

HIGH QUALITY COMPACT DELAY TEST GENERATION

A Dissertation

by

ZHENG WANG

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2010

Major Subject: Computer Engineering

HIGH QUALITY COMPACT DELAY TEST GENERATION

A Dissertation

by

ZHENG WANG

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Duncan M. Walker

Committee Members, Jianer Chen

 Rabinarayan Mahapatra

 Weiping Shi

Head of Department, Valerie E. Taylor

May 2010

Major Subject: Computer Engineering

 iii

ABSTRACT

High Quality Compact Delay Test Generation.

(May 2010)

Zheng Wang, B.S., Zhejiang University, China;

M.S., Zhejiang University, China

Chair of Advisory Committee: Dr. Duncan M. Walker

 Delay testing is used to detect timing defects and ensure that a circuit meets its

timing specifications. The growing need for delay testing is a result of the advances in

deep submicron (DSM) semiconductor technology and the increase in clock frequency.

Small delay defects that previously were benign now produce delay faults, due to

reduced timing margins. This research focuses on the development of new test methods

for small delay defects, within the limits of affordable test generation cost and pattern

count.

First, a new dynamic compaction algorithm has been proposed to generate

compacted test sets for K longest paths per gate (KLPG) in combinational circuits or

scan-based sequential circuits. This algorithm uses a greedy approach to compact paths

with non-conflicting necessary assignments together during test generation. Second, to

make this dynamic compaction approach practical for industrial use, a recursive learning

algorithm has been implemented to identify more necessary assignments for each path,

so that the path-to-test-pattern matching using necessary assignments is more accurate.

 iv

Third, a realistic low cost fault coverage metric targeting both global and local delay

faults has been developed. The metric suggests the test strategy of generating a different

number of longest paths for each line in the circuit while maintaining high fault coverage.

The number of paths and type of test depends on the timing slack of the paths under this

metric. Experimental results for ISCAS89 benchmark circuits and three industry circuits

show that the pattern count of KLPG can be significantly reduced using the proposed

methods. The pattern count is comparable to that of transition fault test, while achieving

higher test quality. Finally, the proposed ATPG methodology has been applied to an

industrial quad-core microprocessor. FMAX testing has been done on many devices and

silicon data has shown the benefit of KLPG test.

 v

DEDICATION

To my parents:

without their support this would not have been possible

 vi

ACKNOWLEDGEMENTS

I would like to thank my advisor and committee chair, Dr. Duncan M. (Hank)

Walker for his advice and support throughout my Ph.D. studies at Texas A&M

University. His insights in this particular research area, his technical guidance and

spiritual support were invaluable to this work. This dissertation would never have been

completed without his advice and encouragement. I owe him lots of gratitude for making

my research life enjoyable and rewarding. What I learned from him will benefit my

future career.

I am also grateful to my committee members, Dr. Jianer Chen, Dr. Rabinarayan

Mahapatra and Dr. Weiping Shi, for their valuable suggestions and personal

encouragement.

My gratitude also goes to my lab members: Wangqi Qiu, Zhongwei Jiang,

Sivakumar Ganesan, Lei Wu, Jing Wang and Shayak Lahiri, for their friendship and

help. Especially I want to thank Wangqi Qiu for his help and advice in the beginning of

my research, and Zhongwei Jiang and Sivakumar Ganesan for their great contribution to

the industrial experiments.

Also, I want to acknowledge the Semiconductor Research Corporation (SRC)

and National Science Foundation (NSF) for their financial support of this research.

Finally, I would like to thank my family for giving me company during my study.

Their love enriched my life. Without their constant support, this would not have been a

wonderful journey.

 vii

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ...vii

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

1. INTRODUCTION ... 1

1.1 Delay Testing .. 1

1.2 Delay Fault Models .. 1

1.3 Scan Based Test .. 4

1.4 KLPG Test Generation .. 9

1.5 Structure of The Dissertation .. 13

2. DYNAMIC COMPACTION FOR COMPACT DELAY TEST

 GENERATION ... 14

2.1 Motivation .. 14

2.2 Previous Work .. 15

2.3 Proposed Dynamic Compaction Algorithm .. 19

2.4 Dynamic Compaction for KLPG Test ... 25

2.5 Experimental Results for KLPG Test ... 26

2.6 Experimental Results for Transition Fault Test and and Stuck-at Test . 39

2.7 Conclusions .. 44

3. IMPROVED DYNAMIC COMPACTION

 WITH RECURSIVE LEARNING ... 45

3.1 Motivation ... 45

3.2 Previous Work .. 47

 viii

Page

3.3 Improved Dynamic Compaction with Recursive Learning 51

3.4 Experimental Results ... 53

3.5 Conclusions ... 55

4. DELAY TEST GENERATION WITH A REALISTIC LOW COST FAULT

 COVERAGE METRIC .. 56

4.1 Motivation .. 56

4.2 Previous Work .. 58

4.3 Low Cost Fault Coverage Metric ... 60

4.4 Realistic Low Cost Fault Coverage Metric .. 62

4.5 KLPG with Realistic Low Cost Fault Coverage Metric 66

4.6 Experimental Results ... 70

4.7 Conclusions ... 77

5. EXPERIMENTS ON SILICON ... 78

5.1 Flow of AMD Experiments .. 78

5.2 Improved KLPG for AMD Design ... 80

5.3 Experimental Results .. 83

6. SUMMARY AND FUTURE WORK ... 92

6.1 Summary ... 92

6.2 Future Work ... 93

REFERENCES ... 96

VITA .. 111

 ix

LIST OF FIGURES

 Page

 Figure 1 Structure of a scan design .. 5

 Figure 2 Muxed-D scan cell .. 6

 Figure 3 Shift register latch ... 7

 Figure 4 Launch-on-shift clock waveform .. 9

 Figure 5 Launch-on-capture clock waveform .. 9

 Figure 6 Fault types addressed in current research .. 10

 Figure 7 KLPG path generation algorithm .. 12

 Figure 8 Static compaction of two 8-bit vectors .. 16

 Figure 9 Greedy static compaction flow .. 17

 Figure 10 Vector pair and necessary assignments (circles) for Path1 20

 Figure 11 Vector pair and necessary assignments (Xs) for Path2 21

 Figure 12 Vector pair and necessary assignments for Path1 and Path2 21

 Figure 13 Pseudo code of dynamic compaction algorithm................................ 23

 Figure 14 Flowchart of dynamic compaction algorithm 24

 Figure 15 Test generation flow with dynamic compaction 25

 Figure 16 Robust sensitization criterion for OR gate .. 35

 Figure 17 Non-robust sensitization criterion for OR gate 36

 Figure 18 Functional sensitization criterion for OR gate 37

 Figure 19 Test composition of KLPG-1 .. 38

 Figure 20 Transition fault test generation algorithm ... 41

 x

 Page

 Figure 21 Direct implication examples .. 47

 Figure 22 Example of recursive learning ... 49

 Figure 23 Recursive learning algorithm .. 50

 Figure 24 Improved dynamic compaction algorithm .. 52

 Figure 25 Path statistics for ISCAS89 circuits .. 57

 Figure 26 Path delay distribution of s38417 .. 57

 Figure 27 Fault coverage distribution .. 61

 Figure 28 Delay space under different path correlations 62

 Figure 29 Fault site with short and long paths ... 63

 Figure 30 Fault site with long paths .. 63

 Figure 31 Fault site with short paths only ... 64

 Figure 32 Example of delay vs. bridge resistance ... 65

 Figure 33 KLPG flow with low cost coverage metric 67

 Figure 34 Fault coverage vs. K (circuit c7552) ... 70

 Figure 35 KLPG flow for AMD design ... 80

 Figure 36 Example of clock path justification ... 82

 Figure 37 FMAX distribution for robust KLPG test (Core0) 86

 Figure 38 FMAX distribution for robust KLPG test (Core1) 87

 Figure 39 FMAX distribution for robust KLPG test (Core2) 88

 Figure 40 FMAX distribution for robust KLPG test (Core3) 89

 Figure 41 FMAX distribution for robust KLPG test (chip level) 90

 xi

LIST OF TABLES

 Page

 Table 1 Circuits used in experiments ... 27

 Table 2 Comparison of KLPG (K=1) test size with static and

 dynamic compaction (robust test LOC). ... 29

 Table 3 Comparison of KLPG (K=1) test size with static and

 dynamic compaction (robust test LOS). .. 30

 Table 4 Comparison of KLPG (K=1) test size with static and

 dynamic compaction (non-robust test LOC) 31

 Table 5 Comparison of KLPG (K=1) test size with static and

 dynamic compaction (non-robust test LOS). 32

 Table 6 POOL size influence on compaction (K=1 robust test) 34

 Table 7 KLPG-1 vs. commercial tool .. 39

 Table 8 TF vs. KLPG-1 .. 43

 Table 9 Final justification failure rate .. 46

 Table 10 Improved dynamic compaction with recursive learning

 (LOC robust test, POOL = 1000) .. 54

 Table 11 KLPG with low cost fault coverage metric

 (LOC with 20% process variation) .. 72

 Table 12 KLPG with low cost fault coverage metric

 (LOC with 30% process variation) .. 73

 Table 13 KLPG-5 vs. KLPG-5L .. 76

 Table 14 KLPG-1 test for module 1 & module 2 ... 83

 Table 15 Robust KLPG results for AMD microprocessor 85

 1

1. INTRODUCTION

1.1 Delay Testing

Timing is crucial with the increasing speed of integrated circuits and the

advances in semiconductor fabrication technology. Most defects affecting the

performance are gross functional defects that can be detected using traditional test

methods [1][2][3]. However, some smaller manufacturing defects do not cause

functional failure but only influence the circuit speed. A typical example is the spot

defect that causes a resistive open or short. The International Technology Roadmap for

Semiconductors (ITRS) [4] projects that small delay defects (SDD) that previously were

benign now produce delay faults, due to reduced timing margins. Delay testing is used to

detect those timing defects to ensure that a circuit meets its timing specifications. This is

essential to achieve acceptable product quality. The delay test challenge is more difficult

for chips fabricated in deep submicron (DSM) semiconductor technology with increased

delay variability, signal crosstalk, power supply noise and temperature variations.

1.2 Delay Fault Models

A defect in a circuit is the unintended difference between the actual circuit

implementation and the specification. A fault is the representation of a defect at the

This dissertation follows the style and format of IEEE Transactions on Very Large Scale

Integration (VLSI) Systems.

 2

abstracted function level. A fault model is an abstraction of a type of defect behavior.

Some popular delay fault models are discussed in the following sections.

1.2.1 Transition Fault Model

The transition fault (TF) model [5] is the most commonly used delay fault model.

It assumes that the delay fault affects only one place in the circuit. In this model, each

gate is assumed to have two transition faults: a slow-to-rise (STR) and a slow-to-fall

(STR) delay fault. Thus the fault space of transition fault test is linear in the number of

gates in circuit. The extra delay introduced by the transition fault is assumed to be large

enough to prevent the transition from reaching any observable primary outputs within

the specified time. In other words, the transition fault effect can be observed through any

path (whether long or short) to any observable primary output.

Stuck-at fault test generation tools can be easily extended to generate tests for

transition faults [2]. A transition fault test vector pair {v1,v2} can be composed by

pairing stuck-at-0 and stuck-at-1 test patterns. The first vector v1 initializes the circuit

and the second vector v2 sensitizes and propagates the fault effect to some observable

primary outputs. Any stuck-at fault is covered by a corresponding transition fault test,

since a stuck-at fault can be considered a very slow transition fault.

The main disadvantage of the TF model is that the size of the fault is not

considered. Transition fault test generators normally select the easiest path, which is the

shortest one in most cases, to activate and propagate a transition. Thus the quality of TF

test for small delay defects is a concern [6][7]. Another problem is that TF test often

propagates a glitch from the fault site [8], which introduces potential quality loss.

 3

1.2.2 Gate Delay Fault Model

The gate delay fault model [9][10][11] [12] assumes that a spot defect is lumped

on a gate input or output and takes into account the size of the extra delay. Detecting

such faults requires testing a long path through the fault site. It is necessary to specify

the delay fault size in order to determine the quality of a test set, which is defined by

how close the minimum detected delay fault sizes are to the minimum detectable fault

sizes.

1.2.3 Line Delay Fault Model

The line delay fault model [13][14] is a variation of the gate delay fault model. It

requires testing a rising or falling delay fault through the longest sensitizable path on

every line in the circuit. Sensitizing the longest path through the target line can detect the

smallest delay defect on the target line. However, this model may fail to detect some

defects [15] with the increase of process variation in new technologies [16].

1.2.4 Path Delay Fault Model

The path delay fault model [17] models the distributed delay on a path. It is the

most conservative model since the fault space is all paths in the circuit. This model

assumes that any path can have any delay. A circuit is considered faulty with a path

delay fault if any one path is slow for a rising or falling transition. Thus tests for the path

delay fault model can catch small distributed delay defects in the circuit. The primary

limitation of the path delay fault model is that the number of paths in the circuit can be

exponential in the number of gates. For this reason it is not practical to test all paths in

 4

the circuit and achieve high test coverage. For example, ISCAS85 benchmark circuit

c6288, a 16-bit multiplier has close to 1020 paths [18].

1.3 Scan Based Test

Design-for-Test (DFT) circuitry is inserted to enhance the testability of a circuit.

Scan design is the most widely used DFT technique. Selected storage elements, such as

latches and flip-flops, are connected together into scan chains to provide direct access.

All selected storage elements are replaced with scan cells, each having one additional

scan input (SI) port and one additional scan output (SO) port. All scan cells are formed

by connecting the SO port of one scan cell to the SI port of the next scan cell. All scan

cells can be set to a desired state by shifting specific values into scan chains. Similarly,

the state of all scan cells can be observed by shifting the contents out of the scan chains.

Therefore, the controllability and observability of the circuit is enhanced. Figure 1 shows

the basic structure of a scan design. The circuit consists of combinational logic and a

scan chain. In the test mode, the test data is applied to the circuit under test (CUT)

through primary inputs (PI) x1, x2 and scan cell outputs a, b, and c. The circuit responses

are captured through primary outputs (PO) z1, z2 and scan cell inputs a’, b’, and c’.

 5

Figure 1. Structure of a scan design.

1.3.1 Scan Cell Type

 There are several fundamental scan architectures: muxed-D scan, LSSD scan and

enhanced scan.

A. Muxed-D Scan

 Figure 2 shows an edge-triggered muxed-D scan cell design. The scan cell is

composed of a multiplexer and a standard D flip-flop. The scan enable (SE) signal

controls the multiplexer to select between the data input (D) and scan input (SI). Clock

signal (CP) is used to clock the flip-flop in both normal and test modes.

 6

Figure 2. Muxed-D scan cell.

B. LSSD Scan

A shift register latch (SRL) [19][20] can be used as a level sensitive scan design

(LSSD) scan cell. This scan cell contains a pair of latches, a master two-port D latch L1

and a slave D latch L2. Clocks C, A and B are used to select between the data input D and

the scan input I to drive +L1 and +L2, as shown in Figure 3. During test the SRLs are

accessed by applying appropriate clock signal sequences. LSSD can be implemented

using a single-latch design [19] or a double-latch design [21] based on different clock

schemes.

 7

+L2

C

D . ..

.

A

I .

.

.

.
B

+L1

L1

L2

SRL

+L2

C

D . ..

.

A

I .

.

.

.
B

+L1

L1

L2

SRL

Figure 3. Shift register latch.

C. Enhanced Scan

 Enhanced scan [22][23] allows storing two bits of data in the scan cell. Thus both

initialization and test vector can be loaded into a scan cell and applied consecutively to

the circuit under test. For a filp-flop design, this is achieved by adding an extra holding

latch to the output of each flip-flop. Since the two bits are independent of one another,

high fault coverage can be achieved by applying any arbitrary pair of test vectors. The

main disadvantage of enhanced scan design is the extra area, timing and power

introduced by the extra holding latch.

1.3.2 At-Speed Scan Clocking

There are two basic scan clocking schemes widely used in the industry for testing

transition and path delay faults at-speed: launch-on-shift (or skewed-load [24][25]) and

launch-on-capture (or broad-side test [26]).

