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ABSTRACT 

 

Predicting Size Effects and Determining Length Scales in Small Scale Metallic Volumes. 

(May 2010) 

Abu Nayeem Md. Faruk, B.Sc., Bangladesh University of Engineering & Technology 

Chair of Advisory Committee: Dr. Rashid K. Abu Al-Rub 

 

The purpose of this study is to develop an understanding of the behavior of 

metallic structures in small scales. Structural materials display strong size dependence, 

when deformed non-uniformly, into the inelastic range. This phenomenon is widely 

known as size effect. The primary focus of this study is on developing analytical models 

that predict some of the most commonly observed size effects in structural metals and 

validating them by comparing them with experimental results. A nonlocal, rate-

dependent and gradient-dependent theory of plasticity on a thermodynamically consistent 

framework is adopted for this purpose.  

The developed gradient plasticity theory is applied to study size effects observed 

in biaxial and thermal loading of thin films and indentation tests. One important intrinsic 

material property associated with this study is material length scale. The work also 

presents models for predicting length scales and discusses their physical interpretations. 

It is found that the proposed theory is successful for the interpretation of indentation size 

effects in micro/nano-hardness when using pyramidal or spherical indenters and gives 

sound interpretation of the size effects in thin films under biaxial or thermal loading. 
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CHAPTER I 

INTRODUCTION 

 

1.1  Problem Statement: Size Effects and Material Length Scales 

 With the emerging area of nanotechnology in recent years, there have been 

significant and rapidly growing efforts to fabricate small structures in the micro- and 

nano-meter scales. Along with it came the challenge of evaluating the mechanical 

behaviors of materials at these small scales. Experiments have shown that the properties 

and behavior of matter at the meso- ( 4 310 10− −≈ −  meters), micro- ( 7 410 10− −≈ −  meters) 

and nano- ( 10 710 10− −≈ −  meters) scales, cannot necessarily be predicted from those 

observed at larger (macro, i.e. larger than 310−  meters) or smaller (atomic, i.e. smaller 

than 1010−  meters) scales. Instead, they exhibit important differences that cannot be 

explained by traditional models and theories. The dependence of material mechanical 

properties on the size of the structure is termed as size scale effects or more commonly 

size effects. 

Several cases of size effects have been observed in experiments. Indentation of 

thin films shows an increase in the strength with decreasing the film thickness (Huber et 

al., 2002). Experimental works of Stolken and Evans (1998) has shown that the scaled 

bending strength in micro-bending of thin nickel films increases significantly as the film 

thickness decrease. Similarly, experimental work on particle-reinforced composites has  

 
____________ 
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revealed that a substantial increase in the macroscopic strength can be achieved by 

decreasing the particle size while keeping the volume fraction constant (Lloyd, 1994; 

Rhee et al., 1994a, 1994b; Zhu and Zbib, 1995; Nan and Clarke, 1996; Kiser et al., 1996; 

Zhu et al., 1997). But probably the most important of these is the so called indentation 

size effect (ISE): the increase in hardness with decreased indentation size in micro and 

nano-indentation tests (e.g. Stelmashenko et al., 1993; Ma and Clarke, 1995; McElhaney  

et al.,1998; Lim and Chaudhri, 1999; Elmustafa and Stone, 2002; Swadener et al., 2002; 

Huber et al., 2002; Abu Al-Rub and Voyiadjis, 2004a). 

These experiments have thus shown increase in strength with decrease in size at 

various length scales. The material mechanical properties, such as flow stress or 

hardness, in metallic materials whether in simple tension, torsion, bending, or 

indentation testing are thus size dependent. In all of these cases, the representative length 

scale of the deformation field sets the qualitative and quantitative behavior of size 

effects. The classical continuum plasticity and damage theories, as well as any theory in 

which the material behavior is fully characterized in terms of stresses and strains 

(without reference to any characteristic length scale), cannot predict the size effects since 

they do not possess an intrinsic material length-scale in their governing equations (i.e. 

material parameter with length dimension). On the other hand, it is still not possible to 

perform quantum and atomistic simulations on realistic time scale and structures. A 

multi-scale continuum theory, therefore, is needed to bridge the gap between the 

classical continuum theories and atomistic simulations. 
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The objective of the current work, therefore, is to develop analytical models to 

predict some of the most commonly encountered cases of size scale effects. The cases 

considered here are, biaxial and thermal loading of thin films on substrates, micro and 

nano-indentations on metallic structures by conical or pyramidal indenters and micro and 

nano-indentations on metallic structures by spherical indenters. Furthermore, as a 

subsequent development of the indentation size effect models, a way to determine the 

material length scale is discussed and its physical interpretation is sought.  

1.2  Literature Review: Gradient Plasticity Theories 

Size dependence of the material mechanical properties has largely been linked 

with the increase in higher-order strain gradients inherent in highly non-uniform 

(localized) zones of deformation by a number of authors in recent years (e.g. 

Stelmashenko et al., 1993; Fleck et al., 1994; Ma and Clarke, 1995; Arsenlis and Parks, 

1999; Busso et al., 2000; Gao and Huang, 2003). For example the material deformation 

in crystalline materials enhances the dislocation formation, the dislocation motion, and 

the dislocation storage. The dislocation storage causes material hardening. The stored 

dislocations generated by trapping each other in a random way are referred to as 

statistically-stored dislocations (SSDs), while the stored dislocations that relieve the 

plastic deformation incompatibilities within the polycrystalline caused by non-uniform 

dislocation slip are called geometrically-necessary dislocations (GNDs). Their presence 

causes additional storage of defects and increases the deformation resistance by acting as 

obstacles to the SSDs (Gao et al., 1999). SSDs are believed to be dependent on the 

effective plastic strain, while the density of GNDs is directly proportional to the gradient 
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of the effective plastic strain (Kroner, 1962; Ashby, 1970; Arsenlis and Parks, 1999). 

Accordingly, the theories of strain gradient plasticity have been proposed based on the 

concept of geometrically necessary dislocations in order to characterize the size effects.  

Inspired by the size effects problem in various metallic and non-metallic 

materials and the loss of well-posedness of the governing equations in the softening 

media, a number of gradient-enhanced theories have been proposed to address these 

problems through the incorporation of intrinsic length-scale measures in the constitutive 

equations, mostly based on continuum mechanics concepts. Gradient approaches 

typically retain terms in the constitutive equations of higher-order gradients with 

coefficients that represent length-scale measures of the deformation microstructure 

associated with the nonlocal continuum. These length-scale parameters are material 

properties that derive qualitatively and quantitatively the size effects. Moreover, the 

incorporation of these material length-scale parameters is necessary to preserve the well-

posedness of the constitutive relations in softening media.  

Aifantis (1984) was one of the first to study the gradient regularization in solid 

mechanics. However, the gradient theory of Aifantis (1984) is motivated by localization 

of softening and its principal aim was to achieve objectivity of continuum modeling and 

numerical simulations. Other researchers have contributed substantially to the gradient 

approach with emphasis on numerical aspects of the theory and its implementation in 

finite element codes: Lasry and Belytschko (1988), Zbib and Aifantis (1992); and de 

Borst and coworkers. In addition, we should include here the recent works of Oka et al. 

(2000), Aifantis (1999), Wang et al. (1998); Askes and Sluys (2002), Geers et al. (2000), 
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and Svedberg and Runesson (2000) etc. Gradient thermodynamic damage models were 

also introduced by Fremond and Nedjar (1996), Voyiadjis et al. (2001) and Voyiadjis 

and Dorgan (2001). Moreover, interesting contributions on the physical origin of the 

length scale in gradient plasticity theories have been made by Voyiadjis and Abu Al-Rub 

(2002), Abu Al- Rub and Voyiadjis (2004a), Abu Al-Rub (2007) and Abu Al-Rub and 

Faruk (2010).  

The gradient terms in several plasticity models are introduced through the yield 

function (e.g. Mühlhaus and Aifantis, 1991; de Borst and Mühlhaus, 1992; Gao et al., 

1999; Chen and Wang, 2002; Gao, 2003 and Gao, 2008). The gradient concept is also 

extended to the gradient damage theory that has been developed for isotropic damage 

(e.g. Peerlings et al., 1996) and for anisotropic damage (e.g. Kuhl et al., 2000; Voyiadjis 

et al., 2001; Voyiadjis and Dorgan, 2001). In addition, extension of the gradient theory 

to rate-dependent plasticity/damage has been recently addressed by few authors (Wang 

et al., 1998; Aifantis et al., 1999; Oka et al., 2000; Gurtin, 2002, 2003; Saczuk et al., 

2003).  

In parallel, other approaches that have length-scale parameters in their 

constitutive structure (commonly referred to as nonlocal theories) have appeared in the 

literature as an outgrowth of earlier work by Eringen (e.g. Eringen and Edelen, 1972) 

and Bazant (e.g. Pijaudier-Cabot and Bazant, 1987; Bazant and Pijaudier-Cabot, 1988). 

Nonlocal models also abandon the assumption that the stress at a given point is uniquely 

determined by the history of strain and temperature at this point only. They take into 

account possible interactions with other material points in the vicinity of that point. 
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Theoretically, the stress at a point can depend on the strain history in the entire body, but 

the long-range interactions certainly diminish with increasing distance, and can be 

neglected when the distance exceeds the length of interaction.  

All the theories mentioned so far include in their structure explicit material 

length scale measures. However, incorporation of rate-dependent viscous terms (e.g. 

Needleman, 1988; Wang et al., 1996) introduces an implicit length scale measure and 

limits localization in dynamic or quasi-static problems. The gradient-dependent theories 

have given reasonable agreement with the size dependence encountered in composite 

material experiments (e.g. Shu and Fleck, 1999; Shu and Barrlow, 2000; Busso et al., 

2000; Bassani, 2001; Xue et al., 2002a, Gao, 2003 and Gao, 2008), micro- and nano-

indentation experiments (e.g. Nix and Gao, 1998; Shu and Fleck, 1998;; Gao et al., 

1999; Huang et al., 2006; Abu Al-Rub, 2007 and Abu Al-Rub and Faruk, 2010), as well 

as with the micro-bend and micro-twist experiments (Gao et al., 1999; Aifantis, 1999; 

Tsagrakis and Aifantis, 2002). In this thesis a thermodynamically consistent gradient-

dependent plastic theory suitable for describing the size effects problems in the meso-, 

micro- and nano-scale systems will be formulated. 

1.3  Objectives 

The objective of this study is to develop analytical models to predict some of the 

most commonly encountered cases of size scale effects and to evaluate material length 

scale parameter. The steps involved include: 

• Developing a thermodynamically sound strain-gradient plasticity model based on 

non-local theories.  
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• Developing analytical model to predict size effects on biaxially loaded elasto-

plastic thin film on elastic substrate. 

• Developing analytical model to predict size effects on thermally loaded thin film 

on substrate. 

• Developing analytical model to predict indentation size effects for indentation by 

conical/pyramidal indenters and comparing with experimental results. 

• Developing analytical model to predict indentation size effects for indentation by 

spherical indenters comparing with experimental results. 

• Developing analytical model to determine material intrinsic length scale 

parameters through indentation tests using both conical and spherical indenters 

and determining the correlation between the two models. 

1.4  Organization of the Thesis 

The rest of the thesis is organized as follows: 

In Chapter II, the thermodynamic framework of the strain gradient plasticity 

model is developed in order to formulate the nonlocal yield condition and the higher 

order boundary conditions. Effects of interfacial yield strength and interfacial hardening 

is incorporated through the boundary conditions. 

In Chapter III, the proposed gradient plasticity theory is used to investigate the 

size effect problems in question. In case of size effect in thin film, the yield conditions 

along with some basic laws of mechanics e.g. Hook’s law and laws of equilibrium is 

used to formulate the second order differential equation. This is solved along with the 

non local boundary conditions to obtain the analytical model for predicting size effect.  
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In Chapter IV, definitions of SSD and GND densities are used to develop the 

indentation size effect models. One key idea that comes into play here is the nonlinear 

coupling between the SSDs and GNDs that eventually allows the model to 

simultaneously predict ISE from both micro and nano-indentations tests. As a 

subsequent development of the ISE model, a framework to evaluate the material intrinsic 

length scale is developed for both the cases of conical and spherical indenters. The 

physical nature of the length scale parameter is identified and a correlation between the 

length scale determined from a conical indentation test and that from a spherical 

indentation test is developed. Experimental data form indentation tests on a wide range 

of metallic materials using both conical and spherical indenters are analyzed using the 

developed models. Already existing models are also used on the same data to compare 

with the proposed model. Length scale parameters are calculated in each case. 

Chapter V summarizes the conclusions of this work. 
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CHAPTER II 

A HIGHER-ORDER STRAIN GRADIENT PLASTICITY THEORY BASED ON 

THERMODYNAMICS 

 

2.1  Introduction 

While attempting to develop theoretical understanding of the widely observed 

size effect phenomena, it became clear over the last three decades that the classical 

plasticity and damage theories are not well equipped. These conventional or classical 

theories generally assume that the stress at a point is a function of strain at that point 

only. However, when inhomogeneities are present and the gradients in strain become 

significant, this localization assumption is no longer valid. Therefore, continuum 

plasticity and damage theories that take into account the influence of the nth nearest 

neighbor of the material points or the long-range micro structural interactions should be 

developed. 

In this chapter, a physically motivated and thermodynamically consistent 

formulation of higher order gradient plasticity theory is presented. This proposed model 

is a non-local parameter framework that takes into consideration the presence of 

gradients of effective (or equivalent) plastic strain which is motivated by the 

accumulation of geometrically necessary dislocations and, hence, incorporates additional 

isotropic hardening. It is demonstrated that, the non-local yield condition and the higher 

order boundary conditions can be directly derived from the laws of thermodynamics. 

The following sections present the principal of virtual power and the fundamental 
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statements of irreversible thermodynamics that are commonly used in the mathematical 

modeling of the material mechanical behavior. 

2.2  Thermodynamics of Higher-Order Gradient Plasticity 

The classical theory of isotropic solids undergoing small deformation is based on 

the additive decomposition of the total strain rate,ε  into an elastic part, eε  and a plastic 

part, pε  such that,  

 e p
ij ij ijε ε ε= + ,     0p

kkε =  (2.1) 

where the rate of local effective plastic strain, pε  is defined as, 

 2
3

p p p p
ij ij ijε ε ε ε= =  (2.2) 

The unit direction of plastic strain tensor, N, is defined as follows: 

 
p p

ij ij p p
ij ij ijpp

ij

N N
ε ε

ε ε
εε

= = ⇒ =  (2.3) 

2.2.1  Principle of virtual power 

The principle of virtual power asserts that, given any sub-body Γ , the virtual 

power expended on Γ  by materials or bodies exterior to Γ  (i.e. external power) be 

equal to the virtual power expended within Γ  (i.e. internal power), such that 

 ext intP P=  (2.4) 

Let n denote the outward unit normal to ∂Γ . The external expenditure of power is 

assumed to arise from a macroscopic surface traction t  and the scalar microtraction 

force, q  conjugate to the local effective plastic strain rate pε , defined for each unit 
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vector n normal to the boundary ∂Γ  of Γ . Therefore, by neglecting body forces, one 

can write the external virtual power in the following form:  

 ( )extP p
i it v q dAε

∂Γ
= +∫  (2.5) 

The kinematic fields v  and pε  are considered here as virtual, where v  is the velocity 

vector and q  is the microtraction force. The two integral terms in Eq. (2.5) constitute the 

macroscopic and the microscopic power expenditures respectively. Moreover, since 

plastic deformation, accommodated by dislocation generation and motion, is affected by 

interfaces, the last integral term result in higher order boundary conditions generally 

consistent with the framework of a gradient type theory. these extra boundary conditions 

need to be imposed at external and internal boundary surfaces or interfaces separating 

different constituents as is shown later in this chapter.  

