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ABSTRACT 

 

Numerical Simulation of Breaking Waves using  

Level-Set Navier-Stokes Method. (May 2010)  

Qian Dong, B.S., Zhejiang University 

Chair of Advisory Committee: Dr. Hamn-Ching Chen 

 

In the present study, a fifth-order weighted essentially non-oscillatory (WENO) 

scheme was built for solving the surface-capturing level-set equation. Combined with 

the level-set equation, the three-dimensional Reynolds averaged Navier-Stokes (RANS) 

equations were employed for the prediction of nonlinear wave-interaction and wave-

breaking phenomena over sloping beaches.  

In the level-set finite-analytic Navier-Stokes (FANS) method, the free surface is 

represented by the zero level-set function, and the flows are modeled as immiscible air-

water two phase flows. The Navier-Stokes equations for air-water two phase flows are 

formulated in a moving curvilinear coordinate system and discretized by a 12-point 

finite-analytical scheme using the finite-analytic method on a multi-block over-set grid 

system. The Pressure Implicit with Splitting of Operators / Semi-Implicit Method for 

Pressure-Linked Equation Revised (PISO/SIMPLER) algorithm was used to determine 

the coupled velocity and pressure fields. The evolution of the level-set method was 

solved using the third-order total variation diminishing (TVD) Runge-Kutta method and 
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fifth-order WENO scheme. The accuracy was confirmed by solving the Zalesak's 

problem. 

Two major subjects are discussed in the present study. First, to identify the WENO 

scheme as a more accurate scheme than the essentially non-oscillatory scheme (ENO), 

the characteristics of a nonlinear monochromatic wave were studied systematically and 

comparisons of wave profiles using the two schemes were conducted.  To eliminate 

other factors that might produce wave profile fluctuation, different damping functions 

and grid densities were studied. To damp the reflection waves efficiently, we compared 

five damping functions. The free-surface elevation data collected from gauges 

distributed evenly in a numerical wave tank are analyzed to demonstrate the damping 

effect of the beach.  

Second, as a surface-tracking numerical method built on curvilinear coordinates, 

the level-set RANS model was tested for nonlinear bichromatic wave trains and breaking 

waves on a sloping beach with a complex free surface. As the wave breaks, the velocity 

of the fluid flow surface became more complex.  Numerical modeling was performed to 

simulate the two-phase flow velocity and its corresponding surface and evolution when 

the wave passed over different sloping beaches. The breaking wave test showed that it is 

an efficient technique for accurately capturing the breaking wave free surface. To predict 

the breaking points, different wave heights and beach slopes are simulated. The results 

show that the dependency of wave shape and breaking characteristics to wave height and 

beach slope match the results provided by experiments. 
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CHAPTER I 

INTRODUCTION 

 

Background 

On Sept. 13, 2008, Hurricane Ike struck the Texas coast near Galveston. After 

inspection, severe beach erosion and prominent over-wash fans were observed 

throughout the study area. (Ewing et al., 2009) It is well known that hurricanes can cause 

severe damage due to the extremely high winds, storm surge and breaking waves. 

Currents induced by breaking waves are the driving mechanism for sediment transport, 

which leads to beach erosion and accretion. An accurate study of the wave-breaking 

process in the surf zone is particularly important in understanding erosion problems and 

impact forces on offshore and near-shore structures. 

The wave-breaking process is a highly nonlinear phenomenon involving two-phase 

flow and turbulent flow. The greatest difficulties in the simulation of wave breaking are 

in the calculation of the free-surface profile. Conventionally, free surface is assumed to 

be continuous and is a material surface in numerical models. However, these are no 

longer valid in breaking waves (Lin and Liu, 1998a). Most existing numerical models 

are not capable of obtaining accurate solutions for the free surface of breaking waves. 

They simulate the breaking process by adding a dissipation term to the depth-integrated 

momentum equations so that the velocity field is invalid.  Moreover, turbulent kinetic 

energy is inadequately performed in these models. 

______________ 
This thesis follows the style of American Society of Civil Engineering Journal. 
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More recently, the numerical simulation of unsteady waves has improved 

significantly. The present stage of Navier-Stokes equations-based numerical modeling of 

breaking waves can be classified into three levels: (I) those that solve the Navier-Stokes 

equations directly, contain no turbulence models (Miyata, 1986), or include constant 

eddy viscosity in both space and time (Petit et al., 1994); (II) those that solve the RANS 

equations (Lemos, 1992; Lin and Liu, 1998a; Lin and Liu, 1998b; Bradford, 2000, and 

Christensen et al., 2000); (III) and those that solve the space-filtered Navier-Stokes 

equations (Zhao and Tanimoto, 1998; Wijayaratna and Okayasu, 2000; Christensen and 

Deigaard, 2001). In the present study, the level-set finite-analytic Navier-Stokes (FANS) 

method of Chen and Yu is employed for capturing the breaking-wave surface. This 

method was generalized from the chimera RANS method of Chen and Chen (1998) and 

Chen et al. (2000) to incorporate an interface-capturing method based on the level-set 

method of Osher and Sethian (1988). For purposes of discussion, we present the 

techniques in the context of wave breaking over a sloping beach.  

Numerical Simulation of an Overturning Wave Using the Level-Set Method 

The numerical models of breaking waves can be classified into two methods: the 

interface-tracking method and the interface-capturing method (Ferziger and Peric, 1999). 

The interface-tracking method follows the free surface motions and uses boundary-fitted 

grids that are readjusted in each time step whenever the free surface moves. The 

interface-capturing method does not define a sharp free-surface boundary. Instead, the 

computation is performed on a fixed grid, which is extended beyond the free surface and 

the shape of this free surface is determined by cells that are partially filled. A variety of 
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numerical methods in this interface-capturing approach have been developed over the 

past several decades. Among them, numerical models based on solving the full Navier-

Stokes equation have become increasingly popular. This approach can provide full 

details of the flow in the surf zone, ranging from the breaking process to bore formation, 

run-up, and backwash. One of the difficulties in breaking wave simulation is free surface 

tracking because the free surface is set on an arbitrary moving boundary. Three typical 

methods for this approach are the marker and cell (MAC) scheme (Harlow and Welch, 

1965), volume of fluid (VOF) scheme (Nichols et al., 1980; Hirt and Nichols, 1981), and 

the level-set method (Osher and Sethian, 1988). 

The MAC method presented by Harlow and Welch (1965) was the first attempt 

made to simulate the time-dependent viscous, incompressible fluid flow with a free 

surface. A finite difference technique was used to discrete incompressible, two-

dimensional Navier-Stokes equations on a uniform Cartesian-staggered grid system and 

the velocity boundary conditions at the free surface are based upon the requirement of 

mass conservation. The essential principal concept of free surface advancement in the 

MAC method is that the coordinates of marker particles distributed everywhere in the 

computational domain are assumed to be known at the beginning and moved according 

to the velocity components in their vicinities. Subsequently, improved versions about 

this Lagrangian technique have been reported; e.g., SMAC (Amsden and Harlow, 1970), 

SM (Chen et al., 1991), and GENSMAC (Tome and Mckee, 1994) etc. 

 Opposite to the Lagrangian technique mentioned previously, the VOF method 

originally proposed and developed by Hirt and Nichols (1981) was based on the Eulerian 
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principle. This method can simulate complex free surfaces, including fluid merging and 

reconnection. Locating the free surface is accomplished by using a specific function 

defined as the fractional volume ratio of the cell occupied by fluid. The modified 

versions of VOF method have been widely used to track the interfaces between different 

fluids.  