 8

In launch-on-shift (LOS) mode, the initialization vector is first scanned into the

scan chains using the shift clock. The last shift clock launches the transition to the

circuit and a following fast system clock captures the circuit response, as shown in

Figure 4. For a test vector pair {v1,v2}, v2 is derived from shifting v1 by one bit. The

primary advantages of LOS are that the test is derived in one time frame, simplifying test

generation and reducing test generation time, and the pattern count is relatively low. The

primary disadvantage of LOS is that the scan enable (SE) signal must be switched

between the shift and system clock pulses at the rated system clock speed to capture the

test result on the next system clock cycle. This requires that the scan enable be

distributed via a fast clock tree. A second disadvantage of LOS is that it tests more delay

faults that do not cause timing failure, and it cannot test some faults that do cause timing

failure.

In launch-on-capture (LOC) mode, two consecutive system clock pulses are used

to launch the transition and capture the circuit response, as shown in Figure 5. Dummy

clock cycles are inserted as needed to give the SE time to switch from scan to capture

mode. For a test vector pair {v1,v2}, v2 is derived from the circuit response of the

initialization vector v1. The advantages of the LOC approach are that there is no timing

constraint on SE, and the test vector is a legal state of the circuit, assuming the

initialization vector is a legal state. The disadvantages are that test generation is over two

time frames, so takes more CPU time, and the test pattern count is higher than LOS test.

 9

Shift Shift Last

Shift

Shift

SE

 CK

C
a

p
tu

re

L
a

u
n

c
h

Figure 4. Launch-on-shift clock waveform.

Shift Shift Dead
Cycles

Shift

SE

 CK
C

ap
tu

re

L
a

u
n

c
h

Figure 5. Launch-on-capture clock waveform.

1.4 KLPG Test Generation

Figure 6 shows the categorization of faults targeted in this research. Local delay

faults are increases in circuit delay caused by a spot defect such as a resistive bridge or

open. Global delay faults are slow paths due to die-to-die process parameter variation,

such as metal thickness variation [27]. Combined delay faults are caused by a

combination of spot defect and process variation. Process variation consists of

systematic, die-to-die random variation and intra-die random variation. Systematic

 10

process variation due to subwavelength lithography is assumed to be incorporated into

circuit delay models, and not considered explicitly in this research.

Spot Defect Process Variation

Local

Delay Fault

Global

Delay Fault

Combined

Delay Fault

Functional

Failure

Reliability

Hazard

Proposed Research

Noise

CrosstalkSupply Die-to-Die Intra-Die

Figure 6. Fault types addressed in current research.

In [28], an efficient automatic test pattern generation (ATPG) algorithm was

developed to generate the 2·K longest paths through each line in the combinational

circuit, with K paths having a rising transition and K paths having a falling transition at

the fault site. This work was later extended to sequential circuits in [29]. Figure 7 shows

the basic flow of the algorithm.

We define a launch point as a primary (PI) or pseudo-primary input (PPI), and a

capture point as a primary output (PO) or pseudo-primary output (PPO). In the

preprocessing phase, topology information such as the PERT delay of each gate is

calculated, which will help accelerate the path generation. The min-max PERT delay of a

 11

gate is the min-max delay from this gate to capture points, without considering any logic

constraints. Delays are extracted from a standard delay format (SDF) delay file.

In the path generation phase, a path store is used to store partial paths, which are

paths originating from a launch point but have not reached a capture point. Because

partial paths are initialized from launch points, each partial path initially contains only a

PI or PPI. Every partial path has a value called esperance [30], which is the sum of the

length of the partial path and the PERT delay from its last node to a capture point. In

other words, the max esperance of a partial path is the upper bound of its delay when it

reaches a capture point and becomes a complete path, and the min esperance is the lower

bound. As shown in Figure 7, in each iteration of path generation, the partial path with

the largest max esperance is popped from the sorted path store and extended by adding

one fanout gate with largest max esperance. If the last gate of the partial path has

multiple fanouts, the path will split, leaving the alternate choices in the path store.

Depending on the sensitization criterion, such as robust or non-robust sensitization [31],

constraints to propagate the transition on the added gate are applied. Then direct

implications [28] are performed to identify local conflicts. A direct implication on a gate

is one where the input or output value of that gate can be determined from other input or

output values assigned to that gate. Previous research [28][30] found that direct

implications can eliminate most false paths. Heuristics such as forward trimming and

smart-PERT delay [28] are applied to the partial path in order to quickly eliminate false

paths. These heuristics enable for the first time generation of the longest paths through

every gate of ISCAS85 benchmark circuit c6288. All prior path delay test approaches

 12

have failed on this circuit, due to its exponential number of long false paths. If a partial

path reaches a capture point, it becomes a complete path. Then a PODEM-based final

justification [28][29][32] is performed to find a vector pair that sensitizes this path.

Since the longest path through one line may be the longest path through other lines, a

new complete path must be checked to see if it has already been generated before. In

order to utilize the overlapping paths between different lines to accelerate test generation,

global longest path generation [28] is performed at the beginning of test generation. The

test generation repeats until the K longest testable paths (both rising and falling

transitions) through each line are generated or the path store is exhausted.

Pass justification?

Enough paths?

Delete the (partial) path

End

Y

Start Preprocessing

Initialize partial paths from
launch points

Pop the partial path with the

maximum esperance

Extend the partial path with

one more gate

Apply constraints and perform

direct implications

Conflict? Complete path?

Apply false path

elimination techniques

Update esperance

Insert in the (sorted)
partial path store

N
N

Y

Y
N

N

Y

Figure 7. KLPG path generation algorithm.

 13

1.5 Structure of Dissertation

The remainder of the dissertation is organized as follows. Section 2 contains the

details of a dynamic compaction algorithm for the generation of compact delay test sets.

To speed up the dynamic compaction procedure, in section 3 an improved dynamic

compaction algorithm with recursive learning is presented and applied to benchmark

circuits and industrial designs. In section 4, a realistic low cost fault coverage metric

targeting both global and local delay fault is developed and implemented in the KLPG

test generation. In section 5, an improved KLPG test generation flow is applied to an

AMD quad-core microprocessor on silicon. Finally, section 6 concludes the dissertation

with future directions.

 14

2. DYNAMIC COMPACTION FOR COMPACT DELAY TEST

GENERATION

2.1 Motivation

The path delay fault model [17] is used to detect distributed and small delay

defects in integrated circuits. The challenge of the path delay fault model is that the

number of paths is exponential in the circuit size. One strategy is to target a subset of

paths which contains at least one of the longest testable paths passing through each line

or gate [14][28][29][33][34][35][36]. More recently, small delay defect tools have been

built on top of the transition fault framework, to providing timing information to guide

the test generation towards selecting longer paths. But commercial SDD tools produce

very high pattern counts.

In [28], an efficient automatic test pattern generation (ATPG) algorithm was

developed to test the K Longest Paths Per Gate (KLPG) in a combinational circuit and

extended to sequential circuits in [29]. A fault coverage metric was developed to show

the theoretical high quality of KLPG [37] and the benefits were demonstrated on silicon

[38]. The primary barrier to the use of KLPG patterns has been the high pattern count.

The existing CodGen ATPG tool [28][29] uses greedy, forward-order static compaction.

In order to reduce the pattern count and test cost, this section proposes a new dynamic

compaction algorithm for generating compacted test sets for K longest paths per gate

(KLPG) in combinational circuits or scan-based sequential circuits.

 15

2.2 Previous Work

For scan-based very large scale integrated (VLSI) circuits, test cost is determined

by test application time of a set of test patterns. Test application time is proportional to

the length of the scan chains and the size of the test set [39]. In addition, a test set that

exceeds the tester memory size requires reloading patterns to achieve the desired

coverage, which is very expensive.

A test vector or test pattern is composed of a set of values on all primary inputs

(for a combinational circuit), and all scan flip-flop cells (for a sequential circuit).

Automatic test pattern generation (ATPG) tool will assign binary values (0 or 1) on a

subset of primary inputs (PI’s) and scan flip-flop cells, in order to detect targeted faults.

The remaining values are don’t care (X). Test compaction includes techniques to reduce

test size by merging test patterns with non-conflicting values [40]. In general, test

compaction techniques can be classified as static compaction or dynamic compaction.

Static compaction techniques are performed after test sets have already been generated,

while dynamic compaction techniques are integrated into the test generation process.

Many compaction algorithms have been proposed in the literature for test compaction in

combinational and fully-scanned sequential circuits. The following two sections address

static and dynamic compaction processes, respectively.

2.2.1 Static Compaction

Static compaction [41] is also called post-generation compaction, which is

independent of the test generation process. It can be applied to any set of test vectors to

 16

reduce the test size. Even if dynamic compaction is performed during test generation,

static compaction can be used to further reduce the test size.

For static compaction, two test vectors are compactable if every bit is

compatible. If the same bit in both vectors is assigned to the same logic value (“0” or

“1”), or it is a don’t care value (“X”) in at least one of them, these two vectors are

compatible and can be merged. The concept of static compaction is illustrated using a

simple example in Figure 8. As shown in Figure 8, every bit in 8-bit vectors V1 and V2

is either assigned to the same logic value or there is “X” in at least one of them. Thus V1

and V2 can be compacted together to form a new vector V3.

Figure 8. Static compaction of two 8-bit vectors.

Many static compaction techniques [42][43][44][45][46] have been proposed to

reduce pattern count without reducing fault coverage. For KLPG test, a forward order

greedy static compaction scheme is used to reduce the test size [28]. As shown in Figure

9 [47], every new pattern is compared against patterns in the compacted pattern list in

order and is always merged with the first compatible one. The test size produced by the

 17

forward greedy algorithm is only slightly larger than the near-optimal results produced

by a simulated annealing algorithm [48].

Figure 9. Greedy static compaction flow.

2.2.2 Dynamic Compaction

Dynamic compaction [42] is performed during test generation, and can achieve

greater reduction in pattern count than static compaction. Many dynamic compaction

methods [49][50][51][52] aim at maximizing the number of stuck-at faults detected by a

test pattern. The classic approach is to generate a pattern for one fault, and then use

heuristics to modify the unspecified bits, and drop other detected faults in the fault list

 18

via fault simulation. This approach does not work well for path delay test due to the low

fortuitous detection rate. Several compaction techniques targeting path delay faults have

been proposed [53][54][55]. In [53], maximal compatible path delay fault sets are first

derived based on a six-valued algebra and then a test is generated for faults in each of

these sets. The memory requirements depend on the number of paths and the number of

lines in a path. The approaches in [54][55] try to simultaneously test paths with crossing

points so as to fortuitously detect many faults which may not be included in the target

fault list. This is similar to fortuitously increasing K in KLPG, but does not explicitly

compact compatible paths and does not guarantee the robustness or non-robustness of

the fortuitously detected paths. In addition, most of these techniques require a target path

fault list and path structure information provided in advance, have high memory

consumption for large circuits, have high CPU time complexity, or are difficult to

incorporate into the KLPG ATPG algorithm.

Care bit density is the number of (determined bits / total bits) in test patterns.

Normally the average care bit density of the transition fault test is significantly higher

than path delay test, particularly for the initial test patterns. Experiments on an industrial

design [38] showed the average care bit density of the transition fault test without

random fill was 4.59%, while it was 2.23% for the path delay test after static

compaction. This low care bit density provides room for dynamic compaction to

improve over static compaction.

 19

2.3 Proposed Dynamic Compaction Algorithm

For a given fault, necessary assignments (NA) are all the values on circuit lines

necessary for the detection of the fault. Necessary assignments include values to activate

the fault and propagate its effect to a primary output or a capture scan cell. In this work,

we have developed a dynamic compaction approach that compacts paths together based

on their necessary assignments, without fault simulation. Rather than working on one

pattern at a time, the algorithm considers a pool of paths that are currently being

compacted into a set of patterns. Each new path generated is compared against this path

pool. This algorithm was incorporated into the KLPG algorithm and significantly

reduces pattern count (up to 4x compared to static compaction) without coverage loss.

When a path is generated and passes final justification, a set of necessary

assignments are identified that are necessary to sensitize and propagate the fault along

the path. Assignments generated during final justification are not saved, since they may

not be necessary.

Consider the following example: we have a complete path Path1 with falling

transition through line A with necessary assignments (circles) as shown in Figure 10.

Vector pairs (X101XX, X1X0X1) or (1X01XX, X100X1) can test the path. Suppose we

have another complete path Path2 with rising transition through line B, with a set of

necessary assignments (Xs) as shown in Figure 11, and only vector (X0X1X0, X10XX1)

can test it. The necessary assignments for Path1 and Path2 are compatible (no conflict in

value assignments). In our prior work [28][29] we used a PODEM-like final justification

procedure to find a vector pair for each path separately, followed by static compaction.

 20

Due to the intrinsic property of backtracing in the PODEM [32], which backtraces based

on the line controllability, we get vector pair (X101XX, X1X0X1) for Path1 and

(X0X1X0, X10XX1) for Path2. The vector pairs cannot be compacted together. In fact,

Path1 and Path2 can be compacted together and tested via vector pair (1001X0,

X100X1). If we keep only necessary assignments rather than a vector pair for each

complete path, we can combine two sets of necessary assignments together and then

apply final justification, which will generate one vector pair (1001X0, X100X1) for both

paths, as shown in Figure 12.

I1

I2

I3

I4

I5

I6

O1

O2

O3

O4

O5

O6

Path1

XX

11

0X

X1

XX

1X

X1

00

X1

XX

A

Figure 10. Vector pair and necessary assignments (circles) for Path1.

 21

XX

1X

X0

XX

I1

I2

I3

I4

I5

I6

O1

O2

O3

O4

O5

O6

x

x

x x

x Path2

x

B

x

x

Figure 11. Vector pair and necessary assignments (Xs) for Path2.

I1

I2

I3

I4

I5

I6

O1

O2

O3

O4

O5

O6

Path1

1X

00

XX

A
x

x

x x

x
Path2

x

B

x

x

Figure 12. Vector pair and necessary assignments for Path1 and Path2.

Based on the previous example, our dynamic compaction algorithm checks the

compatibility between necessary assignments, greatly expanding the compaction space

without loss of fault coverage. The approach is to generate the K longest rising and

falling paths for a line and their necessary assignments, and then compare the necessary

assignments for each such path against a set of previously generated paths. The

generation of final test vectors is postponed until test generation and dynamic

compaction is finished, in order to provide maximum flexibility for compaction.

 22

Procedure dyn_compact(F, POOL), given in Figure 13, describes the details of

the dynamic compaction algorithm. It uses a greedy approach, in which each new pattern

F is compacted with the first compatible pattern in POOL. POOL is a data structure

created to save patterns. Due to memory limitations, we cannot save all patterns in

POOL. So the size of POOL is set to N, which means at most N patterns can be saved in

POOL. Patterns in POOL are sorted in non-increasing order of the number of necessary

assignments in order to compact as many paths as possible into a pattern before it is

written out. Our experiments show that non-decreasing order will even out the care bit

density and result in a more compact test set. When POOL is full and a new pattern is

generated, the pattern with the largest number of necessary assignments (the first pattern

in POOL) is popped. Final justification is then performed on this pattern and its

corresponding vector pair is written out. We will show the influence of POOL size on

compaction results in the experimental results. In the current implementation a greedy

forward-order approach is used for locating compatible paths. Based on static

compaction results [29], we expect that only a small fraction of patterns must be held in

memory in order to achieve good results for dynamic compaction.

 23

Procedure dyn_compact(F, POOL)

1. If POOL is empty, insert pattern F into POOL and return. Otherwise set pointer P to the first

pattern in POOL and go to step 3.

2. Set pointer P to the next pattern in POOL. If P is pointing to empty (the end of POOL), go to

step 6. Otherwise go to step 3.

3. Do conflict check between F and P. If there is a conflict, go to step 2. Otherwise go to step

4.

4. Combine two sets of necessary assignments F and P, and save them as K. Check for direct

implication conflicts in K. If no conflicts, go to step 5. Otherwise delete K and go to step 2.

