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ABSTRACT 

 

High Quality Compact Delay Test Generation.  

(May 2010) 

Zheng Wang, B.S., Zhejiang University, China; 

M.S., Zhejiang University, China 

Chair of Advisory Committee: Dr. Duncan M. Walker 

 

 Delay testing is used to detect timing defects and ensure that a circuit meets its 

timing specifications.  The growing need for delay testing is a result of the advances in 

deep submicron (DSM) semiconductor technology and the increase in clock frequency. 

Small delay defects that previously were benign now produce delay faults, due to 

reduced timing margins. This research focuses on the development of new test methods 

for small delay defects, within the limits of affordable test generation cost and pattern 

count. 

First, a new dynamic compaction algorithm has been proposed to generate 

compacted test sets for K longest paths per gate (KLPG) in combinational circuits or 

scan-based sequential circuits. This algorithm uses a greedy approach to compact paths 

with non-conflicting necessary assignments together during test generation. Second, to 

make this dynamic compaction approach practical for industrial use, a recursive learning 

algorithm has been implemented to identify more necessary assignments for each path, 

so that the path-to-test-pattern matching using necessary assignments is more accurate. 
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Third, a realistic low cost fault coverage metric targeting both global and local delay 

faults has been developed. The metric suggests the test strategy of generating a different 

number of longest paths for each line in the circuit while maintaining high fault coverage. 

The number of paths and type of test depends on the timing slack of the paths under this 

metric.  Experimental results for ISCAS89 benchmark circuits and three industry circuits 

show that the pattern count of KLPG can be significantly reduced using the proposed 

methods. The pattern count is comparable to that of transition fault test, while achieving 

higher test quality. Finally, the proposed ATPG methodology has been applied to an 

industrial quad-core microprocessor. FMAX testing has been done on many devices and 

silicon data has shown the benefit of KLPG test. 
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1. INTRODUCTION 

1.1 Delay Testing 

Timing is crucial with the increasing speed of integrated circuits and the 

advances in semiconductor fabrication technology. Most defects affecting the 

performance are gross functional defects that can be detected using traditional test 

methods [1][2][3]. However, some smaller manufacturing defects do not cause 

functional failure but only influence the circuit speed. A typical example is the spot 

defect that causes a resistive open or short. The International Technology Roadmap for 

Semiconductors (ITRS) [4] projects that small delay defects (SDD) that previously were 

benign now produce delay faults, due to reduced timing margins. Delay testing is used to 

detect those timing defects to ensure that a circuit meets its timing specifications.  This is 

essential to achieve acceptable product quality. The delay test challenge is more difficult 

for chips fabricated in deep submicron (DSM) semiconductor technology with increased 

delay variability, signal crosstalk, power supply noise and temperature variations. 

1.2 Delay Fault Models 

A defect in a circuit is the unintended difference between the actual circuit 

implementation and the specification. A fault is the representation of a defect at the 

   

This dissertation follows the style and format of IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems. 
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abstracted function level.  A fault model is an abstraction of a type of defect behavior. 

Some popular delay fault models are discussed in the following sections. 

1.2.1 Transition Fault Model 

The transition fault (TF) model [5] is the most commonly used delay fault model. 

It assumes that the delay fault affects only one place in the circuit. In this model, each 

gate is assumed to have two transition faults: a slow-to-rise (STR) and a slow-to-fall 

(STR) delay fault. Thus the fault space of transition fault test is linear in the number of 

gates in circuit. The extra delay introduced by the transition fault is assumed to be large 

enough to prevent the transition from reaching any observable primary outputs within 

the specified time. In other words, the transition fault effect can be observed through any 

path (whether long or short) to any observable primary output.  

Stuck-at fault test generation tools can be easily extended to generate tests for 

transition faults [2]. A transition fault test vector pair {v1,v2} can be composed by 

pairing stuck-at-0 and stuck-at-1 test patterns. The first vector v1 initializes the circuit 

and the second vector v2 sensitizes and propagates the fault effect to some observable 

primary outputs. Any stuck-at fault is covered by a corresponding transition fault test, 

since a stuck-at fault can be considered a very slow transition fault. 

The main disadvantage of the TF model is that the size of the fault is not 

considered. Transition fault test generators normally select the easiest path, which is the 

shortest one in most cases, to activate and propagate a transition. Thus the quality of TF 

test for small delay defects is a concern [6][7]. Another problem is that TF test often 

propagates a glitch from the fault site [8], which introduces potential quality loss. 
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1.2.2 Gate Delay Fault Model 

The gate delay fault model [9][10][11] [12] assumes that a spot defect is lumped 

on a gate input or output and takes into account the size of the extra delay. Detecting 

such faults requires testing a long path through the fault site. It is necessary to specify 

the delay fault size in order to determine the quality of a test set, which is defined by 

how close the minimum detected delay fault sizes are to the minimum detectable fault 

sizes.  

1.2.3 Line Delay Fault Model 

The line delay fault model [13][14] is a variation of the gate delay fault model. It 

requires testing a rising or falling delay fault through the longest sensitizable path on 

every line in the circuit. Sensitizing the longest path through the target line can detect the 

smallest delay defect on the target line. However, this model may fail to detect some 

defects [15] with the increase of process variation in new technologies [16]. 

1.2.4 Path Delay Fault Model 

The path delay fault model [17] models the distributed delay on a path. It is the 

most conservative model since the fault space is all paths in the circuit. This model 

assumes that any path can have any delay. A circuit is considered faulty with a path 

delay fault if any one path is slow for a rising or falling transition. Thus tests for the path 

delay fault model can catch small distributed delay defects in the circuit. The primary 

limitation of the path delay fault model is that the number of paths in the circuit can be 

exponential in the number of gates. For this reason it is not practical to test all paths in 



 4

the circuit and achieve high test coverage.  For example, ISCAS85 benchmark circuit 

c6288, a 16-bit multiplier has close to 1020 paths [18]. 

1.3 Scan Based Test 

Design-for-Test (DFT) circuitry is inserted to enhance the testability of a circuit.  

Scan design is the most widely used DFT technique. Selected storage elements, such as 

latches and flip-flops, are connected together into scan chains to provide direct access. 

All selected storage elements are replaced with scan cells, each having one additional 

scan input (SI) port and one additional scan output (SO) port. All scan cells are formed 

by connecting the SO port of one scan cell to the SI port of the next scan cell. All scan 

cells can be set to a desired state by shifting specific values into scan chains. Similarly, 

the state of all scan cells can be observed by shifting the contents out of the scan chains. 

Therefore, the controllability and observability of the circuit is enhanced. Figure 1 shows 

the basic structure of a scan design. The circuit consists of combinational logic and a 

scan chain. In the test mode, the test data is applied to the circuit under test (CUT) 

through primary inputs (PI) x1, x2 and scan cell outputs a, b, and c. The circuit responses 

are captured through primary outputs (PO) z1, z2 and scan cell inputs a’, b’, and c’. 
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Figure 1. Structure of a scan design. 

1.3.1 Scan Cell Type 

 There are several fundamental scan architectures: muxed-D scan, LSSD scan and 

enhanced scan.  

A. Muxed-D Scan 

 Figure 2 shows an edge-triggered muxed-D scan cell design. The scan cell is 

composed of a multiplexer and a standard D flip-flop. The scan enable (SE) signal 

controls the multiplexer to select between the data input (D) and scan input (SI). Clock 

signal (CP) is used to clock the flip-flop in both normal and test modes.  
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Figure 2. Muxed-D scan cell. 

B. LSSD Scan 

A shift register latch (SRL) [19][20] can be used as a level sensitive scan design 

(LSSD) scan cell. This scan cell contains a pair of latches, a master two-port D latch L1 

and a slave D latch L2. Clocks C, A and B are used to select between the data input D and 

the scan input I to drive +L1 and +L2, as shown in Figure 3. During test the SRLs are 

accessed by applying appropriate clock signal sequences. LSSD can be implemented 

using a single-latch design [19] or a double-latch design [21] based on different clock 

schemes. 
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Figure 3. Shift register latch. 

C. Enhanced Scan 

 Enhanced scan [22][23] allows storing two bits of data in the scan cell. Thus both 

initialization and test vector can be loaded into a scan cell and applied consecutively to 

the circuit under test. For a filp-flop design, this is achieved by adding an extra holding 

latch to the output of each flip-flop. Since the two bits are independent of one another, 

high fault coverage can be achieved by applying any arbitrary pair of test vectors. The 

main disadvantage of enhanced scan design is the extra area, timing and power 

introduced by the extra holding latch. 

1.3.2 At-Speed Scan Clocking 

There are two basic scan clocking schemes widely used in the industry for testing 

transition and path delay faults at-speed: launch-on-shift (or skewed-load [24][25]) and 

launch-on-capture (or broad-side test [26]). 
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In launch-on-shift (LOS) mode, the initialization vector is first scanned into the 

scan chains using the shift clock.  The last shift clock launches the transition to the 

circuit and a following fast system clock captures the circuit response, as shown in 

Figure 4. For a test vector pair {v1,v2}, v2 is derived from shifting v1 by one bit. The 

primary advantages of LOS are that the test is derived in one time frame, simplifying test 

generation and reducing test generation time, and the pattern count is relatively low. The 

primary disadvantage of LOS is that the scan enable (SE) signal must be switched 

between the shift and system clock pulses at the rated system clock speed to capture the 

test result on the next system clock cycle. This requires that the scan enable be 

distributed via a fast clock tree. A second disadvantage of LOS is that it tests more delay 

faults that do not cause timing failure, and it cannot test some faults that do cause timing 

failure. 

In launch-on-capture (LOC) mode, two consecutive system clock pulses are used 

to launch the transition and capture the circuit response, as shown in Figure 5. Dummy 

clock cycles are inserted as needed to give the SE time to switch from scan to capture 

mode. For a test vector pair {v1,v2}, v2 is derived from the circuit response of the 

initialization vector v1. The advantages of the LOC approach are that there is no timing 

constraint on SE, and the test vector is a legal state of the circuit, assuming the 

initialization vector is a legal state. The disadvantages are that test generation is over two 

time frames, so takes more CPU time, and the test pattern count is higher than LOS test. 
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Figure 4. Launch-on-shift clock waveform. 
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Figure 5. Launch-on-capture clock waveform. 

1.4 KLPG Test Generation 

Figure 6 shows the categorization of faults targeted in this research. Local delay 

faults are increases in circuit delay caused by a spot defect such as a resistive bridge or 

open. Global delay faults are slow paths due to die-to-die process parameter variation, 

such as metal thickness variation [27]. Combined delay faults are caused by a 

combination of spot defect and process variation. Process variation consists of 

systematic, die-to-die random variation and intra-die random variation. Systematic 
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process variation due to subwavelength lithography is assumed to be incorporated into 

circuit delay models, and not considered explicitly in this research.  
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Figure 6. Fault types addressed in current research. 

 

In [28], an efficient automatic test pattern generation (ATPG) algorithm was 

developed to generate the 2·K longest paths through each line in the combinational 

circuit, with K paths having a rising transition and K paths having a falling transition at 

the fault site. This work was later extended to sequential circuits in [29]. Figure 7 shows 

the basic flow of the algorithm.  

We define a launch point as a primary (PI) or pseudo-primary input (PPI), and a 

capture point as a primary output (PO) or pseudo-primary output (PPO). In the 

preprocessing phase, topology information such as the PERT delay of each gate is 

calculated, which will help accelerate the path generation. The min-max PERT delay of a 
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gate is the min-max delay from this gate to capture points, without considering any logic 

constraints. Delays are extracted from a standard delay format (SDF)  delay file.   

In the path generation phase, a path store is used to store partial paths, which are 

paths originating from a launch point but have not reached a capture point. Because 

partial paths are initialized from launch points, each partial path initially contains only a 

PI or PPI. Every partial path has a value called esperance [30], which is the sum of the 

length of the partial path and the PERT delay from its last node to a capture point. In 

other words, the max esperance of a partial path is the upper bound of its delay when it 

reaches a capture point and becomes a complete path, and the min esperance is the lower 

bound. As shown in Figure 7, in each iteration of path generation, the partial path with 

the largest max esperance is popped from the sorted path store and extended by adding 

one fanout gate with largest max esperance. If the last gate of the partial path has 

multiple fanouts, the path will split, leaving the alternate choices in the path store. 

