

[(mmp-mdach)Ni(mIm)]+.  1H NMR (500 MHz, CD3OD)  δ 8.04 (s, 1H), 7.26 (s, 1H), 

7.09 (s, 1H), 3.70 (s, 3H), 1.69 (s, 3H), 1.60 (s, 3H), 1.38 (s, 3H). 

[(mmp-mdach)Ni(ipIm)][BF4], Complex 7. A solution of 2-

Isopropylimidazole, ipIm, (0.029 g, 0.264 mmol) in MeCN (10 mL) was added to a 

stirring maroon solution of 2 (0.061 g, 0.088 mmol) in MeCN (25 mL), resulting in an 

immediate color change to bright orange.   After stirring overnight, the solution volume 

was reduced to a minimum under vacuum and Et2O was added to precipitate the product.  

The ether was decanted, the product was washed Et2O (3 x 25 mL) to remove excess 

ipIm, and dried in vacuo to afford the product as an orange solid (0.421 g, 53% yield).  

X-ray quality crystals were obtained by Et2O diffusion into a MeCN solution. Elemental 

anal. for NiC16H31N4SBF4•H2O (MW = 475 g/mol) Calcd (found): C, 40.46 (40.97); N, 

11.79 (11.79); H, 7.00 (6.68).  Absorption spectrum (MeOH): λmax (ε, M-1 cm-1) 468 
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(189), 335 (sh), 290 (4190), 223 (4768) nm.  +ESI-MS (MeOH): m/z = 369 [(mmp-

mdach)Ni(ipIm)]+.  1H NMR (500 MHz, CD3OD)  δ 7.33 (d, 1H), 7.23 (d, 1H), 7.04 (d, 

1H), 7.01 (d, 1H). 

 [(mmp-mdach)Ni(me2NHC)][I], Complex 8.  1,3-bis(methyl)imidazolium 

iodide (0.044 g, 0.196 mmol) and KOtBu (0.023 g, 0.205 mmol) were mixed and stirred 

in dry THF (15 mL) for 1 h.   The mixture was then added in situ to a slightly soluble 

purple suspension of complex 1 (0.040 g, 0.068 mmol) in THF (25 mL) and stirred for 

18 h. As the reaction proceeded the solution turned orange-red and an orange solid 

precipitated.  The solution was filtered and the solid was washed with hexanes (3 x 25 

mL).  X-ray quality crystals were obtained by vapor diffusion of Et2O into a MeCN 

solution.  The bright orange crystalline material was collected yielding 0.030 g (46%).  

Elemental anal. for NiC15H29N4SI•H2O (MW = 501 g/mol) Calcd (found): C, 35.95 

(35.56); N, 11.18 (11.08); H, 5.82 (6.24).  Absorption spectrum (MeOH): λmax (ε, M-1 

cm-1) 417 (104), 268 (2652), 233 (4148) nm.  +ESI-MS (MeOH): m/z = 355 [(mmp-

mdach)Ni(me2NHC)]+.  1H NMR (500 MHz, CD3OD)  δ 7.19-7.18 (dd, 2H), 4.37 (s, 

3H), 4.38 (s, 3H), 1.92 (s, 3H), 1.62 (s, 3H), 1.39 (s, 3H). 

[(mmp-dach)Ni(Im)][BF4
-], Complex 9. To a solution of 1-H (0.030 g, mmol) 

in MeOH (30 mL) was added a solution of imidazole, Im, (0.011 g, mmol) in MeOH (10 

mL).  The color of the solution immediately changed from red to orange.  After stirring 

overnight, the solvent volume was reduced to a minimum and the addition of Et2O led to 

an orange precipitate, which was washed with Et2O (3 x 25 mL).  The solid was 

dissolved in CH2Cl2 and filtered over celite, dried in vacuo, yielding 22 mg (61%).  
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Absorption spectrum (MeOH): λmax (ε, M-1 cm-1) 455 (59), 370 (sh), 282 (1319), 215 

(3777) nm.  +ESI-MS (MeOH): m/z = 313 [(mmp-mdach)Ni(Im)]+.  1H NMR (500 MHz, 

CD3OD)  δ 7.86 (s, 1H), 7.09 (s, 1H), 7.04 (s, 1H), 1.61 (s, 3H), 1.43 (s, 3H).  Slow 

evaporation of a methanol solution of complex 9 resulted in orange block crystals of a 

partially cleaved dimer, Im-[(mmp-dach)Ni]2[BF4]2, complex 10, (16 mg, 48%).   

 

Scope of the Ni2(µ-SR)2 Cleavage Reactions   

 Figure IV-2 displays the overall scope of the Ni2(µ-SR)2 cleavage reactions 

reported herein along with the pKa values of the attacking ligands (as their conjugate 

acids) which vary from 5.23 to 23.143-145  The exogenous ligands are largely planar in the 

coordination environment closest to the nickel, with steric properties imposed by 

substituents that flank the donor atom, described further below.  The steric character of 

the nickel binding site is defined by a thiolate sulfur with two α-gem dimethyl groups 

and an N-donor from the diazacycloheptane frame.  Given in Figure IV-3 are space-

filling models derived from DFT computations, vide infra,  of ground state structures of 

the square planar complexes with the monodentate ligands removed so as to display the 

available binding site in complex A and in an analogue, complex 9, in which the methyl 

substituent on the dach (mdach) is replaced with hydrogen (dach).  While the methyl 

groups on the carbon α to the S-donor appear to have little steric influence on the ligands 

that dock into the available site on square planar nickel, the differences between 

complexes A and 9 are more substantial.   This was experimentally confirmed by  
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Figure IV-2.   A summary of the dimer cleavage reactions of complexes 1 and 2 which 
yield mononuclear products 3 and 6-8 and monothiolate bridged dinickel complexes 4-5.  
aNote:  With BF4

- counterion,   the dinickel product forms during crystallization.  Complex 
A was reported earlier.131  Identification of ligands with respective pKa values of the 
conjugate acids: (a) pyridine (py);143 (b) imidazole (Im);143 (c) 1-Methylimidazole 
(mIm);144 (d) 2-Isopropylimidazole (ipIm);144 and (e) dimethyl N-heterocyclic carbene 
(me2NHC).145  See Experimental Section for molar excesses of added ligands and for source 
of I- in 8. 
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Figure IV-3.  Space filling models of complexes [(mmp-mdach)Ni(Im)]+, A (left, 
based on mdach) and [(mmp-dach)Ni(Im)][BF4], 9 (right, the dach derivative) in 
which the monodentate ligand has been removed, displaying the available open site 
that exists between the N- and S-donor sites.  

 

characterization of complexes 9 and 10 as prepared from dimeric complex 1-H, Scheme 

IV-1.  

 Complexes 4 -8, 10 and A in Figure IV-2 and Scheme IV-1 are represented 

according to their structures determined by X-ray crystallography.  Complexes 3 and 9 

are suggested to be analogous to other monomeric complexes consistent with their 

formulation by positive mode electrospray ionization mass spectrometry (+ESI-MS)  

Scheme IV-1 
+

 

MeOH

N NH2+

Ni N
N

SNiN
N

S H

HH

Ni
SN

N

Ni

N

N

S

N
NHH

H

Ni
SN

N N
NH

Crystallization

(BF4
-)2 (BF4

-) 

1-H 9

(-Im) 

(BF4
-)2 

2+

10



 78

 

Table IV-1.  Summary of electronic absorption spectra.  

Complex UV-Vis:  λmax (nm) (ε, M-1 cm-1) 

[(mmp-mdach)NiCl]2, 1 244 (10161) 283 (5910) 420 (561) 532 (537) 

[(mmp-mdach)2Ni2](BF4)2, 2  244 (7247) 280 (4138) 418 (322) 525 (354) 

[(mmp-mdach)Ni(Py)]Cl, 3a 231 
255 290 350 (sh) 453 

py-[(mmp-mdach)Ni]2[BF4]2, 4 244 (8345) 291 (6976) 
 
334 (sh) 
 

471 (344), 
502 (sh) 

[(mmp-mdach)Ni(mIm)] BF4, 6 225 (8097) 290 (6534) 341 (sh) 467 (319) 

[(mmp-mdach)Ni(ipIm)] BF4, 7 223 (4768) 290 (4190) 335 (sh) 468 (189) 

[(mmp-mdach)Ni(me2NHC)]I, 8 233 (3387) 268 (1238)  417 (115) 

[mmp-dach)Ni(Im)]BF4, 9 215 (3777) 282 (1319) 370 (sh) 455 (59) 

[(mmp-mdach)Ni(Im)](Cl)131 , A 211 (21460) 288 (10767) 340 (sh) 467 (501) 

  aThe molar absorptivity values are not available for complex 3. 

 

and physical properties (1H NMR  and  UV-Vis spectroscopies).  A listing of all UV-Vis 

data is given in Table IV-1.   

 

Monothiolate Bridged Dinickel Complexes: Synthesis and Structural 

Characterization 

   Syntheses.  As implied in Figure IV-2 there are complexities that relate to 

counterions in the syntheses and isolation of monomeric vs. monothiolate bridged 

dinickel complexes.  The dimer cleavage reactions of 1 with py (a) and mIm (c) were 

initially performed following an identical protocol for complex A as described in 

Chapter III.131  The addition of excess py to the wine red solution of 1 resulted in an 

immediate color change  
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Figure IV-4.  Positive mode ESI-MS of the reaction mixture of [(mmp-
mdach)Ni(py)][Cl],  3, in  MeOH. Top: Experimental spectrum.  Bottom:  
Predicted isotopic envelope.   

 

to yellow.  The +ESI-MS of the reaction mixture showed a nickel-containing isotopic 

bundle at m/z = 338 (Figure IV-4), which corresponds to the predicted pattern for a 

species having the formula C15H26NiN3S+, i.e., the mononuclear cleaved product, 

complex 3.  The electronic absorption spectra of the reaction mixture at different 

concentrations showed the disappearance of the bands that are assigned to complex 1           

(λmax =  244, 283, 420 and 532 nm) with new bands appearing at λmax = 231, 255, 290, 

350 and 453 nm.   Attempts to purify the complex by precipitation with Et2O resulted 

initially in a yellow solid which within seconds turned purple.  Likewise, on removal of 

solvent in vacuo, a purple solid was produced.  A yellow solution was regained on 



 80

subsequent addition of MeOH to the purple solid. That is, the removal of solvent 

promoted the reformation of complex 1.  

To avoid the competitive binding of Cl- ions to the mononuclear complex, 

subsequent cleavage reactions were carried out using the Ni2(µ-SR)2, complex 2, which 

contains  non-coordinating BF4
- counter ions.  Similar to the cleavage reaction of 

complex 1 with py, the electronic absorption spectra and +ESI-MS data suggested a fully 

cleaved product, i.e., complex 3, which resulted from the treatment of complex 2 with 

excess py.  The slow diffusion of Et2O into a MeCN solution of this reaction mixture 

yielded reddish-orange crystals whose X-ray diffraction analysis (vide infra) revealed 

incomplete cleavage of complex 2 and the presence of a Ni-(µ-SR)-Ni dimer, complex 4.  

We conclude that aggregation with loss of one py ligand from complex 3 occurs during 

the crystallization process.   

The dimer cleavage reaction of complex 1 using mIm, (c) in Figure IV-2, 

proceeded with similar complexities during purification as observed when using py as 

the attacking ligand.  While color changes and spectroscopic analyses (Table IV-1 and 

Figure IV-5) of the reaction mixture from both complexes 1 and 2 suggested complete 

dimer cleavage, the X-ray quality crystals which were obtained from Et2O diffusion into 

a MeCN solution of the reaction mixture and their X-ray diffraction analysis revealed a 

second partially cleaved dimer, complex 5.    

Complex 1-H was chosen as a [(N2S)Ni]2 dimeric precursor to reduce the steric 

interference between the monodentate ligand and the dach N-donor in the mononuclear  
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Figure IV-5.  Positive mode ESI-MS of the reaction mixture of [(mmp-
mdach)Ni(mIm)][BF4],  6, in  MeOH.  Experimental spectrum.  Bottom:  Predicted 
isotopic envelope.   

 

product, complex 9 (Scheme IV-1).  Under the same conditions as used to produce 

complex A, complex 1-H (either as its BF4
- or Cl- salt) reacted with excess Im in MeOH 

to yield an orange solid analyzed by +ESI-MS, UV/Vis spectroscopy, and 1H NMR 

spectroscopy as complex 9.  X-ray quality crystals were obtained by the slow 

evaporation of complex 9 as its BF4
- salt in MeOH; however, these crystals analysed as a 

third partially cleaved dimer, complex 10.   

 Molecular Structures of Monothiolate Bridged Dinickel Complexes.  Views 

of the molecular structures of complexes 4, 5, and 10 are shown in Figure IV-6, and 

selected metric data are compared in Table IV-2.   
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Figure IV-6.  Left: Molecular structures of the dications of py-[(mmp-mdach)Ni]2[BF4]2, 4, 
(top), mIm-[(mmp-mdach)Ni]2[BF4]2, 5, (middle), and Im-[(mmp-dach)Ni]2[BF4]2, 10, 
(bottom) shown as thermal ellipsoids at 50% probability. The BF4

- counter ions are not 
shown. The asymmetric unit of complex 4 contains one MeCN of crystallization.  Right: 
Ball and stick representation of 4 (top) 5 (middle), and 10 (bottom) in different orientation. 
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Table IV-2.  Metric data for complexes py-[(mmp-mdach)Ni]2[BF4]2, 
4, mIm-[(mmp-mdach)Ni]2[BF4]2, 5, and Im-[(mmp-dach)Ni]2[BF4]2, 
10 (distance, Å); angle, deg). 
 4 5 10 
Ni(1)-S(1) 2.151(19) 2.166(19) 2.187(4) 
Ni(1)-N(1) 1.900(4) 1.922(5) 1.929(11) 
Ni(1)-N(2) 1.951(5) 1.961(6) 1.884(11) 
Ni(1)-N(3) 1.918(4) 1.905(5) 1.893(12) 
Ni(2)-S(1) 2.192(2)  2.214(19)  2.178(4)   
Ni(2)-S(2) 2.133(19) 2.140(19) 2.128(4) 
Ni(2)-N(4) 1.930(6) 1.925(6) 1.918(12) 
Ni(2)-N(5) 1.944(5) 2.026(7) 1.971(13) 
Ni(1)···Ni(2) 3.379 3.339 3.534 
N(1)-Ni(1)-N(2) 82.6(19) 82.3(2) 82.6(5) 
N(1)-Ni(1)-S(1) 92.3(15) 91.2(17) 90.6(4) 
N(2)-Ni(1)-N(3) 96.2(19) 97.4(2) 93.6(5) 
S(1)-Ni(1)-N(3) 88.9(15) 89.1(18) 93.2(3) 
N(1)-Ni(1)-N(3) 173.6(2) 174.4(2) 175.8(5) 
N(2)-Ni(1)-S(1) 174.9(14) 173.5(18) 173.2(4) 
Ni(1)-S(1)-Ni(2) 102.2(7) 99.34(7) 108.1(17) 
N(4)-Ni(2)-N(5) 80.8(2) 80.7(3) 79.6(5) 
N(4)-Ni(2)-S(2) 89.9(15) 90.0(18) 91.6(4) 
N(5)-Ni(2)-S(1) 97.3(19) 96.4(2) 95.1(4) 
S(1)-Ni(2)-S(2) 91.9(8) 92.7(7) 93.7(15) 
S(1)-Ni(2)-N(4) 177.5(16) 174.4(18) 174.4(4) 
N(5)-Ni(2)-S(2) 170.4(2) 170.3 (2) 171.2(4) 

 

Complexes 4, 5, and 10 consist of a Ni(µ-SR)Ni unit, in which both nickels are in 

a regular square planar geometry.  The N2S2Ni(2) portion is nearly perfectly square 

planar with average standard deviation from the N2S2Ni plane of 0.0196 Å (maximum 

and minimum deviation are  0.0259 and 0.0037 Å by N5 and S1, respectively) for 4; 

0.0255 Å (maximum and minimum deviation are 0.0566 and 0.0027 Å by Ni1 and S2, 

respectively) for 5; and 0.0168 Å (maximum and minimum deviation are 0.0237 and 

0.0082 Å by N4 and Ni2, respectively) for 10.  The average standard deviation in the 
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N2SN’Ni(1) portion of 10 is 0.0121 Å (maximum and minimum deviation are 0.0155 

and 0.0077 Å by N1 and S1, respectively); of 4, 0.0520 Å (maximum and minimum 

deviation are 0.0675 and 0.0404 Å by N1 and Ni1, respectively); and of 5, 0.0464 Å 

(maximum and minimum deviation are 0.0603 and 0.0355 Å by N1 and Ni1, 

respectively).  The two square planes intersect with a dihedral angle of 81.4º for 4, 77.8º 

for 5, and 94.7º for 10.  Note that both 4 and 5 show the exogenous N-donor ligand plane 

is orthogonal to the NiN2N’S plane, while the imidazole ligand plane in 10 deviates from 

orthogonality by ~22º.  This feature will be discussed later when the structures of the 

complete series are compared. 

The Ni···Ni distances in 4, 5, and 10, 3.379, 3.339, and 3.354 Å, respectively, are 

significantly longer than typical  Ni···Ni distances in µ2(SR)2 butterfly complexes (2.7 to 

2.9 Å).110, 113, 131, 146
  The distances within the N2N’SNi(1) plane are nearly identical for 

complexes 4, 5, and 10, while the distances about Ni(2) show more deviation both 

between complexes 4, 5, and 10, and as compared to analogous monomeric N2S2Ni 

compounds.  As in all diazacycloheptane derivatives, the N-Ni-N angles are pinched to 

ca. 80º-82º, rendering the S-Ni-S angle or S-Ni-L angle  ≥ 90 º, as seen here.  Overall, 

metric differences in the first coordination spheres of 5, 6, and 10 are minor.    

 

Mononuclear Products: Synthesis and Structural Characterization   

 Syntheses.  Isolation of single crystals of the fully cleaved mIm complex 6 in 

42% yield was achieved upon the reaction of 2 with a 10-fold excess of mIm in addition 

to growing the orange-brown X-ray quality crystals in the presence of a further 5-fold 
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excess of mIm in MeCN solution layered with Et2O.  A 3-fold excess of ipIm led to the 

full cleavage of complex 2, yielding 7, which was purified by precipitation with Et2O.  

Diffraction-quality orange crystals of 7 were isolated from an Et2O-layered solution of 

MeCN in 53% yield.  The reaction of complex 2 with me2NHC occurs readily in THF 

solvent and the pure product precipitated out of solution as the reaction proceeded.  

Complex 8 was isolated as an air stable, hygroscopic bright orange crystalline solid 

(46% yield) from the slow diffusion of Et2O into a MeCN solution.    

 Molecular Structures of Mononuclear Products.  Thermal ellipsoid plots of 

monocationic complexes 6, 7, and 8 are given in Figure IV-7.  Salient metric parameters 

are given within the ball and stick structures shown in Figure IV-8, and, for comparison, 

those of complex A are also given.   The Ni-Ndach and Ni-S distances, and the Ndach-Ni-

Ndach angles are largely the same in the four structures.  The most significant difference 

is in the Ni-Ndach distance trans to the monodentate donor ligand that ranges from 1.890 

to 1.947 Å, correlating with basicity of the trans ligand.  The Ni-Ccarbene distance of 

1.891 Å in 8 is the same as that reported by Huang, Holm et al. for an NS2Ni(carbene) 

complex in which the carbene donor is trans to pyridine. 52  

The critical feature for our study is the dihedral angle defined by the intersection 

of the exogenous monodentate ligand plane and the Ni complex plane, defined by the 

best N2SNiLdonor atom plane, Table IV-3.  For the monomeric complexes, the ligands of 

greatest steric bulk (ipIm, 7, and me2NHC, 8) are nearest to perpendicular while the mIm 

derivative, complex 6, is the furthest from 90º.  The torsion angle that is defined in 

Table IV-3 is required for discussion in the computational section. 
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7

8

6

Figure IV-7.  Molecular structures of [(mmp-mdach)Ni(mIm)][BF4], 6,  [(mmp-
mdach)Ni(ipIm)][BF4], 7, and [(mmp-mdach)Ni(me2NHC)][I], 8, shown as thermal 
ellipsoids at 50% probability. Counter anions are not shown: 6, BF4

-; 7,  BF4
-; and 8, I-. 
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 Table IV-3.  Td twist, dihedral angle between the exogenous ligand plane 
and the N2SNiLa  plane, and N-Ni-L-C2 torsion angle for complexes 4-8, 10, 
and A. 131 

complex 4 5 6 7 8 10 A 

Td twistb  6.4 º 5.7 4.1 6.8 4.9 1.7 7.9  

Dihedral anglec  86.6 º 85.6 76.3 84.8 87.0 68.1 87.8 

N-Ni-L-C2d  95.4 º 90.6 108.3 93.2 91.1 117.2 95.0 
aL = N donor atom in complexes 4-7, 10 and A, and L = C donor atom in 
complex 8. bTd twist defined as the intersection of the N-Ni-N and the S-Ni-
L planes. cDihedral angle is defined as the angle between the N2SNi-L  plane 
and the best ligand plane.  For complexes 4 and 8, dC2 = atom α to the donor 
atom which is on the same side as the ethylene side of the dach backbone.  N 
= nitrogen atom cis to L atom.
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Figure IV-8.  Ball and stick drawings with selected metric parameters of [(mmp-
mdach)Ni(Im)](Cl), A131;  [(mmp-mdach)Ni(mIm)]BF4, 6; [(mmp-
mdach)Ni(ipIm)]BF4, 7; [(mmp-mdach)Ni(me2NHC)](I), 8. Counter anions are not 
shown.  View ┴ to N2S plane.  Full listings of metric parameters are given in the 
Appendix. 
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Defining the Steric and Electronic Contributions of the Ligands   

 Methods for describing steric and electronic properties of “flat” ligands such as 

N-heterocyclic carbenes have been well documented.49, 147 The donor properties of the 

ligands are typically compared by their effect on υ(CO) values in LNi(CO)3 systems.147  

Due to the lack of spectroscopic reporter groups in our system, as well as the 

predominately σ donor character N-donors in the N-heterocycles and the C-donor in 

NHC’s, we base the ligand donor ranking in these complexes on the pKa of the donor 

atom’s conjugate acid in each ligand, Figure IV-2. 

The steric bulk of each ligand, was evaluated from features in the experimentally 

and computationally determined structures by group member Michael Singleton.  The 

ligand width was defined as the widest point closest to the metal center, Figure IV-9.  

For example, in the ipIm ligand this is the distance between the C5 imidazole proton and 

the proton on the tertiary carbon atom of the isopropyl substituent. The width as defined 

at this point on the ligand is more relevant to the steric encumbrance of the ligand within 

the coordination sphere than the larger width from the C5 proton to the isopropyl CH3 

groups as the latter orients away from the ligand metal system decreasing their steric 

effect.  This effect is comparable to the smaller cone angle in phosphite ligands as 

defined by Tolman, et al.148  The ligand wedge angle for flat ligands is defined as the 

angle made between the atoms that define the ligand width with the vertex being the NiII 

ion (Ldonor atom-Ni avg. distance = 1.90 Å (exp’tl); 1.92 (calc’d)). This definition is 

analogous to the AL parameter described by Nolan and coworkers for comparison of 

steric properties of N-heterocyclic carbene ligands.49  Based on these parameters, listed 
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in Table IV-4, the ligands increase in steric bulk in the order:  Im ~ mIm < py < ipIm < 

me2NHC.  

Ligand Width

Wedge Angle

Ligand Width

Wedge Angle

Figure IV-9. Illustration of ligand width and wedge angle used to define the steric 
bulk for flat ligands such as imidazoles and NHC’s.  

 

 

Table IV-4. Ligand steric parameters taken from DFT 
calculated structures; Values from the X-ray determined 
structures are given in parenthesis. 
Ligand Ligand Width (Å) Wedge Angle (º) 

Im, A 4.21 (3.94) 83.2 (78.0) 

mIm, 6 4.21 (3.98) 83.2 (79.2) 

py, 3a 4.14 (3.94) 91.3 (86.3) 

ipIm, 7 4.76 (4.69) 106.3 (101.6) 

me2NHC, 8 5.04 (5.28) 121.9 (113.6) 
aExperimental values were taken from structure of complex 5. 
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Defining the Barrier to Rotation about the Ni-L Bond: VT 1H NMR   

 The VT 1H NMR studies were carried out in collaboration with group member 

Michael L. Singleton.  As was found for complex A,131 the 1H NMR spectra of the mIm 

analogue, complex 6, change with temperature, Figure IV-10.  In the imidazole C-H 

region, three 1H resonances are observed at 22°C and assigned according to the structure 

depicted within Figure IV-10.  Resonances a and b broaden and reach coalescence on  
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Figure IV-10.  VT 500-MHz 1H NMR spectra of [(mmp-
mdach)Ni(mIm)][BF4], 6, in CD3OD. 
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lowering the temperature to -60 ºC, while resonance c remains sharp.  By – 80 ºC, 

resonances a and b reappear as four distinct signals (a’ and a’’ and b’ and b’’), 

indicating the presence of two isomers.  This behavior is almost identical to that of 

complex A and is to be expected as the added steric bulk of mIm is remote from the 

binding site.131  Free energy differences were obtained from Keq values based on the 

isomer ratios at -80 ºC and are calculated as in eqs 1 and 2. 

Keq = [a’]/[a’’] = 0.72      (1) 

ΔG = -RT ln Keq = 0.14 kcal/mol    (2) 

The activation barrier, ΔG‡, is obtained from the chemical shift difference between a’ 

and a’’ (Δν = 145 Hz) and the coalescence temperature (Tcoal = -60 ºC), eqs 3 and 4.  

kT = (πΔν/ √2)  = 304.7 s-1     (3) 

ΔG‡ = - RT ln (kTh/ kbTcoal) = 9.0 kcal/mol              (4)    

The experimental barrier to rotation of 9.0 kcal/mol is, within experimental error, 

identical to that of complex A (8.9 kcal/mol).   

 The VT 1H NMR spectra for the imidazole region of complex 7, the ipIm 

derivative, in CD3OD are shown in Figure IV-11.  Two sets of doublets indicate the 

presence of two isomers at 20 ºC, of expected structures as shown in Figure IV-11, 

which on cooling show temperature dependent chemical shifts and some broadening of 

the signals.  From the isomer ratio of a/b to a’/b’ observed at room temperature, the ΔG 

value was calculated to be 0.32 kcal/mol according to eqs 1 and 2.    The signal at 6.89 

ppm is assigned to unbound ipIm.  The increase of temperature to ~60 ºC resulted in  
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slight broadening of the signals in the imidazole region.  An NMR sample of 7 in D2O 

solution showed a similar spectrum at 20 ºC as in the CD3OD solution spectrum, with a 

more equal distribution of isomers (Figure IV-12). The pairs of singlets (a and b and a’ 

and b’) broaden and start to overlap near 100 ºC.   The unidentified signal observed at 20 

ºC at 7.06 ppm remains visible at 100 ºC, but has shifted downfield (7.70 ppm).  On 

cooling the sample back to 20 ºC the two sets of isomers, a and b and a’ and b’, 

reappear, in addition to the unbound ipIm, which is now shifted to 7.16 ppm.  Because 

the observed ‘coalescence’ temperature is at the experimental high temperature limit, it 

is unknown whether this change in the spectrum is due to intra- or intermolecular  
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Figure IV-11.  Top:  Isomers of [(mmp-mdach)Ni(ipIm)][BF4], 7; (i) is assigned 
as in the solid state by X-ray diffraction; (ii) the ipIm ligand is rotated 180º with 
respect to (i).  Bottom:  VT 500-MHz 1H NMR spectra of complex 7 in CD3OD. 
* = unbound ipIm. 
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exchange. Evidence for intermolecular exchange in complex A in the presence of free 

imidazole is presented below. 