Recently, a novel technique presented by Sussman et al. (1994) was derived for 

computing the motion of two-phase flow that allows for large density ratios, surface 

tension and jumps in viscosity. A level-set method (Osher and Sethian, 1988) was 

proposed for capturing the interface between two fluids, and can be generalized easily to 

three-dimensional problems. This new treatment of the level-set method provides 

another way to compute the interface separation and combination such as the motion of 

air bubbles in water or falling water drops in air. However, numerical diffusion can arise 

as the time advances.  Numerous researchers  such as Sussman et al. (1998), Peng et al. 

(1999), Sethian (2001), and Enright et al. (2002) attempted to modify the traditional 

level-set method and develop a more accurate and efficient solution algorithm to reduce 

the computational effort. 

In the present study, we used the level-set method in conjunction with the chimera 

RANS method of Chen and Chen (1998). The governing equations are formulated in a 

curvilinear coordinate system and discretized using the finite-analytic method of Chen et 

al. (1990) A numerical wave tank model was developed to simulate the propagating 

wave over a sloping beach. To generate the anticipated waves, a piston-type wave maker 

was located upstream from the wave. The evolution of the level-set method was solved 
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using the third-order TVD Runge-Kutta method (Yue et al., 2003) and fifth-order 

WENO scheme (Liu, Osher, and Chan, 1994). 

Boundary Conditions and Buffer Domain Treatment  

For numerical simulations of viscous compressible flow, most models are 

performed using periodic boundary conditions in the stream-wise direction. This kind of 

“temporal setting” needs only a relatively small computational domain in the stream-

wise direction. The periodicity assumption, which limits the applicability of these 

simulations, has been directly compared with physical experiments (Wasistho, 1997). To 

make the model much more general, we need to identify a more general setting where 

there is no periodicity in the stream-wise direction; therefore, artificial inflow and 

outflow boundaries are needed. 

Another computational reference frame called a “spatial setting” is fixed in space 

where the flow enters the domain through the inflow boundary and leaves through the 

outflow boundary. The major drawback of this type of simulation is that the 

computational effort is considerably more demanding because a much larger stream-

wise extent of the computational domain is required. Also, it is difficult for these spatial 

simulations to generate consistent and accurate inflow and outflow boundary conditions. 

The boundary conditions should be consistent to ensure the well-posedness of the 

Navier-Stokes equations. On the other hand, an outflow boundary condition is needed to 

prevent spurious numerical reflections as much as possible that can disturb the solution 

within the domain. Stable outflow boundary conditions for compressible viscous flow 

are difficult to specify, especially when large disturbances are considered. The use of an 
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additional buffer domain in the vicinity of the wave-tank boundary is indispensable, in 

particular for subsonic flow, to efficiently dampen wave reflections from the outflow 

boundary. In this study, the spatially evolving boundary layer over a flat plate is 

evaluated.  The focus in this work is to improve the outflow boundary treatment by 

adding a buffer domain in the vicinity of the outflow boundary, in which the 

disturbances are strongly reduced and the flow is gradually brought back to the laminar 

base flow.  

Presentation Outline  

     In this method, the free surface flows are modeled as immiscible air-water two-phase 

flows and the free surface itself is represented by the zero level-set function. 

Calculations were performed for two-dimensional problems like bichromatic wave and 

beach-breaking flow problems involving violent free surface motions. The level-set 

RANS method was then employed for simulating the breaking wave on a sloping beach. 

The numerical results clearly demonstrated the capability of the level-set method to deal 

with complex free-surface flows involving breaking waves. 

Chapter II introduces the general RANS equation and the level-set function. In this 

mathematical model, both water and air flows are solved in curvilinear coordinate 

systems. By formulating the RANS equation with the level-set function in a transformed 

plane, our mathematical model is capable of dealing with complex flow surfaces and 

configurations. 
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 Chapter III describes the numerical scheme for level-set equation and RANS 

equations. The third-order TVD scheme and fifth-order WENO scheme are used to 

discretize the level-set equation. 

Chapter IV validates the numerical model by systematic tests on the damping 

function, grid density and scheme order. 

Chapter V presents the performance of this model on bichromatic wave trains and 

breaking waves on a sloping beach. The properties of breaking points for different cases 

are described in detail.  A comparison of different cases matches the simulation results 

provided by Garzon and Sethian (2006). 

Chapter VI presents the summary and conclusions. 
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CHAPTER II 

GOVERNING EQUATIONS 

Introduction 

This chapter introduces the general equation Reynolds-Averaged Navier-Stokes 

(RANS) and level-set function. In this mathematical model, both water and air flows are 

solved in curvilinear coordinate system. By formulating RANS with level-set function in 

transformed plane, our mathematical model is convenient to deal with complex flow 

surface and configurations. 

Level-Set Method 

Level-set method is widely used for capturing interface evolution. The underlying 

idea behind level-set methods is to embed an interface Γ  in 3R  which bounds an open 

region Ω ⊂ 3R as the zero level-set of a higher dimensional function . (Enright et 

al., 2002). 

),( tx
→

φ

For air-water two phase flow, the level-set function φ has the following properties, 

0),( >
→

txφ    for                                               Ω∈
→

x

0),( ≤
→

txφ    for                                         (1) Ω∉
→

x

which means φ < 0 in air region, φ > 0 in water region, and φ = 0 on the air-water 

interface. We maintain the level-set function as a smooth distance function allowing us 

to give the interface a thickness fixed in time. Density and surface tension both depend 

on the level-set function being a distance function. 
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In the beginning of the calculation, the value of φ is the physical distance from the 

interface.  It varies smoothly across the interface and is advected by the local velocity 

field which is externally given using the advection equation 

0V
t
φ φ∂

+ ⋅ ∇ =
∂

r

                                        (2) 

∇  is the gradient operator and  x y zV u v wφ φ φ φ⋅∇ = + +
uur

 

The interface can be captured at any time by locating the zero level-set. In general, 

the computed φ  may not remain the signed distance from the interface and needs to be 

reinitialized for every time step.  Sussman et al. (1994) proposed that this be done by 

solving the following equation until the steady state is reached: 

0( ) (1 )signφ φ φ
τ

∂
= ⋅ − ∇

∂                                     (3) 

where )( 0φsign is a one-dimensional smeared out signum function approximated 

numerically as: 

)( 0φsign 0
2

0 ( )2x
φ

φ
=

+ Δ
                                      (4)                            

The advantage of the level-set method is that one can perform numerical 

computations involving curves and surfaces on an Eulerian approach (with a fixed 

Cartesian grid). Also, the level-set method makes it easier to follow shapes with changed 

topology. 

In order to void the solution dissolution, a transition zone nearby the zero level-set 

is built. The transition zone is defined by | |φ ε< , which is half the thickness of the 
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interface. In the relative thick transition zone, some fluid properties should be smoothed 

by the Heaviside function ( )H φ : (Sethian, 2001) 

0
1 1( ) [1 sin( )]
2

1

H φ πφφ
ε π ε

= + +

⎧
⎪⎪
⎨
⎪
⎪⎩

     
if

if
if

φ ε
ε φ ε
φ ε

< −
− ≤ ≤

>
                           (5) 

ε  is a prescribed small number, which is set to be xΔ×2 . 

Thus, some fluid properties including density and viscosity will be smoothed in this 

way: 

( ) ( ) ( )
( ) ( ) ( )

a w a

a w a

H
H

ρ φ ρ ρ ρ φ
μ φ μ μ μ φ

= + − ⋅⎧
⎨ = + − ⋅⎩                                    (6) 

In our algorithm, the front must have a uniform thickness; consequently, we must 

have 1=∇φ  when φ < ε . A function that has this property is a signed distance function 

near the front. Although we can initialize φ  in this way, it could not remain the same 

feature automatically under the evolution of Equation 2.7. Therefore, φ  must be 

reinitialized every time step to remain a distance function near the front as the 

computation proceeds. Re-initialization algorithms maintain the signed distance property 

by solving the following equation to steady state: 

)1()( 0 φφ
τ
φ

∇−⋅=
∂
∂ sign                                           (7) 

  
22

0

0
0

)(
)(

x
sign

Δ+
=

φ

φφ  

τ is fractious time, and is grid size. xΔ
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This guarantees that φ has the same sign with zero level-set 0φ  and satisfies the 

condition that |∇φ| = 1. Further details could be referred to Sussman et al. (1994, 1998, 

1999). The level-set method was shown to be effective in handling topological merging, 

breaking and self-intersecting of interfaces typically encountered in violent free surface 

motion problems.  