Depending on the sensitization criterion, such as robust or non-robust sensitization [31], 

constraints to propagate the transition on the added gate are applied.  Then direct 

implications [28] are performed to identify local conflicts. A direct implication on a gate 

is one where the input or output value of that gate can be determined from other input or 

output values assigned to that gate. Previous research [28][30] found that direct 

implications can eliminate most false paths. Heuristics such as forward trimming and 

smart-PERT delay [28] are applied to the partial path in order to quickly eliminate false 

paths. These heuristics enable for the first time generation of the longest paths through 

every gate of ISCAS85 benchmark circuit c6288. All prior path delay test approaches 
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have failed on this circuit, due to its exponential number of long false paths. If a partial 

path reaches a capture point, it becomes a complete path.  Then a PODEM-based final 

justification [28][29][32] is performed to find  a vector pair that sensitizes this path. 

Since the longest path through one line may be the longest path through other lines, a 

new complete path must be checked to see if it has already been generated before. In 

order to utilize the overlapping paths between different lines to accelerate test generation, 

global longest path generation [28] is performed at the beginning of test generation. The 

test generation repeats until the K longest testable paths (both rising and falling 

transitions) through each line are generated or the path store is exhausted. 
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Figure 7. KLPG path generation algorithm. 
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1.5 Structure of Dissertation 

The remainder of the dissertation is organized as follows. Section 2 contains the 

details of a dynamic compaction algorithm for the generation of compact delay test sets. 

To speed up the dynamic compaction procedure, in section 3 an improved dynamic 

compaction algorithm with recursive learning is presented and applied to benchmark 

circuits and industrial designs. In section 4, a realistic low cost fault coverage metric 

targeting both global and local delay fault is developed and implemented in the KLPG 

test generation. In section 5, an improved KLPG test generation flow is applied to an 

AMD quad-core microprocessor on silicon. Finally, section 6 concludes the dissertation 

with future directions. 
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2. DYNAMIC COMPACTION FOR COMPACT DELAY TEST 

GENERATION 

2.1 Motivation 

The path delay fault model [17] is used to detect distributed and small delay 

defects in integrated circuits. The challenge of the path delay fault model is that the 

number of paths is exponential in the circuit size. One strategy is to target a subset of 

paths which contains at least one of the longest testable paths passing through each line 

or gate [14][28][29][33][34][35][36].  More recently, small delay defect tools have been 

built on top of the transition fault framework, to providing timing information to guide 

the test generation towards selecting longer paths. But commercial SDD tools produce 

very high pattern counts.  

In [28], an efficient automatic test pattern generation (ATPG) algorithm was 

developed to test the K Longest Paths Per Gate (KLPG) in a combinational circuit and 

extended to sequential circuits in [29]. A fault coverage metric was developed to show 

the theoretical high quality of KLPG [37] and the benefits were demonstrated on silicon 

[38]. The primary barrier to the use of KLPG patterns has been the high pattern count. 

The existing CodGen ATPG tool [28][29] uses greedy, forward-order static compaction. 

In order to reduce the pattern count and test cost, this section proposes a new dynamic 

compaction algorithm for generating compacted test sets for K longest paths per gate 

(KLPG) in combinational circuits or scan-based sequential circuits. 
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2.2 Previous Work 

For scan-based very large scale integrated (VLSI) circuits, test cost is determined 

by test application time of a set of test patterns. Test application time is proportional to 

the length of the scan chains and the size of the test set [39]. In addition, a test set that 

exceeds the tester memory size requires reloading patterns to achieve the desired 

coverage, which is very expensive.  

A test vector or test pattern is composed of a set of values on all primary inputs 

(for a combinational circuit), and all scan flip-flop cells (for a sequential circuit). 

Automatic test pattern generation (ATPG) tool will assign binary values (0 or 1) on a 

subset of primary inputs (PI’s) and scan flip-flop cells, in order to detect targeted faults. 

The remaining values are don’t care (X). Test compaction includes techniques to reduce 

test size by merging test patterns with non-conflicting values [40].  In general, test 

compaction techniques can be classified as static compaction or dynamic compaction. 

Static compaction techniques are performed after test sets have already been generated, 

while dynamic compaction techniques are integrated into the test generation process. 

Many compaction algorithms have been proposed in the literature for test compaction in 

combinational and fully-scanned sequential circuits. The following two sections address 

static and dynamic compaction processes, respectively. 

2.2.1 Static Compaction 

Static compaction [41] is also called post-generation compaction, which is 

independent of the test generation process. It can be applied to any set of test vectors to 
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reduce the test size. Even if dynamic compaction is performed during test generation, 

static compaction can be used to further reduce the test size. 

For static compaction, two test vectors are compactable if every bit is 

compatible.  If the same bit in both vectors is assigned to the same logic value (“0” or 

“1”), or it is a don’t care value (“X”) in at least one of them, these two vectors are 

compatible and can be merged. The concept of static compaction is illustrated using a 

simple example in Figure 8. As shown in Figure 8, every bit in 8-bit vectors V1 and V2 

is either assigned to the same logic value or there is “X” in at least one of them. Thus V1 

and V2 can be compacted together to form a new vector V3. 

 

 

 

Figure 8. Static compaction of two 8-bit vectors. 

Many static compaction techniques [42][43][44][45][46] have been proposed to 

reduce pattern count without reducing fault coverage. For KLPG test, a forward order 

greedy static compaction scheme is used to reduce the test size [28].  As shown in Figure 

9 [47], every new pattern is compared against patterns in the compacted pattern list in 

order and is always merged with the first compatible one. The test size produced by the 
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forward greedy algorithm is only slightly larger than the near-optimal results produced 

by a simulated annealing algorithm [48].  

 

 

Figure 9. Greedy static compaction flow. 

2.2.2 Dynamic Compaction 

Dynamic compaction [42] is performed during test generation, and can achieve 

greater reduction in pattern count than static compaction. Many dynamic compaction 

methods [49][50][51][52] aim at maximizing the number of stuck-at faults detected by a 

test pattern.  The classic approach is to generate a pattern for one fault, and then use 

heuristics to modify the unspecified bits, and drop other detected faults in the fault list 
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via fault simulation. This approach does not work well for path delay test due to the low 

fortuitous detection rate. Several compaction techniques targeting path delay faults have 

been proposed [53][54][55]. In [53], maximal compatible path delay fault sets are first 

derived based on a six-valued algebra and then a test is generated for faults in each of 

these sets. The memory requirements depend on the number of paths and the number of 

lines in a path. The approaches in [54][55] try to simultaneously test paths with crossing 

points so as to fortuitously detect many faults which may not be included in the target 

fault list. This is similar to fortuitously increasing K in KLPG, but does not explicitly 

compact compatible paths and does not guarantee the robustness or non-robustness of 

the fortuitously detected paths. In addition, most of these techniques require a target path 

fault list and path structure information provided in advance, have high memory 

consumption for large circuits, have high CPU time complexity, or are difficult to 

incorporate into the KLPG ATPG algorithm. 

Care bit density is the number of (determined bits / total bits) in test patterns. 

Normally the average care bit density of the transition fault test is significantly higher 

than path delay test, particularly for the initial test patterns.  Experiments on an industrial 

design [38] showed the average care bit density of the transition fault test without 

random fill was 4.59%, while it was 2.23% for the path delay test after static 

compaction. This low care bit density provides room for dynamic compaction to 

improve over static compaction.  



 19

2.3 Proposed Dynamic Compaction Algorithm 

For a given fault, necessary assignments (NA) are all the values on circuit lines 

necessary for the detection of the fault. Necessary assignments include values to activate 

the fault and propagate its effect to a primary output or a capture scan cell. In this work, 

we have developed a dynamic compaction approach that compacts paths together based 

on their necessary assignments, without fault simulation. Rather than working on one 

pattern at a time, the algorithm considers a pool of paths that are currently being 

compacted into a set of patterns.  Each new path generated is compared against this path 

pool. This algorithm was incorporated into the KLPG algorithm and significantly 

reduces pattern count (up to 4x compared to static compaction) without coverage loss. 

When a path is generated and passes final justification, a set of necessary 

assignments are identified that are necessary to sensitize and propagate the fault along 

the path. Assignments generated during final justification are not saved, since they may 

not be necessary. 

Consider the following example: we have a complete path Path1 with falling 

transition through line A with necessary assignments (circles) as shown in Figure 10. 

Vector pairs (X101XX, X1X0X1) or (1X01XX, X100X1) can test the path. Suppose we 

have another complete path Path2 with rising transition through line B, with a set of 

necessary assignments (Xs) as shown in Figure 11, and only vector (X0X1X0, X10XX1) 

can test it. The necessary assignments for Path1 and Path2 are compatible (no conflict in 

value assignments). In our prior work [28][29] we used a PODEM-like final justification 

procedure to find a vector pair for each path separately, followed by static compaction. 
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Due to the intrinsic property of backtracing in the PODEM [32], which backtraces based 

on the line controllability, we get vector pair (X101XX, X1X0X1) for Path1 and 

(X0X1X0, X10XX1) for Path2. The vector pairs cannot be compacted together. In fact, 

Path1 and Path2 can be compacted together and tested via vector pair (1001X0, 

X100X1). If we keep only necessary assignments rather than a vector pair for each 

complete path, we can combine two sets of necessary assignments together and then 

apply final justification, which will generate one vector pair (1001X0, X100X1) for both 

paths, as shown in Figure 12. 
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Figure 10. Vector pair and necessary assignments (circles) for Path1. 
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Figure 11. Vector pair and necessary assignments (Xs) for Path2. 
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Figure 12. Vector pair and necessary assignments for Path1 and Path2. 

Based on the previous example, our dynamic compaction algorithm checks the 

compatibility between necessary assignments, greatly expanding the compaction space 

without loss of fault coverage. The approach is to generate the K longest rising and 

falling paths for a line and their necessary assignments, and then compare the necessary 

assignments for each such path against a set of previously generated paths. The 

generation of final test vectors is postponed until test generation and dynamic 

compaction is finished, in order to provide maximum flexibility for compaction. 
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Procedure dyn_compact(F, POOL), given in Figure 13, describes the details of 

the dynamic compaction algorithm. It uses a greedy approach, in which each new pattern 

F is compacted with the first compatible pattern in POOL. POOL is a data structure 

created to save patterns. Due to memory limitations, we cannot save all patterns in 

POOL. So the size of POOL is set to N, which means at most N patterns can be saved in 

POOL. Patterns in POOL are sorted in non-increasing order of the number of necessary 

assignments in order to compact as many paths as possible into a pattern before it is 

written out. Our experiments show that non-decreasing order will even out the care bit 

density and result in a more compact test set. When POOL is full and a new pattern is 

generated, the pattern with the largest number of necessary assignments (the first pattern 

in POOL) is popped. Final justification is then performed on this pattern and its 

corresponding vector pair is written out. We will show the influence of POOL size on 

compaction results in the experimental results. In the current implementation a greedy 

forward-order approach is used for locating compatible paths. Based on static 

compaction results [29], we expect that only a small fraction of patterns must be held in 

memory in order to achieve good results for dynamic compaction.    
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 _____________________________________________________________________ 

Procedure dyn_compact(F, POOL) 

1. If POOL is empty, insert pattern F into POOL and return. Otherwise set pointer P to the first 

pattern in POOL and go to step 3. 

2. Set pointer P to the next pattern in POOL. If P is pointing to empty (the end of POOL), go to 

step 6. Otherwise go to step 3.  

3. Do conflict check between F and P. If there is a conflict, go to step 2. Otherwise go to step 

4. 

4. Combine two sets of necessary assignments F and P, and save them as K. Check for direct 

implication conflicts in K. If no conflicts, go to step 5. Otherwise delete K and go to step 2. 

5. Do final justification for K. If K passes final justification, update P by combining necessary 

assignments of F into it and return. Otherwise delete K and go to step 2. 

6. Insert F into POOL as a pattern. Return. 

_____________________________________________________________________ 

Figure 13.  Pseudo code of dynamic compaction algorithm. 
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To help better understand the details, Figure 14 gives the dynamic compaction 

flowchart.  

 

 

Figure 14. Flowchart of dynamic compaction algorithm. 
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2.4 Dynamic Compaction for KLPG Test 

The proposed dynamic compaction algorithm was integrated into the CodGen 

KLPG ATPG. Procedure klpg_dc( ) in Figure 15 describes the test generation flow with 

dynamic compaction. Here a pattern is a set of necessary assignments that can 

successfully yield a test vector pair. A vector contains specific values at launch points 

(e.g. scan cell outputs).  