 Complex 8, the me2NHC derivative, in CD3OD at 20 ºC shows an AB pattern 

that is centered at 7.18 ppm and assigned to C-H protons on the NHC ligand, and two 

singlets that are assigned to the NHC methyl groups at 4.37 and 4.38 ppm (Figure IV-

13).  Upon heating the sample to ~60 ºC or cooling to -80 ºC there are no changes in the 

spectra except for temperature dependent broadening and shifting (Figure IV-14).  This 

data implies that the NHC ligand does not rotate about the Ni-C bond in the tight 

confines of the square planar nickel fragment as would be expected for such a sterically 

hindered ligand of wedge angle = 122°; neither is there isomerization by 

dissociation/association.  A simple representation of the expected transition state for  

Figure IV-12.  VT 500-MHz 1H NMR spectra of [(mmp-mdach)Ni(ipIm)][BF4], 7, in 
D2O. * = unbound ipIm. 
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Figure IV-13.  500-MHz 1H NMR spectrum of [(mmp-mdach)Ni(me2NHC)][I], 8 
in CD3OD. 
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Figure IV-14.  500-MHz 1H NMR spectra of [(mmp-mdach)Ni(me2NHC)][I], 8 
in CD3OD at 20 ºC and 60 ºC.  Top:  aromatic region; Bottom:  NHC methyl 
group resonances. 
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rotation in complex 8 is shown in Figure IV-15; a more exact description is presented 

below in the computational section.  Steric repulsion between the NHC methyl group 

and the S atom as well as the NHC methyl group and the N-dach methyl group is 

expected to greatly destabilize the coplanar arrangement shown and results in a very 

high barrier to rotation.   

 

  

The 1H NMR spectrum of complex 9 at 20 ºC displays three sharp singlets at 

7.04, 7.09 and 7.86 ppm (Figure IV-16).  These resonances are assigned, consistent with 

complex A, to the C-H protons on the coordinated imidazole ligand.  At all temperatures 

explored (+60 to -80°), these signals remain sharp, but decrease in intensity with 

lowered temperatures as two additional sets of three singlets, of 1:1:1 ratios, appear.  

These completely reversible temperature-dependent spectra are shown in Figure IV-16. 

In view of the complicated dimer cleavage processes encountered during the syntheses,  

Figure IV-15.  (a) Conformation of me2NHC ligand in complex [(mmp-
mdach)Ni(me2NHC)][I], 8 as observed in the molecular structure; (b) A 90° twist 
of the me2NHC as expected for rotational transition state showing the steric 
repulsion of the NHC methyl groups with the dach-N-methyl and the S atom. 
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including monothiolate bridged materials such as those analogous to structures 4, 5 and 

10, the observation of other species is not surprising.  While assignments of the other 

species would be extremely speculative, we can confidently conclude that the primary 

species is the mononuclear imidazole complex with rapid rotation about the Ni-Nimidazole 

bond at all accessible temperatures.  Similar results were noted in the spectra of complex 

4 (Figure IV-17); an activation energy barrier was obtained from these spectra; however, 

assignment to a monomeric or binuclear species is ambiguous.    
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Figure IV-16.  VT 500-MHz 1H NMR spectra of [(mmp-
dach)Ni(Im)][BF4], 9, in CD3OD. 
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Theoretical Predictions of ΔG and ΔG‡ Values   

 DFT computations were carried out by group member Michael Singleton to 

calculate the free energies of (i) and (ii) isomers of complexes 3-4 and 6-9 and to predict 

the barriers for rotation about the Ni-L bond.  Geometry optimizations were performed 

on each complex using the experimental X-ray molecular structure as the initial 
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Figure IV-17.  VT 500-MHz 1H NMR spectra of py-[(mmp-mdach)Ni]2[BF4]2, 4, in 
CD3OD. * = unassigned species. 
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geometry (defined as isomer (i)).  The metric data of the optimized structures were in 

good agreement with the experimentally determined results (Table IV-5).   A second  

Table IV-5.  Selected experimental and optimized parameters for complexes 4 and 6-8. 
 Calculated 

(Å) 

Experimental 

(Å) 

 Calculated  

(Å) 

Experimental 

(Å) 

Complex 4   Complex 7   

Ni(1)-Npy 1.938 1.918 Ni-NipIm 1.922 1.907 

Ni(1)-Namine 2.017 1.951 Ni-Namine 2.046 1.971 

Ni(1)-Namine 1.949 1.900 Ni-Namine 1.944 1.922 

Ni(1)-Sthiolate 2.240 2.151 Ni-Sthiolate 2.175 2.151 

Ni(2)-Namine 2.054 1.944    

Ni(2)-Namine 1.979 1.930    

Ni(2)-Sthiolate 2.187 2.133    

Complex 6   Complex 8   

Ni-NmIm 1.919 1.888 Ni-Cme2NHC 1.908 1.891 

Ni-Namine 2.043 1.956 Ni-Namine 2.042 1.972 

Ni-Namine 1.944 1.890 Ni-Namine 1.988 1.947 

Ni-Sthiolate 2.176 2.136 Ni-Sthiolate 2.178 2.142 

 

 

optimized structure for each complex was obtained from an initial geometry where the 

ligand is rotated 180º about the Ni-L bond vector (isomer (ii)).  No other energy minima 

resulting from ligand rotation were found.  The initial geometries of the transition state 

for each complex were located using the synchronous transit-guided quasi-Newton 

(QST2) method75-76 utilizing the geometries for isomer (i) and isomer (ii) as the starting 

points.  The transition state geometry of each complex shows the ligand plane to be 

largely perpendicular to its initial ground state orientation and roughly coplanar with the 
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N2SNi plane, Figure IV-18.  The lowest energy transition state structure in the imidazole 

derivatives finds the imidazole C2 directed towards the S atom.  To accommodate the 

transition state structure, the Ni-ligand bonds elongate and there is also a significant 

increase in the tetrahedral twist of up to 46º (for example, in complex 8, Td twist in the 

ground state structure equals 4.8º; in the transition state structure 8‡, 51º).   

 Figure IV-18 shows the computationally determined transition state structures for 

complexes 3, 4, 6-9, and A. In the transition state for complex 6‡, the mIm ligand is 

rotated ~59° from its position in ground-state 6, with C2 of the imidazole pointed 

towards the S atom. In order to obtain this orientation the ligand drops out of the N2S 

plane towards the ethylene side of the dach frame. This results in a distortion of the 

square planar geometry around the nickel giving a Td twist of 17°. This distortion is only 

slightly smaller than that found for complex A‡ (21.2º)131 and is consistent with the 

similar experimental barriers for rotation for complexes A and 6 (Table IV-6).  This 

further corroborates that the slight difference in electronic character of the mIm over the 

Im ligand has little effect on the rotational barriers.  In contrast, the decreased steric bulk 

around the Ni in the dach vs. mdach complexes, see Figure IV-3, allows the imidazole 

ligand of complex 9‡ to bind in an orientation that is only 10° from coplanar with the 

N2SNi plane, and the complex has a Td twist of only 5.8°.  In the transition state 

structures containing the bulkier ligands, complexes 7‡ and 8‡, the distortion is much 

greater:  7‡ has a N-Ni-L-C2L torsion angle of 176.5° and a Td twist of 29.1° while the 

Td twist of the NHC-containing complex 8‡ is 51.0°.  The severe distortions required to 

go through the transition state in both the ipIm and me2NHC complexes correspond well  
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ipIm, 7‡ 
Td twist = 29.1º 

mIm, 6‡ 
Td twist = 17.3º 

py, 3‡ 
Td twist = 27.5º 

me2NHC, 8‡ 
Td twist = 51.0º 

dach Im, 9‡ 
Td twist = 5.8º 

py, A‡ 
Td twist = 21.2º 

py dimer, 4‡ 
Td twist = 23.1º 

Figure IV-18. DFT optimized structures of the transition state geometries of 
complexes 3, 4, 6-9, and A131 showing the monodentate ligand planes in their 
maximum rotation position (ca. 90º from the ground state structure).  Td twist values 
(defined as the intersection of the N-Ni-N and the S-Ni-Ldonor planes) are given below 
each structure. 
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Table IV-6.  Experimental and DFT calculated ΔG‡ and ΔG values for 
complexes 4, 6-9 and A based on the rotation about the Ni-L bond and 
isomer ratio observed in the 1H NMR resonances.a 
N2SLNi 

L = ligand 

 

ΔGexpt’l 

 

ΔGcalc’d 

 

ΔG‡
expt’l 

 

ΔG‡
calc’d 

Im(dach), 9 unknown 0.37 n.a.b 3.29 

Im(mdach), A131 0.11 0.18 8.90 8.86 

mIm, 6 0.15 0.13 8.97 8.95 

py, 3 ---- ---- ---- 14.04 

py dimer, 4 ---- ---- 11.23 17.82 

ipIm, 7 0.32 0.36 n.a.b 21.04 

me2NHC, 8 ---- ---- n.a.b 29.93 
aValues reported in kcal/mol. bExperimental ΔG‡ value was not 
determined due to the constraints of the temperature range of the 
instrument or solvent used. 

 
 

with the high experimental barriers suggested for these complexes in the VT 1H NMR 

spectra (Table IV-6). 

Because of the possibility of an equilibrium between a monothiolate bridged and 

a mononuclear species in the case of complex 4, the transition states for pyridine rotation 

were calculated for both 3‡ (Td twist = 27.5°; N-Ni-L-C2L torsion angle, where C2 = 

atom α to the donor atom, which is on the same side as the ethylene side of the dach 

backbone = 178.3°) and 4‡ (Td twist = 23.1º; N-Ni-L-C2L torsion angle, = 175.6°). 

Despite these similarities, the energy barrier for Im rotation is calculated to be 

significantly greater for the dinickel complex 4, (Table IV-6).  However, the disparities 

between the experimental barrier and the calculated barriers for either the monomer or 

the dimer indicate that the process observed by NMR spectroscopy may be more 

complicated than ligand rotation in a single complex.  
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 Table IV-6 lists the experimental and DFT-calculated ΔG and ΔG‡ values for 

complexes 4, 6-9, and A.  The predicted ΔG of 0.13 kcal/mol and ΔG‡ of 8.95 kcal/mol 

for complex 6, the mIm derivative, are consistent with the experimentally determined 

results and are nearly identical to complex A.  In complex 7, the ipIm derivative, the 

room temperature 1H NMR spectrum indicated the presence of two species.  The DFT-

calculated ΔG for the two lowest energy conformations was found to be 0.36 kcal/mol, 

which compares well with the experimental value (based on the observed distribution or 

Keq) of 0.32  kcal/mol.  The large calculated barrier to rotation of 21.04 kcal/mol is due 

to the steric repulsion that is present when the ipIm ligand is roughly coplanar with 

N2SNi plane.  Consistently, the experimental ΔG‡ value could not be determined due to 

the temperature constraints of the solvent used.  Likewise, rotation about the Ni-C bond 

was not observed in complex 8 over the temperature range studied, consistent with DFT-

calculated activation barrier of 29.9 kcal/mol.  In contrast, DFT predicts a low energy 

barrier (ΔG‡) of 3.29 kcal/mol and a ΔG of 0.37 kcal/mol for complex 9, the  derivative 

with least steric hindrance.  This barrier to rotation is substantially lower than that for 

complex A and this DFT prediction is consistent with our inability to observe separate 

rotational isomers by NMR spectroscopy at the lowest accessible temperature.  In the 

case of the pyridine complex the calculated rotational barriers for the monomer and the 

dinuclear complex were found to be higher than the experimentally determined value of 

11.2 kcal/mol by ~3.0 and ~6.5, respectively.   

  Further evidence for steric control of dynamics is seen in comparisons of 

complexes A and 9, which differ by the substituent on the terminal N donor of dach in 
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the N2SNi binding pocket, Figure IV-3.  Relaxed potential energy scans monitor the 

change in potential energy of complexes A and 9 as a function of imidazole rotation, 

Figure IV-19.  Note that two maxima result as the imidazole completes a 360° rotation. 

The first maximum, occurring as the C2C-H unit passes the thiolate S is slightly lower 

than the second, resulting from the opposite orientation of the imidazole ligand dipole.  

This phenomenon is observed for both complexes, but is more dramatic for complex 9.  

The large overall difference in the energy barriers for rotation between A and 9 is 

apparent by comparison at each energy maximum, and is consistent with the 

experimental and computational results for imidazole ligand rotation in A and 9, Table 

IV-6.   

 

 Intermolecular vs. Intramolecular Paths for Isomerization   

 The VT 1H NMR studies demonstrated that stereoisomers of these complexes 

may coexist in solution, and according to the good correlation between DFT calculations 

and the NMR data for complexes A and 6 the isomerization process observed in certain 

N2SLNi complexes is most reasonably assigned to intramolecular fluxionality, i.e., 

rotation about the Ni-L bond.  Nevertheless intermolecular isomerization processes are 

of concern, particularly in systems with high activation barriers as is the case of  the two 

complexes containing the ligands of largest wedge angle, complexes 7 and 8.   The NHC 

ligands are known to be strongly coordinated to metal ions and they show great stability 

toward thermal degradation in solution.45, 149 
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 As a probe of the possibility of intermolecular exchange, we have monitored the 

VT 1H NMR spectra of a well-characterized fluxional system, that of complex A in the 

presence of free imidazole.  At 20 ºC, the NMR spectrum of pure imidazole in CD3OD 

displays two sharp singlets at 7.67 and 7.04 ppm (Figure IV-20).  The addition of 1 

equiv of imidazole to a sample of complex A in CD3OD at 20 ºC resulted in broadening 

of the three singlets at 8.11, 7.33 and 7.12 ppm that are assigned to the C-H protons on 

the coordinated imidazole ligand, a, b, and c. As the temperature is raised above 20 ºC, 

Figure IV-19.  Plots of the potential energy of [(mmp-mdach)Ni(Im)]Cl, A, (R = 
CH3) and [(mmp-dach)Ni(Im)][BF4], 9, (R = H) as a function of the S-Ni-NImid-
CImid torsion angle.   Blue:  complex A;  Red:  complex 9.  The imidazole rotation 
starts from the optimized X-ray structure. 
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a, b, and c further broaden, completely flat-lining at 60-70 ºC.  A decrease in the 

temperature from 20 ºC results in the sharpening of resonances a b, and c and singlets 

for free imidazole appear at 7.07 and 7.73 ppm. 

The broad signals observed at temperatures  > 10 ºC indicate that the Ni-bound 

imidazole exchanges with the free imidazole in solution.  This intermolecular exchange 

process is slowed at temperatures below 10 ºC; for example, singlets at 7.07 (free 

imidazole) and 7.16 ppm (bound imidazole) are observed.   The activation energy  
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Figure IV-20.  VT 400-MHz 1H NMR spectra of the addition of free imidazole to 
[(mmp-mdach)Ni(Im)]Cl, A, in CD3OD.  FI = free imidazole. 
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parameter (ΔG‡)  for the intermolecular exchange of free imidazole with bound 

imidazole for complex A was determined to be 11.3 kcal/mol from the exchange rate 

constant at coalescence.  A comparable ΔG‡ value was determined from the line shape 

analysis in the slow exchange region (ΔG‡ = 10.8 kcal/mol).  The Eyring plots used to 

derive ΔG‡ for the exchange process are shown in Figure IV-21.   

 

ln(k) 

1/T 

Figure IV-21.  Plot of  ln(k) versus 1/T for imidazole exchange in complex  A. 

 
 

 

The VT 1H NMR data of pure complex A, i.e., without excess imidazole, shows 

no broadening of signal c at temperatures below 0 ºC.  In this previously reported VT 1H 

NMR study,131 changes were only observed in resonances  a and b, which broaden at -40 
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ºC, coalesce at -60 ºC, and reappear as two sets of singlets at -80 ºC.  In contrast, the VT 

1H NMR spectra resulting from the addition of free imidazole to complex A displays 

broadening of resonance c at the higher temperatures and begins to separate into two 

separate signals at ~10 ºC.   Comparing the VT 1H NMR parameters for intermolecular 

exchange of the coordinated imidazole ligand with free imidazole in solution to the VT 

1H NMR factors for pure complex A, we conclude that the observed fluxional process 

observed at low temperatures is intramolecular, most reasonably  due to the rotation 

about the Ni-L bond. 

 

Electrostatic Contributions to the Ground State Imidazole Binding Orientation   

 While the steric bulk of the ligands and interference with ancilliary or spectator 

ligands likely plays the largest role in the rotational barrier, there are slight deviations 

from orthogonality in the ground state orientation of the monodentate ligands in the less 

sterically bulk complexes, A, 6, and 9 that appear to be of electrostatic origin. In all, the 

C2 position of the imidazole ligands, with its electropositive C-Hδ+ tilts towards the 

thiolate S in both the experimental and DFT calculated structures. This sort of internal 

electrostatic interaction has been surmised to be important in the orientation of axial 

coordinated imidazoles in heme systems.34-35 

 Indeed, a computational S/O replacement in complexes A and 9 resulted in 

greater deviation towards coplanarity for the alkoxide analogue of the thiolate. For 

example the C2 of imidazole orients toward the alkoxide Oδ-, resulting in the case of 

computationally defined 9-(O) an N-Ni-Nimid -C2imid torsion angle of  194°, i.e., a nearly 
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coplanar imidazole/N2ONiNimid geometry, Figure IV-22.  In the case of complex A, with 

more steric hindrance built into the nickel binding pocket by virtue of the methyl group 

on the dach, the tilt of the imidazole in the N2ONiNimid is again roughly 40° away from 

the orthogonal orientation that is observed for the A-(S) derivative both experimentally 

and in the computations.  In this case the Ni-Nimid bond lengthens by ca. 0.015 Å, 

presumably to accommodate the imidazole twist.   

 

 

-10.0 58.938.4 82.8 S-Ni-Nimid-C2, °

194.1 125.9 140.8 102.5N-Ni-Nimid-C2, °

14.0 58.5 41.9 84.4 
Dihedral Anglea, 
°

1.8162.1771.8152.179Ni-S/O, Å

1.9261.9161.9381.923Ni-Nimid,Å

9-(O)9-(S)A-(O)A-(S)Complex 

-10.0 58.938.4 82.8 S-Ni-Nimid-C2, °

194.1 125.9 140.8 102.5N-Ni-Nimid-C2, °

14.0 58.5 41.9 84.4 
Dihedral Anglea, 
°

1.8162.1771.8152.179Ni-S/O, Å

1.9261.9161.9381.923Ni-Nimid,Å

9-(O)9-(S)A-(O)A-(S)Complex 

Figure IV-22.  Overlays of computationally determined structures for (left) [(mmp-
mdach)Ni(Im)]+, A, as thiolate, (A-(S)), and as alkoxide, (A-(O)).  Similarly (right), 
complex 9 as thiolate, (9-(S)), and as alkoxide, (9-(O)).  In both overlays, the view 
is along the Nimid-Ni bond vector and shows tilt of the imidazole C2-H unit toward 
the chalcogen donor.  In both overlays, the imidazole is in red for the alkoxide and 
in yellow for the thiolate derivative.  Pertinent metric parameters are given in the 
table, including dihedral angle of the ligand and complex planes as defined in the 
text, and torsion angles as noted.      
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The conclusion that the shift towards coplanarity of imidazole and nickel planes in the 

N2ONiNimid virtual complexes is a result of an internal electrostatic interaction is 

consistent with the experimental structures of a set of square planar NiII complexes of 

tridentate, truncated Schiff base units that show greater variation in imidazole ligand 

orientation with respect to the tridentate ligand-metal plane.  Ten such molecular 

structures are to be found in the Cambridge Crystallographic Data base, six of which are 

shown in Figure IV-23.133-141   None were characterized for imidazole fluxionality by VT 

NMR solution studies as in our study above.  The NiII-Schiff base complexes containing 

hard O-donors cis to the unsubstituted imidazole monodentate ligand, complexes a) and 

b) in Figure 16, find coplanarity in the nickel complex plane and the plane of the 

imidazole ligand.  Intramolecular H-bonding was reported in the interaction of the C2-H 

of the imidazole with the O-donor, and intermolecular H-bonding interactions involving 

the imidazole N-H define a one dimensional assembly in the crystal lattice.  The four 

other structures of this type presented in Figure S9 are also of the co-planar type.  With a 

sterically hindered imidazole ligand, molecular structures such as c) and d) of Figure 16 

show substantial displacements of the imidazole ligand plane from the nickel complex 

square plane inducing dihedral angles of ca. 49º and 87º, respectively.  Strong 

intermolecular H-bonding is seen in the extended molecular structures of both c) and d).   

In addition, complex c) has an intramolecular C-H…πarene interaction involving the ortho 

C-H group on the phenyl ring of the monodentate ligand and the phenyl ring of the 

tridentate ligand that is suggested to produce the observed canted orientation of the 

imidazole plane with respect to the metal square plane.137 Complexes e) and f) in Figure 
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b) 1.980(8) Å; 9.96º 

j) 1.954(2) Å; 6.79º 

a) 1.906(2) Å; 4.25º 

Figure IV-23. A selection of tridentate Schiff base ligand complexes of nickel with 
imidazoles in the fourth site. Ni-Nimid distances and dihedral plane defined as the 
angle between the best Ni square and imidazole plane given underneath each 
structure.   a): ref. 140; b) ref. 135; c) ref. 137; d) ref. 137; e) ref. 141; f) ref. 133; g) 
ref. 138; h) ref. 139; i) ref. 134; j) ref. 136. Bond distances and angles are reported 
as averages for complexes containing more than one molecule in the asymmetric 
unit. 

e) 1.888(4) Å; 51.4º 
f) 1.888(4) Å; 51.3º 

g) 1.909(4) Å; 13.9º   
h) 1.918(2) Å; 17.0º 

d) 1.920(6) Å; 89.8º c) 1.914(2) Å; 48.4º

i) 1.904(5) Å; 20.2º 
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16 contain anionic S donors cis to the imidazole, and have intermediate metal-

plane/ligand plane dihedral angles of ca. 50° with, in addition to the intermolecular 

interactions involving H-bonding of the imidazole N-H to an adjacent complex, an 

intramolecular interaction that points the C2 of the imidazole in the direction of the S 

atom of the tridentate ligand.133, 141 

 

Summary and Conclusion 

Due to the asymmetry of the diazacycle frame in the complexes described above, 

an opportunity is presented to observe orientational preferences and dynamic rotational 

barriers that are influenced by the steric constraints of the ligand and the pocket into 

which flat ligands bind in square planar nickel complexes.  While the imidazole ligand 

has the possibility of intramolecular donor/acceptor interactions, i.e., the C2 CHδ+ with 

the thiolate Sδ-, that would result in a canting of the imidazole towards the negatively 

charged donor atom, this interaction is very weakly expressed in the structures in our 

series.  Thus we see an orientation of the imidazole plane that is largely orthogonal to the 

N2SNi plane in the monomeric complexes, determined principally by the optimization of 

minimal steric interactions while achieving maximum Ni-Nimid σ-bonding.   

The structural and dynamic results of our study, using N2S binding sites, coupled 

with analysis of literature structures of various square planar nickel imidazole complexes 

in largely hard donor environment may be correlated as follows: 

1)  In the Schiff base adducts consisting of N-, O-donor atoms the ground state 

imidazole binding orientation both reduced steric repulsion in the binding 
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pocket that flanks the imidazole and significant intramolecular electrostatic 

interactions between O and the imidazole C2 CHδ+  overwhelm the minimal 

steric restrictions resulting in coplanarity.  In the case of the N2SNi 

complexes in the current study, increased steric bulk on either the binding 

pocket (the secondary and tertiary amines in the N2S pocket) or on the planar 

monodentate ligand lead to a nearly perpendicular orientation of the 

imidazole plane, as intramolecular donor/acceptor interactions that would 

encourage canting of the imidazole ring towards coplanarity are minimal.  

2) While two isomers of the N2SNi-Nimid complexes are seen at room and even 

higher temperatures for imidazoles with steric hindrance at the C2 site, 

dynamic interconversions of non-hindered analogues occur with activation 

barriers experimentally accessible by VT NMR studies.  The barriers 

obtained experimentally and through DFT studies show a correlation between 

increasing activation barrier and increasing steric hindrance, indicating that 

the mobility of the monodentate ligands about the Ni-L bond is controlled by 

the ligand size (width and wedge angle) and the access to nickel as controlled 

by the ancillary donors. 

3) The exchange of free and bound imidazole in complex A, occurs with a 

barrier of ~ 11 kcal/mol and ceases close to 0 ºC, further supporting that the 

exchange process observed for pure complex A at lower temperatures is a 

result of intramolecular dynamic processes.  
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4) DFT optimized transition state structures for the interconversion of isomers 

of N2SNi-Nimid find a lengthening of the Ni-Nimid bond as rotation about the 

Ni-Nimid bond pushes the imidazole into coplanarity with the nickel complex 

plane; distortion from strictly square planar further accommodates the 

increase in steric repulsion.   

The orientation of His-imidazole in biological systems is influenced by many 

factors.  This study has shown two such factors, steric bulk and internal electrostatic 

interactions, determine the ground state binding orientation and dynamic behavior of N-

heterocyclic ligands bound to square planar N2S nickel sites, such as is found in the 

nickel responsive transcription factor, NikR.13-14 The binding of four Ni2+ ions, each 

held in a square planar N3SNi coordination environment, within the metal binding 

domain causes conformational changes in the protein superstructure, which initiates the 

interaction of the protein with DNA.13 Fundamental model studies such as this one 

contribute to a delineation of the possible factors that may influence these protein 

structural and dynamic changes. 
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CHAPTER V 

 TETRADENTATE N2S2 VANADYL(IV) COORDINATION COMPLEXES:  

SYNTHESIS, CHARACTERIZATION AND REACTIVITY STUDIES 

 Introduction 

 Brief History of Vanadium in Biology.  Vanadium chemistry plays a 

fundamental role in biological systems and industrial applications.  Biochemical 

processes of vanadium span from simple organisms to humans.  Vanadium was first 

recognized as an essential element in living systems in the early 1900’s when 

extraordinary quantities of vanadium were indentified in the blood cells of tunicates 

(ascidains or sea squirts).150-151  To date, the functional role of the vanadium in these 

marine organisms is not well defined, and research in this area has primarily focused on 

the mechanism of the reduction of the V5+ ion from sea water, the oxidation state within 

the cells, and the transport/storage of vanadium ions.152-154  In 1931, high concentrations 

of vanadium were discovered in mushrooms (toadstool), and this vanadium-containing 

natural product (amavadin) was finally isolated in 1972.155-156  Although amavadin has 

been shown to serve as an electron-transfer mediator, the precise mode of action of 

vanadium in this system is also still unclear, and research is ongoing.152-154   

 The importance of vanadium in biochemistry continues to grow.  In 1977, the 

vanadate ion was indentified as an efficient inhibitor of Na+, K+ ATP-ases, and in the 

1980’s vanadium was established as a biometal in two classes of enzymatic systems, 
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vanadium-dependent haloperoxidases and vanadium-dependent nitrogenases.157-160  The 

discovery of vanadium-containing active sites sparked myriad model compounds and 

investigations into understanding the coordination chemistry and mode of action of 

vanadium in biological systems.152-154 

 In humans, vanadium is defined as an ultra trace element (uptake 10-60 

µg/day).161  A clear biochemical function for vanadium in humans has not been 

identified but the likelihood that it has an essential role is considerable.  In fact, 

vanadium and its aggregates were shown to inhibit many phosphate metabolizing 

enzymes, even in low concentrations.154 This inhibition effect is a result of similar 

structural characteristics between the vanadate, VO4
3-, and the phosphate, PO4

3-, ion 

which leads to analogous binding in biological environments.152-154 

 Beginning in the early 1980’s, much effort has focused on developing and 

understanding the therapeutic affects of vanadium for treatment of diabetes.  The insulin-

enhancing properties of vanadium complexes were first discovered by the use of simple 

inorganic salts of vanadium, such as [(V=O)SO4].154 Since then, many vanadium 

compounds in both V4+ and V5+ states have been synthesized, characterized, and 

screened for insulin-enhancing properties.162-163  Numerous studies have established that 

the oral administration of certain vanadium compounds has positive affects on glucose 

homeostasis (Figure V-1).  In particular, peroxovanadium(V) complexes and 

vanadium(IV) complexes containing variations of the maltolato ligand have 

demonstrated the highest insulin-enhancing activity.  In fact, BEOV (bis(2-ethyl-3-

hydroxy-4-pyronato)oxovanadium(IV)) recently entered phase IIa clinical trials.164 



 116

  

 

 

N
V

O N

OO O

O

O
V

O O

OO

O
V

O O

OO

O
O

R

R

Figure V-1.  Structures of vanadium complexes with insulin-enhancing 
properties.162-163  (a) bis(acetylaceonato)oxovanadium(IV), (V=O)(acac)2; (b) 
bis(picolinato)oxovanadium(IV), VO(pic)2 or VPA; (c) 1: bis(maltolato)-
oxovanadium(IV), BMOV; 2: bis(ethylmaltolato)-oxovandium(IV), BEOV.  
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 Considering the complexity of the insulin signaling system, it is not surprising 

that the precise mode of action of vanadium containing complexes is not completely 

understood.  In the insulin cascade, the binding of insulin to the insulin receptor 

stimulates tyrosine kinase activity.  The resulting autophosphorylation initiates a variety 

of intracellular signaling pathways, which function in a synergistic manner to regulate 

glucose metabolism.  Studies have demonstrated that the oxovanadium or vanadate 

insulin-enhancing activity results from the inhibition of phosphotyrosine phosphatase 

1B, an enzyme responsible for specifically dephosphorylating the phosphorylated 
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tyrosine residue on the insulin receptor.  It is also important to note that other receptors 

in the insulin cascade have been shown to be activated by vanadium compounds.154  

 The intact vanadium complex used for the treatment of diabetes is not considered 

to be the active species in these processes.  Recent investigations of BEOV 

pharmocokinetics in rats established that the vanadyl complexes dissociate after 

administration, leaving the “free” vanadyl ion to be absorbed and transported by 

circulatory proteins in the blood.165-166  Studies established that vanadyl ions bind to both 

serum albumin and transferrin, and transferrin is accepted as the principal vanadium 

chaperone.167  The dissociation of the ligands from orally administered vanadium 

compounds opens up the possibility of “free” vanadyl ion binding to sites in various 

proteins and small peptides within the cell.   