The external power is balanced by an internal expenditure of power characterized 

by the Cauchy stress tensor σ  defined over Γ  and the drag-stress R  conjugate to pε  

and associated with isotropic hardening. However, to incorporate the gradients of the 

plastic strain, power expenditures associated with kinematic variables p
kε∇  are also 

considered. Therefore, it can be assumed that additional power is expended internally by 

the higher order microforce vector kQ  conjugate to p
kε∇ . Specifically, the internal 

virtual power is assumed to have the following form: 

 ( )intP e p p
ij ij k kR Q dVσ ε ε ε

Γ
= + + ∇∫  (2.6) 

The first two terms in Eq. (2.6) constitutes the definition of the local internal virtual 

power in the mathematical definition of standard plasticity theory. The second term in 
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Eq. (2.6) represents the internal power generated by the drag-stress R which causes 

isotropic hardening. The last term is meant to take into account the large spatial 

variations in plastic strains at small length scales. It represents the internal power 

generated by the non-local drag vector Q  which is meant to account for the additional 

isotropic hardening from the accumulation of GNDs. Thus, the expression for internal 

power is based on the concept that the power expended by each kinematical field be 

expressible in terms of an associated fore system consistent with its own balance.  

Now, using Eq. (2.1) in Eq. (2.6) and rearranging one gets, 

 ( )intP p p p
ij ij ij ij k ks R Q dVσ ε ε ε ε

Γ
= − + + ∇∫  (2.7) 

where 
1
3ij ij kk ijs σ σ δ= −  is the deviatoric part of the Cauchy stress tensor and due to 

plastic incompressibility, p p
ij ij ij ijsσ ε ε= . 

One can apply the divergence theorem to obtain the following expressions: 

 
,

,and

ij ij ij i j ij j i

p p p
k k k k k

dV v n dA v dV

Q dV Q n dA Q dV

σ ε σ σ

ε ε ε
Γ ∂Γ Γ

Γ ∂Γ Γ

= −

∇ = −

∫ ∫ ∫
∫ ∫ ∫

 (2.8) 

Substituting the above equations into Eq. (2.7) gives: 

( )int , ,P p p p
ij j i ij ij k k ij j i k kv dV s R Q dV n v dA Q n dAσ ε ε σ ε

Γ Γ ∂Γ ∂Γ
⎡ ⎤= − − − − + +⎣ ⎦∫ ∫ ∫ ∫  (2.9) 

Substituting Eqs. (2.5) and (2.9) into Eq. (2.4) along with Eq. (2.3) and rearranging one 

gets, 

 
( ) ( )

( )
, ,

0

p
ij j i i ij j i ij k k ij ij

p
k k

v dV t n v dA s R Q N dV

q Q n dA

σ σ ε

ε
Γ ∂Γ Γ

∂Γ

⎡ ⎤+ − + − −⎣ ⎦

+ − =

∫ ∫ ∫
∫

 (2.10) 
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The fields Γ , v and pε  can be arbitrarily specified if and only if the following four 

conditions are satisfied: 

 , 0ij jσ =  (2.11) 

 i ij jt nσ=  (2.12) 

 ( ), 0ij k k ijs R Q N− − =  (2.13) 

 k kq Q n=  (2.14) 

Eq. (2.11) is the macro-force equilibrium equation. It expresses the local static or 

dynamic equilibrium or the macroforce balance according to the notion of Gurtin (2003). 

Eq. (2.12) defines the stress vector as the surface density of the forces introduced. It also 

provides the local macrotraction boundary conditions on forces if the axiom of 

equilibrium of virtual power is applied to the whole region under consideration as 

opposed to arbitrarily sub-regions. Eq. (2.13) is the nonlocal microforce balance and Eq. 

(2.14) is the micro-traction boundary condition. However, one can view the microforce 

balance in Eq. (2.13) as the plasticity non-local yield condition, which is demonstrated in 

the next section, and the microtraction condition in Eq. (2.14) as a higher-order 

boundary condition (or internal boundary condition) augmented by the interaction of 

dislocations across interfaces (Gurtin, 2003; Gudmundson, 2004). 

2.2.2  Non-local yield criterion 

In the following it will be shown that the microforce balance presented in Eq. 

(2.13) is nothing more than the non-local yield condition. By taking the Euclidean norm 

of Eq. (2.13), one can write, 
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 , 0ij k k ijs R Q N− − =  (2.15) 

where N is collinear with s . Moreover, since , ,k k k kR Q R Q− = −  and 1ijN = , one can 

then rewrite the above expression as the non-local yield criterion or the non-local 

plasticity loading surface f  such that,  

 ( ), 0ij k kf s R Q= − − =  (2.16) 

It is obvious that Eq. (2.16) represents a sphere in deviatoric stress-space of radius 

- divR Q . One can also notice that the microstress divQ  is giving rise to additional 

isotropic hardening. Since Eq. (2.16) implies that N is parallel to s , one can, therefore, 

express the direction of plastic strain, N, as follows: 

 ij
ij

mn

s
N

s
=  (2.17) 

Or equivalently, from Eqs. (2.16) and (2.17), 

 
,

ij
ij

k k

s
N

R Q
=

−
 (2.18) 

One can therefore express the plasticity flow rule, Eq. (2.3)2 as follows: 

 
,

ij ijp p p
ij

mn k k

s s
s R Q

ε ε ε= =
−

 (2.19) 

Therefore, one can easily proof that the plasticity flow rule can be written as, 

 p p
ij

ij

fε ε
σ
∂

=
∂

 (2.20) 

Such that,  
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 ij
ij

fN
σ
∂

=
∂

 (2.21) 

Therefore, the flow rule in Eq. (2.20) asserts that the flow direction N in Eq. (2.21) is 

normal to the yield surface and directed outward from the yield surface. Moreover, if the 

higher-order gradients are neglected, one can easily retrieve from Eqs. (2.16), (2.20) and 

(2.21), respectively, the classical yield criterion, flow rule, and flow direction. 

2.2.3  Non-local Clausius-Duhem in-equality  

Utilizing the derived microforce balance, Eq. (2.13) into Eq. (2.9), one can 

rewrite the expression of the internal power defined in Eq. (2.7) as follows: 

 intP p
ij ij k kdV Q n dAσ ε ε

Γ ∂Γ
= +∫ ∫  (2.22) 

Comparing the above equation with its corresponding local expression intP ij ijdVσ ε
Γ

= ∫  

(Green and Naghdi, 1971), implies that the long-range (non-local) energy interactions 

can be of non-vanishing within the plastic zone, which is represented by the second term 

in Eq. (2.22). Hence, according to the notion of Eringen and Edelen (1972), the energy 

term pq dAε
∂Γ∫  is called the non-locality energy residual that results from micro- 

structural interactions between the material points in the active plastic zone and at 

interfaces. Therefore, one can define the density of the non-locality energy residual, , 

as follows: 

 p
k kdV Q n dAε

Γ ∂Γ
=∫ ∫  (2.23) 

This, after the use of the divergence theorem, yields,  
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,

p
k k

Q ε⎡ ⎤= ⎣ ⎦  (2.24) 

Assuming isothermal conditions, a purely mechanical theory can be considered 

based on the requirement that the rate of change in the total free energy should be less 

than or equal to the power done by external forces (Gurtin, 2000). If one denotes ρΨ  as 

the specific free energy, this requirement takes the form of a free energy inequality 

 extPdVρ
Γ
Ψ ≤∫  (2.25) 

where, Ψ  is the Helmholtz free energy. By substituting Eqs. (2.22) and (2.23) into Eq. 

(2.25) along with the ext intP P= , the following thermodynamic restriction can be obtained 

in a point wise form: 

 0ij ijσ ε ρ− Ψ + ≥  (2.26) 

The inequality in Eq. (2.26) is termed here as the non-local Clausius–Duhem inequality 

differing from its classical counterpart only in the presence of . This inequality holds 

everywhere inΓ , but 0=  at material points in the elastic zone. Moreover, it can be 

noted from Eq. (2.24) that for a homogeneous plastic strain distribution 0= , one 

retains the classical Clausius–Duhem inequality. 

2.2.4  Non-local state variables  

The hardening in plasticity is introduced as hidden independent internal state 

variables in the thermodynamic state potential. The Helmholtz free energy is considered 

as the thermodynamic state potential depending on both observable and internal state 

variables. However, before giving its definition, a choice must be made with respect to 
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the nature of the state variables. Here, a form of this potential is chosen such that it 

depends on local variables, i.e. elastic strain, eε  and the effect plastic strain pε  and non-

local state variable i.e. the gradient of the effective plastic strain p
kε∇ . The Helmholtz 

free energy, therefore, can be expressed as: 

 ( ), ,e p p
ij kε ε εΨ=Ψ ∇  (2.27) 

Assuming a separable material, i.e. no coupling between the elastic and plastic free 

energies (Gurtin, 2003), one can rewrite the Helmholtz free energy potential as, 

 ( ) ( ),e e p p p
ij kε ε εΨ=Ψ +Ψ ∇  (2.28) 

From Eq. (2.28), taking a time derivative of Ψ  with respect to its internal state variables 

yields,  

 
e p p

e p p
ij e ke p p

ij k

ε ε ε
ε ε ε

∂Ψ ∂Ψ ∂Ψ
Ψ = + + ∇

∂ ∂ ∂∇
 (2.29) 

The above equation can now be used into the nonlocal Clausius–Duhem inequality, Eq. 

(2.26) along with Eq. (2.3) such that,  

 , 0
e p p

e p p
ij ij ij ij ij ij ij ke p p

ij k

s N Nσ ρ ε ρ ε ρ ε
ε ε ε

⎛ ⎞ ⎛ ⎞∂Ψ ∂Ψ ∂Ψ
− + − − + ≥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂∇⎝ ⎠⎝ ⎠

 (2.30) 

Following thermodynamic state laws are obtained from the above inequality: 

 
e

ij e
ij

σ ρ
ε

∂Ψ
=

∂
 (2.31) 

 
p

y pR σ ρ
ε

∂Ψ
= +

∂
 (2.32) 
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 And,  
p

k p
k

Q ρ
ε

∂Ψ
=

∂∇
 (2.33) 

where, yσ  is the initial yield strength.  

In order to develop equations amenable to the analysis and computation, a simple 

example for the definition of the Helmholtz free energy function is considered here. 

Assuming decoupling between the elastic behavior and plasticity hardening (i.e. 

separable material) such that both eΨ  and pΨ  that appear in Equation (2.28) can be 

assumed to have, respectively, the following quadratic analytical forms: 

 
1
2

e e e
ij ijkl klEρ ε εΨ =  (2.34) 

 And,  1 2
1 1
2 2

p p p p p
k ka aρ ε ε ε εΨ = + ∇ ∇  (2.35) 

where, E  is the symmetric fourth-order elastic stiffness tensor and 1a , 2a  are material 

constants. Eq. (2.31) along with Eq. (2.34) defines the Cauchy stress tensor as,  

 ( )e p
ij ijkl kl ijkl kl klE Eσ ε ε ε= = −  (2.36) 

Whereas, Eqs. (2.32) and (2.33) along with Eq. (2.35) defines, respectively, the local and 

non-local conjugate forces as, 

 p
yR hσ ε= +  (2.37) 

 2 p
k kQ h ε= ∇  (2.38) 

The material constants, 1a  and 2a  are favorably replaced by h  and 2h  respectively with 

h  being the constant hardening modulus and  being the material length scale 

parameter. Eq. (2.38) upon taking gradient yields, 
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 2 2
,

p
k kQ h ε= ∇  (2.39) 

where  2∇  is the Laplacian operator. Therefore, the yield condition in Eq. (2.16) 

becomes,  

 ( ) 2 23 0
2

p p
ij ij ys s h hσ ε ε− + + ∇ =  (2.40) 

The modulus of the deviatoric part of the Cauchy stress tensor is defined here as 

3
2 ij ijs s  in case of Von-Mises type plasticity and can be set equal to the effective (or 

equivalent) stress. Aifantis (1984) presented the above yield condition as,  

  2 2H p
e e hσ σ ε= − ∇  (2.41) 

where, eσ  and H
eσ  are the total and the homogeneous part of the effective stress. 

2.2.5  Interfacial effects and higher order boundary conditions  

It has already been discussed that the plastic deformation is mainly carried by 

dislocations within the bulk. These dislocations can move through the crystal grains and 

can interact with each other. Interfaces often hinder their transmission, creating a 

dislocation pile-up at the interface and thereby making the material harder to deform.  

The effect of interfaces on plastic deformation is incorporated in the presented 

higher order gradient plasticity framework by relating the microtraction boundary 

condition in Eq. (2.14) with an interfacial energy term. This interfacial energy introduces 

a resistance against dislocation emission/transmission and is significant in small-scale 

systems (e.g. thin films, nano-wires, nano-composites, nano-crystalline material) when 

the surface-to-volume ratio becomes large enough. In Eq. (2.14), the microtraction stress 
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q  is meant to be the driving force at the material internal and external boundaries, which 

can be interpreted as the interfacial stress at free surface or interface which is conjugate 

to the surface plastic strain. Therefore, q  can be related to the interfacial energy ϕ  per 

unit surface area by using the well-known relation (Gurtin and Murdoch, 1978): 

 ( )
( )2 Ip

k kIp
q h nϕ ε

ε
∂

= = ∇
∂    

On p∂Γ  (2.42) 

where, ( )Ipε  is the plastic strain at the interface and p∂Γ is the plastic interface. 

Continuity of the strain field requires that, ( )
p

Ip pε ε
∂Γ

=  at the interface. Therefore, ( )Ipε  

and the bulk effective plastic strain pε  are identical at the interface. However, it may be 

argued that the plastic strain should vanish at an elastic–plastic boundary. As explained 

in Fredriksson and Gudmundson (2007), the interfacial region has a finite but small 

thickness such that the plastic strain varies within this thickness and vanishes at the 

border between the interfacial region and the elastic material. However, if the thickness 

of the interfacial region is neglected, then the interface can be modeled as a 

mathematical surface where jumps in the plastic strain are allowed. 

According to the definition in Eq. (2.42), 0ϕ =  designates a free surface where 

dislocations are allowed to escape, while ϕ →∝  designates a micro-clamped surface (i.e. 

rigid interface) where dislocations are not allowed to penetrate. Hence, constrained 

plastic flow could be modeled either as a full constraint, i.e. 0pε =  (when ϕ →∝ ), or no 

constraint, i.e. 0q =  (when 0ϕ→ ). However, following the ideas presented by 

Gudmundson (2004), Fredriksson and Gudmundson (2005, 2007), Aifantis and Willis 
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(2005, 2006), Aifantis et al. (2006), and Abu Al-Rub et al. (2007) an intermediate kind 

of micro-boundary condition is introduced. Therefore, the interfacial energy ϕ  presented 

in Eq. (2.42) can be assumed to have the following form in analogy with linearly 

hardening bulk materials:  

 ( ) ( )( ) ( )
21

2
I Ip p f Tϕ γε β ε⎡ ⎤= +⎢ ⎥⎣ ⎦

 (2.43) 

where, γ  is the temperature dependent interfacial yield strength which characterizes the 

stiffness of the interface boundary in blocking dislocations from crossing the interface 

and β  is another temperature dependent interfacial property which characterizes the 

interfacial hardening that results during the transference of dislocation pile-ups across 

the interface. The temperature dependence of  γ  and β  are expressed by the function 

( )f T  which can have the following form:  

 ( ) ( )1 yf T T T
α

= −   (2.44) 

with, yT  being the temperature at the onset of yield. Substituting Eq. (2.43) into Eq. 