 

_____________________________________________________________________ 

Procedure klpg_dc( )  

1. Initialize pattern pool POOL as empty. 

2. Use KLPG to generate a successful longest path I through a line, resulting in pattern F. F 

contains all necessary assignment information before justification. Justification of F is 

performed to check that the path is sensitizable, but the resulting primary input values are 

not stored. If no more paths can be generated or we have enough paths, go to step 4. 

Otherwise go to step 3. 

3. Call procedure dyn_compact(F,POOL). Go to step 2. 

4. Do final justification for all patterns in POOL one by one to generate the final vectors. 

Procedure is finished. 

_____________________________________________________________________ 

Figure 15.  Test generation flow with dynamic compaction. 
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2.5 Dynamic Compaction Experimental Results for KLPG Test 

 Experiments were conducted to show the advantages of our proposed dynamic 

compaction algorithm over the static compaction method for KLPG tests. All programs 

were implemented in C++ and run on a Windows XP PC with Intel Core 2 Duo 6300 

(1.86 GHz) processor and 2 GB memory.  

We performed experiments on full scan versions of ISCAS89 benchmarks and 

three industry designs, generating KLPG tests with K=1. Table 1 shows the information 

of all circuits used in the experiments. The targeted fault space is identical to the 

transition fault test, which includes every line in the circuit. The number of faults is 

twice the number of lines in the circuit, since it is assumed that there are both slow-to-

rise and slow-to-fall delay faults at each fault site. But the actual number of detectable 

faults is less than the total number of faults due to the internal and external constraints. 

Internal constraints include the lines with preset values, such as lines tied to 

ground/supply voltage. External constraints include the constraints from low-cost ATE. 

For example, low-cost ATE does not allow observation of the primary outputs and it 

requires primary inputs to remain unchanged during test vector application. Column 4 

lists the number of scan cells for each circuit. There is only one scan chain for all 

ISCAS89 circuits. The industrial design chip1 contains 4 scan chains and chip2 contains 

16 scan chains. Both are partial scan design with embedded memories. Chip2a is a 

controller module in chip2. The industrial design chip3 is a full scan design with 6 scan 

chains. 
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Table 1. Circuits used in experiments. 

Circuit # Lines # Scan Cells # Scan Chains Scan Type 

s1423 1 423 74 1 Full 

s1488 1 488 6 1 Full 

s1494 1 494 6 1 Full 

s5378 5 378 179 1 Full 

s9234 9 234 211 1 Full 

s13207 13 207 638 1 Full 

s15850 15 850 534 1 Full 

s35932 35 932 1 728 1 Full 

s38417 38 417 1 636 1 Full 

s38584 38 584 1 426 1 Full 

chip1 86 612 3 503 4 Partial 

chip2 1 956 942 57 352 16 Partial 

chip2a 40 590 14 963 8 Partial 

chip3 1 085 052 9 372 16 Full 
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2.5.1 KLPG Robust Test with Dynamic Compaction 

Two test strategies were used in our experiments: launch-on-capture (LOC) and 

launch-on-shift (LOS). Table 2 shows the results for generating the longest robustly-

testable rising and falling paths through each line (K=1), with static and dynamic 

compaction in LOC mode. The POOL size N was set to 1000 for all circuits. Column 1 

give the circuit name. Since we generate both longest slow-to-rise and slow-to-fall paths 

through each line, the number of faults is roughly twice the number of lines. The total 

number of testable faults is less than the total number of faults because of the LOC and 

LOS constraints, and the constraints of low-cost testers (fixed inputs and masked 

outputs). Columns 2-5 give the results under LOC. Column 2 shows the total number of 

paths generated by KLPG, which is equal to the pattern count without any compaction. 

Column 3 shows the number of test patterns with static compaction (SC) and dynamic 

compaction (DC). For example, for s38417, 946 patterns are generated with static 

compaction, which is reduced to 422 with dynamic compaction. Column 4 shows the 

percentage pattern reduction. The reduction is small for small circuits, and higher in 

larger circuits, such as chip1, chip2a and chip3. This is consistent with the lower care bit 

density of uncompacted patterns in these designs. The last column gives the CPU time. 

The numbers are times for SC and DC.  In most cases DC takes about twice the CPU 

time of SC. 
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Table 2. Comparison of KLPG (K=1) test size with static and dynamic compaction 

(robust test LOC). 

Circuit 

Launch-on-Capture 

# Paths  
# Patterns 

(SC/DC) 

% 

Reduction 

Time (m:s) 

(SC/DC) 

s1423 397 222/138 38 00:09/00:10 

s1488 192 87/67 23 00:01/00:01 

s1494 193 86/63 27 00:01/00:01 

s5378 1799 407/236 42 00:07/00:16 

s9234 2376 790/405 49 1:35/2:02 

s13207 3246 900/718 20 00:59/1:35 

s15850 2645 471/278 41 1:19/1:42 

s35932 9762 36/26 28 5:03/06:54 

s38417 14917 946/422 55 07:16/28:00 

s38584 9725 519/253 51 4:23/10:32 

chip1 14807 2477/1024 59 32:21/72:38 

chip2a 7019 1877/631 66 199:54/228:00 

chip3 47822 18203/5962 67 16.7hrs/33.4hrs 

 

Table 3 shows the results for generating the longest robustly-testable rising and 

falling paths through each line, with static and dynamic compaction in LOS mode. 

Similar pattern reduction rate is achieved for LOS mode.   
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Table 3. Comparison of KLPG (K=1) test size with static and dynamic compaction 

(robust test LOS). 

Circuit 

Launch-on-Shift 

# Paths  
# Patterns 

(SC/DC) 

% 

Reduction 

Time (m:s) 

(SC/DC) 

s1423 701 197/123 39 00:04/00:06 

s1488 206 78/64 18 00:01/00:01 

s1494 204 79/64 19 00:01/00:01 

s5378 1112 84/49 42 00.03/00:06 

s9234 3649 710/463 35 01:03/01:46 

s13207 6843 1624/1421 12 00:34/01:56 

s15850 5833 645/307 52 00:50/02:24 

s35932 12194 44/35 20 03:09/07:43 

s38417 17665 656/357 46 02:03/16:07 

s38584 21135 683/592 13 02:55/20:59 

chip1 20139 858/467 46 44:40/86:36 

chip2a 10512 2829/1140 60 38:48/57:26 

chip3 58154 9760/3848 61 3.9hrs/6.8hrs 

 

2.5.2 KLPG Non-Robust Test with Dynamic Compaction 

Tables 4 and 5 show the compaction results for the longest rising and falling non-

robustly-testable paths through each line, with SC and DC under LOC and LOS 

respectively. The pattern count reduction and CPU time increase are similar to the 

results for robust paths. 
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Table 4. Comparison of KLPG (K=1) test size with static and dynamic compaction 

(non-robust test LOC). 

Circuit 

Launch-on-Capture 

# Paths  
# Patterns 

(SC/DC) 

% 

Reduction 

Time (m:s) 

(SC/DC) 

s1423 755 333/147 56 00:21/00:22 

s1488 531 144/102 29 00:02/00:02 

s1494 537 143/102 29 00:02/00:02 

s5378 2428 362/213 41 00:17/00:28 

s9234 3806 949/422 56 05:40/06:20 

s13207 5674 629/416 34 05:06/05:54 

s15850 4931 480/223 54 05:21/06:13 

s35932 14569 36/25 31 14:03/17:15 

s38417 26390 1109/414 63 16:32/50:20 

s38584 17815 1177/391 67 12:40/27:22 

chip1 27371 2866/1197 58 100:47/188:01 

chip2a 15038 2752/1116 59 18.7hrs/20.2hrs 

chip3 78432 23096/7540 67 37.7/64.3hrs 
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Table 5. Comparison of KLPG (K=1) test size with static and dynamic compaction 

(non-robust test LOS). 

Circuit 

Launch-on-Shift 

# Paths  
# Patterns 

(SC/DC) 

% 

Reduction 

Time (m:s) 

(SC/DC) 

s1423 1123 267/162 39 00:11/00:13 

s1488 425 97/91 6 00.01/00:01 

s1494 431 98/91 7 00.01/00:01 

s5378 2028 226/151 33 00:09/00:11 

s9234 5257 578/389 33 03:03/03:45 

s13207 8981 786/616 22 01:13/02:28 

s15850 8460 445/235 47 01:17/02:37 

s35932 18489 36/29 19 07:40/13:08 

s38417 26832 718/288 60 06:29/24:25 

s38584 28059 450/337 25 06:59/27:11 

chip1 38766 1389/739 47 91:35/188:30 

chip2a 25093 4939/3032 39 140:07/206:16 

chip3 101377 14574/6288 57 6.7hrs/12.4hrs 

 

2.5.3 Pool Size Influence on Dynamic Compaction 

In order to analyze the influence of the POOL size N on our dynamic compaction 

algorithm, we vary N while generating robust paths under LOC, as shown in Table 6. 

Columns 2-3, 4-5, 6-7 and 8-9 give the pattern count and CPU time for N with 100, 200, 

500 and 1000 respectively. Increasing N reduces pattern count at the expense of more 

CPU time. The ISCAS89 circuits are saturated at N=500, but the three industry circuits 
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see a significant benefit for N=1000. But for all circuits there is a diminishing return. For 

example, for chip1, 1264 patterns are generated under N=500 and 1024 patterns are 

generated under N=1000. Diminishing returns can be explained by the phenomenon that 

one pattern can be compacted to many other patterns. Not compacting a pattern into a 

previously written-out pattern will not influence the chance of compacting it into another 

pattern in the POOL. For chip3, pattern count is big under N=100 and N=200, while 

6546 patterns are generated under N=500 and 5962 patterns are generated under N=1000. 

When further increasing N to 2000, 4412 patterns are generated while CPU time 

increases to 36 hrs. Ideally infinite pool size N will achieve the best results. But some 

tradeoff must be made in practice due to the limitation of computer memory size and 

running time.  A moderate N has been enough to achieve good results from experiments. 

The efficiency of the greedy approach was also checked by changing the pattern 

order in POOL for a specific N. Both forward order and backward order greedy dynamic 

compaction algorithms are implemented. Results show that the pattern count remains 

similar for different pattern orders. This is consistent with our theory that our greedy 

dynamic compaction approach can achieve good results while holding a small fraction of 

paths in memory.  
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Table 6. POOL size influence on compaction (K=1 robust test). 

Circuit 

N=100 N=200 N=500 N=1000 

# 

Patterns 

CPU 

Time 

(m:s) 

# 

Patterns 

CPU 

Time 

(m:s) 

# 

Patterns 

CPU 

Time 

(m:s) 

# 

Patterns 

CPU 

Time 

(m:s) 

s1423 141 00:09 140 00:09 140 00:09 140 00:09 

s1488 67 00:01 67 00:01 67 00:01 67 00:01 

s1494 63 00:01 63 00:01 63 00:01 63 00:01 

s5378 241 00:11 231 00:14 231 00:14 231 00:14 

s9234 533 01:32 423 01:39 408 01:51 408 01:51 

s13207 752 01:04 731 01:15 719 01:53 719 01:28 

s15850 303 01:33 290 01:41 289 01:38 289 01:38 

s35932 24 06:36 24 06:36 24 06:36 24 06:36 

s38417 476 14:30 442 20:01 425 25:57 425 25:57 

s38584 281 07:14 253 09:03 249 09:10 249 09:10 

chip1 1703 80:14 1552 84:22 1264 100:37 1201 123:24 

chip2a 1102 192:49 988 199:43 716 213:49 669 208:37 

chip3 10521 20.5hrs 9161 24.8hrs 6456 26hrs 5431 29.4hrs 

 

2.5.4 Pattern Count Comparison with Commercial Tool 

A. KLPG-1 Test 

To test path delay faults, two-time-frame vectors are required. Path delay faults 

are classified into several groups according to the different sensitization criteria [31].  

Robust sensitization criterion [56] allows the fault on the target path to be 

observed independent of the delays on signals outside the target path. In other words, the 

slow signal is able to propagate through the robust testable path independent of the 
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delays on the side inputs to the path. Figure 16 illustrates the robust propagation criterion 

for an OR gate.  In this example, a is the on-path input and b is the off-path input. The 

two values on inputs denote values under vector pair (v1, v2). When there is a falling 

transition at input a, it requires b to be unspecified (X) for vector v1 and be 0 for vector 

v2. Thus the fault effect on a will be propagated to the output signal of the OR gate 

regardless of the fault on side input b. Similarly, when there is a rising transition on 

input a, it requires b to be a stable non-controlling value 0. So the fault on the target path 

will always be observable at the output. 