 Vanadium-Sulfur Interactions in Biological Systems.  The interaction of 

vanadium with cysteinyl groups in biological systems is well recognized.154 For instance, 

V-S bonding is seen in the active site of vanadium-dependent nitrogenases,  and it is 

known that vanadate inhibits certain phosphate-metabolizing enzymes through binding 

to cysteinyl residues.154  Furthermore, the enzyme inhibition properties of vanadium in 

vivo has led to the investigation of oxovanadium(IV) complexes containing S-donor 

atoms as insulin-enhancing agents.168  Finally, redox transformations of vanadate to 

vanadyl occur in the cell through the thiol functional group of glutathione, a tripeptide 

which can dimerize via oxidative disulfide formation.167  In fact, several reports suggest 

complex formation between glutathione and oxovanadium(IV) ions.169-170  Studies of 

oxovanadium(IV)-glutathione model compounds demonstrated that two glutathione 
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coordination modes are observed at different pH ranges, one of which proposes V-Sthiolate 

binding (Figure V-2).170 
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Figure V-2.  Proposed structures of VIVO2+ bound to glutathione at pH = 5-7 (a) 
and pH = 7-10 (b).170  

 

  

 N2S2(VIV=O) Coordination Complexes.  In order to understand the coordination 

chemistry of vanadium in biological systems, simple ligands are commonly used to 

mimic possible binding sites in biomolecules.  The occurrence of thiolates and their 

interactions with vanadium in nature has encouraged the synthesis and investigation of a 

manifold of thiolate-bound vanadium coordination complexes in combination with 

various N,O chelates.  In particular, several examples of mononuclear square pyramidal 

N2S2(VIV=O) complexes involving bidentate or tetradentate ligand sets have been 

examined and only four have been structurally characterized by X-ray diffraction 

studies.  These structurally characterized (VIV=O) complexes featuring N2S2 

coordination spheres include bidentate ligands in trans conformations, and tetradentate 

N2S2 ligand sets (Figure V-3).171-174  These complexes reveal the versatility of the 

vanadyl ion to accommodate both hard and soft donor atoms, and that such ligand fields 

can result in stable (VIV=O) complexes.   
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 (VIV=O)-amide Coordination Complexes.  Chelation through the 

carboxyamido nitrogen of the peptide backbone, although not a common coordination 

mode, is observed in certain proteins and enzymes, such as serum albumin, nitrile 

hydratase, and acetyl coA synthase.25, 175-177  Vanadium-catalyzed photocleavage has 

been utilized as a probe to characterize complex protein systems, and there are several 

examples that suggest the involvement of amide ligands in the photoinduced peptide 

cleavage process of phosphate binding proteins.178 A recent survey of the Cambridge 

data base finds seven square pyramidal (VIV=O) complexes featuring N-amidate binding 
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R=CH3, X=cyclo-C6H10: 3 
R=CH3, X=HC-C6H4-N(CH3)2: 5 

Figure V-3.  Examples of mononuclear square pyramidal VIVO complexes 
containing thiolate ligation. (a) 1, VO[cyclo-C5H8=N-NC(-S-)(SCH3)]2; 3, 
VO[cyclo-C6H10=N-NC(-S-)(SCH3)]2;172 5, VO[4-(CH3)2N-C6H4CH=N-NC(-S-
)(SCH3)]2 (b) vanadyl(IV)-cysteine methyl ester;171 (c) [VO(C8H18N2S2)];173 (d) 
VIVO(tsalen).174 
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(Figure V-4).179-182 Much work in this area has  employed pseudo-peptide complexes 

utilizing Schiff base adducts  or aryl-rich tetradentate ligands to examine the potential 

for vanadium coordination to deprotonated amide ligands in largely N,O chelate 

systems. There is only one report of a thiolate donor within the binding pocket.   

 

  

 Notably, each of these examples involves amide bond(s) extended from aromatic 

backbones.  The incorporation of the amide donor(s) provides a strong σ donating ligand 

environment resulting in stabilized VIV=O2+ complexes.  The effect of the amide donor 

on the ligand field has been noted to lower EPR Ax and Ay parameters relative to amine 
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Figure V-4.  Examples of mononuclear square pyramidal VIVO complexes 
containing amide ligation. (a) 1, [VO(pycac)], 2, [VO(pycbac)];179 (b) 
VIVO(PAIS);180 (c) {K2[VO(depa-H)]}·1.5CH3CN·H2O;181 (d) [VIVO(thipca)];182 (e) 
Na[VIVO(hypyb)]·2CH3CN;182 (f) Na2[VIVO(hybeb)] ·2CH3OH;182.  Note for (e) the 
Na ions bind to the carboxyamido oxygen and phenolate oxygen atom, and in (f) the 
Na ion binds to the carboxyamido oxygen atoms. 
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donors, and to significantly shift the VO stretching frequency, which ranges from 980-

991 cm-1 for one coordinated amide and 942-955 cm-1 for two ligated amides.179-182    

 Our group has studied a series of metals bound within a dianionic N2S2 ligand set 

utilizing the dach and daco diazacycle frameworks functionalized with ethylene thiolate 

linkers.183-185  Furthermore, we recently investigated Cu(II) binding to Holm’s 

tetraanionic N2S2 ligand (referred to earlier as ema4-), which contains two aliphatic 

amide bonds.82  These studies have now been extended to include vanadyl ions.  The 

work herein examines the structural and electronic changes from the incorporation of 

V=O2+ in such dianionic and tetraanionic N2S2 binding pockets (Chart V-1).   In 

addition, the vanadyl interaction with the CGC peptide, the biological analogue of the 

tetraanionic N2S2 ligand, has been explored (Chart V-1).  As these types of chelating 

environments are found in nature, the study of V=O2+ coordination and reactivity of such 

sites are of much interest.   

 

Experimental Details 

 Materials.  The starting material N,N’-bis(2-mercaptoethyl)-1,5-

diazacyclooctane, (H2-bmedaco),186 N,N’-bis(2-mercaptoethyl)-1,5-diazacycloheptane, 

(H2-bmedach),187 N,N’-ethylenebis(2-mercaptoacetamide), (ema),82 and  cis-

[(piperdine)2W(CO)4]188 were prepared according to literature procedures.  Fmoc 

protected peptides and TentaGel S-RAM® beads were purchased from Advanced Chem 

Tech.  The synthesis of CGC was followed using standard solid-phase peptide 

techniques.   
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Chart V-1 
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 N,N’-bis(2-mercaptoethyl)-1,5-diazacyclooctane oxovanadium(IV), [(bme-

daco)(V=O)], Complex 1.  As previously prepared by a former group member, Michelle 

Hatley, the H2-bmedaco ligand (0.842 g, 3.6 mmol) was dissolved in MeOH (30 mL), 

and a solution of (V=O)(acac)2 (0.868 g, 3.3 mmol) in MeOH (50 mL) was added 

dropwise.189 The colorless solution immediately turned green, and upon stirring 

overnight a green precipitate formed.  The mixture was filtered in air, the solid was 

washed with 30 mL portions of Et2O, and allowed to dry in air. An analytically pure 

sample was obtained by recrystallization from warm CH2Cl2 to obtain 0.247 mg (25%) 

of product.  Diffusion of Et2O into a saturated solution of the complex in CH2Cl2 

produced X-ray quality green needle-like crystals.  Elemental anal. for C10H20N2S2VO 
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(MW = 299 g/mol) Calcd (found): C, 40.12 (40.12); N, 9.36 (9.25); H, 6.73 (6.55). 

ATR-FTIR: υ(V=O), 979 cm-1.  +ESI-MS (CH2Cl2): m/z = 300 [(bme-daco)VO]+.   

 N,N’-bis(2-mercaptoethyl)-1,5-diazacycloheptane oxovanadium(IV), [(bme-

dach)(V=O)], Complex 2.  To a light yellow solution of the H2-bmedach ligand  (0.785 

g, 3.56 mmol) in MeOH (20 mL), a solution of (V=O)(acac)2 (0.951 g, 3.59 mmol) in 

MeOH (50 mL) was added dropwise. The solution turned green and a light purple solid 

precipitated.  The reaction was stirred at room temperature for 20 h, the green filtrate 

was separated from the purple solid.  The purple solid was washed with MeOH (3 x 30 

mL), then with Et2O (3 x 30 mL), and dried in air to afford a light purple solid (0.752 g, 

74% yield).  X-ray quality crystals were obtained from the slow evaporation of the green 

filtrate under anaerobic conditions. The purple crystalline material was collected 

yielding 0.031 g (3%) giving total yield of 0.783 g (77%).  C9H18N2S2VO Elemental 

anal. for C9H18N2S2VO (MW = 285 g/mol) Calcd (found): C, 37.89 (37.91); N, 9.82 

(9.72); H, 6.36 (6.41). ATR-FTIR: υ(V=O), 976 cm-1.  +ESI-MS (CH2Cl2): m/z = 286 

[(bme-dach)(V=O)]+.   

 Tetraethylammonium [N,N’-ethylenebis(2-mercaptoacetamide) 

oxovanadium(IV)], [Et4N]2[(V=O)(ema)], Complex 3. Under anaerobic conditions, the 

N,N’-ethylenebis(2-mercaptoacetamide) ligand (0.100 g, 0.344 mmol), KOH ( 0.079 g, 

1.41 mmol) and Et4NCl (0.114 g, 0.688 mmol) were mixed in MeOH (20 mL) for 30 

min resulting in a light yellow solution.  A suspension of (V=O)(SO)4 (0.051 g, 0.313 

mmol) in MeOH (30 mL) was added to the ligand mixture using a plastic cannula.  The 

reaction mixture was heated to 60-65 ºC for 20 hrs yielding a teal blue solution 
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containing a white precipitate (K2SO4).  The solution was cooled to RT, filtered over 

celite, and the solvent was removed in vacuo.   MeCN (25 mL) was added to extract the 

product as a blue solution.  The solution was filtered over celite and the solvent reduced 

to minimum. X-ray quality crystals were obtained by vapor diffusion of Et2O into the 

MeCN solution. The blue-purple crystalline material was collected yielding 0.057 g 

(34%). Compound is extremely hygroscopic.  Elemental anal. for C22H48N4S2VO3·2.5 

H2O (MW = 577 g/mol) Calcd (found): C, 37.89 (37.91); N, 9.82 (9.72); H, 6.36 (6.41). 

ATR-FTIR: υ(V=O), 941 cm-1.  -ESI-MS (MeCN): m/z = 401 (Et4N)[(V=O)(ema)]-.   

 Potassium [(Cysteinyl-glycyl-cysteinecarboxamide) oxovandium (IV)], 

K2[(V=O)(CGC)], Complex 4. Method A: The H4CGC ligand (0.032 g, 0.099 mmol) 

and KOH (0.011 g, 0.196 mmol) were mixed in DMF (10 mL) and stirred for 30 

minutes.  A light green solution of (V=O)(acac)2 (0.024 g, 0.091 mmol) in DMF (15 mL) 

was added dropwise.  The reaction was stirred for 16 hrs and a light blue-green solid was 

obtained after precipitation with Et2O, yielding 28.1 mg (67 % yield).   ATR-FTIR: 

υ(V=O), 945 cm-1.   

 [(V=O)(ema.(CH2)3)], Complex 5. To a blue solution of [Et4N]2[(V=O)(ema)] ( 

0.031 g, 0.058 mmol) in MeCN (10 mL) was added neat 1,3-dibromopropane (4 µL, 

0.039 mmol) resulting in a grey-blue solution with the formation of a white precipitate.  

After stirring for 30 min, the resulting solution was filtered over celite, the solvent was 

reduced and layered with Et2O.  Reddish-blue crystals were isolated.  ATR-FTIR: 

υ(V=O), 986 cm-1.   
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 Tetraethylammonium [N,N’-ethylenebis-(2-mercaptoacetamide)- 

oxovanadium (IV) tungsten tetracarbonyl], [Et4N]2[(V=O)(ema)W(CO)4], Complex 

6.  A solution of (pip)2W(CO)4 (0.018 g, 0.039 mmol) in DMF (10 mL) was heated to 40 

°C for 10 min under a N2 atmosphere. To this was added dropwise a blue solution of 3 

(0.020 g, 0.038 mmol) in DMF (10 mL).  The solution was heated at 40 °C for an 

additional 20 min producing an amber color.  The solution was stirred for 30 min at 

room temperature. IR in υ(CO) region of the reaction mixture (DMF, cm-1): υ(CO) 

1996(w), 1919(w), 1872(s), 1849(m), 1802(m).   

 Potassium [(CGC)oxovanadium(IV) tungsten tetracarbonyl], 

[K]2[(V=O)(CGC)W(CO)4], Complex 7.  In a similar manner for 6, a light green DMF 

solution of K2[(V=O)(CGC)] (0.022 g, 0.047 mmol) was added slowly to a DMF 

solution of warm (pip)2W(CO)4 (0.022 g, 0.047 mmol).  IR in υ(CO) region of the 

reaction mixture (DMF, cm-1): υ(CO) 1995(w), 1916(w), 1866(s), 1849(m), 1805(m). 

 

Synthesis and Structural Characterization 

 Syntheses of neutral [(bme-daco)(V=O)] and [(bme-dach)(V=O)], Complexes 

1 and 2.  As was earlier performed by a former group member, Michelle Hatley, for the 

neutral [(bme-daco)(V=O)], the neutral [(bme-dach)(V=O)] was also prepared by ligand 

displacement on reaction of (V=O)(acac)2 with the H2-bmedaco or H2-bmedach ligand in 

methanol solutions at room temperature (Scheme V-1).189  The resulting green 

precipitate (complex 1) and purple precipitate (complex 2) were isolated and purified  to  
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Scheme V-1 
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give 25% and 77% yield for 1 and 2, respectively. These neutral N2S2 VIV=O complexes 

are resistant to aerobic oxidation in the solid state but, slowly (days) decompose in 

solution, presumably to yield Vv
 species.  The neutral complexes are soluble in DMF, 

H2O, CH2Cl2, and slightly soluble in warm MeOH, where complex 2 was of lower 

solubility than 1.  

 Syntheses of dianionic (Et4N)2[(V=O)(ema)], Complex 3.  The preparation of 

the dianionic vanadyl complex was accomplished by the addition of (V=O)SO4 to the 

deprotonated form of the ligand in methanol solutions while heating (60 ºC) as outlined 

in Scheme V-2.  The tetraanionic ema ligand was chosen to increase the solubility of the 

vanadyl-bound complex, and was expected to stabilize the highly oxidized metal center. 
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In addition, the N2S2 binding pocket of the ema ligand is good synthetic mimic of the 

CysGlyCys tripeptide motif (vide infra).190  Raymond and coworkers found that 

dianionic N2O2(V=O)2- complexes containing deprotonated amide donors were stable in 

 air in the solid state and in solution.181  In contrast, the amide-containing dianionic 

N2S2(V=O)2-, complex 3, is highly susceptible to oxidation in air in the solid state form 

and in solution.  The exposure of MeCN solutions of complex 3 to air results in a color 

change from blue to red.  X-ray quality crystals obtained by the slow diffusion of Et2O 

into a red MeCN solution revealed the commonly observed solution oxidation product, 

the decavanadate ion V10O28
6-.154  Complex 3 is soluble in a wide range of solvents 

(H2O, MeOH, MeCN, and CH2Cl2).   

 Synthesis of K2[(V=O)(CGC)], Complex 4.  The CysGlyCys (CGC) tripeptide 

has been complexed with Ni(II) and Cu(II) as metalloenzyme binding site mimics and 

shown to bind through deprotonated carboxyamido nitrogens and thiolates, producing a 

tetradentate N2S2 coordination environment.87,183,190  Similar to the Ni(CGC)2- complex, 

the CysGlyCys peptide derivative of vanadyl was prepared from the displacement of 

acacH from (VIV=O)(acac)2 by the presence of  two equivalents of KOH in DMF 
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solvent.  A second method used to prepare by 4 was accomplished by the addition of 

(V=O)SO4 to the deprotonated form of the ligand.   Both syntheses yielded a light green 

solid in ca. 70% yield.  Comparable to its synthetic analogue, complex 4 is extremely 

oxygen sensitive in both the solid and solution state; the light green color changes to red 

in the presence of oxygen. The dianionic vanadyl peptide complex is soluble in DMF 

and H2O.  The N2S2 coordination environment proposed for the CGC ligand bound to the 

vanadyl(IV) moiety is based on the comparison of its spectroscopic characterization and 

reactivity to the synthetic analogue complex 3. 

 Description of Molecular Structures of Complexes 1, 2 and 3.  Complexes 1–

3 were characterized by X-ray diffraction analysis and their molecular structures are 

presented in Figures V-5 and V-6 as thermal ellipsoid plots and salient metric parameters 

are shown in Table V-1.  Full structural reports are given in the Appendix.  The crystals 

of complex 3 exhibit pleochroism (blue/purple).  In all complexes, the expected square 

pyramidal coordination geometry is observed with the N2S2 donor set arranged around 

the basal plane with the vanadyl oxygen at the apex.  The vanadium atom is displaced 

from the basal plane toward the apical oxygen by 0.6525 (1), 0.6521 (2), and 0.7125 Å 

(3).  The N2S2 planes are quite regular with average deviation for 1 of 0.0341 Å 

(maximum and minimum deviation of 0.0365 Å by N2 and 0.0318 Å by S1), for 2 of 

0.0481 Å (maximum and minimum deviation of 0.0561 Å by N2 and 0.0402 Å by S1), 

and for 3 of 0.0674 Å (maximum and minimum deviation of 0.0775 Å by N2 and 0.0572 

Å by S1). The V-O bond distances are 1.600(3), 1.605(3), and 1.623(19) Å for 

complexes 1, 2, and 3, respectively.  A distance ranging between 1.56-1.60 is commonly 
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Figure V-5.  Molecular structures of the neutral VIV=O complexes [(bme-
daco)(V=O)], 1, (top), and [(bme-dach)(V=O)], 2, (bottom) shown as thermal 
ellipsoids at 50% probability. 

 

Figure V-6.  Molecular structure of the dianionic VIV=O complex  
[Et4N]2[(V=O)(ema)], 3, shown as thermal ellipsoids at 50% probability in 
different views. Left: side on as presented for [(bme-daco)(V=O)], 1, and [(bme-
dach)(V=O)], 2.  Right: bisecting the <S-V-S and <N-V-N angles.  The EtN4

+ 
counter ions are not shown. The asymmetric unit contains one H2O of 
crystallization.    
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Table V-1.  Metric data for [(bme-daco)(V=O)], 1, [(bme-
dach)(V=O)], 2, and [Et4N]2[(V=O)(ema)], 3, (distance, Å; angle, 
deg). 
 1 2 3 
V(1)-O(1) 1.600(3) 1.605(3) 1.623(19) 
V(1)-N(1) 2.154(3) 2.122(3) 2.028(2) 
V(1)-N(2) 2.159(3) 2.111(3) 2.028(2) 
V(1)-S(1) 2.362(17) 2.341(12) 2.369(17) 
V(1)-S(2) 2.348(13) 2.346(12) 2.363(15) 
N(1)-V(1)-N(2) 84.14(12) 74.35(11) 78.41(10) 
S(1)-V(1)-S(1) 88.82(5) 98.20(5) 93.91(6) 
N(1)-V(1)-S(1) 84.23(10) 84.50(8) 82.33(8) 
N(2)-V(1)-S(2) 83.62(10) 83.34(9) 81.27(8) 
N(1)-V(1)-S(2) 144.33(9) 141.09(9) 137.28(7) 
N(2)-V(1)-S(1) 148.14(9) 146.39(9) 145.04(7) 

 

 

reported for the VO distance of vanadyl complexes in square pyramidal geometry; 

however, longer bond distances (>1.60) have been observed in vanadyl complexes 

bound in tetra anionic ligand sets.  In this series, the longer bond distance observed in 

complex 3 correlates with the IR data (vide infra).   

 The V-S distances are comparable to reported square pyramidal vanadyl(IV) 

complexes and likewise, the  V-Namine and V-Namide distances are within the normal 

range of V-N distances.  The N-V-N angle in complex 2 is pinched slightly more than 

that observed for the N2S2Ni analogue and this observed constraint is compensated by an 

increase in the S-V-S angle.  Similarly, a restriction in the N-V-N angle resulting in an 

opening in the S-V-S angle is observed in complex 3.   A molecule of water in the 

asymmetric unit links two adjacent complexes through hydrogen bonding interactions to 

the carboxamide oxygens producing a dimer through a closed loop.  To our knowledge, 
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complex 3 represents the first example of square pyramidal vanadyl(IV) complex bound 

to cis-dithiolates and aliphatic diamidates in the basal plane.  

 In complexes 1, 2 and 3 the N to S ethylene linkers are eclipsed across the N2S2 

plane.  In 1, the vanadium diazacyclohexane rings are in chair and boat configurations 

with the boat opposite to the oxygen side of the vanadyl.  In 2, the single vanadium 

diazacyclohexane ring is in the chair conformation and opposite to the oxygen side.  In 

this case, the vanadium diazacyclopentane ring is oriented toward the oxo side of the 

vanadyl. 

 

Infrared Analysis   

 Complexes 1 and 2 characteristically display a υ(V=O) band in the IR spectrum 

at ca. 978 cm-1, which is within the range reported for oxovanadium complexes (935-

1035 cm-1).168, 191-195  The most characteristic difference between the IR spectrum of 

neutral and dianionic vanadyl N2S2 complexes is that the vanadyl stretch in the latter is 

at a lower frequency, ca. 942 cm-1.  This significantly lower VO stretching frequency is 

consistent with the longer V=O bond distance as compared to the neutral N2S2(V=O) 

complexes.  Although the lengthening of the V-O bond distance seems to correlate with 

an increase of sigma donation from the electron rich basal plane ligands, it has been 

noted by Christou, et al. that a direct relationship between the ligand field in the basal 

plane and the V-O bond distance cannot be made.193  In fact, Christou et al. points out 

that dianionic complexes with electron-rich equatorial planes have similar V-O bond 
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distances to their neutral ligand sets (<1.6 Å), suggesting the V-O bond distance is 

influenced by other factors. 

  

Electron Paramagnetic Resonance (EPR) Spectroscopy   

 Vanadyl complexes are well suited for EPR spectral detection because of the 

VIV=O d1 ground state configuration.  This spectroscopic tool can provide information 

on the number and orientations of ligands bound to the vanadyl center.  For square 

pyramidal vanadyl complexes, the unpaired electron is found mainly in a dxy orbital, and 

complexes of this type exhibit spin Hamiltonian values with  gz < gx,y and Az > Ax,y.  The 

most abundant naturally occurring isotope of vanadium is 51V (> 99%), which has a 

unique nuclear spin, I, of 7/2.  The interaction of the unpaired electron with the nuclear 

spin of vanadium results in a signature eight line hyperfine splitting pattern (2I+1 = 8 

lines).   

 The frozen solution X-band EPR spectra of the neutral N2S2(V=O) derivatives, 

complexes 1 and 2, were recorded in DMF at 10 K (Figure V-7).  The spectra show the 

distinctive eight line pattern expected for a d1 V(IV) system.  The EPR parameters for  

the oxovanadium N2S2 complexes were determined by computer simulation of the 

experimental spectra (Table V-2). For comparison, Table V-2 includes EPR parameters 

reported for complexes with related donor sets.174, 179-180, 168, 194-195  Overall the g and A 

values are similar to other square pyramidal VIV=O2+ complexes.  Complexes 1 and 2 

display larger gx, gy, and Az values as compared to other N2S2 chromophores containing 

N-imine donors.  The spin Hamiltonian parameters of 1 and 2 better match the values  
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(b) 

2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500

Figure V-7.  Frozen solution EPR spectra of  neutral N2S2(VIV=O) complexes in 
DMF: (a) [(bme-daco)(V=O)], 1; (b) [(bme-dach)(V=O)], 2.  Top: experimental 
spectrum.  Bottom: computer simulated spectrum. 
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Table V-2. EPR parameters for oxovanadium(IV) complexes.a 

Complex Donor set gZ gx gy Az Ax Ay 

[(bme-daco)(V=O)], 1 N2S2 1.968 1.991 1.9945 157.40 52.60 42.95 

[(bme-dach)(V=O)], 2 N2S2 1.967 1.9915 1.995 153.27 53.67 38 

(Et4N)2[(V=O)(ema)], 3 N2S2 1.970 2.001 2.001 153.27 60 33 

(K)2[(V=O)(CGC)], 4 N2S2 1.9695 1.999 1.999 156.41 51.60 42 

[(V=O)(ema)·(CH2)3], 5b N2S2 1.977 2.000 2.000 153.12 49 33 

VO(tsalen) c N2S2 1.978 1.986 1.986 148 51 51 

[VO(tsatln)] c N2S2 1.966 1.975 1.975 140 37 37 

[VO(tsalphen)] c N2S2 1.967 1.987 1.987 145 51 51 

[VO(mp)2]2- d,e O2S2 1.975 2.007 1.999 150 40 40 

[VO(mmppt)] 
2

 f,g O2S2 1.958 1.985 1.981 151 42 52 

[VO(salen)]h N2O2 1.955 1.986 1.989 166 56 55 

[VO(pycac)]i,j  N3O 1.9558 1.9777 1.9811 151.43 53.29 42.46 

VO(PAIS)k,l N3O 1.961 1.986 1.982 154 45 54 
aIn frozen DMF.  bIn frozen MeCN.  cReference 174.  dMeasured in frozen CH2Cl2/DMF.   eReference 194.  
fMeasured in frozen CH2Cl2/DMF.  gReference 168. hReference 195.  iReference 179. jMeasured in 

chloroform at 120 K.   kMeasured in frozen DMF/EtOH.  lReference 180. 

 

 

reported for O2S2 vanadyl complexes.  In MeCN, the dianionic (Et4N)2[(V=O)(ema)], 

complex 3, displays the eight line EPR spectra but the signals are very broad (Figure V-

8).  Identical results are obtained from frozen DMF solutions.  The ligand set in complex 

3 has a greater ability to delocalize electron density away from the vanadyl center, which 

may explain the broadened lines in the EPR spectrum.  The g-values are quite similar to 

the neutral N2S2 derivative, while the Ax value is slightly larger and the Ay is smaller.   
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 The EPR spectra of  (K)2[(V=O)(CGC)], complex 5,  in DMF shows the typical 

hyperfine splitting and anisotropic line shapes for a VIV=O2+ center (Figure V-8). Slight 

differences in the EPR spectral parameters are observed between 5 and its analogue, 

complex 4.  The largest difference is seen in the smaller Ax value and larger Ay value in  

5 as compared to 4.  In both complexes containing amide donors, the g-values are 

slightly larger than the complexes with amine donors. From a comparison of the EPR 

parameters of complex 5 to others in Table V-2, it is clear that 5 contains a V=O2+ held 

in a N2S2 coordination sphere. 