(2.42) gives, 

 ( ) ( ) ( )2 I Ip p
kh f Tε γ βε⎡ ⎤∇ = +⎣ ⎦  (2.45) 

Eq. (2.45) defines the higher-order boundary condition at the interface. One can assume 

that the interfacial strength, γ  and the interfacial hardening, β  scales with the bulk 

yield strength, yσ  and bulk hardening, h  by an interfacial length scale, I  such that  

 I yγ σ=  and I hβ =  (1.46) 
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CHAPTER III 

SIZE EFFECTS IN MICRO/NANO STRUCTURES 

 

3.1  Introduction 

Size effect (i.e. the dependence of mechanical response on the structure size) is a 

subject of current increasing interest due to the fact that current applications in modern 

technology involve a variety of length scales ranging from a few centimeters down to a 

few nanometers. The emerging area of nanotechnology exhibits important differences 

that result from continuous modification of material microstructural characteristics with 

changing size, whereby the smaller is the size the stronger is the response. There are 

many experimental observations which indicate that, under certain specific conditions, 

the specimen size may significantly affect deformation and failure of the engineering 

materials and it is required a length scale for their interpretation. From the discussions of 

Chapter I and Chapter II, it is already evident that these phenomena cannot be explained 

by the classical continuum mechanics since no length scale enters the constitutive 

description. However, the gradient plasticity theory has been successful in addressing the 

size effect problem. This success stems out from the incorporation of a micro-structural 

length-scale parameter in the governing equations for the material description. 

In Chapter II, a strain gradient plasticity theory has been developed based on 

laws of thermodynamics and in this chapter it is shown that, this theory can be 

effectively used to model several size effect problems. Size dependent behavior in 

biaxial loading of a plastic thin film on an elastic substrate and thermal cooling of a thin 
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film on a substrate are considered here to be investigated by the developed gradient 

theory. The qualitative aspects of the proposed interfacial properties are also discovered 

subsequently. 

3.2 Biaxial Loading of a Thin Film on a Substrate 

3.2.1  Analytical solution 

A biaxially loaded elastic-plastic thin film of thickness d  on a semi-infinite 

elastic substrate as shown in Figure 3.1 is considered. Let 3x  be the perpendicular axis to 

the film and 3 0x =  corresponds to the film–substrate interface. The loading is defined 

by a monotonically increasing biaxial strain oε  such that 11 22 oε ε ε= = . A plane stress 

situation is assumed such that the non-vanishing stress components are 

 ( )11 22 3o xσ σ σ= =  (3.1) 

From the plastic incompressibility assumption and the symmetry, one can write the non-

vanishing plastic strain components as 

 ( )11 22 33 32p p p p
o xε ε ε ε= = − =  (3.2) 

 

 

Substrate 

Thin film 

x3, z 

0z =  

1z =  
d 

x1 

Fig. 3.1. An elasto-plastic thin film of thickness d on elastic substrate 
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The effective plastic strain, p
eε  and its Laplacian, 2 p

eε∇  are assumed in this case, 

to be, 

 3( )p p
e o xε ε=  and 2

,33
p p

e oε ε∇ =  (3.3) 

Where, ,33 3 3
p p

o o x xε ε= ∂ ∂ ∂  

The yield condition for the system can be expressed from Eq. (2.40) as: 

 ( )2 23
2

p p
ij ij e ys s h hσ σ ε ε= = + − ∇  (3.4) 

And the generalized Hook’s law can be used to obtain the stress-strain relationship, 

 3 3( ) ( )
1

p
o o o

Ex xσ ε ε
υ
⎡ ⎤= −⎣ ⎦−

 (3.5) 

Using Eqs. (3.1) and (3.3) into the yield condition in Eq. (3.4), yields the following 

ordinary differential equation for ( )3
p

o xε : 

 ,33 2 2

1 y op p
o o h

σ σ
ε ε

−
− =  (3.6) 

The above equation is more conveniently expressed in a non-dimensional form with the 

aid of variable substitution (i.e. 3z x d= , p p
o o yε ε ε=  and o o yε ε ε= , where, 

( )1y y Eε υ σ= −  is the in-plane yield strain) such that: 

 2
,
p p

o zz o Fε λ ε− = −  (3.7) 

With the constant co-efficients λ  and F are given through,  

 dλ =  and 
( )( )
( ) ( )2

1
1

oE h
F

d
σ

υ

−
=

−
 (3.8) 

where, o o yσ σ σ= .  
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The normalized stress-strain relationship can be written, from Eq. (3.5) to be,  

 ( ) ( )p
o o oz zσ ε ε= −  (3.9) 

Eq. (2.42) through (2.45) specifies the higher order boundary conditions for the 

current problem. At the film free surface ( 3x d= ), 2
,3 0pq h ε= =  and at the film-

substrate interface for an isothermal condition, ( 3 0x = ), ( )2
,3

Ip pq h ε γ βε⎡ ⎤= = +⎣ ⎦ . 

Therefore, the dimensionless boundary conditions for the problem are, 

 , 1
0p

o z z
ε

=
=  (3.10) 

 ( ) , 1 20 01
p p

o z oz z

E hd ε δ δ ε
υ= =

= +
−

 (3.11) 

where 1 yδ γ σ=  and 2 hδ β=  are the non-dimensional interfacial strength and 

hardening, respectively. Solution to the differential equation with the stated boundary 

conditions is obtained to be, 

 ( )
( )

( )
2

1 2

2
2

1 1p
o

E h F
Fz Cosh z

Sinh Cosh

δ δ λ
υε λ

λ λ δ λ

⎛ ⎞ +⎜ ⎟−⎝ ⎠= − −
+

 (3.12) 

      with, 
( )( )

( ) ( )2

1
1

1
o

o

E hF H
σ

σ
λ υ

−
= −

−
 (3.13) 

Here, Heaviside step function, ( )1oH σ − is favorably used to imply that, 0p
oε =  as long 

as o yσ σ≤ . For 1 2 0δ δ= = , one obtains the classical solution ( ) 2p
o z Fε λ=  which is 

uniform along d . 
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 Substituting Eq. (3.12) along with Eq. (3.13) into the normalized stress-strain 

relationship, Eq. (3.9), expression for the normalized stress as a function of z  to be, 

 ( )

( ) ( )

( )

1 2

2

2

2

1
1

1
1

1 1
1

o

o

Cosh zE h
Sinh Cosh

z
Cosh zE h

Sinh Cosh

δ δ λ
ε

υ λ δ λ
σ

δ λ
υ λ δ λ

− −⎡ ⎤
+ +⎢ ⎥− +⎣ ⎦=

−⎡ ⎤
+ −⎢ ⎥− +⎣ ⎦

 (3.14) 

The above equation can be integrated to obtain the average stress over the thickness, d  

to be,  

 

( )1 2

2

2

2

1
1 1

1 1
1 1

o
avg

o

E h
Coth

E h
Coth

δ δ λ
ε

υ δ λ
σ

δ λ
υ δ λ

−⎡ ⎤
+ +⎢ ⎥− +⎣ ⎦=

⎡ ⎤
+ −⎢ ⎥− +⎣ ⎦

 (3.15) 

3.2.2  Qualitative analysis of biaxially loaded thin film 

Eqs. (3.12) through (3.15) can be used to analyze, qualitatively, the behavior of 

biaxially loaded thin films on elastic substrates. To analyze effect of size scale and 

interfacial properties, an aluminum thin film on silicon substrate is considered. The size 

effect is achieved by varying d  while, varying 1δ  and 2δ  incorporate effects of 

interfacial energy. Typical properties of aluminum are adopted ( 70E GPa= , 0.33ν = , 

36y MPaσ =  and / 0.2E h = ). Different sizes are represented by d =0.1, 0.5, 1.0, 1.5 

and 2.0. 

The level of interfacial energy at the interface is controlled by both the 

normalized interfacial yield strength parameter, 1δ  and hardening parameter 2δ . Four 
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different cases, that are expressed by the mathematical forms of the interfacial energy ϕ , 

can be considered for qualitative examination: 

Case 1: ( )Ipϕ γε= , which indicates that the interface is not allowed to harden. This is 

achieved by setting 2 0δ = in the preceding analytical developments. 

Case 2: ( )( )21
2

Ipϕ β ε= , which indicates that the interface yields at the same time when 

the bulk interior yields but it is allowed to harden differently. This is equivalent to 

setting 1 0δ =  

Case 3: ( ) ( )( )21
2

I Ip pϕ γε β ε= + , this form characterizes both the interfacial yielding and 

hardening analogous to the bulk interior. The expressions in Eq. (3.11) through (3.15) 

are used as they are and different values of 1δ  and 2δ  ( 1 2δ δ≠ ) are used.  

Case 4: ( ) ( )( )21
2

I Ip p
I y hϕ σ ε ε⎡ ⎤= +⎢ ⎥⎣ ⎦

, which is equivalent to setting 

1 2 Iδ δ δ= = =  in Eqs. (3.12) through (3.15). This is similar to case 3 but both the 

yield strength and hardening are controlled by the boundary layer length scale I . 

Case 1: Influence of the interfacial yield strength 

The influence of the interfacial yield strength, γ , separated from the effect of 

interfacial hardening, β , is examined first by varying the non-dimensional measure 1δ  

and setting 2 0δ = . Figure 3.2 study the stress-strain relationship from Eq. (3.15). The 

interfacial yield strength is varied from 1 0.1δ =  [Fig. 3.2(a)] and 1 0.45δ =  [Fig. 3.2(b)]. 
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Namely, 1 0.1δ =  corresponds to a compliant interface (i.e. interface with low yield 

strength, and 1 0.45δ =  corresponds to a stiff interface (i.e. interface with high yield 

strength. As expected, both of them show strong size effects i.e. the smaller is the size 

(higher d ) stronger is the response. But more interestingly, an increase in global yield 

strength is observer with either decreasing size (increasing d ) or with increasing  

 

 Fig. 3.2. Size effect in stress-strain relationship due to interfacial yield strength only 
( 2 0δ = ). 1 0.1δ =  for (a) and 1 0.45δ =  for (b)  

a 

b 
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interfacial yield strength (increasing 1δ ). This indicates that interfacial yield strength has 

determining effects on the global yield strength. The tangent hardening modulus shows 

no increment after yield point in either case which is an expected response since the 

interface is not allowed to hardened by setting 2 0δ = . 

Figures 3.3 show the effects of varying interfacial strength on the distribution of 

plastic strain and total stress through the characteristic size d  at an applied normalized 

strain of 3oε = . The size effect in case of normalized total stress [Fig. 3.3(c,d)], oσ  

shows opposite trend to that in case of ε  (i.e. increase with decreasing size). However,  

 

 
Fig. 3.3. Size effects in normalized plastic strain and total stress distributions due to 
interfacial yield strength only ( 2 0δ = ). 1 0.1δ =  for (a,c) and 1 0.45δ =  for (b,d)  

a b

c d
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the size effect becomes much more prominent as the interface is made stiffer which is 

the similar to what was seen in case of Fig 3.3(a,b). 

One can obtain for this case (i.e. when the interfacial hardening is neglected) an 

expression for the yield strength in Fig. 3.2 (i.e. onset of plasticity in the bulk interior) as 

a function of the interfacial yield strength, γ , and size, d , by simply finding the value 

of the normalized applied stress at which the average plastic strain in the specimen is 

zero; that is, o Yσ σ=  when ( ) 0
avgp

oε =  , where Yσ  is interpreted as the normalized 

global size-dependent yield strength of the whole specimen and ( )avgp
oε  is the average 

plastic strain in the specimen. This can be achieved simply by setting 2 0δ =  in Eq. 

(3.12), integrating the result over z , and substituting dλ = , which yields 

 ( )11Y dσ δ= +  (3.16) 

This can be rewritten after substituting Y Y yσ σ σ=  and 1 yδ γ σ=  as follows: 

 Y y dσ σ γ= +  (3.17) 

This relation shows that the yield strength, Yσ , scales with the interfacial yield strength, 

γ , and increases linearly with the inverse of the specimen size, 1d −  (note that d  could 

be interpreted here as the grain size, film thickness, or any characteristic dimension 

where there is variation in the plastic strain distribution).  

It is noteworthy that Eq. (3.17)matches to a great extent the findings of some of 

the experimental and discrete dislocation studies of the dependence of the yield strength 

on the thickness of thin metal films. For example, the effects of grain size and film 
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thickness on the yield strength were separated experimentally by Venkatraman  and 

Bravman (1992). Those authors established an almost linear increase of yield strength 

with the inverse of both film thickness and grain size. Also, the calculations made by 

Nix (1989) of thin film plasticity with a single misfit dislocation proposed a linear 

dependence of the flow stress on the inverse of the film thickness. 

Case 2: Influence of the interfacial hardening 

 

Next, it is assumed that the interface hardens (i.e. 2 0δ ≠ ) but yields at the same 

time as the bulk interior (i.e. 1 0δ = ). The average stress–strain relation are shown in 

Fig. 3.4. Size effect in stress-strain relationship due to interfacial hardening only (
1 0δ = ). 2 1δ =  for (a) and 2 10δ =  for (b)  

a 

b 
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Figure 3.4 (a and b) for two interface conditions; an intermediate interface with 2 1δ =  

and a hard interface with 2 10δ =  respectively. The additional contribution to strain 

hardening is attributed to the presence of interfacial hardening through non zero 2δ  

values that give rise to the interaction of dislocations with the interface. Figure 3.5 show 

the effects of varying interfacial strength on the distribution of plastic strain and total 

 

 

 
Fig. 3.5. Size effects in normalized plastic strain and total stress distributions due to 
interfacial hardening only ( 1 0δ = ). 2 1δ =  for (a,c) and 2 10δ =  for (b,d)  

a b

c d
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stress through the characteristic size d . In all the Figures of 3.4 and 3.5, size effect is 

observed as expected and it is more prominent with a harder interface.   

Following similar procedures to those that led to Eqs. (3.16) and (3.17) one finds 

a constant (size independent) value of 1Yσ = , for 1 0δ =  and 2 0δ ≠ . This can also be 

seen from Fig. 3.4 (a,b) that the yield stress is independent of ( )d  and β  such that the 

bulk and the interface yields at the same time. 

From the above results, one concludes that the inclusion of the interfacial 

hardening, β , enables one to qualitatively describe the strain hardening (i.e. increase 

inflow stress and tangent modulus), but it cannot predict any strengthening (i.e. increase 

in the yield strength) with decreasing size. On the other hand, the inclusion of the 

interfacial yield strength, γ , enables one to qualitatively predict strengthening but 

without further increasing the strain hardening rate with decreasing size. Therefore, since 

an increase in the yield strength is usually accompanied by an increase in the hardening 

rate, which is often seen in experimental results for diminishing sizes (e.g. Huang and 

Spaepen, 2000; Shrotriya et al., 2003; Haque and Saif, 2003; Espinosa et al., 2004; 

Uchic et al., 2004; Dimiduk et al., 2005; Greer et al., 2005; Volkert and Lilleodden, 

2006; Simons et al., 2006). 

Case 3 and 4: Combined influence of the interfacial yield strength and hardening 

The combined effect of interfacial yield strength and interfacial hardening is 

examined here. Figure 3.6 (a and b) show the average stress-strain relationships for 

1 0.45δ =  while interfacial hardening is varied between values, 2 1δ =  and 2 10δ = . As 
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expected, both global yield strength and plastic strain rate are subjected to size effects 

such that, a decrease in characteristic size, d  shows increment in both global yield 

strength and plastic hardening rate. This is a desirable behavior since it conforms to the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. Size effect in stress-strain relationship due to both interfacial yield strength 
and hardening  1 0.45δ =  in all cases while 2 1δ =  for (a) and 2 10δ =  for (b)  

a 

b 
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experimental results at the micron and submicron length scales (see Fleck et al., 1994; 

Huang and Spaepen, 2000; Haque and Saif, 2003; Espinosa et al., 2004). But, the size 

effect in yield strength is decreased with the increase of interfacial hardening ( 2 1δ =  to 

2 10δ = ) although, interfacial yield strength is kept same in both occasions ( 1 0.45δ = ). 