RANS Equations 

The Navier-Stokes equations are rewritten in the level-set formulation. Both density 

and surface tension depend on an assumption point that the level-set function is a 

function of distance. The fluid properties are assumed to vary smoothly across a narrow 

transition zone around the free surface. This enables us to obtain accurate and stable 

numerical results for violent free surface motions encountered in the simulation of 

breaking wave on sloping beach. 

It is assumed that both water and air are governed by the incompressible Navier-

Stokes equations (Sussman et al., 1998): 

2

2

'( ' ') '
'
'( ' ') '
'

w w w

a a a

V V V g V p
t
V V V g V p
t

ρ ρ μ

ρ ρ μ

⎧ ∂ '

'

+ ⋅∇ = + ∇ − ∇⎪⎪ ∂
⎨

∂⎪ + ⋅∇ = + ∇ − ∇⎪ ∂⎩

uur
uur uur ur uur uur

uur
uur uur ur uur uur

                      (8) 

ptV ,,
→

are normalized velocity, time and pressure. They are normalized using the 

following three dimensionless variables: 

0
2

0 0 0

' ' ', ',
w

UV t pV t t p
U t L Uρ

= = = =
uur

ur
                                     (9) 
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In addition, the non-dimensional density ( )ρ φ and non-dimensional 

viscosity ( ) ( ) / ( )ν φ μ φ ρ φ=  can be represented as below: 

( ) (1 ) ( )

( ) (1 ) ( )

w w

w w

H

H

ρ ρρ φ φ
ρ ρ
μ μμ φ φ
μ μ

⎧ = + − ⋅⎪⎪
⎨
⎪ = + − ⋅
⎪⎩

                                           (10) 

After dividing by and combining those two equations together, the 

general Navier-Stokes equations will be: 

2
0 /wU Lρ

,3 2
2

( ) 1
Re ( )

iV V V V p
t Fr

δ ν φ
ρ φ

∂
+ ⋅∇ = − + ∇ − ∇

∂

ur
ur ur ur

                              (11) 

where Froude number 
2

2 0UFr
gL

= and Reynolds number 0Re w

w

U Lρ
μ

= . 

The Navier-Stokes equations for two-fluid flows were written in similar form by 

Unverdi & Tryggvason (1992). The form of the surface tension we use here is developed 

by Brackbill et al. (1992) and Chang et al. (1996).  

In curvilinear coordinate, the continuity and momentum equations will be (Chen et 

al. 1990 and Pontaza et al. 2005):  

3

1

3
,32
2

1

0

1 ( )( )
( ) Re

i
i

i

i j ii i
j ij j i

i

U
x

u uU U pU U
t x x x Fr

δν φ
ρ φ

=

=

∂⎧ =⎪ ∂⎪
⎨

∂∂ ∂ ∂⎪ + + + − ∇ +⎪ ∂ ∂ ∂ ∂⎩

∑

∑ 0=

                (12) 

where 
23

2

1
j j

i x x=

∂
∇ =

∂ ∂∑ . 
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The Reynolds stress i ju u is related to the corresponding mean rate of strain through 

an isotropic eddy viscosity tν : 

2( )
3

ji
i j t ijj i

UUu u k
x x

ν δ
∂∂

− = + −
∂ ∂

                                       (13) 

where (k uu vv ww= + + ) / 2 is he turbulent kinetic energy and ijδ is the Kronecker delta. 

The substitution of Reynolds stress into the momentum equations yields: 

3
,3 2
2

1

2( )( ) 1 3[( ) ] ( ) ( )
Re ( )

j ii t i t
i t ij j j i i i

i

kUU U pU U
t x x x x Fr x

δν ν ν φ ν
ρ φ=

∂∂∂ ∂ ∂ ∂ ∂
+ − − = − + + ∇ − +

∂ ∂ ∂ ∂ ∂ ∂∑ x∂
   

(14) 

Let iUϕ = and rearrange the momentum equations as follows: 

3
2

1
[ ( ) ]t

j j j
i

R U
x x t

sϕ ϕ
ν ϕ ϕϕ

=

∂ ∂ ∂
∇ = ⋅ − + +

∂ ∂ ∂∑                                (15) 

where the effective viscosity is 1( )(
Re tRϕ )ν φ ν −= + and the source terms are given by: 

3
,3
2

1

2( )1 3[ ]
( )

j it
i i j i

i

k Ups R
x x x x Fϕ ϕ r

δν
ρ φ =

∂ ∂∂∂
= + − +

∂ ∂ ∂ ∂∑                        (16) 

In the curvilinear coordinate system, those terms can be rewritten in the 

transformed plane as follows (Chen et al. 1990): 
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2
2

1

1( )

1 1[ ]

ij j
i j j

i j j

i
j

i j
i j

j
j i ij

j i j j

m jt t
n nj j m j

n m j

g f

xb
t J

U U b
x J

b b
x x J J

ϕ ϕϕ
ξ ξ ξ

ϕ ϕ ϕ
τ τ ξ
ϕ ϕ

ξ

ν νϕ ϕ
ξ ξ

⎧ ∂ ∂
∇ = +⎪ ∂ ∂ ∂⎪

⎪ ∂ ∂ ∂ ∂
= −⎪

∂ ∂ ∂ ∂⎪
⎨

∂ ∂⎪ =
⎪ ∂ ∂
⎪

∂ ∂∂ ∂⎪− = − ⋅⎪ ∂ ∂ ∂ ∂⎩

∑∑ ∑

∑∑

∑ ∑ ∑

∑ ∑ ∑

                        (17) 

Here, and the Jacobian J are geometric coefficients in the curvilinear 

coordinate system whose values can be readily evaluated in the transformed plane. When 

we plug these terms into equation, we can get: 

, ,j ij
ib g f j

2

2ij j
i j j

i j j

g a R sϕ ϕ
ϕ ϕ

ξ ξ ξ τ
∂ ∂ ∂

ϕ
ϕ

− = +
∂ ∂ ∂ ∂∑∑ ∑                          (18) 

where, 12 [j j mi t
n n n m

n m

R xa b U b
J J

ϕ
ϕ

ν
τ ξ

∂ ∂
= − −

∂ ∂∑ ∑ ] if−  

Note that: 

2 2 2 2 2
11 22 33 12

1 1 2 2 3 3 1 2

2 2
23 31

2 3 3 1

2(

)

ij
i j

i j

g g g g g

g g

ϕ ϕ ϕ ϕ
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ϕ ϕ
ξ ξ ξ ξ

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
+

∂ ∂ ∂ ∂

∑∑ ϕ
+

       (19) 

Plug Eq. (19) into Eq. (18), we will get: 

 
2

( 2 )jj j
j j j

j

g a R Sϕ ϕ
ϕ ϕ ϕ

ξ ξ ξ τ
∂ ∂ ∂

ϕ− = +
∂ ∂ ∂ ∂∑                                  (20) 

2 2
12 23 31

1 2 2 3 3 12( )S s g g gϕ ϕ

2ϕ ϕ ϕ
ξ ξ ξ ξ ξ
∂ ∂ ∂

= − + +
∂ ∂ ∂ ∂ ∂ ∂ξ

                       (21) 
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The momentum equation and the continuity equation are the Reynolds-Averaged 

Navier-Stokes (RANS) equation for unsteady, three-dimensional turbulent flows. 