 

 

Figure 16. Robust sensitization criterion for OR gate. 

Non-robust sensitization criterion [56] is less stringent than the robust 

sensitization criterion. The fault detection through a non-robust testable path is 

dependent on the delays outside the target path, such as on the signal arrival times at the 

side inputs.  

A test that guarantees the detection of a path delay fault, when no other delay 

fault is present, is called a non-robust test for that path. Consider the OR gate in Figure 

17. If there is a rising transition on the on-path input a and a falling transition on off-path 

input b, the transition on the output of the OR gate depends on the arrival time of the 
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input transitions. If the falling transition on off-path input b occurs later than the rising 

transition on on-path input a, it will mask the fault effect from a to the output. If the 

falling transition on off-path b happens earlier than the rising transitions on on-path input 

a, the fault effect on on-path input a is still observable at the output. 

 

 

Figure 17. Non-robust sensitization criterion for OR gate. 

Functional sensitization criterion [57] further releases the constraints compared 

to the non-robust sensitization criterion. The detection of faults also depends on the 

delays outside the target path. Furthermore, in order to detect the target fault, the 

functional sensitization criterion requires that multiple faulty paths exist in the circuit. 

Figure 18 illustrates the functional sensitization criterion for an OR gate. When both on-

path input a and off-path input b have rising transitions, it requires both transitions to be 

late in order to propagate the fault at a to the output of the OR gate, since the arrival time 

of the output signal is determined by the earlier of the two rising transitions at the OR 

gate. 
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Figure 18. Functional sensitization criterion for OR gate. 

Figure 19 shows the test composition of the KLPG-1 test.  A KLPG-1 test set, 

consisting of the robust longest rising and falling path through each line, topped off with 

non-robust KLPG patterns, topped off with long transition fault patterns, achieves the 

same transition fault coverage as a transition fault test set, but with higher quality, since 

it targets the same fault space and smaller delay defects. Long transition fault test has 

higher quality than the traditional transition fault test because the traditional one assumes 

large local delay and propagates the fault through any path (usually a short path). In our 

test generation, this case usually happens when the local delay fault can only be 

activated or propagated through multiple paths with functional sensitization criterion. 

Thus the test quality is determined by the length of the shortest path in the activating or 

propagating path set. The longer the shortest path, the smaller the local delay fault that 

can be detected. The best transition fault test, in terms of the detected local delay fault 

size, cannot be guaranteed to be generated by our tool but it should be better than the 

traditional transition fault test. 

The longest non-robust test for a fault may be longer than the longest robust test 

for the fault. However, in KLPG-1, priority is given to the certainty of robust detection. 

Detection reliability and testing the longest paths can be achieved by generating non-
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robust tests for all faults that already have a robust test, and keeping the non-robust test, 

in addition to the robust test, if it tests a longer path. Due to the pattern count increase, 

we did not pursue this approach. 

 

 

 

Figure 19. Test composition of KLPG-1. 

B. KLPG-1 vs. Commercial Tool 

The drawback of a KLPG-1 test set has been increased pattern count. Table 7 

shows the test size comparison between dynamically compacted KLPG-1 test sets 

compared to dynamically compacted transition fault patterns generated by a commercial 

tool. Both CodGen and the commercial tool use launch-on-capture mode. POOL size is 

fixed at 3000 for KLPG-1 test. 

As can be seen, our dynamically compacted KLPG-1 test sets are similar to and 

in several cases (such as for s38584, chip1 and chip2a) smaller than the commercial 

transition fault test sets. This is quite promising considering the higher quality of the 
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KLPG test patterns and the maturity of the commercial tool compared to our university 

tool. However, the KLPG-1 test is still significantly larger than the TF test for chip3. 

 

Table 7. KLPG-1 vs. commercial tool.   

Circuit 
KLPG 

Robust 

KLPG    

Non-robust 

Long 

Transition 

Robust 

+Non-robust 

+ Long TF 

Commercial 

Tool 

s1423 140 19 30 189 95 

s1488 67 45 2 114 102 

s1494 63 50 2 115 101 

s5378 231 28 0 259 194 

s9234 408 41 5 454 465 

s13207 719 11 72 802 382 

s15850 289 6 7 302 231 

s35932 24 4 0 28 68 

s38417 425 41 1 467 365 

s38584 249 134 70 453 528 

chip1 1201 489 157 1853 1900 

chip2a 630 438 777 1845 2537 

chip3 4077 1422 538 6037 1445 

 

 

 



 40

2.6 Experimental Results for Transition Fault Test and Stuck-at Test 

The proposed dynamic compaction algorithm is generic in nature so it can be 

applied to the test generation of any kind test. This algorithm has been extended to deal 

with transition fault test and stuck-at fault test. 

2.6.1 Dynamic Compaction for Transition Fault Test 

CodGen has been improved to generate transition fault tests. Figure 20 shows the 

transition fault test generation flow. It inherits the framework from KLPG test. The only 

difference is in the partial path extension stage. For transition fault test, in every iteration 

of path generation, the partial path with the smallest max esperance is popped from the 

sorted path store and extended by adding one fanout gate with the smallest max 

esperance. In contrast, for KLPG test, the partial path with the largest max esperance is 

always popped first and extended to the fanout gate with the largest max experance. 

Thus the paths generated for transition fault test are normally the shortest ones, which 

contain fewer necessary assignments and are easier to compact. 
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Figure 20. Transition fault test generation algorithm. 

 

Table 8 compares the transition fault test results generated by modified CodGen 

with KLPG-1 test. Both KLPG-1 and transition fault (TF) test are in launch-on-capture 

mode. Pool size is set as 3000 for both tests. Column 2 shows the number of paths 

generated under two tests. To achieve the same transition fault coverage as KLPG-1 test, 

normally more paths are generated for TF test. This is because a longer KLPG-1 path 

through a given fault site normally covers more transition faults than a short transition 

fault path. Column 3 lists the pattern count for TF, KLPG-1 and the commercial TF tool. 

For most cases, the TF test pattern count is much less than KLPG-1, since KLPG-1 
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patterns have higher care bit density than TF test, which reduces the space for 

compaction. One special case is s35932, for which the TF test pattern count is higher 

than KLPG-1 test. This is because s35932 has many near-critical TF test paths with 

similar care bit density to KLPG-1 paths.  Column 4 lists the average path length for the 

two tests. The data verifies our assumption that most transition fault paths are shorter 

than KLPG-1 paths. For example, the average path length of TF test is 8.77 compared to 

13.49 (54% higher) for KLPG-1 paths. For special case s35932, the average path length 

of TF test is 12.63 compared to 12.79 for KLPG-1 test. This indicates that most TF test 

paths have similar length to KLPG-1 paths and explains why the TF test pattern count is 

higher than KLPG-1 test for s35932. CPU time is listed in the last column. TF test 

generation takes much less time than KLPG-1 test. This is because most TF test paths 

are shorter and so easier to generate compared to KLPG-1 paths. In all circuits except 

s1488 and s1494, our TF test sets with dynamic compaction are significantly smaller 

than produced by the commercial TF tool, albeit using significantly more CPU time. 
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Table 8. TF vs KLPG-1. 

.Circuit 

Launch-on-Capture 

# Paths  

(TF/KLPG-1) 

# Patterns 

(TF/KLPG-1 

/Comm) 

Avg Path Length 

(TF/KLPG-1) 

Time (m:s) 

(TF/KLPG-1) 

s1423 791/744 68/189/95 7.11/17.36 00:09/00:32 

s1488 543/535 103/114/102 10.67/10.98 00:07/00:07 

s1494 549/537 103/115/101 10.70/10.98 00:07/00:07 

s5378 2435/1964 184/259/194 9.88/11.78 00:28/00:35 

s9234 4086/3399 230/454/465 17.01/19.73 03:08/06:29 

s13207 6089/5450 356/802/382 16.04/19.6 03:27/03:58 

s15850 4940/4546 134/302/231 13.88/18.83 03:48/07:17 

s35932 14537/11250 35/28/68 12.63/12.79 14:34/11:04 

s38417 25327/21855 254/467/365 14.10/18.14 38:32/43:51 

s38584 18923/17889 320/453/528 8.39/10.27 23:55/27:36 

chip1 31896/28229  1600/1853/1900 8.77/13.49 200:26/453:58 

chip2a  14070/16128 1207/1845/2375 12.26/16.96 14.3hrs/25.5hrs 

chip3 81334/69740 1067/6037/1445 10.53/23.55 23.6hrs/80.7hrs 

 

2.6.2 Dynamic Compaction for Stuck-at Fault Test 

In [58], a scalable dynamic compaction technique was recently integrated into a 

D-algorithm [59][60][61] based ATPG engine to generate compact test pattern sets for 

stuck-at faults. This technique inherits the idea of our dynamic compaction algorithm 

and uses necessary assignments as guidance to accommodate detections of more faults 

by the same test vector. The guidance is based on a preprocessing step that computes 

sets of compatible faults with their necessary assignments. This approach generates 
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minimal or close to minimal test sets [51] for ISCAS85 circuits. For industrial circuits, it 

achieves smaller test sets than other available methods, at reasonable CPU cost. 

2.7 Conclusions 

We have proposed a new dynamic compaction algorithm [62] for generating 

compacted test sets for K longest paths per gate (KLPG) in combinational circuits or 

scan-based sequential circuits. This algorithm uses a greedy approach to compact paths 

with non-conflicting assignments together during test generation. Experimental results 

for ISCAS89 benchmark circuits and three industry circuits show that the pattern count 

of KLPG can be significantly reduced (up to 4x compared to static compaction) using 

the proposed method. The pattern count after dynamic compaction is comparable to the 

number of transition fault tests, while achieving higher test quality. This algorithm is 

also a generic algorithm and also achieves significant test size reduction for transition 

fault test and stuck-at fault test. 
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3. IMPROVED DYNAMIC COMPACTION WITH RECURSIVE 

LEARNING  

3.1 Motivation 

A dynamic compaction approach has been proposed in section 2 to compact 

paths together based on their necessary assignments [62]. As each path is generated, its 

necessary assignments are checked against a pool of test patterns. If the necessary 

assignments of the path are compatible with those in a pattern, an attempt is made to 

justify a vector pair to apply the test, using a PODEM-like algorithm. This compaction 

algorithm significantly reduces KLPG pattern count (up to 4x compared to static 

compaction) without coverage loss. But an analysis of the dynamic compaction 

algorithm shows that the failure rate of final justification ranges from 0.5% (s35932) to 

98% (chip3), relatively independent of the pool size. In other words, necessary 

assignment compatibility is not sufficient to screen for conflicting paths. Table 9 

presents the final justification failure rate with dynamic compaction in launch-on capture 

mode with Pool size 1000. For the three industrial circuits, the final justification failure 

rate is high (up to 98% for chip3). The final justification failures are due to either no 

solution or algorithm abort. If there is any value conflict in the circuit, final justification 

has no solution. If final justification algorithm hits the preset algorithm backtrace limit, it 

gives up. An analysis shows that most final justification failures in dynamic compaction 

are due to value conflicts. This indicates that necessary assignments are not sufficient to 

filter out incompatible paths in several designs before entering final justification 
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procedure. Since each execution of final justification is expensive, this high failure rate 

leads to a significant CPU time increase over static compaction. In order to reduce the 

CPU time and accelerate dynamic compaction, we must find more necessary 

assignments to filter incompatible cases prior to final justification.  

Table 9. Final justification failure rate. 

Circuit Final Justification Failure Rate (%) 

s1423 13.10% 

s1488 12% 

s5378 56.60% 

s9234 20.50% 

s13207 6.50% 

s15850 5.40% 

s35932 0.50% 

s38417 44.90% 

s38584 20.70% 

chip1 82.10% 

chip2a 82.70% 

chip3 98% 

   

This section proposes an improved dynamic compaction algorithm with recursive 

learning, which tries to explore more indirect necessary assignments in the circuit given 

a set of line values, in order to trim the search space prior to final justification and speed 

up the dynamic compaction procedure. Results show that the improved compaction 

algorithm is effective in ISCAS89 and three industry circuits. The failure rate of final 
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justification during dynamic compaction can be significantly reduced using the proposed 

method. 

3.2 Previous Work 

In standard ATPG, direct implication [28] is used to discover necessary 

assignments (values assigned to lines). A direct implication on a gate is one where the 

input or output of that gate can be uniquely determined from other values assigned to 

that gate. Direct implication can be classified as forward implication or backward 

implication. Figure 21(a) is an example of backward implication. Given a 0 on the 

output of an OR gate, it is only true when both inputs are assigned the value 0. Figure 

21(b) shows an example of forward implication. Direct implication can be seen as the 

logical consequence of the truth table for a logic function. An indirect implication can 

not be directly derived from the logic function truth table but is caused by the circuit 

structure, which is explored through learning. 