This indicates that, global yield strength is sensitive to both interfacial yield strength and 

hardening.  

 

 

 

 

 

Fig. 3.7. Size effects in normalized plastic strain and total stress distributions due to both 
interfacial yield strength and hardening. 1 0.45δ =  in all cases while. 2 1δ =  for (a,c) and 

2 10δ =  for (b,d)  

a b

c d
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The plastic strain and stress distributions listed in Figures 3.7 show essentially, 

similar qualitative behavior to those listed in Figures 3.3 and 3.5. 

An expression for the normalized yield strength, Yσ  as a function of both 

interfacial yield strength and hardening, ( 1δ  and 2δ , respectively) can be obtained by 

following procedures similar to those involved in obtaining Eq. (3.16) such that,  

 
( )

1

2

1
1Y Coth

δσ
λ δ λ λ

= +
+ −

 (3.18) 

It can be seen from the above equation that the global yield strength is sensitive to both 

the interfacial yield strength and the interfacial hardening in way that, increasing 

interfacial hardening will decrease the global yield strength. This is an undesirable 

behavior since one expects that by increasing the interfacial hardening, increase in both 

the yield strength and the strain hardening rate should be achieved. 

A different approach may be to change the interfacial yield strength and 

hardening such that 1δ  and 2δ  are equal to each other. It is a way of declaring the 

interdependency of the two interfacial terms such that increasing one will result in an 

automatic increase to the other. Therefore, by setting 1 2 Iδ δ δ= = =  in Eq. (3.18) the 

expression for the size dependent global yield strength becomes,  

 [ ] 11 1Y Cothσ λ δ λ λ −= + + −  (1.19) 

The above expression shows an increase in the global yield strength with 

increasing δ . This is more evident in the Figure 3.8 where ( )1 2δ δ δ= =  is increased 

from 0.45 to 1.0 and a significant increase in the global yield strength is observed. The 
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slight increase in the strain hardening rate is easily attributed to the increase in the 

interfacial hardening value.  

A physical interpretation of this behavior is that the increase in interfacial 

hardening is marked by increased dislocation interactions in the interface which results 

in a stiff network of dislocations and thus increases the resistance to plastic deformation 

at the interface such that a stiff interface is obtained.  

 

 

 
Fig. 3.8. Size effect in stress-strain relationship due to both interfacial yield strength 
and hardening  0.45δ =  for (a) and 1.0δ =  for (b)  

a 

b 
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Therefore, the interfacial hardening and interfacial yield strength are interdependent and 

as such cannot be varied independently.  

3.3 Thermal Loading of a Thin Film on a Substrate 

3.3.1  Analytical solution 

The problem of a thin film on a semi-infinite substrate subjected to thermal load- 

 

 

ing will be studied now. A quasi-static monotonic thermal loading is imposed by cooling 

the film–substrate system from an initial temperature oT  at which the film and substrate 

are stress free and dislocation free. The substrate undergoes unconstrained contraction 

but, due to the mismatch between the thermal-expansion coefficient of the film, fα , and 

the substrate, sα , stress develops in the film; which is tensile for f sα α> . Since the film 

is infinitely long in the 1x -direction (Figure 3.9) and initially homogeneous, the solution 

depends only on 3x  such that by assuming a plane strain problem in the 2x direction one 

can write  

Substrate 

Thin film 

x3, z 

0z =  

1z =  

d 

x1 

Fig. 3.9. An elasto-plastic thin film of thickness d on elastic substrate 
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 33 13 0σ σ= =  and, ( )11 3o xσ σ=  (3.20) 

where the stress field, ( )3o xσ , is non-uniform and unknown at this stage. Because of 

symmetry and because the strain components do not depend on 1x , the total strain 

11 oε ε=  must be uniform throughout the film such that the effective plastic strain, pε , 

and its laplacian, 2 pε∇  in this case can be assumed as follows, 

 ( )3
p p

o xε ε=     and    2
,33

p p
oε ε∇ =  (3.21) 

where 2 2
,33 3

p p
o o xε ε= ∂ ∂ . For a plane strain condition, the stress-strain relationship can be 

expressed as follows, 

 ( ) ( )3 321
e

o o
Ex xσ ε
ν

=
−

 (3.22) 

where E  is the Young’s modulus and ν  is the Poisson’s ratio. The total strain in the 

film can be decomposed into elastic, plastic, and thermal components, given by, 

 ( )1e p
o o o f Tε ε ε ν α= + + + Δ  (3.23) 

where oT T TΔ = −  is the temperature change and the term (1 )ν+  is a result of the plan 

strain assumption. Compatibility of deformation between the film and the substrate 

requires that oε  be the same and uniform throughout the film. The total strain in the 

substrate is given by,  

 ( )1o s Tε ν α= + Δ  (3.24) 

In Eqs. (3.23) and (3.24), f sν ν ν= =  is assumed. Substituting e
oε  from Eqs. (3.23) and 

(3.24) into Eq. (3.22) yields,  



 40

 ( ) ( )( ) ( )3 32 1
1

p
o s f o

Ex T xσ ν α α ε
ν

⎡ ⎤= + − Δ −⎣ ⎦−
 (3.25) 

In the elastic range, the above equation can be utilized to relate the yield stress with the 

temperature at the onset of yield (i.e. by substituting yT T=  when o yσ σ= ) by setting 

0p
oε =  in Eq. (3.25) such that, 

 ( )( )
1y s f y o

E T Tσ α α
ν

= − −
−

 (3.26) 

Following from the yield condition in Eq. (3.4) with Eqs. (3.20) and (3.21), one gets,  

 2
,33 0p p

o y o of h hσ σ ε ε= − − + =  (3.27) 

Substituting Eq. (3.25) into Eq. (3.27) along with Eq. (3.26) yields the following 

ordinary differential equation for ( )3
p

o xε : 

 ( ) ( ) ( )( ),33 2 22

1 1
11

p p
o o f s y

E h E h T Tε ε α α
νν

⎡ ⎤
⎢ ⎥− + = − −

−−⎢ ⎥⎣ ⎦
 (3.28) 

The above equation is more conveniently expressed as a non-dimensional form with the 

aid of variable substitution (i.e. 3z x d= ) such that: 

 2
,

p p
o zz o Fε λ ε− = −  (3.29) 

with the constant coefficients λ  and F  are given through,  

 
( ) ( )

2
2 2

1 1
1
E h

d
λ

ν

⎡ ⎤
⎢ ⎥= +

−⎢ ⎥⎣ ⎦
 and 

( ) ( )
( )( )2 1 f s y

E hF T T
d

α α
ν

= − −
−

 (3.30) 

Eq. (2.42) through (2.45) specifies the higher order boundary conditions for the 

current problem.. At the film free surface ( 3x d= ), 2
,3 0pq h ε= =  and at the film-
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substrate interface ( 3 0x = ), ( ) ( )2
,3

p Ipq h f Tε γ βε⎡ ⎤= = +⎣ ⎦ . Therefore, the 

dimensionless boundary conditions for the problem are, 

 , 1
0p

o z z
ε

=
=  (3.31) 

 ( ) ( ), 1 20 0

p p
o z y oz z

d h f Tε δ σ δ ε
= =

⎡ ⎤= +⎣ ⎦  (3.32) 

where 1 yδ γ σ=  and 2 hδ β=  are the non-dimensional interfacial strength and 

hardening, respectively. Solution to the differential equation with the stated boundary 

conditions is obtained to be, 

 ( )
( ) ( ) ( )
( ) ( ) [ ]

2
1 2

2
2

yp
o

h F f TFz Sinh z Coth Cosh z
d f T Coth

δ σ δ λ
ε λ λ λ

λ λ δ λ

⎡ ⎤+⎣ ⎦= + −
+

 (3.33) 

 with,  
( )

( ) ( )( )2 2

1
1 f s y

E hF T T
E h

ν
α α

λ ν
+

= − −
− +

 (3.34) 

which can be rewritten after substituting Eqs. (3.34) as follows: 

 

( ) ( )
( ) ( ) [ ]

( )( )( )( )
( )

( )( )
( ) ( )

1

2

2
2

2

1
1

1

yp
o

f s y

f T h
z Sinh z Coth Cosh z

d f T Coth

E h T T f T Sinh z Coth Cosh z
d f T CothE h

δ σ
ε λ λ λ

λ δ λ

υ α α δ λ λ λ
λ δ λυ

= −
+

+ − − ⎡ ⎤−
+ +⎢ ⎥+− + ⎣ ⎦

 (3.35) 

Substituting the above equation into Eq. (3.25) yields a linear relationship between oσ  

and T  as follows: 

 ( ) ( )o nz c Sinh z Coth Cosh zσ σ λ λ λ= − −  (3.36) 

with 
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 ( ) ( ) ( )
( )( )21 1 1

y
n f s o

T TE T T
h E

σ α α
ν ν

⎡ ⎤−
⎢ ⎥= − − −

− + −⎢ ⎥⎣ ⎦
 (3.37) 

 ( ) ( ) ( )

2
1 2

2
21

y h FEc f T
d f T Coth

δ σ δ λ
ν λ δ λ

⎡ ⎤+
= ⎢ ⎥

− +⎢ ⎥⎣ ⎦
 (3.38) 

 

Integrating Eqs. (3.35) and (3.36) over the thickness of the film (i.e. from 0z =  to 1z = ) 

gives the average plastic strain ,p avg
oε  and average stress avg

oσ  such that, 

 
2

,
2

1p avg
o

F c
E
υε

λ λ
⎛ ⎞−

= −⎜ ⎟
⎝ ⎠

 (3.39) 

 avg
o n

cσ σ
λ

= +  (3.40) 

3.3.2  Qualitative analysis of thermal loading of a thin film 

 The analytical relations developed so forth (Eqs. (3.33) through (3.40), are used 

here for qualitative analysis of ‘thermal loading of a thin film’ problem. Once again, an 

aluminum thin film on silicon substrate having typical properties, ( 70E GPa= , 

0.33ν = , 36y MPaσ = , 623.3 10 /f Kα −= × , 36y MPaσ =  and / 0.2E h = ) is 

considered. The analysis are done to simulate the cooling of the specimen from an initial 

temperature of 600oT K=  to 400T K= . Thermal expansion coefficient for silicon is 

taken to be 63.0 10 /s Kα −= × . The temperature at which yielding occurs is calculated 

from Eq. (3.26) to be 582.94yT K= . Film thicknesses are varied as 0.1,0.5,1.0,1.5d =  

and 2. The size and interfacial energy effects are achieved by varying d  , 1δ  and 2δ  
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respectively. The four cases for interfacial energy ϕ  considered in section 3.2.2 are also 

considered here.  

Case 1: Influence of the interfacial yield strength 

The interface is not allowed to harden by setting 2 0δ =  and varying the non-

dimensional yield strength measure, 1δ . The resulting qualitative curves are shown in 

Figure 3.10. The interfacial yield strength is varied from 1 0.1δ =  [(a) and (c)] to 

1 0.45δ =  [(b) and (d)].  

 

 Fig. 3.10. Size effect in stress-strain relationship (a,b) and stress-temperature 
relationship (c,d) under thermal loading due to interfacial yield strength only ( 2 0δ = ).

1 0.1δ =  for (a) and (c) and 1 0.45δ =  for (b) and (d) 

a b

c d
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Figures (a) and (b) study the stress-strain relationship [average stress from Eq. 

(3.40) vs. total strain from Eq. (3.24)] and Figures (c) and (d) study the variation of 

average stress with decreasing temperature [Eq. (3.40)]. As expected, both of them show 

size effects i.e. the smaller is the size (higher d ) stronger is the response.  

 

 

 

 

Fig. 3.11. Size effects in normalized plastic strain and total stress distributions due to 
interfacial yield strength only ( 2 0δ = ). 1 0.1δ =  for (a,c) and 1 0.45δ =  for (b,d)  

a b

c d
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But more interestingly, an increase in global yield strength is observer with either 

decreasing size (increasing d ) or with increasing interfacial yield strength (increasing 

1δ ). This indicates that interfacial yield strength has determining effects on the global 

yield strength. The tangent hardening modulus remain fairly uniform which is due to the 

fact that the interfacial hardening has been restricted by setting 2 0δ = .  

Plastic strain distribution and total stress distributions along the characteristic 

size (thickness, d ) due to the interfacial yielding effect for a temperature  change from 

600K  to 400K  are showed in Figure 3.11. Similar to the trends seen in the biaxial 

loading cases, here also, plastic strain distribution decreases with decreasing size, while 

the stress distribution increases with decreasing size. In both these cases, size effect 

increase with increasing γ . 

Case 2: Influence of the interfacial hardening 

The effect of interfacial hardening is studied by fixing 1 0δ =  (interface yields at 

the same time as the buck), while 2δ  is varied between 2 0.2δ =  and 2 1δ =  (Figure 3.12). 

In this case also, size effect is observed on the flow stress and hardening rate. The 

increment in tangential modulus is attributed to the presence of interfacial hardening 

through non zero 2δ  values. Although the global yield strength is unchanged which was 

expected given that, 1δ  has been set to zero.  
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Figure 3.13 show the effects of varying interfacial strength on the distribution of 

plastic strain and total stress through the characteristic size d . In all the Figures of 3.12 

and 3.13, size effect is observed as expected and it is more prominent with a harder 

interface.   

Fig. 3.12. Size effect in stress-strain relationship (a and b) and stress-temperature 
relationship (c and d) under thermal loading due to interfacial hardening only ( 1 0δ = ).

2 0.2δ =  for (a) and (c) and 2 1δ =  for (b) and (d) 

a b

c d
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Case 3 and 4: Combined influence of the interfacial yield strength and hardening 

The combined effect of interfacial yield strength and interfacial hardening is next 

examined. Figure 3.14 (a and b) shows the average stress-strain relationships for 

1 0.45δ =  while 2δ  is varied between values, 0.2 and 1.0. As expected, both global yield 

strength and plastic strain rate are subjected to size effects such that, a decrease in 

characteristic size, d  shows increment in both global yield strength and plastic 

hardening rate. But, the rate of increment in yield strength is decreased with the increase 

Fig. 3.13. Size effects in normalized plastic strain and total stress distributions due to 
interfacial hardness only ( 1 0δ = ). 2 0.2δ =  for (a,c) and 2 1.0δ =  for (b,d)  

a b

c d
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of interfacial hardening ( 2 0.2δ =  to 2 1.0δ = ) although, interfacial yield strength is kept 

same in both occasions ( 1 0.45δ = ). This indicates that, global yield strength is sensitive 

to both interfacial yield strength and hardening. Similar arguments as those in case of 

biaxial loading can be made to explain this behavior. In this case also, varying the 

interfacial hardening and yield strength such that, 1 2δ δ δ= =  gives better response as 

shown in Figure 3.15. 

 

 

 

 

 

Fig. 3.14. Size effect in stress-strain relationship (a and b) and stress-temperature 
relationship (c and d) under thermal loading due to interfacial yield strength and 
hardening 1 0.45δ =  in all cases while. 2 0.2δ =  for (a,c) and 2 1δ =  for (b,d)  
 

a b

c d
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In Figure 3.16, the plastic strain distribution and total stress distribution across 

the film thickness is plotted. Varying interfacial yield strength and hardening both impart 

size effects in the plastic strain profile across the thickness while it is more pronounced 

in case of stiffer  and harder interfaces marked by higher δ  value. 