Velocity Extrapolation 

While the Navier-Stokes equations can be used to obtain velocities for the liquid 

volume and air field, the complex water surface like wave over turning would produce a 

big difference for water and air velocities. The solution will diverge if the neighboring 

values have a huge difference. The one-way extrapolation formula introduced by Stanley 

Osher (2003) is applied. 

When applying level-set function to update water surface, the velocity would be 

affected a lot by the air field, which could be a large value in opposite direction to the 

water velocity. Usually velocity extrapolation is needed for one side (i.e. φ < 0, side of 

the free surface). Since these velocity conditions were used not only to update the 

velocity but to evolve the level-set, we need velocity extrapolation in a few grid cells 

deep into theφ < 0, region. Thus, we take an approach using constant extrapolation of the 

liquid velocities from inside the liquid in the direction normal to the interface.  

The velocity extrapolation equation is: 

0=∇⋅+
∂

∂
ext

ext uN
u rrr

τ
                                             (22) 

  
| |

N φ
φ

∇
=

∇

uur
                                                             (23) 

where τ is a fictitious time. At steady state we note that . We usually 

populate a 3 to 5 grid cell band in the φ<0 region with extension velocities. Note that as 

0=∇×∇
→

extuφ
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the grid resolution approaches zero, these extension velocities do indeed solve the ∇u =0 

condition. 

In curvilinear coordinate:  

, , , ,| |
i j ij

i j i ja a gφ φ φ φ φ φ φ∇ = ∇ ⋅∇ = =
r r

 

1 2 3 ,,
| | | | | | | |

i i
i iN a a a N a Nξ η ζφ φ φ φ

φ φ φ
= + + = =

φ∇

uur r r r r
                               (24) 

0
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∂
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ττ

r
rrr

                               (25) 
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CHAPTER III 

NUMERICAL EQUATION 

 

The level-set evolution equation is written in ),( ηξ coordinates as: 

      

3

1

( ) 0
i

i
i

U
t
φ φ

ξ=

∂ ∂
+ =

∂ ∂∑
                                           (26)                           

The contravariant velocity components (Chen and Patel, 1989): 

      
3

1

i i i
j j

j
U JV b U

=

= = ∑                                       (27) 

In the present study, the equation is advanced using the 3rd-order TVD Runge-

Kutta scheme which is total variation stable (Yue et al., 2003). 

(1)

(2) ( ) (1) (1)

( 1) ( ) (2) (2)

( )

3 1 ( )
4 4 4

1 2 2 ( )
3 3 3

n n

n

n n

t R

t R

t R

φ φ φ

φ φ φ φ

φ φ φ φ+

⎧
⎪ = − Δ ⋅
⎪
⎪ Δ⎪ = + −⎨
⎪
⎪ Δ⎪ = + −
⎪⎩                                (28)                            

where iiUR ξφφ ∂∂= )()( and the spatial operator R is discretized in transformed plane 

),,( ζηξ  in a conservative manner.  

1 1 2 2 3 3
1 2, , 1 2, , , 1 2, , 1 2, , , 1 2 , , 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
i

i j k i j k i j k i j k i j k i j ki
U U U U U U Uφ φ φ φ φ φ φ
ξ + − + − +

∂
= − + − + −

∂ −
  

(29) 
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To disctritize the spatial term, the fifth order WENO scheme in curvilinear 

coordinate is used: 

3
3

2
2

1
1 ξξξξ φωφωφωφ ++=                                   (30) 

where )1,0(∈kω and 1321 =++ ωωω . 

Jiang, Shu (1996) and Jiang and Peng (2000) have made study on the weight 

parameters to keep HJ WENO to  in smooth regions. They define the weights ))(( 5ξΔO

kω  as follows:  

1
1

1 2 3

2
2

1 2 3

3
3

1 2 3

αω
α α α

αω
α α α

αω
α α α

=
+ +

=
+ +

=
+ +                                              (31) 

1 2
1

2 2
2

3 2
3

0.1
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0.6
( )
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( )

S

S

S

α
ε

α
ε

α
ε

=
+

=
+

=
+                                                   (32) 

with : 
610ε −=

2 2
1 1 2 3 1 2 3

2 2
2 2 3 4 2 4

2 2
3 3 4 5 3 4

13 1( 2 ) ( 4 3 )
12 4
13 1( 2 ) ( 4 )
12 4
13 1( 2 ) (3 4 )
12 4

S v v v v v v

S v v v v v

S v v v v v v

= − + + − +

= − + + −

= − + + − + 5
                    (33) 
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         (34) 251431221 ,,,, +
−

+
−−

−
−

−
− ===== iiiIi DDDDD φυφυφυφυφυ

ξ
φφ

φ
Δ
−

= −− 1ii
iD                                              (35) 

In smooth region, three weight coefficients are equally significant and produce 5th 

order accuracy. In the non-smooth region, the combination of weight coefficient values 

would make the WENO back to 3rd order ENO, which is .  ))(( 3ξΔO
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CHAPTER IV 

VERIFICATION OF PRESENT MODEL 

 

The level-set FANS method was employed recently by Chen and Yu (2006) and Yu 

et al. (2007) for time-domain simulations of greenwater on 2D offshore platforms and 

3D sloshing flows in a liquefied natural gas (LNG) tank. In the present study, fifth-order 

WENO scheme was incorporated into their previous work to get higher accuracy 

solution. It is tested for monochromatic wave, bichromatic wave and more complex free 

surface including breaking wave. 

Zalesak’s Problem 

The Zalesak’s two-dimensional problem (Zalesak, 1978) is a common test for the 

quality of an advection scheme. This problem consists of a slotted solid disk rotating in a 

100 × 100 square domain. The solid area is a cut out circle of radius R = 15 (normalized 

by the unit grid size), advected by a counterclockwise rotating flow field with constant 

angular velocity Ω  (Figure 1). The diameter of the circle is 30, and the slot width is d = 

6 as shown in Figure 2. The slotted solid disk is initially centered at (50, 75) and rotates 

around a center (50, 50). The velocity field is given by  

)50(
)50(

0

0

−×Ω=
−×Ω=

xv
yu

                                                               (36) 

=0φ  signed distance from object 
 

The computational grid contains 100× 100 regular square elements so that the mesh 

size is 1 as shown in Figure 3. =Δ=Δ yx
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Figure 1   Zalesak’s Problem: velocity field 

 

 

Figure 2   Zalesak’s Problem: initial position and contour plot ofφ  
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Figure 3   Zalesak’s Problem: uniform grid in domain 100*100. 

 

Two simulations were performed: one with the third-order TVD Runge-Kutta 

scheme in time coupled with the third-order Hamiliton-Jacobi essentially non-oscillatory 

(HJENO) (Osher and Fedkiw, 2003) function in space; and the other with the same third-

order TVD Runge-Kutta scheme in time, but coupled with fifth-order WENO scheme 

(Liu, Osher and Chan,1994) in space. In each case, the time step tΔ  was set to 0.01 s, 

and 628 time iterations were needed for the disk to perform one complete cycle. Figure 3 

shows the numerical grids and the slotted disk edges (solid lines) at time step = 0, 157, 

314, 471, and 628. The dotted line in Figure 4 represents the initial geometry of the disk. 

The dashed line in Figure 4 is the disk geometry imposing the third-order HJENO 

scheme at time step = 628, while the solid line denotes the computed slotted disk edges 

using the WENO scheme. For both cases, one can readily see that the shape of the cut 
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out circle remains unchanged except at the corners, which are slightly rounded because 

of the small numerical diffusion. From comparison, a higher order scheme such as the 

WENO scheme is much more accurate at the corners compared to the ENO scheme. 

Also, this error accumulates with increasing computing time. This clearly shows the 

efficiency of the WENO scheme compared to the third-order HJENO scheme. 