 

 

               (a)                                                          (b) 

Figure 21. Direct implication examples. 
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Learning was first introduced in [43][63]. In [43], a static learning procedure is 

performed during the preprocessing phase to explore global implications, i.e., once for 

the whole circuit. Then an improved implication procedure to apply the learning 

dynamically was proposed in [63], which is performed for each branching step. Oriented 

dynamic learning was introduced in [64], which performs learning only at a small subset 

of the signals used by [43][63]. But the approaches in [43][63][64] do not guarantee that 

all necessary assignments can be identified. Later recursive learning [65] was proposed 

for test generation, design verification, and redundancy identification. It is a general 

method in the sense that it is not restricted to any logic alphabet and can be called 

recursively to find all necessary assignments.   

Temporary necessary assignments are injected at arbitrary signals in the circuit 

during learning to explore the common logic consequences. Figure 22 shows an example 

of a level 1 recursive learning procedure. Assume F=0 is the only assignment available. 

Direct implications cannot be derived from F=0. However, there exists the indirect 

implication that F=0 => C=0. Beginning at the point when direct implications cannot be 

made (F=0), temporary assignments are injected into the circuit for each choice of 

assignments that would justify the current node value. The value F=0 makes the gate G1 

unjustified. We enter level 1 recursive learning with two possible justifications for G1: 

1J = {D=0, E=x} and 
2J = {D=x, E=0}. For {D=0, E=x}, A=C=0 is derived through 

direct implication at G2. For {D=x, E=0}, B=C=0 is derived through direct implication 

at G3. In Figure 22, two possible justifications and their necessary assignments are 

marked with quote and double quotes. Since C=0 is the intersection of the necessary 
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assignments for both justifications, 
1J and

2J , it becomes a common necessary assignment 

for F=0. If C is further driven by an AND gate, then the learning procedure can be 

recursively called to explore further implications. 

 

 

 

 Figure 22. Example of recursive learning. 

Figure 23 gives the details of the recursive learning algorithm [65]. The time 

complexity of recursive learning is exponential in rmax, the maximum depth of 

recursion, but memory grows linearly with rmax. 
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_____________________________________________________________________ 

Initialize r=0 

Function make_all_implications(r,rmax)   

make all direct implications and set up a list of 
rU  of all unjustified gates. 

if ( r < rmax) 

for each gate 
i

G  in 
r

U  

     set up a list of justifications iG

r
C  

     for each justification 
iJ in iG

r
C  

 make the assignments in 
iJ  

  make_all_implications(r+1,rmax)   

if there is one or several signals f in the circuit, which assume the same logic value V for all 

consistent justifications 
i

J in iG

rC then learn: 

f=V is uniquely determined in level r  

make direct implications for all f in level r 

if all justifications are inconsistent,  then learn: 

given value assignments in level r is inconsistent 

_____________________________________________________________________ 

Figure 23. Recursive learning algorithm. 
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3.3 Improved Dynamic Compaction with Recursive Learning  

We found that in some circuits, the final justification step during dynamic 

compaction fails at a high rate, leading to high CPU time. To make our dynamic 

compaction approach practical for industrial use, we must drastically reduce CPU time. 

Recursive learning is called whenever a new path is generated or a pattern in POOL is 

updated, in order to identify more necessary assignments for each path, so that path 

conflicts can be more accurately identified with necessary assignments. These necessary 

assignments also reduce the search effort required in final justification. Figure 24 shows 

the details of the improved dynamic compaction with recursive learning. Large recursion 

depth is in not practical because CPU time is exponential in depth. However, since it is 

most likely that unknown necessary assignments must lie in the “logic neighborhood” of 

the known necessary assignments, it can be expected that the maximum recursion depth 

to determine all necessary assignments is relatively low [65]. We use a maximum depth 

of 3.  In order to further limit CPU time, recursive learning is only done on patterns with 

fewer than 25 compacted paths. In addition, patterns that fail compaction more than a 

certain number of times in a row, such as 500, are written out from POOL to speed up 

the test generation, since those patterns are essentially at their compaction limit.  
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Figure 24. Improved dynamic compaction algorithm. 



 53

3.4 Experimental Results  

Table 10 gives the results of improved dynamic compaction algorithm with 

recursive learning for launch-on-capture robust test. Columns 1 give the circuit name 

and the number of lines. Column 2 gives the total number of test patterns after dynamic 

compaction without recursive learning (learning depth=0), with recursive learning depth 

2 and with learning depth 3 respectively. Column 3 shows the number of total successful 

final justifications/failed final justifications without recursive learning, with learning 

depth 2 and with learning depth 3. Column 4 presents the final justification failure rate 

without recursive learning, with learning depth 2 and with learning depth 3. The CPU 

time under the three different maximum recursion depths is given in column 5. Normally 

the failure rate of final justification is greatly reduced with an increase of learning depth, 

with similar pattern count. For example, for s38584, the failure rate without recursive 

learning is 20.7% with 426 total patterns. This decreases to 2.1% and 426 patterns with 

learning depth 2, and further to 1.5% and 422 patterns with learning depth 3. There is not 

much CPU time decrease for the small circuits in Table 1. But for chip3, a design with 

~600k gates, the reduction of final justification failure rate reduces CPU time from 79 

hrs (without recursive learning) to 29 hrs (learning depth 2), and to 50 hrs (learning 

depth 3). Since the CPU time for recursive learning is exponential in the maximum 

recursion depth, 22 more hours are spent on recursive learning with learning depth 3 

than with learning depth 2 for chip3. A tradeoff must be made between CPU time and 

learning depth in practical applications. In some cases, such as s15850, the final 

justification failure rate increases with higher learning depth. This is because the 
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PODEM-like final justification algorithm struggles with the large number of necessary 

assignments in highly-compacted test patterns, which causes final justification hit the 

backtrack limit and abort. 

 

Table 10.  Improved dynamic compaction with recursive learning (LOC robust test, 

POOL = 1000). 

Circuit 
# Patterns 

(0/2/3) 

 

[#Success/#Fail] 

(0/2/3) 

% 

failure 

rate 

(0/2/3) 

 

Time (m:s) 

(0/2/3) 

s1423 139/138/138 
[258/39]/ [259/12] 

/[259/7] 
13.1/4.4/2.6 00:09/00:08/00:10 

s1488 67/67/67 
[125/17]/[125/6] 

/[125/3] 
12.0/4.6/2.3 00:02/00:02/00:04 

s5378 236/230/230 
[1563/2037]/[1569/73] 

/[1569/70] 
56.6/4.4/4.3 00:15/00:22/00:39 

s9234 406/400/404 
[1970/508]/[1976/174] 

/[1972/180] 
20.5/8.1/8.4 02:09/02:05/02:32 

s13207 717/716/715 
[2503/173]/[2504/2] 

/[2504/2] 
6.5/0.1/0.1 01:44/01:42/01:56 

s15850 278/279/280 
[2368/134]/[2367/218] 

/[2366/235] 
5.4/8.4/9.0 02:02/02:03/02:54 

s35932 34/33/33 
[9728/43]/[9729/93] 

/[9729/93] 
0.5/0.9/0.9 06:40/06:31/06:45 

s38417 426/426/422 
[14491/11805]/[14491/2848] 

/[14495/1881] 
44.9/16.4/11.5 28:04/34:29/46:52 

s38584 257/242/243 
[9467/2478]/[9482/207] 

/[9481/144] 
20.7/2.1/1.5 11:08/10:57/13:34 

chip1 1149/1151/1142 
[14699/67496]/[14697/26535] 

/[14706/24447] 
82.1/64.4/62.4 120:31/119:44/137:58 

chip2a 1534/1783/1778 
[5819/27772]/[5476/3618] 

/[5470/3569] 
82.7/39.8/39.5 391:58/403:50/427:06 

chip3 6288/5431/5349 
[41308/2697369]/[42387/538853] 

/[42465/459132] 
98/92.7/91.5 79hrs/29hrs/50hrs 
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3.5 Conclusions  

We have proposed an improved dynamic compaction algorithm with recursive 

learning for generating compact test sets for K longest paths per gate (KLPG) tests. The 

algorithm inherits the framework of [62] and compacts paths with non-conflicting 

assignments together during path generation. Experimental results show that recursive 

learning [65] is effective in trimming the search space prior to final justification and 

reducing the final justification failure rate. Our results also show that our PODEM-like 

final justification algorithm struggles with the large number of necessary assignments in 

highly-compacted test patterns. Future research will explore more advanced search 

algorithms suitable for this problem. 
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4. DELAY TEST GENERATION WITH A REALISTIC LOW COST FAULT 

COVERAGE METRIC 

4.1 Motivation 

In many designs, there are a set of “speed” paths that determine the clock cycle 

time, and most fault sites have relatively short paths, as shown in Figure 25. The paths 

used in these circuits are from the CodGen KLPG [29] ATPG tool, which generates 2 

paths (1 with longest rising transition and 1 with longest falling transition) through each 

line in the circuit. The upper line is the longest testable path length in each circuit, which 

determines the clock cycle. The lower line is the average of the longest path through 

each line. Clearly the average longest path per line is much shorter than the globally 

longest path in these circuits. For example, for s38417, the longest path is 41 gate delays, 

while the average is 18.1 gate delays.  

Figure 26 gives more details about the path delay distribution in circuit s38417. 

Of the 21,855 paths, only 4.15% have nominal delay greater than 80% of tmax (the 

globally longest path length) and only 39.37% have nominal delay greater than 50% of 

tmax. This distribution is typical of many circuits. It shows that most fault sites only have 

short paths through them. 

This section proposes a realistic low cost fault coverage metric targeting both 

global and local delay faults. It suggests the test strategy of generating a different 

number of longest paths for each line in the circuit while maintaining high fault coverage. 

This metric has been integrated into the CodGen ATPG tool. Experimental results show 
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significant reductions in test generation time and vector count on ISCAS89 and industry 

designs. 

 

Figure 25. Path statistics for ISCAS89 circuits. 

 

 

Figure 26. Path delay distribution of s38417. 
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4.2 Previous Work 

Delay test targets small manufacturing defects to ensure that the design works 

well within the specified timing margin. We term delay faults caused by a local 

disturbance such as a resistive bridge or open local delay faults and those caused by 

global process parameter variation global delay faults [27]. Process variation can be 

quite complex [66][67]68], consisting of systematic, die-to-die random variation and 

intra-die random variation. The path delay fault model [17] assumes that a path has an 

arbitrary delay increase, so it can model the combination of local and global delay faults.  

However, all paths must be tested in order to achieve high fault coverage. The 

exponential number of paths in a circuit limits usage of this model. 

Some path selection methods have been proposed to choose a subset of paths. 

The simplest approach is to select paths with structural delay exceeding a specified 

threshold, such as 90% of tmax, the maximum allowable circuit delay (e.g. clock cycle 

time or globally longest path length). However, the number of longest paths selected 

using min-max delay values is often too large, even with structural correlation 

information [69]. With manufacturing knowledge, the number of potentially longest 

paths can be pruned to just a few based on structural and process correlation [70]. But 

this method only considers the longest paths in the whole circuit, which may not cover 

every gate in the circuit. The approach in [71] selects longest paths for every fault site 

using a linear function of process-variation variables, and further considers process 

variation in both devices and interconnect. However, this method is difficult to integrate 

into test generation. In [72], a pattern selection technique uses the least slack on the scan 
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flip-flops to create different pattern categories. Then no-timing ATPG is performed on 

each category to exercise more longer paths. But this technique does not guarantee the 

generation of the longest paths. Another solution to this problem is to adjust the capture 

clock so that the timing margin on these shorter paths is reduced [73][74]. The number 

of different capture clock timings is reduced if the paths are divided into groups of 

similar length [75] or test generation is performed to achieve paths of similar length [76]. 

These techniques have been shown to catch delay faults that cause system failures [73]. 

The drawback of such faster-than-at-speed testing approaches is that they can cause 

overkill and test escapes. CodGen generates tests for the K Longest Paths per Gate 

(KLPG) or line [29], so is linear in the circuit size. Testing K longest paths targets global 

delay faults and testing every line covers local delay faults. However, the vector count is 

high for high K.  