Fig. 3.15. Size effect in stress-strain relationship (a and b) and stress-temperature 
relationship (c and d) under thermal loading due to interfacial yield strength and 
hardening 0.45δ =  for (a,c) and 1δ =  for (b,d)  
 

a b

c d
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Fig. 3.16. Size effects in normalized plastic strain and total stress distributions due to 
interfacial yield strength and interfacial hardness 0.45δ =  for (a,c) and 1.0δ =  for 
(b,d)  

a b

c d
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CHAPTER IV 

INDENTATION SIZE EFFECT MODELS AND MATERIAL INTRINSIC  

LENGTH SCALE: AN ANALYTICAL APPOACH 

 

4.1  Introduction 

In the attempt of evaluating material mechanical properties (e.g. hardness, 

stiffness) at small scales, micro- and nano- indentation tests proves to be most suitable 

for their economic as well as fast, precise and nondestructive merit. However there are 

numerous indentation tests at scales on the order of a micron or a submicron level that 

have shown that the measured hardness increases significantly with decreasing the 

indentation size or equivalently the indenter size (e.g. Stelmashenko et al., 1993; 

DeGuzman et al., 1993; Ma and Clarke, 1995; Poole et al., 1996; McElhaney et al., 

1998; Lim and Chaudhri, 1999; Elmustafa and Stone, 2002; Gerberich et al., 2002; 

Swadener et al., 2002; Huber et al., 2002; Abu Al-Rub and Voyiadjis, 2004a). This 

phenomenon is commonly termed as indentation size effect (ISE). 

It has already been discussed in the preceding chapters that indentation size 

effect or any form of size scale effects in general could not be explained by the classical 

continuum mechanics, whereas gradient plasticity theory has been successful in 

addressing the size effect phenomena. This is due to the incorporation of a micro-

structural length scale parameter in the governing equation of the deformation 

description. Gradient plasticity theory attributes ISE to the evolution of the so-called 



 52

geometrically necessary dislocations (GNDs) beneath the indenter, which gives rise to 

strain gradients (Ashby, 1970; Arsenlis and Park, 1999). 

By considering the GNDs generated by a conical indenter, Nix and Gao (1998) 

utilized the dislocation arguments set by Stelmashenko et al. (1993) and Ma and Clarke 

(1995) and developed an ISE model that suggests a linear dependence of the square of 

the micro-hardness to the inverse of the indentation depth. Swadener et al. (2002) 

utilized the basic precepts given by Nix and Gao (1998) for a conical indenter and 

developed an ISE model for spherical indenters which suggests a linear dependence of 

the square of the micro-hardness to the inverse of the diameter of the spherical indenter. 

However, recent micro- and nano-indentation results show that the predictions of the 

Nix-Gao and Swadener et al. models deviate significantly from the experimental results 

at small indentation depths (i.e. nano-indentation) in the case of Berkovich and Vickers 

indenters (e.g. Lim and Chaudhri, 1999; Saha et al., 2001; Elmustafa and Stone, 2002; 

Feng and Nix, 2004; Abu Al-Rub and Voyiadjis, 2004a; Manika and Maniks, 2006; Abu 

Al-Rub, 2007) and at small diameters for the case of spherical indenters (Swadener et al. 

2002; Abu Al-Rub and Voyiadjis, 2004a). Moreover, Elmustafa and Stone (2002) 

observed that when the Nix-Gao model is used to fit the experimental results of micro- 

and nano-hardness, the data at deep indents (micro-hardness) exhibits a straight-line 

behavior whereas for shallow indents (nano-hardness) the slope of the line severely 

changes, decreasing by a factor of 10, resulting in a bilinear behavior and, therefore, two 

different values for the material length scale are used to fit the micro- and nano-

indentation data. Recently, Huang et al. (2006) modified the Nix-Gao model by reducing 



 53

the density of GNDs at small indentation depths where two values for the material length 

scale are also used to fit the micro- and nano-indentation data. Therefore, Nix-Gao 

model can fit well either the hardness data from micro-indentation or nano-indentation 

tests, but not both simultaneously. The same can be said about Swadener et al. (2002) 

ISE model for spherical indenters.  

Recently, Abu Al-Rub (2007) and Abu Al-Rub and Faruk (2010) argued that the 

most likely impediment in both the Nix and Gao (1998) and Swadener et al. (2002) ISE 

models is the assumption that the densities of GNDs and SSDs in the Taylor’s hardening 

law (Taylor, 1938) are summed arithmetically such that it underestimates the total 

dislocation density underneath a conical/pyramidal indenter. It was concluded that it is 

better to postulate the total shear stresses as the arithmetic sum of shear stresses from 

SSDs and that from GNDs. This conclusion is used in this chapter in order to formulate 

two new ISE models for conical and spherical indenters as compared to those by Nix and 

Gao (1998) and Swadener et al. (2002) respectively. Moreover, some insight are shed on 

the interpretation of the ISE encountered in micro- and nano-hardness from indentation 

tests and an ISE analytical model is proposed that can predict equivalently well the 

micro- and nano-indentation hardness data from both conical and spherical indentation. 

The predictions of this model are compared to that by Swadener et al. (2002) against a 

set of micro-indentation tests on several metallic materials from the literature. Values for 

the material length scale parameter are calculated and it is shown that these values vary 

with the plastic strain for a certain material. 
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4.2 Strain Gradient Plasticity Theory and Coupling between SSDs and GNDs 

Plastic strain gradients play an essential role in the prediction of size-scale 

effects in the deformation behavior of metals at the micron and submicron scales. Strain 

gradient plasticity theories extend the classical plasticity models by explicitly including 

an intrinsic material length scale and by including the history effects of the surrounding 

material points on the material point under consideration (i.e. nonlocality), and are 

therefore appropriate for materials and structural systems involving small dimensions. 

Many researchers tend to write the weak form of the non-local conventional effective 

plastic strain, pε , which is the conjugate variable of the plasticity isotropic hardening, in 

terms of its local counterpart, pε , and the corresponding higher-order gradients, η . The 

coupling between pε  and η  was presented in many different mathematical forms by 

Abu Al-Rub and Voyiadjis (2004a, 2004b). Motivated by the Taylor’s hardening law at 

the micro-mechanical level, one can assume the following power-law of the 

corresponding gradient-dependent flow stress at the mesoscale (Abu Al-Rub, 2007): 

 ( )
1

p n
refσ σ ε=    with    p pε ε η= +  (4.1) 

where σ  can be set equal to the effective (or equivalent) stress, for example, 

3 / 2ij ijs sσ =  in case of von Mises-type plasticity, where 1
3ij ij kk ijs σ σ δ= −  is the 

deviatoric part of the Cauchy stress tensor ijσ  with ijδ  designates the Kronecker delta. 

The reference stress refσ  is a measure of the yield strength in uniaxial tension,  is the 

material length scale where its physical meaning and origin will be explored in the 

following developments, 1n ≥  is the strain-hardening exponent, and η  is an effective 
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measure of the gradient of plastic strain which is related to the GND density. For 

example, one can assume .p p
k kη ε ε= ∇ ∇ , where k∇  is the first-order gradient 

operator. For other expressions of η , one can consult Abu Al-Rub and Voyiadjis 

(2004a).  

It is assumed, in general, that the total dislocation density represents the total 

coupling between two types of stored dislocations which play a significant role in the 

hardening mechanism of small scale metallic systems; namely: statistically stored 

dislocations (SSDs) and geometrically necessary dislocations (GNDs) (Nye, 1953; 

Ashby, 1970; Arsenlis and Parks, 1999). SSDs are generated by trapping each other in a 

random way while GNDs relieve the plastic deformation incompatibilities within the 

polycrystal caused by non-uniform dislocation slip. GNDs cause additional storage of 

defects and increase the deformation resistance by acting as obstacles to SSDs. 

Furthermore, the density of SSDs, Sρ , depends on the local effective plastic strain, pε , 

while the density of GNDs, Gρ , is directly proportional to the gradient of the effective 

plastic strain, p
kε∇ (Ashby, 1970); thus, introducing nonlocality. The densities Sρ  and 

Gρ  can be combined in various ways for which, unfortunately, there is a little guidance 

from dislocation mechanics until now. Mughrabi (2001) concluded that the simple 

superposition of the density of GNDs on the density of SSDs (i.e. T S Gρ ρ ρ= + ) is not 

well founded and they are unambiguously related. Abu Al-Rub and Voyiadjis (2004a, 

2004b), Voyiadjis and Abu Al-Rub (2005), and Abu Al-Rub (2007) presented different 

phenomenological forms to enhance the nonlinear coupling between SSDs and GNDs. 
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They have concluded that the most likely impediment in the Nix and Gao (1998) model 

in predicting nano-hardness from conical/pyramidal indenters is due to the assumption 

that the total dislocation density, Tρ , in the Taylor’s hardening law is a simple 

arithmetic sum of both SSD and GND densities. One possible coupling can be assessed 

by writing the overall flow stress, σ , as follows: 

 
1

S G

ββ βσ σ σ⎡ ⎤= +⎣ ⎦  (4.2) 

where the interaction coefficient β  is considered as a material constant and used to 

assess the sensitivity of predictions to the way in which the coupling between the SSDs 

and GNDs is enhanced during the plastic deformation process. The general form in Eq. 

(4.2) ensures that σ  →  Sσ  whenever S Gσ σ>>  (i.e. classical plasticity) and that σ  →  

Gσ  whenever S Gσ σ<< . The stresses Sσ  and Gσ  are associated respectively with the 

densities of SSDs and GNDs through the Taylor’s hardening law (Taylor, 1938) as 

follows: 

 S Sm Gbσ α ρ= ,    G Gm Gbσ α ρ=  (4.3) 

where m  is the Taylor’s factor, which acts as an isotropic interpretation of the crystalline 

anisotropy at the continuum level such that 3m =  for an isotropic solid and 3.08m =  

for FCC polycrystalline metals (Taylor, 1938), G  is the shear modulus, b  is the 

magnitude of Burgers vector, and α  is a statistical coefficient between 0.1 and 0.5. 

Substituting Eqs. (4.3) into Eq. (4.2), one can express the total dislocation 

density, Tρ , as follows: 
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22 2

T S G

ββ βρ ρ ρ⎡ ⎤= +⎣ ⎦  (4.4) 

such that the flow stress σ  in Eq. (4.2) can be rewritten as 

 Tm Gbσ α ρ=  (4.5) 

However, recently, Abu Al-Rub (2007) has shown that the real situation in 

experiments suggests that Tρ  cannot be taken as a simple sum of the densities of SSDs 

and GNDs (i.e. for 2β = ) and that the total dislocation density under indentation is 

larger than this simple sum. In fact, for 2β <  in Eq. (4.4), Tρ  is larger than the 

arithmetic sum of SSD and GND densities, whereas for 2β > , Tρ  is smaller than the 

sum. Therefore, β  either increases the effect of both kinds of dislocations or decreases 

such effect. However, Ashby (1970) has pointed out that in general the presence of 

GNDs will accelerate the rate of SSDs storage and that an arithmetic sum of their 

densities gives a lower limit on Tρ , which implies that β  should be less than 2. In fact, 

Abu Al-Rub (2007) has concluded after analyzing several micro- and nano-hardness data 

from indentation by conical/pyramidal indenters that 1β ≈  in Eq. (4.4). In other words, 

Abu Al-Rub (2007) has concluded that a simple arithmetic sum of the flow stresses from 

the densities of SSDs and GNDs is a better assumption than the simple sum of the 

densities of SSDs and GNDs. Hence, by setting 1β =  in Eq. (4.2), one can rewrite the 

total flow stress as follows:    

 S Gσ σ σ= +  (4.6) 
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This along with Eq. (4.4) leads to a coupling between SSD and GND densities of the 

form,  

 T S Gρ ρ ρ= +  (4.7) 

which differs from the linear coupling of the form, 

 T S Gρ ρ ρ= +  (4.8) 

adopted in formulating the Nix-Gao and Swadener’s models. Eq. (4.7) gives a total 

dislocation density larger than that given by T S Gρ ρ ρ= + . In the following subsequent 

developments, Eqs. (4.1), (4.3), and (4.6) will be utilized to formulate an ISE model and 

in exploring the physical origin of the material length scale parameter responsible for the 

observed size-scale effects. 

4.3 Physical Interpretation of the Intrinsic Material Length Scale 

The full utility of the strain gradient plasticity theories hinges on one’s ability to 

determine the constitutive length scale parameter, , which scales the gradient effect. In 

this section, the physical intepretation of  is identified. The study of Begley and 

Hutchinson (1998), Yuan and Chen (2001), Abu Al-Rub and Voyiadjis (2004a, 2004b), 

Abu Al-Rub (2007) and Abu Al-Rub and Faruk (2010) indicated that micro- and nano-

indentation may be the most effective test for measuring the length scale parameter. 

However, the physical origin of  based on dislocation mechanics has not been 

discussed until the work of Abu Al-Rub and Voyiadjis (2004a, 2004b). In fact, Abu Al-

Rub and Voyiadjis (2004a, 2004b) have shown based on dislocation mechanics that  is 

proportional to the average spacing between dislocations (or the mean free path for 
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dislocation motion). This met to a great extent the phenomenological arguments by Nix 

and Gao (1998) and Gao et al. (1999) that  may be interpreted physically as the square 

of dislocation spacing over the magnitude of the Burgers vector. However, they 

proposed an expression for  as a function of the magnitude of the Burgers vector 

multiplied by square of the ratio of the shear modulus to the yield strength and other 

empirical parameters. This expression yields a constant value for  for a specific 

material and is independent of the material micro-structural features. Whereas, the study 

of Abu Al-Rub and Voyiadjis (2004a) and Voyiadjis and Abu Al-Rub (2005) have 

indicated that this length scale parameter is not a constant for a given material but since 

it depends on the spacing between dislocations is deformation dependent. In other 

words, as the plastic strain increases, the smaller is the length scale and the weaker is the 

size effect. Also, Voyiadjis and Abu Al-Rub (2005) proposed a phenomenological 

expression for  in terms of: (a) the average grain size in polycrystalline materials or the 

particle size in composite materials with dispersed hard particles, (b) the geometric 

characteristic size such as the thickness of a thin film, radius of a thin wire, or inter-

particle spacing in particulate composites, (c) the magnitude of the plastic strain, and (d) 

the rate of strain-hardening (annealed versus work-hardened or pre-deformed materials). 

During plastic deformation, the density of SSDs increases due to a wide range of 

processes that leads to production of new dislocations. Those new generated dislocations 

travel on a background of GNDs which act as obstacles to the SSDs. If SL  is the average 

distance traveled by a newly generated dislocation, then the rate of accumulation of 

strain due to SSDs scales with p
e S SL bε ρ∝  (Orowan, 1948) such that for proportional 
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loading and monotonically increasing plasticity, one can express pε  in terms of Sρ  as 

(Abu Al-Rub and Voyiadjis, 2004a, 2004b): 

 
1p

S SbL
m

ε ρ=  (4.9) 

On the other hand, Ashby (1970) and Arsenlis and Parks (1999) showed that 

gradients in the plastic strain field are accommodated by the GND density, Gρ , such 

that the effective plastic strain gradient η  that appears in Eq. (4.1)2 can be defined as 

follows: 

 G b
r

ρη =  (4.10) 

The constant 2r ≈  is the Nye’s factor introduced by Arsenlis and Parks (1999) to 

reflect the scalar measure of GND density resultant from mesoscopic plastic strain 

gradients. 