 Overall, the tetradentate square pyramidal VIV=O complexes presented herein fit 

into the trends observed for square pyramidal oxovanadium(IV) complexes.  These 

general trends show higher g-values and lower A values for basal plane S-donors as 

compared to their O,N analogues, and higher g-values for dianionic complexes as 

compared to their neutral counterparts.    The most notable difference between the 

present complexes and others of similar coordination environment is the larger Az, gx 

and gy parameters.   

 

Reactivity of (V=O)-bound Thiolates  

 The reactivity of nickel-bound thiolates in neutral and dianionic N2S2 complexes 

has been extensively explored. In fact, reactivity studies of numbers of metal N2S2 

complexes with M = Ni, Zn, Cu, and Fe have established that the sulfurs are readily 

alkylated, metallated, or oxygenated.131, 183-185   The incorporation of the vanadyl ion in 
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the N2S2 donor environment permits the examination of how the electron withdrawing 

vanadyl unit affects the nucleophilicity of the thiolate donors.  
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 Reactivity with 1,3-dibromopropane.  Reaction of neutral N2S2(V=O) 

complexes 1 and 2 with 1,3-dibromopropane did not lead to S-alkylated products, even 

under reflux conditions.  However, according to Scheme 4, the addition of neat 1,3-

dibromopropane to a blue MeCN solution of complex 3, VO(ema)2-, results in the 

formation of a white precipitate and  a grayish blue solution within 15 minutes.  Neutral 

complex 5, [(V=O)(ema)·(CH2)3], was isolated as X-ray quality crystals following 

filtration and slow diffusion of Et2O into a MeCN solution.   The υ(V=O) frequency in 

the ATR-FTIR spectrum displays a band at 986 cm-1, which is shifted positively by 41 

cm-1 compared to the dianionic vanadyl precursor, complex 3.  This shift is consistent 

with a decrease of electron density in the basal plane.  The EPR spectrum of 

[(V=O)((ema)·(CH2)3)] in frozen MeCN shows that the complex contains a paramagnetic 

VIV=O species (Figure V-9).  The spectrum differs from the precursor, complex 3, in that  
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Figure V-9.  Frozen solution EPR spectra of neutral complex  
[(V=O)((ema)·(CH2)3)],  5, in MeCN. Top: experimental spectrum.  Bottom: 
computer simulated spectrum. 

 

 

distinctive sharp hyperfine lines are observed, the gz value increases, and the Ax 

parameter decreases.   The most significant difference in the EPR parameters of complex 

5 as compared to the other complexes in this series is that complex 5 has a larger gz 

value.   

 Reactivity with cis-[(piperdine)2W(CO)4].  The tungsten tetracarbonyl 

derivatives of N2S2M (M = Ni or Zn, as ZnCl+) complexes have been used to establish 

the electron donating ability of the N2S2M unit as reported by the CO stretching 

frequencies.184-185, 190, 196-198  We carried out analogous studies with the N2S2(V=O) 

derivatives to determine if the S-thiolates were reactive towards W(CO)4 and to gain 

information regarding  their  electronic character.  While the neutral N2S2(V=O) 
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complexes 1 and 2 showed no tendency to form adducts when exposed to the typical 

precursor to W(CO)4 derivatives, the dianionic complexes 3 and 4  behaved similarly to 

the N2S2Ni analogues.  The preparation of dianionic vanadyl-W derivatives was 

accomplished via displacement of the labile piperdine ligands from the cis-

[(piperdine)2W(CO)4] complex as shown in Schemes 5 and 6.  The addition of a DMF 

solution of 3 (blue) or  4 (green) to cis-[(piperdine)2W(CO)4] in warm DMF  
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resulted in a color change to greenish-brown.  The reactants were stirred at 40 ºC for 15 

min and then stirred at room temperature for an additional 10 min. As shown in Figure 

V-10, the υ(CO) IR bands indicated quantitative conversion to a new species. 

1805 

1849 

1866 

1802 
1848 

1872 

*
1995 

177518251875192519752025

*
1995 

177518251875192519752025

Figure V-10.  IR spectra of the υ(VO) region in a DMF solution.  Top: 
[Et4N]2[(V=O)(ema)W(CO)4], 5.  Bottom: [K]2[(V=O)(CGC)W(CO)4], 6.  * = 
Band at ca. 1919 cm-1 indicates the formation of a (V=O)(N2S2)-W(CO)5 adduct. 
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 The carbonyl vibrational stretching frequencies are listed in Table V-3; Ni(II) 

and Zn(II) analogues are included for comparison.  For L2M(CO)4 complexes, four IR 

bands are observed (assigned to the two A1, B1, and B2 vibrational modes) for idealized 

C2v symmetry, and three absorptions are expected for LW(CO)5 complexes (assigned to 

the two A1 and E vibrational modes) for idealized C4v symmetry.199  According to the 

absorptions observed for both complexes 3 and 4, the formation of a mixture of the tetra- 

and pentacarbonyl products is a likely conclusion, with the tetracarbonyl adduct as the 

major species. The presence of the W(CO)5 species has been noted in Ni-W derivatives, 

and postulated to occur via a CO-scavenging process from the release of a CO from the 

W(CO)4 precursor or the initial Ni-W adduct, resulting in the thermodynamically stable 

pentacarbonyl Ni-W product.184, 190, 196  Scheme 5 and 6 displays the possible (V=O)-

W(CO)x (x = 4 or 5) products. While the single X-ray structures of complexes 6 and 7 

have not been determined, the vanadyl-W adducts depicted in Schemes 5 and 6 are based 

on the molecular structure of the pentacoordinate Zn-W analogue.184   

 Previous work in our group established that the Ni(ema)2- and Ni(CGC)2- 

complexes exhibit similar S-based donor ability as  determined by the  υ(CO) values of  

the W(CO)4 adducts of each complex.190  The position of the infrared υ(CO) bands for 

the W(CO)4 derivatives of [(V=O)(ema)]2- and  [(V=O)(CGC)]2- show that these two 

complexes are equal in S-based donor ability. 

 As compared to the dianionic N2S2Ni and (CGC)Ni analogue bound to W(CO)4, 

the υ(CO) values of the [N2S2(V=O)]W(CO)4 analogues are shifted positively by ca. 10-

20 cm-1.  This might be expected due to the electron-withdrawing nature of the vanadyl  
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Table V-3.  CO stretching frequencies (cm-1) and vibrational mode 
assignmentsa for W(CO)4 and W(CO)5 derivatives of (V=O)2+, Ni2+ and 
Zn2+ N2S2 complexes.b 

 

L2W(CO)4 A1
1  B1 A1

2 B2 

[VO(ema)] 2- 1995 1919c 1872 1848 1802 
[VO(CGC)] 2- 1995 1916c 1866 1849 1805 
[Ni(ema)]2-d 1986  1853 1837 1791 
[Ni(CGC)]2- 1988  1863 1845 1793 
[Zn-1’Cl]-e 1988  1861 1836 1801 
(Ni-1’)f 1996  1873 1852 1817 
(Ni-1*)f 1996  1871 1857 1816 
piperdine 
 

2000  1863 1852 1809 

LW(CO)5 A1
1 E  A1

2  

[Ni(ema)]2-g 2060 
(1967sh) 

1918  1868  

[Ni(CGC)]2-g 2061 
(1974sh) 

1917  1869  

[Zn-1’Cl]- 2063 1920  1869  
(Ni-1*) 2061 1920  1874  
 

aAssignments are based under pseudo-C2v and pseudo-C4v symmetry.  
bUnless otherwise noted, spectra were recorded in DMF solutions.  
cFormation of a N2S2(V=O)-W(CO)5 species.  dReference 190.  
eReference 184; 1’ = [N,N’-bis(2-mercaptoethyl)-N,N’-diazacycloheptane]. 
fReference 196; 1* = [N,N’-bis(2-mercaptoethyl)-N,N’-diazacyclooctane]. 
gReference 190;   Recorded in THF solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

center, preventing less electron density to be transferred to the W(CO)4 unit.  Notably, 

the υ(CO) values of monoanionic [(Zn-1’Cl)W(CO)4]- are lower that those of the 

dianionic  [V=O(ema)W(CO)4]2-  and [V=O(CGC)W(CO)4]2- complexes.184    Despite 
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the dianionic character of the N2S2(V=O) moieties, the  υ(CO) stretching frequencies are 

most similar to the values reported for the W(CO)4 derivatives containing neutral N2S2Ni 

units.196  As mentioned earlier, the neutral N2S2(V=O) complexes 1 and 2 do not show 

any reactivity at the coordinated thiolate atoms, whereas  the dianionic complexes 3 and 

4 demonstrate that the electron withdrawing properties of the vanadyl ion do not quench 

the nucleophilic nature of the metal-bound thiolate(s). 

 

Conclusions 

 The synthesis and characterization of five N2S2(VIV=O) complexes, which 

incorporate either amine/thiolate, amide/thiolate or amide/thioether donor sets, have 

been described.  The neutral N2S2(VIV=O) species show stability to aerobic oxidation in 

the solid state, while the dianionic N2S2(VIV=O) species complexes are air sensitive.  

Amide donors in previously reported VIV=O complexes are linked to aromatic 

backbones, whereas the amido nitrogen donors presented herein extend from aliphatic 

chains, better mimicking amino acid binding sites. Three of the complexes were 

structurally characterized by X-ray diffraction analysis, the neutral complexes 1 and 2, 

and the dianionic complex 3. In each case, the complexes are five coordinate with square 

pyramidal geometry, and the V=O moiety is significantly displaced from the basal plane. 

 The suggested structure for the product of V=O2+ ion bound to the deprotonated 

CGC peptide is based on (1) the presence of a strong IR band at 940 cm-1, indicative of a 

V=O group, and (2) EPR parameters that parallel the complexes within this N2S2 series.  

Although dianionic [O2S2(VIV=O)] complexes have been shown to display similar V=O 
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stretching frequencies, the EPR parameters for the [(V=O)(CGC)]2- complex more 

closely resemble those from V=O2+ in a N2S2 ligand field.194  From these similar 

spectroscopic results, we conclude that the vanadyl ion is bound to an N2S2 coordination 

environment within the CGC peptide. This is consistent with the known N2S2 binding of 

CGC complexes with Cu2+ and Ni2+.  

 The EPR spectra indicate the presence of paramagnetic VIV=O species in all of 

the complexes presented herein.  The g and Az values are within ranges typical for N2S2 

donor sets bound to a oxovanadium centers. The EPR parameters are indicative of strong 

σ-donation from the basal plane ligands (g-values 1.91-2.0).181   The replacement of the 

amine donors with amides results in slightly higher gx and gy values, which suggests a 

slight increase in σ-donation in the basal plane.  Specifically, complex 3 displays very 

broad signals in its EPR spectrum.  The absence of sharp hyperfine splitting in complex 

3 may be due to the delocalization of the unpaired electron away from the metal center, 

thus reducing the unpaired electron coupling with the vanadium nucleus.  In contrast, the 

S-alkylated complex 5 displays sharp hyperfine signals in its EPR spectrum.  As the 

electron density on the S-thiolates was shifted from S:→Ni to covalent bond formation 

with carbon atoms, the electron density becomes localized on the amido donors. This 

assumption is based on previous NBO analysis and electrostatic potential maps of the 

Ni2+ analogues of complexes 3 and 5.190  In the Ni2+ systems, the computational results 

indicated that the electron density is delocalized over the dianionic [Ni(ema)]2- complex 

(largely on the thiolate S-lone pairs and amido N-lone pairs).  The principal resonance 

structure determined from NBO analysis found covalent bond character in the Ni-S bond 
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and dative bond character in Ni-N bond.  The NBO analysis of the [Ni(ema)]·(CH2)3 

complex derived from alkylation shows that the electron distribution becomes localized 

on the amido nitrogens resulting in Ni-S dative bond character and Ni-N covalent 

character.  Furthermore, the significantly lower V=O stretching frequencies observed for 

the dianionic complexes, 3 and 4, may be a result of the increase in electron richness 

about the VIV=O center, and upon alkylating 3 to yield 5, the υ(V=O) band shifts to 986 

cm-1. Together these results support our hypothesis that the electronic distribution of 

complex 3 is delocalized, which in turn affects the interaction of the unpaired electron 

with the vanadium nucleus.   A detailed analysis of the EPR parameters in terms of MO 

properties in correlation with electronic absorption spectroscopy data would further aid 

in the interpretation of the affects of the N2S2 ligand field on the vanadyl center.   In 

addition, DFT studies (NBO and electrostatic potential analysis) would be beneficial in 

probing the electron distribution in these N2S2(VIV=O) complexes. 

 There was no evidence of reactivity of the thiolates in the neutral N2S2(VIV=O) 

complexes.  However, S-site modification of complexes 3 an 4 was accomplished by the 

formation of W(CO)x derivatives.  Regardless of the electron richness of the  N2S2 

ligand field in complexes 3 and 4, the S-based donor ability as  determined by the  

υ(CO) values of  the W(CO)4 adducts showed that the S-donors bound to the V=O 

moiety produce a ligand field that is similar to the donor ability of N2S2Ni in neutral 

N2S2Ni-W(CO)4 adducts.   

 The biological relevance of thiolates and amide binding in proteins has been 

noted in the Introduction.  This work adds to the chemistry of oxovanadium  binding to 



 146

N-amides from aliphatic linkages and S-thiolates, and demonstrates that stable VIV=O 

complexes can be formed with binding sites that consist of such donors. 
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CHAPTER VI 

CONCLUSIONS 

 
 
Summary and Perspectives  

 Much of bioinorganic chemistry is inspired by metal binding sites that involve 

nitrogen and sulfur-rich coordination environments derived from the amino acid side 

chains of histidine, methionine and cysteine, as well as the N-terminal amine and the 

deprotonated carboxyamido nitrogen of the peptide bond.  Such NxSy binding sites in 

biomolecules are found in acetyl coA synthase, nitrile hydratase, NikR, and the nickel-

dependent superoxide dismutase.1, 25, 177 Approaches to synthetic analogues of such 

ligation to transition metals have included a wide variety of ligand sets, but with little 

emphasis on thiolate/imidazole combinations. Inspired by the metal binding sites in 

NiSOD and NikR, small molecule models designed to explore the structural and 

electronic effects of both thiolate and imidazole donors bound to a nickel center were 

discussed in the first part of this dissertation.  

Commonly used as histidine biomimetics are multidentate imidazole type ligands 

held in rigid settings.200  For N3 donor sets that mimic the tri-histidine motif in 

metalloprotein metal binding sites, the scorpionate ligands, tris(pyrazoyl)borate, (Tp-), 

and tris(pyrazol-1-yl)methane, (Tpm), are frequently used (Figure VI-1).  These ligand 

systems are easily synthesized and functionalized.  The center boron or carbon anchor 

can be substituted by another atom or group, and the tripodal arms can be derivatized to 



 148

include a variety of different ligand donors.    In all such ligand systems, the orientation 

of the histidine mimic pyrazoyl or imidazole N-donor ligand is controlled by the tripodal 

arm linker torsion angles.  While biomimetics that use such C3 ligands have most 

certainly advanced metallobiochemistry, monodentate ligands, such as imidazoles, are 

expected to more accurately model the flexibility in polypeptide chains and to be more 

appropriate for square planar coordination geometries. 

 In my work, simple imidazoles were incorporated into nickel-thiolate complexes 

to produce N,S coordination environments related to those observed in NiSOD and 

NikR.  During my endeavors, other small molecule models of the NiSOD active site 

were reported, and these complexes are shown in Figure VI-2.81, 90, 102-103, 104, 200-201  

Research in the area of N2S2Ni chemistry has firmly established that electrophilic and 

oxidative reactivity occurs at the S-thiolates.202  As predicted by computational studies, 

the first generation synthetic analogues concentrated on incorporating a mixed 

amine/amide set into the N2S2 coordination sphere in order to suppress reactivity at the 

nickel bound thiolates and promote nickel-based chemistry.100-101   The first biomimetic 
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Figure VI-1. Basic tripodal ligand systems: Tp- and Tpm. 
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to incorporate a mixed amine/amide donor set was presented by Shearer et al. (Figure 

VI-2a).102-103  This complex exhibited enhanced stability toward oxygenation, but did not 

show SOD activity.  In addition, an amine/amide mixed donor set with an N2S2Ni 

coordination sphere was accessed via dimer cleavage by Harrop et al. (Figure VI-2b).90 

This complex displayed similar spectroscopic properties as did the model by Shearer et 

al., but also did not exhibit NiSOD chemistry.   

 Our group investigated thiolate modification by alkylation or S-oxygenation of 

the Ni(ema)2- complex, which contains two amide and two thiolate donors.81  In line 

with our previous studies, we found that such sulfur protection directs reactivity to the 

nickel.  In addition to demonstrating that stable S-oxygenates can be produced from 

dianionic N2S2Ni complexes (Figure VI-2e), we came to the conclusion that the absence 

of such reactivity in the NiSOD active site was most reasonably due to kinetic control.  

Subsequent to our reports, Jenson and coworkers presented NiSOD model complexes 

utilizing the tripodal ligand, hydrotris(3-phenyl-5-methylpyrazolyl)borate ligand 

(TpPh,Me), and organoxanthate or dithiocarbamates ligands to produce N2S2Ni square-

planar and N3S2Ni pyramidal complexes (Figure VI-2c and d).104  As shown for the other 

model complexes, spectroscopic features were similar to the native active site, but SOD 

activity was not reported.  The synthetic N3SNi mimic by Grapperhaus et al. shown as f 

in Figure VI-2 will be discussed below.201  A final note on NiSOD biomimetics, is that 

the only functional SOD models that have been reported to date contain nickel centers 

coordinated within peptidic coordination environments.203-204  Such constructs have been 

reported by Shearer and coworkers in which they demonstrated NiSOD catalytic activity  
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for a nickel(II) ion coordinated to a 12-mer peptide, and by Laurence et al. who has 

prepared a functional model utilizing a asparagine-cysteine-cysteine tripeptide bound to 

a nickel(II) center.203-204 

 My original synthetic vision for an ideal NiSOD enzyme active site model 

complex accessible from known square planar N2S2 nickel complexes was to have a 

dangling imidazole attached from a thiolate or from a thioether sulfur with capability to 

coordinate in the axial site on oxidation of NiII to NiIII, see Chapter III.   Both plans were 

reasonable based on prior work.  Our group had previously demonstrated that N2S 

thiolate bridged nickel dimers could be cleaved with nucleophiles, and we had 

established that tetradentate N2S2 bonding is maintained after S-alkylation by reagents 

that provide an additional binding site.109, 122-125  The first plan to include an imidazole 

linker from a thiolate ligand was to be accomplished by the following reaction: 

 

Confirmation of the mononuclear formulation was provided by +ESI-MS analysis (m/z = 

357) and elemental analysis, and the N2S2 coordination was proposed consistent with 

UV-vis spectral data (λmax = 450, 352, 284, 212 nm).  However, the electrochemistry in 

MeCN did not show a reversible oxidation event in a range that would imply nickel- 

based chemistry, which would have promoted the axial imidazole binding.  Only one 
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irreversible oxidation event was observed at +24 mV vs. Fc+/Fc and that was assigned to 

S-oxidation.  Attempts to obtain X-ray quality crystals of this complex were 

unsuccessful, and further study was less promising than other lines of research.   

 A second plan was carried out to incorporate a dangling imidazole ligand via the 

alkylation of the thiolate using 4-(chloromethyl)-5-methyl-imidazole·HCl, as shown in 

Chapter III.  In this case, X-ray quality crystals were obtained; however, the molecular 

structure revealed a preference for N-imidazole binding in the square plane of NiII over 

that of the S-thioether donor.   Although DFT computations found a difference of only 

3.34 kcal/mol between the N-imidazole-bound versus the S-thioether-bound complex, a 

switch of the donor from the N-imidazole to the S-thioether binding could not be 

achieved via the protonation of the imidazole ligand.  These results demonstrated the 

strong binding of the imidazole nitrogen.  The chain length connecting the imidazole to 

the diazacycle backbone was the perfect length to promote the imidazole binding in its 

favored orientation, that is, orthogonal to the NiL4 square plane.   

 While the original intent of this work to obtain a NiSOD model with a hemilabile 

axial imidazole ligand was not achieved, the study of imidazole/thiolate donor 

combination bound to nickel became, in our opinion, a more significant focus.   A 

second nickel-imidazole complex was designed as a first coordination sphere molecular 

model of the Ni-binding site of the Nik-R protein and accessed through dimer cleavage 

reactions using imidazole.   This complex differed from the NiSOD model complex in 

that the N-imidazole ligand was not tethered to the N2S framework, producing a 

tridentate and monodentate N2N’S ligand set.  Despite this difference, both molecular 
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structures revealed that the imidazole plane (tethered or untethered to the N2S 

framework) favored a nearly perpendicular orientation with respect to the nickel square 

plane.  In contrast, a bis-imidazole N4Ni complex, in which both imidazole ligands were 

connected to the diazacycle backbone by a methylene linkage, was prepared.  In this 

case, the molecular structure found that the imidazole ligands were held roughly 

coplanar with the nickel square plane.  This series of NxSyNi imidazole complexes 

demonstrated the influence of the length of the carbon chain attached to the imidazole 

ligand; a chain with more flexibility allows the imidazole ligand to orient in an 

apparently preferred orthogonal position, whereas the shorter carbon chain restricted the 

imidazole ligand to a planar orientation.   Grapperhaus and coworkers synthesized an 

N3SNi complex, analogous to my complexes, which contained an amide donor in place 

of one of the amines (Figure VI-2f).201  As observed in our bis-imidazole nickel 

complex, the one carbon linker forces the imidazole plane to orient parallel to the nickel 

square plane.   

 Given that the imidazole ligand was not tethered in one of the imidazole 

N2N’SNi complexes, we pursued the unique opportunity to investigate the preferred 

orientation of this imidazole N2N’SNi complex utilizing VT 1H NMR spectroscopy.  The 

term “unique” refers to the asymmetry of the N2N’SNi complex due to the 

diazacycloheptane ligand which renders one face of the Ni-square plane different from 

the other.  Thus, variable temperature 1H NMR was used to examine the solution phase 

conformations and interconversions, and in correlation with these results, density 

functional theory computations related the orientation of the imidazole with respect to 
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the N2N’SNi square plane to the observed fluxionality and activation parameters.  

Furthermore, the computational studies indicated that the frontier molecular orbitals 

were predominately derived from the interactions between the S-thiolate and Ni center.  

While imidazole ligands have the potential to participate in π-donor interactions, the 

analysis of the ground and the DFT derived transition state computational results showed 

only σ-bonding orbitals with large contributions from Ni and the N-donor imidazole 

nitrogen.   

Based on this paradigm for imidazole binding in N2SNi planes, a series of 

monodentate heterocycles was used to cleave dimeric precursors to produce monomeric 

square planar [N2SNiL]n+ complexes in order to better understand factors that influence 

the orientation of imidazole ligands found within a flexible coordination environment.   

The targeted monomeric square planar [N2SNiL]n+ complexes were designed to 

encompass different electronic and steric properties.  The differences in electronic 

makeup were governed by the pKa of the monodentate donor atom’s conjugate acid in 

each ligand. The steric character was altered in two ways: (1) the steric bulk of the 

monodentate donor atom; and (2), the substituent on the N-donor from the 

diazacycloheptane frame.    

The isolation of the target monomeric square planar [N2SNiL]n+ complexes and 

characterization by X-ray diffraction analysis revealed that regardless of the electronic or 

steric makeup, the plane of the monodentate ligand had a preference to orient in a nearly 

orthogonal position to the nickel square plane.  This result suggested that the orientation 

of the monodentate ligand was dictated largely by minimization of steric interactions of 
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the monodentate ligand with the steric constraints of N2SNi binding site that allowed a 

maximum σ-bonding interaction.  Nevertheless, in the case of the imidazole ligands, a 

slight deviation from orthogonality was observed, and this tilt directed the imidazole C-2 

C-H toward the S-thiolate atom. Furthermore, DFT computations suggested a minor 

electronic contribution between the imidazole C-2 C-Hδ+ and the Sδ- influenced the 

stability of the ground state and in the imidazole rotation process, the transition state 

structures.  The interaction was interpreted as an intramolecular donor/acceptor 

interaction.  This hypothesis was confirmed by computational studies which found that 

this type of donor-acceptor interaction was magnified in O-analogues, where coplanar 

arrangements in the ground state of N2ONimidNi complexes were predicted.   

That imidazoles can be involved in intramolecular donor-acceptor interactions 

has been previously observed.133-141  As mentioned in Chapter IV, a survey of the 

Cambridge data base found ten square planar nickel complexes containing a 

monodentate imidazole donor, but within different nickel first coordination sphere 

environments.  These compounds were prepared due to their ability to self-assemble in 

extended arrays originating from intermolecular H-bonding interactions and π-π stacking 

interactions.   The molecular structures of the NiII-Schiff base complexes containing hard 

O-donors cis to the unsubstituted imidazole monodentate ligand found the imidazole in a 

nearly coplanar orientation, with the C2 oriented towards the O-donor, consistent with 

our computational findings.  

Overall, our simple [N2SNiL]n+ systems containing imidazole ligands have 

proved, that much like the protein coordination environment, many factors, such as 
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steric bulk and internal electrostatic interactions, can affect the imidazole ligand 

orientation without disturbing the σ-bond between the Ni and the N-imidazole. As 

described in Chapter I, the ground state binding orientation of the His-imidazole has 

profound effects on the function of biomolecules particularly well studied.  The studies 

presented in this dissertation have expanded our knowledge of the fundamental 

coordination chemistry of square planar NxSyNi complexes containing imidazole 

ligands.  It is expected that preferences in orientation due to cis-O or cis-S donor atoms 

could eventually be recognized as having profound effects in nickel 

biomolecules/proteins.   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 157

REFERENCES 

 
1.  Mulrooney, S. B.; Hausinger, R. P. Microbiol. Rev. 2003, 27, 239-261. 

2.  Li, Y.; Zamble, D. B. Chem. Rev. 2009, 109, 4617-4643 and references therein. 

3.  McGee, D.J.; Mobley, H. L. T.; Curr. Top. Microbiol. Immunol. 1999, 241, 155-180.   

4.  Maier, R. J.; Fu, C.; Gilbert, J.; Moshiri, F.; Olson, J.; Plaut, A. G.; FEMS Microbiol. 

Lett. 1996, 141, 71-76.   

5. Olson, J. W.; Maier, R. J. Science 2002, 298, 1788-1790. 

6.  Blaser, M. J. J. Infect. Dis. 1990, 161, 626-633.   

7.  Covacci, A.; Telford, J. L.; Del Giudice, G.; Parsonnet, J.; Rappuoli, R. Science 1999, 

284, 1328-1333. 

8.  Sachs, G.; Weeks, D. L.; Melchers, K.; Scott, D. R. Annu. Rev. Physiol. 2003, 65, 

349-369. 

9.  Chakrabarti, S. K.; Bai, C.; Subramanian, K. S. Toxicol. Appl. Pharmocol. 2001, 170, 

153-165. 

10.  De Pina, K.; Desjardin, V.; Mandrand-Berthelot, M. A.; Giordano, G.; Wu, L. F. J. 

Bacteriol. 1999, 181, 670–674.   

11.  Chivers, P. T.; Sauer, R. T. J. Biol. Chem. 2000, 275, 19735–19741. 

12.  Dosanjh, N. S.; Michel, S. L. J. Curr. Opin. Chem. Biol. 2006, 10, 123-130. 

13.  Schreiter, E. R.; Wang, S. C.; Zamble, D. B.; Drennan, C. L  PNAS 2006,  103, 

13676-13681.  

14.  Scheiter, E. R.; Sintchak, M. D.; Guo, Y. Y.; Chivers, P. T.; Sauer, R. T.; Drennan, 

C. L. Nat. Struct. Biol. 2003, 10, 794-799. 



 158

15.  Bloom, S. L.; Zamble, D. B. Biochem. 2004, 43, 10029-10038. 

16.  Wang, S. C.; Dias, A. V.; Bloom, S. L.; Zamble, D. B. Biochem. 2004, 43, 10018–

10028.   