  

Figure 4    Zalesk’s problem: comparison of predicted interfaces at t = 0, 157, 314, 471, 

and 628, using HJENO and WENO scheme 

 

Monochromic Wave Propagation 

In this study, a two-dimensional numerical wave tank in a viscous fluid was used to 

simulate the propagation of water waves over flat bottoms. Evolution of wave and flow 
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fields are described and discussed in detail. The still water depth is indicated by H in 

Figure 5.  

 

Water Level 

h 
H

A

Figure 5:   2D schematic diagram for wave maker  

 

Experimental Setup 

Monochromic waves were generated at one end of a two-dimensional wave flume. 

This wave flume was a two-dimensional nonlinear numerical wave tank based on the 

chimera RANS method combined with the level-set method. To verify the accuracy of 

the present numerical scheme, monochromic waves propagating in the  entire domain 

and solved by RANS equations were coupled with applying the level-set method third-

order TVD Runge-Kutta scheme (Yue et al. 2003), and the fifth-order WENO scheme 

(Liu, Osher and Chan 1994)  to the discrete level-set equation. The waves downstream 

were dissipated by imposing numerical dampening on the free surface. The numerical 

damping was applied on kinematic free-surface conditions.  

In the fully nonlinear computation, the length of the damping zone was twice the 

wavelength. In the longitudinal direction, equally spaced 80 cells in one wavelength 

were used. In the vertical direction, a variable mesh system with a denser cell 

distribution near the free surface and its size increasing with depth is employed. Near the 

free surface, 20 cells were used in the vertical distance H. For the computational domain, 
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400 elements were distributed on the free surface and 40 elements on the wave maker, 

which is a half wavelength. The time increment T used for the present computation is 

T/200. Wave profiles were tested on different cases depending on the damping function 

and grid density. Also, we compare the result with the third-order HJENO scheme, 

which was previously completed by Yu (2007). 

Buffer Domain Treatments  

To prevent reflection of the wave fluctuations that can disturb the wave profile in 

the wave tank, an artificial buffer domain is needed. An extra zone is attached to the 

edge of the wave-tank domain. Within this extra zone, the amplitude of the out-going 

wave is dampened to a set target value.  

There are several ways to dampen wave fluctuations, including a considerable 

increase of the viscosity (Liu, 1994), a gradual change of the governing equations in a 

parabolic system (Prutte, 1995), and removing the disturbance component from the 

convective velocity (Prutte, 1995).  

Experimentally, it has been shown that the larger the viscosity increase, the more 

effective is the buffer domain. However, higher viscosity would limit the allowable time 

step, and this would restrict the entire numerical method. For the parabolic procedure, 

the buffer domain works slowly and is costly.  

In our test, we adopt an efficient method by directly multiplying the disturbances 

with an appropriate dampening function. This technique gives a better result than from 

the method that only removes disturbances from the convective velocity, even with a 

shorter buffer domain (Wasistho, 1997). 
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To simplify our model, a sinusoidal wave of very small wave steepness, which 

alters the profile to a linear wave, is superimposed in the wave maker. The input wave 

has constant frequency and amplitude. Although constant frequency and amplitude do 

not make physical sense, it is a good approximation to a nonlinear wave when the wave 

steepness is small. After the wave propagates, the wave shape changes with the crests 

becoming more sharply peaked and the troughs shallower and flatter after only a few 

time periods. The wave then maintains a relatively steady profile and continues to 

propagate until it reaches the buffer zone where the amplitude is gradually reduced by 

multiplying the distributions of velocities with a damping function. Usually the damping 

function decreases from 1 to 0, which reduces the wave profile to a reference value. This 

approach could be described by the following formula (Wasistho, 1997): 

)ˆ)((UU reflref UUx −+= ζ                                          (37) 

where , is the referenced solution and is the solution calculated at 

each time step without applying the damping function. 

T
i puU ),(= refU Û

ς  is the damping function.  

Wasistho et al. (1997) have compared the damping rates of different types of 

damping functions according to the buffer zone grid quality, buffer zone domain type, 

and the input wave property. According to their result, we choose Damping Function 1 

as the one which was recommended to effectively reduce wave reflections, and compare 

it to the one commonly used for damping out the waves as Function 2.  
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For Function 1,  and are the values of at the beginning and the end of the 

buffer domain. The buffer zone domain coordinates range from 0 to 1 when it moves 

from the beginning to the end of the buffer zone. 

sx ex lx

Function 1 is: 
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We take C1=0.005 and C2=20 during test.  and are the values of at the beginning 

and the end of the buffer domain, then the buffer domain coordinate ranges from 0 to 1 

when it moves from the beginning to the end of the buffer zone. 

sx ex lx

Function 2 is: 

2
)cos(1 π

ζ
×+

= bx

                                         (40) 

bx  is defined in Eq.39. 

For both function expressions, and ζ satisfies the following dampening function 

constraints:  
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Table 1   Locations of wave elevation measurement 

Points Location(m) 

P1 2 

P2 4 

P3 6 

 

As described previously, the length of the entire domain is selected to be six 

wavelengths, in which the last two are optionally used as a buffer domain. The 

computational domain size is 1.6 m×12.0 m (Figure 6). If we use a water depth of h = 1 

m to normalize the spatial value, the wavelength is a dimensionless value 2.0. The height 

of the computational domain ranges from -1.0 to 0.6 in the y-direction. The steady water 

level is at y = 0.0, which is also the reference value. Wave elevation would be measured 

from three gauges (Table 1). The surface gravity in the wave maker is a sinusoidal 

function of the form: 

))(2cos(),(
L

CtxAtxy −
=

π

                                         (42) 

 

 

Figure 6   Schematic of buffer zone implementation   
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Figure 7   Typical mesh for 2D wave maker (Refine mesh near the free surface) 

 

 

  P1 P2 P3

Figure 8   Computational domain for 2D wave maker 

 

Amplitude A equals 0.1 and the wavelength L is 2.0. We use a fifth-order WENO 

third-order TVD Runge-Kutta scheme and a 400 x 85 grid for our computational domain 

(Figure 7 and Figure 8). As an illustration, the shapes of five damping functions are 

depicted in Figure 9. To validate the performance of the damping function, we tested the 

buffer domain successively and tried to obtain the narrow one that exhibits very small 

upstream influences. We used the following procedure:  
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Figure 9   Shape of five damping functions tested within the buffer domain 

 

Test 1: By applying the sinusoidal dampening function on the first 2/3 of the buffer 

domain where x = (8.0, 10.5), the wave profile and velocity distribution at a specific 

time is shown in Figure 10. The wave profile along the wave tank, x = 1~8, is shown in 

time steps on Figure 11. 
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Figure 10   Test 1: Wave profile and velocity distribution at t=5.7T  
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Figure 11   Test 1: Wave profile at consequent time (t=11.8T, 11.9T, 12.0T, 12.1T, 2.2T, 

12.3T, and 12.4T) 

 

At time t = 5.7T, the wave is almost damped out in the entire buffer zone. There is 

no pressure higher than 0.07 and the velocity also decreases very rapidly. From the wave 

train propagation shown in Figure 11, this damping function has very explicit reflection 
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wave properties in most of the computation domain. The disturbance is caused by a 

sudden compression of the amplitude. The reduction of disturbances is carried out in 

every stage. This accumulative effect makes the reduction of disturbances more rapid 

than the damping functions. Although the sinusoidal damping function satisfies the four 

constraints, it gradually changes. The sinusoidal damping function can also produce an 

abrupt decrease of the disturbance amplitudes and produce reflections in the 

computational domain.  

Test 2: Next, we test the exponential dampening function and apply it at the same 

buffer zone ranging from 8.0 to 10.5. The pressure, velocity and propagation of the wave 

train are shown in Figure 12 and Figure 13. Comparing the first two tests, we see that the 

exponential damping function is slightly improved (Figure 14) compared with Test 1. 