In [37], a low cost fault coverage metric combining local and global delay faults 

was proposed. This metric suggests the test should cover every line in the circuit by 

testing one of the longest paths through the line, and test more long paths through each 

line to increase the delay fault detection probability under process variation. At the same 

time, a transition fault test should be applied to detect most large delay faults. The 

problem with [37] is that this method can only be used to evaluate the coverage of an 

existing test set, not to drop faults during test generation. 



 60

4.3 Low Cost Fault Coverage Metric 

Existing delay fault coverage metrics are not suitable for measuring realistic 

delay fault coverage. For example, a traditional path delay fault metric defines the delay 

fault coverage = number of tested paths / number of total testable paths. And some 

methods [77][78] have been proposed to identify untestable paths. However, it can be 

very expensive to calculate all testable paths in the circuit, especially for a ISCAS85 

benchmark circuit c6288, with an exponential number of testable paths. Transition fault 

coverage is sometimes used as an index for test quality measurement, but the transition 

fault coverage of a circuit is the same whether short or long propagation paths are used, 

when long paths have higher real defect coverage. 

Our existing realistic fault coverage metric [37] defines the fault coverage (FC) 

for test t as: 

FC=P(t detects delay fault | chip has a delay fault)             (1) 

For a given fault site i and a given extra delay ∆, the detection probability of 

extra delay ∆ for test t can be translated from general metric expressed formula (1) into 

formula (2): 

DPi,∆∆∆∆(t) = P(at least one tested path through i is slow)             (2) 

Over the distribution of an arbitrary delay ∆, the detection probability for site i is 

calculated as: 

DPi(t)= ∫∫∫∫ DPi,∆∆∆∆(t) • pi(∆∆∆∆)d∆∆∆∆         (3) 

where pi(∆) is the PDF of ∆ at fault site I caused by physical defects such as resistive 

shorts [79][80] and resistive opens [81]. And the overall fault coverage is: 
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FC(t) = ∑∑∑∑i DPi,∆∆∆∆(t) • wi       (4) 

where wi is the weight for fault site i (∑i wi = 1).  

Figure 27 [37] shows an example of this idea. There are 4 paths P0-P3 through a 

fault site, each having a delay distribution due to process variation. Assume we have a 

vector t only testing P1 and the longest path P0 is not covered. ∆0, ∆1 and ∆2 are the 

smallest slacks for P0, P1, and P2 under process variation. When ∆0<∆<∆1, DPi,∆(t) is 0; 

when ∆>∆2, DPi,∆(t) is 100%, because the tested path P1 is definitely slow; when 

∆1<∆<∆2, DPi,∆(t) increases from 0 to 100% as ∆ increases. In order to achieve high test 

coverage, the longest path P0 must be tested to eliminate the 0-DP region between ∆0 and 

∆1. Potentially longest path P2 should also be targeted to increase the DP between ∆1 and 

∆2. The main cost to compute the fault efficiency is on the sensitization check for all the 

paths whose length is between ∆1 and ∆2, which is not easy. 

 

 PDF P2 P1 

∆0 
∆1 

tmax 

P0 P3 

∆2 

Delay 

 

Figure 27. Fault coverage distribution. 
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Figure 28 shows the delay space [37] for two paths under process variation. If the 

paths have no correlation, the delay value combination can be any value within the 

rectangle. If the paths are 100% correlated, the delay value combination is a line. In 

reality, the correlation is somewhere between 0% and 100%, and the realistic delay 

space is the shaded area. Using correlation, delays on untested paths can be estimated 

from delays on tested paths [82], and those paths are dropped if tested ones are not 

faulty. 

 

 

Delay on path 1 

Delay on path 2 

dmax, p1 dmin, p1 

dmax, p2 

dmin, p2 

No correlation 

Perfectly correlated 

Reality: 

Partially correlated 

 

 

Figure 28. Delay space under different path correlations. 

4.4 Realistic Low Cost Fault Coverage Metric 

Our goal in using the low cost fault coverage metric is to reduce vector count by 

dropping faults with detection probability sufficient to achieve the desired test quality. If 

one path through a fault site is long and all others are much shorter, then testing the short 
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paths has no benefit. For example, in Figure 29, if path A-C has been tested, then there is 

no benefit in testing A-D, B-C or B-D, assuming these paths are never longer than A-C 

under local defects or process variation. For a fault site with several critical paths, testing 

more will increase detection probability. As shown in Figure 30, in addition to test path 

A-C, testing A-D, B-C and B-D will increase the chance of catching the defect. In the 

extreme case of a fault site with only short paths (Figure 31), a transition fault test is 

adequate and testing the longest short path will not increase defect detection probability. 

If a defect size is big enough to make the longest short path fail, it is very likely that this 

defect will make all short paths fail, since the chance that a local delay fault is big 

enough to make the longest short path fail, but make the little bit shorter path successful 

is low. 

 

Figure 29. Fault site with short and long paths. 

 

 

Figure 30. Fault site with long paths. 
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Figure 31. Fault site with short paths only. 

The definition of a “short” and “long” path is based on the worst-case path delay 

relative to the clock cycle, process variation, and the bridge and open resistance 

distributions. In general, a precise physical model to reflect the real process and defect 

environment is not available. Even if available, it would be too costly to use during test 

generation. In order to minimize test generation time, a simple model is desired. In this 

research, we use two assumptions to simplify the problem. First, we assume the process 

variation is independent for each path and influences delay by increasing the required 

delay guard band. The percentage bound α covers the influence of inter-die and intra-die 

variation [83], power supply and substrate noise, and capacitive coupling. Second, we 

consider that the local delay defect size due to resistive short or open has a guard band. 

The defect size to exceed this guard band requires a bridge resistance so small or open 

resistance so large that it nearly causes a transition fault. Figure 32 shows the typical 

increase in delay vs. bridge resistance [84]. For a given fault site, when Rbridge < RF, a 

resistive short behaves as a transition fault. ∆max is our preset guard band value. The 

longest path generation will stop when the worst case path delay plus ∆max is less than 

the specified clock cycle tmax. If the delay defect size is between ∆1 and ∆max 

(RF<Rbridge<Rt) and it causes the longest path to violate tmax, there will be some fault 

coverage loss by dropping the path, since the longest path is not considered long enough 



 65

to increase DP. If the bridge resistance is assumed uniformly distributed between 0Ω and 

40kΩ [85], the possibility of fault escape is very small. Obviously the closer ∆max is to 

∆1, the higher the fault coverage achieved. But it is difficult to accurately estimate ∆1 for 

every fault site. For simplicity, we set ∆max as several gate delays in our experiments. In 

practice, the more knowledge of process and defect behavior, the tighter the delay bound 

we can use while avoiding test escapes. 

 

Figure 32. Example of delay vs. bridge resistance. 

Based on these two assumptions, we set a detection probability threshold Pthreshold 

as a function of process variation (α), local delay fault guard band (∆max) and clock cycle 

(tmax), as expressed in (5): 

Pthreshold  • (1+ α) + ∆∆∆∆max = tmax                (5) 

This threshold can be adjusted to trade test vector count vs. fault coverage. 
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We use a heuristic to determine whether a path can be dropped based on its nominal 

delay Pnominal, as expressed in (6):  

Pnominal < Pthreshold                    (6) 

That is, whenever the maximum delay of a path under process variation plus local defect 

size guard band is less than the clock cycle time tmax, it is dropped from KLPG test 

generation. Top-off transition fault tests will be generated for those dropped fault sites 

that do not have any test. If a fault site has many long paths through it, the number of 

paths generated for this fault site (K) will be increased to increase the defect defection 

probability, until reaching a limit Kmax. 

4.5 KLPG with Realistic Low Cost Fault Coverage Metric 

CodGen generates 2K paths (K longest with rising transition and K longest with 

falling transition) through each line in the circuit. It currently drops a fault site once K 

rising and falling paths through it have been generated. This is true even if the fault site 

has only short (large slack) paths passing through it. This approach is inefficient, since 

the probability of such a large delay due to a resistive short or open at this fault site is 

essentially the same as a transition fault. Similarly, if a fault site has one very long path, 

and the remaining paths short, and the long path has been tested, the short paths can be 

dropped, since they contribute nothing to the coverage (e.g. path P3 in Figure 27). 

Exploiting this information will significantly reduce the vector count and ATPG time, 

due to an increase in fortuitous drops. We can use this savings to increase K on fault 
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sites with many low slack paths (such as P2 in Figure 1) to increase DP, since paths with 

little timing slack provide the highest fault detection probability. 

 

 

 

Figure 33. KLPG flow with low cost coverage metric. 
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Figure 33 shows the updated CodGen flow for a single fault site, including the 

proposed heuristics. In the preprocessing phase, topology information such as the static 

timing analysis (STA) delay of each gate is calculated, to help speed up the path 

generation. A path store is created to store partial paths, which are paths from a launch 

point (a primary input or scan cell output) but have not reached a capture point (a 

primary output or scan cell input). As introduced in section 1, esperance [30] is the value 

associated with each partial path. It is the sum of the length of the partial path and the 

STA delay from its last node to a capture point. Partial paths in the path store are sorted 

in non-increasing order of esperance. Once the esperance of the partial path is less than 

Pthreshold, the partial path is discarded and we stop test generation for this line. During 

each iteration of path generation, the first partial path in the path store is popped, and 

extended by adding one gate with largest max esperance. Then side input constraints to 

propagate the transition through the added gate under different sensitization criteria (e.g. 

robust or non-robust) are applied. Direct implications are used to identify local conflicts. 

If there is any conflict, this partial path will be identified as false and trimmed off. If the 

partial path becomes a complete path, a PODEM-like final justification is called to find a 

test vector.  The path delay upper bound is updated once a complete sensitizable path is 

generated. Then Pthreshold will be used to determine whether to stop path generation or 

generate more paths through this line. If the upper bound delay is less than Pthreshold, i.e. 

all remaining paths are too short to fail delay test, test generation for this line ends and 

the path store is released. On the other hand, we may increase K for lines with many 
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possible long paths to increase DP when the possible delay of a newly generated 

complete path is greater than Pthreshold. 

This low cost fault coverage KLPG flow works together with our dynamic 

compaction algorithm [62] to generate compact test sets. In the current implementation, 

the test generation strategy is to first generate a robust test for a line, then continue to 

generate non-robust test and finally a long transition test if there exists any path with 

delay greater than Pthreshold, as long as K is less than the specified Kmax. This approach 

assumes a robust path always has better test quality than a non-robust or long transition 

path with similar length. In our experiments, the distribution of potentially longest paths 

shows that most fault sites require only a few paths to be tested. For fault sites with 

many long paths, suppose several potentially longest paths have been tested. If the 

remaining potentially longest paths are only slightly longer or shorter than the tested 

ones, they have little fault coverage benefit, and these paths can be dropped. Thus a 

reasonable Kmax will be selected to limit the vector count while maintaining high DP. A 

Kmax of up to 5 was used in our experiments. The fault simulation results in [37] have 

indicated the fault efficiency or fault coverage saturated when increasing K value 1 to 5 

for the KLPG test, as shown in Figure 34 with an example circuit c7552. 

 



 70

99.6

99.7

99.8

99.9

100.0

1 2 3 4 5

K

F
a

u
lt

 E
ff

ic
ie

n
c

y
 (

%
) 

 
UB

LB

 

Figure 34. Fault coverage vs. K (circuit c7552).  

When KLPG test generation is finished, top-off transition fault tests are 

generated to cover the fault sites not fortuitously detected by KLPG. These are the fault 

sites that can only fail in the presence of a large local delay defect in combination with 

process variation. 

4.6 Experimental Results 

We performed experiments on full scan versions of ISCAS89 benchmarks and 

three industry designs (chip1, chip2a and chip3). Since we only have SDF models for 

some circuits, we use unit gate delays for all circuits to make comparisons. The 

maximum delay tmax is set to be 8% longer than the nominal delay of the longest testable 

path. It is assumed that there is only one spot defect in the circuit, and the circuit is 

subject to process variation.  
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4.6.1 KLPG with Low Cost Fault Coverage Metric  

In the first experiment, process variation is assumed to be ±20% of the nominal 

path delay and the local random spot defect guard band is 3 gate delays. We assume that 

local delay defects exceeding 3 gates are essentially transition faults. So Pthreshold is set to 

“(tmax-3)/120%”. Table 11 gives the results of CodGen using the low cost fault coverage 

metric in launch-on-capture test mode under different Kmax (up to 5). Column 1 gives the 

circuit name.   Column 2 gives the total number of lines in the circuit. Column 3 gives 

the number of paths tested under Kmax values of 1, 3 and 5 respectively. Kmax=n means 

the nth longest path through a line will be generated if and only if its nominal length is 

greater than Pthreshold. Column 4 shows the dynamically compacted vector count under 

different Kmax. The number of tested paths and vectors increases approximately linearly 

with Kmax. For chip1 and chip2a, the number of tested paths is small, which indicates that 

many lines are dropped because the longest paths through them are short, and will be 

covered by transition fault test. The average length of the tested paths is listed in column 

5. Column 6 shows the longest testable path length. As desired, the average length is 

close to the longest path length. Column 7 lists the transition fault coverage for the tested 

paths. For most circuits, the transition fault (TF) coverage is low, since the tested paths 

cover only a small fraction of the gates. In s35932, many paths are tested and the TF 

coverage is >50%. This is because this circuit is optimized to have many paths close to 

the maximum delay.  The last column in the table reports the CPU time under different 

Kmax.  
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Table 11.  KLPG with low cost fault coverage metric (LOC with 20% process 

variation). 