17.  Phillips, C. M.; Schreiter, E. R.; Guo, Y.; Wang, S. C.; Zamble, D. B.; Drennan, C. 

L. Biochem.  2008, 47, 1938-1946. 

19.  Miller, A.F. Comp. Coord. Chem. II. 2004, 8, 479-506. 

20.  Miller, A. F.; Sorkin, D.  Comm. Mol. Cell. Biophys. 1997, 9, 1-48. 

21.  McCord, J. M.  Methods in Enzymology 2002, 349, 331-341. 

22.  Noodleman, L.; Lovell, T.; Han, W.; Li, J.; Him, F. Chem. Rev. 2004, 104, 459- 508.  

23.  Barondeau, D. P.; Kassmann, C. J.; Bruns, C. K.; Tainer, J. A.; Getzoff, E. D. 

Biochem. 2004, 43, 8038-8047. 

24.  Wuerges, J.; Lee, J.; Yim, Y.; Yim, H.; Kang, S.; Carugo, K. D. PNAS. 2004, 101, 

8569-8574. 

25.  Darnault, C.; Volbeda, A.; Kim, E. J.; Legrand, P.; Vernede, X.; Lindahl, P. A.; 

Fontecilla-Camps, J. C. Nat. Struct. Biol. 2003, 10, 271-279. 

26.  Dokov, I. T.; Iverson, T. M.; Seravalli, J.; Ragsdale, S. W.; Drennan, C. L.  Science, 

2002, 298, 567-572. 

27.  Amara, P.; Fonticella-Camps, J. C.; Field, M. J. Am. Chem. Soc.  2005, 127, 2776-

2784. 

28.  Scheidt, W. R.; Chipman, D. M. J. Am. Chem. Soc. 1986, 108, 1163-1167. 

29.  Yatsunyk, L. A.; Dawson, A.; Carducci, M. D.; Nichol, G. S.; Walker, F. A. Inorg. 

Chem. 2006, 45, 5417-5428. 



 159

30.  Walker, F. A.; Huynh, B. H.; Scheidt, W. R.; Osvath, S. R. J. Am. Chem. Soc. 1986, 

108, 5288-5297. 

31.  Safo, M. K.; Walker, F. A.; Raitsimring, A. M.; Walters, W. P.; Dolata, D. P.; 

Debrunner, P. G.; Scheidt, W. R. J. Am. Chem. Soc. 1994, 116, 7760-7770. 

32.  Menyhárd, D. K.; Keserú, G. M. J. Am. Chem. Soc. 1998, 120, 7991-7992. 

33.  Safo, M. K.; Nesset, M. J. M.; Walker, F. A.; Debrunner, P. G.; Scheidt, W. R. J. 

Am. Chem. Soc. 1997, 119, 9438-9448. 

34.  Zaríc, S. D.; Popović, D. M.; Knapp, E-W. Biochem.  2001, 40, 7914-7928. 

35.  Galstyan, A. S.; Zaríc, S. D.; Knapp, E-W. J. Biol. Inorg. Chem. 2005, 10, 343-354. 

36.  Silvernail, N. J.; Roth, A.; Schulz, C. E.; Noll, B. C.; Scheidt, W. R. J. Am. Chem. 

Soc. 2005, 127, 14422-14433. 

37.  Collins, D. M.; Countryman, R.; Hoard, J. L. J. Am. Chem. Soc. 1972, 94, 2066-

2072. 

38.  Johnson, C. R.; Jones, C. M.; Asher, S. A.; Abola, J. E.  Inorg. Chem. 1991, 30, 

2120-2129. 

39.  Alessio, E.; Calligaris, M.; Iwamoto, M.; Marzilli, L. G. Inorg. Chem. 1996, 35, 

2538-2545. 

40.  Alessio, E.; Zangrando, E.; Roppa, R.; Marzilli, L. G. Inorg. Chem. 1998, 37, 2458-

2463. 

41.  Velders, A. H.; Hotze, A. C. G.; van Albada, G. A.; Haasnoot, J. G.; Reedijk, J.  

Inorg. Chem. 2000, 39, 4073-4080. 



 160

42.  Velders, A. H.; Quiroga, A. G.; Haasnoot, J. G.; Reedijk, J. Eur. J. Inorg. Chem. 

2003, 713-719. 

43.  Doyle, M. J.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1974, 679-680.   

44.  Herrmann, W. A.; Gooβen,  L. J.; Spiegler, M. J. Organomet. Chem. 1997, 547, 

357-366. 

45.  Weskamp, T.; Schattenmann, W. C.; Spiegler, M.; Herrmann, W. A. Angew. Chem. 

Int. Ed. 1998, 37 2490-2493.   

46.  Enders, D.; Gielen, H.  J. Organomet. Chem. 2001, 617-618, 70-80. 

47.  Chianese, A. R.; Li, X.; Janzen, M. C.; Faller, J. W.; Crabtree, R. H.  

Organometallics 2003, 22, 1663-1667. 

48.  Silva, L. C.; Gomes, P. T.; Veiros, L. F.; Pascu, S. I.; Duarte, M. T.; Namorado, S.; 

Ascenso, J. R.; Dias, A. R. Organometallics 2006, 25, 4391-4403. 

49.  Huang, J.; Schanz, H-J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 

2370-2375. 

50.  Mata, J. A.; Chianese, A. R.; Miecznikowski, J. R.; Poyatos, M.; Peris, E.; Faller, J. 

W.; Crabtree, R. H.  Organanometallics 2004, 23, 1253-1263. 

51.  Brissy, D.; Skander, M.; Retailleau, P.; Marinetti, A. Organometallics 2007, 26, 

5782-5785. 

52.  Huang, D.; Deng, L.; Sun, J.; Holm, R. H. Inorg. Chem. 2009, 48, 6159-6166.  

53. Wang, X.; Berry, S. M.; Xia, Y.; Lu, Y.  J. Am. Chem. Soc. 1999, 121, 7449-7450.   

54. Robinson, H.; Ang, M. C.; Gao, Y. G.; Hay, M. T.; Lu, Y.; Wang, A. H.-J. Biochem. 

1999, 38, 5677-5683 



 161

55.  WINEPR SIMFONIA version 1.25, Bruker Analytische Messtechnik GmbH, 1996. 

56.  SMART V5.632 Program for Data Collection on Area Detectors; Bruker AXS Inc.: 

Madison, WI, 1999. 

57.  FRAMBO:FRAME Buffer Operation Version 41.05 Program for Data Collection on 

Area Detectors; Bruker AXS Inc.: Madison, WI, 1999. 

58.  SAINT V6.63 Program for Reduction of Area Detector Data; ; Bruker AXS Inc.: 

Madison, WI, 1999. 

59.  Sheldrick, G. SADABS Program for Absorption Correction Area Detector Frames; 

Bruker AXS Inc.: Madison, WI, 1999. 

60.  Sheldrick, G. SHELXTL-PLUS, Version 4.11V, SHELXTL-PLUS Users Manual; 

Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1990. 

61.  Sheldrick, G. SHELXS-97, Program for Crystal Structure Solution; Institut fur 

Anorganische Chemie der Universitat Gottingen: Gottingen, Germany, 1997. 

62.  Sheldrick, G. SHELXL-97, Program for Crystal Structure Refinement; Institut fur 

Anorganische Chemie der Universitat Gottingen: Gottingen, Germany, 1997. 

63.  Barbour, L. J. J. Supramol. Chem. 2001, 1, 189-191. 

64.  Cerius2, version 4.10; Accelrys Inc.: San Diego, CA, 2007. 

65.  Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. 

66.  Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 37, 785–789. 

67.  All calculations were carried out with the Gaussian 03 program: Frisch, M. J.; 

Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 

Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; 



 162

Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, 

N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; 

Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; 

Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, 

J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, 

C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; 

Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; 

Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, 

J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; 

Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-

Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; 

Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, 

Revision B.04; Gaussian, Inc.: Wallingford, CT, 2004. 

67.  Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H.  J. Chem. Phys. 1987, 86, 866-872. 

68.  Hay, P. J.; Wadt, W. R.  J. Chem. Phys. 1985, 82, 284–398. 

69.  Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270–283. 

70.  Hŏllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; 

Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 

208, 237–240. 

71.  Dunning, Jr. T. H. J. Chem. Phys. 1989, 90, 1007-1023. 

72.  Hehre, W. J.; Ditchfield, R.; Pople, J. A.  J. Chem. Phys. 1972, 56, 2257-2261. 

73.  Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222. 



 163

74.  The d’,p’ functions are the exponents from the 6-311G(d,p) basis set: Krishnan, R.; 

Binkley, J. S.; Seeger, R.; Pople, J. A.  J. Chem. Phys. 1980, 72, 650-654. 

75.  Peng, C.; Schlegel, H. B. Isr. J. Chem. 1993, 33, 449–454. 

76.  Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17, 

49–56. 

77. Farmer, P. J.; Reibenspies, J. H.; Lindahl, P. A.; Darensbourg, M. Y. J. Am. Chem. 

Soc. 1993, 115, 4665-4674. 

78. Musie, G.; Farmer, P. J.; Tuntulani, T.; Reibenspies, J. H.; Darensbourg, M. Y.  

Inorg. Chem. 1996, 35, 2176-2183. 

79. Smee, J. J.; Miller, M. L.; Grapperhaus, C. A.; Reibenspies, J. H.; Darensbourg, M. 

Y.  Inorg. Chem. 2001, 40, 3601-3605.   

80. Golden, M. L.; Whaley, C. M.; Rampersad, M. V.; Reibenspies, J. H.; Hancock, R. 

D.; Darensbourg, M. Y.  Inorg. Chem. 2005, 44, 875-883. 

81.  Green, K. N.; Brothers, S. M.; Jenkins, R. M.; Carson, C. E.; Grapperhaus, C. A.; 

Darensbourg, M. Y. Inorg. Chem. 2007, 46, 7536-7544. 

82.  Kruger, H.-J.; Peng, G.; Holm, R. H. Inorg. Chem. 1991, 30, 734-742.   

83. Sellmann, D.; Prechtel, W.; Knoch, F.; Moll, M. Z. Naturforsch. (B) 1992, 47, 1411-

1423. 

84. Wang, Q.; Blake, A. J.; Davies, E. S.; McInnes, E. J. L.; Wilson, C.; Schroder, M. 

Chem. Commun. 2003, 3012-3013. 

85. Hatlevik, O.; Blanksma, M. C.; Mathrubootham, V.; Arif, A. M.; Hegg, E. L.  J. 

Biol. Inorg. Chem. 2004, 9, 238-246.   



 164

86. Grapperhaus, C. A.; Mullins, C. S.; Kozlowski, P. M.; Mashuta, M. S.  Inorg. Chem. 

2004, 43, 2859-2866.   

87. Krishnan, R.; Riordan, C. G. J. Am. Chem. Soc. 2004, 126, 4484-4485. 

88. Bouwman, E.; Reedijk, J. Coord. Chem. Rev. 2005, 249, 1555-1581. 

89. Chohan, B. S.; Maroney, M. J. Inorg. Chem. 2006, 45, 1906-1908. 

90. Harrop, T. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 2006, 45, 3424-

3436.   

91. Rauchfuss, T. B. Science 2007, 316, 553-554.   

92. Shearer, J.; Dehestani, A.; Abanda, F. Inorg. Chem. 2008, 47, 2649-2660. 

93. Sugiura,Y.; Hirayama, Y. J. Am. Chem. Soc. 1977, 99, 1581–1585. 

94.  Sugiura, Y. Inorg. Chem. 1978, 17, 2176–2182. 

95. Tesfai, T. M.; Green, B. J.; Margerum, D. W. Inorg. Chem. 2004, 43, 6726-6733. 

96. Burrows, C. J.; Perez, R. J.; Muller, J. G.; Rokita, S. E. Pure Appl. Chem. 1998, 70, 

275-278. 

97. Ross, S. A.; Burrows, C. J.  Inorg. Chem. 1998, 37, 5358-5363. 

98. Van Horn, J. D.; Bulaj, G.; Goldenberg, D. P.; Burrows, C. J. J. Biol. Inorg. Chem. 

2003, 8, 601-610.   

99.  Hass, K. L.; Franz, K. J.  Chem. Rev.  2009, 109, 4921-4960. 

100. Fiedler, A. T.; Bryngelson, P. A.; Maroney, M. J.; Brunold, T. C. J. Am. Chem. Soc. 

2005, 127, 5449-5462.   

101.  Mullins, C. S.; Grapperhaus, C. A.; Kozlowski, P. M.  J. Biol. Inorg. Chem. 2006, 

11, 617-625.     



 165

102.  Shearer, J.; Long, L. M. Inorg. Chem. 2006, 45, 2358-2360.  

103.  Shearer, J.; Zhao, N. Inorg. Chem. 2006, 45, 9637-9639. 

104.  Ma, H.; Cattopadhyay, S.; Petersen, J. L.; Jensen, M. P. Inorg. Chem.  2008, 47, 

7966-7968. 

105.  Neupane, K. P.; Shearer, J. Inorg. Chem. 2006, 45, 10552-10566. 

106. Pelmenschikov, V.; Seigbahn, P. E. M. J. Am. Chem. Soc. 2006, 128, 7466-7475. 

107. Neupane, K. P.; Gearty, K.; Francis, A.; Shearer, J. J. Am. Chem. Soc. 2007, 129, 

14605-14618. 

108. Snyder, H. R.; Stewart, J. M.; Aeigler, J. B. J. Am. Chem. Soc. 1947, 69, 2672. 

109. Rosen, T.; Nagel, A. A.; Rizzi, J. P.; Ives, J. L.; Daffeh, J. B.; Ganong, A. H.; 

Guarino, K.; Heym, J.; McLean, S.; Nowakowski, J. T.; Schmidt, A. W.; Seeger, 

T. F.; Siok, C. J.; Vincent, L. A. J. Med. Chem. 1990, 33, 2715-2720. 

110.  Grapperhaus, C. A.; Bellefuille, J. A.; Reipenspies, J. H.; Darensbourg, M. Y. 

Inorg. Chem. 1999, 38, 3698-3703. 

111. Du, M.; Guo, Y. M.; Bu, X. H.; Ribas, J.; Monfort, M. New J. Chem. 2002, 26, 939-

945. 

112. Guo, Y. M.; Du, M.; Bu, X. H. Inorg. Chim. Acta 2005, 358, 1887-1896. 

113. Colpas, G. J.; Kumar, M.; Day, R. O.; Maroney, M. J. Inorg. Chem. 1990, 29, 

4779-4788. 

114. Linck, R. C.; Spahn, C. W.; Rauchfuss, T. B.; Wilson, S. R.  J. Am. Chem. Soc. 

2003, 125, 8700-8701.   

115. Rao, P. V.; Bhaduri, S.; Jiang, J.; Holm, R. H. Inorg. Chem. 2004, 43, 5833-5849.    



 166

116.  Redin, K.; Wilson, A. D.; Newell, R.; DuBois, M. R.; DuBois, D. L. Inorg. Chem. 

2007, 46, 1268-1276. 

117.  Kruger, H.-J.; Holm, R. H. Inorg. Chem. 1989, 28, 1148-1155. 

118. Mirza, S. A.; Pressler, M. A.; Kumar, M.; Day, R. O.; Maroney, M. J. Inorg. Chem. 

1993, 32, 977-987.   

119. Sellman, D.; Prechtel, W.; Knoch, F.; Moll, M. Inorg. Chem. 1993, 32, 538-546. 

120. Sellman, D.; Huabinger, D.; Heinemann, F. W.  Eur. J. Inorg. Chem. 1999, 1715-

1725.   

121. Blinn, E.; Busch, D. H.  J. Am. Chem. Soc. 1968, 90, 4280-4285. 

122. Musie, G.; Reibenspies, J. H.; Darensbourg, M. Y.  Inorg. Chem. 1998, 37, 302-

310. 

123. Goodman, D. C.; Reibenspies, J. H.; Goswami, N.; Jurisson, S.; Darensbourg, M. 

Y. J. Am. Chem. Soc. 1997, 119,  4955-4963. 

124.  Smee, J. J.; Goodman, D. C.; Reibenspies, J. H.; Darensbourg, M. Y.  Eur. J. 

Inorg. Chem. 1999, 539-546. 

125.  Geary, W. J. Coord. Chem. Rev. 1971, 7, 81-122. 

126.  Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier. 

127.  Greenwald, R. A. CRC Handbook of Methods for Oxygen Radical Research, CRC 

Press, Boca Raton, 1985, 65-69. 

128.  Kolb, H. C.; Andersson, P. G.; Sharpless, K. B. J. Am. Chem. Soc. 1994, 116, 

1278-1291. 



 167

129.  Evans, D. A.; Campos, K. R.; Tedrow, J. S.; Michael, F. E.; Gagné, M. R. J. Am. 

Chem. Soc. 2000, 122, 7905-7920. 

130.  Leitner, A.; Shekhar, S.; Pouy, M. J.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 

15506-15514. 

131.  Jenkins, R. M.; Singleton, M. L.; Almaraz, E.; Reibenspies, J. H.; Darensbourg, M. 

Y.  Inorg. Chem.  2009, 48, 7280-7293. 

132.  Gale, E. M.; Patra, A. K.; Harrop, T. C. Inorg. Chem. 2009, 48, 5620-5622. 

133.  Gou, S.; You, X.; Xu, Z.; Zhou, Z.; Yu, K.  Polyhedron 1991, 10, 2659-2663. 

134.  Mukhopadhyay, A.; Padmaja, G.; Pal, S.; Pal, S.  Inorg. Chem. Commun. 2003, 6, 

381-386.  

135.  Ray, M. S.; Ghosh, A.; Mukhopadhyay, G.; Drew, M. G. B. J. Coord. Chem. 2003, 

56, 1141-1148. 

136.  Zhang, H.-H. Acta Cryst. 2006, E62, m3110-m3111. 

137.  Mukhopadhyay, A.; Pal, S. Eur. J. Inorg. Chem. 2006, 4879-4887. 

138.  Chen, P.-K.; Shen, X.-Q.; Ge, C.-Y.; Kou, J.-F.; Zhang, H.-Y.; Hou, H.-W.; Zhu, 

Y. Synth. React. Inorg. Met-Org. Nano-Met. Chem. 2006, 36, 603-607. 

139.  Zhang, Q. L.; Zhu, B. X. J. Coord. Chem. 2008, 61, 2340-2346. 

140.  Chen, X.-H. Acta Cryst. 2008, E64, m1253. 

141.  Salem, N. M. H.; El-Sayed, L.; Iskander, M. F. Polyhedron 2008, 27, 3215-3226. 

142.  Chu, Y.; Deng, H.; Cheng, J.-P. J. Org. Chem. 2007, 72, 7790-7793. 

143.  Lide, D. R. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fl., 

2000, 8-46 to 56.  



 168

144.  Lenarcik, B.; Ojczenasz, P. J. Heterocyclic Chem. 2002, 39, 287-290. 

145.  Amyes, T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K. J. Am. Chem. Soc. 

2004, 126, 4366-4374. 

146.  Fackler, J. P., Jr. Prog. Inorg. Chem. 1976, 21, 55-90. 

147.  Gusev, D. G. Organometallics 2009, 28, 6458-6461. 

148.  Tolman, C. A. Chem. Rev. 1977, 77, 313-348. 

149.  Rodrìguez-Argüelles, M. C.; Ferrari, M. B.; Bisceglie, F.; Pelizzi, C.; Pelosi, G.; 

Pinelli, S.; Sassi, M.  J. Inorg. Biochem. 2004, 98, 313-321. 

150. Henze, M. Hoppe-Seyler’s Z. Physiol. Chem. 1911, 72, 494-501.  

151. Smith, M. J.; Kim, D.; Horenstein, B.; Nakanishi, K.; Kustin, K. Acc. Chem. Res. 

1991, 24, 117-124. 

152.  Rehder, D.  Angew. Chem. Int. Ed. Engl. 1991, 30, 148-167 and references therein. 

153.  Slebodnick, C.; Hamstra, B. J.; Pecoraro, V. L.  Struct. Bond. 1997, 89, 51-108 and 

references therein.   

154.  Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L.  Chem. Rev. 2004, 104, 849-

902 and references therein. 

155.  ter Meulen, H. Recl. Trav. Chim. Pays-Bas. 1931, 50, 491-504. 

156.  Bayer, E.; Kneifel, H. Z. Naturforsch. 1972, 27, 207. 

157.  Cantley, Jr., L. C.; Josephson, L.; Warner, R.; Yanagisawa, M.; Lechene, C.; 

Guidotti, G.  J. Biol. Chem. 1977, 252, 7421-7423.   

158.  Josephson, L.; Cantley, C. Biochem.  1977, 16, 4572-4578. 

159.  Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937-1944 and references therein. 



 169

160.  Eady, R. R. Vanadium Nitrogenases. In: Chasteen, N. D. (ed) Vanadium in 

Biological Systems. 1990, Kluwer, Boston, p. 99. 

161. Nielsen, F. H. FASEB J. 1991, 5, 2661-2667. 

162.  Thompson, K. H.; Orvig, C. Coord. Chem. Rev. 2001, 219-221, 1033-1053 and 

references therein.  

163.  Shechter, Y.; Goldwaser, I.; Mironchik, M.; Fridkin, M.; Gefel, D. Coord. Chem. 

Rev. 2003, 237, 3-11 and references therein. 

164.  Thompson, K. H.; Lichter, J.; LeBel, C.; Scaife, M. C.; McNeill, J. H.; Orvig, C. J. 

Inorg. Biochem. 2009, 103, 554-558. 

165.  Thompson, K. H.; Liboiron, B. D.; Sun, Y.; Bellman, K. D. D.; Setyawati, I. A.; 

Patrick, B. O.; Karunaratne, V.; Rawji, G.; Wheeler, J.; Sutton, K.; Bhanot, S.; 

Cassidy, C.; McNeill, J. H.; Yen, V. G.; Orvig, C. J. Biol. Inorg. Chem. 2003, 8, 

66-74.  

166.  Zhang, S.-Q.; Zhong, X.-Y.; Chen, G.-H.; Lu, W.-L.; Zhang, Q.; J. Pharm. 

Pharmacol. 2008, 60, 99-105. 

167.  Kiss, T.; Jakusch, T.; Hollender, D.; Dörnyei, A.; Enyedy, E. A.; Costa Pessoa, J.; 

Sakurai, H.; Sanz-Medel, A. Coord. Chem. Rev. 2008, 252, 1153-1162 and 

references therein. 

168.  Monga, V.; Thompson, K. H.; Yuen, V. G.; Sharma, V.; Patrick, B. O.; McNeill, J. 

         H.; Orvig, C.  Inorg. Chem.  2005, 44, 2678-2688. 

169.  Tasiopoulos, A. J.; Troganis, A. N.; Evangelou, A.; Raptopoulou, C. P.; Terzis, A.; 

Deligiannakis, Y.; Kabanos, T. A. Chem. Eur. J. 1999, 5, 910-921. 



 170

170.  Tasiopoulos, A. J.; Troganis, A. N.; Deligiannakis, Y.; Evangelou, A.; Kabanos, T. 

A.; Woollins, D.; Slawin, A.  J. Inorg. Biochem.  2000, 79, 159-166. 

171.  Sakurai, H.; Taira, Z.-E.; Sakai, N. Inorg. Chim. Acta  1988, 151, 85-86. 

172.  Hazari, S. K. S.; Kopf, J.; Palit, D.; Rakshit, S.; Rehder, D.  Inorg. Chim. Acta 

2009, 362, 1343-1347. 

173. Farchione, D.; Wedd, A. G.; Tiekink, E. R. T. Acta Cryst. 1991, C47, 650-651.   

174.  Dutton, J. C.; Fallon, G. D.; Murray, K. S. Inorg. Chem. 1988, 27, 34-38. 

175.  Margerum, D. W. Pure Appl. Chem. 1983, 55, 23 and references therein.   

176.  Laussac, J.-P.; Sarkar, B.  Biochem. 1984, 23, 2832-2838. 

177.  Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, m.; 

Yohda, M.; Kamiya, N.; Endo, I.  Nat. Struct. Biol. 1998, 5, 347-351. 

178.  Cremo, C. R.; Loo, J. A.; Edmonds, C. G.; Hatlelid, K. M.  Biochem., 1992, 31, 

491-497. 

179.  Hanson, G. R.; Kabanos, T. A.; Keramidas, A. D.; Mentzafos, D.; Terzis, A. Inorg. 

Chem. 1992, 31, 2587-2594.   

180.  Cornman, C. R.; Zovinka, E. P.; Boyajian, Y. D.; Geiser-Bush, K. M.; Boyle, P. 

D.; Singh, P.  Inorg. Chem. 1995, 34, 4213-4219.   

181.  Borovik, A. S.; Dewey, T. M.; Raymond, K. N.  Inorg. Chem. 1993, 32, 413-421. 

182.  Keramidas, A. D.; Papaioannou, A. B.; Vlahos, A.; Kabanos, T. A.; Bonas, G.; 

Makriyannis, A.; Rapropoulou, C. P.; Terzis, A.  Inorg. Chem.  1996, 35, 357-367. 

183. Green, K. N.; Brothers, S. M.; Lee, B.; Darensbourg, M. Y.; Rockcliffe, D. A.  

Inorg. Chem. 2009, 48, 2780-2792. 



 171

184.  Almaraz, E.; Foley, W. S.; Denny, J. A.; Reibenspies, J. H.; Golden, M. L.; 

Darensbourg, M. Y. Inorg. Chem. 2009, 48, 5288-5295. 

185. Hess, J. L.; Conder, H. L.; Green, K. N.; Darensbourg, M. Y.   Inorg. Chem. 2008,  

47,  2056-2063.   

186.  Buonomo, R. M.; Goodman, D. C.; Musie, G.; Grapperhaus, C. A.; Maguire, M. J.; 

Lai, C.-H.; Hatley, M. L.; Smee, J. J.; Bellefeuille, J. A.; Darensbourg, M. Y.  

Inorg. Syn.  1998,  32,  89-98.   

187. Darensbourg, M. Y.; Font, I.; Pala, M.; Reibenspies, J. H. J. Coord. Chem. 1994, 

32, 39-49. 

188.  D. J. Darensbourg, R. L. Kump, Inorg. Chem. 1978, 17, 2680-2682. 

189. Hatley, M. L. Masters Thesis  “The Vanadyl Complex of N,N’-bis(2-

mercaptoethyl)-1,5-diazacyclooctane” 1997, pg 16-18. 

190. Green, K. G.; Jeffery, S. P.; Reibenspies, J. H.; Darensbourg, M. Y.  J. Am. Chem. 

Soc.  2006, 128, 6493-6498. 

191. Selbin, J. Chem. Rev. 1965, 65, 153-175. 

192. Selbin, J. Coord. Chem. Rev.  1966, 1, 293-314. 

193.  Money, J. K.; Huffman, J. C.; Christou, G.  Inorg. Chem. 1985, 24, 3297-3302. 

194.  Klich, P. R.; Daniher, A. T.; Challen, P. R.; McConville, D. B.; Youngs, W. J.  

Inorg. Chem.  1996, 35, 347-356. 

195.  Jezierski, A.; Raynor, J. B.  J. Chem. Soc., Dalton Trans.  1981, 1-7. 



 172

196. Rampersad, M. V.; Jeffery, S. P.; Golden, M. L.; Lee, J.; Reibenspies, J. H.; 

Darensbourg, D. J.; Darensbourg, M. Y. J. Am. Chem. Soc. 2005, 127, 17323-

17334. 

197. Phelps, A. L.; Rampersad, M. V.; Fitch, S. B.; Darensbourg, M. Y.; Darensbourg, 

D. J. Inorg. Chem. 2006, 45, 119-126. 

198. Rampersad, M. V.; Jeffery, S.P.; Reibenspies, J. H.; Ortiz, C. G.; Darensbourg, D. 

J.; Darensbourg, M. Y. Angew. Chem., Int. Ed.  2005, 44, 1217-1220. 

199. Cotton, F. A.; Kraihanzel, C. S. J. Am. Chem. Soc. 1962, 84, 4432-4438. 

200.  Gelinsky, M.; Vogler, R.; Vahrenkamp, H.  Inorg. Chem. 2002 41, 2560-2564 

201.  Mullins, C. S.; Grapperhaus, C. A.; Frye, B. C.; Wood, L. H.; Hay, A. J.; 

Buchanan, R. M.; Mashuta, M. S.  Inorg. Chem.  2009, 48, 9974-9976. 