 

Figure 12   Test 2: Wave profile and velocity distribution at t=5.7T 

 

 



 33

1 2 3 4 5 6 7 8

-0.1

-0.05

0

0.05

0.1

0.15

position

w
av

e 
el

ev
at

io
n

 

 
t=11.8T
t=11.9T
t=12.0T
t=12.1T
t=12.2T
t=12.3T
t=12.4T

 

Figure 13 Test 2: Wave profile at consequent time (t=11.8T, 11.9T, 12.0T, 12.1T, 12.2T, 

12.3T, and 12.4T) 
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Figure 14  Comparison of Test 1 and Test 2 

 

Compared to the sinusoidal function, this damping function has much better control 

of the reflected waves, and even the wave shape does not change significantly in the 

front of the buffer zone. We found that the propagating wave train could be held with 

sufficient amplitude.  A minor problem with this model is that the wave amplitude 

decreases when propagating, which may be caused by a somewhat coarse grid and the 

properties of the nonlinear wave itself.  

Test 3: To identify the main reason for the reflected waves caused by the sinusoidal 

damping function, we modified the original sinusoidal damping function to change the 

shape in a narrow zone and match that of the exponential damping function. We tested 
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the sinusoidal function by only applying it on (10.3, 10.5) and analyzed the results as 

shown in Figure 15 and Figure 16. 

 

 

Figure 15   Test 3: Wave profile and velocity distribution at t=5.7T  
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 Figure 16   Test 3: Wave profile at consequent time (t=11.8T, 11.9T, 12.0T, 12.1T, 

12.2T, 12.3T, and 12.4T) 
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We could still identify the reflected waves, which are smaller than the sinusoidal 

dampening function applied from x = 8.0. We conclude that although in such a narrow 

zone, which is 0.2 in width, the small difference between the sinusoidal and exponential 

damping functions could result in very obvious effects on the reflection.  

Test 4 and 5: Originally, the requirement called for the sinusoidal dampening 

function to cover a bandwidth no less than half the wavelength. To eliminate the 

possibility that reflection is caused by a deficient buffer zone width, we extended the 

sinusoidal damping function and made it cover from 10.2 to 11, which is longer than half 

the wave length (1.0). The results, in Figure 17 and Figure 18 show that there is actually 

almost no disturbance. With an increase in the domain, this sinusoidal dampening 

function covers less change of its value on unit length. The sinusoidal dampening 

function was extended to the end of entire domain and covered from 10.2 to 12. Figure 

19 and Figure 20 show the results for Test 5.  
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. 

 

Figure 17    Test 4: Wave profile and velocity distribution at t=5.7T  
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Figure 18   Test 4: Wave profile at consequent time (t=11.8T, 11.9T, 12.0T, 12.1T, 

12.2T, 12.3T, and 12.4T) 
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Figure 19   Test 5: Wave profile and velocity distribution at t=5.7T  
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Figure 20   Test 5: Wave profile at consequent time (t=11.8T, 11.9T, 12.0T, 12.1T, 

12.2T, 12.3T, and 12.4T) 

 

From Test 1, 3, 4, and 5 we could find that sinusoidal damping function is not an 

effective approach even when it is applied on longer buffer domain length.  
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Test 6: To make the entire series of tests more systematic, we also want to analyze 

the propagating wave train with an exponential function applied on a longer domain. 

This test could help us find a more effective damping function by narrowing the domain 

needed for computations. The exponential dampening function was applied on x = (8.0, 

12.0), and the results are shown in Figure 21 and Figure 22.  A comparison of Test 2 and 

Test 6 is shown in Figure 23. 

 

 

Figure 21   Test 6: Wave profile and velocity distribution at t=5.7T  
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Figure 22   Test 6: Wave profile at consequent time (t=11.8T, 11.9T, 12.0T, 12.1T, 

12.2T, 12.3T, and 12.4T) 
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Figure 23   Comparison of Test 2 and Test 6 

 
 

In the last test, damping function is defined as: 
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For our uniform grid density model, the numerical tests have shown that the 

exponential damping function applied over a range from 8.0 to 12.0 is more efficient 
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than other damping functions. Note that the parameter 005.01 =C  forces a much more 

gradual suppression of disturbances in the front part of the bugger domain, and the 

increased value  postpones a rapid decrease in the disturbance. Based on this 

result, an effective damping function with very small upstream influences is established 

and will be used in other numerical models.  

202 =C

Grid Refinement Study  

From the numerical tests in Chapter IV, we notice that the wave amplitude 

decreases when the waves are propagating in the computational domain, even for the 

most effective damping conditions. Actually, the density of elements in the numerical 

model plays an important role in obtaining more accurate solutions.  

The grid we used is 20 cells in wave height and 80 cells in wave length. The wave 

profile accuracy has a different sensitivity in wave height and length directions with a 

0.2-m height and a 2.0-m length.  To achieve a more efficient grid with less cost but 

higher accuracy, we performed some simple performance tests initially on a coarser grid.  

Less computation time is needed with the coarser grid while it still maintains the 

tendency of grid sensitivity in different directions. In studying the base on the grid of the 

buffer zone, we divided the computational domain into three blocks, exactly the same as 

the wave maker, wave tank and buffer zone fields (Figure 24). In this way, we were able 

to keep the wave maker and buffer zones unchanged needing only to refine or reduce the 

grid in the wave-tank domain to reduce computation costs. The tests we made were 

based on the grid shown in Table 2.  
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Table 2   Grid density for Test 1 and Test 2 

 

Simple Tests: No. of Elements: 

Test 1 145*42 

Test 2 145*84 

 
 
 
  

 

Figure 24   Schematic of wave flume and buffer zone implementation 

 

The FANS program coupled with the level-set method computes the free surface, 

fluid velocities and pressures in three different coupled domains:  

• Wave-maker domain—   

The wave-maker domain is used to generate anticipated waves on the inflow 

boundary of the computational domain.  

• Wave-tank domain—  

 The wave-tank domain is adjacent to the wave-maker domain. In this domain, the 

actual wave data of interest are computed and stored for further post-processing (wave 

elevation and velocity potential).  

• Dissipation domain—  
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The dissipation damping domain is adjacent to the grid domain and is used to damp 

the wave components and to steady the water. This condition is accomplished by 

applying an explicit damping function.  

Test 1 reduced the elements by one half in both the j and k directions, while Test 2 

reduced the elements only in the j direction. Taking the same input wave as in the buffer 

zone study, the wave profiles at three gauges for these two tests are shown in Figure 25. 
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Figure 25   Wave profile on different grid for Test 1 and Test 2 

 

By comparing the wave-height error for Test 1 and Test 2, we observe that the grid 

change in wave-height direction has more influence on the profile compared to the 

change in wave-length direction. According to this result, we designed three cases to 

achieve the most effective grid for our model. 

To refine the grid, Table 3 shows the numerical simulation results for three grid 

sizes used in the wave tank.  Errors and uncertainties due to grid size are estimated based 

on systematically refined grids with a constant refinement ratio:  
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Table 3   Grid density for Case 1, Case 2 and Case 3 

 

Cases: Type: Cells in H No. of Elements: 

Cases 1(Original) Coarse 20 290*84 

Cases 2 Medium 30 290*126 

Cases 3 Fine 40 290*169 

 

After superimposing a sinusoidal wave at the wave maker for the three cases and 

applying an exponential damping function at the buffer zone, we computed wave 

elevations at three gauges for different mesh sizes (see Figure 26). The wave profile in 

the fine grid shows more properties of a nonlinear wave with the crests more sharply 

peaked and the troughs shallower and flatter. Figure 25 also shows that the wave profile 

observed in Case 2 and Case 3 do not have large differences. We could make the grid 

used in Case 3 sufficiently fine to accurately capture wave height in our model. 
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Figure 26   Comparison of wave elevations at three gages for different type of grid sizes 

 

Wave shape evolves gradually when it transforms from a sinusoidal profile to a 

nonlinear profile. The wave shape can lose some nonlinear properties if the grid is not 

fine enough as shown in Figure 25. 