5. Do final justification for K. If K passes final justification, update P by combining necessary

assignments of F into it and return. Otherwise delete K and go to step 2.

6. Insert F into POOL as a pattern. Return.

Figure 13. Pseudo code of dynamic compaction algorithm.

 24

To help better understand the details, Figure 14 gives the dynamic compaction

flowchart.

Figure 14. Flowchart of dynamic compaction algorithm.

 25

2.4 Dynamic Compaction for KLPG Test

The proposed dynamic compaction algorithm was integrated into the CodGen

KLPG ATPG. Procedure klpg_dc() in Figure 15 describes the test generation flow with

dynamic compaction. Here a pattern is a set of necessary assignments that can

successfully yield a test vector pair. A vector contains specific values at launch points

(e.g. scan cell outputs).

Procedure klpg_dc()

1. Initialize pattern pool POOL as empty.

2. Use KLPG to generate a successful longest path I through a line, resulting in pattern F. F

contains all necessary assignment information before justification. Justification of F is

performed to check that the path is sensitizable, but the resulting primary input values are

not stored. If no more paths can be generated or we have enough paths, go to step 4.

Otherwise go to step 3.

3. Call procedure dyn_compact(F,POOL). Go to step 2.

4. Do final justification for all patterns in POOL one by one to generate the final vectors.

Procedure is finished.

Figure 15. Test generation flow with dynamic compaction.

 26

2.5 Dynamic Compaction Experimental Results for KLPG Test

 Experiments were conducted to show the advantages of our proposed dynamic

compaction algorithm over the static compaction method for KLPG tests. All programs

were implemented in C++ and run on a Windows XP PC with Intel Core 2 Duo 6300

(1.86 GHz) processor and 2 GB memory.

We performed experiments on full scan versions of ISCAS89 benchmarks and

three industry designs, generating KLPG tests with K=1. Table 1 shows the information

of all circuits used in the experiments. The targeted fault space is identical to the

transition fault test, which includes every line in the circuit. The number of faults is

twice the number of lines in the circuit, since it is assumed that there are both slow-to-

rise and slow-to-fall delay faults at each fault site. But the actual number of detectable

faults is less than the total number of faults due to the internal and external constraints.

Internal constraints include the lines with preset values, such as lines tied to

ground/supply voltage. External constraints include the constraints from low-cost ATE.

For example, low-cost ATE does not allow observation of the primary outputs and it

requires primary inputs to remain unchanged during test vector application. Column 4

lists the number of scan cells for each circuit. There is only one scan chain for all

ISCAS89 circuits. The industrial design chip1 contains 4 scan chains and chip2 contains

16 scan chains. Both are partial scan design with embedded memories. Chip2a is a

controller module in chip2. The industrial design chip3 is a full scan design with 6 scan

chains.

 27

Table 1. Circuits used in experiments.

Circuit # Lines # Scan Cells # Scan Chains Scan Type

s1423 1 423 74 1 Full

s1488 1 488 6 1 Full

s1494 1 494 6 1 Full

s5378 5 378 179 1 Full

s9234 9 234 211 1 Full

s13207 13 207 638 1 Full

s15850 15 850 534 1 Full

s35932 35 932 1 728 1 Full

s38417 38 417 1 636 1 Full

s38584 38 584 1 426 1 Full

chip1 86 612 3 503 4 Partial

chip2 1 956 942 57 352 16 Partial

chip2a 40 590 14 963 8 Partial

chip3 1 085 052 9 372 16 Full

 28

2.5.1 KLPG Robust Test with Dynamic Compaction

Two test strategies were used in our experiments: launch-on-capture (LOC) and

launch-on-shift (LOS). Table 2 shows the results for generating the longest robustly-

testable rising and falling paths through each line (K=1), with static and dynamic

compaction in LOC mode. The POOL size N was set to 1000 for all circuits. Column 1

give the circuit name. Since we generate both longest slow-to-rise and slow-to-fall paths

through each line, the number of faults is roughly twice the number of lines. The total

number of testable faults is less than the total number of faults because of the LOC and

LOS constraints, and the constraints of low-cost testers (fixed inputs and masked

outputs). Columns 2-5 give the results under LOC. Column 2 shows the total number of

paths generated by KLPG, which is equal to the pattern count without any compaction.

Column 3 shows the number of test patterns with static compaction (SC) and dynamic

compaction (DC). For example, for s38417, 946 patterns are generated with static

compaction, which is reduced to 422 with dynamic compaction. Column 4 shows the

percentage pattern reduction. The reduction is small for small circuits, and higher in

larger circuits, such as chip1, chip2a and chip3. This is consistent with the lower care bit

density of uncompacted patterns in these designs. The last column gives the CPU time.

The numbers are times for SC and DC. In most cases DC takes about twice the CPU

time of SC.

 29

Table 2. Comparison of KLPG (K=1) test size with static and dynamic compaction

(robust test LOC).

Circuit

Launch-on-Capture

Paths
Patterns

(SC/DC)

%

Reduction

Time (m:s)

(SC/DC)

s1423 397 222/138 38 00:09/00:10

s1488 192 87/67 23 00:01/00:01

s1494 193 86/63 27 00:01/00:01

s5378 1799 407/236 42 00:07/00:16

s9234 2376 790/405 49 1:35/2:02

s13207 3246 900/718 20 00:59/1:35

s15850 2645 471/278 41 1:19/1:42

s35932 9762 36/26 28 5:03/06:54

s38417 14917 946/422 55 07:16/28:00

s38584 9725 519/253 51 4:23/10:32

chip1 14807 2477/1024 59 32:21/72:38

chip2a 7019 1877/631 66 199:54/228:00

chip3 47822 18203/5962 67 16.7hrs/33.4hrs

Table 3 shows the results for generating the longest robustly-testable rising and

falling paths through each line, with static and dynamic compaction in LOS mode.

Similar pattern reduction rate is achieved for LOS mode.

 30

Table 3. Comparison of KLPG (K=1) test size with static and dynamic compaction

(robust test LOS).

Circuit

Launch-on-Shift

Paths
Patterns

(SC/DC)

%

Reduction

Time (m:s)

(SC/DC)

s1423 701 197/123 39 00:04/00:06

s1488 206 78/64 18 00:01/00:01

s1494 204 79/64 19 00:01/00:01

s5378 1112 84/49 42 00.03/00:06

s9234 3649 710/463 35 01:03/01:46

s13207 6843 1624/1421 12 00:34/01:56

s15850 5833 645/307 52 00:50/02:24

s35932 12194 44/35 20 03:09/07:43

s38417 17665 656/357 46 02:03/16:07

s38584 21135 683/592 13 02:55/20:59

chip1 20139 858/467 46 44:40/86:36

chip2a 10512 2829/1140 60 38:48/57:26

chip3 58154 9760/3848 61 3.9hrs/6.8hrs

2.5.2 KLPG Non-Robust Test with Dynamic Compaction

Tables 4 and 5 show the compaction results for the longest rising and falling non-

robustly-testable paths through each line, with SC and DC under LOC and LOS

respectively. The pattern count reduction and CPU time increase are similar to the

results for robust paths.

 31

Table 4. Comparison of KLPG (K=1) test size with static and dynamic compaction

(non-robust test LOC).

Circuit

Launch-on-Capture

Paths
Patterns

(SC/DC)

%

Reduction

Time (m:s)

(SC/DC)

s1423 755 333/147 56 00:21/00:22

s1488 531 144/102 29 00:02/00:02

s1494 537 143/102 29 00:02/00:02

s5378 2428 362/213 41 00:17/00:28

s9234 3806 949/422 56 05:40/06:20

s13207 5674 629/416 34 05:06/05:54

s15850 4931 480/223 54 05:21/06:13

s35932 14569 36/25 31 14:03/17:15

s38417 26390 1109/414 63 16:32/50:20

s38584 17815 1177/391 67 12:40/27:22

chip1 27371 2866/1197 58 100:47/188:01

chip2a 15038 2752/1116 59 18.7hrs/20.2hrs

chip3 78432 23096/7540 67 37.7/64.3hrs

 32

Table 5. Comparison of KLPG (K=1) test size with static and dynamic compaction

(non-robust test LOS).

Circuit

Launch-on-Shift

Paths
Patterns

(SC/DC)

%

Reduction

Time (m:s)

(SC/DC)

s1423 1123 267/162 39 00:11/00:13

s1488 425 97/91 6 00.01/00:01

s1494 431 98/91 7 00.01/00:01

s5378 2028 226/151 33 00:09/00:11

s9234 5257 578/389 33 03:03/03:45

s13207 8981 786/616 22 01:13/02:28

s15850 8460 445/235 47 01:17/02:37

s35932 18489 36/29 19 07:40/13:08

s38417 26832 718/288 60 06:29/24:25

s38584 28059 450/337 25 06:59/27:11

chip1 38766 1389/739 47 91:35/188:30

chip2a 25093 4939/3032 39 140:07/206:16

chip3 101377 14574/6288 57 6.7hrs/12.4hrs

2.5.3 Pool Size Influence on Dynamic Compaction

In order to analyze the influence of the POOL size N on our dynamic compaction

algorithm, we vary N while generating robust paths under LOC, as shown in Table 6.

Columns 2-3, 4-5, 6-7 and 8-9 give the pattern count and CPU time for N with 100, 200,

500 and 1000 respectively. Increasing N reduces pattern count at the expense of more

CPU time. The ISCAS89 circuits are saturated at N=500, but the three industry circuits

 33

see a significant benefit for N=1000. But for all circuits there is a diminishing return. For

example, for chip1, 1264 patterns are generated under N=500 and 1024 patterns are

generated under N=1000. Diminishing returns can be explained by the phenomenon that

one pattern can be compacted to many other patterns. Not compacting a pattern into a

previously written-out pattern will not influence the chance of compacting it into another

pattern in the POOL. For chip3, pattern count is big under N=100 and N=200, while

6546 patterns are generated under N=500 and 5962 patterns are generated under N=1000.

When further increasing N to 2000, 4412 patterns are generated while CPU time

increases to 36 hrs. Ideally infinite pool size N will achieve the best results. But some

tradeoff must be made in practice due to the limitation of computer memory size and

running time. A moderate N has been enough to achieve good results from experiments.

The efficiency of the greedy approach was also checked by changing the pattern

order in POOL for a specific N. Both forward order and backward order greedy dynamic

compaction algorithms are implemented. Results show that the pattern count remains

similar for different pattern orders. This is consistent with our theory that our greedy

dynamic compaction approach can achieve good results while holding a small fraction of

paths in memory.

 34

Table 6. POOL size influence on compaction (K=1 robust test).

Circuit

N=100 N=200 N=500 N=1000

Patterns

CPU

Time

(m:s)

Patterns

CPU

Time

(m:s)

Patterns

CPU

Time

(m:s)

Patterns

CPU

Time

(m:s)

s1423 141 00:09 140 00:09 140 00:09 140 00:09

s1488 67 00:01 67 00:01 67 00:01 67 00:01

s1494 63 00:01 63 00:01 63 00:01 63 00:01

s5378 241 00:11 231 00:14 231 00:14 231 00:14

s9234 533 01:32 423 01:39 408 01:51 408 01:51

s13207 752 01:04 731 01:15 719 01:53 719 01:28

s15850 303 01:33 290 01:41 289 01:38 289 01:38

s35932 24 06:36 24 06:36 24 06:36 24 06:36

s38417 476 14:30 442 20:01 425 25:57 425 25:57

s38584 281 07:14 253 09:03 249 09:10 249 09:10

chip1 1703 80:14 1552 84:22 1264 100:37 1201 123:24

chip2a 1102 192:49 988 199:43 716 213:49 669 208:37

chip3 10521 20.5hrs 9161 24.8hrs 6456 26hrs 5431 29.4hrs

2.5.4 Pattern Count Comparison with Commercial Tool

A. KLPG-1 Test

To test path delay faults, two-time-frame vectors are required. Path delay faults

are classified into several groups according to the different sensitization criteria [31].

Robust sensitization criterion [56] allows the fault on the target path to be

observed independent of the delays on signals outside the target path. In other words, the

slow signal is able to propagate through the robust testable path independent of the

 35

delays on the side inputs to the path. Figure 16 illustrates the robust propagation criterion

for an OR gate. In this example, a is the on-path input and b is the off-path input. The

two values on inputs denote values under vector pair (v1, v2). When there is a falling

transition at input a, it requires b to be unspecified (X) for vector v1 and be 0 for vector

v2. Thus the fault effect on a will be propagated to the output signal of the OR gate

regardless of the fault on side input b. Similarly, when there is a rising transition on

input a, it requires b to be a stable non-controlling value 0. So the fault on the target path

will always be observable at the output.

Figure 16. Robust sensitization criterion for OR gate.

Non-robust sensitization criterion [56] is less stringent than the robust

sensitization criterion. The fault detection through a non-robust testable path is

dependent on the delays outside the target path, such as on the signal arrival times at the

side inputs.

A test that guarantees the detection of a path delay fault, when no other delay

fault is present, is called a non-robust test for that path. Consider the OR gate in Figure

17. If there is a rising transition on the on-path input a and a falling transition on off-path

input b, the transition on the output of the OR gate depends on the arrival time of the

 36

input transitions. If the falling transition on off-path input b occurs later than the rising

transition on on-path input a, it will mask the fault effect from a to the output. If the

falling transition on off-path b happens earlier than the rising transitions on on-path input

a, the fault effect on on-path input a is still observable at the output.

Figure 17. Non-robust sensitization criterion for OR gate.

Functional sensitization criterion [57] further releases the constraints compared

to the non-robust sensitization criterion. The detection of faults also depends on the

delays outside the target path. Furthermore, in order to detect the target fault, the

functional sensitization criterion requires that multiple faulty paths exist in the circuit.

Figure 18 illustrates the functional sensitization criterion for an OR gate. When both on-

path input a and off-path input b have rising transitions, it requires both transitions to be

late in order to propagate the fault at a to the output of the OR gate, since the arrival time

of the output signal is determined by the earlier of the two rising transitions at the OR

gate.

 37

Figure 18. Functional sensitization criterion for OR gate.

Figure 19 shows the test composition of the KLPG-1 test. A KLPG-1 test set,

consisting of the robust longest rising and falling path through each line, topped off with

non-robust KLPG patterns, topped off with long transition fault patterns, achieves the

same transition fault coverage as a transition fault test set, but with higher quality, since

it targets the same fault space and smaller delay defects. Long transition fault test has

higher quality than the traditional transition fault test because the traditional one assumes

large local delay and propagates the fault through any path (usually a short path). In our

test generation, this case usually happens when the local delay fault can only be

activated or propagated through multiple paths with functional sensitization criterion.

Thus the test quality is determined by the length of the shortest path in the activating or

propagating path set. The longer the shortest path, the smaller the local delay fault that

can be detected. The best transition fault test, in terms of the detected local delay fault

size, cannot be guaranteed to be generated by our tool but it should be better than the

traditional transition fault test.

The longest non-robust test for a fault may be longer than the longest robust test

for the fault. However, in KLPG-1, priority is given to the certainty of robust detection.

Detection reliability and testing the longest paths can be achieved by generating non-

 38

robust tests for all faults that already have a robust test, and keeping the non-robust test,

in addition to the robust test, if it tests a longer path. Due to the pattern count increase,

we did not pursue this approach.

Figure 19. Test composition of KLPG-1.

B. KLPG-1 vs. Commercial Tool

The drawback of a KLPG-1 test set has been increased pattern count. Table 7

shows the test size comparison between dynamically compacted KLPG-1 test sets

compared to dynamically compacted transition fault patterns generated by a commercial

tool. Both CodGen and the commercial tool use launch-on-capture mode. POOL size is

fixed at 3000 for KLPG-1 test.

As can be seen, our dynamically compacted KLPG-1 test sets are similar to and

in several cases (such as for s38584, chip1 and chip2a) smaller than the commercial

transition fault test sets. This is quite promising considering the higher quality of the

 39

KLPG test patterns and the maturity of the commercial tool compared to our university

tool. However, the KLPG-1 test is still significantly larger than the TF test for chip3.