Circuit 

# Paths 

Tested 

(1/3/5) 

# Vectors 

(1/3/5) 

Av Path 

Length 

(1/3/5) 

Longest 

Testable 

Length 

Test 

Coverage 

(%) 

Time (m:s) 

(1/3/5) 

s5378 
108/286 

/419 
34/72/101 

21.54/21.42 

/21.42 
23 

6.04/6.17 

/6.13 
00:16/00:18/00:20 

s9234 
124/367 

/611 
50/97/154 

49.83/49.63 

/49.46 
59 

5.84/6.41 

/6.80 
06:48/06:32/06:57 

s13207 
8/24 

/40 
4/5/7 

59/58.88 

/58.65 
59 

0.82/0.82 

/0.82 
00:51/00:52/00:55 

s15850 
179/525 

/847 
123/353/525 

56.66/56.63 

/56.59 
58 

4.75/4.75 

/4.75 
03:08/03:22/03:34 

s35932 
5216/13984 

/21648 
22/68/80 

22.03/21.88 

/21.85 
25 

55.34/55.55 

/55.77 
11:15/31:11/43:46 

s38417 
1980/6057 

/10029 
132/240/ 405 

32.43/32.43 

/32.36 
41 

11.32/12.72 

/13.28 
07:58/12:13/18:50 

s38584 
363/1060 

/1682 
188/244/312 

48.60/48.64 

/48.66 
53 

2.43/2.45 

/2.45 
06:33/08:12/10:37 

chip1 20/55/61 2/4/5 
65.35/64.07 

/63.66 
67 

0.21/0.23 

/0.23 
39:57/32:26/33:28 

chip2a 5/15/23 4/10/14 
49.8/49.8 

/49.70 
51 

0.04/0.06 

/0.09 
09:48/09:28/09:43 

chip3 
1290/3729 

/5500 
384/587/692 

57.26/56.80 

/56.82 
64 

1.36/1.42 

/1.44 
149:50/197:37/242:13 

 

In the second experiment, process variation is set to ±30% and the local delay 

defect guard band is 3 gate delays. So Pthreshold is “(tmax-3)/130%”. Table 12 gives the 

results. Since Pthreshold is decreased, more paths with shorter nominal length will be 
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generated, as shown. For example, for s38417, with Kmax =5, 10,029 paths are tested with 

20% process variation, while 18,374 paths are tested with 30% process variation. The 

number of test vectors is sensitive to the parameters interacting with the circuit path 

delay distribution. It is important to set the guard band variables to reflect the real silicon 

environment. 

Table 12.  KLPG with low cost fault coverage metric (LOC with 30% process 

variation). 

 

Circuit 

# Paths 

Tested 

(1/3/5) 

# Vectors 

(1/3/5) 

Av Path 

Length 

(1/3/5) 

Longest 

Testable 

Length 

Test 

Coverage 

(%) 

Time (m:s) 

(1/3/5) 

s5378 
259/680/101

7 
71/147/192 

19.19/19.14/

19.13 
23 

15.12/15.26/

15.19 
00:17/00:22/00:25 

s9234 123/348/579 67/107/158 
49.50/49.80/

49.55 
59 

6.51/7.05/7.

53 
08:04/07:58/08:46 

s13207 
986/2813/46

39 

484/842/112

7 

48.08/47.98/

47.86 
59 

11.09/11.22/

11.49 
02:38/04:08/05:58 

s15850 
213/621/101

1 
131/369/549 

55.31/55.30/

55.15 
58 

5.65/5.65/5.

65 
03:12/03:17/03:43 

s35932 
5216/13984/

21648 
22/68/80 

22.03/21.88/

21.85 
25 

55.34/55.55/

55.77 
11:15/31:11/43:46 

s38417 
3700/11134/

18374 
300/530/833 

32.24/32.13/

32.03 
41 

19.85/20.22/

20.55 
16:14/25:05/39:15 

s38584 
389/1189/18

11 
206/289/366 

48.12/47.92/

48.18 
53 

2.56/2.67/2.

63 
06:44/08:49/11:33 

chip1 39/95/119 10/19/29 
59.97/59.31/

57.92 
67 

0.46/0.50/0.

51 
32:11/33:18/34:02 

chip2a 72/218/327 19/51/68 
42.89/42.18/

42.00 
51 

0.81/0.88/0.

85 
16:00/18:04/20:07 

chip3 
2580/7736/1

1585 

751/1349/15

97 

53.31/52.62/

52.60 
64 

2.98/3.18/3.

22 
4.8hrs/8hrs/10.2hrs 
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4.6.2 KLPG-5L vs. KLPG-5 vs. TF  

The KLPG-5 test targets the five longest rising and five longest falling paths 

through each fault site. A KLPG-5 test is composed of the longest robust rising and 

falling paths through each line, topped off with non-robust KLPG vectors, topped off 

with long transition fault vectors. As shown in Figure 25, most KLPG paths are short 

paths. Further, KLPG test generation for fault sites covered by short paths is expensive 

because longer false paths must be eliminated. In addition, shorter paths do not require 

as many vectors as longer paths, since they have fewer necessary assignments, 

permitting increased test compaction. A KLPG-5L test is composed of a KLPG-5 test 

with the low cost fault coverage metric, which drops fault sites with only short paths, 

topped off with transition fault tests for those dropped fault sites. If a fault site has 

several potentially longest paths exceeding the guard band of the metric, KLPG-5L will 

continue to generate them (up to 5 in our experiments).  Both KLPG-5 and KLPG-5L 

tests achieve the same transition fault coverage as a transition fault test set, but with 

higher quality, since a transition fault test has potential quality loss due to the possible 

propagation of glitches [8] and the uncertainty of the propagation path length. Table 13 

compares the KLPG-5 test size to KLPG-5L under process variation of 20% and local 

delay defect guard band of 3 gate delays, both in launch-on-capture mode. Column 1 

gives the circuit name. Column 2 shows the number of tested paths for the two tests. 

Column 3 gives the CPU time for the two tests. Column 4 shows the test generation 

speed up for KLPG-5L. Overall, KLPG-5L test generation is much faster than KLPG-5. 

The speed up is relatively small for most ISCAS89 circuits, and large for the three larger 
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industry circuits. For example, for chip2a, the CPU time of KLPG-5L is only 19.5 hrs 

compared to 100.5 hrs for KLPG-5, a 5.15x speed up. One special case is s9234, for 

which the speed up is 0.75x. The reason may be that top-off TF generation adds 

additional time. The other special case is s35932, for which the speed up is 1.05x. As 

explained earlier, s35932 has many near-critical paths that cannot be dropped using the 

low cost delay fault coverage metric.   

The last three columns in Table 13 show the vector count of KLPG-5, KLPG-5L 

and Transition Fault (TF) test. The TF test was generated by a commercial tool. The 

KLPG-5 test size is high for some large circuits, such as chip3 (19863 vectors). With the 

implementation of the low cost coverage metric, the KLPG-5L test has a much smaller 

test size (1296 vectors) with reasonable CPU time. Since top-off TF vectors are 

generated for the KLPG-5L test, the KLPG-5L test has the same TF coverage as KLPG-

5 and TF. For all circuits, our combined test set is smaller or only modestly larger than 

the transition fault test set, but with higher quality. 
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Table 13. KLPG-5 vs. KLPG-5L.  

Circuit 
# Paths Tested 

(KLPG-5/5L) 

Time (m:s) 

(KLPG-5/5L) 

Speedup 

Factor 

# Vectors 

KLPG-5 KLPG-5L TF 

s5378 8125/2779 02:00/01:00 2.00 559 253 194 

s9234 14543/3984 10:06/13:27 0.75 957 230 465 

s13207 21375/5974 13:16/07:16 1.83 2248 358 382 

s15850 19132/5315 12:50/08:02 1.60 1169 612 231 

s35932 56369/27554 34:57/33:22 1.05 86 72 68 

s38417 90739/25395 145:34/63:24 2.30 1415 255 365 

s38584 63082/19673 102:07/39:34 2.58 826 514 528 

chip1 107782/31947 548:00/341:19 1.61 3388 1602 1900 

chip2a 99052/13492 100.5hrs/19.5hrs 5.15 9464 1199 2537 

chip3 186733*/82373 146hrs*/64.8hrs 2.25* 19863* 1296 1445 

*
For chip3, only robust tests are generated in the KLPG-5 test. 
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4.7 Conclusions 

We have developed a realistic low cost fault coverage metric that considers both 

process variation and local delay fault. Simple heuristics based on process variation and 

local delay defect sizes are used to filter out paths and accelerate CodGen KLPG 

generation [86]. Transition fault tests are generated for dropped fault sites to ensure the 

test quality. Experimental results show that path generation with this fault coverage 

metric is efficient and the vector count is practical. Monte Carlo simulation and real 

silicon data will be needed to verify the effectiveness of this method. 

During test generation, we currently treat path delays as independent. This is 

increasingly realistic for gate delays, due to random dopant fluctuation, but is not true 

for interconnect delays. In the future, structural and spatial correlation will be explored 

to reduce the guard band. This can be particularly beneficial for circuits with many near-

critical paths. 
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5. EXPERIMENTS ON SILICON 

 The industrial design selected for the experiments is an AMD quad-core 

microprocessor. The microprocessor is a 45 nm technology design and contains a total of 

11.2M gates in the test model, excluding embedded arrays and scan flip-flops. Each core 

test model contains 3.4M gates, 160,000 LSSD-type scan flip-flops, and 746,000 

unscanned flip-flops (that are contained in the surrounding untested cores and logic). 

There are several clock domains, but ATPG only runs for a given clock domain using 

launch-on-capture. 

5.1 Flow of AMD Experiments 

 The complexity of a microprocessor brings new challenges for KLPG test. A set 

of tools have been developed in our lab for the AMD experiments. Figure 35 shows the 

complete KLPG test generation flow. The right side lists all the necessary files for each 

stage. In the first step, the Verilog netlist and library files are fed into a parser. The 

parser will flatten the hierarchical netlist and library and parse the hierarchical names 

into an easy-to-parse format used by CodGen. Then the hierarchical information is not 

available anymore in the flattened design. Each cell/net is renamed with simple indices, 

such as U100, N150, etc. The original library file had to be modified, since some cells 

were described using Verilog data flow constructs, while the parser only supports 

structural Verilog. 

In the second step, a scan chain tracing tool traces the scan chain forward from 

scan input to scan output to identify every scan cell in the flattened netlist, and the logic 
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between the scan cells. The parsed scan chain report will then be verified against the 

Mentor Graphics FastScan scan chain report. 

 In the third step, the FastSscan do file and procedure file are used to map the test 

constraints and clocks in the parsed netlist. The do file and procedure file specify test pin 

and internal preset values, clock sources, test clocking scheme, functionality of each test 

pin, etc. The files for transition fault test are reused for KLPG test. The constraints and 

clocks must be mapped correctly, or the test will be invalidated, and potentially the chip 

will be damaged. 

 In the test generation stage, 2K longest paths through each line (K paths with 

rising transitions and K paths with falling transitions) are generated. In these experiments, 

K=1. Statically-compacted patterns are saved in ASCII format for later processing. The 

steps prior to test generation only need to be run once per design, as long as the design is 

not modified. 

 The ASCII-format test patterns cannot be applied directly on the tester. Any 

mismatches in scan-out data must be identified and masked by FastScan re-simulation, 

which is a standard step used in industry. Miscompares on target paths to good machine 

values and outputs on all untargeted side paths will be masked. Then standard test 

interface language (STIL) format patterns are written out by FastScan for tester use. 
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Figure 35. KLPG flow for AMD design. 