Accuracy of the generated wave profile depends on grid density as well as the order 

of the simulation scheme. For small-amplitude waves, the smooth wave shape would be 

more accurately calculated by the higher order WENO scheme. As the grid becomes 

increasingly, sufficiently finer, the difference between the higher-order scheme and the 

lower one would decrease and finally approach zero. This condition would occur 

 



 45

because the difference in the higher-order scheme and lower one is proportional to the 

accuracy of scheme (see Figure 27). mxO )(Δ
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Figure 27   Time history of wave profile for WENO and ENO-3rd scheme on Grid Case 1 

 

 

From  this discussion, it  has been shown that the periodic wave  can be accurately 

simulated using the WENO scheme on a fine grid (290 x 169) when a proper exponential 

damping function is applied after the outflow of the computational domain.   
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Figure 28 Time series of free surface elevation at different locations 
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CHAPTER V  

BICHROMATIC WAVE INTERACTION AND EVOLUTION OF  

A BREAKING WAVE OVER A SLOPING BEACH 

 

Numerical simulations of multi-component waves in a constant depth flume and 

breaking waves on a sloping beach are conducted to evaluate the performance of the 

present method. For a multi-peaked wave model, the instability of nonlinear wave 

interaction is investigated, and the features shown in our model are extremely 

compatible with theoretical solutions. Numerical tests also show that our model can 

accurately track breaking waves over sloping beaches. The breaking point is related to 

wave height and beach slope. We concentrate on two-dimensional results showing wave 

breaking and wave roll up. 

Interaction of Bichromatic Waves in a Flat Flume 

 A spectral description of sea elevation is commonly used to predict loads on 

offshore structures due to surface waves. This approach is based on the superposition of 

the linear wave model. Recently, the ‘‘freak’’ waves (or rogue waves) phenomena has 

resulted in more attention being placed on this widely used approach and researchers 

have started to investigate the formation of these “freak” waves. Chaplin (1996) showed 

that focused component waves are fully nonlinear in a relatively small region. From his 

experimental results, there is a high-frequency range produced, well above the input 

spectrum. A non-negligible amount of energy exists at these new frequency components. 

Onorato et al. (2006) recently developed a simple weakly nonlinear model for two 
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nonlinearly interacting water waves in deep water with two different directions of 

propagation. They showed that the dynamics of these coupled waves are governed by 

two coupled nonlinear  (CNLS) equations. Other research groups also 

identified the nonlinearity of wave interaction. These research groups showed that large-

amplitude freak waves in the oceans can be produced by the nonlinear instability of 

water interacting nonlinearly in a constructive way. 

dingeroSchr &&

We tried to investigate the properties of nonlinearly interacting water by coupling 

the directional wave simulation (DWS) (Huang and Zhang, 2009) with our RANS 

solver. The DWS program numerically simulates the time series of the irregular waves 

in different locations based upon the directional wave energy spectrum.  

To have a better comparison of wave patterns between DWS domain with liner 

wave and RANS domain with nonlinear wave, we increased the wave-maker domain 

size for the test model described in Chapter IV as DWS domain, and set the RANS 

domain to the same size begins immediately after it. The wave-maker domain, which is 

applied with the DWS program, is 400 m long and 1,600 m high. We used the water 

depth as the normalization factor. Numerical simulation  is based on the same grid 

density as Case 3 in Chapter IV, which is uniform in the x-direction at  = 0.0125 and 

stretched in the y-direction from the finest size, 

xΔ

yΔ = 0.005  in the mean-water area, to 

= 0.1  at the top and bottom. In the wave-maker domain, we reduced the grid density 

in most of the area to one-half of the original value and keep the overlap area with the 

wave tank unchanged (see Figure 28). 

yΔ
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  Because the DWS program provides an exact solution for every point in the 

domain, it is not an effective way to apply a fine grid to obtain the contour of the wave 

profile. By covering only the overlap region with a fine grid, we could still obtain an 

accurate solution with less computer costs. Also, four gauges were set up in the wave-

maker domain and the computational domain to measure water elevation history (see 

Figure 29 and Figure 30). 

 

 
 
Figure 29 Numerical grid for bichromatic wave interaction case  

 

 

 

Figure 30   Flume Configuration 
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Figure 31   Schematic of Program DWS and buffer zone implementation 

 
 

To compare the single-wave and group-wave cases composed by these single 

waves, we also ran simulations where Wave 1 and Wave 2 were generated separately in 

the same model. For the purpose of this study, the input for biochromatic waves was 

made up of frequencies 1σ =0.0882  and 1−s 2σ =0.098698  and spectrums =90.0 

 and =72.000 . The group wave value was calculated by superposition at a 

water depth of 100.0 m. Figure 31 shows the wave profiles of these two waves and the 

group profile obtained by superposition. We compared the profile changes for single 

waves and their combined group wave. The group wave calculated by nonlinear code 

maintained a similar group property as the one obtained from the DWS program. 

Another factor requiring additional attention is that the profiles provided in Figure 32 for 

the computational domain are measured at a gauge located relatively close to the wave 

maker, which might not have performed nonlinearly.   

1−s 1S

2m 2S 2m

To obtain a more complete understanding about the instability and evolution of 

nonlinearly interacting water waves, we compare the time history of wave elevation at 

gauges P11(x = 2.25L), P12(x = 2.75L), P13(x = 3.25L), and P14(x = 3.75L) (wave length 

L=2.0). 
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Figure 32   Comparison for single wave and group wave computed by DWS and RANS  
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Figure 33   Sinusoidal input (left-hand column) and simulated input using  

RANS (right-hand column) surface elevation 
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A general view of the free-surface time and spatial evolutions at the four gauges is 

shown in Figure 33 and Figure 34. Each figure shows that the overall free surface is in a 

strong wave-grouping pattern. Evolution of nonlinear interaction waves along the wave 

flume shows more instability, compared with the linear group wave profile obtained by 

superposition. This is due to the coupling and interaction of the two nonlinear waves. 

The maximum wave height (Figure 33) is H = 2.6, while the superposed maximum 

wave height is H = 2.0 in the wave maker. Comparing the wave shapes at the four 

gauges, the amplitude spectrum is modified dramatically only in approximately one 

wave length. Figure 33-f and Figure 33-h show the same pattern, which means that the 

free surface of the wave group has been relatively stable before the second wave length. 

The free surface envelope becomes more asymmetrical. Figure 33-f shows that the crest 

gradually moves to the left in each group as the wave propagates. The temporal variation 

of the surface elevation for Gauge 4 under fully nonlinear performance is presented in 

Figure 33-h. Similar left-right asymmetry, which is manifested in our simulation, was 

also identified by the theoretical simulations based on the Zakharov model (Shimer, 

2000). Another phenomenon during this wave interaction is that the group wave 

envelope has phase shift compared to the superposition of two single nonlinear waves 

shown in Figure 33 and Figure 35. 

max2

max1
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Figure 34   The interaction between two nonlinear waves  
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a)                                                                                b) 

 

Figure 35   Comparison of single nonlinear waves superposition and simulation free 

surface 
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c)                                                                     d) 

 

Figure 35   (continued) 
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In summary, we have presented a numerical study of the instabilities of two 

nonlinearly interacting, two-dimensional waves in deep water. Laboratory simulation of 

dual-wave-train shoaling and breaking on a plane beach indicates that simple approaches 

to estimating the transformation, such as linear superposition of single wave trains, will 

not work. Numerical analysis of the full dynamical system reveals that two water waves 

can produce large waves compared to initial waves when nonlinear interactions are taken 

into account. 