Table 7. KLPG-1 vs. commercial tool.

Circuit
KLPG

Robust

KLPG

Non-robust

Long

Transition

Robust

+Non-robust

+ Long TF

Commercial

Tool

s1423 140 19 30 189 95

s1488 67 45 2 114 102

s1494 63 50 2 115 101

s5378 231 28 0 259 194

s9234 408 41 5 454 465

s13207 719 11 72 802 382

s15850 289 6 7 302 231

s35932 24 4 0 28 68

s38417 425 41 1 467 365

s38584 249 134 70 453 528

chip1 1201 489 157 1853 1900

chip2a 630 438 777 1845 2537

chip3 4077 1422 538 6037 1445

 40

2.6 Experimental Results for Transition Fault Test and Stuck-at Test

The proposed dynamic compaction algorithm is generic in nature so it can be

applied to the test generation of any kind test. This algorithm has been extended to deal

with transition fault test and stuck-at fault test.

2.6.1 Dynamic Compaction for Transition Fault Test

CodGen has been improved to generate transition fault tests. Figure 20 shows the

transition fault test generation flow. It inherits the framework from KLPG test. The only

difference is in the partial path extension stage. For transition fault test, in every iteration

of path generation, the partial path with the smallest max esperance is popped from the

sorted path store and extended by adding one fanout gate with the smallest max

esperance. In contrast, for KLPG test, the partial path with the largest max esperance is

always popped first and extended to the fanout gate with the largest max experance.

Thus the paths generated for transition fault test are normally the shortest ones, which

contain fewer necessary assignments and are easier to compact.

 41

Figure 20. Transition fault test generation algorithm.

Table 8 compares the transition fault test results generated by modified CodGen

with KLPG-1 test. Both KLPG-1 and transition fault (TF) test are in launch-on-capture

mode. Pool size is set as 3000 for both tests. Column 2 shows the number of paths

generated under two tests. To achieve the same transition fault coverage as KLPG-1 test,

normally more paths are generated for TF test. This is because a longer KLPG-1 path

through a given fault site normally covers more transition faults than a short transition

fault path. Column 3 lists the pattern count for TF, KLPG-1 and the commercial TF tool.

For most cases, the TF test pattern count is much less than KLPG-1, since KLPG-1

Pass justification?

Enough paths ?

Delete the (partial) path

End

Y

Start Preprocessing

Initialize partial paths from

launch points

Pop the partial path with the

minimal esperance

Extend the partial path with

one more gate

Apply constraints and perform

direct implications

Conflict? Complete path?

Apply false path

elimination techniques

Update esperance

Insert in the (sorted)

partial path store

N

N

Y

Y
N

N

Y

 42

patterns have higher care bit density than TF test, which reduces the space for

compaction. One special case is s35932, for which the TF test pattern count is higher

than KLPG-1 test. This is because s35932 has many near-critical TF test paths with

similar care bit density to KLPG-1 paths. Column 4 lists the average path length for the

two tests. The data verifies our assumption that most transition fault paths are shorter

than KLPG-1 paths. For example, the average path length of TF test is 8.77 compared to

13.49 (54% higher) for KLPG-1 paths. For special case s35932, the average path length

of TF test is 12.63 compared to 12.79 for KLPG-1 test. This indicates that most TF test

paths have similar length to KLPG-1 paths and explains why the TF test pattern count is

higher than KLPG-1 test for s35932. CPU time is listed in the last column. TF test

generation takes much less time than KLPG-1 test. This is because most TF test paths

are shorter and so easier to generate compared to KLPG-1 paths. In all circuits except

s1488 and s1494, our TF test sets with dynamic compaction are significantly smaller

than produced by the commercial TF tool, albeit using significantly more CPU time.

 43

Table 8. TF vs KLPG-1.

.Circuit

Launch-on-Capture

Paths

(TF/KLPG-1)

Patterns

(TF/KLPG-1

/Comm)

Avg Path Length

(TF/KLPG-1)

Time (m:s)

(TF/KLPG-1)

s1423 791/744 68/189/95 7.11/17.36 00:09/00:32

s1488 543/535 103/114/102 10.67/10.98 00:07/00:07

s1494 549/537 103/115/101 10.70/10.98 00:07/00:07

s5378 2435/1964 184/259/194 9.88/11.78 00:28/00:35

s9234 4086/3399 230/454/465 17.01/19.73 03:08/06:29

s13207 6089/5450 356/802/382 16.04/19.6 03:27/03:58

s15850 4940/4546 134/302/231 13.88/18.83 03:48/07:17

s35932 14537/11250 35/28/68 12.63/12.79 14:34/11:04

s38417 25327/21855 254/467/365 14.10/18.14 38:32/43:51

s38584 18923/17889 320/453/528 8.39/10.27 23:55/27:36

chip1 31896/28229 1600/1853/1900 8.77/13.49 200:26/453:58

chip2a 14070/16128 1207/1845/2375 12.26/16.96 14.3hrs/25.5hrs

chip3 81334/69740 1067/6037/1445 10.53/23.55 23.6hrs/80.7hrs

2.6.2 Dynamic Compaction for Stuck-at Fault Test

In [58], a scalable dynamic compaction technique was recently integrated into a

D-algorithm [59][60][61] based ATPG engine to generate compact test pattern sets for

stuck-at faults. This technique inherits the idea of our dynamic compaction algorithm

and uses necessary assignments as guidance to accommodate detections of more faults

by the same test vector. The guidance is based on a preprocessing step that computes

sets of compatible faults with their necessary assignments. This approach generates

 44

minimal or close to minimal test sets [51] for ISCAS85 circuits. For industrial circuits, it

achieves smaller test sets than other available methods, at reasonable CPU cost.

2.7 Conclusions

We have proposed a new dynamic compaction algorithm [62] for generating

compacted test sets for K longest paths per gate (KLPG) in combinational circuits or

scan-based sequential circuits. This algorithm uses a greedy approach to compact paths

with non-conflicting assignments together during test generation. Experimental results

for ISCAS89 benchmark circuits and three industry circuits show that the pattern count

of KLPG can be significantly reduced (up to 4x compared to static compaction) using

the proposed method. The pattern count after dynamic compaction is comparable to the

number of transition fault tests, while achieving higher test quality. This algorithm is

also a generic algorithm and also achieves significant test size reduction for transition

fault test and stuck-at fault test.

 45

3. IMPROVED DYNAMIC COMPACTION WITH RECURSIVE

LEARNING

3.1 Motivation

A dynamic compaction approach has been proposed in section 2 to compact

paths together based on their necessary assignments [62]. As each path is generated, its

necessary assignments are checked against a pool of test patterns. If the necessary

assignments of the path are compatible with those in a pattern, an attempt is made to

justify a vector pair to apply the test, using a PODEM-like algorithm. This compaction

algorithm significantly reduces KLPG pattern count (up to 4x compared to static

compaction) without coverage loss. But an analysis of the dynamic compaction

algorithm shows that the failure rate of final justification ranges from 0.5% (s35932) to

98% (chip3), relatively independent of the pool size. In other words, necessary

assignment compatibility is not sufficient to screen for conflicting paths. Table 9

presents the final justification failure rate with dynamic compaction in launch-on capture

mode with Pool size 1000. For the three industrial circuits, the final justification failure

rate is high (up to 98% for chip3). The final justification failures are due to either no

solution or algorithm abort. If there is any value conflict in the circuit, final justification

has no solution. If final justification algorithm hits the preset algorithm backtrace limit, it

gives up. An analysis shows that most final justification failures in dynamic compaction

are due to value conflicts. This indicates that necessary assignments are not sufficient to

filter out incompatible paths in several designs before entering final justification

 46

procedure. Since each execution of final justification is expensive, this high failure rate

leads to a significant CPU time increase over static compaction. In order to reduce the

CPU time and accelerate dynamic compaction, we must find more necessary

assignments to filter incompatible cases prior to final justification.

Table 9. Final justification failure rate.

Circuit Final Justification Failure Rate (%)

s1423 13.10%

s1488 12%

s5378 56.60%

s9234 20.50%

s13207 6.50%

s15850 5.40%

s35932 0.50%

s38417 44.90%

s38584 20.70%

chip1 82.10%

chip2a 82.70%

chip3 98%

This section proposes an improved dynamic compaction algorithm with recursive

learning, which tries to explore more indirect necessary assignments in the circuit given

a set of line values, in order to trim the search space prior to final justification and speed

up the dynamic compaction procedure. Results show that the improved compaction

algorithm is effective in ISCAS89 and three industry circuits. The failure rate of final

 47

justification during dynamic compaction can be significantly reduced using the proposed

method.

3.2 Previous Work

In standard ATPG, direct implication [28] is used to discover necessary

assignments (values assigned to lines). A direct implication on a gate is one where the

input or output of that gate can be uniquely determined from other values assigned to

that gate. Direct implication can be classified as forward implication or backward

implication. Figure 21(a) is an example of backward implication. Given a 0 on the

output of an OR gate, it is only true when both inputs are assigned the value 0. Figure

21(b) shows an example of forward implication. Direct implication can be seen as the

logical consequence of the truth table for a logic function. An indirect implication can

not be directly derived from the logic function truth table but is caused by the circuit

structure, which is explored through learning.

 (a) (b)

Figure 21. Direct implication examples.

 48

Learning was first introduced in [43][63]. In [43], a static learning procedure is

performed during the preprocessing phase to explore global implications, i.e., once for

the whole circuit. Then an improved implication procedure to apply the learning

dynamically was proposed in [63], which is performed for each branching step. Oriented

dynamic learning was introduced in [64], which performs learning only at a small subset

of the signals used by [43][63]. But the approaches in [43][63][64] do not guarantee that

all necessary assignments can be identified. Later recursive learning [65] was proposed

for test generation, design verification, and redundancy identification. It is a general

method in the sense that it is not restricted to any logic alphabet and can be called

recursively to find all necessary assignments.

Temporary necessary assignments are injected at arbitrary signals in the circuit

during learning to explore the common logic consequences. Figure 22 shows an example

of a level 1 recursive learning procedure. Assume F=0 is the only assignment available.

Direct implications cannot be derived from F=0. However, there exists the indirect

implication that F=0 => C=0. Beginning at the point when direct implications cannot be

made (F=0), temporary assignments are injected into the circuit for each choice of

assignments that would justify the current node value. The value F=0 makes the gate G1

unjustified. We enter level 1 recursive learning with two possible justifications for G1:

1J = {D=0, E=x} and
2J = {D=x, E=0}. For {D=0, E=x}, A=C=0 is derived through

direct implication at G2. For {D=x, E=0}, B=C=0 is derived through direct implication

at G3. In Figure 22, two possible justifications and their necessary assignments are

marked with quote and double quotes. Since C=0 is the intersection of the necessary

 49

assignments for both justifications,
1J and

2J , it becomes a common necessary assignment

for F=0. If C is further driven by an AND gate, then the learning procedure can be

recursively called to explore further implications.

 Figure 22. Example of recursive learning.

Figure 23 gives the details of the recursive learning algorithm [65]. The time

complexity of recursive learning is exponential in rmax, the maximum depth of

recursion, but memory grows linearly with rmax.

 50

Initialize r=0

Function make_all_implications(r,rmax)

make all direct implications and set up a list of
rU of all unjustified gates.

if (r < rmax)

for each gate
i

G in
r

U

 set up a list of justifications iG

r
C

 for each justification
iJ in iG

r
C

 make the assignments in
iJ

 make_all_implications(r+1,rmax)

if there is one or several signals f in the circuit, which assume the same logic value V for all

consistent justifications
i

J in iG

rC then learn:

f=V is uniquely determined in level r

make direct implications for all f in level r

if all justifications are inconsistent, then learn:

given value assignments in level r is inconsistent

Figure 23. Recursive learning algorithm.

 51

3.3 Improved Dynamic Compaction with Recursive Learning

We found that in some circuits, the final justification step during dynamic

compaction fails at a high rate, leading to high CPU time. To make our dynamic

compaction approach practical for industrial use, we must drastically reduce CPU time.

Recursive learning is called whenever a new path is generated or a pattern in POOL is

updated, in order to identify more necessary assignments for each path, so that path

conflicts can be more accurately identified with necessary assignments. These necessary

assignments also reduce the search effort required in final justification. Figure 24 shows

the details of the improved dynamic compaction with recursive learning. Large recursion

depth is in not practical because CPU time is exponential in depth. However, since it is

most likely that unknown necessary assignments must lie in the “logic neighborhood” of

the known necessary assignments, it can be expected that the maximum recursion depth

to determine all necessary assignments is relatively low [65]. We use a maximum depth

of 3. In order to further limit CPU time, recursive learning is only done on patterns with

fewer than 25 compacted paths. In addition, patterns that fail compaction more than a

certain number of times in a row, such as 500, are written out from POOL to speed up

the test generation, since those patterns are essentially at their compaction limit.

 52

Figure 24. Improved dynamic compaction algorithm.

 53

3.4 Experimental Results

Table 10 gives the results of improved dynamic compaction algorithm with

recursive learning for launch-on-capture robust test. Columns 1 give the circuit name

and the number of lines. Column 2 gives the total number of test patterns after dynamic

compaction without recursive learning (learning depth=0), with recursive learning depth

2 and with learning depth 3 respectively. Column 3 shows the number of total successful

final justifications/failed final justifications without recursive learning, with learning

depth 2 and with learning depth 3. Column 4 presents the final justification failure rate

without recursive learning, with learning depth 2 and with learning depth 3. The CPU

time under the three different maximum recursion depths is given in column 5. Normally

the failure rate of final justification is greatly reduced with an increase of learning depth,

with similar pattern count. For example, for s38584, the failure rate without recursive

learning is 20.7% with 426 total patterns. This decreases to 2.1% and 426 patterns with

learning depth 2, and further to 1.5% and 422 patterns with learning depth 3. There is not

much CPU time decrease for the small circuits in Table 1. But for chip3, a design with

~600k gates, the reduction of final justification failure rate reduces CPU time from 79

hrs (without recursive learning) to 29 hrs (learning depth 2), and to 50 hrs (learning

depth 3). Since the CPU time for recursive learning is exponential in the maximum

recursion depth, 22 more hours are spent on recursive learning with learning depth 3

than with learning depth 2 for chip3. A tradeoff must be made between CPU time and

learning depth in practical applications. In some cases, such as s15850, the final

justification failure rate increases with higher learning depth. This is because the

 54

PODEM-like final justification algorithm struggles with the large number of necessary

assignments in highly-compacted test patterns, which causes final justification hit the

backtrack limit and abort.

Table 10. Improved dynamic compaction with recursive learning (LOC robust test,

POOL = 1000).

Circuit
Patterns

(0/2/3)

[#Success/#Fail]

(0/2/3)

%

failure

rate

(0/2/3)

Time (m:s)

(0/2/3)

s1423 139/138/138
[258/39]/ [259/12]

/[259/7]
13.1/4.4/2.6 00:09/00:08/00:10

s1488 67/67/67
[125/17]/[125/6]

/[125/3]
12.0/4.6/2.3 00:02/00:02/00:04

s5378 236/230/230
[1563/2037]/[1569/73]

/[1569/70]
56.6/4.4/4.3 00:15/00:22/00:39

s9234 406/400/404
[1970/508]/[1976/174]

/[1972/180]
20.5/8.1/8.4 02:09/02:05/02:32

s13207 717/716/715
[2503/173]/[2504/2]

/[2504/2]
6.5/0.1/0.1 01:44/01:42/01:56

s15850 278/279/280
[2368/134]/[2367/218]

/[2366/235]
5.4/8.4/9.0 02:02/02:03/02:54

s35932 34/33/33
[9728/43]/[9729/93]

/[9729/93]
0.5/0.9/0.9 06:40/06:31/06:45

s38417 426/426/422
[14491/11805]/[14491/2848]

/[14495/1881]
44.9/16.4/11.5 28:04/34:29/46:52

s38584 257/242/243
[9467/2478]/[9482/207]

/[9481/144]
20.7/2.1/1.5 11:08/10:57/13:34

chip1 1149/1151/1142
[14699/67496]/[14697/26535]

/[14706/24447]
82.1/64.4/62.4 120:31/119:44/137:58

chip2a 1534/1783/1778
[5819/27772]/[5476/3618]

/[5470/3569]
82.7/39.8/39.5 391:58/403:50/427:06

chip3 6288/5431/5349
[41308/2697369]/[42387/538853]

/[42465/459132]
98/92.7/91.5 79hrs/29hrs/50hrs

 55

3.5 Conclusions

We have proposed an improved dynamic compaction algorithm with recursive

learning for generating compact test sets for K longest paths per gate (KLPG) tests. The

algorithm inherits the framework of [62] and compacts paths with non-conflicting

assignments together during path generation. Experimental results show that recursive

learning [65] is effective in trimming the search space prior to final justification and

reducing the final justification failure rate. Our results also show that our PODEM-like

final justification algorithm struggles with the large number of necessary assignments in

highly-compacted test patterns. Future research will explore more advanced search

algorithms suitable for this problem.