202.  Kaasjager, V. E.; Bouwnan, E.; Gorter, S.; Reedjik, J.; Grapperhaus, C. A.; 

Reibenspies, J. H.; Smee, J. J.; Darensbourg, M. Y.; Derecskei-Kovas, A.; 

Thomson, L. M. Inorg. Chem. 2002, 41, 1837-1844 and references therein. 

203.  Shearer, J.; Neupane, K. P.; Callan, P. E. Inorg. Chem., 2009, 48, 10560–10571 

and references therein. 

204.  Krause, M. E.; Glass, A. M.; Jackson, T. A.; Laurence, J. S. Inorg. Chem. 2010, 

49, 362-364. 

 
 
 
 
 
 
 
 



 173

APPENDIX  
 

CRYSTALLOGRAPHIC DATA FOR STRUCTURES 
 

 
 

[(me-mdach)Ni]2(BF4)2 [(me-mdach)-NiCl]2 

[(mmp-mdach)Ni(Im)]Cl [Ni-1’(CH2-mIm)]Cl 

[(bmIme-dach)Ni](BF4)2
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py-[(mmp-mdach)Ni]2[BF4]2 mIm-[(mmp-mdach)Ni]2[BF4]2 

[(mmp-mdach)Ni(mIm)][BF4] [(mmp-mdach)Ni(ipIm)][BF4] 

[(mmp-mdach)Ni(me2NHC)][I] Im-[(mmp-dach)Ni]2[BF4]2 

 
 



 175

[(bme-dach)(V=O)] 
[(bme-daco)(V=O)] 

[Et4N]2[(V=O)(ema)]

 
 

 

 

 

 

 

 

 

 

 

 

 

Table A-1.  Crystal data and structure refinement for [(me-mdach)Ni]2(BF4)2. 
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Empirical formula  C16 H34 Cl2 N4 Ni2 S2 

Formula weight  534.91 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 7.599(3) Å   α= 90°. 

 b = 8.361(3) Å β = 102.236(6)°. 

 c = 17.927(6) Å γ = 90°. 

Volume 1113.1(7) Å3 

Z 2 

Density (calculated) 1.596 Mg/m3 

Absorption coefficient 2.128 mm-1 

F(000) 560 

Crystal size 0.15 x 0.13 x 0.12 mm3 

Theta range for data collection 4.02 to 24.99°. 

Index ranges -9<=h<=9, -9<=k<=9, -21<=l<=21 

Reflections collected 8046 

Independent reflections 1899 [R(int) = 0.0549] 

Completeness to theta = 24.99° 97.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7843 and 0.7408 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1899 / 0 / 119 

Goodness-of-fit on F2 1.155 

Final R indices [I>2sigma(I)] R1 = 0.0597, wR2 = 0.1337 

R indices (all data) R1 = 0.0690, wR2 = 0.1369 

Largest diff. peak and hole 0.730 and -0.462 e.Å-3 

 

 

 

 

Table B2.   Bond lengths [Å] and angles [°] for [(me-mdach)Ni]2(BF4)2. 
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_____________________________________________________  

Ni(1)-N(1)  2.084(5) 

Ni(1)-N(2)  2.144(5) 

Ni(1)-Cl(1)  2.3315(17) 

Ni(1)-S(1)#1  2.3461(18) 

Ni(1)-S(1)  2.3693(17) 

S(1)-C(1)  1.829(6) 

S(1)-Ni(1)#1  2.3461(18) 

N(1)-C(2)  1.468(8) 

N(1)-C(6)  1.487(8) 

N(1)-C(3)  1.491(8) 

N(2)-C(8)  1.463(8) 

N(2)-C(7)  1.478(7) 

N(2)-C(5)  1.505(9) 

C(1)-C(2)  1.520(8) 

C(3)-C(4)  1.501(9) 

C(4)-C(5)  1.523(9) 

C(6)-C(7)  1.562(8) 

N(1)-Ni(1)-N(2) 77.3(2) 

N(1)-Ni(1)-Cl(1) 144.45(15) 

N(2)-Ni(1)-Cl(1) 92.91(14) 

N(1)-Ni(1)-S(1)#1 100.60(15) 

N(2)-Ni(1)-S(1)#1 96.77(15) 

Cl(1)-Ni(1)-S(1)#1 114.57(6) 

N(1)-Ni(1)-S(1) 86.66(14) 

N(2)-Ni(1)-S(1) 162.82(15) 

Cl(1)-Ni(1)-S(1) 96.61(6) 

S(1)#1-Ni(1)-S(1) 92.25(5) 

C(1)-S(1)-Ni(1)#1 104.6(2) 

C(1)-S(1)-Ni(1) 96.53(19) 

Ni(1)#1-S(1)-Ni(1) 87.75(5) 

C(2)-N(1)-C(6) 110.0(5) 

C(2)-N(1)-C(3) 111.7(5) 

 

Table B-2 (continuted) 
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C(6)-N(1)-C(3) 111.4(5) 

C(2)-N(1)-Ni(1) 111.6(3) 

C(6)-N(1)-Ni(1) 107.1(3) 

C(3)-N(1)-Ni(1) 104.7(4) 

C(8)-N(2)-C(7) 110.5(5) 

C(8)-N(2)-C(5) 109.2(5) 

C(7)-N(2)-C(5) 110.2(5) 

C(8)-N(2)-Ni(1) 114.0(4) 

C(7)-N(2)-Ni(1) 105.8(4) 

C(5)-N(2)-Ni(1) 107.0(4) 

C(2)-C(1)-S(1) 111.3(4) 

N(1)-C(2)-C(1) 111.8(5) 

N(1)-C(3)-C(4) 113.7(5) 

C(3)-C(4)-C(5) 114.7(5) 

N(2)-C(5)-C(4) 112.7(5) 

N(1)-C(6)-C(7) 111.6(5) 

N(2)-C(7)-C(6) 111.1(5) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y+1,-z+1       
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Table B-3.  Crystal data and structure refinement for [(me-mdach)-NiCl]2. 

 

Empirical formula  C8 H17 B F4 N2 Ni S 

Formula weight  318.82 

Temperature  110(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2 

Unit cell dimensions a = 10.1120(16) Å α= 90°. 

 b = 19.466(3) Å β= 90°. 

 c = 6.0785(9) Å γ = 90°. 

Volume 1196.5(3) Å3 

Z 4 

Density (calculated) 1.770 Mg/m3 

Absorption coefficient 4.293 mm-1 

F(000) 656 

Crystal size 0.20 x 0.20 x 0.01 mm3 

Theta range for data collection 4.54 to 59.96°. 

Index ranges -9<=h<=11, -20<=k<=21, -6<=l<=6 

Reflections collected 7385 

Independent reflections 1597 [R(int) = 0.1327] 

Completeness to theta = 59.96° 92.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9583 and 0.4806 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1597 / 268 / 238 

Goodness-of-fit on F2 1.024 

Final R indices [I>2sigma(I)] R1 = 0.0650, wR2 = 0.1469 

R indices (all data) R1 = 0.0927, wR2 = 0.1578 

Absolute structure parameter 0.0(3) 

Largest diff. peak and hole 1.550 and -0.431 e.Å-3 
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Table B-4.   Bond lengths [Å] and angles [°] for [(me-mdach)-NiCl]2. 

_____________________________________________________  

Ni(1)-N(2)  1.914(8) 

Ni(1)-N(1)  1.923(8) 

Ni(1)-S(1')  2.106(17) 

Ni(1)-S(1')#1  2.288(17) 

Ni(1)-S(1)  2.069(19) 

Ni(1)-S(1)#1  2.245(16) 

Ni(1)-Ni(1)#1  2.837(3) 

S(1)-C(1)  1.800(17) 

S(1)-Ni(1)#1  2.245(16) 

S(1')-C(1')  1.785(17) 

S(1')-Ni(1)#1  2.288(17) 

N(1)-C(8')  1.499(18) 

N(1)-C(3)  1.503(12) 

N(1)-C(6)  1.520(12) 

N(1)-C(2)  1.53(2) 

N(2)-C(5)  1.464(12) 

N(2)-C(8)  1.523(19) 

N(2)-C(7)  1.529(11) 

N(2)-C(2')  1.542(18) 

C(1)-C(2)  1.53(2) 

C(1')-C(2')  1.53(2) 

C(3)-C(4)  1.552(14) 

C(4)-C(5)  1.509(13) 

C(6)-C(7)  1.495(14) 

B13-F43  1.353(18) 

B13-F13  1.359(13) 

B13-F33  1.378(16) 

B13-F23  1.410(15) 

B14-F44  1.354(18) 

B14-F14  1.358(14) 

B14-F34  1.378(17) 

B14-F24  1.409(15) 
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Table B-4 (continued) 

 

N(2)-Ni(1)-N(1) 83.6(3) 

N(2)-Ni(1)-S(1') 95.7(4) 

N(1)-Ni(1)-S(1') 177.8(6) 

N(2)-Ni(1)-S(1')#1 176.4(5) 

N(1)-Ni(1)-S(1')#1 99.7(4) 

S(1')-Ni(1)-S(1')#1 81.1(6) 

N(2)-Ni(1)-S(1) 178.3(6) 

N(1)-Ni(1)-S(1) 96.4(5) 

S(1')-Ni(1)-S(1) 84.2(5) 

S(1')#1-Ni(1)-S(1) 4.6(8) 

N(2)-Ni(1)-S(1)#1 100.5(4) 

N(1)-Ni(1)-S(1)#1 175.4(5) 

S(1')-Ni(1)-S(1)#1 6.4(9) 

S(1')#1-Ni(1)-S(1)#1 76.2(5) 

S(1)-Ni(1)-S(1)#1 79.6(6) 

N(2)-Ni(1)-Ni(1)#1 129.5(2) 

N(1)-Ni(1)-Ni(1)#1 129.3(2) 

S(1')-Ni(1)-Ni(1)#1 52.7(5) 

S(1')#1-Ni(1)-Ni(1)#1 47.0(4) 

S(1)-Ni(1)-Ni(1)#1 51.6(4) 

S(1)#1-Ni(1)-Ni(1)#1 46.3(5) 

C(1)-S(1)-Ni(1) 96.2(10) 

C(1)-S(1)-Ni(1)#1 118.3(10) 

Ni(1)-S(1)-Ni(1)#1 82.1(6) 

C(1')-S(1')-Ni(1) 96.7(9) 

C(1')-S(1')-Ni(1)#1 118.1(11) 

Ni(1)-S(1')-Ni(1)#1 80.3(6) 

C(8')-N(1)-C(3) 108.1(11) 

C(8')-N(1)-C(6) 102.4(10) 

C(3)-N(1)-C(6) 112.1(8) 

C(8')-N(1)-C(2) 20.6(10) 

C(3)-N(1)-C(2) 111.4(14) 

C(6)-N(1)-C(2) 117.3(11) 
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Table B-4 (continued) 

 

C(8')-N(1)-Ni(1) 122.4(9) 

C(3)-N(1)-Ni(1) 108.6(6) 

C(6)-N(1)-Ni(1) 102.9(6) 

C(2)-N(1)-Ni(1) 103.4(10) 

C(5)-N(2)-C(8) 118.5(13) 

C(5)-N(2)-C(7) 109.6(7) 

C(8)-N(2)-C(7) 98.2(10) 

C(5)-N(2)-C(2') 107.9(12) 

C(8)-N(2)-C(2') 21.8(9) 

C(7)-N(2)-C(2') 120.0(10) 

C(5)-N(2)-Ni(1) 107.2(6) 

C(8)-N(2)-Ni(1) 116.9(12) 

C(7)-N(2)-Ni(1) 105.1(6) 

C(2')-N(2)-Ni(1) 106.4(9) 

C(2)-C(1)-S(1) 101.8(16) 

N(1)-C(2)-C(1) 113.2(15) 

C(2')-C(1')-S(1') 105.1(13) 

C(1')-C(2')-N(2) 114.3(14) 

N(1)-C(3)-C(4) 113.8(8) 

C(5)-C(4)-C(3) 112.1(9) 

N(2)-C(5)-C(4) 117.8(8) 

C(7)-C(6)-N(1) 111.5(8) 

C(6)-C(7)-N(2) 109.3(8) 

F43-B13-F13 112.1(13) 

F43-B13-F33 108.2(12) 

F13-B13-F33 110.2(12) 

F43-B13-F23 108.7(12) 

F13-B13-F23 110.0(10) 

F33-B13-F23 107.4(12) 

F44-B14-F14 111.6(14) 

F44-B14-F34 107.9(13) 

F14-B14-F34 110.3(13) 

F44-B14-F24 108.9(13) 
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Table B-4 (continued) 

 

F14-B14-F24 110.3(11) 

F34-B14-F24 107.8(13) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x,-y,z       
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Table B-5.  Crystal data and structure refinement for [(mmp-mdach)Ni(Im)]Cl. 

 

Empirical formula  C14 H29 Cl N4 Ni O S 

Formula weight  395.63 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pna2(1) 

Unit cell dimensions a = 9.954(3) Å α= 90°. 

 b = 21.542(8) Å β = 90°. 

 c = 9.090(3) Å γ= 90°. 

Volume 1949.3(11) Å3 

Z 4 

Density (calculated) 1.348 Mg/m3 

Absorption coefficient 1.246 mm-1 

F(000) 840 

Crystal size 0.30 x 0.10 x 0.10 mm3 

Theta range for data collection 2.43 to 25.00°. 

Index ranges -11<=h<=7, -25<=k<=24, -6<=l<=10 

Reflections collected 4018 

Independent reflections 2350 [R(int) = 0.0956] 

Completeness to theta = 25.00° 93.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8856 and 0.7063 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2350 / 192 / 207 

Goodness-of-fit on F2 1.020 

Final R indices [I>2sigma(I)] R1 = 0.0634, wR2 = 0.1046 

R indices (all data) R1 = 0.1162, wR2 = 0.1205 

Absolute structure parameter 0.00(4) 

Largest diff. peak and hole 0.858 and -0.577 e.Å-3 
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Table B-6.   Bond lengths [Å] and angles [°] for [(mmp-mdach)Ni(Im)]Cl. 

_____________________________________________________  

Ni(1)-N(3)  1.888(9) 

Ni(1)-N(1)  1.897(10) 

Ni(1)-N(2)  1.949(10) 

Ni(1)-S(1)  2.149(3) 

N(1)-C(2)  1.489(15) 

N(1)-C(6)  1.517(17) 

N(1)-C(3)  1.577(14) 

C(1)-C(10)  1.390(17) 

C(1)-C(2)  1.528(15) 

C(1)-C(9)  1.607(16) 

C(1)-S(1)  1.852(12) 

N(2)-C(5)  1.337(16) 

N(2)-C(7)  1.468(17) 

N(2)-C(8)  1.623(17) 

N(3)-C(13)  1.342(12) 

N(3)-C(11)  1.372(13) 

C(3)-C(4)  1.541(5) 

N(4)-C(13)  1.326(13) 

N(4)-C(12)  1.413(13) 

C(4)-C(5)  1.550(5) 

C(6)-C(7)  1.611(17) 

C(11)-C(12)  1.316(14) 

O11-C11  1.679(19) 

O12-C12  1.684(19) 

N(3)-Ni(1)-N(1) 175.5(4) 

N(3)-Ni(1)-N(2) 97.1(4) 

N(1)-Ni(1)-N(2) 81.5(5) 

N(3)-Ni(1)-S(1) 91.4(3) 

N(1)-Ni(1)-S(1) 90.4(3) 

N(2)-Ni(1)-S(1) 170.6(4) 

C(2)-N(1)-C(6) 120.8(10) 

C(2)-N(1)-C(3) 105.6(9) 

C(6)-N(1)-C(3) 101.5(9) 
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Table B-6 (continuted) 

 

C(2)-N(1)-Ni(1) 114.5(7) 

C(6)-N(1)-Ni(1) 108.2(8) 

C(3)-N(1)-Ni(1) 103.9(7) 

C(10)-C(1)-C(2) 112.1(10) 

C(10)-C(1)-C(9) 111.0(10) 

C(2)-C(1)-C(9) 108.3(10) 

C(10)-C(1)-S(1) 114.4(10) 

C(2)-C(1)-S(1) 103.0(7) 

C(9)-C(1)-S(1) 107.6(8) 

C(1)-S(1)-Ni(1) 99.1(4) 

C(5)-N(2)-C(7) 123.0(11) 

C(5)-N(2)-C(8) 101.1(9) 

C(7)-N(2)-C(8) 95.3(10) 

C(5)-N(2)-Ni(1) 113.8(10) 

C(7)-N(2)-Ni(1) 107.3(8) 

C(8)-N(2)-Ni(1) 114.8(8) 

N(1)-C(2)-C(1) 115.0(10) 

C(13)-N(3)-C(11) 103.7(9) 

C(13)-N(3)-Ni(1) 125.1(7) 

C(11)-N(3)-Ni(1) 131.1(7) 

C(4)-C(3)-N(1) 112.0(10) 

C(13)-N(4)-C(12) 106.5(9) 

C(3)-C(4)-C(5) 120.0(10) 

N(2)-C(5)-C(4) 102.1(11) 

N(1)-C(6)-C(7) 111.1(11) 

N(2)-C(7)-C(6) 102.5(12) 

C(12)-C(11)-N(3) 112.5(10) 

C(11)-C(12)-N(4) 105.2(10) 

N(4)-C(13)-N(3) 112.0(9) 

_____________________________________________________________  
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Table B-7.  Crystal data and structure refinement for [Ni-1’(CH2-mIm)]Cl. 

 

Empirical formula  C14 H25 Cl N4 Ni S2 

Formula weight  407.66 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.409(4) Å α = 75.918(9)°. 

 b = 11.169(6) Å β= 71.534(9)°. 

 c = 11.640(6) Å γ = 71.494(9)°. 

Volume 855.4(8) Å3 

Z 2 

Density (calculated) 1.583 Mg/m3 

Absorption coefficient 1.535 mm-1 

F(000) 428 

Crystal size 0.16 x 0.08 x 0.02 mm3 

Theta range for data collection 1.87 to 27.49°. 

Index ranges -9<=h<=9, -14<=k<=14, -14<=l<=15 

Reflections collected 9125 

Independent reflections 3810 [R(int) = 0.3126] 

Completeness to theta = 27.49° 96.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9670 and 0.7868 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3810 / 12 / 194 

Goodness-of-fit on F2 0.907 

Final R indices [I>2sigma(I)] R1 = 0.0925, wR2 = 0.1609 

R indices (all data) R1 = 0.1648, wR2 = 0.1886 

Largest diff. peak and hole 1.411 and -1.082 e.Å-3 



 188

Table B-8.   Bond lengths [Å] and angles [°] for [Ni-1’(CH2-mIm)]Cl. 

_____________________________________________________          

Ni(1)-N(1)  1.906(7) 

Ni(1)-N(3)  1.908(7) 

Ni(1)-N(2)  1.995(5) 

Ni(1)-S(2)  2.168(2) 

S(2)-C(7)  1.837(9) 

S(1)-C(10)  1.815(7) 

S(1)-C(9)  1.821(7) 

N(3)-C(13)  1.322(8) 

N(3)-C(11)  1.378(10) 

N(4)-C(13)  1.336(10) 

N(4)-C(12)  1.381(9) 

N(1)-C(1)  1.500(8) 

N(1)-C(5)  1.501(7) 

N(1)-C(6)  1.507(10) 

C(11)-C(12)  1.324(11) 

C(11)-C(10)  1.499(9) 

C(8)-N(2)  1.469(10) 

C(8)-C(9)  1.528(9) 

C(7)-C(6)  1.513(9) 

N(2)-C(4)  1.488(9) 

N(2)-C(3)  1.498(9) 

C(1)-C(2)  1.523(10) 

C(5)-C(4)  1.536(11) 

C(14)-C(12)  1.485(12) 

C(3)-C(2)  1.510(12) 

N(1)-Ni(1)-N(3) 166.6(2) 

N(1)-Ni(1)-N(2) 82.3(3) 

N(3)-Ni(1)-N(2) 95.5(3) 

N(1)-Ni(1)-S(2) 90.27(19) 

N(3)-Ni(1)-S(2) 91.57(18) 

N(2)-Ni(1)-S(2) 172.6(2) 

C(7)-S(2)-Ni(1) 98.5(2) 

C(10)-S(1)-C(9) 101.9(4) 
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Table B-8 (continued) 
 

C(13)-N(3)-C(11) 106.7(7) 

C(13)-N(3)-Ni(1) 122.0(5) 

C(11)-N(3)-Ni(1) 131.0(4) 

C(13)-N(4)-C(12) 107.7(6) 

C(1)-N(1)-C(5) 110.7(5) 

C(1)-N(1)-C(6) 108.9(5) 

C(5)-N(1)-C(6) 110.7(6) 

C(1)-N(1)-Ni(1) 102.7(5) 

C(5)-N(1)-Ni(1) 109.4(5) 

C(6)-N(1)-Ni(1) 114.2(5) 

C(12)-C(11)-N(3) 109.2(6) 

C(12)-C(11)-C(10) 128.6(7) 

N(3)-C(11)-C(10) 122.2(7) 

N(2)-C(8)-C(9) 116.3(6) 

C(6)-C(7)-S(2) 107.2(5) 

C(8)-N(2)-C(4) 110.5(5) 

C(8)-N(2)-C(3) 107.8(6) 

C(4)-N(2)-C(3) 109.3(6) 

C(8)-N(2)-Ni(1) 117.2(5) 

C(4)-N(2)-Ni(1) 107.8(4) 

C(3)-N(2)-Ni(1) 103.9(4) 

N(1)-C(1)-C(2) 112.7(6) 

N(3)-C(13)-N(4) 109.7(6) 

N(1)-C(5)-C(4) 110.4(6) 

N(2)-C(4)-C(5) 110.0(5) 

C(11)-C(12)-N(4) 106.7(7) 

C(11)-C(12)-C(14) 131.8(6) 

N(4)-C(12)-C(14) 121.5(7) 

C(8)-C(9)-S(1) 116.2(5) 

N(1)-C(6)-C(7) 109.5(6) 

C(11)-C(10)-S(1) 114.8(5) 

N(2)-C(3)-C(2) 112.8(7) 

C(3)-C(2)-C(1) 115.3(7) 

_____________________________________________________________  
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Table B-9.  Crystal data and structure refinement for [(bmIme-dach)Ni](BF4)2. 

 

Empirical formula  C15 H22 B2 F8 N6 Ni 

Formula weight  518.72 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 11.8350(19) Å α = 90°. 

 b = 13.9584(19) Å β= 104.383(7)°. 

 c = 13.0506(13) Å γ = 90°. 

Volume 2088.4(5) Å3 

Z 4 

Density (calculated) 1.650 Mg/m3 

Absorption coefficient 1.015 mm-1 

F(000) 1056 

Crystal size 0.20 x 0.20 x 0.20 mm3 

Theta range for data collection 2.17 to 25.00°. 

Index ranges -10<=h<=14, -15<=k<=6, -14<=l<=15 

Reflections collected 4777 

Independent reflections 3370 [R(int) = 0.0275] 

Completeness to theta = 25.00° 91.7 %  

Absorption correction None 

Max. and min. transmission 0.8228 and 0.8228 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3370 / 20 / 347 

Goodness-of-fit on F2 1.063 

Final R indices [I>2sigma(I)] R1 = 0.0550, wR2 = 0.1463 

R indices (all data) R1 = 0.0640, wR2 = 0.1547 

Largest diff. peak and hole 1.177 and -0.553 e.Å-3 
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Table B-10.   Bond lengths [Å] and angles [°] for [(bmIme-dach)Ni](BF4)2. 

_____________________________________________________  

Ni(1)-N(3)  1.873(3) 

Ni(1)-N(4)  1.893(3) 

Ni(1)-N(2)  1.904(3) 

Ni(1)-N(1)  1.913(3) 

N(1)-C(5)  1.485(5) 

N(1)-C(12)  1.507(5) 

N(1)-C(13)  1.516(5) 

N(2)-C(10)  1.490(5) 

N(2)-C(14)  1.494(5) 

N(2)-C(9)  1.515(5) 

N(3)-C(2)  1.332(5) 

N(3)-C(1)  1.373(5) 

N(4)-C(16)  1.340(5) 

N(4)-C(8)  1.386(5) 

N(5)-C(2)  1.333(5) 

N(5)-C(3)  1.376(6) 

N(6)-C(16)  1.343(6) 

N(6)-C(7)  1.382(6) 

C(1)-C(3)  1.379(6) 

C(1)-C(5)  1.489(6) 

C(3)-C(4)  1.501(6) 

C(7)-C(8)  1.360(5) 

C(7)-C(15)  1.500(6) 

C(8)-C(9)  1.487(6) 

C(10)-C(11)  1.511(6) 

C(11)-C(12)  1.512(6) 

C(13)-C(14)  1.529(6) 

B(1A)-F(3A)  1.376(6) 

B(1A)-F(2A)  1.377(6) 

B(1A)-F(4A)  1.398(6) 

B(1A)-F(1A)  1.399(6) 

B(2A)-F(6A)  1.306(10) 

B(2A)-F(8A)  1.343(10) 
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Table B-10 (continued) 

 

B(2A)-F(7A)  1.352(10) 

B(2A)-F(5A)  1.410(9) 

N(3)-Ni(1)-N(4) 104.07(14) 

N(3)-Ni(1)-N(2) 169.62(13) 

N(4)-Ni(1)-N(2) 85.92(13) 

N(3)-Ni(1)-N(1) 86.48(13) 

N(4)-Ni(1)-N(1) 167.01(13) 

N(2)-Ni(1)-N(1) 83.25(13) 

C(5)-N(1)-C(12) 112.3(3) 

C(5)-N(1)-C(13) 111.4(3) 

C(12)-N(1)-C(13) 110.3(3) 

C(5)-N(1)-Ni(1) 110.6(2) 

C(12)-N(1)-Ni(1) 103.8(2) 

C(13)-N(1)-Ni(1) 108.1(2) 

C(10)-N(2)-C(14) 111.9(3) 

C(10)-N(2)-C(9) 111.2(3) 

C(14)-N(2)-C(9) 111.4(3) 

C(10)-N(2)-Ni(1) 104.3(2) 

C(14)-N(2)-Ni(1) 108.3(2) 

C(9)-N(2)-Ni(1) 109.4(2) 

C(2)-N(3)-C(1) 107.0(3) 

C(2)-N(3)-Ni(1) 139.8(3) 

C(1)-N(3)-Ni(1) 113.0(2) 

C(16)-N(4)-C(8) 106.3(3) 

C(16)-N(4)-Ni(1) 140.0(3) 

C(8)-N(4)-Ni(1) 112.9(2) 

C(2)-N(5)-C(3) 109.5(3) 

C(16)-N(6)-C(7) 109.9(3) 

N(3)-C(1)-C(3) 109.0(4) 

N(3)-C(1)-C(5) 116.2(3) 

C(3)-C(1)-C(5) 134.3(4) 

N(3)-C(2)-N(5) 109.6(4) 

N(5)-C(3)-C(1) 104.8(4) 
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Table B-10 (continued) 

 

N(5)-C(3)-C(4) 124.7(4) 

C(1)-C(3)-C(4) 130.4(4) 

N(1)-C(5)-C(1) 106.7(3) 

C(8)-C(7)-N(6) 104.6(4) 

C(8)-C(7)-C(15) 132.3(4) 

N(6)-C(7)-C(15) 123.2(4) 

C(7)-C(8)-N(4) 110.2(4) 

C(7)-C(8)-C(9) 134.5(4) 

N(4)-C(8)-C(9) 115.2(3) 

C(8)-C(9)-N(2) 105.6(3) 

N(2)-C(10)-C(11) 111.5(3) 

C(10)-C(11)-C(12) 116.3(3) 

N(1)-C(12)-C(11) 112.3(3) 

N(1)-C(13)-C(14) 108.9(3) 

N(2)-C(14)-C(13) 110.1(3) 

N(4)-C(16)-N(6) 109.1(4) 

F(3A)-B(1A)-F(2A) 109.4(6) 

F(3A)-B(1A)-F(4A) 110.7(5) 

F(2A)-B(1A)-F(4A) 110.4(5) 

F(3A)-B(1A)-F(1A) 108.5(5) 

F(2A)-B(1A)-F(1A) 110.0(6) 

F(4A)-B(1A)-F(1A) 107.7(5) 

F(6A)-B(2A)-F(8A) 109.9(11) 

F(6A)-B(2A)-F(7A) 107.8(12) 

F(8A)-B(2A)-F(7A) 114.3(12) 

F(6A)-B(2A)-F(5A) 101.8(10) 

F(8A)-B(2A)-F(5A) 108.8(7) 

F(7A)-B(2A)-F(5A) 113.4(10) 

_____________________________________________________________  
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Table B-11.  Crystal data and structure refinement for py-[(mmp-mdach)Ni]2[BF4]2. 