5.2 Improved KLPG for AMD Design 

A number of improvements were made to CodGen to handle the AMD processor. 

First, LSSD-type scan cells had to be supported, and then support for extensive and 

complex clock gating had to be added. Power dissipation is a critical factor in 

microprocessors. Clock power usually consumes a 30-35% of total microprocessor 

power [87], due to power consumed by combinational logic fed by the clock signals, 
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flip-flops and clock buffer tree in the design. Clock gating is one technique used on 

many synchronous circuits for power-saving. The basic idea is to turn off the clock when 

it is not needed. To save power, additional logic is added into the clock tree to disable 

portions of the circuitry. For flip-flops in a clock gated-off part of the circuit, their status 

is unchanged, so that their switching power consumption is zero.  

Extensive clock gating is implemented in AMD microprocessors to balance the 

power of the whole chip. There are two types of clock gaters in this design, coarse clock 

gater and fine clock gater. Coarse clock gaters that control large regions of the chip are 

under direct scan chain control, so do not require additional ATPG effort to justify their 

values. Fine clock gaters must be justified at the launch flip-flop on the launch cycle, and 

justified at the capture flip-flop on the capture cycle. Our approach is to find the path 

first, and then justify the clocks for the complete path. In the AMD circuits, most clocks 

can be justified within the standard two capture cycles of a launch-on-capture test. To 

simply the clock path justification, CodGen only justifies the clock on the target path. 

For the clocks on all side paths, ATPG assumes they are justified. This leads to 

miscompares in pattern simulation for the side path outputs. These miscompares are 

masked during the FastScan re-simulation step.  

Figure 36 shows an example of clock path justification. Clouds stand for the 

combinational logic. G1 and G2 comprise a standard LSSD scan cell. If there is a ‘1’ 

assigned to Q output of G1 in the second clock cycle, ATPG will try to assign and justify 

‘1’ on D input of G1 in the first clock cycle in launch-on-capture mode, since the final 

value on Q is derived from the initial value on D.  Additionally, clock pin C of G1 must 
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be justified to be active to capture the value from the D pin to the Q pin. In the clock tree 

feeding pin C of G1, a 2-input AND gate A1 is fed by a clock source and the output of a 

3-input AND gate A2. A2 is fed by a coarse clock gater (G5) and two fine clock gaters 

(G3 and G4).  G3 and G4 are L1 latches of two LSSD cells. The value of G5 is preset to 

1 by ATPG constraints. In order to make the clock active on the C pin of G1 in the 

capture cycle, the initial value on the output of A2 must be ‘1’ to activate the clock on C. 

When ATPG continues backtracing A2 to its three inputs, two fine clock gaters G3 and 

G4 must be ‘0’ and ‘1’ respectively in the first clock cycle. The test is only valid when 

there is no conflict on G3 and G4.  

  

 
 

Figure 36. Example of clock path justification. 
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5.3 Experimental Results 

 Experiments are performed on two small modules in the microprocessor chip and 

then extended to one whole core.   

5.3.1 KLPG  Results for Two Modules 

 Table 14 shows the ATPG results of KLPG-1 test for module 1 and module 2. 

Module 1 has 200K gates and relatively few unscanned flip-flops, and is relatively easy 

to test for both TF and KLPG tests. It does not contain embedded memory. Note that the 

vast majority of paths have a robust test or non-robust test, so the overall KLPG test 

quality is very high. Module 2 contains 214K gates and more unscanned FFs, and 

features such as half-cycle paths that CodGen currently does not support. This makes it 

difficult for KLPG test, in coverage, CPU time and pattern count. The test quality is still 

high in terms of path robustness. Commercial transition fault test generates few test 

patterns, but the coverage is still poor. 

Table 14. KLPG-1 test for module 1 & module 2. 

Circuit Module 1 Module 2 

# KLPG-1 Patterns 1229 6860 

# KLPG-1 Paths 208252 60643 

# Robust Paths 205260 55151 

# Non-robust Paths 2452 5202 

# Long TF Paths 540 290 

TF Coverage (%) 94.5 76.7 
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5.3.2 Experimental Results for Microprocessor Core 

 One microprocessor core test model is comprised of 3.4M gates, 160,000 LSSD-

type scan flip-flops, and 746,000 unscanned flip-flops (that are in the rest of the chip).  

Among the unscanned flip-flops, 636,000 have uncontrollable values in them, while the 

remainder are constant 0 or 1, or transparent, after test initialization.  

A. KLPG for Microprocessor Core 

 Since four cores in this quad-core microprocessor are identical, we only 

generated robust KLPG tests with K=1 for one core. The test patterns for one core can be 

later applied to all cores in test mode. Table 15 shows the ATPG results. To fit ATPG 

into our test schedule, dynamic compaction was not performed. The low cost fault 

coverage metric was not used, due to lack of information about the process. Test 

generation was performed on an eight-core processor, with the ten separate ATPG 

processes taking in aggregate 92.5 CPU days, using approximately 10 GB memory per 

process. The statically compacted KLPG test with one longest robust rising and falling 

path per line has 143,094 patterns testing 1,239,752 distinct paths. The care bit density 

of KLPG patterns is 0.35%, with a max density of 5.42% on the first pattern. The 

transition fault test for this core has 21,600 patterns. KLPG has a significantly larger test 

volume than TF test. This is partly due to the fact that KLPG test only uses static 

compaction [29][88][89] while the transition fault tests use advanced dynamic 

compaction algorithms [90][91][92]. The other reason is that the transition fault tests 

utilize test compression techniques [93][94][95][96][97] in microprocessor to further 
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reduce the test size. Test compression can normally provide 10X to 100X or even larger 

reduction in test data volume. Test compression methodologies are not supported by 

CodGen. Dynamic compaction should reduce the pattern count by 4x.  

Table 15. Robust KLPG results for AMD microprocessor. 

# Patterns 143,094 

# Paths 1,239,752 

CPU Time 92.5 Days 

 

B. FMAX Test 

FMAX is defined as the maximum clock frequency at which the circuit can 

function correctly for all the test patterns, at a specified power supply voltage. FMAX 

tests were performed on 100 chips with 143,094 KLPG test patterns and with 21,600 

high compressed transition fault (TF) test patterns respectively.  

FMAX test was applied to all four cores in 100 chips that pass system test. For 

all 400 cores in 100 chips, experimental results show a distribution of FMAX across the 

chips for KLPG.  
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Figure 37 shows the FMAX distribution for KLPG test for Core0 of 100 chips. 

Chips with minimal FMAX are used as reference. Three chips (chip 67, 96 and 97) with 

minimal FMAX are slower parts. For other chips, KLPG FMAX is between 7.3MHz and 

330MHz higher.  

 

Figure 37. FMAX distribution for robust KLPG test (Core0). 
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Figure 38 shows the FMAX distribution for KLPG test for Core1 of 100 chips.  

 

Figure 38. FMAX distribution for robust KLPG test (Core1). 
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Figure 39 shows the FMAX distribution for KLPG test for Core2 of 100 chips.  

 

Figure 39. FMAX distribution for robust KLPG test (Core2). 
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Figure 40 shows the FMAX distribution for KLPG test for Core3 of 100 chips.  

 

 

Figure 40. FMAX distribution for robust KLPG test (Core3). 
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Figure 41 shows the average FMAX distribution for KLPG test in chip level.  

 

 

Figure 41. FMAX distribution for robust KLPG test (chip level). 
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 In summary, Figures 37-41 give the FMAX distribution of KLPG test. It 

indicates some chips are faster than others. Since only robust paths are targeted in the 

current experiments, the small defects can only be tested through non-robust test or long 

TF paths are missed, which introduces some coverage loss. To further improve the test 

quality of our test, top-off non-robust and long transition fault paths must be added. 

However, if test volume and ATPG time is a concern, the transition fault test can be the 

top-off test for robust KLPG test.  
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6. SUMMARY AND FUTURE WORK 

6.1 Summary 

This dissertation focused on reducing the pattern count and increasing the test 

quality for small delay defect test. To reduce the test size for small delay test, a new 

dynamic compaction algorithm for generating compacted test sets for K longest paths 

per gate (KLPG) in combinational circuits or scan-based sequential circuits has been 

developed. This algorithm uses a greedy approach to compact paths with non-conflicting 

assignments together during test generation. To make our dynamic compaction approach 

practical for industrial use, recursive learning algorithm has been implemented to 

identify more necessary assignments for each path, so that the path to test pattern 

matching using necessary assignments is more accurate. Experimental results for 

ISCAS89 benchmark circuits and industry circuits show that the pattern count of KLPG 

can be significantly reduced (up to 4x compared to static compaction) using the 

proposed method. The pattern count after dynamic compaction is comparable to the 

number of transition fault tests, while achieving higher test quality. This algorithm is 

generic in nature and can be applied to any test generation procedure. 

To increase the test quality, a realistic low cost fault coverage metric targeting 

both global and local delay faults has been developed. This metric considers the 

combined effects of spot defects and process variation, and takes advantage of inter-die 

process correlation so that the coverage is much closer to the real test quality. It suggests 

the test strategy of generating a different number of the longest paths for each line in the 
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circuit while maintaining high fault coverage. Using our low cost fault coverage metric, 

the number of paths and type of test depends on the timing slack of the paths. For those 

fault sites that do not have any robust or nonrobust tests, transition fault tests are 

generated for the longest paths through those sites. This metric has been implemented 

into the CodGen ATPG tool. Experimental results show significant reductions in test 

generation time and vector count on ISCAS89 and industry designs. 

 A complete test generation flow has been successfully implemented on an AMD 

quad-core microprocessor. CodGen has been improved to deal with the complex clock 

gating and LSSD-type scan cells. Silicon data has been collected to show the advantages 

of KLPG test. CodGen is the first university ATPG tool capable of generating small 

delay defect test for a commercial microprocessor.  

6.2 Future Work 

There are several areas that future work can focus on, as discussed below. 

6.2.1 Advanced Search Algorithm 

The CodGen KLPG ATPG uses a PODEM-like algorithm for final justification 

once a complete path has been identified, free of direct implication conflicts. For 

individual paths, this algorithm had a high success rate and relatively low CPU cost. 

However, for larger circuits (1M+ gates), and in dynamic compaction, this algorithm is 

too expensive, taking substantially more than 50% of the total CPU time. As is the case 

for dynamic compaction, we will consider a new search algorithm suitable for our path 
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delay test problem. The current KLPG algorithm uses about 10 GB of memory to 

generate robust KLPG paths for a 3.4M gate processor core (excluding flip-flops), or 

almost 3 KB/gate. This does not include any in-memory pattern storage or auxiliary data 

structures for dynamic compaction, which roughly doubles memory consumption. This 

memory consumption must be drastically reduced to make the KLPG algorithm practical 

in industry. The development of a new search algorithm will include attention to 

memory efficiency as well. 

6.2.2 Pseudo-Functional Test 

Pseudo-functional test [98][99][100][101] constrains the test patterns to be 

functional states or near-functional states. If the pattern is a functional state, then these 

tests can be viewed as short bursts of functional tests. The challenge in pseudo-

functional test is that it is a form of sequential test. A straightforward extension of our 

KLPG test approach would be to use time frame expansion to search for and justify the 

K longest sensitizable path over multiple cycles through each line in the circuit. This 

would implicitly handle test of time borrowing schemes or setup/hold time metastability 

issues.  

6.2.3 Test Generation for Signal Crosstalk 

Delay increase or decrease due to capacitive coupling is considered in the 

CodSim delay fault simulator [102], but is not considered in the CodGen ATPG. If a 

capacitively coupled line has a transition that is the opposite of the target path, and the 

transition timing is aligned with the target path transition, it will cause the path to slow 
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down. Alignment is uncertain due to process variation, supply noise, crosstalk and delay 

defect. This can be viewed as an integer optimization problem, since the goal is to 

generate the largest delay increase by sensitizing the set of coupled transitions that 

causes the largest delay increase on the target path. A more efficient way to deal with 

coupling faults in CodGen will be explored in the future. 

6.2.4 Dynamic Compaction Considering Power Supply Noise and Power Dissipation 

Another challenge in dynamic compaction is incrementally estimating power 

supply noise [103] and power dissipation during the compaction process, and the 

corresponding path delay changes for all paths currently compacted into the pattern. The 

future test generation should keep noise and power at a reasonable level. An initial 

supply noise-aware dynamic compaction framework has been proposed in [104] to 

control power supply noise during test generation.  
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