 56

4. DELAY TEST GENERATION WITH A REALISTIC LOW COST FAULT

COVERAGE METRIC

4.1 Motivation

In many designs, there are a set of “speed” paths that determine the clock cycle

time, and most fault sites have relatively short paths, as shown in Figure 25. The paths

used in these circuits are from the CodGen KLPG [29] ATPG tool, which generates 2

paths (1 with longest rising transition and 1 with longest falling transition) through each

line in the circuit. The upper line is the longest testable path length in each circuit, which

determines the clock cycle. The lower line is the average of the longest path through

each line. Clearly the average longest path per line is much shorter than the globally

longest path in these circuits. For example, for s38417, the longest path is 41 gate delays,

while the average is 18.1 gate delays.

Figure 26 gives more details about the path delay distribution in circuit s38417.

Of the 21,855 paths, only 4.15% have nominal delay greater than 80% of tmax (the

globally longest path length) and only 39.37% have nominal delay greater than 50% of

tmax. This distribution is typical of many circuits. It shows that most fault sites only have

short paths through them.

This section proposes a realistic low cost fault coverage metric targeting both

global and local delay faults. It suggests the test strategy of generating a different

number of longest paths for each line in the circuit while maintaining high fault coverage.

This metric has been integrated into the CodGen ATPG tool. Experimental results show

 57

significant reductions in test generation time and vector count on ISCAS89 and industry

designs.

Figure 25. Path statistics for ISCAS89 circuits.

Figure 26. Path delay distribution of s38417.

 58

4.2 Previous Work

Delay test targets small manufacturing defects to ensure that the design works

well within the specified timing margin. We term delay faults caused by a local

disturbance such as a resistive bridge or open local delay faults and those caused by

global process parameter variation global delay faults [27]. Process variation can be

quite complex [66][67]68], consisting of systematic, die-to-die random variation and

intra-die random variation. The path delay fault model [17] assumes that a path has an

arbitrary delay increase, so it can model the combination of local and global delay faults.

However, all paths must be tested in order to achieve high fault coverage. The

exponential number of paths in a circuit limits usage of this model.

Some path selection methods have been proposed to choose a subset of paths.

The simplest approach is to select paths with structural delay exceeding a specified

threshold, such as 90% of tmax, the maximum allowable circuit delay (e.g. clock cycle

time or globally longest path length). However, the number of longest paths selected

using min-max delay values is often too large, even with structural correlation

information [69]. With manufacturing knowledge, the number of potentially longest

paths can be pruned to just a few based on structural and process correlation [70]. But

this method only considers the longest paths in the whole circuit, which may not cover

every gate in the circuit. The approach in [71] selects longest paths for every fault site

using a linear function of process-variation variables, and further considers process

variation in both devices and interconnect. However, this method is difficult to integrate

into test generation. In [72], a pattern selection technique uses the least slack on the scan

 59

flip-flops to create different pattern categories. Then no-timing ATPG is performed on

each category to exercise more longer paths. But this technique does not guarantee the

generation of the longest paths. Another solution to this problem is to adjust the capture

clock so that the timing margin on these shorter paths is reduced [73][74]. The number

of different capture clock timings is reduced if the paths are divided into groups of

similar length [75] or test generation is performed to achieve paths of similar length [76].

These techniques have been shown to catch delay faults that cause system failures [73].

The drawback of such faster-than-at-speed testing approaches is that they can cause

overkill and test escapes. CodGen generates tests for the K Longest Paths per Gate

(KLPG) or line [29], so is linear in the circuit size. Testing K longest paths targets global

delay faults and testing every line covers local delay faults. However, the vector count is

high for high K.

In [37], a low cost fault coverage metric combining local and global delay faults

was proposed. This metric suggests the test should cover every line in the circuit by

testing one of the longest paths through the line, and test more long paths through each

line to increase the delay fault detection probability under process variation. At the same

time, a transition fault test should be applied to detect most large delay faults. The

problem with [37] is that this method can only be used to evaluate the coverage of an

existing test set, not to drop faults during test generation.

 60

4.3 Low Cost Fault Coverage Metric

Existing delay fault coverage metrics are not suitable for measuring realistic

delay fault coverage. For example, a traditional path delay fault metric defines the delay

fault coverage = number of tested paths / number of total testable paths. And some

methods [77][78] have been proposed to identify untestable paths. However, it can be

very expensive to calculate all testable paths in the circuit, especially for a ISCAS85

benchmark circuit c6288, with an exponential number of testable paths. Transition fault

coverage is sometimes used as an index for test quality measurement, but the transition

fault coverage of a circuit is the same whether short or long propagation paths are used,

when long paths have higher real defect coverage.

Our existing realistic fault coverage metric [37] defines the fault coverage (FC)

for test t as:

FC=P(t detects delay fault | chip has a delay fault) (1)

For a given fault site i and a given extra delay ∆, the detection probability of

extra delay ∆ for test t can be translated from general metric expressed formula (1) into

formula (2):

DPi,∆∆∆∆(t) = P(at least one tested path through i is slow) (2)

Over the distribution of an arbitrary delay ∆, the detection probability for site i is

calculated as:

DPi(t)= ∫∫∫∫ DPi,∆∆∆∆(t) • pi(∆∆∆∆)d∆∆∆∆ (3)

where pi(∆) is the PDF of ∆ at fault site I caused by physical defects such as resistive

shorts [79][80] and resistive opens [81]. And the overall fault coverage is:

 61

FC(t) = ∑∑∑∑i DPi,∆∆∆∆(t) • wi (4)

where wi is the weight for fault site i (∑i wi = 1).

Figure 27 [37] shows an example of this idea. There are 4 paths P0-P3 through a

fault site, each having a delay distribution due to process variation. Assume we have a

vector t only testing P1 and the longest path P0 is not covered. ∆0, ∆1 and ∆2 are the

smallest slacks for P0, P1, and P2 under process variation. When ∆0<∆<∆1, DPi,∆(t) is 0;

when ∆>∆2, DPi,∆(t) is 100%, because the tested path P1 is definitely slow; when

∆1<∆<∆2, DPi,∆(t) increases from 0 to 100% as ∆ increases. In order to achieve high test

coverage, the longest path P0 must be tested to eliminate the 0-DP region between ∆0 and

∆1. Potentially longest path P2 should also be targeted to increase the DP between ∆1 and

∆2. The main cost to compute the fault efficiency is on the sensitization check for all the

paths whose length is between ∆1 and ∆2, which is not easy.

 PDF P2 P1

∆0
∆1

tmax

P0 P3

∆2

Delay

Figure 27. Fault coverage distribution.

 62

Figure 28 shows the delay space [37] for two paths under process variation. If the

paths have no correlation, the delay value combination can be any value within the

rectangle. If the paths are 100% correlated, the delay value combination is a line. In

reality, the correlation is somewhere between 0% and 100%, and the realistic delay

space is the shaded area. Using correlation, delays on untested paths can be estimated

from delays on tested paths [82], and those paths are dropped if tested ones are not

faulty.

Delay on path 1

Delay on path 2

dmax, p1 dmin, p1

dmax, p2

dmin, p2

No correlation

Perfectly correlated

Reality:

Partially correlated

Figure 28. Delay space under different path correlations.

4.4 Realistic Low Cost Fault Coverage Metric

Our goal in using the low cost fault coverage metric is to reduce vector count by

dropping faults with detection probability sufficient to achieve the desired test quality. If

one path through a fault site is long and all others are much shorter, then testing the short

 63

paths has no benefit. For example, in Figure 29, if path A-C has been tested, then there is

no benefit in testing A-D, B-C or B-D, assuming these paths are never longer than A-C

under local defects or process variation. For a fault site with several critical paths, testing

more will increase detection probability. As shown in Figure 30, in addition to test path

A-C, testing A-D, B-C and B-D will increase the chance of catching the defect. In the

extreme case of a fault site with only short paths (Figure 31), a transition fault test is

adequate and testing the longest short path will not increase defect detection probability.

If a defect size is big enough to make the longest short path fail, it is very likely that this

defect will make all short paths fail, since the chance that a local delay fault is big

enough to make the longest short path fail, but make the little bit shorter path successful

is low.

Figure 29. Fault site with short and long paths.

Figure 30. Fault site with long paths.

 64

Figure 31. Fault site with short paths only.

The definition of a “short” and “long” path is based on the worst-case path delay

relative to the clock cycle, process variation, and the bridge and open resistance

distributions. In general, a precise physical model to reflect the real process and defect

environment is not available. Even if available, it would be too costly to use during test

generation. In order to minimize test generation time, a simple model is desired. In this

research, we use two assumptions to simplify the problem. First, we assume the process

variation is independent for each path and influences delay by increasing the required

delay guard band. The percentage bound α covers the influence of inter-die and intra-die

variation [83], power supply and substrate noise, and capacitive coupling. Second, we

consider that the local delay defect size due to resistive short or open has a guard band.

The defect size to exceed this guard band requires a bridge resistance so small or open

resistance so large that it nearly causes a transition fault. Figure 32 shows the typical

increase in delay vs. bridge resistance [84]. For a given fault site, when Rbridge < RF, a

resistive short behaves as a transition fault. ∆max is our preset guard band value. The

longest path generation will stop when the worst case path delay plus ∆max is less than

the specified clock cycle tmax. If the delay defect size is between ∆1 and ∆max

(RF<Rbridge<Rt) and it causes the longest path to violate tmax, there will be some fault

coverage loss by dropping the path, since the longest path is not considered long enough

 65

to increase DP. If the bridge resistance is assumed uniformly distributed between 0Ω and

40kΩ [85], the possibility of fault escape is very small. Obviously the closer ∆max is to

∆1, the higher the fault coverage achieved. But it is difficult to accurately estimate ∆1 for

every fault site. For simplicity, we set ∆max as several gate delays in our experiments. In

practice, the more knowledge of process and defect behavior, the tighter the delay bound

we can use while avoiding test escapes.

Figure 32. Example of delay vs. bridge resistance.

Based on these two assumptions, we set a detection probability threshold Pthreshold

as a function of process variation (α), local delay fault guard band (∆max) and clock cycle

(tmax), as expressed in (5):

Pthreshold • (1+ α) + ∆∆∆∆max = tmax (5)

This threshold can be adjusted to trade test vector count vs. fault coverage.

 66

We use a heuristic to determine whether a path can be dropped based on its nominal

delay Pnominal, as expressed in (6):

Pnominal < Pthreshold (6)

That is, whenever the maximum delay of a path under process variation plus local defect

size guard band is less than the clock cycle time tmax, it is dropped from KLPG test

generation. Top-off transition fault tests will be generated for those dropped fault sites

that do not have any test. If a fault site has many long paths through it, the number of

paths generated for this fault site (K) will be increased to increase the defect defection

probability, until reaching a limit Kmax.

4.5 KLPG with Realistic Low Cost Fault Coverage Metric

CodGen generates 2K paths (K longest with rising transition and K longest with

falling transition) through each line in the circuit. It currently drops a fault site once K

rising and falling paths through it have been generated. This is true even if the fault site

has only short (large slack) paths passing through it. This approach is inefficient, since

the probability of such a large delay due to a resistive short or open at this fault site is

essentially the same as a transition fault. Similarly, if a fault site has one very long path,

and the remaining paths short, and the long path has been tested, the short paths can be

dropped, since they contribute nothing to the coverage (e.g. path P3 in Figure 27).

Exploiting this information will significantly reduce the vector count and ATPG time,

due to an increase in fortuitous drops. We can use this savings to increase K on fault

 67

sites with many low slack paths (such as P2 in Figure 1) to increase DP, since paths with

little timing slack provide the highest fault detection probability.

Figure 33. KLPG flow with low cost coverage metric.

 68

Figure 33 shows the updated CodGen flow for a single fault site, including the

proposed heuristics. In the preprocessing phase, topology information such as the static

timing analysis (STA) delay of each gate is calculated, to help speed up the path

generation. A path store is created to store partial paths, which are paths from a launch

point (a primary input or scan cell output) but have not reached a capture point (a

primary output or scan cell input). As introduced in section 1, esperance [30] is the value

associated with each partial path. It is the sum of the length of the partial path and the

STA delay from its last node to a capture point. Partial paths in the path store are sorted

in non-increasing order of esperance. Once the esperance of the partial path is less than

Pthreshold, the partial path is discarded and we stop test generation for this line. During

each iteration of path generation, the first partial path in the path store is popped, and

extended by adding one gate with largest max esperance. Then side input constraints to

propagate the transition through the added gate under different sensitization criteria (e.g.

robust or non-robust) are applied. Direct implications are used to identify local conflicts.

If there is any conflict, this partial path will be identified as false and trimmed off. If the

partial path becomes a complete path, a PODEM-like final justification is called to find a

test vector. The path delay upper bound is updated once a complete sensitizable path is

generated. Then Pthreshold will be used to determine whether to stop path generation or

generate more paths through this line. If the upper bound delay is less than Pthreshold, i.e.

all remaining paths are too short to fail delay test, test generation for this line ends and

the path store is released. On the other hand, we may increase K for lines with many

 69

possible long paths to increase DP when the possible delay of a newly generated

complete path is greater than Pthreshold.

This low cost fault coverage KLPG flow works together with our dynamic

compaction algorithm [62] to generate compact test sets. In the current implementation,

the test generation strategy is to first generate a robust test for a line, then continue to

generate non-robust test and finally a long transition test if there exists any path with

delay greater than Pthreshold, as long as K is less than the specified Kmax. This approach

assumes a robust path always has better test quality than a non-robust or long transition

path with similar length. In our experiments, the distribution of potentially longest paths

shows that most fault sites require only a few paths to be tested. For fault sites with

many long paths, suppose several potentially longest paths have been tested. If the

remaining potentially longest paths are only slightly longer or shorter than the tested

ones, they have little fault coverage benefit, and these paths can be dropped. Thus a

reasonable Kmax will be selected to limit the vector count while maintaining high DP. A

Kmax of up to 5 was used in our experiments. The fault simulation results in [37] have

indicated the fault efficiency or fault coverage saturated when increasing K value 1 to 5

for the KLPG test, as shown in Figure 34 with an example circuit c7552.

 70

99.6

99.7

99.8

99.9

100.0

1 2 3 4 5

K

F
a

u
lt

 E
ff

ic
ie

n
c

y
 (

%
)

UB

LB

Figure 34. Fault coverage vs. K (circuit c7552).

When KLPG test generation is finished, top-off transition fault tests are

generated to cover the fault sites not fortuitously detected by KLPG. These are the fault

sites that can only fail in the presence of a large local delay defect in combination with

process variation.

4.6 Experimental Results

We performed experiments on full scan versions of ISCAS89 benchmarks and

three industry designs (chip1, chip2a and chip3). Since we only have SDF models for

some circuits, we use unit gate delays for all circuits to make comparisons. The

maximum delay tmax is set to be 8% longer than the nominal delay of the longest testable

path. It is assumed that there is only one spot defect in the circuit, and the circuit is

subject to process variation.