 

Empirical formula  C27 H50 B2 F8 N6 Ni2 S2 

Formula weight  813.89 

Temperature  110(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 24.647(9) Å α = 90°. 

 b = 10.904(3) Å β = 113.28(3)°. 

 c = 28.217(8) Å γ = 90°. 

Volume 6966(4) Å3 

Z 8 

Density (calculated) 1.552 Mg/m3 

Absorption coefficient 3.104 mm-1 

F(000) 3392 

Crystal size 0.10 x 0.01 x 0.01 mm3 

Theta range for data collection 4.50 to 60.00°. 

Index ranges -26<=h<=27, -12<=k<=12, -31<=l<=31 

Reflections collected 22435 

Independent reflections 4965 [R(int) = 0.1605] 

Completeness to theta = 60.00° 96.1 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9696 and 0.7466 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4965 / 382 / 452 

Goodness-of-fit on F2 1.244 

Final R indices [I>2sigma(I)] R1 = 0.0771, wR2 = 0.1534 

R indices (all data) R1 = 0.2058, wR2 = 0.1709 

Extinction coefficient 0.000033(7) 

Largest diff. peak and hole 0.708 and -0.481 e.Å-3 
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Table B-12.   Bond lengths [Å] and angles [°] for py-[(mmp-mdach)Ni]2[BF4]2. 

_____________________________________________________  

Ni(1)-N(1)  1.900(4) 

Ni(1)-N(3)  1.918(4) 

Ni(1)-N(2)  1.951(5) 

Ni(1)-S(1)  2.1514(19) 

Ni(2)-N(4)  1.930(6) 

Ni(2)-N(5)  1.944(5) 

Ni(2)-S(2)  2.1333(19) 

Ni(2)-S(1)  2.192(2) 

S(1)-C(1)  1.864(6) 

S(2)-C(16)  1.785(7) 

N(1)-C(5)  1.465(7) 

N(1)-C(3)  1.490(6) 

N(1)-C(2)  1.506(7) 

N(2)-C(4)  1.491(7) 

N(2)-C(8)  1.490(6) 

N(2)-C(7)  1.514(7) 

N(3)-C(11)  1.332(7) 

N(3)-C(15)  1.371(7) 

N(4)-C(17)  1.449(7) 

N(4)-C(18)  1.491(8) 

N(4)-C(21)  1.469(8) 

N(5)-C(20)  1.372(9) 

N(5)-C(22)  1.539(9) 

N(5)-C(23)  1.581(10) 

C(1)-C(2)  1.482(7) 

C(1)-C(10)  1.518(8) 

C(1)-C(9)  1.536(8) 

C(3)-C(4)  1.488(7) 

C(5)-C(6)  1.498(8) 

C(6)-C(7)  1.497(7) 

C(11)-C(12)  1.384(7) 

C(12)-C(13)  1.375(8) 

C(13)-C(14)  1.390(8) 
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Table B-12 (continued) 

 

C(14)-C(15)  1.349(7) 

C(16)-C(25)  1.511(8) 

C(16)-C(17)  1.511(8) 

C(16)-C(24)  1.554(8) 

C(18)-C(19)  1.416(8) 

C(19)-C(20)  1.413(10) 

C(21)-C(22)  1.656(9) 

N(1N)-C(1N)  1.1425(8) 

C(1N)-C(2N)  1.5020(7) 

B(1)-F(2)  1.316(3) 

B(1)-F(3)  1.414(3) 

B(1)-F(1)  1.298(4) 

B(1)-F(4)  1.444(3) 

B(2)-F(5)  1.298(4) 

B(2)-F(6)  1.311(4) 

B(2)-F(7)  1.425(4) 

B(2)-F(8)  1.447(4) 

N(1)-Ni(1)-N(3) 173.6(2) 

N(1)-Ni(1)-N(2) 82.64(19) 

N(3)-Ni(1)-N(2) 96.15(19) 

N(1)-Ni(1)-S(1) 92.33(15) 

N(3)-Ni(1)-S(1) 88.92(15) 

N(2)-Ni(1)-S(1) 174.94(14) 

N(4)-Ni(2)-N(5) 80.8(2) 

N(4)-Ni(2)-S(2) 89.87(15) 

N(5)-Ni(2)-S(2) 170.12(19) 

N(4)-Ni(2)-S(1) 177.49(16) 

N(5)-Ni(2)-S(1) 97.28(19) 

S(2)-Ni(2)-S(1) 91.92(8) 

C(1)-S(1)-Ni(1) 99.1(2) 

C(1)-S(1)-Ni(2) 111.2(2) 

Ni(1)-S(1)-Ni(2) 102.17(7) 

C(16)-S(2)-Ni(2) 98.4(2) 
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Table B-12 (continued) 

 

C(5)-N(1)-C(3) 109.6(4) 

C(5)-N(1)-C(2) 112.6(4) 

C(3)-N(1)-C(2) 109.8(4) 

C(5)-N(1)-Ni(1) 105.0(3) 

C(3)-N(1)-Ni(1) 107.4(3) 

C(2)-N(1)-Ni(1) 112.2(3) 

C(4)-N(2)-C(8) 107.2(4) 

C(4)-N(2)-C(7) 111.3(5) 

C(8)-N(2)-C(7) 109.6(4) 

C(4)-N(2)-Ni(1) 103.5(4) 

C(8)-N(2)-Ni(1) 118.1(4) 

C(7)-N(2)-Ni(1) 107.1(3) 

C(11)-N(3)-C(15) 120.8(5) 

C(11)-N(3)-Ni(1) 123.0(4) 

C(15)-N(3)-Ni(1) 116.2(4) 

C(17)-N(4)-C(18) 112.3(5) 

C(17)-N(4)-C(21) 111.4(5) 

C(18)-N(4)-C(21) 105.0(5) 

C(17)-N(4)-Ni(2) 114.6(4) 

C(18)-N(4)-Ni(2) 104.9(4) 

C(21)-N(4)-Ni(2) 107.9(4) 

C(20)-N(5)-C(22) 118.8(6) 

C(20)-N(5)-C(23) 97.5(6) 

C(22)-N(5)-C(23) 102.5(5) 

C(20)-N(5)-Ni(2) 112.8(5) 

C(22)-N(5)-Ni(2) 108.3(4) 

C(23)-N(5)-Ni(2) 116.5(5) 

C(2)-C(1)-C(10) 116.8(5) 

C(2)-C(1)-C(9) 108.8(5) 

C(10)-C(1)-C(9) 107.5(5) 

C(2)-C(1)-S(1) 107.9(4) 

C(10)-C(1)-S(1) 105.8(4) 

C(9)-C(1)-S(1) 109.9(4) 
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Table B-12 (continued) 

 

C(1)-C(2)-N(1) 115.5(4) 

N(1)-C(3)-C(4) 110.0(4) 

N(2)-C(4)-C(3) 111.3(4) 

N(1)-C(5)-C(6) 114.2(4) 

C(5)-C(6)-C(7) 113.7(5) 

C(6)-C(7)-N(2) 112.2(5) 

N(3)-C(11)-C(12) 122.5(6) 

C(11)-C(12)-C(13) 116.0(6) 

C(14)-C(13)-C(12) 121.8(6) 

C(15)-C(14)-C(13) 119.5(6) 

N(3)-C(15)-C(14) 119.4(6) 

C(25)-C(16)-C(17) 109.6(5) 

C(25)-C(16)-C(24) 106.5(5) 

C(17)-C(16)-C(24) 113.9(6) 

C(25)-C(16)-S(2) 108.9(5) 

C(17)-C(16)-S(2) 107.4(4) 

C(24)-C(16)-S(2) 110.5(4) 

N(4)-C(17)-C(16) 112.5(5) 

C(19)-C(18)-N(4) 115.2(6) 

C(18)-C(19)-C(20) 129.9(8) 

N(5)-C(20)-C(19) 99.0(6) 

N(4)-C(21)-C(22) 109.7(5) 

N(5)-C(22)-C(21) 103.4(5) 

N(1N)-C(1N)-C(2N) 171.74(12) 

F(2)-B(1)-F(3) 109.5(3) 

F(2)-B(1)-F(1) 120.0(3) 

F(3)-B(1)-F(1) 110.2(3) 

F(2)-B(1)-F(4) 109.4(3) 

F(3)-B(1)-F(4) 100.7(2) 

F(1)-B(1)-F(4) 105.3(3) 

F(5)-B(2)-F(6) 119.7(4) 

F(5)-B(2)-F(7) 109.5(3) 

F(6)-B(2)-F(7) 109.6(4) 



 199

Table B-12 (continued) 

 

F(5)-B(2)-F(8) 106.3(3) 

F(6)-B(2)-F(8) 111.9(3) 

F(7)-B(2)-F(8) 97.4(3) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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 Table B-13.  Crystal data and structure refinement for mIm-[(mmp-mdach)Ni]2[BF4]2. 

 

Empirical formula  C24 H48 B2 F8 N6 Ni2 S2 

Formula weight  775.84 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.967(3) Å α = 81.848(5)°. 

 b = 11.316(3) Å β = 76.059(5)°. 

 c = 16.490(5) Å γ = 68.849(5)°. 

Volume 1680.4(9) Å3 

Z 2 

Density (calculated) 1.533 Mg/m3 

Absorption coefficient 1.315 mm-1 

F(000) 808 

Crystal size 0.30 x 0.10 x 0.10 mm3 

Theta range for data collection 2.24 to 25.00°. 

Index ranges -11<=h<=11, -13<=k<=13, -19<=l<=19 

Reflections collected 15112 

Independent reflections 5713 [R(int) = 0.0553] 

Completeness to theta = 25.00° 96.4 %  

Max. and min. transmission 0.8797 and 0.6937 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5713 / 332 / 443 

Goodness-of-fit on F2 1.041 

Final R indices [I>2sigma(I)] R1 = 0.0759, wR2 = 0.1761 

R indices (all data) R1 = 0.1044, wR2 = 0.1921 

Largest diff. peak and hole 1.507 and -1.039 e.Å-3 
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Table B-14.   Bond lengths [Å] and angles [°] for  mIm-[(mmp-mdach)Ni]2[BF4]2. 

_____________________________________________________  

Ni(1)-N(3)  1.905(5) 

Ni(1)-N(1)  1.922(5) 

Ni(1)-N(2)  1.961(6) 

Ni(1)-S(1)  2.1663(19) 

Ni(2)-N(4)  1.925(6) 

Ni(2)-N(5)  2.026(7) 

Ni(2)-S(2)  2.1403(19) 

Ni(2)-S(1)  2.2135(19) 

S(1)-C(8)  1.850(7) 

S(2)-C(22)  1.836(7) 

N(1)-C(5)  1.493(8) 

N(1)-C(7)  1.498(8) 

N(1)-C(1)  1.506(8) 

N(2)-C(2)  1.487(9) 

N(2)-C(3)  1.504(9) 

N(2)-C(6)  1.507(10) 

N(3)-C(13)  1.312(9) 

N(3)-C(11)  1.353(9) 

N(4)-C(15)  1.488(10) 

N(4)-C(21)  1.493(9) 

N(4)-C(19)  1.505(10) 

N(5)-C(17)  1.426(13) 

N(5)-C(20)  1.493(12) 

N(5)-C(16)  1.569(12) 

N(6)-C(13)  1.339(9) 

N(6)-C(12)  1.365(10) 

N(6)-C(14)  1.479(9) 

C(1)-C(2)  1.523(10) 

C(3)-C(4)  1.509(10) 

C(4)-C(5)  1.514(10) 

C(7)-C(8)  1.523(10) 

C(8)-C(9)  1.522(10) 

C(8)-C(10)  1.537(10) 
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Table B-14 (continued) 

 

C(11)-C(12)  1.357(10) 

C(15)-C(16)  1.522(11) 

C(17)-C(18)  1.404(14) 

C(18)-C(19)  1.476(12) 

C(21)-C(22)  1.524(10) 

C(22)-C(23)  1.507(11) 

C(22)-C(24)  1.508(11) 

B11-F11  1.363(9) 

B11-F31  1.371(10) 

B11-F21  1.382(10) 

B11-F41  1.382(9) 

B12-F12  1.363(9) 

B12-F32  1.371(10) 

B12-F22  1.382(10) 

B12-F42  1.382(9) 

B13-F13  1.363(9) 

B13-F33  1.371(10) 

B13-F23  1.382(10) 

B13-F43  1.382(9) 

N(3)-Ni(1)-N(1) 174.4(2) 

N(3)-Ni(1)-N(2) 97.4(2) 

N(1)-Ni(1)-N(2) 82.3(2) 

N(3)-Ni(1)-S(1) 89.10(18) 

N(1)-Ni(1)-S(1) 91.16(17) 

N(2)-Ni(1)-S(1) 173.46(18) 

N(4)-Ni(2)-N(5) 80.7(3) 

N(4)-Ni(2)-S(2) 89.95(18) 

N(5)-Ni(2)-S(2) 170.3(2) 

N(4)-Ni(2)-S(1) 174.35(18) 

N(5)-Ni(2)-S(1) 96.4(2) 

S(2)-Ni(2)-S(1) 92.66(7) 

C(8)-S(1)-Ni(1) 100.6(2) 

C(8)-S(1)-Ni(2) 115.1(2) 
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Table B-14 (continued) 

 

Ni(1)-S(1)-Ni(2) 99.34(7) 

C(22)-S(2)-Ni(2) 101.5(2) 

C(5)-N(1)-C(7) 112.0(5) 

C(5)-N(1)-C(1) 109.3(5) 

C(7)-N(1)-C(1) 109.4(5) 

C(5)-N(1)-Ni(1) 107.4(4) 

C(7)-N(1)-Ni(1) 112.6(4) 

C(1)-N(1)-Ni(1) 105.9(4) 

C(2)-N(2)-C(3) 111.0(5) 

C(2)-N(2)-C(6) 108.6(6) 

C(3)-N(2)-C(6) 108.0(6) 

C(2)-N(2)-Ni(1) 104.9(4) 

C(3)-N(2)-Ni(1) 108.2(4) 

C(6)-N(2)-Ni(1) 116.1(5) 

C(13)-N(3)-C(11) 106.2(6) 

C(13)-N(3)-Ni(1) 129.4(5) 

C(11)-N(3)-Ni(1) 124.0(5) 

C(15)-N(4)-C(21) 107.6(6) 

C(15)-N(4)-C(19) 109.2(6) 

C(21)-N(4)-C(19) 111.6(5) 

C(15)-N(4)-Ni(2) 108.6(4) 

C(21)-N(4)-Ni(2) 114.2(4) 

C(19)-N(4)-Ni(2) 105.6(5) 

C(17)-N(5)-C(20) 110.9(7) 

C(17)-N(5)-C(16) 111.6(7) 

C(20)-N(5)-C(16) 105.8(7) 

C(17)-N(5)-Ni(2) 102.9(6) 

C(20)-N(5)-Ni(2) 118.8(6) 

C(16)-N(5)-Ni(2) 107.0(5) 

C(13)-N(6)-C(12) 107.2(6) 

C(13)-N(6)-C(14) 126.6(6) 

C(12)-N(6)-C(14) 126.2(6) 

N(1)-C(1)-C(2) 110.8(5) 
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Table B-14 (continued) 

 

N(2)-C(2)-C(1) 109.4(5) 

N(2)-C(3)-C(4) 112.1(5) 

C(3)-C(4)-C(5) 114.9(6) 

N(1)-C(5)-C(4) 112.3(6) 

N(1)-C(7)-C(8) 115.3(5) 

C(9)-C(8)-C(7) 107.9(6) 

C(9)-C(8)-C(10) 109.4(6) 

C(7)-C(8)-C(10) 114.6(6) 

C(9)-C(8)-S(1) 111.4(5) 

C(7)-C(8)-S(1) 106.5(5) 

C(10)-C(8)-S(1) 107.0(5) 

N(3)-C(11)-C(12) 109.7(7) 

C(11)-C(12)-N(6) 105.8(6) 

N(3)-C(13)-N(6) 111.1(6) 

N(4)-C(15)-C(16) 112.0(6) 

C(15)-C(16)-N(5) 107.6(6) 

C(18)-C(17)-N(5) 114.9(8) 

C(17)-C(18)-C(19) 118.5(8) 

C(18)-C(19)-N(4) 114.6(7) 

N(4)-C(21)-C(22) 113.5(6) 

C(23)-C(22)-C(24) 107.0(7) 

C(23)-C(22)-C(21) 114.1(6) 

C(24)-C(22)-C(21) 109.3(6) 

C(23)-C(22)-S(2) 112.1(6) 

C(24)-C(22)-S(2) 108.7(5) 

C(21)-C(22)-S(2) 105.5(4) 

F11-B11-F31 110.1(7) 

F11-B11-F21 108.9(6) 

F31-B11-F21 109.2(6) 

F11-B11-F41 111.5(6) 

F31-B11-F41 109.5(6) 

F21-B11-F41 107.6(7) 

F12-B12-F32 110.0(7) 
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Table B-14 (continued) 

 

F12-B12-F22 108.9(6) 

F32-B12-F22 109.2(6) 

F12-B12-F42 111.5(7) 

F32-B12-F42 109.5(6) 

F22-B12-F42 107.6(7) 

F13-B13-F33 110.1(7) 

F13-B13-F23 108.9(6) 

F33-B13-F23 109.2(7) 

F13-B13-F43 111.5(7) 

F33-B13-F43 109.5(6) 

F23-B13-F43 107.6(7) 

_____________________________________________________________  
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Table B-15.  Crystal data and structure refinement for [(mmp-mdach)Ni(mIm)][BF4]. 

 

Empirical formula  C14 H27 B F4 N4 Ni S 

Formula weight  428.97 

Temperature  110(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 11.449(4) Å α = 90°. 

 b = 7.126(3) Å β = 93.930(14)°. 

 c = 22.881(8) Å γ = 90°. 

Volume 1862.3(11) Å3 

Z 4 

Density (calculated) 1.530 Mg/m3 

Absorption coefficient 2.949 mm-1 

F(000) 896 

Crystal size 0.20 x 0.10 x 0.10 mm3 

Theta range for data collection 3.87 to 60.00°. 

Index ranges -12<=h<=12, -7<=k<=7, -25<=l<=25 

Reflections collected 12424 

Independent reflections 2395 [R(int) = 0.2384] 

Completeness to theta = 60.00° 87.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7569 and 0.5900 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2395 / 0 / 230 

Goodness-of-fit on F2 1.000 

Final R indices [I>2sigma(I)] R1 = 0.0603, wR2 = 0.1181 

R indices (all data) R1 = 0.1733, wR2 = 0.1608 

Largest diff. peak and hole 0.363 and -0.403 e.Å-3 
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Table B-16.   Bond lengths [Å] and angles [°] for [(mmp-mdach)Ni(mIm)][BF4]. 

_____________________________________________________  

Ni(1)-N(3)  1.888(7) 

Ni(1)-N(1)  1.890(7) 

Ni(1)-N(2)  1.956(7) 

Ni(1)-S(1)  2.136(3) 

S(1)-C(1)  1.854(8) 

F(4)-B(1)  1.380(12) 

F(3)-B(1)  1.376(10) 

F(2)-B(1)  1.365(11) 

F(1)-B(1)  1.379(13) 

N(1)-C(6)  1.486(10) 

N(1)-C(2)  1.498(9) 

N(1)-C(3)  1.532(9) 

N(2)-C(8)  1.464(10) 

N(2)-C(7)  1.501(11) 

N(2)-C(5)  1.507(9) 

N(3)-C(13)  1.318(10) 

N(3)-C(11)  1.396(10) 

N(4)-C(12)  1.360(10) 

N(4)-C(13)  1.358(11) 

N(4)-C(14)  1.463(10) 

C(1)-C(2)  1.474(12) 

C(1)-C(9)  1.519(12) 

C(1)-C(10)  1.531(10) 

C(3)-C(4)  1.534(10) 

C(4)-C(5)  1.501(11) 

C(6)-C(7)  1.527(12) 

C(11)-C(12)  1.362(11) 

N(3)-Ni(1)-N(1) 176.3(3) 

N(3)-Ni(1)-N(2) 97.1(3) 

N(1)-Ni(1)-N(2) 82.7(3) 

N(3)-Ni(1)-S(1) 89.2(2) 

N(1)-Ni(1)-S(1) 90.9(2) 

N(2)-Ni(1)-S(1) 173.3(2) 
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Table B-16 (continued) 

 

C(1)-S(1)-Ni(1) 100.7(3) 

F(2)-B(1)-F(3) 107.4(8) 

F(2)-B(1)-F(1) 109.4(9) 

F(3)-B(1)-F(1) 109.2(9) 

F(2)-B(1)-F(4) 111.2(9) 

F(3)-B(1)-F(4) 109.8(8) 

F(1)-B(1)-F(4) 109.9(8) 

C(6)-N(1)-C(2) 109.5(7) 

C(6)-N(1)-C(3) 110.1(6) 

C(2)-N(1)-C(3) 110.6(6) 

C(6)-N(1)-Ni(1) 108.8(5) 

C(2)-N(1)-Ni(1) 113.6(5) 

C(3)-N(1)-Ni(1) 104.1(5) 

C(8)-N(2)-C(7) 107.8(7) 

C(8)-N(2)-C(5) 108.1(6) 

C(7)-N(2)-C(5) 110.7(6) 

C(8)-N(2)-Ni(1) 116.9(5) 

C(7)-N(2)-Ni(1) 106.3(5) 

C(5)-N(2)-Ni(1) 106.9(5) 

C(13)-N(3)-C(11) 106.4(7) 

C(13)-N(3)-Ni(1) 129.4(6) 

C(11)-N(3)-Ni(1) 124.0(5) 

C(12)-N(4)-C(13) 108.6(7) 

C(12)-N(4)-C(14) 125.3(8) 

C(13)-N(4)-C(14) 125.9(7) 

C(2)-C(1)-C(9) 116.3(7) 

C(2)-C(1)-C(10) 108.6(7) 

C(9)-C(1)-C(10) 106.1(8) 

C(2)-C(1)-S(1) 107.3(6) 

C(9)-C(1)-S(1) 109.4(6) 

C(10)-C(1)-S(1) 108.9(6) 

C(1)-C(2)-N(1) 115.3(7) 

N(1)-C(3)-C(4) 111.8(6) 
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Table B-16 (continued) 

 

C(5)-C(4)-C(3) 115.7(6) 

C(4)-C(5)-N(2) 110.6(6) 

N(1)-C(6)-C(7) 109.8(7) 

N(2)-C(7)-C(6) 109.9(7) 

C(12)-C(11)-N(3) 108.9(7) 

N(4)-C(12)-C(11) 106.1(7) 

N(3)-C(13)-N(4) 110.0(8) 

_____________________________________________________________  
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Table B-17.  Crystal data and structure refinement for [(mmp-mdach)Ni(ipIm)][BF4]. 

 

Empirical formula  C15 H28 B F4 N4 Ni S 

Formula weight  441.99 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 7.849(2) Å α = 90°. 

 b = 11.715(4) Å β = 99.02(3)°. 

 c = 23.118(9) Å γ = 90°. 

Volume 2099.4(12) Å3 

Z 4 

Density (calculated) 1.398 Mg/m3 

Absorption coefficient 1.064 mm-1 

F(000) 924 

Crystal size 0.15 x 0.12 x 0.14 mm3 

Theta range for data collection 1.78 to 25.00°. 

Index ranges -4<=h<=6, -13<=k<=5, -25<=l<=27 

Reflections collected 4696 

Independent reflections 2738 [R(int) = 0.0626] 

Completeness to theta = 25.00° 74.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8154 and 0.8154 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2738 / 222 / 253 

Goodness-of-fit on F2 1.002 

Final R indices [I>2sigma(I)] R1 = 0.0713, wR2 = 0.1540 

R indices (all data) R1 = 0.1145, wR2 = 0.1693 

Largest diff. peak and hole 0.782 and -0.480 e.Å-3 
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Table B-18.   Bond lengths [Å] and angles [°] for [(mmp-mdach)Ni(ipIm)][BF4].. 

_____________________________________________________  

Ni(1)-N(3)  1.906(6) 

Ni(1)-N(1)  1.921(6) 

Ni(1)-N(2)  1.971(6) 

Ni(1)-S(1)  2.151(3) 

S(1)-C(8)  1.847(7) 

F(1)-B(1)  1.388(10) 

N(1)-C(5)  1.476(9) 

N(1)-C(7)  1.491(9) 

N(1)-C(1)  1.536(10) 

N(3)-C(13)  1.318(8) 

N(3)-C(11)  1.388(9) 

F(4)-B(1)  1.381(10) 

F(2)-B(1)  1.376(11) 

F(3)-B(1)  1.407(12) 

C(13)-N(4)  1.342(9) 

C(13)-C(14)  1.497(10) 

C(12)-C(11)  1.341(10) 

C(12)-N(4)  1.353(9) 

C(5)-C(4)  1.496(10) 

C(14)-C(16)  1.528(11) 

C(14)-C(15)  1.544(10) 

C(8)-C(9)  1.489(11) 

C(8)-C(10)  1.527(10) 

C(8)-C(7)  1.545(11) 

N(2)-C(3)  1.464(9) 

N(2)-C(6)  1.494(9) 

N(2)-C(2)  1.496(10) 

C(3)-C(4)  1.461(10) 

C(1)-C(2)  1.531(10) 

N(3)-Ni(1)-N(1) 173.1(2) 

N(3)-Ni(1)-N(2) 96.0(3) 

N(1)-Ni(1)-N(2) 82.4(3) 

N(3)-Ni(1)-S(1) 90.9(2) 
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Table B-18 (continued) 

 

N(1)-Ni(1)-S(1) 90.9(2) 

N(2)-Ni(1)-S(1) 173.16(19) 

C(8)-S(1)-Ni(1) 101.3(3) 

C(5)-N(1)-C(7) 114.9(6) 

C(5)-N(1)-C(1) 108.9(6) 

C(7)-N(1)-C(1) 108.5(5) 

C(5)-N(1)-Ni(1) 104.3(4) 

C(7)-N(1)-Ni(1) 113.2(5) 

C(1)-N(1)-Ni(1) 106.5(4) 

C(13)-N(3)-C(11) 107.5(6) 

C(13)-N(3)-Ni(1) 129.7(5) 

C(11)-N(3)-Ni(1) 122.8(5) 

N(3)-C(13)-N(4) 108.5(6) 

N(3)-C(13)-C(14) 127.1(7) 

N(4)-C(13)-C(14) 124.4(7) 

C(11)-C(12)-N(4) 106.7(7) 

C(12)-C(11)-N(3) 108.0(6) 

C(13)-N(4)-C(12) 109.3(6) 

N(1)-C(5)-C(4) 115.3(6) 

C(13)-C(14)-C(16) 111.2(7) 

C(13)-C(14)-C(15) 110.4(6) 

C(16)-C(14)-C(15) 110.3(6) 

C(9)-C(8)-C(10) 108.7(7) 

C(9)-C(8)-C(7) 115.8(7) 

C(10)-C(8)-C(7) 105.9(7) 

C(9)-C(8)-S(1) 111.6(6) 

C(10)-C(8)-S(1) 108.9(5) 

C(7)-C(8)-S(1) 105.6(5) 

C(3)-N(2)-C(6) 109.1(6) 

C(3)-N(2)-C(2) 109.7(6) 

C(6)-N(2)-C(2) 107.5(6) 

C(3)-N(2)-Ni(1) 106.8(5) 

C(6)-N(2)-Ni(1) 116.8(5) 
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Table B-18 (continued) 

 

C(2)-N(2)-Ni(1) 106.8(4) 

C(4)-C(3)-N(2) 114.4(6) 

C(3)-C(4)-C(5) 114.2(7) 

C(2)-C(1)-N(1) 110.4(6) 

F(2)-B(1)-F(4) 110.4(8) 

F(2)-B(1)-F(1) 109.2(7) 

F(4)-B(1)-F(1) 110.0(7) 

F(2)-B(1)-F(3) 108.6(8) 

F(4)-B(1)-F(3) 109.3(7) 

F(1)-B(1)-F(3) 109.2(8) 

N(1)-C(7)-C(8) 114.1(6) 

N(2)-C(2)-C(1) 109.4(6) 

_____________________________________________________________  
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Table B-19.  Crystal data and structure refinement for [(mmp-mdach)Ni(me2NHC)][I]. 