Now, substituting Sρ  from Eq. (4.9) and Gρ  from Eq. (4.10) into Eq. (4.7) and 

then in Eq. (4.5), and comparing the result with Eq. (4.1)1 after substituting Eq. (4.1)2 

yields the following expression for the intrinsic material length scale  in term of the 

mean free path of dislocations or the mean spacing between dislocations, SL , such that 

 SL= Γ    with   r mΓ=  (4.11) 

which also gives refσ  as 

 2 3
ref SG m b Lσ α=  (4.12) 
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The micro-structural length scale parameter, , and the phenomenological 

measure of the yield stress in uniaxial tension, refσ , are now related to measurable 

physical parameters. It appears from Eq. (4.11)1 that the size effect and its implications 

on the flow stress and work-hardening in metals is fundamentally controlled by the 

dislocation glide, which depends on the course of deformation and the material’s 

microstructural features. If one assumes 2m ≈  and 2r ≈  then SL≈ , which can be 

experimentally measured. Therefore, SL  is a crucial physical measure that controls the 

evolution of the length scale in gradient plasticity theory for metals such that the key 

feature of plastic deformation is the reduction of the free path, cell size, or spacing 

between dislocations with deformation, material’s microstructure, and size of the 

structural system. 

By substituting SL  from Eq. (4.11)1 into Eq. (4.12), one obtains a relation for  

as a function of the shear modulus, yield stress, and other micro-structural parameters, 

such that:  

 ( )22 2
refm r G bα σ=  (4.13) 

This agrees with the expression proposed by Nix and Gao (1998). If one sets 

3.08m= , 0.3α = , 0.225nmb = , refG σ = 100, then 3.8μm=  which is a physically 

sound value in the range of micrometers as reported by many authors in the Material 

Science community (e.g. Begley and Hutchinson, 1998; Nix and Gao, 1998; Stolken and 

Evans, 1998; Zhao et al., 2003; Abu Al-Rub and Voyiadjis, 2004a, 2004b). 
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4.4  Model for Hardness Indentation Size Effect 

Indents with tip sizes exceeding tens of microns generally produce size-

independent hardness values in most metals and can be considered as large indents. 

Smaller indents in the range from submicron to about 10μm  in single crystals or fine-

grained poly-crystals display a significant size effect. A clear understanding of the ISE 

and its connection with the material strength is especially important in modern 

applications involving thin films and multi-layers since micro- and nano-indentation are 

frequently the only means of measuring their mechanical properties. 

In this section two simple analytical models that can be used to predict 

equivalently both micro- and nano-hardness when using conical or spherical indenters is 

proposed based on the concept of GNDs. 

4.4.1  ISE model for the conical tipped indenters  

Let us consider the indentation by a rigid cone, as shown schematically in Figure 

4.1. One can assume that the density of GNDs is integrated by the geometry of the 

indenter and the indentation is accommodated by circular loops of GNDs with Burgers 

vectors normal to the plane of the surface. One can use the simple model of GNDs 

developed by Stelmashenko et al. (1993), DeGuzman et al. (1993), Nix and Gao (1998), 

Abu Al-Rub and Voyiadjis (2004b), and Abu Al-Rub (2007) to determine the density of 

GNDs evolved under a conical/pyramidal indenter. As the indenter is forced into the 

surface of a single crystal, GNDs are required to account for the permanent shape change 

at the surface. Of course, SSDs, not shown in Figure 4.1, would also be created and they 

would contribute to the deformation resistance. 
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The fundamental parameters for indentation tests by conical/pyramidal indenter 

are (see Figure 4.1): the force applied to the indenter, P , the residual contact radius of 

indentation, pa , the hardness, 2
c pH P aπ= , the permanent indentation depth, ph , the 

total indentation depth, h , the plastic zone radius, pc , and the indenter geometry; i.e. 

the angle between the surface of the conical indenter and the plane of the surface θ . 

This angle is related to ph  and pa  by tan p ph aθ =  (see Figure 4.1). The subscript c  in 

Arrangement of GNDs in 
the r-direction 

Arrangement of GNDs in 
the w-direction 
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b
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dr

r
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unloading 
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r
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θ

Elastic-plastic 
boundary 

Fig. 4.1. Indentation by axisymmetric rigid conical indenter. Geometrically necessary 
dislocations created during the indentation process. The dislocation structure is idealized 
as circular dislocation loops 
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cH  indicates the hardness value from a conical indentation test. The unloading process 

in the indentation experiment is essential for the proper specification of these geometric 

parameters. Thus, the residual values ph  and pa  should be used as measurable data in 

the hardness cH  calculations. 

The indentation profile in the unloaded configuration when using 

conical/pyramidal indenters can be described by (see Figure 4.1): 

 ( ) ( )tanpw r h r θ= −    for  0 pr a≤ ≤  (4.14) 

It is assumed that the dislocation evolution during indentation is primarily governed by a 

large hemispherical volume V  that scales with the contact radius pa  around the 

indentation profile (see Figure 4.1). However, the GNDs reside inside a plasticity zone 

which can be viewed as extending to a radius pc  to the outermost dislocation emanated 

from the indent core. Therefore, the size of the plastic zone, pc , underneath the indenter 

is larger than the contact radius, pa , as suggested by Feng and Nix (2004) and Durst et 

al. (2006) such that p pc f a=  where 1f > . Now, one can calculate the GND density 

using the following relation 

 G V
λρ =  (4.15) 

where λ is the total length of dislocation loops and V is the storage volume. From Figure 

4.1, one can write:  

 tan p

G p

hdw b
dr L a

θ= = =    ⇒    p
G

p

ba
L

h
=  (4.16) 
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where GL  is the mean spacing between individual slip steps on the indentation surface 

corresponding to the GND loops. If λ  is the total length of the injected loops, then 

between r  and r dr+  one can write: 

 dd 2 2 dp

G p

hrr r r
L ba

λ π π= =  (4.17) 

Integrating from 0 to pc  gives the total length of GND loops as: 

 22 d 2 d
p pc fa

p p p p

p po o

h h a h
r r r r f

ba ba b
π

λ π π= = =∫ ∫  (4.18) 

One can then assume that all the induced GND loops remain within a net volume 

V  which is calculated as the indentation volume ( 21
3 p pa hπ ) subtracted from the total 

hemispherical volume of radius pc  (i.e.  32
3 pcπ ), such that: 

 3 32
3 pV f aπγ=  with  3

11
2

p

p

h
f a

γ
⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.19) 

Therefore, the density of GNDs from Eq. (4.15) becomes 

 23 tan
2G

pfb h
ρ θ

γ
=  (4.20) 

The GND density is reduced by using a bigger storage volume at small 

indentation depth. In reality the GND density cannot be very large because of the strong 

repulsive forces between GNDs which push dislocations to spread beyond the 

hemisphere at small indentation depth (Swadener et al., 2002). 
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Based on the assumption of a self-similar deformation field (Biwa and Storakers, 

1995), it was shown that the displacement is proportional to the indentation depth ph . 

Based on this observation, Xue et al. (2002) showed from numerical experiments that the 

strain field should depend only on the normalized indentation depth, /p ph a , such that 

one may assume that the effective plastic strain pε  is defined by: 

 ( ) tanp
c p p cc h a cε θ= =  (4.21) 

where cc  is a material constant which has a value of 0.2cc = . It can be noted from Eq. 

(4.21) that the plastic strain is independent of the indentation depth. Considering Eqs. 

(4.9), (4.11), and (4.21) yields the following expression for the density of SSDs: 

 
tanc

S
c r

b
θρ =  (4.22) 

Tabor (1951) specified the mapping from the pH h−  curve to pσ ε−  curve such 

that one can express the micro-/nano-hardness as: 

 c S GH m bGκσ κ α ρ ρ⎡ ⎤= = +⎣ ⎦  (4.23) 

where Eqs. (4.5)and (4.7) are used in obtaining the above expression. The parameter κ  

is the Tabor’s factor, which has a value from 2.8 to 3.07. The Tabor’s relation (i.e. 

H κσ= ) has been extensively verified and used by many authors in the literature and, 

therefore, one may indeed take it as a starting point.  

The macro-hardness ocH  is defined as the hardness that would arise from SSDs 

alone in the absence of GNDs, that is, the hardness that corresponds to the saturation 
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value where the hardness cH  does not change as the indentation depth ph  increases, or 

that predicted by classical plasticity theory, such that one can write from Eq. (4.23): 

 oc SH m bGκ α ρ=  (4.24) 

From Eqs. (4.23) and (4.24), the ratio, /s osH H  can be written as,  

 1c G

oc S

H
H

ρ
ρ

= +  (4.25) 

substituting Eqs. (4.20) and (4.22) into Eq. (4.25), one can obtain the following 

ISE model: 

 
*

1c

oc p

H h
H h

= +  (4.26) 

where *h  and ocH  are, respectively, given by: 

 *h ζ=    with   3 tan
2 cf c r

ζ θ
γ

=  (4.27) 

 ( )11 tan nn
oc ref cH cκσ θ=  (4.28) 

The parameter *h  is a material parameter that characterizes the depth dependence of the 

hardness and is proportional to the material length scale, , with a proportionality factor 

ζ  which depends on the indenter geometry, θ , and the plastic flow through f , cc , and 

r . Thus, *h  is a crucial parameter that characterizes the ISE and its accurate 

experimental measure gives values for  on which the ability of the strain gradient 

plasticity theory to guide the development of small scale systems depends on. Therefore, 

micro-/nano-indentation hardness data can be effectively used in calibrating the strain 
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gradient plasticity theory. Furthermore, one can note that Eq. (4.28) yields a size-

independent and constant value of ocH .  

One can obtain the commonly used ISE model of Nix and Gao (1998) simply by 

assuming a linear coupling between SSD and GND densities as in Eq. (4.8) (i.e. by 

setting 2β =  in Eq. (4.4)) and assuming that all the GNDs are stored in a plastic zone of 

radius equal to the contact radius pa  (i.e. 1f = ), such that: 

 
*

1
o p

H h
H h

= +  (4.29) 

Moreover, Nix and Gao (1998) suggested that *h  and oH  are dependent and related 

through * 2 2 2(81 2) tan ( )oh b G Hα θ= . Their relation, thus, gives a similar argument to 

that of Eq. (4.27) which suggests that *h  is dependent on the shape of the indenter as 

well as on the material property. 

The size of the plastic zone, pc , in Eq. (4.19) can be calculated using the 

following well-established relation (e.g. Johnson, 1970; Kramer et al., 1999; Chiu and 

Ngan, 2002): 

 3
2p

y

Pc
πσ

=  (4.30) 

Using  2/c pH P aπ=   in the above expression to substitute P  along with the use of 

y yH κσ=  and p pc fa=  yields the ratio of plastic zone size to contact radius as 

3
2 c yf H Hκ= . Here, yH  is the hardness due to the initial yield stress yσ . However, 
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2/ pP cπ  is observed experimentally to be roughly constant with respect to the indent size 

(Chiu and Ngan, 2002), and this means that H  is roughly constant at pr c= . This 

suggests that the indentation hardness near the elastic-plastic boundary is already 

approximately self-similar and is not affected by size dependent events at the indent 

core. Therefore, at pr c=  one can set c yH H= , which gives the factor 3
2f κ=  such 

that f  is constant. For example, substituting 3κ =  gives 2.12f = , which is in the range 

of the experimental values reported by Kramer et al. (1999), Feng and Nix (2004), and 

Durst et al. (2006). Moreover, Feng and Nix (2004) suggested a dependence of f  on the 

indentation depth based on phenomenological aspects and not physical ones. 

Now that the value of f  is specified, the value of γ  in Eq. (4.19)2 can be 

calculated along with the use of Eq. (4.16) to be 1γ ≈ , if one sets tan 0.358θ = , a 

commonly used value for a Berkovich and Vickers indenter. Therefore, 1.0γ =  will be 

assumed for the experimental comparisons in the following sections. 

It is noteworthy that the present interpretation of the ISE is based on the 

evolution of the GNDs, while from time to time in the literature several important factors 

in experiments (e.g. interfacial friction, indenter pile-up or sink-in, loading rate, 

oxidation layer, etc.) have been thought to be responsible for the ISE. However, careful 

experimental studies by Xue et al. (2002) have excluded these factors from being 

completely responsible for the ISE. 
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4.4.2  ISE model for spherical tipped indenters 

Let us now consider the indentation by a rigid sphere, as shown in Fig. 4.2. 

rocedures similar to those in section 4.4.1 can be used to develop the analytical model 

for predicting indentation hardness. The fundamental parameters for indentation tests by 

a spherical indenter are (see Fig. 2): the force applied to the indenter, P , the residual 

contact radius of indentation, pa , the hardness, 2
s pH P aπ= , the permanent indentation 

Fig. 4.2. Indentation by axisymmetric rigid spherical indenter. Geometrically necessary
dislocations created during the indentation process. The dislocation structure is idealized
as circular dislocation loops 
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depth, ph , the total indentation depth, h , the residual indentation profile diameter, pD , 

the plastic zone radius, pc  , which is scaled to pa  with a factor f  such that p pc fa= , 

and the indenter geometry (i.e. the sphere diameter D ). The subscript s  in sH  indicates 

the hardness value from a spherical indentation test. Due to the importance of the 

unloading process for the proper specification of these parameters, ph  and pa  should be 

used as measureable data in the hardness, sH  calculation as well as the residual 

indentation profile diameter pD D>  when using spherical indenter.  

It can be assumed that the spherical indenter is approximated by a paraboloid and 

the indentation profile in the unloaded configuration can be described by:   

 
2

( )  p
p

rw r h
D

= −  for 0 pr a≤ ≤  (4.31) 

where ph , pa , and pD  are measured in the unloaded configuration. By taking the slope 

of Eq. (4.31) and comparing it with Figure 4.2, one can easily show that: 

 2

p G

dw r b
dr D L

= = ⇒   
2

p
G

bD
L

r
=  (4.32) 

where GL  is the mean spacing between the individual slip steps on the indentation 

surface corresponding to the GND loops. One can conclude from Eq. (4.32) that the 

GND loops are more closely spaced as one move away from the center of the spherical 

indenter in order to accommodate the geometric shape of the indenter.  

Now, if λ  is the total length of induced GND loops, then between r  and r dr+  

one has: 
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2

2 4
G p

dr rd r dr
L bD

λ π π= =  (4.33) 

which upon integrating over the radius of the plastic volume V  (i.e. p pc f a= ) gives: 

 
3 3

2

0

44
3

pc p

p p

f a
r dr

bD bD
ππλ = =∫  (4.34) 

If one assumes that all the induced GND loops reside within the net volume V , which is 

calculated as the indentation volume ( 21
2 p pa hπ ) subtracted from the total hemispherical 

volume of radius pc  (i.e.  32
3 pcπ ), such that: 

 3 32
3 pV f aπγ=  with  3

31
4

p

p

h
f a

γ
⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.35) 

Now, one can calculate the GNDs density using the following relation: 

 
2

G
pV b D

λρ
γ

= =  (4.36) 

which shows that the density of GNDs is proportional to the inverse of the diameter of 

the spherical indenter.  