 71

4.6.1 KLPG with Low Cost Fault Coverage Metric

In the first experiment, process variation is assumed to be ±20% of the nominal

path delay and the local random spot defect guard band is 3 gate delays. We assume that

local delay defects exceeding 3 gates are essentially transition faults. So Pthreshold is set to

“(tmax-3)/120%”. Table 11 gives the results of CodGen using the low cost fault coverage

metric in launch-on-capture test mode under different Kmax (up to 5). Column 1 gives the

circuit name. Column 2 gives the total number of lines in the circuit. Column 3 gives

the number of paths tested under Kmax values of 1, 3 and 5 respectively. Kmax=n means

the nth longest path through a line will be generated if and only if its nominal length is

greater than Pthreshold. Column 4 shows the dynamically compacted vector count under

different Kmax. The number of tested paths and vectors increases approximately linearly

with Kmax. For chip1 and chip2a, the number of tested paths is small, which indicates that

many lines are dropped because the longest paths through them are short, and will be

covered by transition fault test. The average length of the tested paths is listed in column

5. Column 6 shows the longest testable path length. As desired, the average length is

close to the longest path length. Column 7 lists the transition fault coverage for the tested

paths. For most circuits, the transition fault (TF) coverage is low, since the tested paths

cover only a small fraction of the gates. In s35932, many paths are tested and the TF

coverage is >50%. This is because this circuit is optimized to have many paths close to

the maximum delay. The last column in the table reports the CPU time under different

Kmax.

 72

Table 11. KLPG with low cost fault coverage metric (LOC with 20% process

variation).

Circuit

Paths

Tested

(1/3/5)

Vectors

(1/3/5)

Av Path

Length

(1/3/5)

Longest

Testable

Length

Test

Coverage

(%)

Time (m:s)

(1/3/5)

s5378
108/286

/419
34/72/101

21.54/21.42

/21.42
23

6.04/6.17

/6.13
00:16/00:18/00:20

s9234
124/367

/611
50/97/154

49.83/49.63

/49.46
59

5.84/6.41

/6.80
06:48/06:32/06:57

s13207
8/24

/40
4/5/7

59/58.88

/58.65
59

0.82/0.82

/0.82
00:51/00:52/00:55

s15850
179/525

/847
123/353/525

56.66/56.63

/56.59
58

4.75/4.75

/4.75
03:08/03:22/03:34

s35932
5216/13984

/21648
22/68/80

22.03/21.88

/21.85
25

55.34/55.55

/55.77
11:15/31:11/43:46

s38417
1980/6057

/10029
132/240/ 405

32.43/32.43

/32.36
41

11.32/12.72

/13.28
07:58/12:13/18:50

s38584
363/1060

/1682
188/244/312

48.60/48.64

/48.66
53

2.43/2.45

/2.45
06:33/08:12/10:37

chip1 20/55/61 2/4/5
65.35/64.07

/63.66
67

0.21/0.23

/0.23
39:57/32:26/33:28

chip2a 5/15/23 4/10/14
49.8/49.8

/49.70
51

0.04/0.06

/0.09
09:48/09:28/09:43

chip3
1290/3729

/5500
384/587/692

57.26/56.80

/56.82
64

1.36/1.42

/1.44
149:50/197:37/242:13

In the second experiment, process variation is set to ±30% and the local delay

defect guard band is 3 gate delays. So Pthreshold is “(tmax-3)/130%”. Table 12 gives the

results. Since Pthreshold is decreased, more paths with shorter nominal length will be

 73

generated, as shown. For example, for s38417, with Kmax =5, 10,029 paths are tested with

20% process variation, while 18,374 paths are tested with 30% process variation. The

number of test vectors is sensitive to the parameters interacting with the circuit path

delay distribution. It is important to set the guard band variables to reflect the real silicon

environment.

Table 12. KLPG with low cost fault coverage metric (LOC with 30% process

variation).

Circuit

Paths

Tested

(1/3/5)

Vectors

(1/3/5)

Av Path

Length

(1/3/5)

Longest

Testable

Length

Test

Coverage

(%)

Time (m:s)

(1/3/5)

s5378
259/680/101

7
71/147/192

19.19/19.14/

19.13
23

15.12/15.26/

15.19
00:17/00:22/00:25

s9234 123/348/579 67/107/158
49.50/49.80/

49.55
59

6.51/7.05/7.

53
08:04/07:58/08:46

s13207
986/2813/46

39

484/842/112

7

48.08/47.98/

47.86
59

11.09/11.22/

11.49
02:38/04:08/05:58

s15850
213/621/101

1
131/369/549

55.31/55.30/

55.15
58

5.65/5.65/5.

65
03:12/03:17/03:43

s35932
5216/13984/

21648
22/68/80

22.03/21.88/

21.85
25

55.34/55.55/

55.77
11:15/31:11/43:46

s38417
3700/11134/

18374
300/530/833

32.24/32.13/

32.03
41

19.85/20.22/

20.55
16:14/25:05/39:15

s38584
389/1189/18

11
206/289/366

48.12/47.92/

48.18
53

2.56/2.67/2.

63
06:44/08:49/11:33

chip1 39/95/119 10/19/29
59.97/59.31/

57.92
67

0.46/0.50/0.

51
32:11/33:18/34:02

chip2a 72/218/327 19/51/68
42.89/42.18/

42.00
51

0.81/0.88/0.

85
16:00/18:04/20:07

chip3
2580/7736/1

1585

751/1349/15

97

53.31/52.62/

52.60
64

2.98/3.18/3.

22
4.8hrs/8hrs/10.2hrs

 74

4.6.2 KLPG-5L vs. KLPG-5 vs. TF

The KLPG-5 test targets the five longest rising and five longest falling paths

through each fault site. A KLPG-5 test is composed of the longest robust rising and

falling paths through each line, topped off with non-robust KLPG vectors, topped off

with long transition fault vectors. As shown in Figure 25, most KLPG paths are short

paths. Further, KLPG test generation for fault sites covered by short paths is expensive

because longer false paths must be eliminated. In addition, shorter paths do not require

as many vectors as longer paths, since they have fewer necessary assignments,

permitting increased test compaction. A KLPG-5L test is composed of a KLPG-5 test

with the low cost fault coverage metric, which drops fault sites with only short paths,

topped off with transition fault tests for those dropped fault sites. If a fault site has

several potentially longest paths exceeding the guard band of the metric, KLPG-5L will

continue to generate them (up to 5 in our experiments). Both KLPG-5 and KLPG-5L

tests achieve the same transition fault coverage as a transition fault test set, but with

higher quality, since a transition fault test has potential quality loss due to the possible

propagation of glitches [8] and the uncertainty of the propagation path length. Table 13

compares the KLPG-5 test size to KLPG-5L under process variation of 20% and local

delay defect guard band of 3 gate delays, both in launch-on-capture mode. Column 1

gives the circuit name. Column 2 shows the number of tested paths for the two tests.

Column 3 gives the CPU time for the two tests. Column 4 shows the test generation

speed up for KLPG-5L. Overall, KLPG-5L test generation is much faster than KLPG-5.

The speed up is relatively small for most ISCAS89 circuits, and large for the three larger

 75

industry circuits. For example, for chip2a, the CPU time of KLPG-5L is only 19.5 hrs

compared to 100.5 hrs for KLPG-5, a 5.15x speed up. One special case is s9234, for

which the speed up is 0.75x. The reason may be that top-off TF generation adds

additional time. The other special case is s35932, for which the speed up is 1.05x. As

explained earlier, s35932 has many near-critical paths that cannot be dropped using the

low cost delay fault coverage metric.

The last three columns in Table 13 show the vector count of KLPG-5, KLPG-5L

and Transition Fault (TF) test. The TF test was generated by a commercial tool. The

KLPG-5 test size is high for some large circuits, such as chip3 (19863 vectors). With the

implementation of the low cost coverage metric, the KLPG-5L test has a much smaller

test size (1296 vectors) with reasonable CPU time. Since top-off TF vectors are

generated for the KLPG-5L test, the KLPG-5L test has the same TF coverage as KLPG-

5 and TF. For all circuits, our combined test set is smaller or only modestly larger than

the transition fault test set, but with higher quality.

 76

Table 13. KLPG-5 vs. KLPG-5L.

Circuit
Paths Tested

(KLPG-5/5L)

Time (m:s)

(KLPG-5/5L)

Speedup

Factor

Vectors

KLPG-5 KLPG-5L TF

s5378 8125/2779 02:00/01:00 2.00 559 253 194

s9234 14543/3984 10:06/13:27 0.75 957 230 465

s13207 21375/5974 13:16/07:16 1.83 2248 358 382

s15850 19132/5315 12:50/08:02 1.60 1169 612 231

s35932 56369/27554 34:57/33:22 1.05 86 72 68

s38417 90739/25395 145:34/63:24 2.30 1415 255 365

s38584 63082/19673 102:07/39:34 2.58 826 514 528

chip1 107782/31947 548:00/341:19 1.61 3388 1602 1900

chip2a 99052/13492 100.5hrs/19.5hrs 5.15 9464 1199 2537

chip3 186733*/82373 146hrs*/64.8hrs 2.25* 19863* 1296 1445

*
For chip3, only robust tests are generated in the KLPG-5 test.

 77

4.7 Conclusions

We have developed a realistic low cost fault coverage metric that considers both

process variation and local delay fault. Simple heuristics based on process variation and

local delay defect sizes are used to filter out paths and accelerate CodGen KLPG

generation [86]. Transition fault tests are generated for dropped fault sites to ensure the

test quality. Experimental results show that path generation with this fault coverage

metric is efficient and the vector count is practical. Monte Carlo simulation and real

silicon data will be needed to verify the effectiveness of this method.

During test generation, we currently treat path delays as independent. This is

increasingly realistic for gate delays, due to random dopant fluctuation, but is not true

for interconnect delays. In the future, structural and spatial correlation will be explored

to reduce the guard band. This can be particularly beneficial for circuits with many near-

critical paths.

 78

5. EXPERIMENTS ON SILICON

 The industrial design selected for the experiments is an AMD quad-core

microprocessor. The microprocessor is a 45 nm technology design and contains a total of

11.2M gates in the test model, excluding embedded arrays and scan flip-flops. Each core

test model contains 3.4M gates, 160,000 LSSD-type scan flip-flops, and 746,000

unscanned flip-flops (that are contained in the surrounding untested cores and logic).

There are several clock domains, but ATPG only runs for a given clock domain using

launch-on-capture.

5.1 Flow of AMD Experiments

 The complexity of a microprocessor brings new challenges for KLPG test. A set

of tools have been developed in our lab for the AMD experiments. Figure 35 shows the

complete KLPG test generation flow. The right side lists all the necessary files for each

stage. In the first step, the Verilog netlist and library files are fed into a parser. The

parser will flatten the hierarchical netlist and library and parse the hierarchical names

into an easy-to-parse format used by CodGen. Then the hierarchical information is not

available anymore in the flattened design. Each cell/net is renamed with simple indices,

such as U100, N150, etc. The original library file had to be modified, since some cells

were described using Verilog data flow constructs, while the parser only supports

structural Verilog.

In the second step, a scan chain tracing tool traces the scan chain forward from

scan input to scan output to identify every scan cell in the flattened netlist, and the logic

 79

between the scan cells. The parsed scan chain report will then be verified against the

Mentor Graphics FastScan scan chain report.

 In the third step, the FastSscan do file and procedure file are used to map the test

constraints and clocks in the parsed netlist. The do file and procedure file specify test pin

and internal preset values, clock sources, test clocking scheme, functionality of each test

pin, etc. The files for transition fault test are reused for KLPG test. The constraints and

clocks must be mapped correctly, or the test will be invalidated, and potentially the chip

will be damaged.

 In the test generation stage, 2K longest paths through each line (K paths with

rising transitions and K paths with falling transitions) are generated. In these experiments,

K=1. Statically-compacted patterns are saved in ASCII format for later processing. The

steps prior to test generation only need to be run once per design, as long as the design is

not modified.

 The ASCII-format test patterns cannot be applied directly on the tester. Any

mismatches in scan-out data must be identified and masked by FastScan re-simulation,

which is a standard step used in industry. Miscompares on target paths to good machine

values and outputs on all untargeted side paths will be masked. Then standard test

interface language (STIL) format patterns are written out by FastScan for tester use.

 80

Figure 35. KLPG flow for AMD design.

5.2 Improved KLPG for AMD Design

A number of improvements were made to CodGen to handle the AMD processor.

First, LSSD-type scan cells had to be supported, and then support for extensive and

complex clock gating had to be added. Power dissipation is a critical factor in

microprocessors. Clock power usually consumes a 30-35% of total microprocessor

power [87], due to power consumed by combinational logic fed by the clock signals,

 81

flip-flops and clock buffer tree in the design. Clock gating is one technique used on

many synchronous circuits for power-saving. The basic idea is to turn off the clock when

it is not needed. To save power, additional logic is added into the clock tree to disable

portions of the circuitry. For flip-flops in a clock gated-off part of the circuit, their status

is unchanged, so that their switching power consumption is zero.

Extensive clock gating is implemented in AMD microprocessors to balance the

power of the whole chip. There are two types of clock gaters in this design, coarse clock

gater and fine clock gater. Coarse clock gaters that control large regions of the chip are

under direct scan chain control, so do not require additional ATPG effort to justify their

values. Fine clock gaters must be justified at the launch flip-flop on the launch cycle, and

justified at the capture flip-flop on the capture cycle. Our approach is to find the path

first, and then justify the clocks for the complete path. In the AMD circuits, most clocks

can be justified within the standard two capture cycles of a launch-on-capture test. To

simply the clock path justification, CodGen only justifies the clock on the target path.

For the clocks on all side paths, ATPG assumes they are justified. This leads to

miscompares in pattern simulation for the side path outputs. These miscompares are

masked during the FastScan re-simulation step.

Figure 36 shows an example of clock path justification. Clouds stand for the

combinational logic. G1 and G2 comprise a standard LSSD scan cell. If there is a ‘1’

assigned to Q output of G1 in the second clock cycle, ATPG will try to assign and justify

‘1’ on D input of G1 in the first clock cycle in launch-on-capture mode, since the final

value on Q is derived from the initial value on D. Additionally, clock pin C of G1 must

 82

be justified to be active to capture the value from the D pin to the Q pin. In the clock tree

feeding pin C of G1, a 2-input AND gate A1 is fed by a clock source and the output of a

3-input AND gate A2. A2 is fed by a coarse clock gater (G5) and two fine clock gaters

(G3 and G4). G3 and G4 are L1 latches of two LSSD cells. The value of G5 is preset to

1 by ATPG constraints. In order to make the clock active on the C pin of G1 in the

capture cycle, the initial value on the output of A2 must be ‘1’ to activate the clock on C.

When ATPG continues backtracing A2 to its three inputs, two fine clock gaters G3 and

G4 must be ‘0’ and ‘1’ respectively in the first clock cycle. The test is only valid when

there is no conflict on G3 and G4.

Figure 36. Example of clock path justification.

 83

5.3 Experimental Results

 Experiments are performed on two small modules in the microprocessor chip and

then extended to one whole core.

5.3.1 KLPG Results for Two Modules

 Table 14 shows the ATPG results of KLPG-1 test for module 1 and module 2.

Module 1 has 200K gates and relatively few unscanned flip-flops, and is relatively easy

to test for both TF and KLPG tests. It does not contain embedded memory. Note that the

vast majority of paths have a robust test or non-robust test, so the overall KLPG test

quality is very high. Module 2 contains 214K gates and more unscanned FFs, and

features such as half-cycle paths that CodGen currently does not support. This makes it

difficult for KLPG test, in coverage, CPU time and pattern count. The test quality is still

high in terms of path robustness. Commercial transition fault test generates few test

patterns, but the coverage is still poor.

Table 14. KLPG-1 test for module 1 & module 2.

Circuit Module 1 Module 2

KLPG-1 Patterns 1229 6860

KLPG-1 Paths 208252 60643

Robust Paths 205260 55151

Non-robust Paths 2452 5202

Long TF Paths 540 290

TF Coverage (%) 94.5 76.7

 84

5.3.2 Experimental Results for Microprocessor Core

 One microprocessor core test model is comprised of 3.4M gates, 160,000 LSSD-

type scan flip-flops, and 746,000 unscanned flip-flops (that are in the rest of the chip).