 

Empirical formula  C15 H29 I N4 Ni S 

Formula weight  483.09 

Temperature  110(2) K 

Wavelength  0.71069 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 13.963(5) Å α = 90.000(5)°. 

 b = 12.042(5) Å β = 110.946(5)°. 

 c = 12.364(5) Å γ = 90.000(5)°. 

Volume 1941.5(13) Å3 

Z 4 

Density (calculated) 1.653 Mg/m3 

Absorption coefficient 2.699 mm-1 

F(000) 976 

Crystal size 0.17 x 0.05 x 0.05 mm3 

Theta range for data collection 2.54 to 25.00°. 

Index ranges -16<=h<=15, -14<=k<=13, -14<=l<=14 

Reflections collected 15834 

Independent reflections 3140 [R(int) = 0.1086] 

Completeness to theta = 25.00° 91.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8769 and 0.6569 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3140 / 0 / 200 

Goodness-of-fit on F2 0.994 

Final R indices [I>2sigma(I)] R1 = 0.0472, wR2 = 0.0963 

R indices (all data) R1 = 0.1030, wR2 = 0.1154 

Extinction coefficient 0.0053(7) 

Largest diff. peak and hole 0.754 and -0.572 e.Å-3 
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Table B-20.   Bond lengths [Å] and angles [°] for [(mmp-mdach)Ni(me2NHC)][I]. 

_____________________________________________________  

Ni(1)-C(11)  1.891(8) 

Ni(1)-N(1)  1.947(6) 

Ni(1)-N(2)  1.972(7) 

Ni(1)-S(1)  2.142(2) 

S(1)-C(1)  1.837(8) 

N(1)-C(6)  1.490(10) 

N(1)-C(2)  1.495(11) 

N(1)-C(3)  1.499(12) 

N(2)-C(8)  1.476(11) 

N(2)-C(7)  1.490(10) 

N(2)-C(5)  1.504(11) 

N(3)-C(11)  1.354(10) 

N(3)-C(12)  1.389(11) 

N(3)-C(14)  1.458(11) 

N(4)-C(11)  1.334(10) 

N(4)-C(13)  1.383(10) 

N(4)-C(15)  1.473(11) 

C(1)-C(10)  1.492(14) 

C(1)-C(2)  1.530(12) 

C(1)-C(9)  1.536(13) 

C(3)-C(4)  1.501(13) 

C(4)-C(5)  1.464(12) 

C(6)-C(7)  1.512(13) 

C(12)-C(13)  1.340(13) 

C(11)-Ni(1)-N(1) 176.5(3) 

C(11)-Ni(1)-N(2) 97.5(3) 

N(1)-Ni(1)-N(2) 82.0(3) 

C(11)-Ni(1)-S(1) 89.6(2) 

N(1)-Ni(1)-S(1) 90.7(2) 

N(2)-Ni(1)-S(1) 171.97(19) 

C(1)-S(1)-Ni(1) 96.9(3) 

C(6)-N(1)-C(2) 113.5(6) 

C(6)-N(1)-C(3) 109.4(7) 
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Table B-20 (continued) 
 

C(2)-N(1)-C(3) 106.4(7) 

C(6)-N(1)-Ni(1) 104.4(5) 

C(2)-N(1)-Ni(1) 113.5(5) 

C(3)-N(1)-Ni(1) 109.6(5) 

C(8)-N(2)-C(7) 108.8(6) 

C(8)-N(2)-C(5) 108.0(6) 

C(7)-N(2)-C(5) 110.5(6) 

C(8)-N(2)-Ni(1) 117.8(5) 

C(7)-N(2)-Ni(1) 101.7(5) 

C(5)-N(2)-Ni(1) 109.8(5) 

C(11)-N(3)-C(12) 109.5(7) 

C(11)-N(3)-C(14) 124.7(7) 

C(12)-N(3)-C(14) 125.9(7) 

C(11)-N(4)-C(13) 111.8(7) 

C(11)-N(4)-C(15) 125.4(7) 

C(13)-N(4)-C(15) 122.7(7) 

C(10)-C(1)-C(2) 112.1(8) 

C(10)-C(1)-C(9) 109.8(8) 

C(2)-C(1)-C(9) 109.3(7) 

C(10)-C(1)-S(1) 111.7(6) 

C(2)-C(1)-S(1) 105.6(5) 

C(9)-C(1)-S(1) 108.3(6) 

N(1)-C(2)-C(1) 114.1(7) 

N(1)-C(3)-C(4) 112.9(8) 

C(5)-C(4)-C(3) 116.4(7) 

C(4)-C(5)-N(2) 113.8(7) 

N(1)-C(6)-C(7) 109.9(6) 

N(2)-C(7)-C(6) 111.6(7) 

N(4)-C(11)-N(3) 105.3(6) 

N(4)-C(11)-Ni(1) 129.4(6) 

N(3)-C(11)-Ni(1) 125.3(6) 

C(13)-C(12)-N(3) 107.8(7) 

C(12)-C(13)-N(4) 105.6(7) 

_____________________________________________________________  
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Table B-21.  Crystal data and structure refinement for Im-[(mmp-dach)Ni]2[BF4]2. 

 

Empirical formula  C21 H42 B2 F8 N6 Ni2 S2 

Formula weight  733.77 

Temperature  293(2) K 

Wavelength  1.54178 Å 

Crystal system  monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 10.805(5) Å α= 90°. 

 b = 14.125(7) Å β= 100.339(19)°. 

 c = 20.169(10) Å γ = 90°. 

Volume 3028(3) Å3 

Z 4 

Density (calculated) 1.609 Mg/m3 

Absorption coefficient 3.498 mm-1 

F(000) 1520 

Crystal size 0.30 x 0.01 x 0.01 mm3 

Theta range for data collection 5.36 to 58.82°. 

Index ranges -11<=h<=11, -15<=k<=14, -22<=l<=22 

Reflections collected 19669 

Independent reflections 3867 [R(int) = 0.4928] 

Completeness to theta = 58.82° 89.2 %  

Max. and min. transmission 0.9659 and 0.4201 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3867 / 210 / 416 

Goodness-of-fit on F2 1.000 

Final R indices [I>2sigma(I)] R1 = 0.0752, wR2 = 0.0905 

R indices (all data) R1 = 0.3079, wR2 = 0.1568 

Largest diff. peak and hole 0.361 and -0.294 e.Å-3 
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Table B-22.   Bond lengths [Å] and angles [°] for  Im-[(mmp-dach)Ni]2[BF4]2. 

_____________________________________________________  

Ni(1)-N(1)  1.884(11) 

Ni(1)-N(1A)  1.893(12) 

Ni(1)-N(2)  1.929(11) 

Ni(1)-S(1)  2.187(4) 

Ni(2)-N(4)  1.918(12) 

Ni(2)-N(3)  1.971(13) 

Ni(2)-S(2)  2.128(4) 

Ni(2)-S(1)  2.178(4) 

S(1)-C(7)  1.924(15) 

S(2)-C(16)  1.824(18) 

N(1)-C(1)  1.510(15) 

N(1)-C(4)  1.598(15) 

N(1)-H(1C)  0.9100 

N(2)-C(6)  1.500(15) 

N(2)-C(3)  1.533(15) 

N(2)-C(5)  1.551(15) 

N(3)-C(13)  1.436(15) 

N(3)-C(10)  1.473(17) 

N(3)-H(3C)  0.9100 

N(4)-C(15)  1.497(17) 

N(4)-C(14)  1.514(18) 

N(4)-C(12)  1.524(18) 

C(1)-C(2)  1.486(16) 

C(1)-H(1A)  0.9700 

C(1)-H(1B)  0.9700 

C(2)-C(3)  1.419(17) 

C(2)-H(2A)  0.9700 

C(2)-H(2B)  0.9700 

C(3)-H(3A)  0.9700 

C(3)-H(3B)  0.9700 

C(4)-C(5)  1.504(16) 

C(4)-H(4A)  0.9700 
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Table B-22 (continued) 

 

C(6)-C(7)  1.543(18) 

C(7)-C(9)  1.486(16) 

C(7)-C(8)  1.488(17) 

C(10)-C(11)  1.365(18) 

C(11)-C(12)  1.491(19) 

C(13)-C(14)  1.51(2) 

C(15)-C(16)  1.40(2) 

C(16)-C(17)  1.370(19) 

C(16)-C(18)  1.55(2) 

N(1A)-C(1A)  1.349(15) 

N(1A)-C(3A)  1.360(16) 

N(2A)-C(1A)  1.293(15) 

N(2A)-C(2A)  1.314(16) 

C(2A)-C(3A)  1.383(18) 

B11-F11  1.308(19) 

B11-F21  1.349(18) 

B11-F41  1.357(18) 

B11-F31  1.426(19) 

B12-F12  1.308(19) 

B12-F22  1.351(18) 

B12-F42  1.357(18) 

B12-F32  1.427(19) 

B13-F13  1.308(19) 

B13-F23  1.350(18) 

B13-F43  1.357(18) 

B13-F33  1.43(2) 

N(1)-Ni(1)-N(1A) 93.6(5) 

N(1)-Ni(1)-N(2) 82.6(5) 

N(1A)-Ni(1)-N(2) 175.8(5) 

N(1)-Ni(1)-S(1) 173.2(4) 

N(1A)-Ni(1)-S(1) 93.2(3) 

N(2)-Ni(1)-S(1) 90.6(4) 
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Table B-22 (continued) 

 

N(4)-Ni(2)-N(3) 79.6(5) 

N(4)-Ni(2)-S(2) 91.6(4) 

N(3)-Ni(2)-S(2) 171.2(4) 

N(4)-Ni(2)-S(1) 174.4(4) 

N(3)-Ni(2)-S(1) 95.1(4) 

S(2)-Ni(2)-S(1) 93.73(15) 

C(7)-S(1)-Ni(2) 105.4(5) 

C(7)-S(1)-Ni(1) 99.7(5) 

Ni(2)-S(1)-Ni(1) 108.07(17) 

C(16)-S(2)-Ni(2) 99.8(7) 

C(1)-N(1)-C(4) 108.6(10) 

C(1)-N(1)-Ni(1) 113.0(9) 

C(4)-N(1)-Ni(1) 107.2(7) 

C(6)-N(2)-C(3) 114.8(10) 

C(6)-N(2)-C(5) 109.1(10) 

C(3)-N(2)-C(5) 107.8(11) 

C(6)-N(2)-Ni(1) 113.6(9) 

C(3)-N(2)-Ni(1) 106.8(8) 

C(5)-N(2)-Ni(1) 103.9(8) 

C(13)-N(3)-C(10) 112.9(13) 

C(13)-N(3)-Ni(2) 107.6(10) 

C(10)-N(3)-Ni(2) 106.9(10) 

C(15)-N(4)-C(14) 108.3(13) 

C(15)-N(4)-C(12) 116.0(14) 

C(14)-N(4)-C(12) 108.9(12) 

C(15)-N(4)-Ni(2) 110.7(9) 

C(14)-N(4)-Ni(2) 107.5(10) 

C(12)-N(4)-Ni(2) 105.2(10) 

C(2)-C(1)-N(1) 108.4(11) 

C(3)-C(2)-C(1) 117.1(13) 

C(2)-C(3)-N(2) 115.8(12) 

C(5)-C(4)-N(1) 105.9(10) 
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Table B-22 (continued) 

 

C(4)-C(5)-N(2) 111.6(10) 

N(2)-C(6)-C(7) 114.0(12) 

C(9)-C(7)-C(8) 110.1(12) 

C(9)-C(7)-C(6) 109.0(12) 

C(8)-C(7)-C(6) 119.2(12) 

C(9)-C(7)-S(1) 108.9(9) 

C(8)-C(7)-S(1) 106.4(10) 

C(6)-C(7)-S(1) 102.7(10) 

C(11)-C(10)-N(3) 113.6(15) 

C(10)-C(11)-C(12) 117.8(15) 

C(11)-C(12)-N(4) 118.2(14) 

N(3)-C(13)-C(14) 112.4(14) 

C(13)-C(14)-N(4) 106.5(11) 

C(16)-C(15)-N(4) 118.8(15) 

C(17)-C(16)-C(15) 115.1(18) 

C(17)-C(16)-C(18) 101.6(16) 

C(15)-C(16)-C(18) 108.9(18) 

C(17)-C(16)-S(2) 111.4(14) 

C(15)-C(16)-S(2) 110.1(14) 

C(18)-C(16)-S(2) 109.3(13) 

C(1A)-N(1A)-C(3A) 104.2(12) 

C(1A)-N(1A)-Ni(1) 129.0(10) 

C(3A)-N(1A)-Ni(1) 126.4(11) 

C(1A)-N(2A)-C(2A) 113.2(14) 

N(2A)-C(1A)-N(1A) 109.1(12) 

N(2A)-C(2A)-C(3A) 102.8(15) 

N(1A)-C(3A)-C(2A) 110.5(14) 

F11-B11-F21 108.0(15) 

F11-B11-F41 116.5(16) 

F21-B11-F41 109.1(15) 

F11-B11-F31 109.7(15) 

F21-B11-F31 105.7(14) 
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Table B-22 (continued) 

 

F41-B11-F31 107.4(14) 

F12-B12-F22 107.8(15) 

F12-B12-F42 116.6(17) 

F22-B12-F42 108.8(16) 

F12-B12-F32 110.1(16) 

F22-B12-F32 106.3(15) 

F42-B12-F32 106.8(15) 

F13-B13-F23 107.9(16) 

F13-B13-F43 116.6(17) 

F23-B13-F43 109.0(16) 

F13-B13-F33 109.8(17) 

F23-B13-F33 106.1(16) 

F43-B13-F33 107.1(15) 

_____________________________________________________________  
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Table B-23.  Crystal data and structure refinement for [(bme-daco)(V=O)]. 

 

Empirical formula  C10 H20 N2 O S2 V 

Formula weight  299.34 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  monoclinic 

Space group  P21/n 

Unit cell dimensions a = 7.590(3) Å α = 90°. 

 b = 20.689(9) Å β = 109.55(4)°. 

 c = 8.565(3) Å γ = 90°. 

Volume 1267.4(9) Å3 

Z 4 

Density (calculated) 1.569 Mg/m3 

Absorption coefficient 1.093 mm-1 

F(000) 628 

Crystal size 2.00 x 0.20 x 0.20 mm3 

Theta range for data collection 1.97 to 25.00°. 

Index ranges -9<=h<=8, -24<=k<=24, -10<=l<=9 

Reflections collected 11094 

Independent reflections 2159 [R(int) = 0.0584] 

Completeness to theta = 25.00° 96.9 %  

Max. and min. transmission 0.8110 and 0.2185 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2159 / 0 / 145 

Goodness-of-fit on F2 1.016 

Final R indices [I>2sigma(I)] R1 = 0.0513, wR2 = 0.1066 

R indices (all data) R1 = 0.0637, wR2 = 0.1113 

Largest diff. peak and hole 0.432 and -0.604 e.Å-3 
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Table B-24.   Bond lengths [Å] and angles [°] for [(bme-daco)(V=O)]. 

_____________________________________________________  

V(1)-O(1)  1.599(3) 

V(1)-N(2)  2.154(3) 

V(1)-N(1)  2.159(3) 

V(1)-S(1)  2.3482(14) 

V(1)-S(2)  2.3617(18) 

S(1)-C(1)  1.825(4) 

S(2)-C(3)  1.837(4) 

N(2)-C(7)  1.499(5) 

N(2)-C(4)  1.506(5) 

N(2)-C(10)  1.511(5) 

N(1)-C(2)  1.493(5) 

N(1)-C(5)  1.504(5) 

N(1)-C(8)  1.519(5) 

C(1)-C(2)  1.519(6) 

C(8)-C(9)  1.528(5) 

C(3)-C(4)  1.510(6) 

C(5)-C(6)  1.507(6) 

C(6)-C(7)  1.525(6) 

C(9)-C(10)  1.513(5) 

O(1)-V(1)-N(2) 102.94(14) 

O(1)-V(1)-N(1) 101.26(14) 

N(2)-V(1)-N(1) 84.11(13) 

O(1)-V(1)-S(1) 112.27(11) 

N(2)-V(1)-S(1) 144.33(9) 

N(1)-V(1)-S(1) 83.65(10) 

O(1)-V(1)-S(2) 110.26(11) 

N(2)-V(1)-S(2) 84.23(10) 

N(1)-V(1)-S(2) 148.11(9) 

S(1)-V(1)-S(2) 88.80(5) 

C(1)-S(1)-V(1) 100.53(14) 

C(3)-S(2)-V(1) 100.55(13) 

C(7)-N(2)-C(4) 106.3(3) 

C(7)-N(2)-C(10) 110.7(3) 
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Table B-24 (continued) 

 

C(4)-N(2)-C(10) 110.8(3) 

C(7)-N(2)-V(1) 110.7(2) 

C(4)-N(2)-V(1) 108.7(2) 

C(10)-N(2)-V(1) 109.6(2) 

C(2)-N(1)-C(5) 106.7(3) 

C(2)-N(1)-C(8) 110.7(3) 

C(5)-N(1)-C(8) 109.9(3) 

C(2)-N(1)-V(1) 107.7(2) 

C(5)-N(1)-V(1) 110.9(2) 

C(8)-N(1)-V(1) 110.8(2) 

C(2)-C(1)-S(1) 111.4(3) 

N(1)-C(8)-C(9) 111.5(3) 

C(4)-C(3)-S(2) 111.4(3) 

N(2)-C(4)-C(3) 113.9(3) 

N(1)-C(5)-C(6) 114.5(3) 

C(5)-C(6)-C(7) 116.6(3) 

N(2)-C(7)-C(6) 114.9(3) 

C(10)-C(9)-C(8) 117.0(3) 

N(2)-C(10)-C(9) 113.3(3) 

N(1)-C(2)-C(1) 112.3(3) 

_____________________________________________________________  
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Table B-25.  Crystal data and structure refinement for [(bme-dach)(V=O)]. 

 

Empirical formula  C9 H18 N2 O S2 V 

Formula weight  285.31 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  orthorhombic 

Space group  P212121 

Unit cell dimensions a = 7.2514(18) Å α = 90°. 

 b = 9.816(2) Å β = 90°. 

 c = 16.378(5) Å γ = 90°. 

Volume 1165.8(5) Å3 

Z 4 

Density (calculated) 1.626 Mg/m3 

Absorption coefficient 1.184 mm-1 

F(000) 596 

Crystal size 0.10 x 0.10 x 0.02 mm3 

Theta range for data collection 2.49 to 25.00°. 

Index ranges -8<=h<=8, -6<=k<=11, -19<=l<=13 

Reflections collected 2642 

Independent reflections 1917 [R(int) = 0.0354] 

Completeness to theta = 25.00° 96.5 %  

Max. and min. transmission 0.9767 and 0.8908 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1917 / 0 / 137 

Goodness-of-fit on F2 1.004 

Final R indices [I>2sigma(I)] R1 = 0.0363, wR2 = 0.0582 

R indices (all data) R1 = 0.0476, wR2 = 0.0619 

Absolute structure parameter 0.00(6) 

Largest diff. peak and hole 0.365 and -0.307 e.Å-3 
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Table B-26.   Bond lengths [Å] and angles [°] for [(bme-dach)(V=O)]. 

_____________________________________________________  

V(1)-O(1)  1.605(3) 

V(1)-N(2)  2.111(3) 

V(1)-N(1)  2.122(3) 

V(1)-S(1)  2.3407(12) 

V(1)-S(2)  2.3455(12) 

S(1)-C(1)  1.841(4) 

S(2)-C(3)  1.840(4) 

N(1)-C(8)  1.489(4) 

N(1)-C(5)  1.489(5) 

N(1)-C(2)  1.491(4) 

N(2)-C(9)  1.487(4) 

N(2)-C(4)  1.490(5) 

N(2)-C(7)  1.499(5) 

C(1)-C(2)  1.523(5) 

C(3)-C(4)  1.513(5) 

C(5)-C(6)  1.512(5) 

C(6)-C(7)  1.511(5) 

C(8)-C(9)  1.553(5) 

O(1)-V(1)-N(2) 102.17(13) 

O(1)-V(1)-N(1) 105.02(13) 

N(2)-V(1)-N(1) 74.35(11) 

O(1)-V(1)-S(1) 108.46(10) 

N(2)-V(1)-S(1) 146.39(9) 

N(1)-V(1)-S(1) 84.50(8) 

O(1)-V(1)-S(2) 110.66(10) 

N(2)-V(1)-S(2) 83.34(9) 

N(1)-V(1)-S(2) 141.09(9) 

S(1)-V(1)-S(2) 98.20(5) 

C(1)-S(1)-V(1) 99.17(12) 

C(3)-S(2)-V(1) 98.23(13) 

C(8)-N(1)-C(5) 111.0(3) 

C(8)-N(1)-C(2) 111.3(3) 

C(5)-N(1)-C(2) 109.8(3) 
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Table B-26 (continued) 

 

C(8)-N(1)-V(1) 104.8(2) 

C(5)-N(1)-V(1) 112.3(2) 

C(2)-N(1)-V(1) 107.6(2) 

C(9)-N(2)-C(4) 110.9(3) 

C(9)-N(2)-C(7) 110.7(3) 

C(4)-N(2)-C(7) 109.4(3) 

C(9)-N(2)-V(1) 104.8(2) 

C(4)-N(2)-V(1) 106.6(2) 

C(7)-N(2)-V(1) 114.3(2) 

C(2)-C(1)-S(1) 111.2(2) 

N(1)-C(2)-C(1) 110.8(3) 

C(4)-C(3)-S(2) 112.4(2) 

N(2)-C(4)-C(3) 110.1(3) 

N(1)-C(5)-C(6) 113.2(3) 

C(7)-C(6)-C(5) 114.8(3) 

N(2)-C(7)-C(6) 112.4(3) 

N(1)-C(8)-C(9) 109.9(3) 

N(2)-C(9)-C(8) 109.5(3) 

_____________________________________________________________  
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Table B-27.  Crystal data and structure refinement for [Et4N]2[(V=O)(ema)]. 

 

Empirical formula  C22 H50 N4 O4 S2 V 

Formula weight  549.72 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  triclinic 

Space group  P-1 

Unit cell dimensions a = 8.894(5) Å α = 72.63(5)°. 

 b = 12.219(7) Å β = 79.92(4)°. 

 c = 13.832(7) Å γ = 80.36(5)°. 

Volume 1401.9(13) Å3 

Z 2 

Density (calculated) 1.302 Mg/m3 

Absorption coefficient 0.536 mm-1 

F(000) 594 

Crystal size 0.10 x 0.10 x 0.01 mm3 

Theta range for data collection 2.00 to 25.00°. 

Index ranges -10<=h<=10, -14<=k<=14, -16<=l<=16 

Reflections collected 19908 

Independent reflections 4891 [R(int) = 0.0457] 

Completeness to theta = 25.00° 98.9 %  

Max. and min. transmission 0.9947 and 0.9484 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4891 / 0 / 298 

Goodness-of-fit on F2 1.014 

Final R indices [I>2sigma(I)] R1 = 0.0397, wR2 = 0.0899 

R indices (all data) R1 = 0.0561, wR2 = 0.0983 

Largest diff. peak and hole 0.432 and -0.309 e.Å-3 
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Table B-28.   Bond lengths [Å] and angles [°] for  [Et4N]2[(V=O)(ema)]. 

_____________________________________________________  

V(1)-O(1)  1.6229(19) 

V(1)-N(1)  2.028(2) 

V(1)-N(2)  2.028(2) 

V(1)-S(2)  2.3632(15) 

V(1)-S(3)  2.3688(17) 

S(2)-C(1)  1.828(3) 

S(3)-C(6)  1.830(3) 

O(2)-C(2)  1.260(3) 

O(3)-C(5)  1.256(3) 

N(1)-C(2)  1.328(3) 

N(1)-C(3)  1.457(3) 

N(2)-C(5)  1.333(3) 

N(2)-C(4)  1.465(3) 

C(1)-C(2)  1.507(4) 

C(3)-C(4)  1.531(4) 

C(5)-C(6)  1.511(4) 

N(3)-C(10)  1.511(3) 

N(3)-C(8)  1.520(3) 

N(3)-C(11)  1.525(3) 

N(3)-C(13)  1.527(3) 

C(7)-C(8)  1.509(4) 

C(9)-C(10)  1.507(4) 

C(11)-C(12)  1.513(4) 

C(13)-C(14)  1.505(4) 

N(4)-C(19)  1.517(3) 

N(4)-C(15)  1.518(3) 

N(4)-C(17)  1.521(3) 

N(4)-C(21)  1.523(3) 

C(15)-C(16)  1.503(4) 

C(17)-C(18)  1.513(4) 

C(19)-C(20)  1.506(4) 

C(21)-C(22)  1.500(4) 
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Table B-28 (continued) 

 

O(1)-V(1)-N(1) 105.62(10) 

O(1)-V(1)-N(2) 109.72(10) 

N(1)-V(1)-N(2) 78.41(10) 

O(1)-V(1)-S(2) 111.79(8) 

N(1)-V(1)-S(2) 81.27(8) 

N(2)-V(1)-S(2) 137.28(7) 

O(1)-V(1)-S(3) 108.27(8) 

N(1)-V(1)-S(3) 145.03(7) 

N(2)-V(1)-S(3) 82.32(8) 

S(2)-V(1)-S(3) 93.91(6) 

C(1)-S(2)-V(1) 98.83(10) 

C(6)-S(3)-V(1) 97.51(10) 

C(2)-N(1)-C(3) 120.1(2) 

C(2)-N(1)-V(1) 126.01(17) 

C(3)-N(1)-V(1) 112.86(16) 

C(5)-N(2)-C(4) 117.0(2) 

C(5)-N(2)-V(1) 125.28(17) 

C(4)-N(2)-V(1) 117.59(16) 

C(2)-C(1)-S(2) 114.39(18) 

O(2)-C(2)-N(1) 125.8(2) 

O(2)-C(2)-C(1) 118.8(2) 

N(1)-C(2)-C(1) 115.4(2) 

N(1)-C(3)-C(4) 107.9(2) 

N(2)-C(4)-C(3) 108.3(2) 

O(3)-C(5)-N(2) 125.1(2) 

O(3)-C(5)-C(6) 119.1(2) 

N(2)-C(5)-C(6) 115.8(2) 

C(5)-C(6)-S(3) 114.24(18) 

C(10)-N(3)-C(8) 112.2(2) 

C(10)-N(3)-C(11) 108.1(2) 

C(8)-N(3)-C(11) 109.1(2) 

C(10)-N(3)-C(13) 107.8(2) 

C(8)-N(3)-C(13) 107.7(2) 
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Table B-28 (continued) 

 

C(11)-N(3)-C(13) 111.8(2) 

C(7)-C(8)-N(3) 115.4(2) 

C(9)-C(10)-N(3) 115.0(2) 

C(12)-C(11)-N(3) 114.4(2) 

C(14)-C(13)-N(3) 115.2(2) 

C(19)-N(4)-C(15) 106.0(2) 

C(19)-N(4)-C(17) 111.2(2) 

C(15)-N(4)-C(17) 111.7(2) 

C(19)-N(4)-C(21) 111.5(2) 

C(15)-N(4)-C(21) 111.0(2) 

C(17)-N(4)-C(21) 105.52(19) 

C(16)-C(15)-N(4) 115.0(2) 

C(18)-C(17)-N(4) 115.5(2) 

C(20)-C(19)-N(4) 115.9(2) 

C(22)-C(21)-N(4) 115.2(2) 

_____________________________________________________________  
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