Tabor’s (1951) mapping for the H h−  curve to pσ ε−  curve will be used here 

as well to assume the following mapping: 

 sH κσ=
  
,     p

scε ω=  (4.37) 

where, sc  is a material constant with a value of 0.4sc =  (Atkins and Tabor, 

1965), and /p pa Dω =  defines the ratio between the contact radius to the indenter 

diameter in the unloaded configuration. Thus, one can define the micro/nano-hardness 
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(i.e. size-dependent hardness), sH , and macro-hardness (i.e. size-independent hardness), 

osH , with the use of Eqs. (4.5)and (4.7), as follows: 

 ( )s S GH m bGκ α ρ ρ= +    ,     os SH m bGκ α ρ=  (4.38) 

From the above equations, one can write the ratio of /s osH H  as 

 1s G

os S

H
H

ρ
ρ

= +  (4.39) 

Considering Eqs. (4.9), (4.11), and (4.37)2, yields the following expression for 

the density of SSDs: 

 s
s

c r
b
ωρ =  (4.40) 

Substituting Eqs. (4.36) and (4.40) into (4.39), yields: 

 
*

1s

os p

H a
H a

= +  (4.41) 

where 

 *a ς=    with   2

sc r
ς

γ
=  (4.42) 

By substituting Eq. (4.40) into Eq. (4.38)2 along with Eq. (4.13), one can obtain a simple 

relation to estimate the macro-hardness osH  as follows: 

 os ref sH cκσ ω=  (4.43) 

It can be noted that both Eqs. (4.41) and (4.43) in addition to 2/s pH P aπ=  are 

functions of the residual contact radius, pa . Therefore, Eq. (4.41) cannot be used alone 



 74

to characterize the indentation size effect noticed in hardness experiments with spherical 

indenters. However, Lim and Choudhri (1999) and Swadener et al. (2002) have shown 

experimentally that for indentation of material with spherical indenters of few micron tip 

radii, the indentation hardness systematically increases with residual contact radius pa  

and decreases with the residual indentation profile diameter pD . Lim and Choudhri 

(1999) and Swadener et al. (2002) tend to attribute the ISE to the different hardness 

values obtained for different spheres at the same value of the normalized contact radius 

/p pa Dω =  (or equivalently at fixed effective plastic strain p cε ω= ). Therefore, by 

substituting p pa Dω=  into Eq. (4.41), one obtains a relation that can characterize the 

ISE for a constant ω , such that: 

 
*

1s

os p

H D
H D

= +  (4.44) 

where *D  is a material specific parameter that characterizes the size dependence of 

hardness and depends on the indenter geometry as well as on the plastic flow such that it 

is given by: 

 *D ξ=      with   2

sc r
ξ

γω
=  (4.45) 

Eq. (4.45) shows that *D  is a linear function of the length scale parameter . Thus, *D  

is a crucial material parameter that characterizes the indentation size effect and its 

accurate experimental measure using spherical indenters yields a reasonable value for 

the intrinsic material length scale parameter in the strain gradient plasticity theory. 
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By assuming that both SSDs and GNDs are coupled in a linear sense (i.e. 

T S Gρ ρ ρ= + ), Swadener et al. (2002) proposed the following ISE model: 

 
*

1
o p

H D
H D

= +  (4.46) 

It is noteworthy that the expression for γ  in Eq. (4.35)2 can be expressed in 

terms of ω  by adapting the following relations between pa , ph , and pD  proposed by 

Kucharski and Mroz (2001): 

 2
p p pa q D h=   with  2 2 12.5

4 1
nq
n
−⎛ ⎞= ⎜ ⎟+⎝ ⎠

 (4.47) 

where 2q  is a constant that depends on the strain hardening exponent n  and is mostly 

on the order of 1.0. Therefore, by substituting Eq. (4.47)1 into Eq. (4.35)2, one can 

rewrite the expression for γ  in terms of /p pa Dω =  as follows: 

 3 2

31
4 f q
ωγ = −  (4.48) 

Then, if one takes the value of f  from the calculations of section 4.4.1, 2.12f =  along 

with 2n= , and 0.05ω = , which are typical values for a metal, one obtains from Eq. 

(4.48) 1.0γ ≈ . Therefore, 1.0γ =  will be assumed in the experimental comparisons in 

Chapter V.  
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4.5 Correlation between Length Scales Obtained by Conical and Spherical 

Indentation Tests 

The preceding sections describe size effect models for conical and spherical 

indentation tests and how they can be used to measure the material intrinsic length scale 

parameter. In this section the length scales measured using this two approaches are 

compared and a relationship between them are established. For investigating this one can 

start with rewriting the expression of effective plastic strain in Eq (4.9), such that, for 

conical indenters, 

 
1p

con CS CSbL
m

ε ρ=  (4.49) 

And for spherical indenters, 

 
1p

sph SS SSbL
m

ε ρ=  (4.50) 

Where, CSL  and SSL  are mean free path between the SSDs for conical and spherical 

indenters respectively and b  is the magnitude of Burgers vector. Recalling that, material 

length scale is equal to the mean free path between dislocations and assuming that, it is 

inversely proportional to the square root of SSD densities (i.e. 1S SL ρ∝ ) one obtains 

 
p

con S
p
sph C

ε
ε

=  (4.51) 

Where, S  and C  are length scales obtained by spherical and conical indentation tests 

respectively. Now, according to Eqs. (4.21) and (4.37) the effective plastic strains are 

also defined as,  
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 tanp
con Ccε θ=  (4.52) 

And,  p
sph Scε ω=  (4.53) 

Therefore, one obtains from the above three equations,  

 tanS C

C S

c
c

θ
ω

=  (4.54) 

Thus for known values of tanθ , ω , Cc  and Sc  (According to Atkins and Tabor, 1965 

taken to be 0.2Cc =  and 0.4Sc = ) a simple relation between the length scales 

determined by two test methods is obtained.  

Furthermore, from the definitions of macro hardness in Eqs. (4.28) and (4.43) 

along with Eq. (4.54), one obtains,  

 nS

C

χ=   with, oc osH Hχ =  (4.55) 

The preceding formulations can be used to establish a correlation between the 

indentation size effect models, Eqs. (4.26) and (4.44) by equating the depth of conical 

indenter and the diameter of the spherical indenter that produce the same hardness value 

to be,  

 
( )

*

2
*1 1

p

p

DD
h hχ

=
⎡ ⎤+ −⎢ ⎥⎣ ⎦

 (4.56) 

While, Eqs. (4.27) and  (4.42) yield the relation between *D  and *h  to be  

 
2

* *4
3

C

S

cfD h
c ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (4.57) 

Using Eq. (4.57) into Eq. (4.56), one obtains, 
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( )
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2
*

4
3

1

C

S
p

p

cf
c

D
h h

ω

χ χ

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎡ ⎤− +⎣ ⎦

 (4.58) 

The above relation can be used to bring the hardness values measured with a pyramidal 

indenter into the range of the spherical data by knowing the calibrated *h  value.  
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CHAPTER V 

INDENTATION HARDNESS: COMPARING MODELS WITH 

EXPERIMENTAL DATA 

 

5.1  Introduction  

In Chapter IV, analytical models were developed for predicting indentation size 

effects for conical and spherical indenters based on dislocation density conceptions. In 

this chapter, the proposed models are validated against several micro- and nano-

indentation experimental data obtained from available literature. Presently, Nix-Gao 

(1998) model and Swadener et al. (2002) model are most commonly used to predict the 

micro- and nano-indentation hardness of metals in case of conical and spherical 

indenters respectively. Therefore, it is interesting to compare the predictions from these 

two models, and the two proposed models, Eqs. (4.26) and (4.44).  

5.2 Data from Indentation Test with Conical Indenters 

In this section, comparisons are made between the predictions of the present ISE 

model in Eq. (4.26) and that of Nix-Gao model in Eq. (4.29) with several micro- and 

nano-indentation data from the literature. The experimental data reported by Swadener et 

al. (2002) on annealed iridium, annealed and work hardened oxygen free copper (OFC), 

by Zhang et al. (2005) on undeformed and pre-strained Ni, by Kim et al. (2008) on 

undeformed and pre-strained SCM21 (structural steel), and by Zong et al. (2006) on 

LIGA Ni, (001)Ni, (001)Ag, and (001)Au are utilized here to conduct this comparison. 
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The experimental hardness data obtained from nano- and micro-indentations using, 

respectively, Berkovich and Vickers indenters are plotted in Figures 5.2(a-g) and 5.3(a-

g) as the hardness cH  versus the indentation depth ph . 

All the experiment data used here in validating the proposed model, Eq.(4.26), 

are conducted at room temperature and using a Berkovich or Vickers pyramidal 

indenters for which the nominal or projected contact area varies as: 

 2 224.5cA h aπ= =  (5.1) 

Using this relation together with tan p ph aθ =  yields: 

 tan 0.358
24.5
πθ = =  (5.2) 

The characteristic form for the ISE presented by Eq. (4.26) gives a straight line 

when the hardness data are plotted as c ocH H  versus 1 ph , the intercept of which is 1 

and the slope is *h . Taking a square of the slope of this curve gives the parameter *h . 

For example, this fitting procedure is presented in Figure 5.1(a) using Eq. (4.26) by 

plotting the LIGA Ni hardness data of Zong et al. (2006) which yields * 0.079μmh = . 

The macroscopic hardness 1.892GPaocH =  is obtained when the hardness curve reaches 

plateau at large indentation depths [see Figure 5.2(d)]. It can be seen from Figure 5.1(a) 

that the proposed model fits very well both the micro- and nano-indentation hardness 

data. Nix and Gao (1998) proposed plotting their model in Eq. (4.29) as 2( / )oH H  

versus 1 h , which should result in a straight line with slope *h . Figure 5.1(b) fits well 
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only the micro-indentation hardness data with 2.279GPaoH =  and * 0.369μmh = , but 

significantly overestimates the nano-indentation hardness data [see Figure 5.2(d)].  

The fitting procedures as described above for both the present model and the 

Nix-Gao model are repeated for the remaining hardness data of Swadener et al. (2002), 

Zhang et al. (2005), Kim et al. (2008), and Zong et al. (2006). In Figures 5.2(a-g) data 

from micro- and nano- indentation tests on annealed Ir, annealed OFC, work hardened 

Fig. 5.1. The fitting procedures for both (a) the present model, Eq. (4.26), and (b) the 
Nix and Gao (1998) model, Eq. (4.29). The solid line is a linear curve fit of the 
experimental hardness results for LIGA Nickel by Zong et al. (2006) 
 

(a) 

(b) 
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OFC, Liga Ni, (001)Ni, (001) Ag, and (001)Au are presented respectively to show the 

comparisons between the predictions of the present model, Eq. (4.26), and the Nix-Gao 

model, Eq. (4.29). Whereas, figures 5.3(a-g) shows similar fittings of nano-indentation 

data from undeformed and pre-strained Ni and undeformed and pre-strained SCM21. 

The values of ocH  and *h  used to fit the experimental results in each case are shown in 

the figures. 

In case of Figures 5.2(a-g), both micro- and nano-indentation test data are 

analyzed and it can be seen that the present model predictions agree well with both the 

micro- and nano-hardness data, while the predictions of the Nix-Gao model diverge 

significantly from the nano-hardness results for 1μmh < . Moreover, despite the fact that 

results for indentation depths less than 100 nm are affected by tip rounding, the proposed 

model fits well both micro- and nano-hardness data although this effect is not considered 

in formulating the present model. However, it is shown in Huang et al. (2006) that the 

indenter tip radius effect alone cannot explain the nano-indentation size effect such that 

the ISE models of Qui et al. (2001), Xue et al. (2002), and Qu et al. (2004), which 

incorporate this effect, provide only marginal improvements. 

Figures 5.3(a-g) are plotted using data analyzed from nano-indentation tests only 

and, as expected, both the models give good predictions of the experimental values. 

Although it can be noticed that in general, the present model slightly over-predicts the 

hardness at large indentation depths, because the ISE from the present model does not 

progressively vanish as fast as the experimental data. This is due to the fact that hardness 

data at larger indentation depths should also be measured in order to accurately identify 
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(b) 

(a) 

Fig. 5.2. Comparison of fit of the proposed model and Nix-Gao model to the experimental 
data: (a) Annealed Ir, (b) annealed OFC, (c) work hardened OFC, (d) LIGA Ni, (e) (001) 
Ni, (f) (001) Ag, (g) (001) Au. The symbols Δ and Ο designate micro-hardness and nano-
hardness data, respectively 
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(d) 

(c) 

Fig. 5.2 (continued) 
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(f) 

(e) 

Fig. 5.2 (continued) 
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 the macro-hardness value oH . 

A summary of the values for ocH  and *h  used to fit the experimental results by 

the present ISE model in Eq. (4.26) is shown in Table 5.1 along with different 

parameters of interest obtained from the plotting. The dimensionless parameter 

0.633ζ = , which is used to estimate the material length scale parameter, , is calculated 

from Eq. (4.27)2 by assuming that 0.2c =  [corresponds to 7% effective plastic strain as 

Fig. 5.2 (continued) 
 

(g) 
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(b) 

(a) 

Fig. 5.3. Comparison of fit of the proposed model and Nix-Gao model to the experimental 
nano-hardness data: (a) Undeformed Ni, (b) 5% prestrained Ni, (c) 10% prestrained Ni, 
(d) 15% prestrained Ni,, (e) Undeformed SCM21, (f) 2% prestrained SCM21, (g) 5% 
prestrained SCM21 
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(d) 

(c) 

Fig. 5.3 (continued) 
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(f) 

(e) 

Fig. 5.3 (continued) 
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reported by Johnson (1970) when using pyramidal indentation], the Nye factor 2r =  

(Arsenlis and Park, 1999), the plastic zone ratio 2.12f =  as argued at the end of Section 

4.4.1, and tan 0.358θ = . The calculation of , therefore, strongly depends on the values 

of the material parameters c , r , and f .  

 

Fig. 5.3 (continued) 
 

(g) 
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However, one important observation from Figures 5.3 and Table 5.1 is the 

decrease in the length scale,  with increasing pre-straining of the material. This effect 

is better shown in Figure 5.4(a) (undeformed and pre-strained Ni) and Figure 5.4(b) 

(undeformed and pre-strained SCM21). Therefore, the value for the material length scale 

is not fixed or constant for a specific material but depends on the course of deformation 

and should be considered as an internal variable. This agrees very well with the physical 

interpretation for  as presented in Eq. (4.11)1 which states that the material length scale 

in metals is related to average spacing between dislocations. Indeed, as the level of pre-

straining increases, as more dislocations are generated in the microstructure of the 

material, and as the average spacing between dislocations decreases. Similar arguments 

have been presented in Abu Al-Rub and Voyiadjis (2004a, 2004b), Voyiadjis and Abu 

Al-Rub (2005), and Abu Al-Rub (2007) who stated that the length scale parameter is not 

Fig. 5.4. Variation of the length scale parameter value with the level of prestraining 
for (a) Nickel and (b) SCM21 steel specimens of Kim et al. (2008) 
 

(a) (b) 



 92

fixed but decrease as the plastic strain increases. The results in Table 5.1 confirm their 

conclusion. 

It is noteworthy that the last column in Table 5.1 presents the ISE index as  

 
Table 5.1 The parameters of the present ISE model, Eq. (4.26), and the calculation of the 

length scale parameter , Eq. (4.27), from the fitted hardness data. 