Among the unscanned flip-flops, 636,000 have uncontrollable values in them, while the

remainder are constant 0 or 1, or transparent, after test initialization.

A. KLPG for Microprocessor Core

 Since four cores in this quad-core microprocessor are identical, we only

generated robust KLPG tests with K=1 for one core. The test patterns for one core can be

later applied to all cores in test mode. Table 15 shows the ATPG results. To fit ATPG

into our test schedule, dynamic compaction was not performed. The low cost fault

coverage metric was not used, due to lack of information about the process. Test

generation was performed on an eight-core processor, with the ten separate ATPG

processes taking in aggregate 92.5 CPU days, using approximately 10 GB memory per

process. The statically compacted KLPG test with one longest robust rising and falling

path per line has 143,094 patterns testing 1,239,752 distinct paths. The care bit density

of KLPG patterns is 0.35%, with a max density of 5.42% on the first pattern. The

transition fault test for this core has 21,600 patterns. KLPG has a significantly larger test

volume than TF test. This is partly due to the fact that KLPG test only uses static

compaction [29][88][89] while the transition fault tests use advanced dynamic

compaction algorithms [90][91][92]. The other reason is that the transition fault tests

utilize test compression techniques [93][94][95][96][97] in microprocessor to further

 85

reduce the test size. Test compression can normally provide 10X to 100X or even larger

reduction in test data volume. Test compression methodologies are not supported by

CodGen. Dynamic compaction should reduce the pattern count by 4x.

Table 15. Robust KLPG results for AMD microprocessor.

Patterns 143,094

Paths 1,239,752

CPU Time 92.5 Days

B. FMAX Test

FMAX is defined as the maximum clock frequency at which the circuit can

function correctly for all the test patterns, at a specified power supply voltage. FMAX

tests were performed on 100 chips with 143,094 KLPG test patterns and with 21,600

high compressed transition fault (TF) test patterns respectively.

FMAX test was applied to all four cores in 100 chips that pass system test. For

all 400 cores in 100 chips, experimental results show a distribution of FMAX across the

chips for KLPG.

 86

Figure 37 shows the FMAX distribution for KLPG test for Core0 of 100 chips.

Chips with minimal FMAX are used as reference. Three chips (chip 67, 96 and 97) with

minimal FMAX are slower parts. For other chips, KLPG FMAX is between 7.3MHz and

330MHz higher.

Figure 37. FMAX distribution for robust KLPG test (Core0).

 87

Figure 38 shows the FMAX distribution for KLPG test for Core1 of 100 chips.

Figure 38. FMAX distribution for robust KLPG test (Core1).

 88

Figure 39 shows the FMAX distribution for KLPG test for Core2 of 100 chips.

Figure 39. FMAX distribution for robust KLPG test (Core2).

 89

Figure 40 shows the FMAX distribution for KLPG test for Core3 of 100 chips.

Figure 40. FMAX distribution for robust KLPG test (Core3).

 90

Figure 41 shows the average FMAX distribution for KLPG test in chip level.

Figure 41. FMAX distribution for robust KLPG test (chip level).

 91

 In summary, Figures 37-41 give the FMAX distribution of KLPG test. It

indicates some chips are faster than others. Since only robust paths are targeted in the

current experiments, the small defects can only be tested through non-robust test or long

TF paths are missed, which introduces some coverage loss. To further improve the test

quality of our test, top-off non-robust and long transition fault paths must be added.

However, if test volume and ATPG time is a concern, the transition fault test can be the

top-off test for robust KLPG test.

 92

6. SUMMARY AND FUTURE WORK

6.1 Summary

This dissertation focused on reducing the pattern count and increasing the test

quality for small delay defect test. To reduce the test size for small delay test, a new

dynamic compaction algorithm for generating compacted test sets for K longest paths

per gate (KLPG) in combinational circuits or scan-based sequential circuits has been

developed. This algorithm uses a greedy approach to compact paths with non-conflicting

assignments together during test generation. To make our dynamic compaction approach

practical for industrial use, recursive learning algorithm has been implemented to

identify more necessary assignments for each path, so that the path to test pattern

matching using necessary assignments is more accurate. Experimental results for

ISCAS89 benchmark circuits and industry circuits show that the pattern count of KLPG

can be significantly reduced (up to 4x compared to static compaction) using the

proposed method. The pattern count after dynamic compaction is comparable to the

number of transition fault tests, while achieving higher test quality. This algorithm is

generic in nature and can be applied to any test generation procedure.

To increase the test quality, a realistic low cost fault coverage metric targeting

both global and local delay faults has been developed. This metric considers the

combined effects of spot defects and process variation, and takes advantage of inter-die

process correlation so that the coverage is much closer to the real test quality. It suggests

the test strategy of generating a different number of the longest paths for each line in the

 93

circuit while maintaining high fault coverage. Using our low cost fault coverage metric,

the number of paths and type of test depends on the timing slack of the paths. For those

fault sites that do not have any robust or nonrobust tests, transition fault tests are

generated for the longest paths through those sites. This metric has been implemented

into the CodGen ATPG tool. Experimental results show significant reductions in test

generation time and vector count on ISCAS89 and industry designs.

 A complete test generation flow has been successfully implemented on an AMD

quad-core microprocessor. CodGen has been improved to deal with the complex clock

gating and LSSD-type scan cells. Silicon data has been collected to show the advantages

of KLPG test. CodGen is the first university ATPG tool capable of generating small

delay defect test for a commercial microprocessor.

6.2 Future Work

There are several areas that future work can focus on, as discussed below.

6.2.1 Advanced Search Algorithm

The CodGen KLPG ATPG uses a PODEM-like algorithm for final justification

once a complete path has been identified, free of direct implication conflicts. For

individual paths, this algorithm had a high success rate and relatively low CPU cost.

However, for larger circuits (1M+ gates), and in dynamic compaction, this algorithm is

too expensive, taking substantially more than 50% of the total CPU time. As is the case

for dynamic compaction, we will consider a new search algorithm suitable for our path

 94

delay test problem. The current KLPG algorithm uses about 10 GB of memory to

generate robust KLPG paths for a 3.4M gate processor core (excluding flip-flops), or

almost 3 KB/gate. This does not include any in-memory pattern storage or auxiliary data

structures for dynamic compaction, which roughly doubles memory consumption. This

memory consumption must be drastically reduced to make the KLPG algorithm practical

in industry. The development of a new search algorithm will include attention to

memory efficiency as well.

6.2.2 Pseudo-Functional Test

Pseudo-functional test [98][99][100][101] constrains the test patterns to be

functional states or near-functional states. If the pattern is a functional state, then these

tests can be viewed as short bursts of functional tests. The challenge in pseudo-

functional test is that it is a form of sequential test. A straightforward extension of our

KLPG test approach would be to use time frame expansion to search for and justify the

K longest sensitizable path over multiple cycles through each line in the circuit. This

would implicitly handle test of time borrowing schemes or setup/hold time metastability

issues.

6.2.3 Test Generation for Signal Crosstalk

Delay increase or decrease due to capacitive coupling is considered in the

CodSim delay fault simulator [102], but is not considered in the CodGen ATPG. If a

capacitively coupled line has a transition that is the opposite of the target path, and the

transition timing is aligned with the target path transition, it will cause the path to slow

 95

down. Alignment is uncertain due to process variation, supply noise, crosstalk and delay

defect. This can be viewed as an integer optimization problem, since the goal is to

generate the largest delay increase by sensitizing the set of coupled transitions that

causes the largest delay increase on the target path. A more efficient way to deal with

coupling faults in CodGen will be explored in the future.

6.2.4 Dynamic Compaction Considering Power Supply Noise and Power Dissipation

Another challenge in dynamic compaction is incrementally estimating power

supply noise [103] and power dissipation during the compaction process, and the

corresponding path delay changes for all paths currently compacted into the pattern. The

future test generation should keep noise and power at a reasonable level. An initial

supply noise-aware dynamic compaction framework has been proposed in [104] to

control power supply noise during test generation.

 96

REFERENCES

[1] R. D. Eldred, “Test Routines Based on Symbolic Logical Statements," Journal of

the ACM, vol. 6, pp. 33-36, 1959.

[2] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, “Transition

Fault Simulation," IEEE Design and Test of Computers, vol. 4, no. 2, pp. 32-38,

1987.

[3] K. -T. Cheng, “Transition Fault Testing for Sequential Circuits,” IEEE

Transactions on Computer Aided Design of Integrated Circuits and System, vol.

12, no.12, pp. 1971-1983, Dec. 1993.

[4] Semiconductor Industries Association, International Technology Roadmap for

Semiconductors (ITRS), Munich, Germany, 2005.

[5] Z. Barzilai and B. K. Rosen, “Comparison of AC Self-Testing Procedures,” in

Proceedings of IEEE International Test Conference, pp. 89-94, Oct. 1983.

[6] E. S. Park, M. R. Mercer, and T. W. Williams, “Statistical Delay Fault Coverage

and Defect Level for Delay Faults,” in Proceedings of IEEE International Test

Conference, pp. 492-499, Sept. 1988.

[7] C. W. Tseng and E. J. McCluskey, “Multiple-Output Propagation Transition

Fault Test,” in Proceedings of IEEE International Test Conference, pp. 358-366,

Oct. 2001.

[8] X. Lin and J. Rajski, “Propagation Delay Fault: A New Model to Test Delay

Faults,” in Proceedings of IEEE Asian South Pacific Design Automation

Conference, pp. 178-183, 2005.

 97

[9] J. Carter, V. Iyengar, and B. Rosen, “Efficient Test Coverage Determination for

Delay Faults,” in Proceedings of IEEE International Test Conference, pp. 418-

427, Sept. 1987.

[10] V. S. Iyengar, B. K. Rosen, and I. Spillinger, “Delay Test Generation 1 –

Concepts and Coverage Metrics,” in Proceedings of IEEE International Test

Conference, pp. 857-866, Sept. 1988.

[11] V. S. Iyengar, B. K. Rosen, and I. Spillinger, “Delay Test Generation 2 – Algebra

and Algorithms,” in Proceedings of IEEE International Test Conference, pp.

867-876, Sept. 1988.

[12] A. K. Pramanick and S. M. Reddy, “On the Fault Coverage of Gate Delay Fault

Detecting Tests,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 16, no. 1, pp. 78-94, Jan. 1997.

[13] A. K. Majhi, J. Jacob, L. M. Patnaik, and V. D. Agrawal, “On Test Coverage of

Path Delay Faults,” in Proceedings of International Conference on VLSI Design,

pp. 418-421, Jan. 1996.

[14] A. K. Majhi, V. D. Agrawal, J. Jacob, and L. M. Patnaik, “Line Coverage of Path

Delay Faults,” IEEE Transactions on VLSI Systems, vol. 8, no. 5, pp. 610-613,

Oct. 2000.

[15] A. K. Majhi and V. D. Agrawal, “Tutorial: Delay Fault Models and Coverage,”

in Proceedings of International Conference on VLSI Design, pp. 364-369, Jan.

1998.

 98

[16] S. R. Nassif, “Modeling and Analysis of Manufacturing Variations,” in

Proceedings of IEEE Custom Integrated Circuits Conference, pp. 223-228, May

2001.

[17] G. L. Smith, “Model for Delay Faults Based upon Paths,” in Proceedings of

IEEE International Test Conference, pp. 342-349, Oct. 1985.

[18] W. Qiu and D. M. H. Walker, “Testing the Path Delay Faults for ISCAS85

Circuit c6288,” in Proceedings of IEEE International Workshop on

Microprocessor Test and Verification, pp. 38-43, May 2003.

[19] E. B. Eichelberger and T. W. Williams, “A Logic Design Structure for LSI

Testability,” in Proceedings of ACM/IEEE Design Automation Conference, pp.

462-468, June 1977.

[20] F. Motika, N. Tendolkar, C. Beh, W. Heller, C.Radke, and P. Nigh, “A Logic

Chip Delay-test Method Based on System Timing,” IBM Journal of Research

and Development, vol. 34, no.2/3, pp. 299-312, March/May 1990.

[21] S. DasGupta, P. Goel, R. G. Walther, and T. W. Williams, “A Variation of LSSD

and Its Implications on Design and Test Pattern Generation in VLSI,” in

Proceedings of IEEE International Test Conference, pp. 63-66, Nov. 1982.

[22] C. T. Glover and M. R. Mercer, “A Method of Delay Fault Test Generation,” in

Proceedings of ACM/IEEE Design Automation Conference, pp. 90-95, Jun. 1988.

[23] B. I. Dervisoglu and G. E. Strong, “Design for Testability: Using Scan Path

Techniques for Path-delay Test and Measurement,” in Proceedings of IEEE

International Test Conference, pp. 365-374, Oct. 1991.

 99

[24] J. Savir, “Skewed-Load Transition Test: Part I, Calculus,” in Proceedings of

IEEE International Test Conference, pp. 705-713, Sept. 1992.

[25] S. Patel and J. Savir, “Skewed-Load Transition Test: Part II, Coverage,” in

Proceedings of IEEE International Test Conference, pp. 714-722, Sept. 1992.

[26] J. Savir and S. Patel, “Broad-Side Delay Test,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 13, no. 8, pp. 1057-1064,

Aug. 1994.

[27] D. M. H. Walker, “Tolerance of Delay Faults,” in Proceedings of IEEE

International Workshop on Defect and Fault Tolerance in VLSI Systems, pp. 207-

216, 1992.

[28] W. Qiu and D. M. H. Walker, “An Efficient Algorithm for Finding the K Longest

Testable Paths Through Each Gate in a Combinational Circuit,” in Proceedings

of IEEE International Test Conference, pp. 592-601, Sept. 2003.

[29] W. Qiu, J. Wang, D. M. H. Walker, D. Reddy, X. Lu, Z. Li, W. Shi, and H.

Balachandran, “K Longest Paths Per Gate (KLPG) Test Generation for Scan-

Based Sequential Circuits,” in Proceedings of IEEE International Test

Conference, pp. 223-231, Oct. 2004.

[30] J. Benkoski, E. V. Meersch, L. J. M. Claesen, and H. D. Man, “Timing

Verification Using Statically Sensitizable Paths,” IEEE Transactions on

Computer-Aided Design, vol. 9, no. 10, pp. 1073-1084, Oct. 1990.

[31] A. Krstic and K. -T. Cheng, Delay Fault Testing for VLSI Circuits. Springer,

New York, 1998.

 100

[32] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for

Combinational Logic Circuits,” IEEE Transactions on Computers, vol. C-30, no.

3, pp. 215-222, Mar. 1981.

[33] Y. Shao, S. M. Reddy, I. Pomeranz, and S. Kajihara, “On Selecting Testable

Paths in Scan Designs,” in Proceedings of IEEE European Test Workshop, pp.

53-58, May 2002.

[34] W. N. Li, S. M. Reddy, and S. K. Sahni, “On Path Selection in Combinational

Logic Circuits,” IEEE Transactions on Computer-Aided Design, vol. 8, no. 1, pp.

56-63, Jan. 1989.

[35] A. Murakami, S. Kajihara, T. Sasao, I. Pomeranz, and S. M. Reddy, “Selection of

Potentially Testable Path Delay Faults for Test Generation,” in Proceedings of

IEEE International Test Conference, pp. 376-384, Oct. 2000.

[36] M. Sharma and J. H. Patel, “Finding a Small Set of Longest Testable Paths That

Cover Every Gate,” in Proceedings of IEEE International Test Conference, pp.

974-982, Oct. 2002.

[37] W. Qiu, X. Lu, J. Wang, Z. Li, D. M. H. Walker, and W. Shi, “A Statistical Fault

Coverage Metric for Realistic Path Delay Faults,” in Proceedings of IEEE VLSI

Test Symposium, pp. 37-42, Apr. 2004.

[38] W. Qiu, D. M. H. Walker, N. Simpson, D. Reddy, and A. Moore, “Comparison

of Delay Tests on Silicon,” in Proceedings of IEEE International Test

Conference, pp. 1-10, Oct. 2006.