Evolution of Breaking Waves over a Sloping Beach 

In this test, a sinusoidal wave was generated and propagated in the computational 

domain with a sloping bottom by solving the numerical model using the fifth-order 

WENO Runge-Kutta scheme. The calculation domain begins at x = 0.0 m from the toe 

of the slope, which is 15 m long and starts from a height of 1.5 m.   

A refined grid (Figure 36) has been made according to the maximum wave height 

prior to the seawall and according to maximum velocity modulus beyond that point. The 

calculation domain is built with 300 cells in the x-direction and 60 cells in the z-

direction, except for the region near the seawall, which was re-gridded to 100 cells in the 

z-direction. The grid sizes were set to ∆x = 0.05 m, ∆z = 0.15 m at coarsest part, and ∆z 

= 0.015 m at the coarsest part. 
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Figure 36   Typical mesh for 2D surf zone (Refine mesh near the free surface) 

Water Level 
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a) 2D schematic diagram for surf zone 

 

 

b) Dimension for surf zone 

Figure 37   Sketch for model set up on sloping beach 
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Numerical simulations were conducted separately on three different sloping 

beaches with 1/20 and 1/15 slopes under the same input wave trains (Table 4). The 

bottom topography plays an important role on the change in wave-breaking 

characteristics (Garzon and Sethian 2006). To study the dependency of wave breaking as 

a function of these different beaches, we tested the following cases: 

 

Table 4   Slope and input wave height for all the cases 

 slope =1:20 slope =1:15 

Ho = 0.57 Case 1 Case 2 

Ho = 0.65 Case 3 Case 4 

Ho = 0.70 Case 5 Case 6 

 
 

Figure 37 shows an example of the simulated results for Case 4. Waves break on a 

1/15 slope at breaking point  = 6.6 m with the breaking wave height = 0.413 m. 

Using a different color, Figure 38 shows simulated instantaneous surface elevations from 

the shoaling region to the bore region on sloping beaches. The surface elevations are 

typical shallow-water waves with higher wave crests and flatter wave troughs. As the 

waves shoal, the wave crests become even more peaked with increasing wave height 

until a maximum height occurred at x= 6.6 m where a vertical front is reached, tangent 

to the calm water surface. This is usually called the breaking point, BP= ( , , ), 

where  represents the x coordinate,  the height at , and t  the time of 

bx bH

bpt

bp

bpx bpz

bpx bpz bpx

 



 60

occurrence. Beyond the BP, a wave tip develops and velocities are much greater than the 

wave celerity, which causes wave overturning and subsequent falling of the jet toward 

the flat water surface.  This end point is denoted as EP= ( , ). ept epx

From the simulated result shown in Figure 39-44 and Table 5, wave shape and 

breaking characteristics are related to wave height and beach slope. On steeper beaches, 

waves break earlier with higher breaking point heights.  Also, the breaking wave occurs 

slightly closer to the wave maker, but it needs a longer time to reach the end point for the 

same breaking wave. 

 

 

Figure 38    Wave shape at consequent times (Case 2) 
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Table 5   Breaking characteristics 

 

  bpt  (s) bpx  (m) bpz  (m) ept  (s) epx  (m) 

Second 
Wave 
Peak 

1 8.8934 3.91 0.50 12.3318 7.89 

2 9.1772 4.00 0.49 12.5000 8.15 

3 8.6000 3.51 0.54 10.6110 6.20 

4 8.6040 3.52 0.54 10.6200 6.25 

5 8.3168 3.32 0.60 10.0375 5.61 

6 8.8904 3.79 0.51 10.6111 6.20 

Third 
Wave 
Peak 

1 15.4865 4.65 0.49 19.5015 9.22 

2 16.3468 5.52 0.48 20.0751 9.78 

3 14.9500 4.20 0.52 17.2072 7.27 

4 14.9129 4.23 0.50 17.4000 7.50 

5 14.0400 3.25 0.63 15.7800 5.65 

6 14.0525 3.43 0.60 16.0601 6.08 
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the second wave 
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Figure 39    Propagation of the second wave crest on beaches with slopes 1/15 and 1/20 

(Ho=0.57) 
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The third wave 

The second wave 

 
 
Figure 40    Propagation of the third wave crest on beaches with slopes 1/15 and 1/20 

(Ho=0.57) 
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Figure 41    Propagation of the second wave crest on beaches with slopes 1/15 and 1/20 

(Ho=0.65) 
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the third wave 

the second wave 

Figure 42    Propagation of the third wave crest on beaches with slopes 1/15 and 1/20 

(Ho=0.65) 
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the second wave 

the first wave 

Figure 43    Propagation of the second wave crest on beaches with slopes 1/15 and 1/20 

(Ho=0.70) 
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the third wave 
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Figure 44    Propagation of the third wave crest on beaches with slopes 1/15 and 1/20 
(Ho=0.70) 
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Figure 44    (continued) 

 

Wave shape and breaking characteristics are related to wave height and beach 

slope. On steeper beaches, waves break earlier with higher breaking point heights.  Also, 

the breaking wave occurs slightly closer to the wave maker, but it needs a longer time to 

reach the end point for the same breaking wave. 
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CHAPTER VI 

CONCLUSIONS 

 

In the present study, a numerical wave tank containing a viscous fluid was used to 

simulate the propagation of water waves over a sloping beach. In this numerical scheme, 

the unsteady RANS equations were solved for the mean flow field and its dissipation. A 

level-set method was adopted for capturing the interface between the air and water phase.  

A numerical wave tank was used to investigate the propagation of bichromatic 

waves and breaking waves over a sloping beach. To present the capability of the 

numerical model, a series of experiments were performed and conclusions of this study 

follow:  

1. Zalesak's problem was performed to examine the level-set method. By 

comparing the numerical results of the level-set method by adopting the WENO scheme 

with traditional level-set method with the ENO scheme it was revealed that the higher 

order level-set method substantially eliminated the diffusion in sharp corners of the 

traditional level-set method. 

2. The accuracy of the numerical results obtained by applying the WENO scheme 

for the incident wave profiles were verified by comparing numerical results with 

solutions obtained using the ENO scheme. The characteristics of nonlinear 

monochromatic waves were studied systematically and comparisons were conducted. To 

eliminate other factors that can produce fluctuations on the wave profile, different 

damping functions and grid densities were studied. The comparisons revealed that the 
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present numerical results are sufficiently efficient to improve the accuracy of the level-

set RANS method. 

3. For a surface-tracking numerical method built on curvilinear coordinates, the 

level-set RANS model was tested for nonlinear bichromatic wave trains and breaking 

waves on sloping beaches with complex free surfaces. The velocity of the fluid flow 

surface became complicated as the wave breaks. The level-set finite-analytic Navier-

Stokes (FANS) numerical model performed well in simulating the two-phase flow 

velocity and its corresponding surface evolution when the water wave passed over the 

different sloping beaches. Wave-breaking characteristics in the test cases provided an 

efficient technique to capture the surface accurately. Different wave heights and beach 

slopes were used for predicting and simulating the breaking points. The results show that 

the dependency of wave shape and breaking characteristics to wave height and beach 

slope match the results provided by Garzon and Sethian. (2006). 

 

4. A Navier-Stokes numerical model combined with level-set method was applied 

to investigate waves over a sloping beach. Using the present numerical model, the 

complete evolution of an overturning wave were captured, including the initial stage of 

incident wave, shoaling process, wave breaking, re-attachment, air entrainment, and 

splash-up phenomena. The relationship between the initial wave height, beach slope, and 

breaking wave characteristics were discussed. The numerical results showed that on 

steeper beaches, waves break earlier with higher breaking point heights.  Also, the 

breaking wave occurs slightly closer to the wave maker, but it needs a longer time to 

reach the end point for the same breaking wave. 
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