Material H0 
(GPa) 

h* 
(μm) 

ζ l=h*/ ζ 
(μm) 

ISE 

Annealed Ir 2.6 (2.6) 0.26 (1.85) 0.633 0.411 1.612 

Annealed OFC 0.45 (0.5) 0.576 (2.5) 0.633 0.91 2.4 

Work Hardened OFC 0.93 (0.9) 0.0268 (0.8) 0.633 0.042 0.517 

LIGA Ni 1.892 (2.279) 0.079 (0.369) 0.633 0.125 0.869 

(001) Ni 0.7788 (0.7065) 0.561 (3.686) 0.633 0.886 2.368 

(001) Ag 0.25 (0.2413) 1.706 (6.108) 0.633 2.695 4.13 

(001) Au 0.25 (0.27) 1.548 (6.659) 0.633 2.445 3.934 

Undeformed Ni 0.7943 (0.9973) 2.199 (2.399) 0.633 3.474 4.689 

5% Prestrained Ni 0.7826 (0.84) 2.182 (3.129) 0.633 3.447 4.671 

10% Prestrained Ni 0.9095 (1.20) 1.488 (1.595) 0.633 2.351 3.857 

15% Prestrained Ni 0.9938 (1.02) 1.288 (2.125) 0.633 2.035 3.589 

Undeformed SCM21 1.355 (1.355) 0.444 (1.117) 0.633 0.701 2.107 

2%Prestrained SCM21 1.485 (1.50) 0.389 (0.948) 0.633 0.615 1.972 

5%Prestrained SCM21 1.62 (1.72) 0.338 (0.722) 0.633 0.534 1.838 
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defined by Abu Al-Rub (2007) such that 0.1ISE ( ) /o oH H H= − , where 0.1H  is the extra-

polated nano-hardness at 0.1μmh = . This index represents the increase in hardness as 

compared to the hardness at very large indentation depths (i.e. macro-hardness). A larger 

value of the ISE index indicates a higher indentation size effect (ISE) and, therefore, it 

can be used to compare the level of size effect in different materials. Accordingly, it is 

noticed that the undeformed Ni has the largest ISE and the largest material length scale, 

followed by 5% prestrained Ni. Thus, it can be generally concluded by comparing the 

values of the ISE index and the material length scales  in Table 5.1 that the ISE 

increases as  increases. Moreover, from the results for undeformed and prestrained Ni 

and SCM21, one can notice that the level of size effect decreases as the prestrain level 

increases (or generally as the course of deformation increases).Also, from Figure 5.3 and 

Table 5.1, it is noticed that the ISE is more pronounced in initially undeformed materials 

whereas the effect gradually reduces if the specimen is pre-strained. As in case of 

Nickel, the length scale  reduces from 3.474μm  for undeformed specimen to 2.035μm  

for the 15% pre-strained specimen and at the same time the ISE index reduces from 

4.689 to 3.589 in respective specimens. Similar observation is made in case of structural 

steel, SCM21, where 2% and 5% pre-strained specimens are examined alongside an 

undeformed one. As discussed above, this can be correlated to the change in the intrinsic 

material length scale due to the increased initial dislocation density as can be speculated 

from the physical nature of the length scale being in the order of spacing between 

dislocations, Eq. (4.11). The spacing between dislocations is reduced due to the pre-
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straining and therefore smaller material length scale and lower ISE is expected, which is 

confirmed by the experimental results in Figures 5.3(a-d) and 5.3(e-g). 

Moreover, it can be seen from the values of *h  in Table 5.1 that when using Eq. 

(4.26) for fitting the micro- and nano-indentation hardness data, smaller values for the 

material length scale parameter are identified than that obtained by the Nix-Gao model.  

Therefore, it can be concluded that the Nix-Gao model overestimates the length scale 

parameter whereas the values from the present model are in the order of the spacing 

between dislocations, which is more physically sound as suggested by Eq. (4.11)1. 

5.3  Data from Indentation Tests with Spherical indenters 

In this section, comparisons are made between the predictions of the present ISE 

model in Eq. (4.44) and that of Swadener et al. (2002) in Eq. (4.46) with several micro-

indentation data from the literature. Unfortunately, all the spherical indentation tests 

reported in the available literatures have been performed in the micro-indentation level. 

The experimental data reported by Swadener et al. (2002) on annealed iridium, by Lim 

et al. (1998) on annealed and work hardened oxygen free copper and by Spary et al. 

(2006) on annealed nickel at different ratios of p pa Dω =  (or equivalently at different 

plastic strain levels) are utilized here to conduct this comparison. The values of pD  were 

not reported in these experiment, but is assumed here to be 1.1 D  (Swadener et al., 

2002). The experimental hardness data obtained from micro-indentations are plotted in 

Figs. 5.5(a-m) as the hardness H  versus the indentation diameter pD  at specific 

p pa Dω =  ratio.  It can be seen from these figures that both the proposed model and 
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(a) 

(b) 

Fig. 5.5. Comparison of fit of the proposed model and Swadener et al. (2002) model to 
the experimental data: (a-c) Annealed Ir, (d-f) annealed Ni, (g-i) annealed OFC, (j-m) 
work hardened OFC at different ω values. The associated fitting parameters and ω 
values are listed in the figures 



 96

(c) 

(d) 

Fig. 5.5 (continued) 
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(g) (e) 

(f) 

Fig. 5.5 (continued) 
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(g) 

(h) 

Fig. 5.5 (continued) 
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(i) 

(j) 

Fig. 5.5 (continued) 
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(k) 

(l) 

Fig. 5.5 (continued) 
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 Swadener et al.’s model fit well the micro-indentation hardness data. However, it can be 

seen that Swadener et al’s model tends to overestimate the hardness data at low 

indentation depths (i.e. as the indentation depths are getting closer to the nano range). 

This is most apparent in the fittings of annealed iridium data in Fig. 5.5(a), where the 

present model fits well the hardness data at both high and low indentations, whereas the 

Swadener et al.’s model overestimates the micro-hardness at low indentation diameters. 

Therefore, it will be interesting to compare the predictions of both models against nano-

hardness data, which is the focus of a future study. Moreover, one can notice from the 

Fig. 5.5 (continued) 
 

(m) 
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comparisons in Figures 5.5(a-m) that the ISE from the present model does not 

progressively vanish as fast as that of Swadener et al.’s model. The characteristic form 

for the ISE presented by Eq. (4.44) gives a straight line when the hardness data are 

plotted as oH H  versus 1 pD , the intercept of which is 1.0 and the slope is *D . 

 
Table 5.2 The parameters of the present ISE model and the calculation of the length 

scale parameter  from the fitted hardness data. 

Material ω H0 
(GPa) 

D* 
(μm) 

ξ =D*/ ξ 
(μm) 

 Annealed Ir 0.025 0.855 (0.9)* 90.827 (500)* 100.197 0.906 

Annealed Ir 0.05 1.209 (1.2) 30.78 (93.05) 50.198 0.613 

Annealed Ir 0.075 1.481 (1.4) 18.966 (83.11) 33.53 0.566 

Annealed Ni 0.05 0.85 (0.90) 5.693 (20.17) 50.198 0.113 

Annealed Ni 0.10 0.86 (0.90) 7.998 (26.59) 25.198 0.317 

Annealed Ni 0.15 0.89 (0.98) 7.366 (20.67) 16.87 0.437 

Annealed OFC 0.10 0.25 (0.30) 16.17 (25.86) 25.198 0.642 

Annealed OFC 0.15 0.32 (0.36) 8.49 (22.17) 16.87 0.503 

Annealed OFC 0.20 0.35 (0.40) 12.24 (25.77) 12.60 0.971 

Work hardened OFC 0.05 0.65 (0.70) 8.066 (23.34) 50.198 0.161 

Work hardened OFC 0.10 0.65 (0.72) 9.108 (23.01) 25.198 0.361 

Work hardened OFC 0.15 0.78 (0.80) 2.88 (14.15) 16.87 0.171 

Work hardened OFC 0.20 0.82 (0.85) 1.414 (8.44) 12.60 0.112 
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Taking a square of the slope of this curve gives the parameter *D  from which the 

material length scale  can be calculated using Eq. (4.45). The macroscopic hardness 

osH  is obtained when the hardness curve reaches plateau at large indentation depths. On 

the other hand, Swadener et al. (2002) proposed plotting their model in Eq. (4.46) as 

2( / )oH H  versus 1 pD , which should result in a straight line with slope *D . A summary 

of the fitting parameters osH  and *D  for specific ratios of contact radius to spherical 

indenter diameter, ω , is presented in Table 5.2. Also, the corresponding calculated 

values for the material length scale parameter  are presented. The dimensionless 

parameter ξ  in Eq. (4.45)2 is calculated by assuming that 0.4c = , the Nye factor 2r =  

(Arsenlis and Parks, 1999), the plastic zone ratio 2.12f = , 1γ = , and ω  as outlined in 

Table 5.2. The calculation of , therefore, strongly depends on the amount of plastic 

deformation as characterized by p cε ω= . Generally, one can notice from the calculated 

values for  in Table 5.2 that as ω  increases,  decreases. Therefore, one can conclude 

that the material length scale is not fixed or constant for a specific material but depends 

on the course of deformation and should be considered as an internal variable. This 

agrees very well with the physical interpretation for  as presented in Eq. (4.11)1 which 

states that the material length scale in metals is related to the average spacing between 

dislocations or dislocations’ mean free path. Indeed, as the level of plastic deformation 

increases, more dislocations are generated in the microstructure of the material, and the 

average spacing between dislocations decreases. Similar arguments have been presented 

in Abu Al-Rub and Voyiadjis (2004a, 2004b), Voyiadjis and Abu Al-Rub (2005), and 
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Abu Al-Rub (2007) who stated that the length scale parameter is not fixed but decrease 

as the plastic strain increases. The results in Table 5.2 confirm their conclusion. 

Moreover, Abu Al-Rub and Faruk (2009) have shown that the value of  strongly 

depends on the amount of prestraining, as for work hardened materials.  

Moreover, it can be seen from the identified values of *D  in Table 5.2 that when 

using the present model for fitting the micro-indentation hardness data, smaller values 

for the material length scale parameter are identified than that obtained by the Swadener 

et al.’s model.  Therefore, it can be concluded that Swadener et al.’s model 

overestimates the length scale parameter whereas the values from the present model are 

in the order of the spacing between dislocations, which is more physically sound as 

suggested by Eq. (4.11)1. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

 

6.1  Summary 

 Size effects or the size dependence of material properties at various length scales 

is a widely encountered phenomenon in Material Science that is not successfully 

addressed by classical plasticity/damage theories. Studies regarding this field identified 

the material intrinsic length scale parameter as the key term that has been missing from 

the classical theories. This had led to the use of higher order gradient dependent 

plasticity theories, incorporating length scales, in explaining size effects which was 

found to be quite successful. Inspired by these works, a thermodynamically consistent 

higher order gradient theory is developed in this current thesis and is sub-sequently used 

to explain some of the widely observed size effect problems. A summary of the works 

done in this thesis is presented in this section. 

This thesis focuses on providing deeper understanding of the dependence of 

mechanical response on the structural size (i.e. the problem of size effects).  An 

enhanced gradient (nonlocal) plasticity theory is developed and used to study several 

cases of size effects through the incorporation of length scale parameter. The 

thermodynamic consistency of gradient-dependent plasticity constitutive relations is 

discussed thoroughly in this work. Incorporation of material length scales is achieved 

through the development of nonlocal gradient-dependent constitutive relations. The 



 106

effect of interfacial properties (yield strength and hardening) on scale dependent 

behavior is considered in formulating the higher order boundary conditions.  

The size effect examples considered in this thesis include elastic-plastic thin film 

on elastic substrate under biaxial and thermal loading respectively. Analytical model for 

stress and plastic strain profiles across the thickness of the film is developed in both 

cases. Expressions for average stress and plastic strains are also determined. These 

models are utilized to qualitatively analyze behavior of thin films under biaxial and 

thermal loading by plotting stress-strain graphs and stress and plastic strain profiles 

across the film thickness. 

It is also emphasized that the experimental determination of the material length 

scale for various materials is of primary importance. This thesis provides extensive effort 

in this direction, where the issue of size effect and the analytical and experimental 

identification of the material length scale are discussed. Dislocation-based indentation 

size effect (ISE) models are formulated for conical and spherical tipped indenters along 

the lines of Nix and Gao (1998) and Swadener et al. (2002). After comparing both 

models with a wide range of experimental results, it is shown that the models not only 

successfully predict ISE from both nano- and micro-indentation tests, but also provides a 

means to identify the material length scale parameter.  

6.2 Concluding Remarks 

 The gradient dependent thermodynamic framework presented in Chapter II 

extends the classical plasticity to higher-order gradient plasticity theory. It is found that, 

a non-local form of the Clausius–Duhem inequality needs to be used in deriving 
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gradient-dependent constitutive equations. In addition to accumulated (effective) plastic 

strain, its gradient, p
k eε∇ , is also incorporated in formulating the gradient plasticity 

theory to account for the accumulation of the geometrically necessary dislocations. The 

thermodynamic conjugate force associated to p
k eε∇  introduces isotropic hardening to the 

formulation. 

The formulation of higher-order boundary conditions is very important within 

strain gradient plasticity theory, especially, at interfaces, grain, or phase boundaries. 

These additional microscopic boundary conditions are achieved by relating the 

microtraction stress at interfaces to an interfacial energy that depends on the plastic 

strain at the interface. Furthermore, by examining linear and nonlinear expressions for 

this interfacial energy, it is shown that an interfacial yield condition, besides the nonlocal 

yield condition for the bulk, can be formulated. 

In context of the analysis in Chapter III, it can be said that the higher-order 

gradient plasticity theory when supplemented by interfacial energy effects, can 

qualitatively describe many features of the size effect due to GNDs, including the 

strengthening, the development of boundary layers, and the strain hardening. The 

qualitative modeling of the strengthening is explained by the interfacial yield strength, 

whereas the strain hardening is described by accounting for the interfacial hardening 

effect. 

Gradient dependent theory is used in the analytical modeling of ISE in Chapter IV. The 

approach followed in this work is similar to those adopted by Nix-Gao (1998) and 

Swadener et al. (2002); however, with one fundamental difference, which is the nature 
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of coupling between statistically stored dislocations (SSDs) and geometrically necessary 

dislocations (GNDs) in the Taylor’s hardening law for metals. In formulating both these 

aforementioned models, a gross assumption is made such that the total dislocation 

density is a simple arithmetic sum of SSD and GND densities, whereas in the current 

model a simple arithmetic sum of the Taylor’s stresses from SSD and GND densities is 

found to be more appropriate and give the correct order of the total dislocation density in 

hardening metals. This fundamental difference in derivation approach results in two new 

ISE models that correct the impediment of the Nix-Gao’s and Swadener et al.’s models 

in estimating the nano-hardness data such that the present ISE models can fit better both 

the micro- and nano-hardness data simultaneously. Therefore, one may conclude that 

when using the Taylor’s hardening law a simple sum of flow stresses from SSDs and 

GNDs is more adequate than the simple sum of SSD and GND densities. 

Moreover, from dislocation-based arguments it is shown that the material length 

scale parameter in the strain gradient plasticity theory is not fixed or constant but 

changes with the course of plastic deformation such that it scales with the average 

spacing between dislocations. This conclusion is supported by calculating the material 

length scale parameter from the hardness data of undeformed and prestrained specimens. 

These data showed that as the prestraining level increases a smaller value for the 

material length scale is obtained. This suggested that the material length scale should be 

considered as an internal variable instead of a free parameter. 

Finally, it is concluded that materials with smaller length scale are harder and 

require greater loads in order to create the same contact area, which dictates that the 
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additional amount of hardening during deformation increases as the length scale 

increases. Thus, the hardest materials have the smallest values of material length scale. It 

is also concluded that the size effect is more significant in annealed and undeformed 

specimens than in cold-worked or prestrained or pre-deformed specimens. This implies 

that weaker materials exhibit higher ISE. Therefore, the ISE is expected to be influenced 

by both prior dislocations and the additional work hardening that occurs during 

indentation. 

6.3 Recommendations for Future Work 

From the findings of this thesis researchers might be encouraged to work on the 

following directions: 

• Attempts can be made to enhance the gradient theory by including a backstress 

associated with kinematic hardening and the higher order microstress conjugate 

to the gradient of the plastic strain tensor in the internal virtual power expression.  

• Detailed study of the temperature dependence of interfacial hardening and the 

interfacial yield strength can be done.  

• The developed gradient plasticity theory can be used to explain other size effect 

problems such as, micro bending of thin beams, micro torsion of thin wires or 

shear loading of thin films.  

• Experimental works can be done on thin biaxially or thermally loaded thin films 

to validate the models developed in this thesis. 

• Nano-indentation tests using spherical tipped indents can be done. 
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