 101

[39] I. Hamzaoglu and J. H. Patel, “Compact Two-pattern Test Set Generation for

Combinational and Full Scan Circuits,” in Proceedings of IEEE International

Test Conference, pp. 944-953, Oct. 1998.

[40] T. M. Niermann, R. K. Roy, J. H. Patel, and J. A. Abraham, “Test Compaction

for Sequential Circuits,” IEEE Transactions on Computer-Aided Design, vol. 11,

no. 2, pp. 260-267, Feb. 1992.

[41] K. O. Boateng, H. Konishi, and T. Nakata, “A Method of Static Compaction of

Test Stimuli,” in Proceedings of IEEE Asian Test Symposium, pp. 137-142, Nov,

2001.

[42] P. Goel and B. C. Rosales, “Test Generation and Dynamic Compaction of Tests,”

in Digest of Papers 1979 IEEE International Test Conference, pp. 189-192,

1979.

[43] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly Efficient

Automatic Test Pattern Generation System,” IEEE Transactions on Computer-

Aided Design, vol. 7, no. 1, pp. 30-35, Jan. 1988.

[44] L. N. Reddy, I. Pomeranz, and S. M. Reddy, “ROTCO: A Reverse Order Test

Compaction Technique,” in Proceedings of IEEE Euro-ASIC Conference, pp.

189-194, Jun. 1992.

[45] I. Pomeranz and S. M. Reddy, “On Static Compaction of Test Sequences for

Synchronous Sequential Circuits,” in Proceedings of ACM/IEEE Design

Automation Conference, pp. 215-220, Jun. 1996.

 102

[46] G. Ruifeng, I. Pomeranz, and S. M. Reddy, “On Improving Static Test

Compaction for Sequential Circuits,” in Proceedings of IEEE International

Conference on VLSI Design, pp. 111-116, Jan. 2001.

[47] J. Wang, “Power Supply Noise in Delay Testing,” Ph.D. dissertation, Texas

A&M University, College Station, TX, 2007.

[48] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms (2
nd

 edition). The MIT Press, Cambridge, MA, 2001.

[49] J. S. Chang and C. S. Lin, “Test Set Compaction for Combinational Circuits,”

IEEE Transactions on Computer-Aided Design, vol. 14, no. 11, pp. 1370-1378,

Nov. 1995.

[50] I. Pomeranz, L. Reddy, and S. M. Reddy, “Compactest: A Method to Generate

Compact Test Sets for Combinational Circuits,” in Proceedings of IEEE

International Test Conference, pp. 194-203, Oct. 1991.

[51] I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for

Combinational Circuits,” in Proceedings of IEEE International Conference on

Computer-Aided Design, pp. 283-289, Nov. 1998.

[52] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-Effective

Generation of Minimal Test Sets for Stuck-at Faults in Combinational Logic

Circuits,” IEEE Transactions on Computer-Aided Design, vol. 14, no. 12, pp.

1496-1504, Dec. 1995.

 103

[53] J. Saxena and D. K. Pradhan, “A Method to Derive Compact Test Sets for Path

Delay Faults in Combinational Circuits,” in Proceedings of IEEE International

Test Conference, pp. 724-733, Oct. 1993.

[54] S. Kajihara, M. Fukunaga, X. Wen, T. Maeda, S. Hamada, and Y. Sato, “Path

Delay Test Compaction with Process Variation Tolerance,” in Proceedings of

ACM/ IEEE Design Automation Conference, pp. 845-850, Jun. 2005.

[55] M. Fukunaga, S. Kajihara, X. Wen, T. Maeda, S. Hamada, and Y. Sato, “A

Dynamic Test Compaction Procedure for High-Quality Path Delay Testing,” in

Proceedings of IEEE Asia South Pacific Design Automation Conference, pp.

348-353, Jan. 2006.

[56] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in Logic Circuits,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

6, no. 5, pp. 694-703, Sept. 1987.

[57] K. -T. Cheng and H. C. Chen, “Classification and Identification of Nonrobust

Untestable Path Delay Faults,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 15, no. 8, pp. 845-853, Aug. 1996.

[58] S. Remersaro, J. Rajski, S. M. Reddy, and I. Pomeranz, “A Scalable Method for

the Generation of Small Test Sets,” in Proceeding of Design, Automation & Test

in Europe Conference & Exhibition, pp. 1136-1141. Apr. 2009.

[59] J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method,” IBM

Journal of Research and Development, vol. 10, no. 4, pp. 278-291, Jul. 1966.

 104

[60] L. H. Goldstein and E. L. Thigpen, “SCOAP: Sandia

Controllability/Observability Analysis Program,” in Proceedings of ACM/IEEE

Design Automation Conference, pp. 190–196, Jun. 1980.

[61] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital,

Memory, and Mixed-Signal VLSI Circuits. Springer, New York, 2000.

[62] Z. Wang and D. M. H. Walker, “Dynamic Compaction for High Quality Delay

Test”, in Proceedings of IEEE VLSI Test Symposium, pp. 243-248, Apr. 2008.

[63] M. H. Schulz and E. Auth, “Improved Deterministic Test Pattern Generation with

Applications to Redundancy Identification,” IEEE Transactions on Computer-

Aided Design, pp.811-816, Jul. 1989.

[64] W. Kunz and D. K. Pradhan, “Accelerated Dynamic Learning for TEST Pattern

Generation in Combinational Circuits,” IEEE Transactions on Computer-Aided

Design, vol. 12, no. 5, pp. 684-694, May 1993.

[65] W. Kunz and D. K. Pradhan, “Recursive Learning: A New Implication

Technique for Efficient solution to CAD Problems - Test, Verification, and

Optimization,” IEEE Transaction on Computer-Aided Design, vol. 13, no. 9, pp.

1143-1158, Sept. 1994.

[66] J. Kibarian and A. Strojwas, “Using Spatial Information to Analyze Correlations

between Test Structure Data,” IEEE Transactions on Semiconductor

Manufacturing, vol. 4, pp. 219–225, Aug. 1991.

 105

[67] R. -S. Guo and E. Sachs, “Modeling, Optimization, and Control of Spatial

Uniformity in Manufacturing Processes,” IEEE Transactions on Semiconductor

Manufacturing, vol. 6, pp. 41–57, Feb. 1991.

[68] B. Stine, D. Boning, and J. Chung, “Analysis and Decomposition of Spatial

Variation in Integrated Circuit Processes and Devices”, IEEE Transactions on

Semiconductor Manufacturing, vol. 10, no. 1, pp. 24-41, Feb. 1997.

[69] S. Tani, M. Teramoto, T. Fukazawa, and K. Matsuhiro, “Efficient Path Selection

for Delay Testing Based on Partial Path Evaluation,” in Proceedings of IEEE

VLSI Test Symposium, pp. 188-193, Apr. 1998.

[70] G. M. Luong and D. M. H. Walker, “Test Generation for Global Delay Faults,”

in Proceedings of IEEE International Test Conference, pp. 433-442, Oct. 1996.

[71] X. Lu, Z. Li, W. Qiu, W. Shi, and D. M. H. Walker, “Longest Path Selection for

Delay Test Under Process Variation,” in Proceedings of IEEE Asian and South

Pacific Design Automation Conference, pp. 98-103, Jan. 2004.

[72] N. Ahmed, M. Tehranipoor, and V. Jayaram, “Timing-Based Delay Test for

Screening Small Delay Defects”, in Proceedings of ACM/IEEE Design

Automation Conference, pp. 320-325, Sept. 2006.

[73] M. Amodeo and B. Cory, “Defining Faster-than-at-Speed Delay Tests,” in

Nanometer Test Article, Cadence Inc., Apr. 2005.

[74] W. W. Mao and M. D. Ciletti, “A Variable Observation Time Method for Testing

Delay Faults,” in Proceedings of ACM/IEEE Design Automation Conference, pp.

728-731, June 1990.

 106

[75] B. Kruseman, A. K. Majhi, G. Gronthoud, and S. Eichenberger, “On Hazard-Free

Patterns for Fine-Delay Fault Testing,” in Proceedings of IEEE International

Test Conference, pp. 213-222, Oct. 2004.

[76] B. Lee, L. -C. Wang, and M. Abadir, “Reducing Pattern Delay Variations for

Screening Frequency Dependent Defects,” in Proceedings of IEEE VLSI Test

Symposium, pp. 153-160, May 2005.

[77] K. -T. Cheng and H. C. Chen, “Delay Testing for Non-Robust Untestable

Circuits,” in Proceedings of IEEE International Test Conference, pp. 954-961,

Oct. 1993.

[78] W. K. C. Lam, A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,

“Delay Fault Coverage and Performance Trade-Offs,” in Proceedings of

ACM/IEEE Design Automation Conference, pp. 446-452, Jun. 1993.

[79] Z. Li, X. Lu, W. Qiu, W. Shi, and D. M. H. Walker, “A Circuit Level Fault

Model for Resistive Bridges,” ACM Transactions on Design Automation of

Electronic Systems, vol. 8, no. 4, pp. 546-559, Oct. 2003.

[80] X. Lu, Z. Li, W. Qiu, D. M. H. Walker, and W. Shi, “A Circuit Level Fault

Model for Resistive Shorts of MOS Gate Oxide,” in Proceedings of IEEE

International Workshop on Microprocessor Test and Verification, pp. 97-102,

Sept. 2004.

[81] R. R. Montanes and J. P. Gyvez, “Resistance Characterization for Weak Open

Defects,” IEEE Design & Test of Computers, vol. 19, no. 5, pp. 18-26. Sept.

2002.

 107

[82] J. B. Brockman and S. W. Director, “Predictive Subset Testing: Optimizing IC

Parametric Performance Testing for Quality, Cost and Yield,” IEEE Transactions

on Semiconductor Manufacturing, vol. 2, no. 3, pp. 104–113, Aug. 1989.

[83] P. S. Zuchowski, P. A. Habitz, J. D. Hayes, and J. H. Oppold, “Process and

Environmental Variation Impacts on ASIC Timing,” in Proceedings of IEEE

International Conference on Computer-Aided Design, pp. 336–342, Nov. 2004.

[84] Z. Li, X. Lu, W. Qiu, W. Shi, and D. M. H. Walker, “A Circuit Level Fault

Model for Resistive Opens and Bridges,” in Proceedings of IEEE VLSI Test

Symposium, pp. 379-384, Apr. 2003.

[85] M. Spica, M. Tripp, and R. Roeder, “A New Understanding of Bridge Defect

Resistances and Process Interactions from Correlating Inductive Fault Analysis

Predictions to Empirical Test Results,” in Proceedings of IEEE International

Workshop on Defect Based Testing, pp. 11-16, Apr. 2001.

[86] Z. Wang and D. M. H. Walker, “Compact Delay Test Generation with a Realistic

Low Cost Fault Coverage Metric,” in Proceedings of IEEE VLSI Test

Symposium, pp. 59-64, May 2009.

[87] M. Gowan, L. Biro, and D. Jackson, “Power Considerations in the Design of the

Alpha 21264 Microprocessor,” in Proceedings of ACM/IEEE Design Automation

Conference, pp. 726-731, Jun. 1998.

[88] J. Wang, Z. Yue, X. Lu, W. Qiu, W. Shi, and D. M. H. Walker, “A Vector-Based

Approach for Power Supply Noise Analysis in Test Compaction,” in Proceedings

of IEEE International Test Conference, pp. 517-526, Nov. 2005.

 108

[89] J. Wang, X. Lu, W. Qiu, Z. Yue, S. Fancler, W. Shi, and D. M. H. Walker,

“Static Compaction of Delay Tests Considering Power Supply Noise,” in

Proceedings of IEEE VLSI Test Symposium, pp. 235-240, May 2005.

[90] E. M. Rudnick and J. H. Patel, “Efficient Techniques for Dynamic Test Sequence

Compaction,” IEEE Transactions on Computers, vol. 48, no. 3, pp. 323-330,

Mar. 1999.

[91] S. Y. Lee, B. Cobb, J. Dworak, M. R. Grimaila, and M. R. Mercer, “A New

ATPG Algorithm to Limit Test Set Size and Achieve Multiple Detections of All

Faults,” in Proceedings of IEEE Design, Automation and Test in Europe

Conference and Exhibition, pp. 94-99, Mar. 2002.

[92] J. Wingfield, J. Dworak, and M. R. Mercer, “Function-Based Dynamic

Compaction and Its Impact on Test Set Sizes,” in Proceedings of IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, pp.

167-174, Nov. 2003.

[93] N. A. Touba, “Survey of Test Vector Compression Techniques,” IEEE Design &

Test of Computers, vol. 23, no. 4, pp. 294-303, Apr. 2006.

[94] B. Koenemann, “LSFR-coded Test Patterns for Scan Designs,” in Proceedings of

IEEE European Test Conference, pp. 237-242, Apr. 1991.

[95] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and D.

Wheater, “A SmartBIST Variant with Guaranteed Encoding,” in Proceedings of

IEEE Asian Test Symposium, pp. 325-330, Nov. 2001.

 109

[96] J. Rajski, J. Tyszer, G.Mruglaski, W. -T. Cheng, N. Mukherjee, and M. Kassab,

“X-Press Compactor for 1000x Reduction of Test Data,” in Proceedings of IEEE

International Test Conference, pp.1-10, Oct. 2006.

[97] F. F. Hsu, K. M. Bulter, and J. H. Patel, “A Case Study on the Implementation of

Illinois Scan Architecture,” in Proceedings of IEEE International Test

Conference, pp.538-547, Oct. 2001.

[98] Z. Zhang, S. M. Reddy, and I. Pomeranz, “On Generating Pseudo-Functional

Delay Fault Tests for Scan Designs,” in Proceedings of IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 398-405, Oct.

2005.

[99] Y. -C. Lin, F. Lu and K. -T. Cheng, “Pseudofunctional Testing,” IEEE

Transactions on Computer Aided-Design of Integrated Circuits and Systems, vol.

25, no.8, pp. 1535-1546, Aug. 2006.

[100] M. Syal, K. Chandrasekar, V. Vimjam, M. S. Hsiao, Y. -S. Chang, and S.

Chakravarty, “A Study of Implication Based Pseudo Functional Testing,” in

Proceedings of IEEE International Test Conference, pp. 1-10, Oct. 2006.

[101] W. Wu and M. S. Hsiao, “Mining Sequential Constraints for Pseudo-Functional

Testing,” in Proceedings of IEEE Asian Test Symposium, pp. 19-24, Oct. 2007.

[102] W. Qiu, X. Lu, Z. Li, D. M. H. Walker, and W. Shi, “CodSim - A Combined

Delay Fault Simulator,” in Proceedings of IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems, pp. 79-86, Nov. 2003.

 110

[103] K. L. Shepard and V. Narayanan, “Noise in Deep Submicron Digital Design,” in

Proceedings of IEEE/ACM International Conference on Computer-Aided

Design, pp. 524-531, Nov. 1996.

[104] Z. Jiang, Z. Wang, J. Wang, and D. M. H. Walker, “Realistic Low Cost

Framework for Supply Noise-Aware Delay Test Compaction,” in IEEE

Workshop on Defect and Data Driven Testing, sec. 3.3, Nov. 2009.

 111

VITA

Zheng Wang

Dept. of Computer Science and Engineering, Texas A&M University,

College Station, TX, 77843-3112

United States of America

E-mail: philwz79@hotmail.com

 Zheng Wang was born in Luzhou, China. He obtained his B.S. in information

science & electronic engineering and M.S. in communication and information system

from Zhejiang University, Hangzhou, China in July 2001 and April 2004 respectively,

and a Ph.D. in Computer Engineering from Texas A&M University, College Station, TX

in May 2010. He worked as an integrated circuit (IC) design engineer for Philips

Semiconductor (currently NXP) Shanghai from May 2004 to July 2006 before joining

Texas A&M University for his doctoral studies in August 2006. His research interests

are delay fault testing, automatic test pattern generation, design-for-test and test

compaction. His non-technical interests include music, badminton, tennis, travel and

photography. He is a member of IEEE.

